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Noncooperative dynamics in election interference
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Foreign power interference in domestic elections is an existential threat to societies. Manifested through
myriad methods from war to words, such interference is a timely example of strategic interaction between
economic and political agents. We model this interaction between rational game players as a continuous-time
differential game, constructing an analytical model of this competition with a variety of payoff structures.
All-or-nothing attitudes by only one player regarding the outcome of the game lead to an arms race in which
both countries spend increasing amounts on interference and counterinterference operations. We then confront
our model with data pertaining to the Russian interference in the 2016 United States presidential election contest.
We introduce and estimate a Bayesian structural time-series model of election polls and social media posts by
Russian Twitter troll accounts. Our analytical model, while purposefully abstract and simple, adequately captures
many temporal characteristics of the election and social media activity. We close with a discussion of our model’s

shortcomings and suggestions for future research.

DOI: 10.1103/PhysRevE.101.022307

I. INTRODUCTION

In democratic and nominally democratic countries, elec-
tions are societally and politically crucial events in which
power is allocated [1]. In fully democratic countries, elections
are the method of legitimate governmental change [2]. One
country, labeled “Red,” wishes to influence the outcome of
an election in another country, labeled “Blue,” because of the
impact that elections in Blue have on Red’s national interest.
Such attacks on democracies are not new. It is estimated that
the United States (U.S.) and Russia (and its predecessor, the
Soviet Union) often interfere in the elections of other nations
and have consistently done this since 1946 [3]. Though aca-
demic study of this area has increased [4], we are unaware
of any formal modeling of noncooperative dynamics in an
election interference game. Recent approaches to the study
of this phenomenon have focused mainly on the compilation
of coarse-grained (e.g., yearly frequency) panels of election
interference events and qualitative analysis of this data [5,6]
and data-driven studies of the aftereffects and second-order
effects of interference operations [7,8]. Attempts to create
theoretical models of interference operations are less com-
mon. These attempts include qualitative causal models of
cyberoperation influence on voter preferences [9] and models
of the underlying reasons that a state may wish to interfere in
the elections of another [10].

We consider a two-player game in which one country
wants to influence a two-candidate, zero-sum election taking
place in another country. We think of Red as the foreign
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intelligence service of the influencing country and Blue as
the domestic intelligence service of the country in which the
election is held. Red wants a particular candidate, which we
will set to be candidate A without loss of generality, to win
the election, while Blue wants the effect of Red’s interference
to be minimized. We derive a noncooperative, non-zero-sum
differential game to describe this problem and then explore
the game numerically. We find that all-or-nothing attitudes
by either Red or Blue can lead to arms-race conditions in
interference operations. In the event that one party credibly
commits to playing a fixed, deterministic strategy, we derive
further analytical results.

We then confront our model with data pertaining to the
2016 U.S. presidential election contest, in which Russia in-
terfered [11]. We fit a Bayesian structural time-series model to
election polls and social media posts authored by Russian mil-
itary intelligence-associated troll accounts. We demonstrate
that our model, though simple, captures many of the observed
and inferred parameters’ dynamics. We close by proposing
some theoretical and empirical extensions to our work.

II. THEORY

A. Election interference model

We consider an election between two candidates with no
electoral institutions such as an Electoral College. We assume
that the election process at any time ¢ € [0, T'] is represented
by a public poll Z; € [0, 1]. The model is set in continuous
time, though when we estimate parameters statistically in
Sec. III we move to a discrete-time analog. We hypothesize
that the election dynamics take place in a latent space where
dynamics are represented by X; € R. We will set X; < 0 to
be values of the latent poll that favor candidate A and X; > 0

©2020 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.022307&domain=pdf&date_stamp=2020-02-19
https://doi.org/10.1103/PhysRevE.101.022307

DEWHURST, DANFORTH, AND DODDS

PHYSICAL REVIEW E 101, 022307 (2020)

L St T
W 1 t=0 w
0.0 0.0 L] ]
A Left No A A Right A Left No A A Right
&n0~ B(0.1,0.1) én, 7~ B(1.5, 1.5)
w
] (©) —— Preferences changelessas t—T, o= 0.009
[}
e I AW/ YN e Preferences change more ast—T, o= 0.01
o Q‘>
C
]
o ]
% Q.Q 2V \\,"‘.. P
% ) “\"ll \\\‘ P AN ,'II N, I I“,"
J‘E ‘.\’ ] ’ e “M,‘\ A Vi \
:‘: /Q NS ‘\"
po3
Q Q Q Q Q Q Q Q 5
© P N D v €3 PP
A
t (Days)
S 0.5 i t=0 | £2|@
W w 1 t=T
Q 0.0 I Q
A Left No A A Right A Left No A A Right

&n,0~ B(1.5,1.5)

FIG. 1. The random-walk latent space election model is an accur

&n7~ B(0.1,0.1)

ate approximation to multiple different population candidate preference

updates. The latent election process evolves according to X = X; + 1%1 21 <n<N &,.x. The random variable &, ; is voting agent n’s shift toward
the left or right of the political spectrum at time k. In the center panel, the solid curve is a draw from the latent election process resulting

from the preference updates &,, ~ B(0.17% + 1.55, 0.1 + 1.54

), where B(«, B8) is the Beta distribution and we have set T = 365. As

t — T, the electorate exhibits increasing resistance to change in their political viewpoints. We display the preference shift distributions at
t =0 in panel (a) and at ¢t = T in panel (b). For contrast, the dashed curve is a draw from the latent election process resulting from &, , ~

B(1.55% +0.1%, 15525 4 0.1%), which describes an electorate in

which agents more often have changing political preferences ast — T

We show the corresponding preference shift distributions at # = 0 in panel (d) and at 7 = T in panel (e). Despite these preference updates that
are, in some sense, opposites of each other, the latent processes X, are statistically very similar and are both well modeled by the continuum

approximation dX, = adW,.

that favor candidate B. The latent and observable space are
related by Z, = ¢(X;), where ¢ is a sigmoidal function which
we choose to be ¢(x) = H_% (Any sigmoidal function that
is bounded between zero and one will suffice and lead only
to different parameter estimates in the context of statistical
estimation.) The actual result of the election—the number of
votes that are earned by candidate B—is given by ¢ (X7 ). The
election takes place in a population of N voting agents. Each
voting agent updates their preferences over the candidates at
each time step #, by a random variable &, . These random
variables satisfy E,[§,,]=0 and En[éitk] < oo for all ¢.
The increments of the election process are the sample means
of the voting agents’ preferences at time 7. In the absence
of interference, the stochastic election model is an unbiased
random walk:

X, =X, +}v D &, )

1<n<N

where we have put Aty = ;41 — t. We display sample real-
izations of this process for different distributions of &, in
Fig. 1. Though one distribution of preference changes has a
larger variance than the other, the sample paths of X;, are sta-
tistically similar for each since + >, &, does not vary much

between the distributions. When N is large we can reasonably
approximate this discrete agent electoral process by a Wiener
process, dX; = odW,, where 0% ~ Var(y 3, <, &n.), This
limit is valid in the limit of large N.

If the preference change random variables &,; did not
satisfy E,[£,,] =0, then the random-walk approximation
to Eq. (1) would not necessarily be valid. For example, if
{&1.4}k>0 were a random walk or were trend stationary for
each n, then {E,[£, «]}x>0 would also respectively be a random
walk or trend stationary. A trend-stationary univariate time
series is a stochastic process x; = f(t) + &, where & is a
stationary process and f(-) is a deterministic function of
time [12,13]. A univariate time series with a unit root is a
time series that can be written as an autoregressive process
of order p [AR(p)], x; — Zz,zl ByXi—p = &, such that the
polynomial z” — ZZ/=1 Byz' ™7 =0 has a root on the unit
circle when solved over the complex numbers. A random
walk is a special case of the AR(p) process with charac-
teristic polynomial given by z — 1 = 0, which has the unit
root z = 1. Trend-stationary and unit-root time series differ
fundamentally in that a trend-stationary process subjected to
an exogenous shock will eventually revert to its mean function
f(¢). This is not the case for a stochastic process with a
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unit root. A unit root or trend-stationary &,; would model
a population in which political preferences were undergoing
a shift in population mean rather than just in individual
preferences.

However, there do exist cases where the random-walk
approximation is valid even when E,[&, ;] # 0. If the stochas-
tic evolution equation for E,[§, ] has a stationary colored
noise with exponentially decaying covariance function as its
solution, then the integral of this noise satisfies a Stratonovich-
type equation [14—16]. This equation would be a generalized
version of the basic random-walk model considered here, but
we will not consider this scenario in the remainder of this
work.

