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Estimation of Global Network Statistics from Incomplete
Data
Catherine A. Bliss*, Christopher M. Danforth, Peter Sheridan Dodds

Department of Mathematics and Statistics, Vermont Complex Systems Center, The Computational Story Lab, and the Vermont Advanced Computing Core, University of

Vermont, Burlington, Vermont, United States of America

Abstract

Complex networks underlie an enormous variety of social, biological, physical, and virtual systems. A profound complication
for the science of complex networks is that in most cases, observing all nodes and all network interactions is impossible.
Previous work addressing the impacts of partial network data is surprisingly limited, focuses primarily on missing nodes, and
suggests that network statistics derived from subsampled data are not suitable estimators for the same network statistics
describing the overall network topology. We generate scaling methods to predict true network statistics, including the
degree distribution, from only partial knowledge of nodes, links, or weights. Our methods are transparent and do not
assume a known generating process for the network, thus enabling prediction of network statistics for a wide variety of
applications. We validate analytical results on four simulated network classes and empirical data sets of various sizes. We
perform subsampling experiments by varying proportions of sampled data and demonstrate that our scaling methods can
provide very good estimates of true network statistics while acknowledging limits. Lastly, we apply our techniques to a set
of rich and evolving large-scale social networks, Twitter reply networks. Based on 100 million tweets, we use our scaling
techniques to propose a statistical characterization of the Twitter Interactome from September 2008 to November 2008. Our
treatment allows us to find support for Dunbar’s hypothesis in detecting an upper threshold for the number of active social
contacts that individuals maintain over the course of one week.
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Introduction

Data collected for complex networks is often incomplete due to

covert interactions, measurement error, or constraints in sampling.

Particular individuals may wish to remain hidden, such as

members of organized crime, and individuals who are otherwise

overt may have some interactions that they wish to remain hidden

because those interactions are of a sensitive nature (e.g., romantic

ties). In other instances, links may be erroneously inferred from

spurious or noisy interactions. Furthermore, extremely large

networks necessitate an understanding of how network statistics

scale under various sampling regimes [1,2]. Explorations of

empirically studied networks have largely ignored these biases

and consequently, characterizations of the observable (sub)net-

works have been reported as if they represent the ‘‘true’’ network

of interest.

When members of a population are drawn at random, each

with equal selection probability, the sample statistic being studied

is often a good estimate of the population statistic. Problematically,

subsampling networks often induces bias: some individuals or

interactions may be more likely to be selected [3]. Consider, for

example, a network for which a random selection of links is

observed. The collection of observed nodes in such a subnetwork is

biased because large degree nodes are more likely to be included in

the sample than nodes of small degree.

The development of techniques to correct sample estimates of

population statistics is needed to enable more accurate portrayals

of empirically studied large -scale networks and aid in efforts to

model dynamics such as cascading failures and complex contagion

[4–7].

A central confounding issue is that the errors introduced by

biases in sampling may be exacerbated both by particular

sampling strategies and by various underlying network topologies

of the true network from which the subsamples are chosen [8–15].

Researchers have explored the effects of sampling by nodes

[1,9,13,16–18]; sampling by edges or messages [1,2,18]; and graph

exploration methods based on random walks, snowball sampling,

and respondent driven sampling [1,19,20].

We organize our paper as follows. First, we outline some of the

most common global network statistics. In the Methods and

Materials section, we describe our data and sampling strategies. In

the Analysis section, we describe scaling methods for global
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network statistics and apply our methods to four classes of

simulated networks and six empirical datasets. We provide a

summary of all our estimates in Table 1. In the subsequent

section, we apply our methods to Twitter reply networks as both a

case of scientific interest and demonstration of our methods. In the

Discussion, we discuss the implications of our findings and suggest

further areas of research.

Global network statistics
Real complex networks have come to be characterized by a

range of functional network statistics. In this paper, we explore

how descriptive measures such as the

N the number of nodes, N,

N the number of edges, M,

N degree distribution, Pk,

N the average degree, kavg,

N the max degree, kmax,

N clustering coefficient, C, [21], and

N the proportion of nodes in the giant component, S,

scale with respect to missing network data. Based on our

observations, we suggest predictor methods for inferring these

network statistics from subsampled network data.

The most important structural feature of a network is the degree

distribution, Pk, and this has been the focus of much previous work

on subsampled networks. The classical Erdös-Rényi random graph

model famously exhibits a Poisson degree distribution, Pk~
lke{l

k!

[22]. In contrast to Erdös-Rényi random networks, preferential

attachment growth models describe a random process whereby

new nodes attach with greater likelihood to nodes of large degree

giving rise to a Power-law or Scale-free degree distribution,

Pr(k)!k{c [23–26]. Other distributions, such as lognormals and

power-laws with exponential cutoffs may equally characterize the

degree distributions of some empirical networks [27].

Previous work has explored how the degree distribution is

distorted when the subnetwork is the induced subgraph on

sampled nodes [9,10,13,17,18,28–30]. Han et al. [9] investigated

the effect of sampling on four types of simulated networks: random

graphs with (1) Poisson, (2) Exponential, (3) Power-law, and (4)

Truncated normal distributions. They observed that degree

distributions of sampled Erdös-Rényi random graphs appear to

be linear on a log-log plot. Others have also suggested that

subnetworks of Erdös-Rényi random graphs appear ‘‘power-law-

like’’ and could be mistaken for a scale-free network [9,17].

Typically, scale-free networks have degree distributions which

span several orders of magnitude and thus, subnetworks of Erdös-

Rényi random graphs would not be classified as scale-free

networks by most researchers. As warned in [27], further errors

may be incurred when attempting to use linear regression to fit a

power-law.

Stumpf and Wiuf [28] examined how degree distributions of

Erdös-Rényi random graphs scale when subnetworks are obtained

through uniform random sampling on nodes and ‘‘preferential

sampling of nodes,’’ whereby large degree nodes have a greater

probability of being selected. They showed that Erdös-Rényi

random graphs exhibit closure under subsampling by nodes (i.e.,

an Erdös-Rényi random graph sampled by nodes is again an

Erdös-Rényi random graph). Erdös-Rényi random graphs did not

exhibit closure under preferential sampling of nodes.

Stumpf et al. [13] suggested that the degree distribution of the

subnetwork induced on randomly selecting nodes is independent

of the proportion of nodes sampled and that the true degree

distribution can only be determined by knowledge of the

generating mechanism for the network. Unfortunately, this is

often not known or fully understood.

Several researchers have explored techniques for estimating the

true degree distribution from subnetwork data. We first examine

the subnetwork degree distribution before examining attempts to

solve for the true degree distribution in terms of the subnetwork

degree distribution. We consider three cases. First, when links are

sampled with probability q and the subnetwork is taken to be the

network generated on sampled links, the probability that a node of

degree i in the true network will become a node of degree k in the

subnetwork (k#i) is given by Pr(kDi)~ i

k

� �
qk(1{q)i{k. The

subnetwork degree distribution can be determined by weighting

these probabilities by Pi, the probability of node i appearing in the

true network [31]. The subnetwork degree distribution is then

given by

~PPk~

Pkmax
i~k

i

k

� �
qk(1{q)i{kPi, if kw0

0, if k~0:

8<
: ð1Þ

Next, we consider subnetworks obtained by link failure. In these

cases, all nodes are observed, only a proportion (q) of links are

observed. This cases is nearly identical to Equation 1, except for

the presence of nodes of degree zero.

