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Abstract 19 

Landscapes are thought to respond to changes in relative base level through the upstream 20 

propagation of a boundary that delineates relict from adjusting topography. However, spatially-21 

variable rock strength can influence the topographic expression of such transient landscapes, 22 

especially in layered rocks, where strength variations can mask topographic signals expected due 23 

to changes in climate or tectonics. Here, we analyze the landscape response to base-level fall in 24 

Young Womans Creek, a 220 km2 catchment on the Appalachian Plateau, USA underlain by 25 

gently folded Paleozoic sedimentary rocks. We measured in situ 10Be concentrations in stream 26 

sands from 17 nested watersheds, and used a spatially-distributed model of sediment and 10Be 27 

production to constrain a threefold increase in the rate of base-level fall propagating upstream 28 

from the catchment outlet. Using lidar topography and a nearby detailed stratigraphic section, we 29 

map the extent of continuous, blocky, resistant sandstone strata that act as a caprock overlying 30 

more easily erodible sandstones and siltstones. The caprock influences landscape response in two 31 

ways. First, it serves as a boundary between slowly eroding (11.5 m Myr-1), low-sloping (3-5°) 32 

areas of relict topography and lower, steeper portions of the landscape adjusting to base-level 33 

fall. Second, hillslopes supported by the overlying caprock are armored with coarse sediment and 34 

are significantly steeper (20-30°) than hillslopes where the caprock has been eroded (10°), 35 

despite having similar erosion rates (36 m Myr-1) and bedrock substrate. Our results illustrate 36 

how gently dipping, layered rocks engender complicated relationships between lithology, 37 

topography and erosion rate, highlighting the importance of understanding how rock material 38 

properties influence surface processes and landscape evolution. 39 
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1. Introduction 40 

Transient landscapes, defined as landscapes still adjusting to spatiotemporal variations in 41 

climate, tectonics, or rock strength, provide opportunities for reconstructing the timing of past 42 

conditions important for understanding landscape evolution (Kirby and Whipple, 2012; 43 

Whittaker, 2012). Landscape adjustment is thought to be driven by the upstream propagation of a 44 

boundary that delineates a relict landscape, which retains information about past base-level 45 

conditions, and an adjusting landscape that moves towards equilibrium with new boundary 46 

conditions (e.g., Crosby and Whipple, 2006). Field observations from studies of transient 47 

landscapes developed in homogeneous crystalline rocks show broadly similar behavior—an 48 

increase in the relative rate of base-level fall leads to steepened river channels, steepened 49 

hillslopes, and higher erosion rates downstream of knickpoints that separate relict from adjusting 50 

landscapes (e.g., Gallen et al., 2011; Hurst et al., 2012; DiBiase et al., 2015). 51 

In landscapes with heterogeneous lithology, both the propagation and the topographic 52 

signatures of changes in base level are modulated by differences in rock strength (e.g., Cook et 53 

al., 2009). In particular, landscapes characterized by gently-dipping layered rocks can either 54 

mimic the morphology of transient landscapes (e.g., Miller, 1991) or lead to complicated 55 

feedbacks between base level, erosion rate, and topography (Forte et al., 2016; Perne et al., 2017; 56 

Yanites et al., 2017). Consequently, inferring climate and tectonic histories of landscapes with 57 

layered rocks is not straightforward. 58 

In situ-produced cosmogenic nuclides in stream sediment (e.g., 10Be in quartz) provide a 59 

way to measure catchment-averaged erosion rates over timescales necessary to evaluate the 60 

nature and degree of landscape disequilibrium. When applied to steadily eroding landscapes, the 61 

concentration of 10Be in stream sediments is inversely proportional to erosion rate (Brown et al., 62 
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1995; Granger et al., 1996). However, in transient landscapes the concentration of 10Be will 63 

reflect an average apparent erosion rate that depends on the spatially-variable erosion rates, 64 

isotope production rates, and quartz distribution in the landscape (Bierman and Steig, 1996). It is 65 

straightforward to assess, using stream sediment 10Be concentration, the erosion rates of 66 

landscapes above knickpoints, where erosion is typically uniform; it is more challenging to 67 

interpret the 10Be concentration samples downstream of knickpoints that reflect an unknown 68 

spatial variability in erosion rate (e.g., Willenbring et al., 2013). 69 

In this paper, we use detrital in situ-produced 10Be concentrations in stream sands from 70 

nested catchments to determine the spatial variation of erosion rate in a transient landscape 71 

developed into gently-folded layered sedimentary rocks. We use lidar-derived topography and a 72 

detailed stratigraphic section to map the extent of a resistant caprock unit. Topographic and 73 

geologic maps aid in determining potential spatial patterns in erosion rate. Using a spatially-74 

distributed 10Be flux model that traces the production and transport of in situ produced 10Be in 75 

quartz throughout the landscape, we compare modeled versus observed detrital sample 10Be 76 

concentrations to determine the best-fit spatial pattern of erosion rates. We then assess the 77 

topographic expression of this scenario and discuss the implications of caprock layers for 78 

modulating landscape response to base-level fall. 79 

2. Study area 80 

We focus our analysis on Young Womans Creek, a 220 km2 tributary to the West Branch 81 

