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ARTICLE

Global state and potential scope of investments
in watershed services for large cities
Chelsie L. Romulo 1,2,3, Stephen Posner4,5, Stella Cousins6, Jenn Hoyle Fair7, Drew E. Bennett8,

Heidi Huber-Stearns9, Ryan C. Richards2,3,10 & Robert I. McDonald11

Investments in watershed services (IWS) programs, in which downstream water users pay

upstream watershed service suppliers for actions that protect drinking water, are increasing

in number and scope. IWS programs represent over $170 million of investment in over

4.3 million ha of watersheds, providing water to over 230 million people. It is not yet fully

clear what factors contribute to the establishment and sustainability of IWS. We conducted

a representative global analysis of 416 of the world’s largest cities, including 59 (14%)

with IWS programs. Using random forest ensemble learning methods, we evaluated the

relative importance of social and ecological factors as predictors of IWS presence. IWS

programs are more likely present in source watersheds with more agricultural land and

less protected area than otherwise similar watersheds. Our results suggest potential to

expand IWS as a strategy for drinking water protection and also contribute to decisions

regarding suitable program locations.

DOI: 10.1038/s41467-018-06538-x OPEN
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Urbanization forecasts estimate that six of ten people will
live in cities by 20301, increasing impacts on natural
resources and demand for ecosystem services, both within

and beyond city borders. Recent studies predict an increase in the
number of large cities vulnerable to water stress from 35 to 45%
in the next 25 years2. Watershed degradation and water treatment
costs have increased throughout the 21st century2, and existing
water governance systems and engineering responses are proving
inadequate and unfeasible both environmentally and economic-
ally. This is particularly acute in large cities, where large popu-
lations and population densities concentrate large numbers of
people dependent on the same water supplies. The increasing
demand on water resources, including exogenous factors such as
those related to accelerated climate change, are driving new
management strategies to sustain the provision of watershed
services3–6. As water supply concerns grow, policies and tools
must adapt to these new contexts7–9.

Management innovations have begun offering solutions to
problems pertaining to water scarcity, quality, and threats to
availability10. Policies that involve payments or investments in
watershed services (IWS) are incentive-based investment
mechanisms designed to address the provision and enhancement
of water-related ecosystem services11,12. As IWS have increased in
scope, scale, and geography, so has research and monitoring of
these policies and the underlying resource issues13. In 2015,
Forest Trends’ Ecosystem Marketplace, which tracks longitudinal
global data on market-based environmental programs, reported
over 400 programs actively investing in watershed services
around the world. These programs are associated with cities of all
sizes with a variety of management goals, and total over $25
billion transacted among all programs globally, covering a land
area larger than the size of India to date11. This represents a
marked increase in the number, geographic scale, and funding of
IWS from the 127 programs reported in 201011. Empirical evi-
dence of the broad impact of payment for ecosystem services
studies shows positive, though often small, impacts on environ-
mental and social outcomes14. Here we focus on the presence of
IWS programs for cities rather than an evaluation of their
impacts.

IWS programs routinely cite multiple motivations for program
creation, such as problems of water quality, water availability, and
other biophysical, economic, social and cultural reasons15. A
variety of disciplinary perspectives such as those from econom-
ics16–18, political science6,19,20, and ecology21 hypothesize specific
factors that influence the establishment of ecosystems services
strategies such as IWS. We define these enabling conditions as
factors that increase the likelihood of a change in governance
approach, strategy, or management regime22. Though much of
the research on enabling conditions for ecosystem services pro-
grams has been theoretical or has only evaluated specific cases, a
recent synthesis of the literature on payments for ecosystem
services programs identified 24 distinct enabling conditions
(Fig. 1).

Taken together, the growth of IWS and the limited under-
standing of the specific enabling conditions point to a need to
evaluate the factors associated with IWS programs. While Fig. 1
shows detailed understanding of conditions potentially enabling
IWS programs, these conditions have not been analyzed in
aggregate or evaluated for relative importance. This includes
evaluating which factors may be generalizable across contexts and
which may be context specific. It is critical to understand not just
which conditions may be important to consider, but whether one
condition may be more or less important than another, and in
which contexts. Additionally, given the amount of data that could
potentially be important, an aggregate assessment allows practi-
tioners to focus attention on those variables which are most

important rather than spending time collecting and assessing all
possible data.