We denote the control policies of Red and Blue (the func-
tions by which Red and Blue attempt to influence (or prevent
influence on) the election) by ug(¢) and ug(t). These functions
are one-dimensional continuous-time stochastic processes
(time series). The term “policy” originates from the fields of
economics and reinforcement learning [17-19]. These control
policies are abstract variables in the context of our model, but
we interpret them as expenditures on interference operations.
We assume that Red and Blue can affect the mean trajectory
of the election but not its volatility (standard deviation of
its increments). We make this assumption because X, is an
approximation to the process described by Eq. (1). As we
show in Fig. 1, the variance of the electoral process does not
change much even when the voting population’s underlying
preference change distributions have differing variance and
kurtosis. Under the influence of Red’s and Blue’s control
policies, the election dynamics become

dX; = F(ug(t), up(t))dt +o dW,, Xo=y. 2)

The function F captures the mechanism by which Red and
Blue affect the mean dynamics of the latent electoral pro-
cess. We assume that F is at least twice continuously dif-
ferentiable for convenience. To first-order expansion we have
F(ugp(t), ug(t)) = ag + agug(t) + agug(t) + O(u?), which is
most accurate near ¥ = 0. We approximate the state equation
by

dX; = [ug(t) +ug®)] dt + o dW,, Xo=y, (3)

since we have assumed zero endogenous drift and can absorb
constants into the definition of the control policies. We will
use Eq. (3) as the state equation for the remainder of the paper.

B. Subgame-perfect Nash equilibria

Red and Blue each seek to minimize separate scalar cost
functionals of their own control policy and the other agent’s
control policy. We will assume that the agents do not incur a
running cost from the value of the state variable, although we
will revisit this assumption in Sec. IV. The cost functionals
are therefore

T
EuR.uB,x{cbk(er f cR(uR(r),uB(r»dr} 4
0
and

T
Eygoupx [(DB(XT) + / Cp(ug(t), up(t)) dt } )
0

The functions Cg and Cg represent the running cost or benefit
of conducting election interference operations. We assume the
cost functions have the form
Ci( 2 g2

i(ug, ug) = uy — Au=,; (6)
for i € {R, B}. The notation —i indicates the set of all other
players. For example, if i = R, —i = B. This notation orig-
inates in the study of noncooperative economic games. The
non-negative scalar A; parameterizes the utility gained by
player i from observing player —i’s effort. If A; > 0, player
i gains utility from player —i’s expending resources, while if
A; = 0, player 7 has no regard for —i’s level of effort but only
for their own running cost and the final cost. Our assumption
that cost accumulates quadratically with magnitude of the
control policy is common in optimal control theory [20-22].
We can justify the functional form of Eq. (6) as follows.
Suppose that an arbitrary analytic cost function for player i as
Ci(ug, ug) = COu;) — ,,CP(u-;). We make the following
assumptions:

(i) It is equally costly to for player i to conduct operations
that favor candidate A or candidate B. This imposes the
constraint that C%) and C* are even functions.

(i) Player i conducting no interference operations results
in player i’s incurring no direct cost from this choice. In other
words, if u;(t) = 0 at some ¢, then player i does not incur any
cost from this.

With these assumptions, the first nonzero term in the Taylor
expansion of C; is given by Eq. (6).

1. Choice of final conditions

Finding optimal play in noncooperative games often re-
quires solving the game backward through time [23-26].
Therefore, we must define final conditions that specify the
cost that Red and Blue incur from the actual election result
¢(Xr). Red and Blue might have different final conditions
because of their qualitatively distinct objectives. Since Red
wants to influence the outcome of the election in Blue’s
country in favor of candidate A, their final cost function
®r must satisfy Og(x) < Pr(y) forall x <0 and y > 0. In
the final conditions that we are about to present, we also
assume that & is monotonically nondecreasing everywhere.
We relax these assumption in Sec. III when we confront this
model with election interference-related data. To the extent
that this model describes reality, it is probably not true that
these restrictive assumptions on the final condition are always
satisfied. However, one simple final condition that satisfies
these requirements is ®r(x) = co + c1x, but this allows the
unrealistic limiting condition of infinite benefit if candidate
A gets 100% of the vote in the election and infinite cost if
candidate A gets 0% of the vote. We will also consider two
Red final conditions with cost that remains bounded as x —
+00: one smooth, ®z(x) = tanh(x), and one discontinuous,
Dr(x) = O(x) — O(—x). By ©(:) we mean the Heaviside step
function.

Blue wants to reduce the overall impact of Red’s interfer-
ence operations on the electoral process. Since Blue is a priori
indifferent between the outcomes of the election, it initially
seems that ®z(x) = 0. However, if Az = 0, then this results in
Blue taking no action due to the functional form of Eq. (6). In
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other words, if Blue does not gain utility from Red expending
resources, then Blue will not try to stop Red from interfering
in an election in Blue’s country. Hence we believe that Blue
cannot be indifferent about the election outcome.

We present three possible final conditions representing
Blue’s preferences over the election result. Blue might believe
that a result was due to Red’s interference if X7 is too far from
Ey[Xr] = 0. An example of a smooth function that represents
this belief is ®p(x) = %xz. However, this neglects the reality
that Red’s objective is not to have either candidate A or can-
didate B win by a large margin but rather to have candidate A
win, i.e., have X7 < 0. Thus Blue might be unconcerned about
larger positive values of the state variable and, modifying the
previous function suitably, have ®z(x) = %xz(H)(—x). Alterna-
tively, Blue may accept the result of the election if it does not
deviate “too far” from the initial expected value. An example
of a discontinuous final condition that represents these prefer-
ences is Pp(x) = O(|x|] — A) — O(A — |x]), where A > O is
Blue’s accepted margin of error.

Though we could propose many other possible final con-
ditions, these example functions demonstrate some possible
payoff structures. We include:

(i) “first-order” functions that could result from the Taylor
expansion about zero of an arbitrary analytic final condition
these functions are linear, in the case of Red’s antisymmetric
final condition, and quadratic in the case of Blue’s smooth
symmetric final condition (which is the first nonconstant term
in the Taylor expansion of an even analytic function)];

(i) smooth functions that represent bounded preferences
over the result of the electoral process and the recognition that
Red favors one candidate in particular; and

(iii) discontinuous final conditions that model “all-or-

nothing” preferences over the outcome (either candidate A
wins or they do not; either Red interferes less than a certain
amount or they interfere more).
These functions do not capture some behavior that might
exist in real election interference operations. For example,
Red’s preferences could be as follows: “We would prefer
that candidate A wins the election, but if they cannot, then
we would like candidate B to win by a landslide so that
we can claim the electoral system in Blue’s country was
rigged against candidate A.” These preferences correspond to
a final condition with a global minimum at some x < O but
a secondary local minimum at x >> 0. This situation is not
modeled by any of the final conditions that we have stated. In
Sec. III we relax the assumption that the final conditions are
parameterized according to any of the functional forms con-
sidered in these section and instead infer them from observed
election and election interference proxy data using the method
described in Sec. II B 3.

2. Value functions

Applying the dynamic programming principle [17,18] to
Egs. (3), (4), and (5) leads to a system of coupled Hamilton-
Jacobi-Bellman (HJB) equations for the Red and Blue value
functions,

3VR . BVR ) 2 02 82VR
T W {W[“R B e

(7

and

T = n‘gn W[IAR + ugl + ulz3 — )»Bulzg +

2 oax2 )’

(®)
The dynamic programming principle does not result in an
Isaacs equation because the game is not zero-sum and the
cost functionals for Red and Blue can have different functional
forms. (The Isaacs equation is a nonlinear elliptic or parabolic
equation that arises in the study of two-player, zero-sum
games in which one player attempts to maximize a func-
tional and the other player attempts to minimize it [27,28].)
Performing the minimization with respect to the control vari-
ables gives the Nash equilibrium control policies

8VB . { 3VB O'2 82VB }

19V,

up(t) = —= —=| ©9)
2 Ox X))
19V

up(t) = —=—2>| (10)
2 Ox .X,)

and the exact functional forms of Eqs. (7) and (8),

W L (aVR)® 13VRdVs
a4\ ax 2 0x Ox
)\-R 8VB 2 0232VR

- F) 5o Vet T) = Gp(x);

1 ( 8x> t e R(x, T) = Pr(x)

(11
WV L(aVe\' 13VzaVi
a4\ ax 2 3x dx
ap (VR 0?97V

_ B (R — =2 V(T = Dp(x).

