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Genetic diversity of Chamaecrista fasciculata 
(Fabaceae) from the USDA germplasm collection
Erika Bueno1, Ted Kisha2, Sonja L. Maki3,4, Eric J. B. von Wettberg1*  and Susan Singer3,5

Abstract 

Objective: Chamaecrista fasciculata is a widespread annual legume across Eastern North America, with potential as 
a restoration planting, biofuel crop, and genetic model for non-papillinoid legumes. As a non-Papilinoid, C. fasciculata, 
belongs to the Caesalpiniod group in which nodulation likely arose independently of the nodulation in Papilinoid and 
Mimosoid legumes. Thus, C. fasciculata is an attractive model system for legume evolution. In this study, we describe 
population structure and genetic diversity among 32 USDA germplasm accessions of C. fasciculata using 317 AFLP 
markers developed from 12 primer pairs, to assess where geographically there is the most genetic variation.

Results: We found that the C. fasciculata germplasm collection fall into four clusters with admixture among them. 
After correcting for outliers, our analysis shows two primary groups across Eastern and Central North America. To bet-
ter understand the population biology of this species, further sampling of the full range of this widespread species is 
needed across North America, as well as the development of a larger set of markers providing denser coverage of the 
genome. Further sampling will help clarify geographical relationships in this widespread temperate species.
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Introduction
Genetic diversity of germplasm collections serves as 
an important resource for the conservation and main-
tenance of both wild and cultivated plants and can be 
particularly useful for the development of new potential 
crops. One such species is Chamaecrista fasciculata, or 
partridge pea, which is a member of the economically 
important Leguminosae family. The species belongs to 
the subfamily Caesalpinioideae; the common ancestor 
of Papilionoid legumes (soybean, Medicago, and Lotus) 
which diverged approximately 60 million years ago (Leg-
ume Phylogeny Group, [20, 21] from these groups. There 
is growing interest in implementing Chamaecrista as a 
complementary model for legume evolution due to its 
relatively small genome size, phylogenetic position, abil-
ity to form nodules, and flower development; all of which 
would provide fundamental knowledge on the evolution-
ary origins of legume traits [29]. A genome sequencing 
project is currently underway for C. fasciculata (Steve 

Cannon, Pers. Comm.), which is one of the only annual 
temperate species with a compact growth form in the 
large genus of ~ 330 mostly long-lived tropical tree and 
shrub species.

The partridge pea (C. fasciculata), is a North American 
annual legume with a widespread distribution that ranges 
from the Northern Great Plains to Central Mexico. In the 
U.S. C. fasciculata, can be found growing from southern 
New England to Florida and westward into New Mexico 
and Oklahoma [15]. It is self-compatible and has a high 
outcrossing rate of 80% [10, 12]. The plant produces large 
yellow flowers that are exclusively pollinated by carpen-
ter bees and bumblebees [1]. Seeds are dispersed short 
distances from parents (< 2.5 m) via explosive dehis-
cence [10]. Below ground, C. fasciculata forms nodules in 
response to nitrogen fixing bacteria known as rhizobium 
[22]. Unlike other legume crops, the genus Chamaecrista 
has not undergone any whole genome duplications [2] 
since its divergence from the Papilionoideae and has a 
generally smaller genomes (ca. 650 Mb in C. fasciculata). 
Working with fewer copies of genes in a model system 
such as C. fasciculata makes genetic approaches substan-
tially easier, potentially enhancing the rate of discovery 
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in legume crops. As the only temperate annual in a large 
tropical tree genus, a wealth of information exists on the 
ecology of C. fasciculata including the characterization of 
locally adaptive traits in response to climate change, key 
pollinators, and gene flow and genetic structure among 
naturally occurring populations [4–6, 10, 11, 13, 14, 30, 
31]. Additionally, the genus Chamaecrista has indepen-
dently evolved the ability to form nodules, thereby cre-
ating a unique opportunity to investigate the origins of 
nodulation and mutualistic interactions in Leguminosae 
[3]. Therefore, expanding on the genomics of C. fascicu-
lata as a non-papilionid model legume is a key step into 
understanding the evolution of legume traits.