To address the gap in our understanding of conditions that
enable IWS in large urban areas, and to test whether there are
generalizable conditions that enable IWS, we synthesized a global
data set of city water supplies, creating the first assessment of
urban IWS programs for 416 of the world’s largest cities (popu-
lation > 300,000). Using a random forest machine learning algo-
rithm, we tested 17 data sets representing 15 of the 24 identified
enabling conditions (Fig. 1) to see, when considered in aggregate,
which variables are most important for predicting the presence of
IWS as a strategy for managing urban drinking water supplies
(Supplementary Data 1). Random forest models are a type of
machine learning algorithm that consist of many individual
decision trees constructed iteratively with random subsets of
predictor and dependent variables. Each decision tree predicts the
presence or absence of an IWS program for a city and the model
ranks all variables according to aggregate prediction performance
in the forest of individual trees23. The model constructed by the
random forest classification technique allows us to rank variables
in terms of relative importance for predicting the existence of
IWS in a given city. We selected this method specifically for high
classification accuracy, and the ability to model complex higher-
order interactions and non-linear relationships between predictor
variables24, including variables of different data types and the
ability to asses different types of data (nominal, categorical,
numerical, etc) in aggregate23. On the basis of our analyses of
enabling conditions, we also demonstrated how to use our results
to identify large cities that are suitable candidates for future IWS
programs. Our study of global patterns and enabling conditions
for IWS provides guidance to policymakers, planners, conserva-
tion practitioners, and researchers to develop and evaluate pro-
grams where important enabling conditions already exist and
foster favorable conditions in areas where key enabling conditions
do not yet exist.

Results
Global and regional distribution of IWS. We focused on cities
in the City Water Map database (CWM) developed by McDonald
et al.25, which contains the data on large cities and their above
and below-ground water sources2. By combining a literature
review with the data from annual surveys of IWS programs,
we identified 59 large cities with IWS (Appendix A); 53 of these
were in the CWM. We improved the representativeness of our
city sampling by first using a sample of cities from the CWM
database that was stratified according to city size and UNPD
geographical region, and then combining this with the data from
a comprehensive survey of IWS programs and a review of pub-
lished literature on IWS programs. Program information was
derived from Forest Trends census surveys15. As opposed to
sampling, Forest Trends aims to conduct a census (a survey of all
identified programs), and uses the data from other sources
(articles, websites, reports) when an interviewee is not available to
complete the survey for the program. Overall, IWS programs
represent over $170 million of investment in over 4.3 million ha
of watersheds, providing water to more than 230 million people.
Analysis included cities in the Americas, Europe, China and SE
Asia, Indonesia, and SE Africa (Fig. 2). Seventeen of the 114
countries represented in the CWM had at least one identified
IWS program, but the fraction of cities with and without IWS
varied by region. Regions with the highest numbers of large
CWM cities did not necessarily have the largest proportions of
IWS programs (for example, Southern Asia had 86 cities in the
CWM, including 73 cities in India, but our research identified
only one IWS program that met our criteria, in New Delhi). Some
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Fig. 1 Framework for enabling conditions for payments for ecosystem services (PES) programs identified from the literature (Huber-Stearns et al., Fig. 1)
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areas had both few large cities and few or no IWS programs (for
example, Australia and New Zealand had 4 large cities, none of
which had associated IWS programs identified by our research).

Enabling conditions (variable importance). We used random
forest analyses to rank 17 predictor variables, each representing
one or more key enabling conditions described in Fig. 1 (see
Supplementary Data 1 for relationships between enabling con-
ditions and representative data sets). The representative data were
used to form two statistical models using different groups of
cities: 1) The Global Cities Model containing all 416 large cities
from the CWM; 2) The Non-USA Cities Model containing only
the 299 large cities in the CWM that lie outside of the USA. We
developed the second model due to the over representation of
cities in the USA in CWM. These cities all receive the same value
for country-level data, which would decrease the ability of these
variables to explain variation in the data and result in artificially
lower importance rankings. There were not enough large U.S.
cities with IWS programs in our data set to justify a random
forest model of only cities in the United States.

The two most important enabling conditions in both models
were percent of watershed with agricultural land cover and

percent of watershed area designated as protected (Fig. 3). Both
models also indicated that Average Annual Growth (the average
annual growth rate of national GDP for 1994–2014) is important,
possibly because economic growth may increase the resources
available for payment for ecosystem services programs and rapid
economic growth can increase impacts to water supplies from
increased development without infrastructure and institutions in
place to address these impacts11. Other enabling conditions, such
as population (an indicator for number of potential stakeholders)
and enforceability of contracts (a World Bank Indicator14 used as
proxy for both ability to enforce IWS agreements and secure land
tenure) were relatively important in both models. Both models
ranked water diversion volume and watershed population density
as not important in predicting the presence of an IWS program
relative to other variables.

Differences in enabling conditions between groups of global
cities. Less variation in a variable would result in a lower
importance ranking because it would be harder for the algorithm
to differentiate outcomes. Anticipation of this relationship par-
tially motivated our choice to build the Non-USA Cities model.
For example, when applied to the Global Cities Model, the

0.00 0.01 0.02 0.03
Variable importance

(values to the right of the red dashed vertical line are important)

0.00 0.01 0.02 0.03
Variable importance

(values to the right of the red dashed vertical line are important)

Non-USA cities

Global cities

Enabling condition bins

Biophysical Economic Governance Sociocultural

Enabling condition bins

Biophysical Economic Governance Sociocultural

Percent agriculture cover
Percent protected watershed
City population
Weighted drought vulnerability index
Average annual growth
Average distance*
Average annual conservation spending
Average elevation
Enforcing contracts indicator*
Total watershed area
Registering property indicator*
National GDP per capita
Average governance indicators*
IUCN organizations per million people
Total diversion volume
Percent forest cover
Average watershed population density

