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Robustness of spatial micronetworks
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Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These
structures may be viewed as spatial networks where geographic distances play a role in the functionality
and construction cost of links. Traditionally, studies of network robustness have primarily considered the
connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a
role in network robustness. Understanding the robustness of small spatial networks is particularly important
with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using
renewable energy resources. We study the random failures of links in small networks where functionality depends
on both spatial distance and topological connectedness. By introducing a percolation model where the failure of
each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks
are more fragile than expected. Accounting for spatial effects in both construction and robustness is important
for designing efficient microgrids and other network infrastructure.

DOI: 10.1103/PhysRevE.91.042813 PACS number(s): 89.75.Hc, 64.60.ah, 89.75.Fb

I. INTRODUCTION

The field of complex networks has grown in recent years
with applications across many scientific and engineering
disciplines [1–3]. Network science has generally focused on
how topological characteristics of a network affect its structure
or performance [1–6]. Unlike purely topological networks,
spatial networks [7] such as roadways, pipelines, and the
power grid must take physical distance into consideration.
Topology offers indicators of the network state, but ignoring
the spatial component may neglect a large part of how the
network functions [8–11]. For spatial networks in particular,
links of different lengths may have different costs affecting
their navigability [12–17] and construction [18–22].

Percolation [23] provides a theoretical framework to study
how robust networks are to failure [4,24–27]. In traditional
bond percolation, each link in the network is independently
removed with a constant probability, and it is asked whether
or not the network became disconnected. Theoretical studies
of percolation generally assume very large networks that are
locally treelike, often requiring millions of nodes before finite-
size effects are negligible. Yet many physical networks are far
from this size; even large power grids may contain only a few
thousand elements.

There is a need to study the robustness of small spatial
networks. Microgrids [28–31] are one example. Microgrids
are small-area (30–50 km), standalone power grids that have
been proposed as a new model for towns and residential
neighborhoods in light of the increased penetration of renew-
able energy sources. Creating small robust networks that are
cost effective will enable easier introduction of the microgrid
philosophy to the residential community. Due to their much
smaller geographic extent, an entire microgrid can be severely
affected by a single powerful storm, such as a blizzard or
hurricane, something that is unlikely to happen to a single,
continentwide power grid. Thus building on previous work,
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we consider how robustness will be affected by spatial and
financial constraints. The goal is to create model networks that
are both cost effective and small in size, and, at the same time,
to understand how robust these small networks are to failures.

The rest of this paper is organized as follows. In Sec. II, a
previous model of spatial networks is summarized. Section III
contains a brief summary of percolation on networks, and
applies these predictions to the spatial networks. In Sec. IV, we
introduce and study a model of percolation for spatial networks
as an important tool for infrastructure robustness. Section V
contains a discussion of these results and future work.

II. MODELING INFRASTRUCTURE NETWORKS

In this work, we consider a spatial network model in-
troduced by Gastner and Newman [19–21], summarized as
follows. A network consists of |V | = N nodes represented
as points distributed uniformly at random within the unit
square. Links are then placed between these nodes according
to associated construction costs and travel distances. The
construction cost is the total Euclidean length of all edges in
the network,

∑
(i,j )∈E dij , where dij is the Euclidean distance

between nodes i and j , and E is the set of undirected
links in the network. This sum represents the capital outlay
required to build and maintain the network. When building
the network, the construction cost must be under a specified
budget. Meanwhile, the travel distance encapsulates how easy
it is on average to navigate the network and serves as an
idealized proxy for the functionality of the network. The degree
to which spatial distance influences this functionality is tuned
by a parameter λ via an “effective” distance,

deff(i,j ) =
√

Nλdij + (1 − λ).

