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RESEARCH ARTICLE
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Abstract

Chagas disease, considered a neglected disease by the World Health Organization, is

caused by the protozoan parasite Trypanosoma cruzi, and transmitted by >140 triatomine

species across the Americas. In Central America, the main vector is Triatoma dimidiata, an

opportunistic blood meal feeder inhabiting both domestic and sylvatic ecotopes. Given the

diversity of interacting biological agents involved in the epidemiology of Chagas disease,

having simultaneous information on the dynamics of the parasite, vector, the gut micro-

biome of the vector, and the blood meal source would facilitate identifying key biotic factors

associated with the risk of T. cruzi transmission. In this study, we developed a RADseq-

based analysis pipeline to study mixed-species DNA extracted from T. dimidiata abdomens.

To evaluate the efficacy of the method across spatial scales, we used a nested spatial sam-

pling design that spanned from individual villages within Guatemala to major biogeographic

regions of Central America. Information from each biotic source was distinguished with bio-

informatics tools and used to evaluate the prevalence of T. cruzi infection and predominant

Discrete Typing Units (DTUs) in the region, the population genetic structure of T. dimidiata,

gut microbial diversity, and the blood meal history. An average of 3.25 million reads per

specimen were obtained, with approximately 1% assigned to the parasite, 20% to the vec-

tor, 11% to bacteria, and 4% to putative blood meals. Using a total of 6,405 T. cruzi SNPs,

we detected nine infected vectors harboring two distinct DTUs: TcI and a second unidenti-

fied strain, possibly TcIV. Vector specimens were sufficiently variable for population

genomic analyses, with a total of 25,710 T. dimidiata SNPs across all samples that were

sufficient to detect geographic genetic structure at both local and regional scales. We

observed a diverse microbiotic community, with significantly higher bacterial species
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richness in infected T. dimidiata abdomens than those that were not infected. Unifrac analy-

sis suggests a common assemblage of bacteria associated with infection, which co-occurs

with the typical gut microbial community derived from the local environment. We identified

vertebrate blood meals from five T. dimidiata abdomens, including chicken, dog, duck and

human; however, additional detection methods would be necessary to confidently identify

blood meal sources from most specimens. Overall, our study shows this method is effective

for simultaneously generating genetic data on vectors and their associated parasites, along

with ecological information on feeding patterns and microbial interactions that may be fol-

lowed up with complementary approaches such as PCR-based parasite detection, 18S

eukaryotic and 16S bacterial barcoding.

Author summary

Chagas disease is caused by the parasite Trypanosoma cruzi, which is spread by triato-

mine kissing bugs. There are many biotic factors that influence the risk of disease

transmission, including the strain of the parasite, the vector movement patterns, the

community of microbes interacting with the parasite inside the vector’s gut, and the

availability of suitable vertebrate hosts. DNA from all of these species can be found in

the gut of an infected bug, providing an opportunity to investigate all of them simulta-

neously by genetically analyzing this single tissue. In this study, we developed a DNA-

based method to retrieve, separate, and analyze genetic information from the abdomens

of 32 T. dimidiata kissing bug vectors collected across Central America. We found two

distinct strains of T. cruzi, and four T. dimidiata genetic clusters associated with envi-

ronmental and geographical characteristics. These populations harbored different bacte-

rial gut communities that were augmented by specifically infection-associated bacteria

when the vector was infected by the parasite. In some cases, we could identify what the

insect had recently fed on, including chicken, duck, dog and human. Having simulta-

neous information on all of these organisms may help to fine-tune control strategies that

influence the risk of T. cruzi transmission.

Introduction

Chagas disease (American trypanosomiasis) is caused by the protozoan parasite Trypanosoma
cruzi. Considered a neglected disease by the World Health Organization, it is widespread in

the Americas, where an estimated 70 million people are at risk of contracting the infection [1].

The disease is most prominent in poor, rural communities of South and Central America,

where the disruption of sylvatic ecosystems and precarious socioeconomic conditions aid the

establishment of domestic and peridomestic vector populations [1,2, 3].

The infective agent, Trypanosoma cruzi, is genetically diverse and widely dispersed in the

Americas [4, 5, 6, 7]. Multiple strains are distributed from the southern United States to north-

ern Argentina, and are ancestrally linked to sylvatic and/or domestic transmission cycles

depending on their habitat affiliation [4, 8, 9]. From an epidemiological standpoint, T. cruzi
sensu lato (s.l.) is the most important group of parasitic trypanosomes strains, comprising T.

cruzi cruzi, which causes Chagas disease in humans, and T. cruzi marinkellei, a strain uniquely

found in South American bats [5, 10, 11]. Within T. c. cruzi, seven Discrete Typing Units
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(DTUs) have been characterized (TcI-VI and TcBat) [4, 11, 12, 13]. All DTUs can cause disease

in humans; however, their relative abundance varies among ecological and geographical

niches, and they show variation in clinical epidemiology and prevalence in domestic ecotopes

[12]. TcI is the predominant DTU in the Americas, found in arboreal Rhodnius species from

Central America to Ecuador, and in sylvatic and domestic Triatoma from the southern United

States to northern Argentina [4, 5, 13]. It is also reported in other Triatominae genera such as

Meccus, Mepraia and Panstrongylus, and its genetic diversity is consistent with its long evolu-

tion in the continent, dating between 3–4 MYA [4, 14]. TcIV, a DTU hypothesized as an ances-

tral hybrid between TcI and TcII, is the only other DTU that has been detected in vector and

human specimens in Central America [4, 13, 15]. Although there are 84 reports of humans

infected with TcIV from six countries, there is evidence that this DTU is of sylvatic origin and

exclusively associated with sylvatic vectors [4].

In addition to T. cruzi diversity, the genetic structure of the vector, driven by geographical

and ecological factors, is also likely to play an important role in determining human infections.

To date, more than 140 species of New World triatomines have been described [16, 17, 18]

and a small number of species have been reported from Asia. The majority are associated with

sylvatic habitats, but species such as Triatoma infestans and Rhodnius prolixus have adapted to

domestic and peridomestic niches [7, 16, 19, 20, 21, 22, 23]. Furthermore, species like T. dimi-
diata are in the process of domiciliation, establishing multi-generational colonies in human

households, therefore increasing the risk of T. cruzi transmission to humans [23]. In Central

America, R. prolixus was the predominant Chagas disease vector until successful eradication of

the vector in 2010 [21]. In its place, endemic triatomines including T. dimidiata have colonized

vacant peridomestic and domestic habitat niches and have slowly changed the dynamics of dis-

ease transmission in these ecotopes [24, 25, 26, 27, 28]. Triatoma dimidiata is widely distrib-

uted from Mexico to Perú in sylvatic, peridomestic and domestic habitats [26, 29, 30]. It is

morphologically highly variable across this range, with phenotypic variation among sylvatic

and domestic ecotopes, as well as geographical niches [23, 30]. Population genetic analyses

using various molecular markers have yielded conflicting assessments of the extent and impor-

tance of genetic structuring across its geographical distribution; nevertheless, most studies

agree that it is genetically diverse [17, 24, 26, 27, 29, 31].