Susquehanna River draining the unglaciated Appalachian Plateau (Fig. 1). At long wavelengths 82 

(>10 km), the topography of the Appalachian Plateau reveals the structure of the underlying 83 

gently-folded Paleozoic strata (Fig. 1D). Higher topography is generally associated with 84 
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synclines capped by resistant sandstone units, and breached anticlines tend to expose more 85 

erodible underlying units and form topographic lows (Hack, 1960). Modern climate varies 86 

minimally over the Appalachian Plateau due to the limited total relief across the region (600 m), 87 

and Young Womans Creek receives mean annual precipitation of approximately 1100 mm/yr 88 

(30-year normals covering 1981-2010 (http://prism.oregonstate.edu)). Superimposed on this 89 

structural control of long-wavelength topography are a series of incised valleys that flow into the 90 

Susquehanna River. The boundary between low-relief, high-elevation topography and the steeper 91 

incised valleys is demarcated by a series of river knickpoints argued to reflect a late Cenozoic 92 

increase in the rate of base-level fall that has propagated upstream along the Susquehanna River 93 

and its tributaries (Miller et al., 2013). Detrital 10Be derived erosion rates determined from 94 

watersheds below these knickpoints range from 50-100 m Myr-1, whereas erosion rates above 95 

knickpoints are 5-30 m Myr-1 (Reuter, 2005; Miller et al., 2013). This large-scale landscape 96 

disequilibrium is challenging to reconcile with the long-term tectonic quiescence of the 97 

Appalachian Mountains (Hancock and Kirwan, 2007; Portenga et al., 2013; Gallen et al., 2013) 98 

and likely requires epeirogenic mechanisms of surface uplift, perhaps due to mantle-driven 99 

dynamic topography (e.g., Moucha et al., 2008; Miller et al., 2013). 100 

At the hillslope scale (10s of m), the topography of the Appalachian Plateau reflects 101 

contrasts in rock strength resulting from alternating beds of layered, clastic sedimentary rocks. 102 

The rocks exposed at Young Womans Creek are primarily composed of Late Devonian to 103 

Mississippian sandstones and siltstones that include the Catskill, Huntley Mountain, and 104 

Burgoon Formations (Fig. 1B) (Berg et al., 1980). The Late Devonian Catskill Formation 105 

consists primarily of deltaic and lower fluvial-plain red beds of interbedded siltstones and fine-106 

grained litharenites, the whole being approximately 40% sandstone. The litharenites are thickly-107 
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laminated to thin-bedded and display fissile-flaggy parting when naturally weathered (Colton 108 

and Luft, 1966; Berg and Edmunds, 1979). The Huntley Mountain Formation consists of a 109 

conformable, 200-m-thick transition zone in which thin-bedded litharenites identical to those of 110 

the Catskill Formation transition upwards to thick-bedded, slabby, blocky sublitharenites of the 111 

overlying Burgoon Formation. The Huntley Mountain sandstones are arranged in approximately 112 

nine major fluvial fining-upwards sequences, the whole being approximately 85% sandstone 113 

(Fig. 1C). The Mississippian Burgoon Formation caps the sequence (Fig. 1C). It comprises 114 

predominately medium-grained, buff, strongly trough cross-bedded sublitharenites that exhibit 115 

slabby, rubbly, and blocky fragmentation, with less than 5% thin shales and coal. The base of the 116 

Burgoon Formation is commonly conglomeratic and locally lies on a regionally persistent red 117 

shale in the Huntley Mountain Formation called the Patton Shale (Colton and Luft, 1966; Berg 118 

and Edmunds, 1979). Thus, at Young Womans Creek there is a systematic trend up-section from 119 

weak to strong lithologies (assuming the thickness of sandstone beds and thus joint spacing (e.g., 120 

Gross, 1993) is reflective of rock strength), with the upper Huntley Mountain Formation and 121 

Burgoon Sandstone acting locally as a resistant caprock (Fig. 1C). The implication of this 122 

strength gradient on the expression of landscape adjustment to base-level fall is the focus of this 123 

study. 124 

3. Methods 125 

3.1 Detrital in situ-produced 10Be measurement in stream sands 126 

We collected 17 nested fluvial sediment samples within the watershed of Young Womans 127 