Percent agriculture cover
Percent protected watershed

City population

Weighted drought vulnerability index

Average annual growth

Average distance*

Average annual conservation spending

Average elevation

Enforcing contracts indicator*

Total watershed area

Registering property indicator*
National GDP per capita

Average governance indicators*

IUCN organizations per million people

Total diversion volume

Percent forest cover
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a

b

Fig. 3 Relative ranked importance of enabling conditions variables. These are categorized in four main bins for a Global Cities, n= 416, and b Non-USA
Cities, n= 299. Variables with an asterix could also be considered representative of enabling conditions in the sociocultural bin (see Supplementary Data 1
for relationship between representative data and enabling conditions). Variable Importance measures are a relative ranking of predictor variables, thus the
absolute numbers on the X-axis do not have meaning outside of comparisons between predictor variable values. Values to the right of the red dashed
vertical line are considered important in the model and those with higher variable importance values are more important than other variables with lower
variable importance values
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random forest algorithm identified other variables not based on
national scale data as having greater predictive power (Fig. 3).
Variable importance rankings differed in our models with the
exception of the top two most important enabling conditions. We
expected differences between the Global Cities and Non-USA
Cities models because of the resolution of our data and the high
number of USA cities in the data set. Several of the variables we
included in our analyses were based on national scale data and
were associated with the presence of IWS only in the Non-USA
Cities model. Furthermore, governance and economic variables
such as presence of IUCN organizations, World Bank aggregate
governance indicators, and Gross Domestic Product (GDP),
ranked relatively more important for predicting the presence of
IWS in the Non-USA Cities model. In addition, the Global Cities
model included a disproportionately high number of USA cities
(117 of the 416 cities in the Global Cities Model were in the USA),
all with the same values for socioeconomic and governance
variables that were based on national-scale data.

Weighted Drought Vulnerability is ranked important for
Global Cities and not important for Non-USA Cities, indicating
that drought vulnerability is more associated with IWS programs
in the USA than elsewhere. However, drought could be a driving
factor to search for policy and program innovations only when
other enabling conditions are already in place. Such interactions
among variables potentially explain some differences between the
important conditions found in our models. Enabling conditions
may interact within each model, such that different values of one
condition may impact the importance of other conditions. The
following section describes additional analysis of the behavior of
individual conditions within each model.

Enabling condition directionality and behavior. Enabling con-
ditions are sorted into four general categories: biophysical, eco-
nomic, governance, and sociocultural conditions (Fig. 1). While
some enabling conditions were more important than others, we

found that in both models, important enabling conditions came
from all four categories, with at least one important variable in
each of the four categories (Table 1).

We used partial dependence plots for the random forest
models to explore how individual enabling conditions could
predict IWS programs across each range of values in the
representative data (Supplementary Fig. 1). Partial dependence
plots depict the relationship between an outcome and different
values of predictor variables within a model, with all other
predictor variables held constant. For many of the variables, the
marginal effect on the outcome (presence or absence of an IWS
program) was more pronounced at changes occurring between
lower values (i.e. changes in watershed area at the lower range of
area size). The partial dependence plots indicate that at low
values, marginal changes in an enabling condition could have a
large impact on predicting IWS, whereas at higher values,
marginal changes did not increase an enabling condition’s
importance in predicting IWS. This may indicate possible
thresholds of some predictor variables, above which increasing
the variable does not influence the likelihood of IWS presence.
Table 1 summarizes the direction of the relationship between
each enabling condition and the outcome. For example, water-
sheds with higher percentage of area with agricultural land cover
were more likely than otherwise comparable watersheds to
contain a city with an IWS program. Watersheds with lower
percentage of area protected were also more likely to contain a
city with an IWS program.

Expanding the scope of IWS. Our results could be used
in combination with local, context-specific data to guide
decisions about sites for future IWS programs. We selected the
top 5 enabling conditions from the Non-USA Cities model and
divided cities outside of the US into top or bottom half of values
for each enabling condition depending on the relationships
described by partial dependence plots for each condition

Table 1 Enabling conditions variables analyzed and their relationships with IWS

Count Predictor Variable (using available data
to represent enabling conditions)

Global
Cities

Non-USA
Cities

Enabling Condition (based on theory) Enabling Condition
Category

1 Average Annual Growth ~ + Economic growth Economic
2 Average Distance − Resource location and arrangement Biophysical

Proximity of actors to each other Sociocultural
3 Average Elevation − − Resource location and arrangement Biophysical
4 Average Governance Indicators ~ Strong existing institutions Governance
5 City Population − − Large/small number of actors Sociocultural
6 Conservation Spending − − Strong capacity among actors Governance
7 Enforcing Contracts Indicator ~ ~ Manageable transaction costs Economic

Pre-existing market-based culture Sociocultural
8 IUCN Organizations Per Million People + Presence/absence of Intermediaries Governance