Table 1. Summary of scaling techniques.

Sampled Failed Sampled Sampled

nodes links links interactions

Predicted number of nodes (N̂N)
n
q

n
P

ui[V�
1

1{(1{q)d(ui )

P
ui[V�

1
1{(1{q)s(ui )

Predicted number of edges (M̂M)
m
q2

m
q

m
q

P
ei[E�

1
1{(1{q)w(ei )

Predicted average degree k̂kobs
avg

� �
kobs

avg

q

kobs
avg

q

2M̂M
N̂N

2M̂M
N̂N

Predicted clustering (ĈC) C qC C
q

–

Predicted max. degree k̂kmax

� �
kobs

max

q

kobs
max

q

kobs
max

q
M̂M
m

kobs
max

doi:10.1371/journal.pone.0108471.t001
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~PPk~
Xkmax

i~k

i

k

� �
qk(1{q)i{kPi, for k§0: ð2Þ

Lastly, we consider subnetworks obtained from the induced

network on sampled nodes. In this case, the probability of

observing a node is q. As such,

Pr u is observed and deg(u) is kð Þ~q
Xkmax

i~k

i

k

� �
qk(1{q)i{kPi:

We note that this is not the observed subnetwork degree

distribution because when a subnetwork obtained from the

induced network on sampled nodes is observed, the frequencies

of nodes of degree k are computed relative to the number of

observed nodes. This becomes

Pr deg(u) is kDu is observedð Þ

~
Pr u is observed and deg(u) is kð Þ

q
~
Xkmax

i~k

i

k

 !
qk(1{q)i{kPi,

which is normalized. For added clarity, consider a network of N
nodes and M = 0 edges. We observe that Pr(u is observed and

deg(u)~0)~q
0
0

� �
q0(1{q)0P0~q whereas Pr deg(u)~kDu isð

observedÞ~
q

0

0

� �
q0(1{q)0P0~q

q
~1. The latter agrees with our

observation, namely the (observed) network induced on sampled

nodes will have all nodes of degree 0 and an observed probability

distribution which is simply P0 = 1.

Viewing Equation (1) as a system of k equations, we may derive

an expression for the true degree distribution in terms of the

observed subnetwork degree distribution. We refer the interested

reader to Materials S1 for the derivation of this result:

Given a network with degree distribution Pj, with sampling

fraction q, and the subnetwork degree distribution

~PPi~
Pkmax

j~i

j

i

� �
qi 1{qð Þj{i

Pj , we may solve for Pj in terms of

the subnetwork degree distribution ~PPi. This yields

P̂Pk~
Xkmax

i~k

({1)i{k i

k

� �
1{qð Þi{k

qi
~PPi, ð3Þ

where P̂Pk represents the predicted degree distribution and nodes of

degree 0 are handled appropriately.

Verification of this result is also presented in Materials S1.

Our derivation differs from Frank [29] by a factor of 1
q
,

P̂Pk~
Xkmax

i~k

({1)i{k i

k

� �
(1{q)i{k

qiz1
~PPi: ð4Þ

Equation 4 solves Pk
’~q

Pkmax

i~k

i

k

� �
qk(1{q)i{kPi, for Pi in

terms of Pk
’, however Pk

’ is not the observed degree distribution.

Neither of these derivations, however, are guaranteed to be non-

negative [3] and their practicality of use is limited.

Model selection methods provide a different approach by

employing maximum likelihood estimates to identify which type of

degree distribution characterizes a true network, given only a

subnetwork degree distribution [32]. Although these methods are

able to discern that some network degree distributions may be

better characterized by lognormal or exponential cutoff models

instead of power-laws, only models selected a priori for testing

form the candidate pool of possible distributions.

In contrast to the model selection technique proposed by

Stumpf et al. [32], we explore a probabilistic approach which

utilizes knowledge of the proportion of sampled network data (q)

and the subnetwork degree distribution. In doing so, we desire an

estimation that captures the qualitative nature of the degree

distribution without making any assumptions about candidate

models. We show that reasonably good estimates of Pk can be

achieved with no knowledge of the generating mechanism. With a

reasonable estimate of the degree distribution available, we are

able to overcome a previously noted obstacle identified by

Kolaczyk [3] who notes that predictors for network statistics

(sampled by links) have proven more elusive because of the need

for knowledge of the true degree distribution [3]. Our method can

be used in conjunction with Hortiz-Thompson estimators to

reasonably predict network statistics for cases where node selection

is not uniform (i.e., subnetworks generated by sampled links or

weights).

In the subsequent sections, we summarize this work and show

how our method surmounts this obstacle. To our knowledge,

scaling techniques for networks generated by sampled interactions

(e.g., weighted networks) have not been addressed in the literature

and given the interest in large, social networks derived from

weighted, directed interactions, we find this analysis timely and

relevant.

Materials and Methods

In this paper, we focus on four sampling regimes: (1)

subnetworks induced on randomly selected nodes, (2) subnetworks

obtained by random failure of links, (3) subneworks generated by

randomly selected links, and (4) weighted subnetworks generated

by randomly selecting interactions. Motivated by our work with

Twitter reply networks [33] for which we have a very good

approximation of the percent of messages which are obtained, we

base our work on the assumption that the proportion of missing

data is known. This is a critical assumption and one that we

acknowledge may not always be satisfied in practice. Efforts to

estimate the proportion of missing nodes or links are intriguing,

but are beyond the scope of this paper.

Unweighted, undirected networks
Our data consist of simulated and empirical networks. We

generate unweighted, undirected networks with N = 26105 nodes

and average degree kavg = 10 according to four known topologies:

Erdös-Rényi random graphs with a Poisson degree distribution

[22], Scale-Free random graphs with a power-law degree

distribution [24,34], Small world networks [35], and Range

dependent networks [36]. Erdös-Rényi, Scale-free, Small world,

and Range dependent models were constructed with the

CONTEST Toolbox for Matlab [37]. We note that the small

world networks were set to have random rewiring probability

Estimation of Global Network Statistics from Incomplete Data
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p = 0.1 and preferential attachment networks were set to have

d = 5 new links when they enter the network. Range dependent

networks were set to establish a link between nodes ui and uj with

probability alDj{iD{1 where we set l~0:9 and a~1. As noted by

[37], this choice of a ensures that nodes ui and uiz1 are adjacent

and lDj{iD{1 ensures that short range connections are more

probable than long range connections. We also examine six well

known empirical network datasets: C. elegans [35,38], Airlines

[39], Karate Club [40], Dolphins [41], Condensed matter [42],

and Powergrid [35].

We sample each of these simulated and empirical networks and

examine the subnetwork induced on sampled nodes (Fig. 1), the

subnetwork obtained by failing links (Fig. 2), and the subnetwork

generated by sampled links (Fig. 3). For a given network, 100

simulated subnetworks are obtained for a given sampling strategy

and subsampling percentage q, as q varies from 5% to 100% in

increments of 5%.