Tuning λ toward 1 represents networks where the cost of
moving along a link is strongly spatial (for example, a
road network), while choosing λ closer to 0 leads to more
nonspatial networks (for example, air transportation where the
convenience of traveling a route depends more on the number
of hops or legs than on the total spatial distance). To illustrate
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FIG. 1. (Color online) Two optimized spatial networks with the
same node coordinates illustrate how λ influences network topology.
The nonspatial case λ = 0 shows long-range hubs due to the lack of
restriction on edge distance; the spatial case λ = 1 lacks expensive
long-distance links, leading to a more geometric graph. As examples,
the nonspatial case may correspond to air travel where minimizing
the number of flights a traveler takes on a journey is more important
than minimizing the total distance flown, while the spatial case may
represent a road network where the overall travel distance is more
important than the number of roads taken to reach a destination.

the effect of λ, we draw two example networks in Fig. 1.
Finally, the travel distance is defined as the mean shortest
effective path length between all pairs of nodes in the network.
Taken together, we seek to build networks that minimize travel
distance while remaining under a fixed construction budget,
i.e., given fixed node positions, links are added according to
the constrained optimization problem

min
1(
N

2

) ∑
s,t∈V

∑
(u,v)∈�(s,t)

deff(u,v),

subject to
∑

(i,j )∈E

dij � Budget, (1)

where �(s,t) is the set of links in the shortest effective path
between nodes s and t , according to the effective distances

deff . [The factor
(
N

2

)−1
does not affect the optimization.]

This optimization was solved using simulated annealing (see
Appendix for details) with a budget of 10 (as in [19]) and a
size of N = 50 nodes. We focus on such a small number of
nodes to better mimic realistic microgrid scales. In this work,
to average results, 100 individual network realizations were
constructed for each λ.

An important quantity to understand in these networks is
the distribution of Euclidean link lengths. If edges were placed
randomly between pairs of nodes, the lengths would follow
the square line picking distribution with mean distance 〈d〉 ≈
0.52141 [32]. Instead, the optimized network construction
makes long links costly and we observe (Fig. 2) that the
probability distribution P (d) of Euclidean link length d after
optimization is well explained by a gamma distribution,
meaning the probability that a randomly chosen edge has
length d is

P (d) = 1

�(κ)θκ
dκ−1e−d/θ , (2)

with shape and scale parameters κ > 0 and θ > 0, respectively.
A gamma distribution is plausible for the distribution of

(a) (b)

FIG. 2. (Color online) The distributions of Euclidean link lengths
dij between nodes i and j are well explained for all λ by gamma
distributions, i.e., P (dij ) ∝ dκ−1

ij e−dij /θ . (a) Maximum likelihood
estimates of P (dij ) for multiple λ. Two distributions are shifted
vertically for clarity. (b) The gamma parameters κ,θ as functions
of λ. Quadratic fits provide a guide for the eye.

link lengths because it consists of two terms, i.e., a power
law and an exponential cutoff. This product contains the
antagonism between the minimization and the constraint in
Eq. (1): Since longer links are generally desirable for reducing
the travel distance, a power law term with positive exponent is
reasonable, while the exponential cutoff captures the need to
keep links short to satisfy the construction budget and the fact
that these nodes are bounded by the unit square. See Fig. 2.

The fit of the gamma distribution was tested statistically
using the Kolmogorov-Smirnov test [33]. The test failed to
reject the null hypothesis (p > 0.05) that the distances follow
a gamma distribution in 99.15% of all networks. This provides
strong evidence in favor of Eq. (2).

The network parameters were chosen under conditions
that were general enough to apply to any small network, for
instance a microgrid in a small residential neighborhood. The
choices of 50 nodes and a budget of 10 were also made in line
with previous studies [19] of this network model to balance
small network size with a budget that shows the competition
between travel distance minimization and construction cost
constraint [19,20].