Here, we characterize genetic variation in the USDA 
collection of C. fasciculata comprising of 32 accessions 
originating from a range of populations in the U.S. that 
span its geographic distribution. Using Amplified Frag-
ment Length Polymorphism (AFLP) markers [33], we 
show that there are four clusters in the germplasm collec-
tion with minimal genetic differentiation among groups.

Main text
Methods
Germplasm collection
Accessions were selected from the USDA GRIN reposi-
tory. In total, we assembled a total of 32 accessions 
which is a representative of all available accessions in the 
repository. Because the samples were donated to USDA 
prior to 1992, they lack precise location information. 
Thus, we were only able to determine the U.S. state from 
which they originated. All samples were of C. fascicu-
lata var fasciculata, as C. fasciculata var macrospermum 
is restricted to Virginia, a state with no samples in this 
dataset.

AFLP marker development
Freeze-dried, leaf tissue samples from 32 accessions were 
pulverized in a SPEX SamplePrep 2000 Geno/Grinder®, 
and DNA was extracted using the  Wizard® Magnetic 
96 DNA Plant System (Promega). Amplified Fragment 
Length Polymorphism (AFLP) markers were generated 
using locally developed procedures based on technology 
by Vos et al. [33] and following modifications in Johnson 
et al. [18] and Greene et al. [16]. We performed a restric-
tion double digest in 25  µl reactions containing 250  ng 
of DNA, 1X Purified BSA, 5.0 U each of EcoRI and MseI 
restriction enzymes (New England BioLabs) and 1X NE 
Buffer 4. To verify complete digestion, re ran 15 µl of the 
restriction digest reaction on a 1.5% agarose gel.

Adapter sequences (EcoRI-Fwd, 5′-ctc gta gac tgc gta 
cc; EcoRI-Rev, 5′-aat tgg tac gca gtc tac; MseI-Fwd, 5′-gac 
gat gag tcc tga g, and MseI-Rev, 5′-tac tca gga ctc at) were 
purchased from Eurofins MWG/Operon (Huntsville, 

Alabama). After diluting each adapter pair to 100 pM/µl 
(EcoRI) or 200 pM/µl (MseI), we combined them in equal 
amounts, and let them anneal for 1 h at 37 °C and cool to 
room temperature. We then diluted the annealed pairs to 
5 pM/µl (EcoRI) and 50 pM/µl (MseI), aliquoted to 100 µl 
amounts for frozen storage for possible future use.

Following previous procedures in Johnson et  al. [18] 
and Greene et  al. [16], we performed a ligation step at 
20° C for 2 h in a 20 µl reaction containing 10 µl of the 
remaining restriction digest, 5 pMoles EcoRI adapter, 50 
pMoles MseI adapter, 0.5 mM ATP, 80 cohesive end Units 
of T4-ligase, and 1X T4 Ligase Buffer (New England Bio-
Labs). We diluted the completed ligation reaction to 10:1 
for pre-amplification. Both pre-amplification and selec-
tive amplification were done using an ABI 9700 thermo-
cycler using cycling programs described by Vos et al. [33] 
in 10 µl reactions. Two millilitre of the diluted pre-ampli-
fication product (10:1) was used for selective amplifica-
tion. We used twelve separate primer pairs for selective 
amplification (Eacg/Mcaa, Eagg/Mcaa, EacaMcag, Eac-
cMcat, Eacg/Mctg, Eagc/Mctt, Eaca/Mcta, Eacc/Mctc, 
Eacg/Mcac, Eagg/Mctg, Eaca/Mcat, Eacc/Mcaa) where 
the last 3 letters indicate the selective nucleotides follow-
ing the E-EcoRI and M_MseI primer sequences). Marker 
fragments were visualized on a LI-COR 4300 DNA Ana-
lyzer (LI-COR Biosciences). We scored marker loci as 
either present or absent based on printed images.

Data analysis
We created a graphical display of accession relationships 
with NTSys-pc software [27] using Jacard’s coefficient. 
The tree was constructed using Q-values that were out-
putted from a STRU CTU RE analysis (see below) at K = 4 
and Prevosti’s distance coefficient [25] which substitutes 
Q-value fractions for allele frequencies at a single AFLP 
locus.