Strong capacity among actors Governance
Influential champion Governance

9 National GDP per capita + Economic growth Economic
10 Percent Agriculture Cover + + Clear threat or risk to ES provision Biophysical
11 Percent Forest Cover − Clear threat or risk to ES provision Biophysical
12 Percent Protected Area − − Secure land tenure and property type Governance
13 Registering Property + + Secure land tenure and property type Governance

Pre-existing market-based culture Sociocultural
14 Total Diversion Volume Small resource area Biophysical
15 Watershed Area + Small resource area Biophysical
16 Watershed Population Density Large/small number of actors Sociocultural
17 Weighted Drought Vulnerability Index − Resource location and arrangement Biophysical

Variables are based on the biophysical, economic, governance and social-cultural enabling conditions and groups identified by Huber Stearns et al.21 (Fig. 1). Not all variables identified by Huber-Stearns
et al. were included in the analysis, because of unavailable or limited data (Supplementary Data 1). For each random forest model, important enabling conditions are provided a value (+/-/~) and
unimportant conditions are left blank. Signs indicate the direction of the relationship between each condition and presence of IWS (Supplementary Fig. 1). Some important conditions have relationships
that are neither positive nor negative overall, but vary in direction dependent on the underlying data gradients. These relationships are signified by ~ Some predictor variables were representative of
multiple enabling conditions. In these cases, all potential representation are included in the Enabling Condition column
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(Supplementary Fig. 1). Using this ranking system, the following
four cities most closely matched the top 5 enabling conditions
associated with IWS programs, but do not currently have a
program: (1) Dhaka, Bangladesh; (2) Guayaquil, Ecuador; (3)
Dubai, United Arab Emirates; and (4) Leon, Mexico. An addi-
tional 37 cities met the characteristics for 4 of the top 5 enabling
conditions (Supplementary Data 3). However, it would be critical
to supplement an analysis of candidate cities with additional
information about the places and people, as our results are not
comprehensive of all required factors that enable IWS programs.
For example, alternative approaches to managing urban water
supplies such as desalination in Dubai could eliminate a need
for IWS.

Outlier cities. Not all conditions must necessarily be in place for
an IWS program to develop. Within our analysis, there are
examples of cities with IWS that do not have all the identified
enabling conditions in place. For example, Seattle in the US has
an IWS program with 0% agriculture cover in its source water-
shed (97.59% forest cover) but a high percentage of protected area
(82.1%). This situation reflects a history of land acquisitions by
the Seattle Public Utilities, which now owns and protects a large
portion of the watershed. In other countries such as Mexico,
China, South Africa, and Colombia, we found additional cities
with IWS programs even though important enabling conditions
were not present. In some cases, as with Colombia, where four of
their seven large cities employ IWS, there may be national level
programs, legal instruments, or concerted NGO efforts to initiate
and support IWS9,11,26,27. As hypothesized by previous
research22, while not all variables are needed for IWS to exist in a
city, a combination of sufficient enabling conditions such as
political support28, strong conservation need29, or outside con-
servation funding30 could provide sufficient conditions for an
IWS program to emerge. We emphasize that knowledge of which
conditions are critical in specific contexts would be important for
IWS program design, program success, and long term IWS
sustainability.

Conversely, having important enabling conditions in place is
not sufficient to ensure presence of an IWS program. Our
database also contains examples of cities that do not have IWS
programs even though they have high levels of enabling
conditions, such as the candidate cities we identified. Having
enabling conditions in places with no IWS program could
indicate presence of a different management strategy that
successfully achieves the same outcomes of protecting urban
water supplies. For example, cities and countries could have
alternative policies or management practices in place, from strong
regulatory frameworks or more voluntary measures such as
source water protection plans.

Discussion
In our assessment of 416 cities with over 1.15 billion drinking
water consumers, conditions representing a range of socio-
cultural, governance, biophysical, and economic factors were
important for IWS presence. In comparing all major cities to only
those outside the United States, two suites of important enabling
conditions emerged in particular. We found that key enabling
conditions for IWS programs in major global cities include the
amount of watershed area in (1) agricultural land use and (2)
protected designations. In general, threats or risks to ecosystem
services can facilitate the development of IWS by increasing
awareness of ecosystem service benefits and their need for
conservation22,25,29,31,32. Places where ecosystem services have
clear benefits to human communities are more likely to protect

ecosystem services, since beneficiaries have incentive to com-
pensate service providers25,28,30,33–35.

Greater percentage of agricultural land in the watersheds ser-
ving a city was an essential enabling condition for all of the cities
in our sample and for the cities outside the USA (Fig. 3). Previous
research suggests several mechanisms by which agricultural land
can be an important factor associated with the development of
programs such as IWS. Agricultural lands have long been a key
area for the implementation of payments for ecosystem services
type approaches, often due to large numbers of private land-
owners as ecosystem services suppliers, and the lack of specific
regulation for concerns such as nonpoint source pollution18,34,36.
Upstream agricultural land could further be associated with IWS
programs and other environmental policy interventions because
it can impact urban drinking water supply quality. Thus these
land uses also present a ready opportunity for organized man-
agement actions7,9,16. Our results support the proposed linkages
between agricultural lands, impacts on downstream water sup-
plies, and existence of payment programs such as IWS, which
have been cited as key drivers of IWS programs in cities such as
New York in the US and Quito in Ecuador15.