The microbial community colonizing the vector’s gut may further influence parasite trans-

mission to vertebrate hosts. When the parasite is ingested in a blood meal, the parasite moves

into the midgut, where availability of glucose moderates its transformation to replicative

epimastigotes [32, 33]. In the midgut, the parasite attaches to the cuticle wall prior to differen-

tiating into a metacyclic form [33]. Although the composition and physiological role of gut

bacteria in triatomines are largely unknown, bacterial communities can significantly modify

glucose levels in anaerobic environments such as the gut, facilitating or impeding colonization

of the insect’s digestive tract by pathogens such as T. cruzi [34, 35, 36, 37]. Some bacterial spe-

cies have been shown to directly inhibit colonization by T. cruzi in Triatoma and Rhodnius
spp. (e.g., S.marecescens) [35, 38], either in their native form, or as introduced transgenics in

the gut of triatomines under laboratory conditions [39, 40, 41]. At the same time, T. cruzi
infection may be capable of decreasing the microbial population in the gut and modifying the

nitrite/nitrate production important for triggering defense metabolic cascades [42].

As a vector-borne disease, domestic and sylvatic transmission cycles are dependent on the

diversity and availability of vertebrates, both as blood meals for the vector and as potential

hosts [43]. Trypanosoma cruzi is most commonly transmitted to mammalian hosts via contam-

ination of a wound or mucous membrane by the parasite-contaminated feces of the vector,

and/or by direct ingestion of an infected insect [5, 33]. In domestic ecotopes, humans and

dogs are presumed to serve as both the primary blood meals of the vector and the main
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mammalian source of the parasite; however, there are numerous peridomestic hosts (e.g. small

ruminants, rodents, pigs) that may be important contributors to disease recurrence [3, 16, 20,

25, 44, 45]. Accidental introduction of the vector into or near houses may happen through

movement of human belongings like clothes or blankets, movement of chickens carrying early

instar nymphs or transportation of infested wood or palm leaves [16, 44]. In addition, local

wildlife populations in peridomestic or sylvatic environments, such as bats, rodents and opos-

sums, may serve as parasite reservoirs [20, 25, 46].

Given the diversity of interacting biotic elements involved in the epidemiology of Chagas

disease, having simultaneous information on parasites, vectors, gut fauna and hosts would

facilitate identifying how they interact to influence disease risk. Although genetic studies are

typically focused on a single target organism at a time, reduced representation sequencing

methods such as Restriction-site Associated DNA sequencing (RADseq) provide an affordable

way to simultaneously sequence mixed-DNA specimens without relying on taxon-specific

primers or probes [47]. When combined with a bioinformatics pipeline designed to identify

and assign sequences back to their taxonomic source, such approaches may be ideally suited to

explore complex, multi-factorial systems such as T. cruzi transmission cycles [48, 49]. RADseq

also typically generates sufficient SNP loci to resolve relationships across multiple spatial and

temporal scales, allowing a uniform protocol for producing data that can be meaningfully

compared across studies [50, 51]. Although RADseq has been used to assess the population

genomics of individual disease vectors (e.g., Anopheles spp., [52]; Aedes aegypti, [53]), it has not

yet been reported for mixed-species analyses.

In this study, we develop a RADseq-based analysis pipeline for analyzing mixed-species

DNA derived from T. dimidiata abdominal DNA. The ideal approach would be cost-effective,

feasible with samples of varying age and quality, and capable of resolving vector and parasite

population processes across spatial scales, from within-village dispersal to broad biogeographic

and ecological differentiation. To evaluate whether the method was effective across this spatial

range, we used a nested spatial sampling design for T. dimidiata, starting with multiple insects

within and among individual villages, to samples collected from increasingly greater distances

across major biogeographic regions in Central America. Sample results helped determine the

utility of RADseq genotyping for simultaneous assessment of: (1) the prevalence of T. cruzi
infection in the vector and its phylogenetic characterization in the region, (2) the population

genetic structure of T. dimidiata, (3) the gut microbial community structure associated with T.

cruzi infection of the vector, and (4) the blood meal history of the vector. We demonstrate that

the method can effectively separate genomic information of parasite, vector, microbiome and

blood meal, even without a sequenced genome for T. dimidiata.

Methods

Specimen collection, parasite screening and preservation

Sixty-one adult T. dimidiata were collected by the Laboratorio de Entomoligı́a Aplicada y Para-

sitologı́a (LENAP) at San Carlos University of Guatemala and the Centro de Investigación y

Desarrollo en Salud (CENSALUD) at Universidad de El Salvador from 1999 to 2013, represent-

ing a range of age and preservation conditions for evaluating the effect of specimen quality on

sequencing yield (Table 1). Specimens were captured alive in domestic environments, trans-

ferred to a laboratory setting for microscopic examination for T. cruzi and placed in vials

containing 95% ethanol + 5% glycerol within two days of capture. The exceptions were the

specimens from the towns of El Chaperno and El Carrizal, collected in 2012 and 2013

(Table 1), which were examined by microscopy and placed in 95% ethanol (no glycerol) within

a few hours of collection. To assess infection status, the abdomen of each insect was compressed

Community genomics of Triatoma dimidiata
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to obtain fecal droplets that were diluted with 1 drop of saline solution and examined by a

trained observer under the microscope at 220–400X for 5 minutes for active trypanosomes.

The specimens placed in ethanol + glycerol were stored at room temperature at LENAP until

being transported to Loyola University New Orleans or the University of Vermont in 2012 and

2013, respectively. Once in the United States, the insects were stored at -20˚C until DNA was

extracted for sequencing. Specimens from El Chaperno and El Carrizal were stored in ethanol

at room temperature for less than one week before being transported to University of Vermont,

where they were maintained at -20˚C.

To measure the spatial resolution at which RADseq markers are able to resolve the genetic

structure of T. dimidiata and T. cruzi, three nested geographical spatial scales of sampling

were selected: a) individual villages, including five in the neighboring regions of Chiquimula,

Jutiapa, and Santa Ana; b) within-country regions, including three in Guatemala, and one in

El Salvador; and c) countries across Central America, including Guatemala, Belize, El Salvador

and Nicaragua (Table 1, Fig 1).

Table 1. Collection information for Triatoma dimidiata specimens used for RAD-sequencing.

ID Body part extracted Sex/Stage Year Lat Long Town Municipality Region Country

BLZ-01 abdomen Female 2008 16.2459 -88.8489 NA Rı́o Frı́o Toledo Belize

SACH-01 leg Female 2009 14.0686 -89.5262 Chilcuyo Santa Ana Santa Ana El Salvador

SACH-02 leg Female 2009 14.0688 -89.5260 Chilcuyo Santa Ana Santa Ana El Salvador

SACH-03 leg Male 2009 14.0677 -89.5273 Chilcuyo Santa Ana Santa Ana El Salvador

SABE-01 abdomen Male 2009 14.1589 -89.4660 La Bedición Santa Ana Santa Ana El Salvador

SASA-01 abdomen Female 2009 13.9792 -89.5321 Santa Ana Santa Ana Santa Ana El Salvador

SASA-02 leg Female 2009 14.0002 -89.5150 Monte Largo Santa Ana Santa Ana El Salvador

SAJU-01 leg Male 2009 14.1152 -89.6424 El Jute Texistepeque Santa Ana El Salvador

SAJU-02 leg Female 2009 14.1150 -89.6409 El Jute Texistepeque Santa Ana El Salvador