III. ROBUSTNESS OF PHYSICAL INFRASTRUCTURE

Percolation theory on networks studies how networks fall
apart as they are sampled. For example, in traditional bond
percolation, each link in the network is independently retained
with probability p (equivalently, each link is deleted with
probability q = 1 − p). This process represents random errors
in the network. The percolation threshold qc is the value of
q where the giant component, i.e., the connected component
containing the majority of nodes, first appears. Infinite systems
exhibit a phase transition at qc, which becomes a critical
point [23]. In this work, we focus on small micronetworks,
a regime that is underexplored in percolation theory and far
from the thermodynamic limit invoked by most analyses.
In our finite graphs, we estimate qc as the value of q that
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FIG. 3. The fractions of nodes in the first and second largest
components, S1 and S2, respectively, as a function of link deletion
probability q. In finite systems, the percolation threshold qc can be
estimated from the maximum of S2 (dashed line). This example used
optimized networks with λ = 1/2.

corresponds to the largest S2, where Sn is the fraction of
nodes in the nth largest connected component (Fig. 3). In finite
systems, the second largest component peaks at the percolation
threshold; for q > qc, the network is highly disconnected and
all components are small, while for q < qc, a giant component
almost surely encompasses most nodes and S2 is forced to be
small. Note that it is also common to measure the average
component size excluding the giant component [23,34].

For the case of uniformly random link removals (bond
percolation), it was shown that the critical point occurs when
q is such that 〈k2〉/〈k〉 = 2 [35,36], where 〈k〉 and 〈k2〉 are
the first and second moments of the percolated graph’s degree
distribution, respectively. We denote this theoretical threshold
as q̃c to distinguish this value from the qc estimated via
S2. Computing this theoretical prediction for the optimized
networks (Sec. II), we found q̃c between 0.66 and 0.71 for the
full range of λ (Fig. 4). In contrast, qc estimated via S2 has
lower values between 0.48 and 0.54 (Fig. 4). It is important

FIG. 4. (Color online) For an infinite, uncorrelated network, per-
colation occurs at the sampling probability for which 〈k2〉/〈k〉 =
2 [35]. We computed this predicted critical point q̃c for each λ finding
q̃c between 0.66 and 0.72. In comparison, for finite networks, we
used the size of S2 to estimate qc and found it between 0.48 and 0.54.
Quadratic fits provides a guide for the eye.

to note that the derivation of this condition for q̃c makes two
related assumptions that are a poor fit for these optimized
spatial networks. First, the theoretical model studies networks
whose nodes are connected at random. This assumption does
not hold for the constrained optimization [Eq. (1)] that we
study. Second, this calculation neglects loops by assuming the
network is very large and at least locally treelike. For the small,
optimized networks that we build, this is certainly not the case.
These predictions for the critical point q̃c do provide a useful
baseline to compare to the empirical estimates of qc via S2.

IV. MODELING INFRASTRUCTURE ROBUSTNESS

The work by Gastner and Newman [20] showed the impor-
tance of incorporating spatial distances into the construction of
an infrastructure network model. With physical infrastructure,
we argue that it is important to also consider spatial distances
when estimating how robust a network is to random failures.
For example, consider a series of power lines built in a rural
area where trees are scattered at random. In a storm, trees may
fall and damage these lines, and one would expect, all else
being equal, that one line built twice as long as another would
have twice the chance of a tree falling on it and thus failing.

Motivated by this example, an intuitive model for how
links fail would require an increasing chance of failure with
length. The simplest model supposes that the failure of a link
is directly proportional to length, i.e., that each unit length is
equally likely to fail. With this in mind, we now introduce the
following generalization of bond percolation: Each link (i,j )
independently fails with probability min(1,Qij ), where

Qij = qM
dα

ij∑
(i,j )∈E dα

ij

= q
dα

ij

〈dα〉 , (3)

q ∈ [0,1] is a tunable parameter that determines how many
edges from 0 to |E| = M will fail on average, and the
parameter α controls how distance affects failure probability.
We naturally recover traditional bond percolation (Qij = q)
when α = 0 and α = 1 corresponds to the case of constant
probability per unit length. See Fig. 5 for example networks
illustrating how Qij depends on dij and α.