The percentage of protected area in source watersheds was the
second highest ranking enabling condition in both models—
although the relationship was negative. As the percentage of
protected area increased, the probability a city had an IWS pro-
gram decreased. IWS programs are designed to provide land
owners with incentives to protect or enhance the watershed for
the provision of water services14. Watersheds with large percen-
tages of protected areas may not need further protection or
incentives provided by IWS programs, so there is less motivation
to develop programs in these locations. Additionally, source
watersheds with a lot of land in the public domain may be easier
to convert to protected status while watersheds with more private
landowners or community-based tenure arrangements are a
better target for IWS. In watersheds that have a low percentage of
protected area, there may be increased opportunities for an IWS
program as a way to influence management in the watershed and
enhance water provision services via interventions on privately-
managed land. Establishment of protected areas may also face
additional hurdles in watersheds with large amounts of agri-
cultural land37, leading water managers to seek out market-based
approaches such as IWS. Finally, a watershed with high percen-
tage agricultural land and low percentage protected area could
indicate increased risks to provisioning water services that have
potential impacts to downstream water users.

Our research is one of the first attempts to quantitatively
evaluate enabling conditions for IWS programs in cities across
the world. Previous research on IWS has focused on individual or
limited numbers of cases rather than global patterns. As a global-
level analysis, our research begins to fill this gap by broadly
testing factors associated with the existence of IWS programs.
Our results should not, however, be interpreted as a mandatory or
static checklist of all necessary factors to implement IWS or a
similar policy. Though various conditions predict IWS presence,
it is possible for IWS programs to emerge in a variety of situa-
tions. We identified the contextual conditions present in areas
where IWS interventions already exist, and the conditions that
were less relevant to the existence of IWS. Contextual details
about the mechanisms underlying the emergence of IWS are
important for understanding enabling conditions in specific
places, even if the finer scale conditions vary. Conservation
practitioners, in particular, could add from their experiences in
the field to improve our understanding of what local conditions
facilitate both the emergence and sustainability of IWS programs.
For example, the lower cost of implementing IWS schemes as
compared to other policy tools is a known factor in their
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emergence34,38. Our analysis outside the US identified per capita
GDP as positively associated with IWS presence, while con-
servation spending was negatively associated. The positive asso-
ciation with GDP could potentially suggest that a certain level of
affluence is needed for IWS and that water providers are not able
to spread the cost to users when users are predominately poor.
For conservation spending, it may mean that when spending is
high, there are co-benefits to water quality coming from other
investment actions that make IWS less necessary, similar to our
interpretation for the negative relationship with the percentage of
protected areas in the watershed. Where information on the cost
effectiveness of various alternative strategies (including IWS) is
available, it would enhance understanding of program emergence
and sustainability.

Future research can further evaluate enabling conditions across
a variety of contexts and scales to help establish clear relation-
ships. Documenting and monitoring IWS performance are
important for providing data to test the mechanisms through
which enabling conditions are associated with the existence and
sustainability of programs. Sub-national data and analyses would
improve our ability to test enabling conditions and validate the-
ory. Our results provide insights about general patterns and broad
trends for large cities, but the nature of global synthesis can mask
relationships between conditions that could explain variation
within a region. Regional or country level analysis could provide
more details about the mechanisms underlying how a program
was operating (e.g. successfully or not) and the factors that are
most important in initiating IWS programs, but our global-scale
analysis is not designed or poised to take advantage of this higher
resolution sub-national scale data. For example, funding sources,
investors, and supporting organizations differ among IWS pro-
grams in Latin America27, and within the US some major water
utilities pay upstream landowners to change management prac-
tices (e.g. Denver Water, Colorado) or purchase land in the
watershed (Seattle Cedar River Watershed).

Local conditions and context indeed matter for more nuanced
analysis and local application of findings; however, understanding
the general conditions that can make it more likely that a pro-
gram will emerge is an important step in understanding where
and how to dig deeper into finer grain analysis. Understanding
the general conditions can provide partial explanation of program
presence and evaluate the potential scope for expanding pro-
grams. Numerous researchers in this field have come to similar
conclusions, in particular that the time is ripe to collect previously
disparate lessons learned from case studies of ecosystem services
and synthesize them for broader general conditions impacting
presence of IWS (see synthesis provided in Huber-Stearns et al.).
For example, Naeem et al.39 call for the need to document initial
baseline conditions, including the initial state of threats to ser-
vices and important factors that will forecast service trends in the
beginning of a program, and Ingram et al.40 distill lessons learned
about the use of ecosystem services, especially around under-
standing necessary institutional factors needed where governance
may be weak. Recent research on PES programs more broadly
identify key characteristics of buyers, sellers, and program specific
metrics as key determinants of the spread and uptake of PES13.

