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With frequent references in the media to climate 
change, the public often requests information 
on climate and its impacts. Local field offices 

of the National Oceanic and Atmospheric Adminis-
tration (NOAA)'s National Weather Service (NWS)  
encounter numerous climate-related questions, such 
as those related to expected weather in upcoming 
seasons, the causes of drought and the relationship 
to climate change, as well as the impacts of El Niño 
on snowpack. Many industries such as energy, ag-
riculture, agribusiness, transportation, and natural 
resource management integrate climate information 
into their planning and operating procedures on 
a regular basis. In addition, significant changes in 
national and international policies regulating actions 
of industrial enterprises require the use of scientifi-
cally sound climate information. In the United States, 
one such driver is the June 2013 President’s Climate 
Action Plan (www.whitehouse.gov/sites/default/files 
/image/president27sclimateactionplan.pdf), which 
states that “[t]he Administration will continue to lead 
in advancing the science of climate measurement and 
adaptation and the development of tools for climate-
relevant decision making by focusing on increasing 
the availability, accessibility, and utility of relevant 
scientific tools and information.”

NOAA Local Climate Analysis Tool (LCAT)
Data, Methods, and Usability

by Marina Timofeyeva-Livezey, Fiona Horsfall, Annette Hollingshead,  
Jenna Meyers, and Lesley-Ann Dupigny-Giroux

AFFILIATIONS: Timofeyeva-Livezey, Horsfall, and Meyers—
Climate Services Division, Office of Climate, Water, and Weather 
Services/NWS/NOAA, Silver Spring, Maryland; Hollingshead—
Innovim, Honolulu, Hawaii; Dupigny-Giroux—Department  
of Geography, University of Vermont, Burlington, Vermont

CORRESPONDING AUTHOR: Dr. Marina M. Timofeyeva,  
W/OS4, Climate Services, Rm. 13344, SSMC2, 1325 East  
West Highway, Silver Spring, MD 20910

E-mail: Marina.Timofeyeva@noaa.gov

DOI:10.1175/BAMS-D-13-00187.1

©2015 American Meteorological Society

NWS has responded to this increased demand for 
local climate information by developing the Local 
Climate Analysis Tool (LCAT). The tool provides 
rapid responses to climate questions that historically 
required an extensive data search, research on ap-
propriate analysis techniques, and complex graphics 
packages. LCAT offers easy and efficient access to 
scientifically sound analytical capabilities and trusted 
climate data. Results obtained from LCAT provide 
relevant climate information to local technical users, 
decision makers, and educators that will help build a 
healthy nation and create resilient communities.

Phase 1 of LCAT was launched into NWS op-
erations on 1 July 2013 (http://nws.weather.gov/lcat/). 
This paper describes the building blocks of LCAT, in-
cluding data, analytical capabilities, and applications, 
and outlines a vision for future capabilities.

LCAT DATA AND METHODOLOGY. To ensure 
that LCAT responds to the articulated needs for local cli-
mate studies, a team of representatives from the NWS field 
offices routinely collects and ranks needs for capabilities to 
be incorporated into LCAT. The team also helps to design 
the LCAT user interface and provides training on the tool’s 
features, methods, and usability. The development pro-
cess brings together scientific expertise from the NOAA 
internal and external climate community into Science 
Advisory Teams (SATs) who recommend methods and 
datasets for each LCAT analysis section. The LCAT de-
velopment and evolution cycle is an ongoing and iterative 
effort: the field representative team continually addresses 
new requirements, the SATs identify and recommend data 
and methods, and the development team creates code and 
conducts case studies to test the tool. Additional testing of 
new functions is done prior to implementation through a 
group of NWS users, who provide feedback to the devel-
opment team, which in turn addresses the comments or 
asks for additional guidance from the SATs.