CHAM-01 leg Female 2011 14.7411 -89.2395 Amatillo Olopa Chiquimula Guatemala

CHAM-02 leg Female 2011 14.7401 -89.2359 Amatillo Olopa Chiquimula Guatemala

CHCE-01 abdomen Female 2011 14.7097 -89.2865 El Cerrón Olopa Chiquimula Guatemala

CHCE-02 abdomen Male 2011 14.7359 -89.2397 El Cerrón Olopa Chiquimula Guatemala

CHCE-03 leg Female 2011 14.7119 -89.2849 El Cerron Olopa Chiquimula Guatemala

CHGU-01 abdomen Female 2011 14.7028 -89.3782 El Guayabo Olopa Chiquimula Guatemala

CHPR-01 leg Male 2011 14.7256 -89.2641 La Prensa Olopa Chiquimula Guatemala

CHPR-02 abdomen Female 2011 14.7214 -89.2718 La Prensa Olopa Chiquimula Guatemala

CHPR-03 leg Female 2011 14.7225 -89.2760 La Prensa Olopa Chiquimula Guatemala

JUCA-01 abdomen Male 1999 14.3741 -89.9844 El Carrizal Jutiapa Jutiapa Guatemala

JUCA-02a abdomen Male 2013 14.3767 -89.9920 El Carrizal Jutiapa Jutiapa Guatemala

JUCA-02b leg Male 2013 14.3767 -89.9920 El Carrizal Jutiapa Jutiapa Guatemala

JUCA-03 abdomen 3rd stage nymph 2013 14.3720 -89.9836 El Carrizal Jutiapa Jutiapa Guatemala

JUCH-01 abdomen Female 2012 14.3473 -89.9483 El Chaperno Jutiapa Jutiapa Guatemala

JUCH-02 abdomen Male 2012 14.3434 -89.9446 El Chaperno Jutiapa Jutiapa Guatemala

JUCH-03 abdomen Male 2012 14.3621 -89.9476 El Chaperno Jutiapa Jutiapa Guatemala

JUCH-04 abdomen Female 2012 14.3523 -89.9456 El Chaperno Jutiapa Jutiapa Guatemala

JUBR-01 abdomen Female 2012 14.3289 -90.0625 La Brea Jutiapa Jutiapa Guatemala

UnID abdomen Unknown NA NA NA NA NA NA Guatemala

PTN-01 abdomen Female 2012 16.6932 -89.4390 Chapayal San Luı́s Petén Guatemala

PTN-02 abdomen Male 2012 15.4970 -90.9818 Chapayal San Luı́s Petén Guatemala

QUI-01 abdomen Male 2004 15.4970 -90.9818 Tzitzima San Andrés Sajcabajaj Quiché Guatemala

NIC-01 abdomen Unknown 2007 13.4656 -86.4588 San Ramón Palacaguina Madriz Nicaragua

https://doi.org/10.1371/journal.pntd.0006730.t001
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DNA extraction and RAD-library preparation

We extracted DNA from the 61 specimens from the three posterior segments of the abdomen

or four surface-sterilized legs (Table 1); the latter included the attached muscle, and served as

“insect-only” controls. Tissues were flash-frozen by submerging the vials in liquid nitrogen,

manually homogenized using sterilized pestles and DNA extracted using a modified Qiagen

DNeasy (Burlington, Vermont) tissue extraction protocol. Modifications included an over-

night Proteinase K digestion at 56˚C, followed by an RNAse digestion at 37˚C for 30 minutes

using 1.5 uL of 4mg/mL RNAse to reduce RNA contamination. DNA was quantified using a

Qubit spectrophotometer (Burlington, Vermont), and quality was assessed by electrophoresis

on a 1.5% agarose gel stained with ethidium bromide. Only specimens with a minimum yield

of 1,000 ng of DNA and a single, high-molecular weight band were considered suitable for

sequencing; of the original 61 specimens, 32 (20 abdomens and 12 legs) met these minimal

requirements. To verify the reproducibility of the retrieved genetic markers (SNPs), for one

Fig 1. Geographic locations of the sequenced T. dimidiata specimens. Specimens from Madriz, Nicaragua, Quiché,

Guatemala, Petén, Guatemala and Toledo, Belize were sampled to capture variation across countries. To assess within-

country regional diversity, specimens from Guatemala and El Salvador were sampled more intensively to include

regional and village-scale variation. Locations are color-coded by the Within-Country Regions.

https://doi.org/10.1371/journal.pntd.0006730.g001
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insect specimen we included high-quality DNA isolated from two different body parts (abdo-

men and leg tissue, JUCA-02A and JUCA-02L; Table 1). RADseq library preparation was

conducted using the restriction enzyme SbfI (8-base cutter: 50—CCTGCA#GG—30, 30—

GG#ACGTCC—50) at Floragenex (Portland, Oregon) following the methods of Baird et al.

[47].

Illumina sequencing and bioinformatics pipeline

RAD libraries were barcoded by individual, and multiplexed in a 24-plex format on an Illu-

mina GAIIx / HiSeq Analyzer. The raw sequencing reads were 100 bp in length, including

the inline 5-bp barcode and 8-baseSbfI recognition sequences. We used FastX-trimmer in the

FastX-toolkit to remove the barcodes, recognition sites, and FastQ-quality-filter to remove

sequences with any base having a confidence score below 10 [54].

The DNA recovered from a T. dimidiata abdomen represents a mixture of DNA from the

parasite (if present), the insect vector, possibly one or more vertebrate blood meals, and the

microbial community residing in the gut, internal tissues and on the cuticle. We designed a

custom bioinformatics pipeline to separate these DNA sources and analyzed them individually

for either SNP genotypes (T. dimidiata, T. cruzi) or taxonomic identification (blood meal,

microbes) (Fig 2).

We mapped the trimmed sequences from all 32 specimens against six T. cruzi reference

genomes downloaded from the NCBI genome database (May, 2016) using Bowtie 1.1.2 [55].

These included a subset of DTUs: two representatives of TcI (ACCN: AODP01000000,

ADWP02000000), one of TcII (ACCN: ANOX01000000), and two of TcVI (ACCN:

AAHK01000000, AQHO01000000). We also included T. cruzi marinkellei (ACCN:

AHKC01000000), which served as the phylogenetic out-group. The 12 samples of T. dimidiata
leg tissue were also mapped to the T. cruzi genomes in order to filter out any possible T. cruzi
contamination from handling, with only the unmapped reads from this step used in down-

stream analyses. Mapping success was negligible (< 8 reads) for all of the leg samples.

Because there is no sequenced genome for T. dimidiata, we used the sequences derived

from leg tissue to assemble a reference set of RAD-tags most likely to be derived from the T.

dimidiata genome. Using the 12 legs, we used the denovo_map pipeline in Stacks to obtain a

putative set of T. dimidiata loci [56] (Fig 2). The parameters of the alignment were set at 3X

depth of coverage for the initial stack, with a maximum of two mismatches among trimmed

sequences of a single individual. Once the first stack was formed with primary reads that met

the parameters, we allowed a maximum of 4 mismatches when aligning the secondary reads

(those reads that did not meet the cut-off to align in the first stack), and a maximum of 3 mis-

matches per nucleotide across both the primary and secondary reads [56]. Once the alignment

yielded a raw catalog, tags were retained if: (a) at least half of the specimens had a read for the

locus, (b) there were between 0 and 3 SNPs present across the reference sequences and (c)

there were no more than two haplotypes for any individual specimen at the locus. A total of

6206 loci fitting these criteria were used as a custom index in Bowtie against which all 32 speci-

mens were mapped to obtain individual, vector-specific reads (Fig 2).