Weighted, undirected networks
We examine the effects of uniformly increasing edge weight

(Experiment 1, Cases I–V) as well as the distribution of edge

weights (Experiment 2, Cases VI and VII) on the scaling of

network statistics (Table 2).

Experiment 1: Uniform distribution of edge weights. In

this set of experiments, we generate Erdös-Rényi networks with

N = 2000 nodes and kavg = 6. We assign each edge to have equal

weight, w, where w = 1, 2, 3, 4, or 5 (corresponding to Cases I–V).

We similarly generate Scale-free networks with N = 2000 nodes

and kavg = 6. We then sample each of the weighted, undirected

networks by randomly selecting q
P

ei[E(G) w(ei) interactions and

examine the subnetwork generated by links with w(ej).0 (Fig. 4).

This procedure is repeated to generate one hundred simulated

networks for each class and varying proportions of sampled

interactions (q).

Experiment 2: Non-uniform distribution of edge

weights. In this set of experiments, we explore how the

distribution of weights on edges can impact scaling of global

network statistics. As in the previous case, we first generate an

Erdös-Rényi network with N = 2000 and kavg = 6. We then add

weights to edges in one of two ways. In Case VI, we assume ‘‘equal

effort’’ in that all nodes will have an equal number of interactions

distributed equally among their incident edges. This requirement

ensures that all nodes have equal node strength and that effort is

equally distributed to each neighbor. More specifically, for node

deg(ui)~k, we set each of the k edges to have weight q30
k
r. In Case

VII, for each edge we select an integer weight between 1 and 9

from a uniform probability distribution. Certainly, other variants

of the weight distribution exist and their analysis may provide

additional insight in future studies.

Figure 1. Node induced subnetwork on randomly sampled nodes. (Left) The true network is sampled by randomly selecting nodes (red).
(Right) The node induced subnetwork consists of sampled nodes and edges whose endpoints both lie in the collection of sampled nodes.
doi:10.1371/journal.pone.0108471.g001

Figure 2. Failed link subnetwork. Hidden or missing links are
depicted in grey. All nodes remain in the subnetwork and only visible or
sampled links remain.
doi:10.1371/journal.pone.0108471.g002

Estimation of Global Network Statistics from Incomplete Data

PLOS ONE | www.plosone.org 4 October 2014 | Volume 9 | Issue 10 | e108471



Weighted, directed networks–Twitter reply networks
Twitter reply networks [33] are weighted, directed networks

constructed by establishing a directed edge between two individ-

uals if we have a directed reply from a individual to another during

the week under analysis. These networks are derived from over

100 million tweets obtained from the Twitter streaming API

service during September 2008 to February 2009. We refer the

interested reader to [33] for more information. The data for these

networks is provided at http://www.uvm.edu/storylab/share/

papers/bliss2014a/. During this time, we obtained between 25%

to 55% of all tweets (Table S24 in Materials S1). Using the scaling

methods developed in the Estimating global network statistics

section, we predict global network statistics for the Twitter

interactome during this period of time by viewing in- and out-

network statistics separately (e.g., two distinct networks) to account

for directionality.

Analysis

Sampling by nodes
Given a network, G = (V, E), where V is the collection of nodes

(or vertices) and E is the collection of links (or edges), we randomly

select a portion of nodes q, where 0,q#1. The node induced

subgraph on these randomly sampled nodes is given by G* = (V*,

E*), where V* represents the randomly selected nodes and E*

represents the edges in E for whom both endpoints lie in V*

(Fig. 1). This type of sampling occurs when a selected group,

representative of the whole, is observed and all interactions

between sampled individuals are known. This sampling strategy is

well studied and we will only view key results here (see [3]).

Scaling of N, M, kavg, C, kmax, and S
Given a subnetwork of size n = qN known to be obtained by

randomly selecting qN nodes, the number of nodes in the

subsample clearly scales linearly with q (see Figs. S1a and S2a in

Figure 3. Subnetwork generated from sampled links. (Left) A network is sampled by randomly selecting links shown in red. (Right) The
subnetwork consists of all sampled links and only nodes which are incident with the sampled links. In this type of sampling, no nodes of degree zero
are included in the network. Large degree nodes are more likely to be included in the subnetwork.
doi:10.1371/journal.pone.0108471.g003

Table 2. Summary of weighted network experiments.

Case kavg wavg Distribution of weights

I 6 1.0 w(ej) = wavg (uniform)

II 6 2.0 w(ej) = wavg (uniform)

III 6 3.0 w(ej) = wavg (uniform)

IV 6 4.0 w(ej) = wavg (uniform)

V 6 5.0 w(ej) = wavg (uniform)

VI 6 5.0 s(ui)~q30
k
r (equal effort)

VII 6 5.0 w(ej) = randi{1..9} (randomized)

Note: w(ej) refers to the weight of edge ej, s(uj) refers to the strength of node ui ) and randi{1..9} refers to a randomly selected integers between 1 and 9 (inclusive).
doi:10.1371/journal.pone.0108471.t002
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Materials S1). The size of the true network is predicted by

N̂N~
1

q
n, ð5Þ

which shows good agreement with the true network statistic (Table

S1 in Materials S1). Note that this result is independent of network

type and is only dependent on q, the fraction of nodes subsampled,

and n, the size of the subsample.

Given a network with N nodes and a subnetwork of n nodes, the

probability of selecting edge eij is given by n(n{1)
N(N{1)

. This is simply

the probability that the two nodes, ui and uj , incident with the edge

eij, are selected. The number of edges in the subnetwork is found

by

m~
n(n{1)

N(N{1)
M, ð6Þ

where m represents the number of edges in the subnetwork and M
represents the number of edges in the true network. For large

networks, m<q2M. This agrees well with simulated results (Figs.

S1b and S2b in Materials S1). The predicted number of edges is

given by

M̂M~m
N(N{1)

n(n{1)
, ð7Þ

which scales as M̂M& 1

q2 m for large networks. This predictor shows

good agreement with actual values (Table S2 in Materials S1).

The average degree, kavg, is found by

kavg~
2M

N
:

Given expressions for the expected number of edges (7) and the

expected number of nodes (5), the expected average degree of a

true network, k̂kavg, based on an observed average degree of a

subnetwork:

k̂kavg~
2M̂M

N̂N
ð8Þ

~
2m N(N{1)

n(n{1)

n
q

ð9Þ

~
2m

n

N{1

n{1
ð10Þ

~kobs
avg

N{1

n{1
ð11Þ

&
kobs

avg

q
, ð12Þ

where in line (10) we have assumed that N̂N&N, N&1 and n&1.