Creek, from catchments ranging in size from 1 – 220 km2 (Fig. 2A). Samples were collected in 128 

active channel deposits at least 20 m upstream of major tributary junctions and sieved in the field 129 

to the 250-850 μm sand fraction. We purified quartz from these samples following Kohl and 130 
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Nishiizumi (1992) and extracted 10Be following the methods of Corbett et al. (2016). 10Be/9Be 131 

ratios were measured at Lawrence Livermore National Laboratory in July 2017 and normalized 132 

to ICN standard 07KNSTD3110 with an assumed value of 2.85 × 10-12 (Nishiizumi et al., 2007). 133 

Our reported 10Be/9Be ratios (Table 1) were corrected using an average of n=3 process blanks 134 

(6.43 ± 2.00 × 10-16). To calculate apparent erosion rates (i.e., assuming uniform watershed 135 

erosion), we determined the mean latitude, longitude, and elevation for each watershed and used 136 

this value and a rock density of 2.7 g cm-3 as inputs to the online CRONUS calculator, using 137 

wrapper script version 2.3, calc. 2.1, function 2, constants 2.3, muons 1, and the default 138 

calibration dataset (Balco et al., 2008). Following DiBiase (2018), we make no topographic 139 

shielding corrections for calculating apparent catchment-mean erosion rates. 140 

3.2 Topographic analysis and mapping 141 

We used a 3-m resolution lidar digital elevation model 142 

(http://www.docs.dcnr.pa.gov/topogeo/pamap/lidar/) to analyze hillslope and channel 143 

morphology and map the extent of caprock and caprock-supported topography in the Young 144 

Womans Creek catchment. We used the Pennsylvania statewide digital geologic map (Berg et 145 

al., 1980) to infer geology at the regional scale (Fig. 1A) and used lidar hillshade and slope maps 146 

to construct and refine a geologic cross section (Fig. 1C). 147 

For Young Womans Creek, we generated hillshade and slope maps for visualization, and 148 

then used these to construct two geomorphic maps to derive spatial patterns in erosion rates: one 149 

map is characterized by topography alone (Fig. 2B), and the second is based on both topography 150 

and geology (Fig. 2C). Because relationships between mean slope and erosion rate are not valid 151 

at local (i.e., sub-hillslope) scales (e.g., Roering et al., 2007), we partitioned the landscape into 152 

zones with similar hillslope morphology, resulting in 75 “patches” ranging from <1 km2 to 20 153 
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km2. These patches were mapped using hillshade and slope base maps, and chosen to be large 154 

enough to incorporate multiple hillslopes such that the mean slope of each patch is comparable to 155 

the catchment-averaged slopes of sample watersheds and the mean hillslope angle from hillslope 156 

transport model predictions (e.g., Roering et al., 2007). We used the relationship between mean 157 

hillslope angle and apparent erosion rate determined for catchments in Young Womans Creek 158 

(Table 2) to define a linear least squares regression model for converting our map of patch mean 159 

slope (Fig. 2B) to a spatially-distributed map of erosion rates for input into our 10Be flux model 160 

(see Section 3.3). We also combined our data with previously published detrital 10Be data from 161 

the Appalachian Plateau extending to steeper slopes (Reuter, 2005; Miller et al., 2013) to 162 

constrain a nonlinear soil transport model for comparison. 163 

For our combined topographic and geologic map, we aimed to map the extent of the 164 

resistant caprock consisting of the upper Huntley Mountain Formation and the Burgoon 165 

Formation, partitioning the remaining stratigraphically lower landscape into areas that retained 166 

the resistant caprock and areas where this caprock has been eroded from ridgelines. Initially, we 167 

used the Pennsylvania statewide digital geologic map (Berg et al., 1980) and a more detailed 168 

1:24,000 scale map of the easternmost area of Young Womans Creek (Colton and Luft, 1966). 169 

We then refined our mapping of the caprock boundary by using a nearby (30 km SE) 170 

stratigraphic section of the upper Catskill Formation to Burgoon Formation (Berg and Edmunds, 171 

1979) to identify the prominent base of uppermost blocky sandstone in the Huntley Mountain 172 

Formation (Star, Fig. 1B; Fig. 1C). The base of this marker bed was traced throughout the study 173 

area using the 3-m lidar slope map, and we defined as “caprock” everything above this 174 

stratigraphically (including the overlying Pottsville and Mauch Chunk Formations). We then 175 

used the extent of this caprock unit to map the remaining hillslopes as “caprock present on 176 
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ridgelines” or “caprock eroded” if no caprock was present on ridgelines. Last, we mapped the 177 

extent of alluvial valley flats based on the slope and hillshade map. 178 

Channel long profiles of Young Womans Creek and all tributaries with drainage area 179 

greater than 1 km2 were extracted from the 3 m digital elevation model using the Topographic 180 