4<3x> e D)= P60

(12)

When solved over the entirety of state space, solutions to
Egs. (11) and (12) constitute the strategies of a subgame-
perfect Nash equilibrium. No matter the action taken by player
—i at time ¢, player i is able to respond with the optimal action
at time ¢t 4 dt. This is the (admittedly informal) definition
of a subgame-perfect Nash equilibrium in a continuous-time
differential game [26]. Given the solution pair Vg(x, t) and
Vi(x, 1), we can write the distribution of x, ug, and ug ana-
Iytically. Substitution of Egs. (9) and (10) into Eq. (3) gives
dx = —3{2% | o+ D8, Ydt + odW. We discretize this
equation over N time points to obtain

_ ﬁ / r1_ 1/2 _ _
Xn+1 — Xn + 5 [VRn + VBn] (At) “ow, — yduo =0,
(13)
with w, ~N(0,1), At =t,41 —t,, and n=0,...,N — 1

and where we have put V., = V/(x,, t,,). Thus the distribution
of an increment of the latent electoral process is

At (Yngl =N Ly / 800 \2
e_zairz( +A, n+5[VR”+VBn]_—VT§)) . (14)

1
PXny1|xy) = ————=
* V2mwo? At
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FIG. 2. Example value functions corresponding to the system Eqs. (11) and (12). Panels (a) and (b) display Vr(x,t) and Vp(x,1),
respectively, for Axg = Ap = 0, Pr(x) = 2[O(x) — O(—x)], and Pp(x) = 2[O(]x|] — 0.1) — B(0.1 — |x|)] with A = 0.1, while panels (c) and
(d) display Vk(x,t) and Vp(x, t), respectively, for Ag = Ag = 2, Pr(x) = 2tanh(x), and Pp(x) = %x2®(—x). For each solution we enforce
Neumann no-flux boundary conditions and set ¢ = 0.6. The solution is computed on a grid with x € [—3, 3], setting dx = 0.025, and

integrating for N, = 8, 000 time steps.

Now, using the Markov property of X;, we have

N-1
P, - xylxo) = [ | pCoata ) (15)
n=0
1 1
exp{—mS(xl,...,xN)}, (16)

T 2rolAnN?
where
Sxp, ..., xn)
N-1
Xn+1 — Xn 1 , , y‘sn,O 2
- Az[— SV V] — ] 17
At JFZ[R’”L b At (17

Il
=}

n

Taking N — oo as NAt = T remains constant gives a func-
tional Gaussian distribution,

p(x(0 = T)lxo) = %exp {—#S[x(o . T)]}, (18)

with action

S0 — T)] /T dx N 1[aVg aVp
X = — 4+ = —
o ldt 2| 9x lx=x¢) Ox lx=x(r)
2
— y8(t —to)} dt (19)
and partition function
X(T) 1
Z = Dx(0 — T)exp {——ZS[x(O — T)]}. (20)
x(0) 20

We have denoted by x(s — ¢) the actual path followed by the
latent state from time s to time 7. The measure Dx(0 — T) is
classical Wiener measure. Since ug(0 — T) and ug(0 — T)
are deterministic time-dependent functions of x(0 — T'), we
can find their distributions explicitly using the probability
distribution Eq. (16) and the appropriate time-dependent Ja-
cobian transformation. These analytical results are of limited
utility because we are unaware of analytical solutions to the
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system given in Egs. (11) and (12), and hence Vj(x,t) and
Vji(x,t) must be approximated. In Sec. IIC we will derive
analytical results that are valid when player i announces a
credible commitment to a particular control path.

We find the value functions Vi(x,t) and Vg(x,t) nu-
merically through backward iteration, enforcing a Neumann
boundary condition at x = £3, which corresponds to bound-
ing polling popularity of candidate B from below by 100 x
¢ (—3) = 4.7% and from above by 100 x ¢(3) = 95.3% [30].
We display example realizations of the value functions for
different }; and final conditions in Fig. 2. The value functions
display diffusive dynamics because the state equation is driven
by Gaussian white noise. The value functions also depend
crucially on the final condition. When the final conditions are
discontinuous (as in the top panels of Fig. 2) the derivatives
of the value function reach larger magnitudes and vary more
rapidly than when the final conditions are continuous. This has
consequences for the game-theoretic interpretation of these
results, as we discuss in Sec. II B 4. Figure 2 also demonstrates
that the extrema of the value functions are not as large in
magnitude when Agp = A = 0 as when Agx = Ap = 2; this is
because higher values of A; mean that player i derives utility
not only from the final outcome of the game but also from
causing player —i to expend resources in the game.

Equations (7) and (8) give the closed-loop control policies
given the current state X, and time ¢, ug and ug. We display
examples of ug, up and the electoral process Z, in Fig. 3.
For this example, we simulate the game with parameters
Ag = Ap =2, Dg(x) =x, and Pp(x) = 1x?°O(—x). We plot
the control policies in the top panel. The mean control policies
Elug] and E[up] are displayed in thicker curves. For this
parameter set, it is optimal for Red to begin play with a
larger amount of interference than Blue does and on average
decrease the level of interference over time. Throughout the
game Blue increases their resistance to Red’s interference.
Even though Blue resists Red’s interference, Red is able to
accomplish their objective of causing candidate A to win.

3. Inference and prediction

The solutions to Egs. (11) and (12) are functions of the
final conditions Vgz(x, T) = ®r(x) and Vp(x, T) = Pp(x). It
is possible to perform both inference and prediction at times
t < T even when ®r(x) and ®p(x) are not known. To do
this, we assume that the system given by Egs. (11) and
(12) has a unique solution given particular final conditions
@, and ®p. Though we have numerical evidence to suggest
that such solutions do exist and are unique, we have not
proved that this is the case. In inference, we want to find
the distributions of values of some unobserved parameters of
the system. We will suppose that we want to infer & and
®j given the observed paths x(0 — t), ug(0 — 1), ug(0 — t)
with t < T. For simplicity we assume that we know all other
parameters of Eqgs. (11) and (12) with certainty. Then the
posterior distribution of ®x and ®p reads

pP(®pr, ®plXy) x p(x(0 — 1)|Dg, D) p(Pr, Pp). (21)

The likelihood p(x(0 — t)|Pg, ®p) is Gaussian, as shown
in Eq. (18), and depends on the time-dependent Jacobian
transformtions defined implicitly by the solutions of Eqs. (11)
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0.8

0.61"

0.41

u(t) (control policy)

0.21
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o
T 40%
c

with interference (b)
without interference

@
L 30%

0,
20%% 0.2 0.4 0.6 0.8 1.0

t (years)

FIG. 3. We display realizations of ug and up in the top panel
and paths of the electoral process in the bottom panel. We draw
these realizations from the game simulated with parameters Az =
Ap =2, ®p(x) = x, and Pp(x) = %xz(-ﬂ(—x). For this parameter set,
Blue is fighting a losing battle since optimal play by both players
results in lower E[Z] than for the electoral process without any
interference.

and (12). The prior over final conditions p(®g, ®p) can be
set proportional to unity if we want to use a maximum-
likelihood approach and not account for our prior beliefs
about the form of & and ®g. We can approximate ®x and
®p with functions parameterized by a finite set of parame-
ters a; i, where i € {R, B} and k =0, ..., K. The functional
prior p(®Pg, ©p) is then approximated by the multivariate
distribution p(kgo, - .., kr &, kB0 - - - » kB k). We will take this
approach when performing inference in Sec. IIL.

We can predict future values of x(¢), and hence ug(t)
and up(t), similarly. Now we want to find the probability of
observing x(t+ — T') given observed x(0 — ¢). To do this, we
integrate out all possible choices of ®; and @z weighted by
their posterior likelihood given the observed path x(0 — 7).
The integration is taken with respect to a functional measure,
D(Pr(x), Pp(x)). This means that the integration is taken
over all possible choices of ®r and ®p that lie in some
particular class of functions [31]. As in the case of inference,
we can approximate ®r and Py by functions parameterized
by a finite set of parameters a;; and integrate over the 2K-
dimensional domain of these parameters. In the present work
we do not predict any future values of the latent electoral
process or control policies.
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FIG. 4. Example sweeps over the coupling parameters Ag and Az when Blue’s final condition is set to ®p(x) = %x2®(—x). We vary the
coupling parameters over [0,3] and display the resulting standard deviation of the control policies ug(x) and ug(x). Panels (a) and (b) represent
one coupled system of equations, while panels (c) and (d) represent a coupled system of equations with a different set of final conditions. In
panel (a), Red’s value function is set to ®g(x) = tanh(x), while in panel (b) it is given by ®g(x) = O(x) — O(—x), where O(-) is the Heaviside
function. We display a glyph of the corresponding final condition in the upper right corner of each panel. Changing Red’s continuous final
condition tanh(x) to the discontinuous ®(x) — ®(—x) results in substantially increased variation in the control policies of both players.

4. Dependence of value functions on parameters

We conducted a coarse parameter sweep over Ag, Ag, Pg,
and ®p to explore qualitative behavior of this game. We
display the results of this parameter sweep for two com-
binations of final conditions in Figs. 4 and 5. The upper
right-hand corner of each panel of the figures displays the
final condition of each player. Holding Blue’s final condition
of ®p(x) = %xz(**)(—x) constant, we compare the means and
standard deviations of the Nash equilibrium strategies ug(t)
and up(r) across values of the coupling parameters Ag, Ag €
[0, 3] as Red’s final condition changes from ®g(x) = tanh(x)
to Pr(x) = O(x) — O(—x).