Comparing this result to simulated subnetworks induced by

subsampling nodes (Figs. S1c and S2c in Materials S1), we find

very good agreement between the predicted average degree and

true average degree (Table S3 in Materials S1), except for the

small empirical networks (Karate club and Dolphins) sampled with

low q. In these cases, we violate the assumption that n&1 because

subsamples of the Karate Club network degenerate to subnetworks

Figure 4. Weighted subnetwork generated from sampled interactions. (Left) An unsampled weighted network consists of nodes, links and
weights representing the number of interactions represented by the link. (Right) Sampling by interacting produces a subsample whereby links are
included in the subsample only if at least one interaction has been sampled. The subnetwork is the induced subgraph on these links with wi$1.
doi:10.1371/journal.pone.0108471.g004
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of 3 edges or less when q#0.20. Similarly, subsamples of the

Dolphin network degenerate to subnetworks of 3 edges or less

when q#0.15. When the observed number of edges in the

subnetwork exceeds 3, our predicted M̂M has an error less than 5%

(Table S3 in Materials S1).

The scaling of the max degree is highly dependent on network

type, or more precisely, the relative frequency of high degree

nodes. For networks with relatively few large hubs and many small

nodes of small degree, kmax scales linearly with q and k̂kmax& kmax

q
.

For networks with many nodes of maximal degree kmax scales

nonlinearly with q (Figs. S1d and S2d in Materials S1). An

example of this would be a regular lattice. All nodes have the same

(and hence maximal) degree. This pathological example is not

often seen in practice. Simulated Small world networks begin as a

regular lattice with random rewiring probability, p. Since our

Small world networks have p = 0.1, our Small world networks

exhibit this pathological behavior more so than several empirical

Small world networks. We note that this is simply a matter of

tuning p and not indicative of all Small world networks.

This distinction makes predicting the maximum degree more

challenging since an accurate predictor ultimately relies on

knowledge of the network type - knowledge one usually does not

have in an empirical setting. Our proposed technique utilizes

k̂kmax&
kobs

max

q
, unless our algorithm detects a large number of nodes

with degree similar to kmax and are assured that the subnetwork

that has not degenerated to a small network (n,30). More

specifically, if our algorithm detects nkmax{1kmax{1wnkmax
kmax,

then we use the adjustment Equation 13, where nkmax{1 represents

the number of nodes of degree kmax21. In this case,

k̂kmax&
kobs

max

1{ q
h

, ð13Þ

where h = the number of nodes with degree greater than 75% of

kmax.

The rationale for this rough approximation is that the nodes

which have high degree (.75% of the observed max. degree) may

have been nearly equal contenders for losing a neighbor during

subsampling. When all nodes have equal degree, the denominator

of Equation 13 tends to k̂kmax&kobs
max. Table S4 in Materials S1

presents the error for this predictor and demonstrates that our

method performs reasonably well for most networks in our data

set. To our knowledge, this is the first attempt to characterize how

kmax scales with subsampling and we hope that future work

improves upon our estimate.

We measure clustering using Newman’s global clustering

coefficient [21] CG~ 3|tD(G)
tz

3
(G)

, where tD(G) denote the number

of triangles on a graph and tz
3 (G)~t3(G){3tD(G), which is the

number of vertex triples connected by exactly two edges (as in the

notation used by [3]). Since the probability of selecting a node is q,

both the number of triangles and connected vertex triples scale as

q3. Thus, t̂tD(G)~ 1
q3 tD(G�) and t̂tz

3 (G)~ 1
q3 tz

3 (G�) [43]. We then

expect

ĈCG&C�G: ð14Þ

This is supported by simulations (Figs. S1e and S2e in Materials

S1) and small errors in ĈCG (Table S5 in Materials S1). We note

that for small q, some subnetworks completely breakdown and no

connected triples are present. In these situations, the clustering

coefficient can not be computed nor can the true network’s

clustering coefficient be well predicted.

We next explore how the size of the giant component scales with

the proportion of nodes sampled (Fig. S1f and S2f in Materials S1).

For the Erdös-Rényi and Scale-free random graphs, the giant

component emerges when the subnetwork has ksub
avgw1. This

occurs when qkavg.1 and so for our simulated Erdös-Rényi and

Scale-free networks, this occurs when q = 0.10 because the true

networks have kavg = 10. The thresholds for the emergence of the

giant component in Small World and Range dependent networks

are much higher. This may be due to the relatively large clustering

coefficients of these networks. As suggested by Holme et al. [44],

networks with a large clustering coefficient [35] are more

vulnerable to random removal of nodes. We observe the same

trend with Newman’s global clustering coefficient.

In the case of the empirical networks, we find that the giant

component emerges for q corresponding to kobs
avgw1. C. elegans,

Airlines, and Condensed Matter networks are more resilient to

random removal of nodes in that the giant component persists for

small levels of q. This is most likely due to their relatively high

average degrees, as compared to the other networks (heterogeneity

of nodes’ degrees in these networks). Heterogeneous networks

demonstrate more resilience due to random removal of nodes at

high levels of damage [45]. In general, it may be very difficult to

predict the exact critical point at which the giant component

emerges from subnetwork datasets.

Scaling of Pk. The complementary cumulative degree

distribution (CCDF) becomes more distorted as smaller propor-

tions of nodes are sampled, as shown in Figure S3 in Materials S1

and given by Equation 1. Subnetworks obtained by the induced

graph on sampled nodes will often have ~PP0w0. This occurs when

ui is selected in sampling, but no neighbors of ui are selected in the

sample.

Our goal is to predict the degree distribution, given only

knowledge of the proportion of nodes sampled (q) and the subnet

degree distribution. We note that the probability that an observed

node of degree k came from a node of degree j$k in the true

network is given by

Pr(kDj)~
j

k

� �
qk(1{q)j{k, when j§k

0, when jvk,

8<
:

where q is the probability that a node’s neighbor was included in

the subsample and 1–q is the probability that a node’s neighbor is

not included in the subsample.

After normalizing, we find y(j)~ Pr(kDj)
c

describes the normalized

probability that an observed node of degree k came from a node of

degree j in the true network, where c~
P?

j~k Pr(kDj). Note that

when D1{qDv1 this series converges and we find

c~
P?

j~k Pr(kDj)~ 1
q
. Thus,

y(j)~
q

j

k

� �
qk(1{q)j{k, when j§k

0, when jvk:

8<
: ð15Þ
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Let nk represent the number of nodes of degree k. We compute

nky(k)~nk

j

k

� �
qk(1{q)j{k

c

0
BB@

1
CCA ð16Þ

~nk q
j

k

� �
qk(1{q)j{k

� �
, ð17Þ

where we use Stirling’s approximation to estimate the binomial

coefficients for large j. We have taken care to include observed

nodes of degree zero in this process (e.g., k~0 in Equation 16).

For networks with nodes of large degree (e.g., hubs), one can

further speed up the computation and reduce floating point

arithmetic errors by mapping back observed nodes of degree k to

the expected value of the distribution obtained in Equation 15:

E(j)~
1

c

X?
j~k

j
j

k

� �
qk(1{q)j{k ð18Þ

~q
1{qzk

q2
ð19Þ

&
k

q
,for k&1, ð20Þ

where c& 1
q
. In making use of E(j)& k

q
, we perform a separate

calculation for nodes of degree zero: n0
(1{q)jP
j

(1{q)j

� �4kobs
max

j~1

. In all

cases, we assume a finite network. We limit our calculations to

4kobs
max as a rough estimate on the upper bound needed for the sum

in Equation 15.