Given the gamma distribution of link lengths, the distribu-
tion of y ≡ dα is (when α > 0)

P (y) = 1

α�(κ)θκ
yκ/α−1 exp

(
−y1/α

θ

)
, (4)

with mean

〈dα〉 = 1

α�(κ)θκ

∫ ∞

0
zκ/αe−z

1
α /θ dz = θα �(κ + α)

�(κ)
. (5)

When α = 1, the above distribution (4) will reduce to the
original distribution P (d), given by Eq. (2).

With the above failure model and the distribution P (d), we
may express the probability P (Qij ) that a randomly chosen
edge (i,j ) has failure probability Qij as

P (Qij ) = 1

α�(κ)θκ

( 〈dα〉
q

)κ/α

Q
κ
α
−1

ij

× exp

[
−1

θ

( 〈dα〉
q

Qij

) 1
α

]
. (6)
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FIG. 5. (Color online) A nonspatial (λ = 0) and spatial (λ = 1) network with multiple values of α showing how to tune the role spatial
distance plays in percolation. Here the width and color of a given edge (i,j ) are proportional to failure probability Qij ∼ dα

ij (3) and node size
corresponds to the number of effective shortest paths through nodes, with the same scales used across all network diagrams. Increasing α leads
to failure probability becoming more concentrated on the links connected to a small number of hubs, with the effected hubs being more central
(in terms of shortest paths) for the nonspatial network (λ = 0) than for the more geometric network.

This distribution has mean 〈Qij 〉 = q. (However, the true mean
failure probability is 〈min(1,Q)〉 � 〈Q〉, which leads to a small
correction, easily computed, as q gets closer to 1.) Note that
while the mean does not rely on the distances of edges, α

(and 〈dα〉) do play a role in higher moments. For example, the
variance of Q is σ 2(Q) = q2[B(α,κ)/B(α,α + κ) − 1], where
B(x,y) is the beta function.

To study this robustness model, we percolate the infras-
tructure networks by stochastically removing links (i,j ) with
probabilities Qij [Eq. (3)] for 0 < q < 1 and 0 < α < 4. In
Fig. 6, we plot S2 vs q for various combinations of α and
λ. Importantly, in all cases, qc < q̃c, indicating that these

networks are less robust than predicted. When comparing
the effects of each parameter, α has a much greater effect
in reducing qc than λ; sampling by distance plays a much
greater role in determining robustness than how the network
is constructed.

The curves in Fig. 6 show S2 for the entire range of q;
to study qc requires examining the peaks of these curves.
Figure 7 systematically summarizes qc as a function of λ

and α. Over all parameters, qc ranges from approximately
0.30 to 0.50. Globally, the most vulnerable region is shown at
region A of Fig. 7 [(λ,α) ≈ (0,2)]; these nonspatial networks
with strong, superlinear (α > 1) failure dependence occupy the

FIG. 6. (Color online) In each panel, S2 (fraction of nodes in the second largest component) curves are shown with the range of the
theoretical threshold q̃c shown in gray. Higher values of α make failures depend more strongly on distance, while changing λ adjusts a
network’s form from nonspatial (small λ) to spatial (large λ). Top row: Regardless of λ, larger values of α tend to shift the peak of S2 towards
lower q, leading to less robust networks. Bottom row: Different values of λ for a given α lead to shifted S2 profiles, but the shift is less
prominent. Regardless of the parameters, spatial networks are more fragile than predicted from theory [35,37]. While both parameters influence
the robustness of these spatial networks, α plays a stronger role than λ. Note that with our definition of Q (3), S2 may remain finite as q → 1.