For these combinations of final conditions, higher values
of the coupling parameters A; cause the control policies
to have higher variance. This increase in variance is more
pronounced when Red’s final condition is discontinuous,
which is sensible since in this case lim,_7- ug(x,t) =
—%S(x). Appendix contains similar figures for each 3% =

9 combinations of Red example final conditions, Pz(x) €
{tanh(x), ®(x) — ®(—x), x} and Blue example final condi-
tions, Pp(x) € {%xz, %x2®(—x), (x| = A) — O(A — |x])}.
We also find that certain combinations of parameters lead to an
“arms-race” effect in both players’ control policies. For these
parameter combinations, Nash equilibrium strategies entail
superexponential growth in the magnitude of each player’s
control policy near the end of the game. Figure 6 displays
Elug] and E[ug] for some of these parameter combinations,
along with the middle 80% credible interval (10th to 90th
percentile) of ug(t) and ug(t) for each r. A credible in-
terval for the random variable Y ~ p(y) is an interval into
which Y falls with a particular probability [32]. For ex-
ample, the middle 80% credible interval for ¥ ~ p(y) is
the interval (a, b) for which [ b p(y) dy = 0.8 and [0
dy= [ p(y)dy=0.1.

This growth in the magnitude of each player’s control
policy occurs when either player has a discontinuous final
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FIG. 5. Example sweeps over the coupling parameters Agz and Az when Blue’s final condition is set to ®p(x) = %x2®(—x). We vary the
coupling parameters over [0,3] and display the resulting means of the control policies ug(x) and ug(x). Panels (a) and (b) represent one coupled
system of equations, while panels (c) and (d) represent a coupled system of equations with a different set of final conditions. In panel (a),
Red’s value function is set to ®(x) = tanh(x), while in panel (b) it is given by ®x(x) = O(x) — ©(—x). Altering Red’s final condition from
continuous to discontinuous causes a greater than 100% increase in the maximum value of the mean of Blue’s control policy.

condition. Although a discontinuous final condition by player
i leads to a greater increase in mean magnitude of player i’s
control policy than in player —i’s, the standard deviation of
each player’s policy exhibits similar superexponential growth.
To the extent that this model reflects reality, this points to a
general statement about election interference operations: An
all-or-nothing mindset by either Red or Blue about the final
outcome of the election leads to an arms race that negatively
affects both players. This is a general feature of any strategic
interaction to which the model described by Egs. (3)-(5)
applies.

C. Credible commitment

If player —i credibly commits to playing a particular strat-
egy v(t) on all of [0, T'], then the problem of player i’s finding
a subgame-perfect Nash equilibrium strategy profile becomes
an easier problem of optimal control. A credible commitment
by player —i to the strategy v(¢) means that

(i) player —i tells player i, either directly or indirectly, that
player —i will follow v(¢); and

(i) player i should rationally believe that player —i will
actually follow v(t).

An example of a mechanism that makes commitment
to a strategy credible is the Soviet Union’s “Dead Hand”
automated second-strike nuclear response system. This mech-
anism would launch a full-scale nuclear attack on the United
States if it detected a nuclear strike on the Soviet Union
[33,34]. The existence of this mechanism made the commit-
ment to the strategy “launch a full-scale nuclear attack on the
United States given that any nuclear attack on my country
has occurred” credible, even though the potential cost to both
parties of executing the strategy was high.

When player —i credibly commits to playing v(¢), player
i’s problem reduces to finding the policy u(¢) that minimizes
the functional

T
Eu,x{cp(XT) + / W) + 2v(1)*) dt}, (22)
0
subject to the modified state equation
dx = [u(t) + v(@t)ldt + cdW. (23)
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FIG. 6. In the case of strong coupling (Ag and Az > 0), discontinuous final solutions by either player cause superexponential growth
in the magnitude of each player’s control policy. Here we set Az = Ag = 3 and integrate three systems, varying only one final condition in

each. Panel (a) displays a system with two continuous final conditions: ®g(x) =
Red and Blue control policies when the Red final condition is changed to ®z(x) =
to %x2®(—x), while panel (c) shows the control policies when ®g(x) =

tanh(x) and ®p(x) = %x2®(—x). Panel (b) displays the mean
®(x) — O(—x) as the Blue final condition remains equal
O(x] > 1) — O(]x| < 1) and ®g(x) = tanh(x). The shaded regions

correspond to the middle 80 percentiles (10th to 90th percentiles) of ug(¢) and up(t) for each . When either player has a discontinuous final
condition, the interpercentile range is substantially wider for both players than when both players have continuous final conditions.

Player i’s value function is now given by the solution to the
HIJB equation

2
— —ﬂ} (24)

. |aV
__:mum 8—x[u+v]+u >

dt

Performing the minimization gives the control policy u(t) =

%%‘)ﬂ o and the explicit functional form of the HIB
X=X
equation,
WV 1[aV 0?9’V
R V() — + Av(t)? —
V(x,T) = &(x). (25)

1. Path-integral control

Though nonlinear, this HIB equation can be transformed
into a backward Kolmogorov equation (BKE) through a
change of variables. The BKE can be solved using path-
integral methods [35]. Setting V (x,t) = —nlog¢(x,t), sub-
stituting in Eq. (25), and performing the differentiation, we
are able to remove the nonlinearity if and only if ”72 # g—f)z =

2 2 . . . .-
211 (32" Setting n = 202 satisfies this condition. Perform-
ax

ing the change of variables, Eq. (25) is now linear and has a
time-dependent drift and sink term,

d0p _ »_ e _
3 = 220t D) U(t) ax 2 ox’
o, T) =exp {—%CD()C)}. (26)
20

Application of the Feynman-Kac formula gives the solution to
Eq. (26) as [36]

A T
@(x, 1) = exp {—F/ v(t')? dt’}

x Ey, {exp |:—

where Y; is defined by

%wﬂ] Y, =x}, @7)

dY, =v(@)dt +odW,, Yy=nx. (28)
Using this formalism, we apply path-integral control to esti-
mate the value function for arbitrary v(¢). Figure 7 displays
example path-integral solutions to Eq. (25) when player —i
credibly commits to playing v(t) = t> for the duration of
the game and player i’s final cost function takes the form
d(x) =0(x] — 1) — O — |x|). In this figure we display
the approximate value functions V (x, #) along with their cor-
responding approximate control policies u(x,t) = —%%
We calculated these approximations on a grid of N, = 500
linearly spaced x,, € [—2, 2]. Since the approximated u(x,, t)
are noisy stochastic functions we also plot smoothed versions
of them in Fig. 7. These smoothed versions are defined by

k

(X, 1) =) Ulugs ). (29)

n'=—k

We set k = 7 and hence u,(x,, t) are 2k + 1 = 15-step moving
averages of the more noisy u(x,,t). As t —> T, ug(x,,1t)
approaches the analytical solution of the control problem at
t = T,whichis givenby u(x, T) = ——[S(x —1)—68(x+ 1)

In the further restricted case Where there is a credible
commitment by one party to play a constant control policy
v(t) = v, we can derive further analytical results. Under this
assumption, the probability law corresponding with Eq. (28)
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FIG. 7. Result of the path-integral Monte Carlo solution method
applied to Eq. (25) with the final condition ®(x) = O(|x| > 1) —
O(|x] < 1) and v(t) = t*>. Approximate value functions are com-
puted using N = 10000 trajectories sampled from Eq. (28) for
each point (x, ). We display approximate value functions in panel
(a) fort € {0, 0.75, 1 — dt} and the corresponding approximate con-
trol policies u(x, ¢) in panel (b), along with smoothed versions of
u(x, t), which we denote by u(x, t), plotted in dashed curves. Panel
(c) displays realizations of Y;, the process generating the measure
under which the solution is calculated. The analytical control policy
atr =T is given by u(t) = —3[8(x — 1) — 8(x + )]

is given by

1 1

so that the (exponentially transformed) value function reads

Av?
px, 1) = Eu(y,T—z)[CXp {—m(T - l)q>(YT)”, (31)

_exp (T -0} /°°
V270X(T —1) J-
[y —x) —o(T —0)] })d
y.

o]

1
exp (-F{q)(y)

+ (32)

T —1t

This integral can be evaluated exactly for many ®(y) and, for
many other final conditions, it can be approximated using the
method of Laplace. When ¢t — T so that the denominator of
the argument of the exponential in Eq. (31) approaches zero,
Laplace’s approximation to the integral reads

*© 1 [(y —x) — v(T — )]
[ (cafow s == o
~ \2m0X(T —t)exp {—ﬁfb[x + (T — t)v]}. (33)

Inverting the transformation ¢, the value function is approxi-
mated by

Vx,t) = MXT — 1)+ Ox + (T —1)v], (34)

4 \\\\ — V(X, 0) (a)
;1 5 \‘\\ === VLapIace(X: 0)
S0 a VX, T)
== =
0 —
1
— VI(x,0) L
;: ol =~~~ VLapIace(X; 0)
> V(x, T)
-1r . ' .
-2 -1 0 1 2

FIG. 8. When player —i commits to playing a constant strategy
profile v(t) = v for a fixed interval of time, an analytic approximate
form for player i’s value function V(x,t) is given by V(x,1) =~
AT —1t) + ®[x + (T —t)v], which we derive from a Laplace
approximation argument. We show the numerically determined value
functions at time # = 0 in solid black curves. We display the Laplace
approximations at t = 0 in dashed black curves. The lighter-hue
curves are the value functions at the final time 7', i.e., the respective
final conditions. Panel (a) demonstrates results for the final condition
d(x) = %xz, while panel (b) has ®(x) = tanh(x).

and the control policy by
u(x, 1) = —3®'[x + (T —t)v]. 35)

We display the results of approximating the value function

with Eq. (34) at + = 0 in Fig. 8, along with the actual nu-
merically determined value function at both + = 0 and, for
reference, t = T.