Figure S4 in Materials S1 reveals the predicted degree

distribution for subnets induced on varying levels of randomly

selected nodes. To test the goodness of fit for the estimated degree

distribution and the true Pk, we apply the two sample

Kolmogorov-Smirnov test. Figure S16 in Materials S1 shows the

D test statistics for the predicted degree distributions for both

estimation methods (Equations 16 and 18), as well as the Dcrit

computed from c(a)
ffiffiffiffiffiffiffiffiffiffi
n1zn2

n1n2

q
, where c(0:05)~1:36,n1~kmax and

n2~k̂kmax. For most networks, D#Dcrit for q$0.3, suggesting that

when at least 30% of network nodes are sampled, our methods

provide an estimated degree distribution which is statistically

indistinguishable from the true degree distribution. Although we

reject the null hypothesis for the preferential attachment case, for

all q=1, we wish to point out the potential for bias in the

Kolmogorov-Smirnov test with large n [46]. As shown, Dcrit values

are quite low and the bias in this test is due to large n1 and n2. The

statistical power in this test leads to the detection of statistically

significant differences, even when the absolute difference is

negligible. Thus, we caution the interpretation of this statistical

test and place more interest in the value

D~ maxDFi,true{Fi,predictedD, where Ftrue and Fprediction represent

the true and predicted CDFs.

Link failure
We now turn our attention to link failure. As in the previous

cases, we denote the true, unsampled network as G~(V ,E). Some

proportion, q of links remain ‘‘on’’ (or present in the sample) and

1–q are hidden or undetected by sampling. E�(E consists of

precisely the links that remain ‘‘on’’ and V�~V (Fig. 2). Figures

S5–S6 demonstrate how network statistics scale in this sampling

regime.

In this case we may use the estimator to predict the number of

nodes, N̂N~n and we may predict the number of edges by M̂M~ m
q
.

The average degree is found by

k̂kavg~
2M̂M

N̂N
ð21Þ

~
2m

qn
ð22Þ

~
kobs

avg

q
: ð23Þ

Using Newman’s global clustering coefficient CG~ 3|tD(G)
tz

3
(G)

[21],

we note that q3tD(G)~tD(G�) and q2tz
3 (G)~tz

3 (G�) because

each edge is selected with probability q. Thus,

C�G~
3|tD(G�)

tz
3 (G�)

~
3q3|tD(G)

q2tz
3 (G)

~qCG:

Thus,

ĈCG~
1

q
C�G: ð24Þ

We compute the maximum degree with the same method as

described in in the subsection on sampling by nodes because the

number of neighbors of a node scales the same in both cases.

Using these estimates, we find relatively low error in the predicted

the network measures for N,M,kavg,kmax, and CG (Tables S6–S10

in Materials S1).

Several networks’ giant components exhibit similar patterns of

resilience when sampling by nodes or failing links. Comparing the

resilience of the proportion of nodes in the giant component under

sampling by nodes vs. failing links, we see that Erdös-Rényi

random graphs, random graphs with preferential attachment,

Airlines, Condensed matter, C. elegans, and Powergrid networks

all perform relatively similarly under the two sampling regimes. A

noticeable difference is seen in Small world, Range dependent,

Karate club, and Dolphin networks. In the case of Small world

and Range dependent networks, the regularity of the underlying

lattice in these networks means that each time a node is not

observed, this also means that kavg edges are also missing. Given

that the majority of nodes have roughly the same degree for these
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networks, subsampling fractures the giant component quickly (i.e.,

for q around 0.7 and 0.8 respectively). In the case of the small

Karate club and Dolphins networks sampled by nodes, the

proportion of nodes in the giant component increases with

decreasing q. In these cases, the network consists of relatively few

nodes, which are connected. In contrast, when examining the

failing links case, we have all nodes present, but these nodes are

missing almost all links and the network is highly disconnected.

Figure S7 in Materials S1 reveals the distortion of the CCDF

when links fail in a network and all nodes remain known to the

observer. Clearly, there are nodes of degree zero that are observed

in this sampling regime. The predicted degree distribution is

obtained by the methods described under sampling by nodes

(including the treatment of observed nodes of degree zero) and

presented in Fig. S8. The results of the two sample Kolmogorov-

Smirnov test reveal that the estimated degree distribution and the

true degree distribution are statistically indistinguishable for q$0.3

for most networks (Fig. S17 in Materials S1). As previously noted,

the large number of observations in degree distribution for the

random graph grown with preferential attachment leads to high

statistical power and a low Dcrit.

Sampling by links
The problem of missing links may also manifest itself in another

manner. In contrast to the case when all nodes are known and

some links are hidden, we now consider subnetworks generated by

sampled links and the nodes incident to those links (Fig. 3). This

type of sampling occurs in many social network settings, such as

networks constructed from sampled email exchanges or message

board posts. In this case, we have data pertaining to messages

(links). Nodes (individuals) are only discovered when a link (email)

which connects to them is detected.

In this case, edges are sampled uniformly at random and we

may use our previous estimator, M̂M~ m
q
. Node inclusion is biased,

however, in that nodes of high degree will be detected with greater

probability than nodes of low degree precisely because they are

more likely to have an incident edge sampled.

To motivate an appropriate predictor, we must first consider

how the number of nodes in a subnetwork obtained by the

subnetwork generated by sampled links scales with q (Figs. S9a and

S10a in Materials S1). To do this, let us consider the probability

that a node is included in such a subsample. If the number of edges

not sampled (M–m) is less than the degree k(ui) of node ui, then we

can be certain that our node of interest will be detected in

sampling. On the other hand, if M{m§k(ui), then the

probability of ui being in the subnetwork scales nonlinearly with

q. Using the framework set forth by Kolaczyk [3], observe that

there are
M{k

m

� �
ways of choosing m edges from the M{k

edges not incident with node ui and there are
M

m

� �
total ways of

choosing m edges from all M. Thus, we have

Pr(ui is sampled)~1{Pr(no edge incident to ui is sampled)

~
1{

M{k(ui)

m

 !

M

m

 ! , if mƒM{k(ui)

1, if mwM{k(ui):

8>>>>>>><
>>>>>>>:

The Horvitz-Thompson estimator given by

N̂N~
X

vi[V�

1

pi

, ð25Þ

where pi~Pr(ui is sampled).

Kolaczyk [3] warns that this may not be a useful result, due to

the fact that the true degree of a given node is likely to be

unknown. We overcome this limitation by using our predicted

degree distributions obtained by the techniques previously

mentioned. Observe that when sampling by links, no nodes of

degree zero will be observed. We also note that in the case when

k%M and m, we may make the following approximation which is

less computationally burdensome:

M{k

m

 !

M

m

 ! ~
(M{k)!M{m)!

M!(M{m{k)!