The SATs recommended the following regional 
and site-specific datasets for LCAT initial capabilities:
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1)	 Station dataset of homogenized monthly and 
seasonal average, minimum, and maximum tem-
perature and total precipitation data for more than 
5,000 U.S. stations (Menne et al. 2009);

2)	 Climate Prediction Center (CPC)’s forecast region 
data of monthly and seasonal average temperature 
and total precipitation data for 102 CPC forecast 
regions (O’Lenic et al. 2008);

3)	 National Climatic Data Center (NCDC) climate 
division data of monthly and seasonal average, 
minimum, and maximum temperature, total pre-
cipitation, heating and cooling degree days, and 
several drought indices for 344 NCDC climate 
divisions (Guttman and Quayle 1996); and

4)	 Automated Climate Information System (ACIS) 
station data of monthly extremes for average, 
minimum, and maximum temperature, total pre-
cipitation, and snowfall (Hubbard et al. 2004).

Although the station data are available for the 
entire period of record (1895–present), the SATs rec-
ommended using the data from 1925 to the present 
as the most trusted data source because earlier data 
include too many inconsistencies. The regional data 
for forecast regions and climate divisions are available 
for the entire period of record (1895–present).

LCAT analysis components. The LCAT framework 
offers analyses of climate change impacts, climate 
variability impacts, and correlation. The analyses of 
climate change and climate variability impacts are 
generated on-the-fly and use the four datasets men-
tioned above. The correlation studies run directly 
through NOAA’s Earth System Research Laboratory 
(ESRL), producing correlation plots of various signals 
using the NCDC Climate Division data (www.esrl 
.noaa.gov/psd/data/usclimdivs/) or NCEP-R1 Reanaly-
sis data (www.esrl.noaa.gov/psd/data/correlation/).

Climate Change Impacts Analysis Techniques. The 
three trend techniques for analysis of local climate 
patterns and changes over long periods of time (Fig. 
1) are the Hinge trend-fitting technique, the Opti-
mal Climate Normal (OCN), and the Exponentially 
Weighted Moving Average (EWMA).

The hinge trend-fitting technique (Livezey et al. 
2007) uses a linear piecewise regression model (1) that 
allows reduction of the sampling error in estimating 
the model parameters. The hinge linear model consists 
of a zero slope section and a positive/negative slope 
section. The least-squares regression technique fits 

the hinge trend line to the data. Numerous empirical 
studies and model simulations have concluded that 
1975 is the most appropriate hinge anchor year (e.g., 
Livezey et al. 2007; Wilks and Livezey 2013).

  

( 1 )

where r is the year, S is the starting year, R is the last 
year, and xr = r–1975 is the number of years after 1975. 
The coefficients a and b are the constants from least-
squares regression over the entire data record:

  
   
 
 

where datar is the climate variable data for individual 
year of records, and N=R-S+1 is the total number  
of years.

The OCN (2) is a moving average of a time series 
over 10 years for temperature and 15 years for precipi-
tation (Huang et al. 1996; Livezey et al. 2007). LCAT’s 
OCN uses an 11-year moving average for temperature 
instead of 10 for the purpose of plotting the time 
series. Wilks and Livezey (2013) found that a 15-year 
averaging period for temperature may produce better 
results by yielding the smallest mean square error for 
predictions. LCAT allows averaging options for both 
time periods (11 and 15 years) for temperature. The 
OCN is plotted over the center year of each averaging 
period (Fig. 1).

where τ is the averaging period and r is the center 
point of n, which is the vector of data consisting of 
τ members. The OCNs for the first and the last half 
averaging periods are assumed to be equal to the first 
and last OCN values, respectively.

The third trend-fitting option available in LCAT is 
the EWMA (www.itl.nist.gov/div898/handbook/pmc 
/section3/pmc324.htm) whose computation (3) includes 
weighting the most recent 15-year period more heavily 
than the OCN technique. The EWMA method plots the 
values at the center point of the 15-year period:
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cal climate change. The hinge method tracks the most 
current state of climate at a location. The OCN and 
EWMA methods track changes in climate normals 
defined as a time series average of recent time peri-

ods such as 10/11, 15, or 30 years (www.nws 
.noaa.gov/directives/sym/pd01010004curr 
.pdf). To analyze climate change in terms 
of the current climate and climate normals 
together, the SAT recommends the use of 
an ensemble approach or the average of all 
selected trends (Fig. 1). The ensemble com-
putations also include the minimum and 
maximum values for all chosen trends to 
analyze variability in the ensemble spread 
and assess the uncertainty inherent in the 
data and methods: the bigger the spread, the 
greater the difference between the current 
climate and the climate normals.