2. Dependence on a free parameter

The Laplace-approximated value function may depend on
a free parameter a that can be used as a “control knob” to
adjust the approximation. For example, player i might use a
to tune the sensitivity of the approximation to the electoral
process’s distance from a dead-heat. Ideally, the approximated
control policy should have similar scaling and asymptotic
properties as the true control policy. Solving an optimization
problem for optimal values of a is be one approach to satisfy-
ing this desideratum.

As a case study we consider the behavior of the Laplace-
approximated value function V@ (x, t) and its corresponding
control policy u‘®(x, t) when we set ®@(x) = tanh(ax). We
consider this specific example because ®@(x) — O(x) —
®(—x) as a — 4o00. This limit can be the source of com-
plicated behavior in a variety of fields such as piecewise-
smooth dynamical systems (both deterministic and stochastic)
[37,38], Coulombic friction [39], and evolutionary biology
[40].

Figure 9 displays player i’s exponentially transformed
value function Eq. (31) with final condition ®;(x) = tanh(ax).
Here player —i credibly commits to playing a constant strategy
of v=0.01. As t — T, larger values of a lead to a sharp
boundary between regions of the state space that are costly
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FIG. 9. If player —i credibly commits to a strategy of playing a constant strategy with value equal to v for the entire duration of the game,
then player i’s (exponentially transformed) value function ¢(x, ¢) has an integral representation given by Eq. (31). We display dynamics of

@ (x, t) with the final condition set to ®(x)

= tanh(ax). We calculated this value function for x € (—

33
272

) and logarithmically equally spaced

values of @ € [1073, 10°]. For @ < 107!, the value function is nearly constant. When a > 10!, E%Cgo(x, t) increases in magnitude near x = 0 as

t—>T.

for player i (positive values of x) and those that are less
costly (negative values of x). This behavior is qualitatively
similar to behavior arising from the final condition ®;(x) =
®(x) — ©(—x). However, we will show that that there are
significant scaling differences in the control policies resulting

J

and hence the control policy is approximately

with both expansions increasingly accurate as t — 7. When ®(x) =

202(T —1) / (
1 . 1
= cosh r‘z + sinh 792

analytically:

where we find that

and

ulx,t) = —

from using ®(x) versus ®@(x). From Egs. (33) and (34), we
approximate the value function by

V@@ (x, 1) ~ AT —t) + tanh {a[x + v(T —1)]},

u(x, 1) ~ —gsechz{a[x +v(T — )]},

{®(y) —O(=y)+

)erf|:—
2 2 1 . 1

Vx,t) =2(T —t) —20°log {cosh|{ — | + sinh [ — Jerf| —
202 202

O(x) —

[y =x) —o(T =D

x+v(T —1t)
V20T —1) |

T —1t

_ _ 2
207 exp { 5}
— ; -0 7"
(T —1) coth (m) +erf[—&ﬁ]

The approximate control policy u(x,t) and the limiting
control policy have similar negative “bell-like” shapes but
also differ in important ways. The true control policy decays

o

x+v(T —1t)
V20XT —1)

(36)

(37

®(—x), we can compute the value function

(38)

(39)

(40)

(

as a Gaussian modulated by the asymmetric function erf(-).
The approximate policy decays logistically and hence more
slowly than the true control policy. While the approximate
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FIG. 10. The solution to Eq. (41) is a superexponentially increasing a(z) parameter in the Laplace method-derived value function
V@(x, ) = tanh(ax). We use this value function as an approximation to the exact value function given in Eq. (39). Dashed curves indicate
u(x, t), while solid curves indicate u‘“(x, t). Panel (c) displays the same data as the main axis and also includes u(x, ) and u”(x, t) at the
last simulation time step, t = 0.9975, to demonstrate the increasing accuracy of the approximation as t — 7. We display the optimal a(?) in

panel (b).

policy is symmetric, the true policy is asymmetric due to the
error function term. Using the Laplace approximation results
in more control being applied to the electoral process than is
optimal. This is because the tails of u“(x, t) are heavier than
those of u(x, t).

We can maximize the similarity between u‘®(x,t) and
u(x, t) by letting the free parameter a be a function of ¢ and
solving the functional minimization problem

T 00
min/ / (W “Ol(x, 1) — u(x, 1))* dx dt. (41)
at) Jy —00

A stationary point of this problem is given by an a(z) that
solves

00 la()]
/ ("N x, 1) — u(x, t)}M dx=0. (42
oo da(t)
We are unable to compute this integral analytically on substi-
tuting Egs. (37) and (40). We find the solution to this problem
by numerically solving Eq. (42) using the secant method for
each of 100 linearly spaced ¢ € [0.5, 0.9975]. We display the
optimal a(t), along with the corresponding u!*®l(x, ) and
true u(x, ) in Fig. 10. We find that the optimal a(t) grows
superexponentially as + — T and that the accuracy of the
approximation increases in this limit. This is expected given
that (¥ (x, t) is derived using the Laplace approximation and
it is in this limit that the Laplace approximation is valid.
Even with the assumption of credible commitment to a
constant control policy v, we can use this theory to ap-
proximate the value function in a noncooperative scenario.
For arbitrary v(¢), expansion about r + At gives v(t + At) =
v(t) + v'(t)At, leading to an approximate value function
iteration over a small time increment A¢,

Vix,t+ At) ~ av@)X(T —1)
+ Q{x+ (T —D)v@) +v')Ar]}.  (43)

The approximation is increasingly accurate as + — 7 and
when At is small. In application, both of v(¢) and v'(¢) can
be estimated from possibly noisy dataont’ € [0, ¢].

III. APPLICATION

An example of election interference operations is the Rus-
sian military foreign intelligence service (Red team) activity
in the 2016 U.S. presidential election contest. Red team
attempted to harm one candidate’s (Hilary Clinton’s) chances
of winning and aid another candidate (Donald Trump) [11].
Though Russian foreign intelligence had conducted election
interference operations in the past at least once before, in
the Ukrainian elections of 2014 [41], the 2015 and 2016
operations were notable in that Red team operatives used the
microblogging website Twitter in an attempt to influence the
election outcome. When this attack vector was discovered,
Twitter shut down accounts associated with Red team activity
and all data associated with those accounts was collected and
analyzed [42—44]. There has been analysis of the qualitative
and statistical effects of these and other election attack vectors
(e.g., Facebook advertisement purchases) on election polling
and the outcome of the election [45] and on the detection of
election influence campaigns more generally [46,47]. How-
ever, to the best of our knowledge, there exists no publicly
available effort to reverse-engineer the quantitative nature of
the control policies used by Russian military intelligence and
by U.S. domestic and foreign intelligence agencies.

We first fit a discrete-time formulation of the model de-
scribed in Sec. I A. We then compare it to theoretical predic-
tions by finding values of free parameters in the theoretical
model that best describe the observed data and inferred latent
controls. We are faced with two distinct sources of uncertainty
in this procedure. First, we cannot observe either Red’s or
Blue’s control policy directly because foreign and domestic

022307-12



NONCOOPERATIVE DYNAMICS IN ELECTION ...

PHYSICAL REVIEW E 101, 022307 (2020)

@ ©

@

FIG. 11. We approximate the time-series components of the ana-
lytical model defined in Sec. II A by a Bayesian structural time-series
(BSTS) model. We subsequently confront the BSTS model with
2016 U.S. presidential election data. Observed random variables are
denoted by gray-shaded nodes, while latent random variables are
represented by unshaded nodes or red (ug,, lighter hue) and blue
(up,, darker hue) nodes. We observe a noisy election poll, denoted by
Z,, and a time series of tweets associated with Russian military intel-
ligence, denoted by Tweets. Our objective in this modeling stage is to
infer the latent electoral process, denoted by X;, and the latent control
policies.

intelligence agencies shroud their activities in secrecy. Sec-
ond, each player’s final time payoff structure is also secret
and unknown to us. To partially circumvent these issues, we
construct a two-stage model. The first stage is a Bayesian
structural time-series model, depicted graphically in Fig. 11,
through which we are able to infer distributions of discretized
analogs of ug(t), up(t), and x(¢). Once we have inferred these
distributions, we minimize a loss function that compares the
means of these distributions to the means of distributions
produced by the model described in Sec. IT A.

We make the simplifying assumptions about the format
of the election that we stated in Sec. I when constructing
the discrete-time election model. Namely, we assume that
only two candidates contest the election and that the election
process is modeled by a simple “candidate A versus candidate
B” poll. Though there are methods for forecasting elections
that make fewer and less restrictive assumptions than these,
such as compartmental infection models [48], prediction
markets [49], and more sophisticated Bayesian models
[50,51], we construct our statistical model to mimic the
underlying election model of Sec. IIA. We do this to test
the ability of this underlying theoretical model to reproduce
inferred control and observed election dynamics.