~
(M{m)(M{m{1)(M{m{2):::(M{m{(k{1))

M(M{1)(M{2):::(M{(k{1))

~
M{m

M

� �
M{1{m

M{1

� �
:::

M{(k{1){m

M{(k{1)

� �

~ 1{
m

M

� �
1{

m

M{1

� �
::: 1{

m

M{(k{1)

� �

& 1{qð Þk(ui )for k(ui) relatively small compared

to m and M:

This is simply the probability that a node of degree k(ui)

loses all edges during subsampling q0(1{q)k and thus

Pr(not detecting ui)&(1{q)k(ui): Thus,

N̂N~
X

ui[V�

1

pi

ð26Þ

X
ui[V�

1

1{Pr(not detecting ui)
ð27Þ

~
X

ui[V�

1

1{(1{q)k(ui )
ð28Þ

We apply these methods to our simulated and empirical

networks.

Once N̂N and M̂M have been computed, the average degree is

simply k̂kavg~
2M̂M
N̂N

. The max degree scales roughly linearly for

preferential attachment models and many of the empirical

networks, however scales sublinearly in networks with a high

proportion of nodes of similar degree (e.g. the regular lattice

structure seen in Small world and Range dependent networks).

Clustering scales approximately as ĈC~ c
q

and the giant component

shows a critical threshold which varies according to network type
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and average degree. The relative errors of our predictors are

summarized in Tables S11–S15 in Materials S1. The scaling of Pk

and the predicted degree distribution are presented in Figs. S11

and S12.

To test the goodness of fit for the estimated degree distribution

and the true Pk, we again compute D~maxDFi,true{Fi,predictedD,
two sample Kolmogorov-Smirnov test statistic (Fig. S18 in

Materials S1). This figure shows that reasonable results are

achieved when qw0:50, a noticeable increase in the percent of

network knowledge needed, as compared to other sampling

strategies (sampling by nodes and failing links).

Sampling by interactions
Lastly, we consider the case of sampling by interactions in the

special case of a weighted network (Fig. 4). In this case, we begin

with G~(V ,E), where E is a set of edges, ej, with weight w(ej).

The weight on an edge represents the number of interactions

between two vertices. An alternative representation is simply a

network with multiple edge between two such vertices, one for

each interaction. A subnetwork generated by q
P

ej[E w(ej)

sampled interactions is simply a sampled collection of multi-edges

and the nodes incident to these edges (e.g., the subnetwork

generated by links with nonzero weight and nodes incident to

those edges).

To consider how the number of nodes scales, we consider a

similar formulation as discussed in the previous section for the

probability that a given node is selected when sampling by links,

however instead of the degree of a node, k(ui), we are now

interested in the strength of a node. The strength of a node is given

by s(ui)~
P

ej[N (ui)
w(ej), where N (ui) denotes the neighborhood

of vertex ui [47]. Let L~
P

ej[E w(ej) represent network load and

‘~qL, the number of sampled interactions. If the number of

interactions which are not sampled (L{‘) is less than the strength

of a node s(ui), then we can be certain that node ui will be detected

in sampling.

On the other hand, if L{‘§s(ui), then there are at most

L{s(ui)

‘

� �
ways of choosing ‘ interactions from the L{s(ui)

interactions not involving node ui. As an upper bound, we assume

that the L{s(ui) interactions are distributed over L{s(ui) edges

(weight of 1 on each edge) which maximizes the number of ways

these could be chosen. There are at most
L

‘

� �
total ways of

choosing ‘ (distinct, labeled) interactions from all L. Letting m(i)
represent the probability that ui is sampled, we have

mi~1{Pr(no interaction incident to ui is sampled)

~
1{

L{s(ui)

‘

 !

L

‘

 ! , if ‘ƒL{s(ui)

1, if ‘wL{s(ui):

8>>>>>>><
>>>>>>>:

Thus, our Horvitz-Thompson estimator is,

N̂N~
X

ui[V�

1

mi

, ð29Þ

where mi~Pr(ui is sampled). This can be well approximated by

mi~1{(1{q)s(ui ): ð30Þ

It should be noted that the strength of a node is merely

predicted. Thus, effort must be made to predict the node strength

distribution in the same spirit as was previously done for the

degree distribution. To predict the node strength distribution, we

modify Equation 17 and predict an observed node of strength s to

be of strength s
q

in the true network. Applying this corrector to our

subsampled weighted networks, we find low relative error in the

predicted number of nodes for most networks (Tables S16 and S17

in Materials S1). An exception to this is Case I (Erdös-Rényi) for

q,0.55. We predict the node strength to be s
q
§2 and yet in this

case, the true network is unweighted (e.g., w(ej)~1,Vej[E). If

there is knowledge that the network is unweighted, this example

shows that the techniques from sampling by edges subsection will

yield much better results.

We now consider how the number of edges in the subnetwork

scales with the proportion of sampled interactions. The probability

of selecting an edge ej[E is equal to 1-Pr(not selecting edge ej).

Notice that when the ‘wL{w(ej), the edge ej is certain to be

included in the subsample. When ‘ƒL{w(ej), the probability of

not selecting edge ej is simply the number of ways of selecting the

L{w(ej) interactions ‘ at a time, which are not on edge ej divided

by the number of ways of selecting ‘ weights from L.

Pr(ej is sampled)~1{Pr(no interaction along ej is sampled)

~
1{

L{w(ej)

‘

 !

L

‘

 ! , if ‘ƒL{w(ej)

1, if ‘wL{w(ej):

8>>>>>>><
>>>>>>>:

Thus, our Horvitz-Thompson estimator is,

M̂M~
X

ej[E�

1

lj

, ð31Þ

where lj~Pr(ej is observed), which is well approximated by

lj~1{(1{q)w(ej ): ð32Þ

Again, we must have knowledge of the edge weights, or be able

to predict them with reasonable accuracy. To do this, we predict

an edge of weight w(ej) in the subnetwork to be of edge weight
w(ej )

q

in the true network.

As the weights on edges tends to 1 (the unweighted network

case), we retrieve our result for how edges scale when links are

sampled (synonymous with weights in the case where wi~1):
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lim
w(ej )?1

Pr(ej is observed)~ lim
w(ej )?1

1{Pr(w(ej))

~ lim
w(ej )?1

1{

L{w(ei)

‘

 !

L

‘

 !

~1{

M{1

m

 !

M

m

 !

~1{
M{m

M

~
m

M

~q,

where q is the proportion of sampled links. Thus, when the weights

on edges tends to 1, our Horvitz-Thompson estimator is

M̂M~
X

ej[E�

1

lj

,

~
m

q
,

which recovers our previous result for scaling of edges when

sampling by links. The scaling of network statistics is demonstrated

in Fig. S13. The results of applying our estimation techniques to

the node strength and degree distribution are shown in Figs. S14

and S15. The relative error incurred for the predicted number of

edges is presented in Tables S18 and S19 in Materials S1.

Having found suitable predictors for N and M, the average

degree may be predicted by,

k̂kavg~
2M̂M

N
:

Applying these scaling techniques, we obtain reasonably low

error for both networks in both experiments 1 and 2 (Tables S20

and S21 in Materials S1).

To estimate kmax, we recognize that the observed max degree

will need to be scaled by roughly the proportion of missing edges.

Using M̂M
m

as our scaling factor, we find relatively high error for both

networks (Tables S22 and S23). This is due to errors in the M̂M

hindering accuracy in k̂kmax.