Analysis Kit for TopoToolbox (Schwanghart and Scherler, 2014; Forte and Whipple, 2018). We 181 

smoothed profiles with a window of 500 m and constructed a map of the normalized channel 182 

steepness index, 𝑘𝑘𝑠𝑠𝑠𝑠, as: 183 

 𝑘𝑘𝑠𝑠𝑠𝑠 = 𝑆𝑆𝐴𝐴𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 , (1) 184 

where 𝑆𝑆 is local channel gradient, 𝐴𝐴 is upstream drainage area, and 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 is the reference 185 

concavity index, which we fix to 0.45 (Wobus et al., 2006). Knickpoints were mapped on 186 

channels with drainage area greater than 1 km2 based on analysis of elevation long profiles and 187 

maps of normalized channel steepness. 188 

3.3 Spatially-distributed in situ-produced 10Be flux model 189 

In order to use the 10Be concentrations of our 17 nested catchment samples to interpret 190 

spatial patterns in erosion rate, we used a spatially-distributed 10Be flux model to compare 191 

predicted and measured in situ-produced 10Be concentrations in quartz for four different 192 

spatially-distributed erosion scenarios. Our model combines and streamlines approaches from the 193 

existing erosion rate calculators CRONUS (Balco et al., 2008), CosmoCalc (Vermeesch, 2007), 194 

and CAIRN (Mudd et al., 2016) to calculate the local in situ 10Be flux out of the catchments 195 

assuming steady erosion and isotopic steady state at each pixel in the watershed of Young 196 

Womans Creek. 197 



Stratigraphic control of landscape response to base-level fall Draft 8/27/2018 

10 
 

Our model starts with a 10-m resolution lidar-derived digital elevation model and a 10-m 198 

resolution raster of spatially-distributed erosion rate. We follow the approach by Mudd et al. 199 

(2016) and CosmoCalc v3.0 (http://www.ucl.ac.uk/~ucfbpve/cosmocalc/; Vermeesch, 2007) to 200 

simplify total spallogenic and muonogenic 10Be production with depth as a sum of three 201 

exponential functions, and assume steady surface erosion to calculate the 10Be concentration in 202 

quartz (atoms g-1) at each pixel, 𝐶𝐶 𝐵𝐵𝑟𝑟10 (𝑖𝑖, 𝑗𝑗), as: 203 

 𝐶𝐶 𝐵𝐵𝑟𝑟10 (𝑖𝑖, 𝑗𝑗) = 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∑
𝑆𝑆𝑚𝑚(𝑖𝑖.𝑗𝑗)𝐹𝐹𝑚𝑚𝛬𝛬𝑚𝑚

𝐸𝐸(𝑖𝑖,𝑗𝑗)+𝜆𝜆 𝐵𝐵𝑟𝑟10 𝛬𝛬𝑚𝑚
3
𝑚𝑚=1 , (2) 204 

where the subscripts i and j indicate raster pixel coordinates, 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the surface production rate 205 

(atoms g-1 yr-1) at sea level and high latitude; 𝐸𝐸(𝑖𝑖, 𝑗𝑗) is a spatially-distributed erosion rate (g cm-2 206 

yr-1, assuming a rock density of 2.7 g cm-3); 𝜆𝜆 𝐵𝐵𝑟𝑟10  is the decay constant for 10Be (yr-1); and 207 

𝑆𝑆𝑚𝑚(𝑖𝑖, 𝑗𝑗), 𝐹𝐹𝑚𝑚, and Λ𝑚𝑚 are scaling/shielding (dimensionless), pathway partitioning 208 

(dimensionless), and attenuation  length (g cm-2) parameters for the three-exponential 209 

approximation of spallogenic and muonogenic 10Be production (Mudd et al., 2016). We assume 210 

values for 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (4.3 atoms g-1 yr-1), Λ1,2,3 (160, 1500, 4320 g cm-2), and 𝐹𝐹1,2,3 (0.9887, 0.0027, 211 

0.0086) following Mudd et al. (2016) and CosmoCalc v3.0 212 

(http://www.ucl.ac.uk/~ucfbpve/cosmocalc/; Vermeesch, 2007), and assume 𝜆𝜆 𝐵𝐵𝑟𝑟10  = 5 × 10-7 yr-1 213 