SNP genotypes for both T. cruzi and T. dimidiata were called using the Stacks ref_map pipe-

line [56]. Because the number of reads retrieved for the vector were an order of magnitude

higher than for the parasite (see Results), we set the parameters for the vector to a maximum

of six mismatches between loci and a depth of coverage of 3X, while for the parasite we also

allowed up to 6 mismatches but retained calls at 1X depth of coverage. We excluded any locus

with missing data in at least 18 of the 32 specimens for T. dimidiata and 10 of the 13 T. cruzi-
positive specimens for T. cruzi.
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Fig 2. Bioinformatics pipeline separating RADseq data obtained from the legs and abdomens of Triatoma
dimidiata specimens. Raw data from 32 T. dimidiata were trimmed and filtered using FastX tools, then mapped to the

six available T. cruzi genomes using Bowtie. The unmapped reads from the host were assembled denovo using Stacks,

converted to an index, and used as a catalog to map all to T. dimidiata; both sets of mapped reads were aligned in

STACKS to obtain markers for the parasite and host. The NCBI nt database was queried (May, 2016) with the

remaining unmapped reads to quantify matches obtained from chordates (blood meal hosts), bacteria and other taxa.

Input and output parallelograms are color-coded to indicate the vector (yellow), parasite (pink) and all other taxa

(orange).

https://doi.org/10.1371/journal.pntd.0006730.g002
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With the remaining unmapped reads, we ran a BLAST search query of the nt database for

potential blood-meal sources and microbiota, using an e-value cutoff of 0.001, a query cover-

age minimum of 85 bp (97%), and only retaining the top hit that mapped to each sequence

(Fig 2). Exploratory mapping to other databases (e.g., RefSeq) yielded fewer hits than the nt

database and were not included in the final pipeline. When the sequence mapped equally well

to multiple taxa, the first species returned by the BLAST algorithm was retained; although spe-

cies identity in such cases was not well supported, identification was consistent across all reads

of identical sequence within and among specimens. Information on the mean e-value cutoffs

by taxonomic group is provided as S1 Table.

Data analysis

Because genomic reference sequences were available for only three of the six DTUs, two

approaches were used to assign a putative DTU to the T. cruzi-positive specimens. First, we

identified the total set of reads for each specimen that mapped successfully to any one or more

of the T. cruzi reference genomes and then mapped this set of reads to each genome individu-

ally to determine relative mapping success. For comparison, we generated in-silico RAD-tags

from the six reference genomes using a custom python script that identified all occurrences of

the restriction enzyme recognition sequence in the genome and retrieved the 87 bp directly

up- and down-stream of the cut site. These were mapped against each of the six reference

genomes using the same Bowtie protocol as with the field specimen data to obtain expected

mapping success for a given DTU. Two main patterns of mapping success were found across

the entire DNA specimen set (see Results); for each distinct subset, we ran one-way ANOVA

and a post-hoc Tukey’s range test using the stats package in R [57] to test whether the mapping

success was biased toward a particular reference genome. Second, we used the SNP genotypes

generated with Stacks to reconstruct phylogenetic relationships among the in-silico genomes

and the field specimens with MEGA version 7, using Maximum Likelihood with a nucleotide

p-distance substitution model and 10,000 bootstrap permutations [58].

To infer the population genetic structure of T. dimidiata, we performed a k-means cluster-

ing analysis, and classified the individuals by a discriminant analysis of principal components

(DAPC) using the Adegenet package for R [59]. To prevent biases associated with missing data,

specimens with>50% missing SNPs were excluded from the analysis (i.e., CHGU-01 and

CHCE-01); one additional specimen (UnID) did not have precise geo-location information

and was also excluded. Using the 29 remaining specimens, we identified the best number of

genetic clusters using the k-means cluster algorithm from the find.clusters function in Ade-
genet and selected the value of k that minimized the Bayesian Information Criterion (BIC)

value, setting the maximum number of potential clusters to 16, and retaining a total of 25 prin-

cipal components based on the cumulative variance explained by the eigenvalues. We also

calculated the fixation index (Fst), nucleotide diversity (pi), observed (Hetob) and expected

(Hetex) heterozygosity among clusters using the Populations function in Stacks [56].

To compare bacterial species richness across specimen types (infected abdomens, non-

infected abdomens and legs), we used the rarefaction function in the Vegan package in R to

estimate asymptotic species richness for each specimen [60,61]. Specimen types were com-

pared using an ANOVA with post-hoc Tukey’s pairwise comparisons in the R Stats package.

To compare gut bacterial community composition as a function of infection status, we ran a

non-metric multidimensional scaling (NMDS) weighted Unifrac ordination analysis with the

default number of dimensions (k = 2) using the phyloseq package in R [62]. Because they do

not contain gut tissue, leg specimens were excluded from this analysis. Bacterial phylogenetic

relationships were retrieved from the SILVA 123 ribosomal living tree, pruned to the set of
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taxa present in the specimens using the prunedTree function in the Picante package [63, 64 65].

The matrix of counts is available in S3 Table. To assess significance of clusters, we performed a

post-hoc permutation analysis of 999 repetitions embedded in the NMDS function.

To distinguish actual vertebrate blood meals from possible contamination due to handling

and/or false-positive BLAST hits from multiple taxon matches, we identified the chordate spe-

cies identified by the largest number of sequencing reads (the "top-hit" species) for each speci-

men. Representation of the top-hit species within a specimen was expressed as a percent of the

total possible hits (i.e., the total number of reads that had not mapped to either the parasite or

vector). Leg specimens were used to determine the expected background representation of

chordate hits. Putative blood meals were called for those specimens with a top-hit representa-

tion statistically above the background, identified with an outlier test using the Tukey boxplot

method for skewed data [66], with the upper outlier threshold defined by the Tukey range of

Q3+1.5�IQR, the Inter-Quartile Range (S4 Table).

Results

Using RADseq for multi-organism mapping

We obtained a total of 164.1 million unfiltered reads across all specimens. There was no differ-

ence in the number of raw reads between leg and abdomen, or among specimens obtained in

different collection years. After quality filtering, 70.69% of reads were retained, with an average

of 3.25 million reads per specimen (± 652,000).

Analysis with the mixed-species pipeline produced subsets of reads corresponding to all of

the expected taxonomic groups (parasite, vector, blood meal and bacteria) (Fig 3). Although

the majority of reads (63%) could not be assigned to a particular source, both the vector (20%)

and the parasite when present (1%) were represented by sufficient mapped reads to approach

saturation of SNP recovery (Figs 3a, 4a and 4b). In our internal control (Table 1), the leg speci-

men (JUCA-03) was over-represented compared to the abdomen (JUCA-02) from the same

insect, yielding 60.8% more trimmed reads than the abdomen. This difference affected the

number of mapped reads (37.87% higher), mean depth of coverage (222.8X for leg versus 98X

for abdomen; Fig 4c), and number of called SNPs (19% higher); however, for the 15,611 loci

called across both genotypes, only eight (0.05%) were different between the two tissue types.