We can observe neither the Red ug(t) nor Blue ug(t)
control policies. However, we are able to observe a proxy for
ug: the number of tweets sent by Russian military intelligence-
associated accounts in the year leading up to the 2016 election
[52]. This dataset contains a total of 2973371 tweets from
2848 unique Twitter handles. Of these tweets, a total of
1107361 occurred in the year immediately preceding the
election (August, 11, 2015 to August 11,2016). We grouped
these tweets by day and used the time series of total number of
tweets on each day as an observable from which we could in-
fer ug. We restricted the time range of the model to begin at the
later of the end dates of the Republican National Convention
(July 21, 2016) and Democratic National Convention (July 28,
2016). We did this because the later of these dates, July 28,
2016, is the day on which the race was officially between two
major party candidates. Of all Russian military intelligence-
associated tweets in 2016, 363 131 occurred during the 102
days beginning on July 28, 2016 and ending the day before
Election Day. Though the presence of minor party candidates
probably played a role in the result of the election, even
the most prominent minor parties (Libertarian and Green)
received only single-digit support [53,54]. We do not model
these minor parties and instead consider only the electoral
contest between the two major party candidates. We used the
RealClearPolitics poll aggregation as a proxy for the electoral
process itself [55], averaging polls that were recorded on
the same date and using the earliest date in the date range
of the poll if it was conducted over multiple days as the
timestamp of that observation. We weighted all polls equally
when averaging.

Using these two observed random variables, we fit a
Bayesian structural time-series model [56] of the form pre-
sented in Fig. 11. We now describe the structure of the model
and explain our choices of priors and likelihood functions.
In the analytical model, we model the latent control poli-
cies ug(t) and up(t) by time- and state-dependent Wiener
processes. To see this, recall that the state equation evolves
according to a Wiener process and apply Ito’s lemma to the
deterministic functions of a random variable —%% l,—, and
_%%b':x,? which define the control policies. A discretized
version of the Wiener process is a simple Gaussian random
walk. We thus model the latent Red and Blue control policies
by Gaussian random walks:

Pl g -1, g, 0) = N(ug -1 + g, 0%),  (44)

pup, lug -1, g, o) = N(ug,—1 + g, 0%).  (45)

Similarly, we model the latent election process by a dis-
cretized version of the state evolution equation Eq. (3):

pPXi|Xi—1, ug, ug) = N(X,—1 + up;—1 — ug,—1,1). (46)

We assume that the latent election model is subject to normal
observation error in latent space. Since we chose a logistic
function as the link between the latent and real [on (0,1)] elec-
tion spaces, the likelihood for the observed election process
is thus given by a logit-normal distribution. The probability

022307-13



DEWHURST, DANFORTH, AND DODDS

PHYSICAL REVIEW E 101, 022307 (2020)

density function (pdf) of this distribution is
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Though the number of Russian military intelligence tweets
that occur on any given day is obviously a non-negative
integer, we chose not to model it this way. A common and
simple model for a “count” random variable, such as the
tweet time series, is a Poisson distribution with possibly
time-dependent rate parameter [57-60]. This model imposes
a strong assumption on the variance of the count distribution
(namely that the variance and mean are equal) which does
not seem realistic in the context of the tweet data. Instead of
searching for a discrete count distribution that meets some
optimality criterion, we instead normalized the tweet time
series to have zero mean and unit variance, making it a
continuous random variable rather than a discrete one. We
then shifted the time series so that the the new time series
was equal to zero on the day during our study with the fewest
tweets. We then modeled this time series Tweets, by a normal
observation likelihood,

p(Tweets, |ug ., Otweers) = N (Ur ., Ofees)-  (48)

We placed a weakly informative prior, a log-normal dis-
tribution, on each standard deviation random variable (o,
07, OTweets), and zero-centered normal priors on each mean
random variable (ug, pp). This model is high dimensional,
since the latent time series X, ug, and up are inferred as
T -dimensional vectors. In total this model has 37 + 5 = 311
degrees of freedom.

We display a graphical representation of this model in
Fig. 11. We fit this model using the No-U-Turn Sampler
algorithm [61], sampling 2000 draws from the model’s poste-
rior distribution from each of two independent Markov chains.
We do not include 1000 draws per chain of burn-in in the
samples from the posterior. The sampler appeared to converge
well based on graphical consideration (i.e., the “eye test”)
of draws from the posterior predictive distribution of Z, and
Tweets, and, more importantly, because maximum values of
Gelman-Rubin statistics [62] for all variables satisfied Ry,x <
1.01 except for that of oz, which had R;,.x = 1.07646. Each
of these values is well below the level R = 1.1 advocated by
Brooks and Gelman [63]. Figure 12 displays draws from the
posterior and posterior predictive distribution of this model.
Figure 12(a) displays draws of X; from the posterior distri-
bution, along with E[X;] and logit(Z,), while in Fig. 12(b)
we show posterior draws of uz and ug, along with E[ug] and
E[ug] in thick red and blue curves, respectively. In Fig. 12(c),
we display Tweets, and draws from its posterior predictive
distribution. On October 6, 2016, Tweets, exhibited a large
spike that is very unlikely under the posterior predictive dis-
tribution. This spike likely corresponds with a statement made
by the U.S. federal government on this date that officially
recognized the Russian government as culpable for hacking
the Democratic National Committee computers.

After inferring the latent control policies and elec-
toral process, we searched for the parameter values 6 =
(Ag, A, 0, g, Op) of the theoretical model that best explain
the observed data and inferred latent variables. For clarity
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FIG. 12. Panel (a) displays the logit of the observed election time
series (black curve) logit(Z, ), along with the posterior distribution of
the latent electoral process X;. Panel (b) displays the mean latent con-
trol policies in thick red (lighter hue) and blue (darker hue) curves,
along with their posterior distributions. Panel (c) shows the true
tweet time series (subject to the normalization described in the main
body) along with draws from its posterior predictive distribution.
The large spike in the tweet time series that is very unlikely under
the posterior predictive distribution corresponds to the day (October
6, 2016) on which the U.S. federal government officially accused
Russia of hacking the Democratic National Committee computers.

022307-14



NONCOOPERATIVE DYNAMICS IN ELECTION ...

PHYSICAL REVIEW E 101, 022307 (2020)

= — logit Z(t) 41 — Efus(t)]
s 0.5 = ——— Elua(t)]
g 3 2 .
o 5 e
o oo Ay B -
4 5 | 3
g § -2 °
c —-0.5 L
2 =)
& 5 —41
<X 1.0

(@ . | -e{® . ‘

0 50 100 0 50 100

t (days) t (days)

FIG. 13. We display credible intervals of latent election process X and Red and Blue control policies, ug and up, generated using optimal

0 = (Ag, A, 0, Qo ..., Ak r, Qo b, - -

., agp) values. We ran the optimization algorithm with the number of terms of the Legendre expansion

of & and &g set to K = 10 and set the variance regularization in the algorithm to n = 0.002. This resulted in fit parameters of Az = 0.849,
Ap = 0.727, and o = 1.509. Panel (a) displays draws from the latent electoral process under Q, along with logit(Z,), the logit-transformed
real polling popularity process. Panel (b) displays draws from the distributions of iig and i1z under O, while panel (c) displays the inferred final

conditions ®z(x) and Pp(x).

in reference, we will refer to the theoretical model as QO
and the Bayesian structural time-series model as M. We use
Legendre polynomials to approximate the final conditions ®g
and ®p, as discussed in Sec. II B 3. Approximating &;(x)
by the finite sum ZkK:O ai P (x), Q’s parameter vector is 6 =
(Ag, A, 0, a0, ...,0aK,r,Q0p, - - - , Ak.p)- IN contrast with M,
Q has relatively few degrees of freedom since the assumption
of state and policy coevolution via solution of coupled partial
differential equations substantially restricts the system’s dy-
namics. In total, Q has 2K + 3 free parameters. The smaller
the value of K, the less accurate the approximation to the
true final conditions will be. Conversely, large K could lead
to overparameterization of the model and increases the size
of the search space. We thus chose K = 10 as a compromise
between these two extremes. With K = 10, the model has
2K + 3 = 23 degrees of freedom.

The theoretical model Q can be viewed as a generative
probabilitistic function. To find optimal parameter values, we
generate (iig, iig, X ) from O and minimize a loss function
of these generated values and the values inferred by M. We
defined this loss function as

LOIQ) =" [y — 155 + n03]. 49)

(©5))]

where y € {ug, ug, X} and ¥ € {iig, ﬁB,)?}. ‘We have defined
the mean and standard deviation under the corresponding
distribution by u and o, respectively. The ¢, terms in Eq. (49)
penalize deviation by Q from the mean of M’s inferred
posterior distribution. The standard deviation term in Eq. (49)
imposes a penalty on dispersion. We minimized L(0|Q) using
a Gaussian-process Bayesian optimization algorithm. The de-
tails of this algorithm are beyond the scope of this work but
are readily found in any review paper on the subject [64—66].
Figure 13 displays the result of this optimization procedure
for K = 10 and n = 0.002. For this set of hyperparameters,
we found coupling parameter values of Az = 0.1432 and Ap =
1.7847 and a latent space volatility of ¢ = 0.7510. In Fig. 13,
we use credible intervals to denote ranges into which our
estimates of model parameters fall.