To examine population structure we used STRU CTU 
RE v2.3.3 [8, 9, 26] and the widely applied technique 
developed by Evanno et  al. [7]. Ten replications with a 
burn-in of 20,000 iterations followed by 20,000 addi-
tional iterations were used at each K level until results 
indicated lowered and less erratic values for P(X|K). 
The parameter set included the ADMIXTURE model 
with allele frequencies correlated, and a RECESSIVE 
ALLELES model that is essential for dominant loci like 
AFLPs. Average Q-plots over the ten replications were 
calculated using the associated software CLUMPP [17], 
and graphic displays of population structure were devel-
oped from the q-frequencies of the mean of 10 runs using 
DISTRUCT software [28]. We analyzed genetic diversity 
in Genalex 6.5 [23, 24] and checked them in AFLP-SURV 
1.1 [32] (not shown). Lastly, we performed a Principal 
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Components Analysis (PCA) for clustering using binary 
assignments in Genalex.

Results
Analyses of population structure
AFLP analysis resulted in a total of 317 polymorphic loci. 
STRU CTU RE analysis combined with the technique of 
Evanno et  al. [7] indicated the most probable number 
of distinct populations at K = 4 (Figs.  1 and 2, Table  1, 
Additional file 1: Figure S1a, b). Separation was, for the 
most part, based on latitude with some anomalies. Con-
sequently, we named these groups Central (US), South, 
AK/MS, and Texas. While the accessions from Kansas, 
Nebraska, New Jersey, and Minnesota (Central US group) 
were mostly separated from those of Arkansas and Mis-
sissippi, two accessions from Arkansas, and one from 
Mississippi were grouped apart from the others, and then 
placed into our AR/MS cluster. A sample from Texas also 
formed a separate group, although some samples from 
other states, such as Minnesota, showed some admixture 
with this group.

We identified seven individuals as considerably 
admixed among at least two of the groups. A Principal 
Component Analysis (PCA, Fig.  2) showed the three 
individuals from the AR-MS group differentiated on the 

first axis, and differentiation along a latitudinal axis on 
the second axis. Although STRU CTU RE combined the 
more Northern accessions to the first two groups (our 
Central and South groups), the PCA suggests a subtle lat-
itudinal cline in diversity, overwhelmed by differentiation 
among multiple groups in the Southern US. This pattern 
of greater Southern diversity and differentiation is con-
sistent with glacial refugia in the Southern U.S. during 
the last glacial maxima, and admixture as populations 
migrated back to deglaciated areas in the more Northern 
US.

Genetic diversity analysis
Overall, we found some genetic differentiation among 
the four groups in the USDA Chamaecrista fasciculata 
germplasm collection. In total, we analyzed the genetic 
variability of 317 loci from 32 C. fasciculata accessions 
(Table  2). The overall Pairwise genetic distance PhiPT 
value was 0.207 (P = 0.001). The Analysis of Molecular 
Variance (AMOVA) based on PhiPT values indicated that 
79% of the variance comes from within populations (esti-
mated variance = 11.84) while 21% of the variance comes 
from among populations (estimated variance = 3.11). 
Mean Shannon’s diversity index across all populations 
was 0.24 (± 0.11).

Central US) 

South (US) 

Texas

AR/MS 

Fig. 1 Phenogram of 32 Chamaecrista fasciculata accessions from 317 AFLP loci using Jacard’s Coefficient. Results of STRU CTU RE analysis at K = 4 
superimposed on the phyogenetic tree using DISTRUCT software. Each STRU CTU RE group is represented by a different color, which mixed colors 
for individuals indicating admixture. We define the groups as Central 1 (yellow), South 2 (orange), AR-MS (for Mississippi and Arkansas, pink) and 
Texas (blue). The two letters after each accession indicate the US state from which it originates
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Discussion
AFLP markers were used to estimate genetic diversity 
among 32 C. fasciculata accessions sampled across its 
geographical distribution. The patterns of differentiation 
we observed in C. fasciculata likely result in part from 
migration in response to repeated patterns of glacial 
activity. The differentiation found in the more Southern 
US states is likely a result of differentiation in glacial refu-
gia, such as on different sides of the Appalachian moun-
tain chain or Ozark mountains, with more Northern 
populations resulting from post-glacial advances north-
ward and possible admixture from different glacial refu-
gia. A similar AFLP analysis of Phaseolus polystachios, 
the North American Wild Kidney Bean, and the only 
Phaseolus species native to temperate North America set 
apart an accession from Texas which was later given spe-
cies status as Phaseolus texensis ([19], and unpublished).