Trypanosoma cruzi infection and phylogenetic identification of parasite

DTUs

Thirteen of the 20 abdomens mapped to at least one of the six available T. cruzi reference

genomes; however, four of these specimens yielded fewer than 100 mapped reads, with no

polymorphic loci (Fig 5). These specimens were omitted from further T. cruzi analysis. Eight

of the 12 leg specimens did not map to any of the T. cruzi genomes, while four legs mapped to

at least one genome with a range of 1–7 reads and no polymorphic loci. The nine T. cruzi-posi-

tive abdomens yielded an average of 150,994 ±118,089 mapped reads, corresponding to 6,377

unique genomic locations, with a total of 6,405 SNPs (Fig 5). The median depth of coverage

was 8.7X, ranging from 4.7X to 181.9X; there was no relationship between the mean depth of

coverage and the number of SNP genotypes successfully called per specimen (Fig 4D).

Detection of infection status via fecal microscopy and RADseq were significantly associated

(Fisher’s Exact test, p = 0.0018) (Fig 5). All six specimens positive for T. cruzi by microscopy

were also positive by RADseq. Seven additional T. cruzi-positive specimens were detected by

RADseq but not by microscopy, including three with high read abundance and the four that

yielded <100 reads. Among the positive specimens identified solely by this method, the
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abdomen internal control, JUCA-02A, yielded a total of 8,610 T. cruzi reads. In contrast, the

leg control extracted from the same insect, JUCA-02L, yielded only 7 T. cruzi reads.

Genome mapping comparisons indicated that the nine T. cruzi isolates from the T. dimi-
diata abdomens included two distinct parasite DTUs (Table 2). Patterns of mapping success

fell into two distinct groups; one encompassed the geographical range from Petén to Nicaragua

(i.e. JUCA-01, PTN-01, PTN-02, NIC-01, JUCA-02, JUCH-04, SASA-01), while a second

group included Belize (BLZ-01) and an unidentified specimen from Guatemala (UnID)

(Table 2). Specimens from the first group were most similar to the TcI DTU (>92% mapping

success to TcI-AODP, >74% TcI-ADWP), followed by TcVI (<64%), TcII (<46%) and T. c.
marinkellei (<12%) (Table 2). This was consistent with the TcI in-silico specimen, which

mapped more successfully to the TcI reference genome than to any other DTU. Specimens

from the second group mapped most closely to TcVI, consistently mapping >91% of their

reads to the two available TcVI genomes, followed by TcII (<76%), TcI (<70%) and T. c.mar-
inkellei (<12%), respectively (Table 2). This pattern was most similar to the TcVI in-silico
reads, although compared to the TcVI in-silico tags, mapping success of the field specimens

was lower for the TcVI genomes and higher for TcI and TcII (Table 2).

Phylogenetic reconstruction also supported the existence of two DTUs (Fig 6). Although

most specimens clustered with strong bootstrap support into a single clade with the two TcI

genome references, the exceptions were BLZ-01 and UnID, which formed a distinct cluster,

sister to TcI and distinct from the clade that includes the TcVI and TcII reference genomes

(Fig 6).

Fig 3. Percentage of reads mapped to different DNA sources across all specimens. (A) The overall percentage of reads mapped to Trypanosoma
cruzi, Triatoma dimidiata, other taxa (BLAST results), and unmapped reads; and (B) the breakdown of taxa retrieved from a BLAST search using the nt

database from NCBI.

https://doi.org/10.1371/journal.pntd.0006730.g003
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Genetic variation in Triatoma dimidiata
All leg and abdomen samples mapped successfully to the T. dimidiata reference catalog, with

an average of 610,013 ± 80,410 mapped reads, corresponding to 19,577 ± 4,389 tags, and a total

Fig 4. Number of SNPs retrieved in relation to mapped reads and depth of coverage for T. dimidiata and T. cruzi.
Log-transformed number of single nucleotide polymorphisms (SNPs) in relation to the number of (A) T. dimidiata
and (B) T. cruzimapped reads, and the average depth of coverage for (C) T. dimidiata and (D) T. cruzi. In panels B and

D, gray circles indicate putative TcI and black triangles indicate putative TcIV specimens.

https://doi.org/10.1371/journal.pntd.0006730.g004

Fig 5. Trypanosoma cruzi infection measured by the count of mapped reads detected from the 20 genotyped

abdomens. Star indicates positive T. cruzi infection detected by microscopy. CHCE -01 through QUI-01 have zero

mapped reads.

https://doi.org/10.1371/journal.pntd.0006730.g005
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of 25,710 T. dimidiata SNPs across the 32 specimens. Of these, individual villages contained

from 9–27% of the total allelic variation, resulting in over 1900 informative SNPs even at the

smallest spatial scale assayed (Table 3). As the scale was increased from villages to regions,

polymorphism was detected at an increasing proportion of SNPs, with the region of Jutiapa

containing nearly 50% of the total number identified across the entire area of the study.

K-means clustering and posterior DAPC revealed four main clusters corresponding to their

geographical distributions among the 29 T. dimidiata individuals included in the analysis (two

excluded for low SNP counts, and one for which location data were not available) (Fig 7).

Madriz, Nicaragua (NIC), Quiché, Guatemala (QUI) and La Bendición, El Salvador (SABE)

were clustered in one group; the two northern sites, Rı́o Frı́o, Belize (BLZ) and Petén, Guate-

mala (PTN), were clustered in a second group; all individuals from Chiquimula, Guatemala

(CHAM, CHCE, CHGU and CHPR) were isolated in a third cluster; and the remaining speci-

mens from the region of Santa Ana, El Salvador and Jutiapa, Guatemala (SACH, SAJU, SASA,

JUBR, JUCA, JUCH and JUYU) were grouped in a fourth cluster (Fig 7). The Fst values

between clusters were greater than zero in all pair-wise comparisons; cluster 3, which groups

all individuals from Chiquimula, was the most differentiated, with pair-wise Fst ranging from

0.142 to 0.222 compared to 0.062 to 0.083 for all pair-wise combinations not involving cluster

3 (Table 4). Nucleotide diversity and observed heterozygosity were highest in cluster 4 (El

Salvador + Jutiapa) compared to other clusters, despite the relatively small geographic area

encompassed by this cluster (Table 4; Fig 1). Across all clusters, the expected heterozygosity

tended to be higher than the observed (Table 4).

Other taxa from BLAST search

For the 16% of reads with a significant BLAST hit (e-value < 0.001), 68% mapped to bacteria,

21% mapped to chordates, and the remaining 11% mapped to archaea, insects, protozoa,

Table 2. Percentage of reads independently mapped to six T. cruzi reference genomes.