Implications and implementation of research on natural
resource management is critical for practitioners. We have been
working with collaborators at The Nature Conservancy (a non-
governmental organization) on how to use the findings from this
research to improve their IWS development program. When
comparing potential locations for program investment, the most
important conditions can be used to evaluate where IWS pro-
grams are likely present in comparable locations. In evaluating
cities for program development, those that have similar char-
acteristics to cities that do have a program may be good

candidates. We provide an example process in Supplemental
Note 1 comparing Recife and Salvador, which are both coastal
cities in Brazil using a ranking of cities based on the top 5
important conditions from our Non-USA cities model (Supple-
mentary Data 2). Neither currently have an IWS program
according to our research, although there are other cities in Brazil
that do have a program. By comparing values for important
variables delineated by this research, an IWS program is more
likely present in Recife. This information is valuable when com-
bined with local context and investment criteria to evaluate scope
and expansion of IWS programs into new locations.

IWS programs emerge out of the interplay among numerous
factors in complex social-ecological systems. What works in one
place may not work in another because of the unique social and
ecological contexts in each place. Our study takes an empirical
approach in examining broad and globally available evidence on
IWS programs and their enabling conditions. To elucidate par-
ticular conditions that enable innovative solutions in natural
resource management, we emphasize that further cross-
disciplinary and sub-regional investigations are needed.

Methods
Identifying cities with IWS programs. The city water map: Our list of 534 global
cities comes from the City Water Map, version 2.325 (CWM), a database by The
Nature Conservancy containing information on large cities and their source
watersheds. The original city list for CWM started with the World Urbanization
Prospects (WUP) report conducted by the United Nations Population Division1

that lists all current and previous world cities with a population > 300,000. Cities
below this population threshold were added to the CWM from research on 225
cities with populations over 100,000 in the United States2. Data on the source
watershed and specific withdrawal information was collected by searching water
utilities directly, though in some cases no information was found. The final City
Water Map list of cities contains 534 cities, including the world’s 50 largest urban
areas, the largest urban area in each country with > 750,000 people, and a repre-
sentative sample of cities stratified by both geographic region and population
range1.

The CWM database contains a known bias resulting from data accessibility and
availability that oversampled USA cities and undersampled Indian and Chinese
cities1. The data were subset by removing all USA cities that met either of the
following two criteria: (1) a population < 300,000, OR (2) no population data was
available. This is based on the city population limit of 300,000 from the World
Urbanization Projects report by UNPD2 that the CWM database used to develop
their database. Most of the cities in CWM under the 300,000 threshold were
additions to the WUP report and creating this cutoff reduced the data set by almost
100 USA cities.

Identifying cities with IWS programs. Data on existing IWS programs were
gathered from several sources. We analyzed the 416 cities that met the UNPD
criteria for large cities (population > 300,000). We used Forest Trends’ State of
Watershed Investments bi-annual report11 (29 cities identified) and a literature
review of IWS programs to identify 59 cities in the CWM that have an IWS
program using search engine Web of Science and publishing service ScienceDirect.
A search was conducted for title, abstract, and keywords only using the search
terms “payment* for ecosystem services” OR “payment* for environmental ser-
vices” OR “payment* for water* services” AND “water*“. Web of Science results
listed 136 articles and ScienceDirect returned 91, which, excluding duplicated
articles, produced a library of 171 articles.

Much of the program information was collected from the State of Watershed
Payments annual report, produced by Forest Trends11.The Forest Trends report
and literature search were reviewed for IWS programs that met two criteria; (1)
they provide water for a city in the CWM database, and (2) drinking water
protection is specified as a program goal. The list of cities that have met the IWS
criteria include those with Demonstration Projects that are focused on drinking
water because they are actively managing drinking water using a IWS program. For
this research, cities with IWS programs (CityIWS) are those cities within the CWM
database with a IWS program identified by either the Forest Trends report and/or
the literature review (Supplementary Fig. 2). Cities with no known IWS program
are denoted by “Cityno IWS.” Of these 59 cities with IWS, 53 met the UNPD criteria
for large cities. We defined IWS as transactional arrangements (in cash or in-kind)
between two or more parties that compensate a land manager for protecting
drinking water supplies for urban beneficiaries11,22. Our list of enabling conditions
built on a synthesis of theory and case studies on payments for ecosystem services
conducted by coauthors on this paper22. We identified global data sets for the
variable (e.g. city population, watershed area) or, when necessary, for a proxy
indicator that represented the variable (e.g. Property Rights Index represents land
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ownership and access). We intentionally targeted data for all four condition
categories (biophysical, economic, governance, and sociocultural data) identified by
Huber-Stearns et al. in an attempt to represent as many different types of
potentially important characteristics as possible. All city data is available
in Supplementary Data 3.

Enabling conditions concept and data
Enabling conditions concept. The original concept and list of enabling conditions is
derived from previously published work22. Enabling conditions are defined as
factors that increase the likelihood of an intended change in the governance
approach, strategy, or management regime. Enabling conditions, by definition,
facilitate the emergence or sustainability of a particular environmental policy, while
the absence of key enabling conditions can present a barrier to management or
sustained policy action. In this initial publication we summarized existing literature
on the concept of enabling conditions and synthesized the information into a list of
potential conditions, grouped by category (Fig. 1). Although these categories
provided more structure for the presentation of conditions, it is important to note
that the conditions in each theme were identified from a variety of disciplinary
perspectives and fields, journal types, and author considerations, so no one theme
was solely represented by one discipline.