(Chmeleff et al., 2010). Consequently, there are slight (<5%) differences in the total 10Be 214 

production rates between the approximation in Equation 2 and the CRONUS calculator (Mudd et 215 

al., 2016) that we assume are negligible when comparing erosion rates determined from the two 216 

methods. 217 

 The scaling/shielding parameter 𝑆𝑆𝑚𝑚(𝑖𝑖, 𝑗𝑗) incorporates both production rate scaling and 218 

topographic shielding and varies as a function of 10Be production pathway. We follow the 219 
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approach of Vermeesch et al. (2007) to calculate a virtual attenuation length, Λ𝑣𝑣(𝑖𝑖, 𝑗𝑗), in units of 220 

g cm-2 according to: 221 

 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) = ∑ 𝑆𝑆𝑚𝑚(𝑖𝑖. 𝑗𝑗)𝐹𝐹𝑚𝑚3
𝑚𝑚=1 , (3a) 222 

 𝑆𝑆𝑚𝑚(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒
−𝛬𝛬𝑣𝑣(𝑖𝑖,𝑗𝑗)
𝛬𝛬𝑚𝑚 , (3b) 223 

where 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) is the total scaling/shielding, defined as: 224 

 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑆𝑆𝑡𝑡(𝑖𝑖, 𝑗𝑗)𝑆𝑆𝑝𝑝(𝑖𝑖, 𝑗𝑗). (4) 225 

𝑆𝑆𝑡𝑡(𝑖𝑖, 𝑗𝑗) is the topographic shielding parameter, which we assume to be unity at each pixel. Full 226 

treatment of topographic shielding at the catchment scale is presently computationally 227 

impractical, but calculations based on simplified catchment geometry indicate that the influence 228 

of increasing vertical attenuation length with slope offsets reductions in surface production rate 229 

due to skyline shielding such that no spatially-distributed correction factor is needed for local 230 

slopes less than 30° as observed in Young Womans Creek (DiBiase, 2018). We calculate the 231 

production rate scaling factor, 𝑆𝑆𝑝𝑝(𝑖𝑖, 𝑗𝑗), using the Lal/Stone constant production rate model 232 

applied using the latitude and longitude of each pixel (Lal, 1991; Stone, 2000). While in general 233 

Equation 3 must be solved iteratively, for efficiency we approximate Λ𝑣𝑣(𝑖𝑖, 𝑗𝑗) for Young Womans 234 

Creek as: 235 

 𝛬𝛬𝑣𝑣(𝑖𝑖, 𝑗𝑗) = −161.5 𝑙𝑙𝑙𝑙 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗), (5) 236 

which is accurate to 0.1% for the range 1 < 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) < 2 and encompasses the values of all 237 

pixels in the Young Womans Creek catchment. 238 
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To determine the in situ-produced 10Be flux per unit area (atoms cm-2 yr-1) from each 239 

pixel in the watershed, 𝑞𝑞 𝐵𝐵𝑟𝑟10 (𝑖𝑖, 𝑗𝑗), we scale the concentration at each pixel by the erosion rate, 240 

𝐸𝐸(𝑖𝑖, 𝑗𝑗), and dimensionless quartz mass fraction, 𝑓𝑓𝑞𝑞𝑡𝑡𝑞𝑞(𝑖𝑖, 𝑗𝑗): 241 

 𝑞𝑞 𝐵𝐵𝑟𝑟10 (𝑖𝑖, 𝑗𝑗) = 𝐶𝐶 𝐵𝐵𝑟𝑟10 (𝑖𝑖, 𝑗𝑗)𝐸𝐸(𝑖𝑖, 𝑗𝑗)𝑓𝑓𝑞𝑞𝑡𝑡𝑞𝑞(𝑖𝑖, 𝑗𝑗). (6) 242 

We determined the spatial variation in quartz content by assuming that the areas mapped as 243 

caprock contained 85% quartz and the non-caprock units contained 75% quartz in the grain sizes 244 

analyzed (Berg and Edmunds, 1979). 245 

 To calculate the modeled 10Be concentration (atoms g-1) of a well-mixed sample of 246 

stream sands, we normalized the total in situ-produced 10Be flux by the total quartz flux out of 247 

the upstream contributing area according to: 248 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑙𝑙 𝐵𝐵𝑟𝑟10 (𝑙𝑙) = 1
𝐴𝐴𝑛𝑛
∑

𝑞𝑞 𝐵𝐵𝑟𝑟10 (𝑖𝑖,𝑗𝑗)