Estimating the size of the Twitter interactome
We now consider the weighted, directed network of replies

whereby a link from node ui to node uj represents the existence of

at least one reply directed from ui to uj and the weight on this edge

represents the number of messages sent in the time period under

consideration. We apply our methods to reply networks construct-

ed from tweets gathered during the ten week period from

September 9, 2008 to November 17, 2008, a period for which

we have a substantially higher percentage of all authored

messages.

For each of these weeks, we receive between 20–55% of all

messages posted on Twitter and similarly believe that we receive

approximately 20–55% of all replies posted in this period (Table

S24 in Materials S1). We apply our previously developed methods

to estimate the number of nodes, edges, strengths on these edges,

average degree, max degree, and distribution of node strength. To

help validate our predictions, we also predict the number of nodes,

edges, average degree, and max degree by performing 100

sampling experiments in which a proportion q of the observed

messages used for subnetwork construction. These sampling

experiments essentially ‘‘hide’’ some of the messages from our

view and thus allow us to consider how further subsampling

impacts the inferred networks statistics. Curve fitting over this

region of q allows us to extrapolate the network statistic to a

predicted value over increased percentages of observed messages.

We use this to validate with our estimated statistic using the

methods from the previous section.

Number of nodes. Since our reply networks are directed, we

consider both the number of nodes which make a reply (Nrepliers)

and the number of nodes which receive a reply (Nreceiver). As

expected from our previous discussion, the number of nodes scales

nonlinearly with the proportion of observed messages (Fig. 5). We

fit models of the form N = axb to observed data and in doing so

find an excellent fit (R2<0.99) for all weeks over the subsampled

region (Fig. 5). Extrapolating these fitted models to q = 1, we find

excellent agreement with our predicted number of nodes obtained

from Equations 29 and 30. The predicted number of nodes from

both methods agree to within 65%. Figure 6 reveals that the

predicted number of nodes is nearly double the number of

observed nodes.

Strength of nodes. Figure 7 depicts a log-log plot of the

predicted node strength distribution. This plot reveals that there

are fewer nodes in the high strength region than would be

expected in a scale-free distribution. Figure 8 reveals that low

degree nodes dominate the dataset and that many of these low

degree nodes often have low average edge weight (wavg&1:5). We

find a peak in the average weight per edge as a function of degree

around k&102. This peak is more pronounced for out-going

edges. Beyond this value, a limiting factor may prevent increases in

the weight per edge, a result also noted by Gonçalves et al. [48].

Number of edges. The number of edges can be predicted

using Equations 31 and 32. We present our results in Figure 9. In

all cases, the number of edges increases throughout the period of

the study. Figure 10 depicts the predicted edge weight and degree

distributions. The edge weight distribution shows that very few

(,.001%) edges have weight greater than 102. The degree

distribution of the observed subnetwork can be rescaled by

reassigning nodes of degree k, to nodes of degree M̂M
m

k. Figure 10

demonstrates a slightly heavier tail in the in-degree distribution as

compared to the out-degree distribution. The degree distribution

distinct neighbors. This value is approximately Dunbar’s number,

a value suggested to be the upper limit on the number of active

social contacts for humans [49].

Average degree. Once the number of nodes and edges have

been predicted for the network, we may simply compute the

average degree as k̂kavg,in~
M̂M

N̂Nreceivers
and k̂kavg,out~

M̂M
N̂Nrepliers

. Upon

doing so, we find that the average degree for Twitter reply
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networks is between 4 and 5 (Fig. 11). We find that the average in-

degree is less than the average out-degree (Fig. 12).

Maximum degree. The maximum degree simply scales in

proportion to the probability of edge inclusion. Since the

probability of edge inclusion is no longer q, as in the case of

sampling by links, we may approximate the probability of edge

inclusion by m
M̂M

and thus k̂kmax~
M̂M
m

kobs
max. The predicted maximum

degree for Twitter reply networks is shown in Figures 13 and 14.

Discussion

Network measures derived from empirical observations will

often be poor estimators of the true underlying network structure

of the system. We have explored four sampling regimes: (1)

subnetworks induced on randomly sampled nodes, (2) subnetworks

obtained when all nodes are known and some links fail or are

hidden, (3) subnetworks generated from randomly sampled links,

and (4) weighted subnetworks generated by randomly sampled

interactions. We have described how network statistics scale under

these regimes via sampling experiments on simulated and

empirical networks. Our paper advances an understanding of

how network statistics scale, and more importantly how to correct

for missing data when the proportion of missing nodes, links or

interactions is known.

A major obstacle to generating scaling techniques for subnet-

works generated by sampled links or interactions has previously

been the lack of a practical method for estimating the true degree

distribution or node strength distribution. Problematically, the

random selection of links creates a biased sample of nodes whereby

hubs are more likely to be detected, and nodes of small degree are

Figure 5. Number of nodes in Twitter reply subnetworks. (Left) The quantity Nrepliers is shown for Weeks 1 to 10, where each data point (dot)
represents the average over 100 simulated subsampling experiments. The dashed line represents the best fitting model of the form Nrepliers = axb to

doi:10.1371/journal.pone.0108471.g005

Figure 6. Predicted number of nodes in Twitter reply networks. The number of nodes observed for each week is depicted, along with the
predicted number of nodes obtained from curve fitting (Fig. 5) and Equation 28. The predicted number of nodes is nearly double the number of
observed nodes. The relatively low proportion of messages received for Week 5 (,25%) may be creating greater inaccuracies in the predictors for
that week.
doi:10.1371/journal.pone.0108471.g006
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the observed data. We extrapolate this model to predict Nrepliers. (Right) The same as panel, except for Nreceivers.



Figure 7. Predicted Ps for Twitter reply networks. (Left) The node strength distribution for in-coming interactions. (Right) The node strength
distribution out-going interactions. In both cases, the distribution is heavy tailed, but falls off faster than would be expected in a scale-free
distribution.
doi:10.1371/journal.pone.0108471.g007

Figure 8. In, Out-degree vs. Average edge weight for Twitter reply networks. (Top, left) The average in-coming edge weight for each node
of degree k is depicted in a logarithmically binned heatmap. (Top, right) The same as (a), except for out-going edges. (c.) The average weight per
edge for in-coming edges as a function of kin shows a gradual increase to kin<102 with a peak of approximately 2.2 interactions per edge. (d.) The
average weight per edge for out-going edges as a function of kout shows a gradual increase to kout<102 with a peak of between 2.5 and 3
interactions per edge.
doi:10.1371/journal.pone.0108471.g008
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Figure 9. Predicted number of edges in Twitter reply networks. (Left) A small proportion of observed messages for Week 5 (,25%) may
explain the spike in the estimated number of edges for that week. (Right) Each data point represents the number of directed edges observed,
averaged over 100 simulated subsampling experiments. The dashed line extrapolates the predicted number of edges for greater proportions of
sampled data.
doi:10.1371/journal.pone.0108471.g009