Figure 13(a) displays logit(Z;) in a thick black curve and
a middle 80% (10% to 90%) credible interval of X from Q

in gray shading. The observed logit(Z,) is centered in the
credible interval of X and hence has a high probability under
Q. In Figure 13(b), we show E[ug] and E[ug] in thick red
(lighter hue) and blue (darker hue) curves, respectively, along
with middle 80% credible intervals of iigx and itg. The mean
paths of the latent Red and Blue control policies do not lie
in the middle 80% credible intervals for approximately the
first two weeks after the end of the Democratic National
Convention, but do lie in these credible intervals for the
remainder of the time until the election. Our model is able
to capture the election interference dynamics in the middle
range of this time span but is not able to capture the dynamics
immediately after the race becomes a two-candidate election.
Though the election does officially become a two-candidate
contest at that time (notwithstanding our previous comments
about third-party candidates), the effects of the Republican
and Democratic primaries may take time to dissipate. Our
model does not capture the dynamics of noncooperative
games in the presence of many candidates. We comment on
this finding more in Sec. IV. Finally, we display the inferred
final conditions ®z(x) and ®g(x) in Fig. 13(c).

IV. DISCUSSION AND CONCLUSION

We introduce, analyze, and numerically (analytically in
simplified cases) solve a simple model of noncooperative
strategic election interference. This interference is undertaken
by a foreign intelligence service from one country (Red)
in an election occurring in another country (Blue). Blue’s
domestic intelligence service attempts to counter this interfer-
ence. Though simple, our model is able to provide qualitative
insight into the dynamics of such strategic interactions and
performs well when fitted to polling and social media data
surrounding the 2016 U.S. presidential election contest. We
find that all-or-nothing attitudes regarding the outcome of the
election interference, even if these attitudes are held by only
one player, result in an arms race of spending on interference
and counterinterference operations by both players. We then
find analytical solutions to player i’s optimal control problem
when player —i credibly commits to a strategy v(¢). We detail
an analytical value function approximation that can be used by
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FIG. 14. We demonstrate the lack of qualitative changes in the value functions given by solutions to Eqs. (52) and (53) when compared to
the solutions of Eqgs. (11) and (12). We plot V;(x, 0) in solid curves and V;(x, T') in dashed curves, i € {R, B}. We set final conditions here to

®g(x) = tanhx and Pp(x) = 1x?O(—x).

player i even when player —i does not commit to a particular
strategy as long as player —i’s current strategy and its time
derivative can be estimated. We demonstrate the applicability
of our model to real election interference scenarios by analyz-
ing the Russian effort to interfere in the 2016 U.S. presidential
election through observation of Russian troll account posts on
the website Twitter. Using these data, along with aggregate
presidential election polling data, we infer the time series of
Russian and U.S. control policies and find parameters of our
model that best explain these inferred control policies. We
show that, for most of the time under consideration (after the
Democratic National Convention and before Election Day),
our model provides a good explanation for the inferred vari-
ables. However, our model does not accurately or precisely
capture the interference dynamics immediately after the race
becomes a two-candidate race.

There are several areas in which our work could be im-
proved. While our model is justifiable on the grounds of
parsimony and acceptable empirical performance on at least
one election contest, the kind of assumptions that we make in
constructing our modeling framework are unrealistic. Though
a pure random-walk model for am election is not without se-
rious precedent [67], an extension of this work could incorpo-
rate noninterference-related state dynamics as a generalization
of Eq. (3). For example, the state equation could read

dx = [o + p1x 4+ ug(t) + ug(t)ldt + odW\V. (50)

This state equation accounts for simple drift in the election
results as a candidate endogenously becomes more or less

popular. It can also account for possible mean-reverting
behavior in a hotly contested race. Another extension could
introduce state-dependent running costs, particularly in
the case of the Red player. Though the action of election
interference is nominally intended to cause a particular
candidate to win or lose, Red could have other objectives
as well, such as undermining the Blue citizens’ trust in
their electoral process. Red might gain utility from having
a candidate lead in polls multiple times when that candidate
would not have otherwise done so, even if the candidate does
not actually win the election. In the context of our model, this
is represented by setting Red’s cost functional to be

T
Eupanx [06080) + [ 1-0C-X) 4 1 (0) - A1 dt.
0
&)

Both of these modifications are easy to incorporate into
the model and do not change the qualitative nature of Red
and Blue’s HJB equations since their effects will simply
be to introduce an additional drift term [Eq. (50)] or a
continuous, nondifferentiable source term [Eq. (51)] into the
HIJB equations [Eqgs. (11) and (12)]. That is, the fundamental
nature of these equations as nonlinear parabolic equations
coupled through quadratic terms of self- and other-player first
spatial derivatives remains unchanged as these modifications
to the theory do not introduce any new coupling terms.
The solutions to these equations do not demonstrate shock
or traveling wave behavior with the addition of the drift
or source terms, as we show in Figs. 14 and 15. With the
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FIG. 15. We demonstrate the lack of qualitative changes in the value functions given by the solution to Egs. (54) when compared to the
solutions of Egs. (11) and (12). We plot V;(x, 0) in solid curves and V;(x, T') in dashed curves, i € {R, B}. We set final conditions here to
®Or(x) = tanhx and ®p(x) = %x2®(—x). We also plot solutions for an augmented HIB equation for Blue in panels (c) and (d). This HIB
equation is identical to Eq. (54) except with R — B and the sign of argument of the discontinuous running cost function reversed.

modification of Eq. (50), the HIB equations become

Ve Ve 1/0VR\?
Tr T oD _4<8x)
10Ve aVs g [0Ve)> N o2 3%Vg
2 ax Ox 4 \ oax 2 9x2’
Vr(x, T) = ®r(x) (52)
and
aVy Ve 1/aVe\°
or = (ot D) 4<8x>
1 8VB 8VR )"B 8VR 2 + 0'2 82VB
2 0x dx 4\ ox 2 ax2’
Ve(x, T) = Op(x). (53)

In Fig. 14 we give examples of solutions of Egs. (52) and
(53) at t =0 and ¢t =T. These solutions do not display
qualitative changes, such as the formation of shock or
traveling waves, with the inclusion of nonzero drift terms of
the form juo + p1 3%, i € (R, B}. With the modification of
Eq. (51), Red’s HIB equation reads

We  1[(dVR\® 109VedVs
a4\ ox 2 x Ox
)"R 8VB 2 0'2 32VR
2 Z2) o= -
4<8x) ()C)—|_28x2
Vr(x, T) = Pp(x) (54)

We plot solutions of Eq. (54) in Fig. 15. These solutions also
do not change qualitatively from the solutions to Egs. (11) and
(12) in that there is no shock or traveling wave formation [68].
A more fundamental qualitative change would be to expand
the scope of Red’s interference to alter the latent volatility of
the election process. Red’s additional objective might be to
increase the uncertainty in polling results.

In addition to theoretical modifications, other work could
extend these results to other elections using similarly fine-
grained or more granular data. This approach is difficult
because there is very little granular public data on election in-
terference [6]. We are able to confront our model to data only
because the Russian interference in the 2016 U.S. presidential
election was well publicized and because the interference took
place at least partially through the mechanism of Twitter,
which is a public data source. We were unable to find any other
publicly available data at daily (or finer) temporal resolution
for any other publicly acknowledged election interference
episode.

In the case study of the 2016 U.S. presidential election, our
theoretical model accurately captured election interference
dynamics from approximately 2 weeks after the Democratic
National Convention until Election Day. However, it did not
capture the dynamics of election interference accurately or
precisely during the first fortnight of time under study. We
believe this is because even though the election was then a
two-candidate contest, there were additional election state and
interference dynamics that we did not model. We believe that
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these dynamics arise because the transition from interfering
in many candidates’ primary campaigns to interfering in only
one electoral contest is not immediate. It likely takes time for
the foreign intelligence agency to recalibrate their interference
strategy. In addition, the foreign intelligence agency may still
expend resources on influencing other candidates’ supporters,
even though those other candidates had been unsuccessful in
their quest for inclusion in the general election. Suppose that
there are initially Ng “red candidates” (candidates that the
foreign intelligence service would like to win the election) and
Np “blue candidates” (candidates that the foreign intelligence
service would not like to win the election). Then modeling the
transition between the conventions and the general election
requires collapsing the state equation from a Ng + Np — 2-
dimensional stochastic differential equation (SDE) to a one-
dimensional SDE. The cost functions of Red and Blue would
probably also change during this transition, but we are unsure
of how to model this change. Because of the dimensionality
reduction in the state equation, the coupled HIB equations
would change from being PDEs solved in Ng + Np — 2 spatial
dimensions to ones solved in one spatial dimension, as now.
We did not attempt to model these dynamics, but this could be
a useful expansion of our model.