LCAT computes the Rate of Change 
(ROC) of a climate variable over varying 
time frames ranging from annual to decadal 
to 30-year climatology. This rate of change 
represents the linear slope of a) the ensemble 
mean of selected trends, b) a single chosen 
trend, or c) the original time series.

A final option in the climate change im-
pacts section is the generation of a climate 
time series that would be observed if the 
present climate record were preserved over the 
entire period of record. Users can perform the 
Detrend option (Fig. 2) and take the difference 
between each individual observation and the 
trend ordinates. These differences are then 
added to the very last year of the trend (4).

where r is the individual data record and R 
is the last data record.

The approach assumes that variability 
in the climate data and climate change act 
independently from each other, thus their 
effects can be additive. Using the January/
February/March average temperature at the 

where τ is the EWMA period and r is the individual 
data record.

The OCN, hinge trend-fitting, and EWMA tech-
niques allow for the analysis of different features of lo-

Fig. 1. Extreme Southern Nevada Climate Division (#NV04) 
average temperature during January/February/March from 1940 
to 2014 for (top) all trend-fitting techniques (Hinge, EWMA, and 
OCN 11- & 15-year) and (bottom) ensemble (mean, maximum, 
and minimum) of all trend techniques.
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Extreme Southern Nevada Climate Division #NV04 
for the purposes of illustration (Fig. 2), the hinge 
trend-fitting method was used to remove the trend 
from the original time series, with the departures 
being added back to the last year of the trend (4). 
The SAT recommends using a detrended time series 
whenever a user needs to analyze climate variability 
in the context of current climate change.

Information on uncertainty is critical for results ob-
tained from analysis based on relatively short periods 
of instrumental records. Information on ROC confi-
dence intervals can help LCAT users decide whether 
climate change at the local level is significant or not. 
Von Storch and Zwiers (1999) recommend assessing 
confidence intervals of the linear regression slope as:

where t is the quantile of the t-distribution with n–2 
degree of freedom for specified confidence; σE is the 
standard deviation of the error in the regression fit; 
and Sxx is the sum of squared difference between the 
observed time series and its mean.

Table 1 displays the slope confidence intervals and 
the upper and lower limits of the slope computed for 
different methods for various confidence intervals 
for the Southern Nevada example (Fig. 2) average 
temperature during January/February/March from 
1940 to 2014. The hinge estimates for the confidence 
limits are also approximated from Eq. (5). Hinge slope 
estimates use piecewise regression, which is not com-
pliant with the Eq. (5) assumption of a simple linear 
regression. No standard statistical method is currently 
available to assess the exact confidence limits of the 
hinge slope. The authors are currently consulting with 
professional statisticians to identify a more appropri-
ate method and will address this issue in future work.

Given that the time series are 
short (75 years) and the data error 
is relatively large, the range of slope 
values can vary from slightly negative 
to a large positive. The slope confi-
dence limits, with qualifying error 
bars, do not provide usable informa-
tion for assessing the significance of 
climate change impacts. Analyses of 
signal-to-noise ratio may better infer 
the ROC significance. Livezey et al. 
(2007) recommend using the ROC 
as a measure of the climate change 
signal and root-mean-square error 
(RMSE) as a measure of climate 
variability. A signal-to-noise ratio 
value of 0.05 or greater indicates a 
very steep slope. This ratio implies 
the climate change signal in 20 years 

Fig. 2. Extreme Southern Nevada Climate Division (#NV04) aver-
age temperature during January/February/March from 1940 to 2014. 
Shaded area is the difference between detrended data and the original 
dataset.
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Table 1. ROC confidence intervals computed for different trend methods and confidence intervals for Extreme 
Southern Nevada Climate Division #NV04 average temperature during January/February/March from 1940 
to 2014.

	Confidence	 Hinge*ROC=0.094	 OCN11 ROC=0.07	 OCN15 ROC=0.071	 EWMA ROC=0.064

	 Level	 Lower*	 Upper*	 Lower	 Upper	 Lower	 Upper	 Lower	 Upper

	 75%	   0.036	 0.152	   0.003	 0.137	   0.000	 0.142	 −0.008	 0.136

	 90%	 −0.016	 0.204	 −0.058	 0.198	 −0.065	 0.207	 −0.073	 0.201

	 95%	 −0.048	 0.236	 −0.095	 0.235	 −0.104	 0.246	 −0.112	 0.240

*	 Hinge slope confidence intervals use a method assuming simple linear regression; the actual estimates 
should be different for slope of piecewise regression.