Type DTU� / Specimen ID TcI TcII TcVI Tc marinkellei
AODP ADWP ANOX AAHK AQHO AHKC

Reference Genomes (%) TcI—AODP 100 81 39 56 54 8

TcI—ADWP 84 100 41 60 58 7

TcII—ANOX 41 41 100 85 84 10

TcVI—AAHK 46 45 63 100 94 10

TcVI—AQHO 46 44 62 96 100 10

Tc marinkellei—AHKC 8 6 1 0 12 100

Field Specimens (%) JUCA-01 93 79 42 58 56 9

PTN-01 95 86 46 62 62 9

PTN-02 95 84 44 64 60 12

NIC-01 96 87 44 62 60 7

JUCA-02 95 74 37 52 50 7

JUCH-04 92 83 44 61 58 10

SASA-01 96 86 44 62 60 8

Tukey’s range test a b d c c e

BLZ-01 70 69 70 92 91 11

UnID 64 64 76 92 91 12

Tukey’s range test b c c b a a d

�DTU accession numbers = AODP00000000.1, ADWP00000000.2, ANOX00000000.1, AAHK00000000.1, AQHO00000000.1, and AHKC00000000.1. Letters a-e

corresponds to the separation of means determined by a post-hoc Tukey’s range test (p>0.001).

https://doi.org/10.1371/journal.pntd.0006730.t002
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viruses, fungi and nematodes (Fig 3b). Among chordates, 59% matched to known mammalian

T. cruzi hosts, including dogs, humans, rodents, cats, swine, ruminants and opossum (Fig 3b).

Domestic birds, including chickens, ducks, and turkeys, constituted 30% of the bird BLAST

reads. Within the viruses, 94% were bacteriophages. Fungal hits included entomopathogenic

Fig 6. Phylogenetic inference by maximum likelihood of T. cruzi from nine infected abdomens of T. dimidiata. Specimens originating from Petén,

Guatemala (Purple) Jutiapa, Guatemala (light-blue), Belize (red), Santa Ana, El Salvador (blue) and Nicaragua (orange), and six in-silico genotypes from

the reference genomes of two TcI, one TcII, and two TcVI DTUs and the out-group T. c.marinkellei. The tree topology was tested with 10,000 bootstrap

replications, using a total of 34,707 bi-allelic SNPs.

https://doi.org/10.1371/journal.pntd.0006730.g006

Table 3. Number and proportion of SNPs recovered at each spatial scale. To account for missing data, the proportion of variable markers present in each subset was

calculated from the total number of loci with sufficient data for analysis.

Town Region Country No. samples No. SNPs No. Loci Prop. Variable

Within village:

El Carrizal Jutiapa Guatemala 3 5055 23674 0.21

El Chaperno Jutiapa Guatemala 4 6414 24096 0.27

La Prensa Chiquimula Guatemala 3 2513 23891 0.11

El Cerron Chiquimula Guatemala 3 1939 22217 0.09

Chilcuyo Santa Ana El Salvador 3 2237 23680 0.09

Within region:

Jutiapa Guatemala 8 12509 25491 0.49

Chiquimula Guatemala 9 5029 25666 0.20

Santa Ana El Salvador 8 5193 25611 0.20

Peten Guatemala 2 1995 19193 0.10

Across regions (all samples): 32 25710 25710 1.00

https://doi.org/10.1371/journal.pntd.0006730.t003
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strains in the orders Hypocreales (e.g., Beauveria andMetarhizium) and Entomophthorales

(e.g., Zoophthora and Entomophaga) typically used for biological control. Human and rodent

parasitic nematodes, in the genera Angiostrongylus, Heligmosomoides, Haemonchus, Parastron-
gyloides, and Strongyloides constituted 94% of the nematode community and were found across

all 32 specimens, while entomopathogenic nematodes from the genus Steinernema constituted

5% of the nematode mapped reads (Fig 3b).

Gut bacterial community structure

Bacterial species richness varied significantly across specimen types (F2, 29 = 4.15, p = 0.019).

Infected abdomens with T. cruzi contained significantly more bacterial species than non-

infected abdomens (post-hoc Tukey test, p<0.01) (Fig 8), but there was no difference in spe-

cies richness between the leg specimens and either infected or non-infected abdomens. We

identified 1,142 putative bacterial species across all abdomens. The reads from the subset of

T. cruzi-infected abdomens mapped to 1,006 bacterial species, with 49% unique to a single

Fig 7. Population genetic structure of Triatoma dimidiata across Central America inferred with a discriminant

analysis of principle components (DAPC) based on SNP markers. DAPC shows the maximized differences among

four genetic clusters of the vector. Clusters were determined using the k-mean clustering algorithm and choosing the

lowest Bayesian Information Criterion (BIC). Ellipses show 95% confidence intervals. The first two eigenvalues explain

69.2% of the variation found in 21,461 SNPs.

https://doi.org/10.1371/journal.pntd.0006730.g007

Table 4. F-statistics and summary statistics for Triatoma dimidiata clusters identified by k-means clustering.

Fst 1 2 3 4 pi Hetex Hetob

1 0 0.063 0.142 0.062 0.086 0.068 0.045

2 0 0.222 0.083 0.099 0.078 0.056

3 0 0.165 0.093 0.084 0.041

4 0 0.170 0.159 0.102

Cluster 1 includes Nicaragua (NIC), Quiché (QUI) and La Bendición (SABE); cluster 2 includes Belize (BLZ) and Petén (PTN); cluster 3 includes Chiquimula (CHAM,

CHCE, CHGU and CHPR); and cluster 4 includes Santa Ana and Jutiapa (SACH, SAJU, SASA, JUBR, JUCA, JUCH and JUYU). Cluster pair-wise F-statistics are color-

coded by genetic differentiation, where darker grey shows stronger cluster differentiation. The individual pairwise distance values are available in S5 Table.

https://doi.org/10.1371/journal.pntd.0006730.t004
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specimen and 28% present across more than 50% of the infected abdomens. SNPs from non-

infected abdomens mapped to 508 bacterial species, with 70% of the species mapping to a sin-

gle specimen; however, only 12 species (2.4%) from four genera (Bacillus, Enterobacter, Ralsto-
nia, and Alcaligenes) were shared by more than 50% of the uninfected specimens.

Unifrac analysis of gut bacterial community composition grouped specimens based on

both geographic location and infection status. The first NMDS axis, explaining 47.2% of the

variance, separated most regions from Guatemala and Belize from Quiché, Guatemala and El

Salvador. The second NMDS axis, explaining 28.9% of the variance, separated Jutiapa from

Chiquimula, Guatemala (Fig 9). Infected specimens from all sites were clustered around the

origin. Permutation tests determined three statistically significant clusters: (1) non-infected

specimens from Jutiapa, Guatemala (p = 0.031), (2) non-infected specimens from Chiquimula

(p = 0.028), and (3) infected-specimens from multiple locations (p = 0.043) (Fig 9).

Blood meal detection

Five abdomens returned chordate reads for a single top-hit species at an order of magnitude

higher than the background threshold calculated from the leg controls. Top hits for these spec-

imens included chicken, dog, duck and human (Fig 10). Reads that matched chordates were

Fig 8. Box-plot comparison of the asymptotic species richness of identified in SNPs from T. dimidiata legs, non-

infected abdomens and T. cruzi-infected abdomens. Letters indicate statistically significant groupings based on post-

hoc Tukey’s tests (p<0.01).

https://doi.org/10.1371/journal.pntd.0006730.g008
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present in all 32 specimens, including both abdomens and legs. The top hits had an exceed-

ingly low representation in most specimens (median = 0.035% of reads; Fig 10); these included

human (n = 23), domestic birds (chickens and ducks) (n = 5), dog (n = 1), fish (n = 1), rumi-

nant (n = 1) and frog (n = 1) (S5 Table).