We used two models in our analysis of interference in the
2016 U.S. presidential election. We used a Bayesian structural
time-series model to infer the latent random variables ug, ug,
and X, and then used these inferred values to fit parameters of
the theoretical model described in Sec. II B. While the theoret-
ical model does not have many free parameters (2K + 3 = 23
degrees of freedom), the structural time-series model does
have many free parameters (37 + 5 = 311 degrees of free-
dom). The large number of free parameters of the structural
time-series model does not mean that the model is overparam-
eterized. At each 7, we observe a number of tweets Tweets,
and a popularity rating for the candidates Z;. From these we
want to infer the distributions of the random variables ug,
ug,, and X;. Since we want to infer the distribution of each
of these three random variables at each of the T time steps,
this large number of parameters is expressly necessary. If we
observe M identical trials of an election process over T time
steps, then the ratio of structural time-series model parameters
to observed data points is given by

=M!

RTM) == =3

3T+5 3 5
+ (1+§T1). (55)

With T held constant, R(T, M) — 0 as M grows, while with
M held constant, R(T, M) — % as T grows large. Since we
observe only one draw from the election interference model,
M =1 in our case. However, this approach of inferring each
random variable’s distribution is not tractable when T be-
comes large since the number of parameters to fit still grows
linearly with T'.

One way of partially circumventing this problem is to use
a variational inference approach combined with amortization
of the random variables. Denote the vector of all observed
random variables at time ¢ by y, and the vector of all latent
random variables at time ¢ by w;. Variational inference re-

places the actual posterior distribution with an approximate
posterior distribution that has a known normalization constant
(thereby eliminating the need for MCMC routines to compute
this constant) [69-71]. The parameters of the approximate
posterior are found through optimization, which is generally
much faster than Monte Carlo sampling. If the joint distri-
bution of y = (y1,...,yr) and w = (wy, ..., wr) is given
by p(y, w) = ]_[th1 p(yv¢|lw;)p(wy), then the true posterior is
given by p(wly) = p(y, w)/p(y). The approximate (varia-
tional) posterior is given by gy(w) = ]_[,T=l qs, (W), where
0 = (01, ...,0r) is the vector of parameters found through
optimization and gy, (w,) are the probability distributions for
each time step. The normalizing constants are known for each
qe, (Wy).

Amortization of the random variables means that, in-
stead of finding the optimal value of the entire length-T
vector 6, we model the approximate posterior as gy (w) =

]_[,T=l q(w| fy (1)) [70,72]. The vector y is the vector of
parameters of the (probably nonlinear) function f(-) and
does not scale with T'. The function fy, () models the effect
of the time-dependent parameters 6, of the variational pos-
terior. This amortized variational posterior is also fit using
an optimization routine. Since the number of parameters of
this model does not scale with time, Eq. (55) for this model
becomes

Ramor (T, M) = (56)

2MT’

where P is the constant number of parameters (the dimension
of 1) in the amortized model. For fixed M, Rynor(M, T) —
0 as T becomes large. Another useful extension of our
present work would be to reimplement our Bayesian structural
time-series model using amortized variational inference. This
would also eliminate the problem of choosing the “correct”
number of parameters in the Legendre polynomial approxi-
mation that we described in Sec. III.

ACKNOWLEDGMENTS

The authors are grateful for financial support from the Mas-
sachusetts Mutual Life Insurance Company and are thankful
for the truly helpful comments from an anonymous reviewer.

APPENDIX: COUPLING PARAMETER SWEEPS

We conducted parameter sweeps over different values of
the coupling parameters Az and Ap for multiple combinations
of Red and Blue final conditions. To do this, we integrated
Egs. (11) and (12) for Ag, Ap € [0, 3] for each of the 32=9
combinations of the final conditions

Op(x) € {x,2tanh x, O(x) — O(—x)} (AD)
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Red final condition ®z(x) = x and Blue final condition ®z(x) =
%x2®(—x). Intensity of color corresponds to mean of control policy.
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FIG. 17. Parameter sweep over coupling parameters Ag, Ap with
Red final condition ®z(x) = x and Blue final condition ®p(x) =
2[0(]x] —0.1) — ®(0.1 — |x|)]. Intensity of color corresponds to

mean of control policy.

25 3.0

©
w
N
%

mean(ug(t))

o
N
©

0.24

o
N
o

mean(ug(t))

0.12

0.08

0.525

0.510
0.495

0.4805
o

0.4652
©

0.450 £

0.435

0.420
0.405

<15

b

0.210

/ 0.195

* " [Mo.180

0.165

mean(ug(t))

0.150

0.135

0.120

0.0 05 1.0 15
As

20 25 3.0

FIG. 18. Parameter sweep over coupling parameters Ag, Ap With
Red final condition ®z(x) = x and Blue final condition ®z(x) =
%xz. Intensity of color corresponds to mean of control policy.
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Red final condition ®x(x) = 2[®(x) — ®(—x)] and Blue final con-
dition ®z(x) = %x2®(—x). Intensity of color corresponds to mean

of control policy.
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FIG. 20. Parameter sweep over coupling parameters Ag, Ap With
Red final condition ®z(x) = 2[®(x) — ®(—x)] and Blue final con-
dition ®p(x) = 2[O(]x] — 0.1) — ®(0.1 — |x|)]. Intensity of color
corresponds to mean of control policy.
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FIG. 22. Parameter sweep over coupling parameters Ag, Ap With
Red final condition ®z(x) = tanh(x) and Blue final condition
Ddp(x) = %x2®(—x). Intensity of color corresponds to mean of
control policy.
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FIG. 24. Parameter sweep over coupling parameters Ag, Ap With
Red final condition ®z(x) = tanh(x) and Blue final condition
Dp(x) = %xz. Intensity of color corresponds to mean of control
policy.
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FIG. 25. Parameter sweep over coupling parameters Ag, Ap With
Red final condition ®z(x) = x and Blue final condition ®z(x) =
%x2®(—x). Intensity of color corresponds to std of control policy.
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FIG. 26. Parameter sweep over coupling parameters Ag, Ap With
Red final condition ®z(x) = x and Blue final condition ®z(x) =
2[O(x] — 0.1) — ©(0.1 — |x|)]. Intensity of color corresponds to std
of control policy.
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FIG. 27. Parameter sweep over coupling parameters Ag, Ap With
Red final condition ®z(x) = x and Blue final condition ®z(x) =
%xz. Intensity of color corresponds to std of control policy.
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dition ®z(x) = %x2®(—x). Intensity of color corresponds to std of
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FIG. 30. Parameter sweep over coupling parameters Ag, Ap With
Red final condition ®3(x) = 2[®(x) — ®(—x)] and Blue final con-
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policy.
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Red final condition ®z(x) = tanh(x) and Blue final condition
Dp(x) = %x2®(—x). Intensity of color corresponds to std of control
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FIG. 32. Parameter sweep over coupling parameters Ag, Ap With
Red final condition ®z(x) = tanh(x) and Blue final condition
Dp(x) = 2[O(]x| —0.1) — (0.1 — |x|)]. Intensity of color corre-
sponds to std of control policy.

and
Dp(x) € {%xz, %x2®(—x), 2[O(x] — A) — O(A — |x|)]}.

(A2)

We integrated Eqgs. (11) and (12) for N, = 8000 time steps,
setting 7o =0 and T =1 year. We enforced Neumann
boundary conditions on the interval x € [—3, 3] and set the
spatial step size to be dx = 0.025. After integration, we then
drew 1000 paths ug’) and uf;) from the resulting probability
distribution over control policies. [This probability distri-
bution is a time-dependent multivariate Gaussian, since the
control policies are deterministic functions of the random
variable defined by the Ito stochastic differential equation
Eq. (3)]. We then calculated the intertemporal means and stan-
dard deviations of these control policies. We draw N control
policies ug(¢)™ and ug(t)™ from the theoretical model and
then compute

[
mean(u;) = — > / u”(t) dt (A3)
n=1 0
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FIG. 33. Parameter sweep over coupling parameters Ag, Ay With
Red final condition ®g(x) = tanh(x) and Blue final condition
dp(x) = %xz. Intensity of color corresponds to std of control
policy.

and

N T
std(u;) = %VZ /0 [ug’”(z)—mean(u,»)]2 dt, (A4)
n=1

for i € {R, B}. We display the mean control policies in
Sec. A1 and the standard deviations of the control policies
in Sec. A 2.

1. Expected value of u;(t)

We display the mean paths of draws from the distributions
of control policies generated by solutions to Egs. (11) and (12)
in Figures 16-24.

2. Standard deviation of u;(¢)

We display the standard deviation of draws from the distri-
butions of control policies generated by solutions to Egs. (11)
and (12) in Figures 25-33.
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