𝐸𝐸(𝑖𝑖,𝑗𝑗)𝑟𝑟𝑞𝑞𝑞𝑞𝑞𝑞(𝑖𝑖,𝑗𝑗)𝐴𝐴𝑛𝑛 , (7) 249 

where 𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑙𝑙 𝐵𝐵𝑟𝑟10 (𝑙𝑙) is the modeled sample concentration (atoms g-1) for a catchment with areal 250 

extent 𝐴𝐴𝑠𝑠. We assess the fit of modeled and observed sample 10Be concentrations using the root 251 

mean square error, RMSE, defined as: 252 

 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = � 1
17
∑ (𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑙𝑙 𝐵𝐵𝑟𝑟10 (𝑙𝑙) − 𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑂𝑂𝑂𝑂𝑒𝑒𝑀𝑀 𝐵𝐵𝑟𝑟10 (𝑙𝑙))217
𝑠𝑠=1 , (8) 253 

where 𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑂𝑂𝑂𝑂𝑒𝑒𝑀𝑀 𝐵𝐵𝑟𝑟10 (𝑙𝑙) corresponds to the measured sample 10Be concentrations from the n=17 254 

samples. 255 

As a result of streamlining the calculation of simulated 10Be concentrations in sample 256 

watersheds, we take a systematic grid approach to exploring parameter space for one, two, and 257 

three parameter erosion models based on the combined geologic and topographic map (Fig. 2C) 258 
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and for comparison run two models based on the patch mean slope map (Fig. 2B) converted to 259 

erosion rate using the linear least squares regression and nonlinear soil transport models shown 260 

in Figure 3. 261 

Using the combined geologic and topographic map (Fig. 2C), we tested all combinations 262 

(Fig. 4) of the caprock erosion rate in 0.5 m Myr-1 increments from 9-15 m Myr-1 (Blue area, Fig. 263 

2C); the caprock-protected hillslope erosion rate in 1 m Myr-1 increments from 20-45 m Myr-1 264 

(Brown area, Fig. 2C); and the eroded caprock hillslope erosion rate in 1 m Myr-1 increments 265 

from 30-50 m Myr-1 (Red area, Fig. 2C). We assumed the areas mapped as alluvium eroded at 266 

the same rate as the caprock-protected hillslope erosion rate; this region comprises only a minor 267 

component of the total 10Be flux in all models (<3% of catchment surface area concentrated in 268 

areas of low 10Be production rate – yellow area, Fig. 2C). 269 

4. Results 270 

4.1 Spatial patterns of apparent erosion rates 271 

 Interpreting the detrital 10Be concentrations as coming from uniformly eroding 272 

catchments provides a visualization of the spatial pattern in apparent erosion rates, which range 273 

from 9.9 ± 0.3 to 42 ± 1 m Myr-1 (Table 2). Apparent erosion rates are highest for catchments 274 

draining the northwestern tributaries where the caprock has been eroded (30 ± 1 to 42 ± 1 m 275 

Myr-1) and are lowest for catchments that exclusively drain the caprock units (9.9 ± 0.3 to 13.5 ± 276 

0.3 m Myr-1). Larger, nested catchments have intermediate apparent erosion rates that smoothly 277 

integrate the variability found in lower-order tributary samples (Fig. 2A). 278 

 There is considerable scatter in the relationship between catchment-mean hillslope angle 279 

and apparent erosion rate (Fig. 3), in agreement with similar data from elsewhere on the 280 
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Appalachian Plateau (Reuter, 2005; Miller et al., 2013). Notably, the catchments with the highest 281 

erosion rates (YW08, YW09, YW10, YW11) are not correlated with the steepest hillslopes in the 282 

watershed (Fig. 2B), suggesting a lithologic control on landscape form. Nonetheless, we used the 283 

empirical relationship between mean slope and erosion rate for Young Womans Creek and 284 

nearby data (Fig. 3) to build a spatially-distributed map of erosion rates as one input to our 10Be 285 

flux model. 286 

4.2 Constraints on spatial patterns in erosion rate from the in situ-produced 10Be flux model 287 

For the simplest case of uniform erosion rate (Fig. 5A), detrital 10Be concentrations for 288 

the best-fit case (E = 20 m Myr-1) are predicted to fall within a narrow range (± 5%) that reflects 289 

the limited variation in elevation (200-700 m) and latitude (41.35-41.55°N) throughout Young 290 

Womans Creek. These variations are further dampened by averaging across watersheds. In 291 

contrast, measured 10Be concentrations vary over a factor of four (1-4 × 105 atoms g-1), 292 

suggesting the integrated cosmic-ray exposure and thus erosion rates do in fact vary throughout 293 

the catchment. 294 

Assuming erosion rate scales linearly with mean hillslope angle following Fig. 2B and 295 

Fig. 3, modeled 10Be concentrations vary from 1.4-4.0 × 105 atoms g-1 and show a stronger 296 

correlation with measured 10Be concentrations (black symbols, Fig. 5B). However, this model 297 

over-predicts by 20-70% the concentrations of the four samples with the lowest measured 10Be 298 

concentration (YW08-YW11), all of which come from the northwest area of the catchment 299 

where the caprock has been eroded (Fig. 2A). Using a nonlinear soil transport model (dashed 300 

line, Fig. 3) results in a poorer overall fit to the data (grey symbols, Fig. 5B). 301 