Discussion

Our results suggest that RADseq can be used to simultaneously investigate T. cruzi infection

and phylogenetic reconstruction of DTUs, population genetic structure of T. dimidiata, para-

site-microbial interactions in the gut of the vector, and predominant blood meal source. For

vector-borne diseases that involve multiple interacting species, methods that can produce data

on an entire community can be used to leverage a single genetic study to address multiple bio-

logical questions across a range of taxa. Although the approach has some limitations, there was

sufficient information to identify biologically meaningful patterns of genetic and community

Fig 9. NMDS plot of bacterial community structure based on weighted Unifrac distances. Specimens are color-

coded by within-country regions; stars indicate T. cruzi-positive abdomens. Colored polygons indicate statistically

significant clusters from a post-hoc permutation test.

https://doi.org/10.1371/journal.pntd.0006730.g009
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structure at a range of spatial scales, from individual villages to across Central America. Fur-

thermore, the modest minimal requirements of 2–3 million reads to recover sufficient data on

all taxa also makes RADseq a relatively economical method, with expected sequencing costs

in 2016 of ~$30/specimen using current sequencing technologies (e.g., HiSeq 2000). Notably,

the method can be successful even for specimens preserved for considerable periods prior to

sequencing, although careful assessment of DNA quantity and quality is critical for recovering

sufficient high-quality read information from target taxa.

RADseq successfully identified T. cruzi infection across multiple DTUs (Fig 5), with higher

sensitivity than microscopy. The sensitivity of the method is important for surveys of parasite

prevalence in natural populations, as T. cruzi infection intensity within vectors can range from

high to exceedingly low representation of the parasite in the hindgut, and can vary across pop-

ulations, species, physiological condition of the vector, anti-microbial activity in the gut and

haemolymph, and co-occurrence of other pathogens and symbionts [67, 68, 69]. In general,

molecular methods such as PCR-based detection have proven more sensitive compared to

microscopy, but replicability of PCR methods is dependent on the volume of parasitic DNA

extracted from the hindgut, the extraction protocol, and the DNA region that the probes

amplify [70, 71]. Given the low representation of the parasite across all specimens (1% of all

trimmed reads), T. cruzi is likely to be more readily detected in RADseq libraries prepared

with longer restriction enzymes that cut in fewer recognition sites, allowing higher depth of

coverage across the parasite genome (6–8 bases, e.g. SbfI or PstI). Careful dissection to maxi-

mize the representation of parasite-rich tissues such as the lower abdomen and anus may also

assist in T. cruzi recovery by preventing overrepresentation of the vector during sequencing.

When T. cruzi is found, the genome-wide sampling provided by RADseq, in combination

with the availability of reference genomes, also provides an effective tool for T. cruziDTU

identification and phylogenetic reconstruction. The two DTUs identified among the nine

Fig 10. Outlier test of top chordate hits. Specimens are sorted by top-hit percentage; legs were included in the

analysis as baseline controls. Species identity of the top hit is indicated for the five abdomens above the upper Tukey

range (+1.5�IQR).

https://doi.org/10.1371/journal.pntd.0006730.g010
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infected specimens clustered into two clear clades, with strong bootstrap support and branch

lengths between clades ~10-fold longer than that within each DTU (Fig 6). The more common

of these closely matched TcI, the DTU expected to be the most common in circulation in Cen-

tral America [7, 11, 13]. The identity of the second DTU is unclear, as it did not cluster with

any of the DTUs for which sequenced reference genomes are available. The two DTUs most

commonly found in Central America are TcI and, less frequently TcIV, for which a reference

genome was not available (previously TcIIa) [72–78]. As additional references become avail-

able, the power of the RADseq mapping approach to positively assess DTU identities through-

out the Americas should progressively increase.

Despite the absence of a sequenced reference genome for T. dimidiata, this study effectively

identified SNP markers useful for understanding vector population structure. Even with rela-

tively strict filtering criteria, using a small set of vector-only reference specimens to create a

species-specific catalog yielded tens of thousands of SNP markers (Figs 2 and 4a), and the low

BLAST mapping to other insects (0.06% of all trimmed reads) suggests that the method cap-

tured a substantial proportion of the true T. dimidiata tags in the mixed-DNA specimens. The

SNP dataset was sufficiently large to enable population-genetic analysis across spatial scales

with a single methodology, with thousands of variable loci present within individual villages

that increased with each successive increase in spatial scale included (Table 3). Such flexibility

is a considerable advantage over traditional markers, such as microsatellites or multi-locus

gene sequencing, which are each most appropriate for questions at a particular temporal or

spatial scale but uninformative for others. Even with the limited sampling included here, pat-

terns of allelic variation successfully resolved biogeographic structure at multiple geographic

scales (Fig 7), yielding four distinct genetic clusters corresponding to departmental and

regional geographic divisions. As in previous studies, our results suggest moderate levels of dif-

ferentiation within T. dimidiata across this region of Central America [24, 26, 27], although

clearly more comprehensive sampling focused on thorough biogeographic coverage will be

needed to evaluate these patterns further.

Although informative SNP markers were identified across all villages and departments in

the present study, genetic variability was not consistent across space, with a range of 9–30%

of loci showing polymorphisms at the village scale for samples that in all cases but one were

collected in the same year for each village and with similar sample sizes (Table 3). This likely

represents underlying variation in genetic diversity across the range of T. dimidiata; it is

important to note that the current study focused on a portion of the species’ range, and thus it

is not clear whether the variation and genetic structuring suggested here will extend to other

regions or vector species. Even when variability was relatively low, however, the scale of geno-

mic coverage afforded by techniques such as RADseq yielded a large absolute number of SNPs

from the perspective of population-genetic analysis, and thus should facilitate effective SNP

discovery for all but the most genetically uniform populations and species.

RADseq can also reveal biologically interesting comparative patterns of microbiome varia-

tion that can subsequently be explored with more in-depth metagenomic approaches. From

this study, two main drivers of gut bacterial community structure are evident. First, bacterial

communities were strongly locally structured, with distinct species assemblages even between

Jutiapa and Santa Ana, whose vector populations are not differentiated (Figs 7 and 9). Whether

this is true spatial patterning, or reflects temporal, seasonal or other environmental variation

among sites at the point of sampling or during processing cannot be determined from these

data; however, this is an interesting avenue for future research. Second, T. cruzi parasitic infec-

tion significantly increases the diversity of bacteria (p<0.01), introducing a common addi-

tional set of infection-associated microbiota across the entire region (Fig 9). These patterns

are consistent with recent literature demonstrating shifts in bacterial diversity across vector
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genera, by geographic location, and parasitic infection status [35, 79]. How T. cruzi interacts

with gut microbes is a promising area of future research in this system, as infection prevalence

is highly variable across Central America and may be affected by the ability of native microbial

communities to resist colonization [40, 79]. Further studies of infection-associated bacterial

taxa may also reveal important aspects of the transmission cycle. Infection may facilitate bacte-

rial colonization due to modification of the immune response of the vector or changes in the

gut lining [33, 38]; alternatively, successful infection may be the end result of bacterial compo-

sitional changes associated with insect condition, health or other factors that make the gut

environment more favorable for T. cruzi attachment [32, 34, 35, 36, 37, 41, 79].