Figure 10. Predicted edge weight and degree distributions for Twitter reply networks. (Top) The predicted edge weight distribution.
(Bottom, left) Predicted Pr(kin) and (Bottom, right) Pr(kout) for Twitter reply networks.
doi:10.1371/journal.pone.0108471.g010
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Figure 11. (Left) Predicted kavg,in and (Right) kavg,out in Twitter reply networks.
doi:10.1371/journal.pone.0108471.g011

Figure 12. (Left) kavg,in and (Right) kavg,in for Twitter reply networks. Each data point represents the observed average in- and out-degree,
averaged over 100 simulated subsampling experiments. The dashed line extrapolates the predicted number of edges for greater proportions of
sampled data.
doi:10.1371/journal.pone.0108471.g012

Figure 13. (Left) Predicted kmax,in and (Right) kmax,out in Twitter reply networks.
doi:10.1371/journal.pone.0108471.g013
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more likely to go undetected. Although scaling methods have been

suggested, they are based on knowledge of (or a reasonable

estimate of) the degree or node strength distribution [3]. In this

paper, we have overcome this obstacle by our proposed scaling

techniques for the degree distribution and apply this to several

simulated and empirically derived networks with reasonably good

results.

Very few studies have addressed the missing data problem in

empirically studied networks, such as those constructed from

tweets. An exception is work by Morstatter et al. [2] who

compared network statistics for the current Twitter’s Spritzer

(<1% of all tweets) to the full Firehose (100% of all tweets),

however no methods for scaling from data collected via the API

were suggested.

We concluded our work by applying our derived scaling

methods to Twitter reply networks. Our work supports Dunbar’s

hypothesis which suggests that individuals maintain an upper limit

of roughly 100–150 contacts each week [49]. Further evidence for

this hypothesis comes from previous work in link prediction. Bliss

et al. [50] detect the Resource Allocation index to often evolve a

large, positive weight–thus contributing heavily (and positively) in

the prediction of new links. This index considers the amount of

time and attention one individual has as a ‘‘social resource’’ to

spend in the social network and assumes that each node will

distribute its resource equally among all neighbors. Although the

presence of hubs is suggestive of preferential attachment, it is clear

that the constraints of time and attention limit truly scale-free

behavior in weekly Twitter reply networks. We find that the

number of individuals who make replies is less than the number of

individuals who receive replies.

One limitation of our work is that our scaling methods are based

upon the assumption that the sampling fraction, q is known, while

in practice this need not be the case. In cases where one may

establish an upper and lower bound for q, our methods could be

used to help establish bounds for the predicted network measures.

In some cases, particularly when sampling by links or interactions,

small changes in q may have relatively little impact on the

predicted statistics, especially for large q. Future work that seeks to

classify subnetworks by network class based on signature

subsampling properties may also prove to be fruitful. With some

knowledge of network class or generative model, methods for

estimating q may be possible. Additionally, efforts to predict

structural holes in networks from localized information may also

greatly advance the field [51].

To our knowledge, this is the first attempt provide scaling

methods for kmax. While our scaling techniques for predicting kmax

perform well for several networks, they did not perform as well on

simulated networks with a regularized structure. Our rewiring

probability for the simulated Small world networks was quite low,

with p = 0.1. Our methods perform well on other networks which

are known to exhibit to Small world structure, such as our

empirical networks Powergrid and C. elegans. Future work which

detects and accounts for motif distributions may improve upon our

efforts here.

With an increased interest in large, networked datasets, we hope

that continued efforts will aid in the understanding of how

subsampled network data can be used to infer properties of the

true underlying system. Our methods advance the field in this

direction, not only adding to the body of literature surrounding

sampling issues and Twitter’s API [2], but also to the growing

body of literature on incomplete network data.

Supporting Information

Materials S1 Supporting figures and tables. Derivation of

Equation (2). Figure S1: Scaling of statistics for simulated

subnetworks induced on sampled nodes. Figure S2: Scaling of

statistics for empirical subnetworks induced on sampled nodes.

Figure S3: CCDF distortion for subnetworks induced on sampled

nodes. Figure S4: Predicted CCDF from subnetworks induced on

sampled nodes. Figure S5: Scaling of subnetwork statistics for

simulated networks obtained by failing links. Figure S6: Scaling of

subnetwork statistics for empirical networks obtained by failing.

Figure S7: CCDF distortion for subnetworks obtained by failing

links. Figure S8: Predicted CCDF from subnetworks obtained by

failing links. Figure S9: Scaling of subnetwork statistics for

simulated networks induced on sampled links. Figure S10: Scaling

of subnetwork statistics for empirical networks induced on sampled

links. Figure S11: CCDF distortion for subnetworks induced on

sampled links. Figure S12: Predicted CCDF from subnetworks

induced on sampled links. Figure S13: Scaling of subnetwork

statistics for simulated networks induced on sampled interactions.

Figure 14. (Left) kmax,in and (Right) kmax,in for Twitter reply networks. Each data point represents the observed maximum in- and out-degree,
averaged over 100 simulated subsampling experiments. The dashed line extrapolates the predicted number of edges for greater proportions of
sampled data.
doi:10.1371/journal.pone.0108471.g014
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Figure S14: Predicted node strength distribution for weighted,

simulated networks. Figure S15: Predicted degree distribution for

weighted, simulated networks. Figure S16: Kolmogorov-Smirnov

two sample test for true CDF and predicted CDF from

subnetworks induced on sampled nodes. Figure S17: Kolmo-

gorov-Smirnov two sample test for true CDF and predicted CDF

from subnetworks obtained by failing links. Figure S18: Kolmo-

gorov-Smirnov two sample test for true CDF and predicted CDF

from subnetworks generated by sampled links. Table S1: Error in

N̂N when sampling by nodes. Table S2: Error in M̂M when sampling

by nodes. Table S3: Error in k̂kavg when sampling by nodes. Table

S4: Error in k̂kmax when sampling by nodes. Table S5: Error in ĈC

when sampling by nodes. Table S6: Error in N̂N when failing links.

Table S7: Error in M̂M when failing links. Table S8: Error in k̂kavg

when failing links. Table S9: Error in ĈC when failing links. Table

S10: Error in k̂kmax when failing links. Table S11: Error in N̂N when

sampling by links. Table S12: Error in M̂M when sampling by links.

Table S13: Error in k̂kavg when sampling by links. Table S14: Error

in ĈC when sampling by links. Table S15: Error in k̂kmax when

sampling by links. Table S16: Error in N̂N when sampling by

interactions in an Erdös-Rényi random graph. Table S17: Error in

N̂N when sampling interactions in a Scale-free weighted network.

Table S18: Error in M̂M when sampling by interactions in an Erdös-

Rényi random graph. Table S19: Error in M̂M when sampling

interactions in a Scale-free weighted network. Table S20: Error in

k̂kavg when sampling by interactions in an Erdös-Rényi random

graph. Table S21: Error in k̂kavg when sampling interactions in a

Scale-free weighted network. Table S22: Error in k̂kmax when

sampling by interactions in an Erdös-Rényi random graph. Table

S23: Error in k̂kmax when sampling interactions in a Scale-free

weighted network. Table S24: Number of messages from

September 2008-November 2009.
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