The best-fit three-parameter model, based on the combined topographic and geologic 302 

mapping (Fig. 2C), indicates a caprock erosion rate of 11.5 m Myr-1; a caprock-protected 303 
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hillslope erosion rate of 34 m Myr-1, and an eroded caprock hillslope erosion rate of 40 m Myr-1 304 

(Fig. 5C; blue star, Fig. 4). Partitioning of the landscape into regions based on topographic 305 

position of the caprock provides a stronger fit to the measured data than either the uniform 306 

erosion rate case (Fig. 4A) or the slope-dependent erosion rate case (Fig. 5B), as determined by 307 

the RMSE. Notably, the error is greatly reduced (±10%) for the four samples draining the 308 

hillslopes where the caprock has been eroded. Additionally, the 10Be concentrations for the two 309 

samples with the greatest absolute error (YW13 and YW17) are only underestimated by 10-20%. 310 

In addition to finding the best-fit model using a three-parameter fit, we also evaluated a 311 

simpler, two-parameter fit, where only the caprock erosion rate and non-caprock erosion rate was 312 

varied (1:1 lines, Fig. 4). The best-fit model for the two-parameter case indicates a caprock 313 

erosion rate of 11.5 m Myr-1 and a non-caprock erosion rate of 36 m Myr-1 (Fig. 5D). As the two-314 

parameter model fit is nearly indistinguishable from the three-parameter model fit (RMSE = 0.33 315 

× 105 atoms g-1), we favor this simpler interpretation. 316 

For each of the cases in Fig. 5, we also calculated the mean square weighted deviation, 317 

MSWD, to evaluate the degree to which the misfit of our model can be explained by analytical 318 

measurement uncertainty: 319 

 𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀 = 1
17−𝑚𝑚

∑
(𝑀𝑀𝑡𝑡𝑀𝑀𝑟𝑟𝑡𝑡 𝐵𝐵𝑟𝑟10 (𝑠𝑠)−𝑂𝑂𝑂𝑂𝑠𝑠𝑟𝑟𝑟𝑟𝑣𝑣𝑟𝑟𝑀𝑀 𝐵𝐵𝑟𝑟10 (𝑠𝑠))2

𝜎𝜎(𝑠𝑠)2
17
𝑠𝑠=1 , (9) 320 

where 𝜎𝜎(𝑙𝑙) is the standard deviation of each 10Be measurement and m is the number of fitted 321 

parameters. For the two-parameter best fit case, MSWD = 40, suggesting poor model 322 

performance for the precision of the measured data. However, we only account for the analytical 323 

uncertainty in our measured 10Be concentrations (1σ = 2-3%); inclusion of even a modest 5% 324 
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additional error (e.g., due to uncertainty in production rate scaling, shielding, or spatial variations 325 

in quartz content) results in MSWD = 3. 326 

4.3 Connection between erosion rate and topography 327 

 The normalized channel steepness of Young Womans Creek and its tributaries ranges 328 

from 4-160 m0.9, corresponding to channel gradients ranging from 0.005-0.29 (Fig. 6) and 329 

showing a similar spatial pattern to that of mean hillslope angle, which ranges from 3-30° (Fig. 330 

2B). Where the caprock is preserved on overlying hillslopes (Fig. 2C), there exists a sharp break 331 

in topography that delineates a low-sloping, slowly eroding landscape from a steeper, more 332 

rapidly eroding landscape (Fig. 2B; Fig. 6). However, in areas where the caprock is no longer 333 

preserved on ridgelines, both hillslope and channel steepness are subdued, despite high erosion 334 

rates (Fig. 6; Fig. 7). 335 

5. Discussion 336 

5.1. Deconvolution of spatially-distributed erosion rates from nested detrital 10Be samples 337 

Typically, detrital 10Be-derived erosion rates from nested catchments are deconvolved 338 

using simple mixing calculations for two basins (e.g., Granger et al., 1996). Here, we showed 339 

how incorporation of a dense network of nested samples can be used to robustly assess spatial 340 

patterns in erosion rate in a transient landscape, where interpretations based on apparent erosion 341 

rates may be misleading (Fig. 2A). Although we used geologic context to constrain potential 342 

patterns in erosion rate, our approach does not require any a priori assumptions of topographic or 343 

rock strength controls on erosion rate. Thus, it is possible to test hypotheses relating to 344 

potentially complicated feedbacks between base-level fall, rock strength, and erosion rate (e.g., 345 