Chamaecrista fasciculata is a very widespread plant in 
eastern and central North America, occurring in a variety 
of habitats from mixed prairies to disturbed habitats, to 

unique local ecosystems such as mid-Atlantic serpentine 
barrens and South Florida Karstic pine rocklands. Such 
widespread occurrence and broad adaptation could make 
it useful as a component of mixed biofuel plantings as 
well as habitat restoration plantings and ecological and 
evolutionary studies. Based on our findings, the current 
collection, although diverse, likely does not capture the 
full range of variation present in this ecologically diverse 
species. In particular, more precise sampling from par-
ticular habitats, may show unique patterns of differen-
tiation. Similarly, more thorough sampling at the edge 
of the geographic range of the species may find outlying 
populations, or uncover introgression with more tropical 
Chamaecrista species, such as C. nictitans or C. lineata 
var. keyensis, which is endangered in the Florida Keys. 
The outlying Texas group may be consistent with range-
edge differentiation of populations. Thus, we recommend 
further collecting to improve the value of this collec-
tion for a variety of uses, from research to restoration, to 
biofuels.
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Fig. 2 PCoA plot of 32 USDA Chamaeacrista fasiculata accessions. Three accessions from the US states of Mississippi (MS) and Arkansas (AR) form 
a group (MS-AR) that was also detected in our STRU CTU RE analysis (Fig. 1). Accessions are named by USDA GRIN ID number and the US state from 
which they originate
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Limitations
The AFLP markers that were used in this study have 
several limitations such as being dominant rather than 
co-dominant, occurring at random locations in the 
genome that are difficult to tie to a genomic region and 
being limited to a few hundred total loci. New tech-
nologies, such as genotyping-by-sequencing and next 

generation sequencing based approaches that develop 
single nucleotide polymorphisms do overcome these 
challenges. Secondly, the set of lines examined is small 
in total number, with 32 being marginal for inference 
about population genetic patterns. Third, the USDA 
collection was assembled before 1992, when GPS units 
became available. Consequently, the passport data 

Table 1 Group assignments, based on STRU CTU RE output analyzed in DISTRUCT 

Our STRU CTU RE analysis detected four groups, or populations, which we have named Central (group 1, yellow in Fig. 1), South (group 2, orange in Fig. 1), AR/MS 
(group 3, Arkansas/Mississippi, pink), and Texas (TX, group 4, blue). We give the percent membership of each accession to each STRU CTU RE group to show the extent 
of admixture

Name Geographic location Assigned group AvgG1: Central US AvgG2 South US AvgG3 AR/MS AvgG4 TX