(5)
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will be as large as the standard measure of the noise 
(climate variability); the signal will be twice as large as 
the noise in 40 years. The Southern Nevada example 
(Fig. 1) estimates the hinge signal-to-noise ratio as 
0.057, indicating a significant rate of climate change 
in comparison to climate variability. The tempera-
ture normals (OCN and EWMA) also indicate swift 
changes, although not as rapid as the actual tempera-
ture records (hinge): signal-to-noise ratios are 0.038 
for OCN-11, 0.038 for OCN-15, and 0.033 for EWMA. 
LCAT will include the information on the ROC error 
bar and the signal-to-noise ratio as resources permit.

Climate Variability Impacts Analysis Techniques. The 
LCAT climate variability impacts section provides 
composite analysis of relationships between climate 
variability drivers, such as the El Niño–Southern 
Oscillation (ENSO) and local climate variables.

CPC applies composite analysis operationally to 
their monthly climate outlooks (Huang et al. 1996; 
Xie et al. 2010). Composite analysis is a sampling tech-
nique that compares the probability distributions of 
an entire time series with the conditional probability 
of a certain local response observed during telecon-
nections, such as an ENSO event or the North Atlantic 
Oscillation (NAO). LCAT extends CPC’s composite 
analysis methodology with two additional techniques.

The first is a test of composite significance to assess 
whether the relationship between the climate variability 
signal and local climate is random or represents a true 
signal. Significance testing allows the user to assess 
whether a statistically significant relationship exists 
between the climate variability signal (teleconnection) 
and the local climate (e.g., total precipitation, maxi-
mum or minimum temperatures). The test evaluates 
whether a unique outcome falls within a 10% tail of a 
hypergeometric distribution, which is used to describe 
all possible outcomes of a certain category of the local 
climate (Above, Near, Below Normal) to occur during 
a given phase of a teleconnection (Wolter et al. 1999).

The second technique is a trend adjustment to 
study climate variability in the context of the current 
state of climate change. The composite analysis with 
trend adjustment uses detrended time series (4) and 
univariate statistics of climatology to define catego-
ries and compute the probability of occurrence for a 
certain category during various phases of ENSO and 
other teleconnections.

Figure 3 shows composite analysis for Extreme 
Southern Nevada Climate Division #NV04 for Janu-
ary/February/March average temperature. The top 

bar graph represents the likelihood of each category 
in the time series. The temperature categories are de-
fined by comparing all observations with those of the 

Fig. 3. Composite analysis for Extreme Southern Ne-
vada Climate Division (#NV04) average temperature 
during January/February/March from 1950 to 2014. 
(top) Historical data distribution, (middle) composite 
analysis on raw data, and (bottom) composite analy-
sis on data with the hinge trend adjustment. Bolded 
outline of the bars indicates statistically significant 
outcomes at 10% error level.
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climatological period of 1981–2010. The data indicate 
the presence of a warming trend: there is a greater 
chance for below-normal temperatures observed dur-
ing the period of analysis because the data have been 
compared with the relatively warm climatological 
reference period of 1981–2010. This means more data 
during the period from 1950–2014 were as cold as the 
coldest 10 years during the period of 1981–2010—or 
in other words, the temperatures were more often 
as cold or colder than the climatological threshold 
for the Below Normal category. Composite analysis 
on the raw data (middle bar graph) propagates the 
bias and provides misleading guidance as to what to 
expect during ENSO events for this local area. The 
adjustment to trend (bottom bar graph) indicates 
that the climate change signal is more dominant than 
the ENSO signals—regardless of ENSO phase—and 
that the likelihood for above-normal temperatures is 
greater than any other category.