Although RADseq can identify community patterns, it is likely to be poor for species-level

identification of individual taxa such as bacterial symbionts that are not anticipated a priori.
True species identity often could not be ascertained with confidence due to database limita-

tions and lack of sequence specificity; a significant drawback of RADseq is the short read

length, which can make it difficult to assign taxonomic identity with precision. Of the set of

reads that did not map to either the parasite or vector, significant BLAST hits were returned

for 20.1% of the queried reads (Fig 3a). Even in the subset of reads with a significant hit, the

likelihood that the taxon returned was the true DNA source depended on its representation in

the nt database as well as the degree of evolutionary conservation of the genomic region. This

was most evident in reads assigned to chordates, which occasionally returned species that

clearly were not locally available, including model organisms (e.g., zebrafish) and Old-World

relatives of putative blood meals (e.g., gorilla). These were rare (~1%), and appear to represent

highly conserved loci with close matches to a diverse set of taxa; because species calls were

made without regard to how much better the top hit matched the query than the subsequent

taxa; loci with equally-close matches to multiple taxa returned results that were consistent

across runs but essentially arbitrary with respect to the species listed first. It is more difficult to

assess the degree to which misassignment occurred in other taxonomic groups.

With an undirected sequencing approach like RADseq, sequencing reads from the gut

microbiome are an automatic consequence of targeting tissues harboring T. cruzi. Whether

RADseq is sufficient for answering microbial community questions, however, is likely depen-

dent on the type of information required. If the goal is to identify species that interact with T.

cruzi or influence its transmission (e.g., Serratia marescens [38]) or produce novel or function-

ally important chemical compounds, alternative next-generation sequencing methods such as

shotgun metagenomic, transcriptomic and/or meta-barcoding methods could provide higher

specificity and quantitative precision. This is less of a critical issue for community composition

analysis, however, because the Unifrac procedure incorporates phylogenetic relationships into

the distance measure, linking specimens even when minor sequence differences lead to differ-

ent species calls.

Given that (1) triatomines can live for several months in starvation, (2) the vast majority

of insects sampled here were adults, which ingest proportionally smaller blood meals than

nymphs, and (3) many field studies have found that specimens are often starved at the

moment of collection, it was not surprising that we were able to confirm putative sources

of blood meal from just 25% of the abdomens analyzed [80–83]. Nevertheless, the fact that

contamination from human handling was uniformly present across samples, the RADseq

approach was arguably least effective at resolving vector-feeding patterns, and is likely to be

useful only for very recent or large blood meals. Minimizing handling, along with surface-

sterilizing and extracting DNA under sterile conditions are advisable for minimizing such

sources of ambiguity.

In addition to background contamination, the strict DNA quality requirements for next-

generation sequencing technologies likely introduce biases against detecting blood meals.
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Although using abdomen DNA has the tremendous advantage of investigating mixed taxa,

the use of abdomens presents the challenge of obtaining high-quality DNA that has not

been degraded by digestion. Previous studies targeting blood meals using species-specific

primers recommended the use of PCR-based assays targeting small size amplicons of

nuclear DNA to detect unique blood meals instead of a catchall method [82–84]. In our

experience, obtaining high-quality DNA from the hindgut of adult T. dimidiata was chal-

lenging, with a total of 61 insects required to obtain the final 32 specimens. Even among

these specimens, sequencing yield ranged from 489,656 to 18,878,597 reads, a 38-fold range.

Many DNA specimens excluded from sequencing were characterized by a strong second

band of degraded DNA at 100-200bp, possibly a degraded blood meal, in addition to the

expected high-molecular weight band (S1 Fig). The degradation from blood meal digestion

is compounded by the challenge of field preservation, storage, and transport of specimens

from remote areas with limited infrastructure. Although not enough specimens were tested

to allow statistical comparisons, higher extraction success tended to be achieved when speci-

mens were collected closer to the extraction date than those collected 3+ years earlier. Addi-

tionally, the time delay between DNA extraction and sequencing was kept to a maximum

of one month to maintain the quality of the specimens and avoid DNA degradation during

storage.

A benefit of using taxonomically, non-specific sequencing approaches like RADseq is the

potential for discovery of unexpected taxa that may be of ecological or epidemiological impor-

tance. One such finding was the common presence of entomopathogenic fungi (22% of fungi

hits). Although none of the specimens showed visual evidence of cuticular fungal germination,

the presence of Beauveria,Metarhizium, Zoophthora, and Entomophaga, both in the abdomens

and legs, suggest possible latent infection of the vectors by spores waiting for environmental

cues that can trigger germination [85]. Although the fungal inoculation sources are unknown,

the presence of the entomopathogenic genera across tissues and specimens suggests a wide dis-

tribution of spores regardless of the local environment in which the triatomine was collected

[86].

We also found a low signal of entomopathogenic nematode species from the family Steiner-
nematidae. Additionally, the BLAST search revealed a wide range of common mammalian

parasitic nematodes from the genera Angiostrongylus, Heligmosomoides, Haemonchus, Para-
strongyloides and Strongyloides (Fig 2). Although to some extent this may be a result of transfer

from humans to the bug during handling, this result raises the possibility that T. dimidiata
may harbor and/or transmit such parasites as a passive carrier of infective free-living larvae or

eggs [87]. This is a meaningful finding because of the potential of co-transmission of additional

human pathogens, which has been previously documented in other vectors such as Aedes
aegypti and A. albopictus [88]. The role of a triatomine vector could either involve the cutane-

ous transportation of the nematode as it moves from dirt crevices to the skin of mammalian

host or by gut transportation; eventually defecating eggs near open wounds, eyes, or areas

prone to oral contamination [89, 90]. It is unlikely that the vector can acquire the nematodes

from a blood meal source given that only the genus Strongyloides is known to have a non-

reproductive larval stage in the human bloodstream, and even in this case, it is cutaneously

transmitted, remaining in the bloodstream only in transition to the small intestine [91]. The

detection of other human pathogenic nematodes opens new avenues of research to study the

role of triatomines in the context of vector-aided transmission. Although the aim of this study

was not to reveal community patterns beyond the parasite, vector and microbiota, our findings

can potentially lead to community-based studies of entomopathogenic fungi and nematodes,

human parasitic nematodes and other taxa with relevant association to disease transmission

complexes.
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Conclusions

Overall, our results show that a mixed-DNA approach can provide simultaneous information

on the community of biotic factors involved in T. cruzi transmission. RADseq can provide

informative SNP marker sets for taxonomic and biogeographic analysis for both vector popu-

lation genetic structure and parasite evolutionary history. It also has a strong potential to

retrieve information about the community ecology and diversity of microbiota; and although

it is limited at revealing quantitative details of vector feeding history, this method may be

useful for identifying recent vertebrate hosts. For all of these areas of inquiry, a broad-based

sequencing approach can reveal novel patterns that can be followed up with complementary

approaches (e.g., proteomics, metagenomics). Testing this mixed-DNA sequencing method

with different vectors and disease models will help to determine its reproducibility in other

systems where multiple organisms interact in tightly-integrated and complex ways.
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