MN87MN Minnesota 1 0.84766 0.10144 0.00464 0.04622

PI638984_MS Mississippi 1 0.902 0.0106 0.00286 0.0845

PI638972_AR Arkansas 1 0.73666 0.10594 0.00338 0.15402

CarletonMN Minnesota 1 0.90492 0.0676 0.00538 0.02212

PI421727_FL Florida 1 0.78614 0.00676 0.06742 0.13968

PI215194_NE Nebraska 2 0.0045 0.9867 0.00254 0.00628

KS55KS Kansas 2 0.0062 0.98176 0.00414 0.00792

KS52KS Kansas 2 0.01128 0.97022 0.00372 0.01476

PI593050_NJ New Jersey 2 0.06028 0.7166 0.00362 0.21948

PI215195_NE Nebraska 2 0.016 0.95024 0.00234 0.03138

MN98MN Minnesota 2 0.19864 0.7373 0.02154 0.0425

PI638973_AR Arkansas 3 0.00358 0.0024 0.99056 0.00342

PI638976_MS Mississippi 3 0.00352 0.00656 0.98712 0.00278

PI638985_AR Arkansas 3 0.00202 0.00226 0.99362 0.0021

PI638964_GA Georgia 4 0.0106 0.01294 0.00222 0.97424

PI638970_MS Mississippi 4 0.04758 0.00958 0.00418 0.9387

PI638965_AR Arkansas 4 0.28276 0.01834 0.0052 0.69372

PI638968_AR Arkansas 4 0.01312 0.04472 0.00324 0.93894

PI641947_AR Arkansas 4 0.03324 0.04714 0.00398 0.91562

PI638971_MS Mississippi 4 0.2241 0.01648 0.00258 0.75686

PI638977_AR Arkansas 4 0.01602 0.00734 0.00304 0.97358

PI638974_AR Arkansas 4 0.03314 0.00978 0.00808 0.94906

PI638979_AR Arkansas 4 0.08862 0.02068 0.0084 0.88232

PI638978_MS Mississippi 4 0.08274 0.02068 0.00266 0.89388

OK37OK Oklahoma 4 0.08768 0.02706 0.00282 0.8824

PI638967_AR Arkansas Admixed 0.02898 0.46856 0.00282 0.49962

PI638975_MS Mississippi Admixed 0.56434 0.01114 0.01008 0.41442

PI638980_AR Arkansas Admixed 0.53272 0.03362 0.00578 0.42788

PI638982_LA Louisiana Admixed 0.50036 0.0193 0.0153 0.46506

PI638969_AR Arkansas Admixed 0.34768 0.02832 0.0079 0.61608

PI638966_MS Mississippi Admixed 0.48354 0.01372 0.20876 0.29398

PI638981_LA Louisiana Admixed 0.60256 0.10074 0.00492 0.29174
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for the accessions we assessed is limited to U.S. State, 
rather than more precise locations. Our work suggests 
that efforts to expand the USDA germplasm collection 
for Chamaecrista and improve the associated passport 
data would be quite useful for a number of research 
applications.

Additional file

Additional file 1: Figure S1. Plots from the software STRU CTU RE of A) 
lnP(X|K) indicating the highest probability at K = 4, and (B) graph of dK vs 
K from technique of Evanno et al. [7] indicating most probable population 
subdivisions at K = 2 and K = 4. Based on the Evanno et al [7] technique, 
we find 4 to be the best number of populations.
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Table 2 Genetic diversity in 317 AFLP loci in 32 USDA accessions of Chamaecrista fasciculata 

Na = no. of different alleles, Ne = no. of effective alleles = 1/(p^2 + q^2), I = Shannon’s Information Index = −1* (p * Ln (p) + q * Ln(q)), H = diversity = 1 − (p^2 + q^2), 
uh = unbiased diversity = (N/(N−1)) * h (where for haploid binary data, p = Band Freq. and q = 1 − p), and  %P = percent polymorphic loci

N Na Ne I H Uh %P

Pop

 Central US

  Mean 5.000 1.297 1.402 0.355 0.239 0.298 62.71

  SE 0.000 0.086 0.033 0.026 0.018 0.022

 South (US)

  Mean 6.000 0.932 1.236 0.209 0.140 0.168 38.14

  SE 0.000 0.084 0.031 0.025 0.017 0.021

 AR/MS

  Mean 3.000 0.466 1.081 0.065 0.045 0.068 10.17

  SE 0.000 0.062 0.022 0.018 0.012 0.019

 Texas

  Mean 11.000 1.263 1.264 0.267 0.169 0.186 59.32

  SE 0.000 0.085 0.028 0.023 0.016 0.017

 Admixed

  Mean 7.000 1.246 1.332 0.306 0.201 0.235 58.47

  SE 0.000 0.086 0.032 0.025 0.017 0.020

Grand mean and SE over loci and pops

 Total

  Mean 6.400 1.041 1.263 0.240 0.159 0.191 45.76

  SE 0.109 0.038 0.014 0.011 0.008 0.009 9.89

https://doi.org/10.1186/s13104-019-4152-0
https://www.ars-grin.gov/npgs/
https://www.ars-grin.gov/npgs/
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