042813-4
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FIG. 7. (Color online) Critical failure probability qc as a function
of α and λ. Overall, values of α > 0 always correspond to lower
robustness than when α = 0 and, in particular, the percolation
threshold qc is lowest near region A [(λ,α) ≈ (0,2)], while networks
are generally most robust when α � 0.5. The exponent α lowers qc

even in geometric networks (high λ) where spatial distance plays a
stronger role in the network topology (region B). This matrix was
smoothed with a σ = 5-pixel Gaussian convolution for clarity (1
pixel = 0.025λ × 0.1α).

most vulnerable region of Fig. 7 since their construction (low
distance dependence) is in direct opposition to how links fail
(high distance dependence). Even when networks are built with
the goal of minimizing physical distances along links (high λ),
the exponent α still lowers qc compared with the theoretical
prediction (highlighted at region B of Fig. 7). Almost any
introduction of spatial dependence on link failure (compare
α > 0 with α = 0) leads to less robust networks.

Figure 7 also shows a slight increase in qc for α > 2.5.
This is a result of Eq. (3): for such extreme values of α,
the failure probabilities Qij become concentrated and thus
relatively fewer links are deleted for a given q, causing the
apparent rise in qc. This does not occur for α < 2.5. We see
this in Fig. 8, where we plot the number of deleted links (Mdel)
as a function of α and λ.

Finally, to better understand why these infrastructure
networks are less robust than the theoretical prediction [35,37],
we studied correlations in network structure by computing the
mean degree of nearest neighbors, 〈knn〉 = ∑

k′ P (k′ | k) [38],
and the mean distance to nearest neighbors, 〈dnn〉 =∫

d ′P (d ′ | k) dd ′, both as functions of node degree k. Here,
P (k′|k) is the conditional probability that a node of degree k

has a neighbor of degree k′ and P (d ′|k) is the conditional
probability that a node of degree k has a link of length
between d ′ and d ′ + dd ′. See Fig. 9. Due to the optimization
[Eq. (1)], both 〈dnn〉 and 〈knn〉 indicate nonrandom structure,
since they depend on k. Even for the case λ = 1, which shows
no relationship between 〈dnn〉 and k, there is a positive trend
for 〈knn〉. Therefore, the optimized networks always possess
correlated topologies.

Taken together, Fig. 9 shows that beyond finite-size effects,
q̃c overestimates qc because (i) these networks are nonrandom

(a) q = 0.25

(b) q = 0.50

(c) q = 0.75

FIG. 8. (Color online) The number of deleted links Mdel as a
function of λ and α for several values of q. When α < 2 and
q � 0.5, Mdel is almost exactly constant, but for larger α and q,
the number of deleted links begins to drop, as failure probabilities
become “concentrated” on a smaller fraction of links. This causes the
small rise on qc for α > 2.5 observed in Fig. 7.

and (ii) higher degree nodes tend to have longer links leading
to hubs that suffer more damage when α > 0. Since hubs play
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FIG. 9. (Color online) Degree and distance correlations in opti-
mized spatial networks. Here, 〈knn〉 is the mean degree of nearest
neighbors and 〈dnn〉 is the mean distance of nearest neighbors. We
observe that 〈knn〉 shows a negative trend with degree k for λ = 0, and
positive trend for λ = 0.5 and 1.0. On the other hand, 〈dnn〉 shows an
increasing trend with k for decreasing λ. These optimized networks
are not randomly constructed; they possess correlations in either
network or spatial structure (or both) for all λ. The above metrics
indicate that nonspatial networks form hubs whose longer links are
likely to fail with higher probability and cause more damage to the
network. Alternatively, more spatially dependent networks (higher
λ) have 〈dnn〉 that depends less on k, indicating that link failures are
spread somewhat more uniformly across high- and low-degree nodes.

an outsized role in holding the network together, the positive
correlation between d and k causes spatial networks to more
easily fall apart, lowering their robustness.