Enabling conditions data. Here we distinguish between EC variables, those broad
conditions identified by Huber-Stearns et al.22 and Representative Data, the actual
data used in the analysis. Information from 14 data sets were collected, processed,
and integrated into a relational database (See Supplemental Data 1 for relationship
between EC variables and representative data sets). For this study we targeted
global data sets to emphasize standard measurements for each indicator. For some
EC variables no representative data was available with global coverage. In some
cases representative data could potentially represent multiple EC variables (Sup-
plementary Data 1). For example, the number of IUCN organizations per million
people could represent the presence of an influential supporter of PES such as
politician or prominent NGO, the presence of strong intermediaries, and strong
capacity among actors. It these cases it is also possible the representative data
reflects a combination or interaction of EC variables.

Statistical analysis. Statistical analyses were performed in R version 3.2.341 with
some pre-processing of geospatial data in ArcGIS42 within an equal-area Mollweide
projection43.

Water supply origin and water source characteristics. The origin of the water
supply for each city and characteristics of the watersheds were described using
CWM diversion type categories and volumes, combined with delineations of the
surface and groundwater basins that serve each city25,44,45. Percent ground or
surface water was categorized in one of six types: primarily surface water ( > 75% of
diversion volume from surface sources); mixed sources (50–75% surface volume,
25–50% surface volume, or 1–25% surface volume); groundwater sources only, or
no available data. Surface Water includes all diversion types except groundwater
and alluvial aquifers. Watershed area was calculated as the combined area (km2) of
all watersheds and groundwater basins being used for drinking water for each city.
Percentage of protected area is from IUCN-designated protected lands within this
total area46. Land cover types (percentage forest and percentage agricultural and/or
pastoral) were calculated for the source watersheds and basins44 of each city and
grouped based on classification per Supplementary Table 2. For cities with mixed
above and below-ground water sources with diversion volumes available for each,
land cover was weighted by diversion volume. If diversion volumes were not
available for all sources, land cover was represented by the sources with available
data.

Calculating post-stratification weights. Post-stratification weights were calcu-
lated for each city in the CWM to further address sampling bias and adjust the
distribution of cities to reflect real city distributions45. Using the World Urbani-
zation Projects Report (WUP)1 the proportion of cities within each geographical
region was calculated for each of 5 city population classes1 (Supplementary
Table 3). Region was used as opposed to country because some countries have few
or no cities in the CWM data set. The WUP report originally supplied the base data
for the CWM and the geographical regions and population classes are described in
the report as well. Proportions of each city class were calculated and used to
determine a weight field (# database cities in region class/sum of UNPD cities per
region) that adjusts city data proportions to the WUP report proportions.

Variable selection. Thirty candidate variables from existing data sets were iden-
tified to represent potential enabling conditions as identified in Huber-Stearns
et al.5 Variables either directly quantify conditions, as in the case of biophysical and
economic characteristics, or serve as recognized proxies of city characteristics.
Predictably, many of these variables are correlated, as they are based on shared
information (i.e., several of the country level economic indices are calculated using
GDP). Collinear and replicated variables were excluded. Selection was based on
analysis of spearman pairwise correlations and variance inflation factors47. The R

package Corrgram v1.1048 was used to calculate correlation coefficients. Of the 30
variables tested, 18 were found to be correlated with at least 1 other variable at corr
> 0.7, indicating high collinearity17. Supplementary Table 4 provides the correla-
tion coefficients between highly correlated variables (corr > 0.7) and justification
for which of the correlated variables were selected for inclusion in the final models.

In addition to the spearman correlation coefficient, variance inflation factor
(VIF) was calculated using R package car48 using the full database as well as a
subset of the cities contained only non-USA cities, though not all variables could be
included because of missing values. VIF is calculated as 1/(1-R2) from a linear
model and estimates how much the variance of a coefficient is inflated from linear
dependence with other predictors. A higher VIF value indicates that the variance
(the square of the standard error) is larger than if the predictor were not correlated
with other predictors. VIF were calculated iteratively by sequentially dropping the
predictor with the largest VIF, recalculating with the remaining variables, and
repeating until returned values were under the preselected VIF threshold of 349.
Supplementary Table 5 provides the VIF values for our final list of 17 variables,
with any values exceeding our threshold of 3 in bold.

Three representative data sets (Conservation Spending, Average World Bank
Governance Indicators, and National GDP per capita) did not meet the VIF
criteria, but were included in the model analysis because there were no other proxy
variables for the EC variable they represented. After reducing both the number of
cities and the representative data, the final database used for analysis contained 416
cities and 17 variables, representing 14 of the EC variables described by Huber-
Stearns et al. (Correlation coefficients provided in Supplementary Table 6). A final
data table with all representative data is provided as Supplementary Data 3.