The anomalies option in the LCAT climate vari-
ability analysis section provides the difference be-
tween the mean of a given variable (e.g., maximum 

temperature or total precipitation) during the selected 
phase of a teleconnection (e.g., La Niña) for the period 
of interest (1-month or 3-month season) from clima-
tological normals. The boxplot analysis allows users 
to obtain historical distributions of a variable for the 
period of interest associated with different signal event 
phases. Additionally, LCAT time series analysis pro-
vides histograms, along with values of skewness and 
kurtosis in the output as a graphical representation of 
the distribution of the user-selected input data.

DEVELOPMENT OF LCAT CODE AND USER 
INTERFACE. The LCAT development team consists 
of a scientific programmer and a web designer who 
translates the SAT-recommended methods into the 
tool. Routine tests that include a step-by-step compari-
son between the LCAT code and an Excel method are 
conducted to insure correctness and accuracy of com-
putations. These LCAT computation tests also include 
benchmarking output with peer-reviewed publica-
tions to insure consistency and accuracy of methods. 
Figure 4 demonstrates four case studies produced by 

Fig. 4. Benchmark using peer-reviewed publication of rate of long-term temperature and precipitation 
change (Livezey et al. 2007) vs LCAT regional case studies.
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LCAT using the same dataset and period, positively 
duplicating results published in Livezey et al. (2007). 
The SATs evaluate such case studies prior to approval 
and operational deployment.

LCAT output provides decimal precision using 
NOAA’s conventional practice: the first-moment statis-
tics (mean, median) contain 100th-decimal precision, 
while all higher-moment statistics such as standard de-
viation, skewness, and kurtosis contain 1,000th-decimal 
precision. The annual ROC 1,000th-decimal precision is 
important to more accurately describe the phenomenon. 
The decadal and climatological ROC decimal precision 
corresponds to the precision of the first-moment statis-
tics. The primary motivation to report such decimal 
precision in LCAT statistics is to reduce computational 
errors due to different systems’ rounding processes. 
Users may reduce decimal precision to fit their needs.

The NWS Internet Dissemination System (NIDS) 
hosts the LCAT operational system in a Linux envi-
ronment using code scripted in Linux shell, Perl, R, 
and XML languages. The middleware code is inte-
grated using Perl, PHP, JSON, jQuery, HTML, and 
XML languages.

The LCAT web interface generates analysis results 
on the fly in response to user-specified queries. LCAT 
forwards users’ requests to the main Perl module that 
retrieves the requested dataset, runs the analysis, 
and returns the results in both graphical and textual 
format. Each query produces uniquely numbered 
output (which facilitates revisiting the same analysis 
at a later date) available for download in different 
formats (e.g., PDF, XML, CSV, etc.). The web-interface 
output includes scrollable graphics with correspond-
ing statements, a variety of data statistics, metadata, 
a reiteration of the user’s request, and an assortment 
of download options for all input and output. On-the-
fly generation bypasses the need for either complex 
programming or the storage of large data volumes.

To insure consistency of the methodology across 
requests and datasets, LCAT code packages the algo-
rithms for each analysis type into smaller, universal 
modules that can be accessed rapidly and applied to 
all datasets. Figure 5 demonstrates the general LCAT 
model. LCAT provides three mechanisms of user 
support: 1) Training modules located on the homep-
age “LEARN” tab that detail data, scientific methods, 
and potential applications, with special emphasis on 
LCAT’s appropriate and inappropriate uses; 2) Inter-
pretation statements that accompany each image and/
or analysis type to promote correct translation and ap-
plication of results; and 3) Help buttons located within 

every section that guide users through the tool. LCAT 
users are strongly encouraged to make use of the train-
ing modules and support tools to maximize proper 
application and comprehension of LCAT output.

LCAT APPLICATIONS. NWS climate services staff 
and technical decision makers are the main target 
audience for LCAT. Some examples of local impacts 
inquiries that NWS field offices receive on a regular 
basis are:

•	 How quickly has our minimum temperature risen 
over the last 50 years?

•	 Is our region getting wetter or drier?
•	 Will our precipitation change because we are head-

ing into a given ENSO phase?