V. DISCUSSION

A potential application of this model is to the design of
microgrids. The microgrid concept, most commonly imple-
mented in military settings, has gained wider popularity with
the advent of the smart grid. Building a microgrid that is
robust to failures while constrained by a budget is important
for the widespread adoption of microgrids. Furthermore, the
model also brings to light the need to keep in mind that
the construction of convenient, long power lines may not be
an optimal choice when accounting for the system’s robust-
ness. This may reinforce distributed generation across many
buildings, as opposed to the power grid (traditional utility)
creation of power lines stemming from a centralized cluster
of small power plants. A move toward distributed generation
and the decommissioning of the traditional utility may raise
the overall stability of the grid. Existing infrastructure can
use methods that reduce the power grid’s dependence on
distance (effectively lowering α), such as using towers to raise

long-distance transmission lines above trees or otherwise
protecting longer links. Distributed generation may be a
cost-effective alternative.

Of course, the metrics used here are not all-encompassing
for quantifying robustness. Additional measures may be used
that go beyond the topological connectivity of networks
to network functionality and dynamics, including problem-
specific analyses [39,40]. One specific example: it is worth
understanding how a spatial network’s travel distance may
change following link failures, even when a giant compo-
nent remains. It is also worth further characterizing fluctu-
ations in, e.g., qc that are due to the small size of these
micronetworks.

Both the network construction budget and system size
(number of nodes) were treated as constants in this work,
for simplicity. Yet studying their interplay with the system’s
robustness may reveal important features of microgrids at dif-
ferent scales. Additional future work may include considering
the unit square to have differential terrain, changing the cost
of edge placement over a continuous gradient. Also, applying
the existing model to real infrastructure network data, we
may measure the robustness of critical networks and have
better insight on how to design and improve these structures.
Furthermore, in a real power grid, nodes do not all have equal
roles and thus investigating not only spatially dependent edge
failure but variations in node importance may provide more
insight into spatial network robustness.

ACKNOWLEDGMENTS

We thank M. T. Gastner, J. R. Williams, N. A. Allgaier, P.
Rezaei, P. D. Hines, and P. S. Dodds for useful discussions.
This research was funded and supported by the National
Science Foundation’s IGERT program (Grant No. DGE-
1144388), Vermont Complex Systems Center, and the Vermont
Advanced Computing Core, which is supported by NASA
(NNX Grant No. 06AC88G ).

APPENDIX: CONSTRUCTING OPTIMIZED NETWORKS

Networks are initialized by first placing N = 50 nodes
uniformly at random inside the unit square. Initially the
network is empty. The minimum spanning tree (MST) is
inserted between these nodes using Kruskal’s algorithm [41]
with link weights corresponding to deff , and the construction
cost and travel distance are computed. The spanning tree,
which may be modified as optimization progresses, ensures
the travel distance is finite when optimization begins. We find
solutions to the constrained optimization problem [Eq. (1)]
using simulated annealing (SA). At the beginning of each
SA step, an edge is added to the network at random and
construction cost and travel distance are recomputed. If the
budget constraint is still satisfied with the addition of this
edge, the edge is kept using Boltzmann’s criterion: the edge is
retained if it lowers the travel distance, but if it does not lower
the travel distance, it is retained with probability e−β
E , where

E is the change in travel distance due to this change in the
network and β acts as the inverse temperature.

If the random edge puts the network over budget, we remove
it and do one of two modifications. With probability one-half an
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existing edge is moved by placing it at random in the network
where no edge exists. Otherwise, a rewire is chosen. Edges
are rewired by first selecting an existing edge at random, next
selecting either of the nodes connected by that edge, and finally
attaching that end of the edge from the chosen node to a
node that is a non-neighbor. In other words, edge (i,j ) is
removed and edge (i,k) is inserted, where k = j and k was not

previously a neighbor of i. The move or rewire perturbation is
then kept using the same Boltzmann’s criterion.

The cooling schedule starts at β0 = 100/(cost of MST),
and cooled subsequently as βt+1 = βt (1 + 3 × 10−5). At each
SA step, we check if the current network topology is the best
seen to that point; the most optimal network found during any
of the 3 × 105 total SA steps is taken as our solution.
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