Random forest model. We determined the predictive importance value of our
representative data using a random forest model of classification trees23. This
model was selected because inference trees are robust when regressing data with
high dimensionality, which is a situation with many predictor variables compared
with the number of data points50, often referred to as a large p, small n problem.
Previously published research on enabling conditions for IWS programs often
discuss only one or few enabling conditions, but our analysis allowed us to build a
model using interactions between variables as opposed to evaluating fit to an
existing model or assumptions. Using machine learning to consider many variables
at once allows us to rank those variables in terms of importance for predicting the
presence or absence of IWS programs. Logistic regression was considered as a
potential model, but initially resulted in perfect separation, likely due to the small
minority class and high dimensionality characteristics of the data. The random
forest approach has been widely used in the medical field for situations with highly
unbalanced data with varied and potentially interacting predictor variables50,65,66,
and is becoming more prevalent in the conservation and natural resource man-
agement literature, especially when attempting to evaluate global patterns67–70.
Random forest methods also reduce issues of bias toward the majority class that
can occur with unbalanced data sets in logistic regression71,72, important because
in this data set cities with IWS programs represent the minority class.

Random forest models are a type of machine learning algorithm that consist of
many individual decision trees constructed with random subsets of predictor and
dependent variables. Each tree in the random forest model predicts the presence or
absence of a IWS program for a CWM city using a random subset of data and
predictor variables. The model ranks all variables according to aggregate prediction
performance in the forest of individual trees23. The model constructed by the
random forest classification technique allows us to rank variables in terms of
importance in predicting the presence or absence of IWS in a given city. We
selected this classification system specifically for high classification accuracy and
the ability to model complex interactions between predictor variables24. We used
the R package Party51 because its functionality is particularly well suited for
unbalanced data sets with high dimensionality50, can address missing data52, and
has the capacity to reduce bias from predictor variable type and correlated
predictors25,44,45.

The data were split 80/20 (pareto principle) for training and test sets and not
transformed. We weighted enabling conditions data to represent city distribution
regionally and globally using UN statistical region boundaries (described above in
the section titled Post stratification weights). Given the unbalanced nature of the
dependent variable (IWS presence or absence), several strategies were attempted to
address potential bias in the model due to the small size of the minority class (only
11.5% of modeled cities contain an IWS program because some cities were not
included in the models). To address this class imbalance, the data were adjusted
four different ways before modeling: (1) the larger class (cities with no IWS
programs) was undersampled53, (2) the smaller class (cities with a IWS program)
was upsampled, and (3) new minority class were created using the Synthetic
Minority Over-sampling Technique (SMOTE) function54 in R package DMwR55,
and (4) weights were incorporated in the random forest classifier which made the
classifier cost sensitive and penalized the model fit for misclassifying the minority
class. The final models reported here addressed class imbalance by incorporating a
weight class in the random forest model as this method produced models with
higher predictive ability (predictive performance described below) better than other
options.

Each model contained 8,000 trees56, with the number of preselected variables
(mtry) set to 4 (calculated as the square root of the number of predictors57) and all
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other parameters set to default. We used the unbiased permutational variable
importance measure (function varimpAUC), because it is particularly suited for
unbalanced response classes58. The varimpAUC output is also a non-conditional
variable importance measure that can be computed with missing data52. With this
approach correlations between predictor variables need to be addressed separately,
which was done using a spearman correlation test as described in the Variable
selection section above. Predictor ranking was evaluated using mean decrease
accuracy because of varying scales of measurement, and correlation among
predictors59. Predictive power of each model was evaluated using a standard
metric, area under the Receiver Operating Characteristic curve (AUC), which
assesses classification accuracy56. Values for AUC range from 0.5 to 1 and the
closer to unity, the more accurate a model, where models with a value of 0.7 are
considered reasonable and those with values > 0.8 considered strong60. Both
models presented here performed at AUC values of > 0.7. The relationships
between individual predictors and outcome (presence of IWS) was evaluated using
partial dependence plots via R package mlr61. Partial dependence plots reveal the
relationship of individual conditions within each random forest model by
integrating out (and thus controlling for) other factors. Greater y values indicate
that an observation for a specific variable is associated with higher probability for
classifying a city as having an IWS program. These plots depict the marginal effect
of the variable to provide an average trend of individual variables within a model
by integrating out all other variables62,63.

Code availability. All data and code are available on GitHub (https://doi.org/
10.5281/zenodo.1403842) including the code used for the shiny app reference in
the data availability section. Link: https://github.com/cromulo/IWS.

Data availability
All data used in this research is open source. The data sets used for representative data of
the enabling conditions are freely available and citation information can be found in
Supplementary Data 1. The full list of enabling conditions (including those not tested),
and the specific values used in our analysis are provided in Supplementary Data 3. City
and associated watershed information was obtained from The Nature Conservancy City
Water Map36 with permission. IWS program information was collected from a combi-
nation of (1) Forest Trends’ Ecosystem Marketplace State of Watershed Investment
survey11 with permission and (2) literature review detailed in the Methods. The data sets
and descriptive statistics can be accessed from this shiny app site as well: https://cromulo.
shinyapps.io/InvestmentInWatershedServices/.
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