Changes in atmospheric dynamics during ENSO 
phases influence temperature and precipitation pat-
terns across much of the United States. LCAT offers 
the ability to understand and analyze local climate 
change and variability of minimum and maximum 
temperatures, degree days, and drought. This capabil-
ity provides a first step in developing new operational 

Fig. 5. The basic model of LCAT structure and flow.
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local climate products that can move beyond average 
temperature and total precipitation outlooks currently 
available in NWS. LCAT may also improve NWS cli-
mate services’ effectiveness and delivery through rapid 
acquisition of data and analysis techniques.

LCAT’s data access and analysis capabilities also 
serve state climatologists in their duty to provide 
research, communication, education, and outreach to 
diverse communities and stakeholders. Here too, user 
inquiries run the gamut from  the comparison of a giv-
en storm or temperature extreme with its entire period 
of record to the rate of change in selected climate vari-
ables over the recent past vis-à-vis decades-to-century 
time scales. These queries are often intricately linked 
to decision-support strategies by town, county, or 
state agencies within a region. Examples of decision-
support services include advanced preparedness and 
planning for extreme weather and water events that 
can be achieved through the understanding and effec-
tive use of information on weather–climate linkages. 
State climatologists and other climate service provid-
ers may use LCAT to assist stakeholders in gaining a 
more in-depth understanding of climate information 
applications. Their offices are also in the position to 
provide feedback on LCAT enhancements in terms of 
stakeholder-driven analyses. They may use the tool 
to add local value to climate outlooks, data analysis, 
decision-support guidance, climate assessments, and 
education. For example, state climatologists may use 
LCAT to periodically report current local rate of 
change of various climate parameters to stakehold-
ers. This may include incorporating LCAT ENSO 
impact output results as an additional climate product 
on their websites. The use of LCAT as well as other 
NOAA climate tools in state climate offices adds a 
level of consistency between their climate services 
and NOAA's and can minimize user confusion about 
climate information provided by different sources.

LCAT’S FUTURE. The principles behind the core 
of LCAT are what make the tool unique. The current 
capabilities reflect only a fraction of what is possible. 
While LCAT is meeting the immediate needs of NWS 
forecasters to provide rapid responses to customer 
requests, the tool can potentially incorporate varied 
datasets and analysis techniques.

Since LCAT’s launch in July 2013, the tool’s 
membership has exceeded 650 registered users as of 
September 2014, many of whom come from NOAA, 
other governmental offices, the media, academia, 
water resources management, energy facilities, and 

educators. Existing partnerships include collabora-
tions with NCDC and the Northeast Regional Climate 
Center for the provision of data, and NOAA’s CPC and 
ESRL, the National Drought Mitigation Center, the 
Desert Research Institute, the American Association 
of State Climatologists, and the University of Arizona 
for advice on the scientific methods employed. The 
Department of Energy (DOE) is building the DOE 
Climate Analysis System (DCAS) that is based on 
LCAT principles and utilizes the LCAT codes and user 
interface. Common interests of the DOE and NWS 
have allowed accelerated development of the capabil-
ity of LCAT to conduct local climate studies using 
future scenarios from the Intergovernmental Panel 
on Climate Change (IPCC) Fifth Assessment Report 
Models (AR5) (http://cmip-pcmdi.llnl.gov/cmip5/).

LCAT help buttons, training, and interpretation 
statements foster understanding of climate analysis. 
While these features are useful for technical users, non-
technical groups will benefit from improvement to this 
area. At the present time, the climate community con-
tinues to investigate methods for better communicating 
climate information. Future development of LCAT will 
leverage research advancements in communication 
techniques, thus enabling a greater understanding of 
local climate impacts presented by the tool.

The future of LCAT’s development depends on 
engagement with the LCAT user community and the 
societal challenges supported by NOAA. Potential 
future collaborators include the Center for Disease 
Control and Prevention (CDC) and the National Insti-
tutes of Health (NIH) to develop climate applications 
for health-related decision making—for example, the 
analysis of regional and local mortality and morbidity 
resulting from extreme heat events or vector-borne 
diseases. LCAT provides valuable information on 
climate impacts for water and weather events that 
contributes to preparedness activities and advance 
planning in the face of our changing climate. This 
is a critical component to building a Weather-Ready 
Nation and supporting societal challenges outlined 
in the NOAA Next Generation Strategic Plan (www 
.ppi.noaa.gov/ngsp/).
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