Forte et al., 2016; Perne et al., 2017; Yanites et al., 2017). 346 
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Implicit in our approach is the assumption that apparent erosion rates inferred from 347 

detrital 10Be concentrations are insensitive to catchment size. This assumption is likely valid for 348 

the Young Womans Creek study area, which is characterized by soil-mantled hillslopes and slow 349 

erosion rates. However, in steep landscapes subject to landsliding, episodic sediment delivery 350 

could violate assumptions of isotopic steady state in small catchments (e.g., Niemi et al., 2005) 351 

and in very large catchments, sediment storage could alter isotope concentrations over time 352 

(Bierman and Steig, 1996). 353 

5.2 Implications for regional patterns of erosion rate and base-level fall on the Susquehanna 354 

River 355 

 Despite geologic complexity, Young Womans Creek is most simply interpreted as a 356 

catchment responding to an approximately threefold increase in the rate of base-level fall (11.5 357 

m Myr-1 to 36 m Myr-1). This signal has propagated upstream and the caprock contact defines the 358 

extent of a slowly eroding, relict landscape (Fig. 6). At its outlet, Young Womans Creek has 359 

incised approximately 200 m below the caprock contact. Based on a difference in erosion rate of 360 

24.5 m Myr-1 between the relict and adjusting portions of the landscape, we estimate incision 361 

into the Appalachian Plateau at Young Womans Creek began circa 8 Ma. Both the contrast in 362 

erosion rates and the timing of incision are consistent with regional interpretations of late 363 

Cenozoic base-level fall (Pazzaglia and Brandon, 1996; Gallen et al., 2013; Miller et al., 2013). 364 

Although we lack constraints on the progression of landscape adjustment during the past 365 

8 Ma, the coincidence of the caprock and the boundary between relict and adjusting landscapes 366 

in Young Womans Creek (Fig. 2) highlights a structural and lithologic control on landscape 367 

adjustment to base-level fall (e.g., Cook et al., 2009). In particular, the absence of both a caprock 368 

and slowly eroding terrain in the northwestern portion of Young Womans Creek indicates that 369 
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the caprock serves to slow knickpoint retreat and preserve relict topography (e.g., DiBiase et al., 370 

2015). Additionally, knickpoints on northwestern tributaries of Young Womans Creek are not 371 

associated with a contrast in erosion rate (Fig. 6), indicating a lithologic control on their 372 

morphology and location. Further work is needed to constrain the mechanisms by which the 373 

caprock limits knickpoint propagation (e.g., via coarse sediment delivery, more resistant 374 

bedrock, or change in incision process), and which lithologic factors lead to the presence of low-375 

steepness channels with high erosion rates (Fig. 6). 376 

Landscape evolution models simulating base-level fall in gently folded layered rocks 377 

predict complicated patterns in erosion rate that emerge due to transient breaching of alternating 378 

hard and soft layers by river networks (Forte et al., 2016; Perne et al., 2017; Yanites et al., 2017). 379 

Although we see no evidence for such complications at Young Womans Creek, it is not clear 380 

whether such signals are expected or resolvable, particularly because contrasts in bedrock 381 

erodibility may be masked by non-local effects of coarse sediment delivered from resistant units 382 

armoring channels (e.g., Johnson et al., 2009; Thaler and Covington, 2016). 383 

5.3 Caprock control on hillslope morphology 384 

 Based on our 10Be flux model, we interpret a bimodal distribution of erosion rates for 385 

areas above and below the basal caprock contact (Fig. 2C; Fig. 6). Thus, it might be expected 386 

that hillslope form reveals a similar contrast. Instead, we find that hillslopes where the caprock 387 

has been preserved on ridges are systematically steeper (mean slope = 20-30°; Fig. 2B) than 388 

hillslopes where the caprock has been eroded (mean slope = 10°; Fig. 2B), despite having the 389 

same erosion rate and underlying bedrock stratigraphy (Fig. 7). We hypothesize that this contrast 390 

in hillslope erodibility emerges due to armoring of soft strata with coarse blocks derived from 391 

resistant caprock sandstones (Fig. 8) (e.g., Granger et al., 2001; Glade et al., 2017). 392 
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 A caprock control on hillslope morphology is common in landscapes characterized by 393 

layered rocks (Howard and Selby, 2009), and can lead to complicated relationships between 394 

topography, lithology, and erosion rate. For example, in the Buffalo River Basin of the Ozark 395 

Plateau, USA, Thaler and Covington (2016) showed how boulders derived from a resistant 396 

sandstone caprock led to steeper streams in underlying weaker strata where the caprock was still 397 

preserved on ridgelines. Observations in the Buffalo River Basin of the morphology of hillslopes 398 

underlain by slope-forming limestones show a similar pattern. Where capped by resistant 399 

sandstone strata, weaker limestone slopes are steep (20-30°) and planar; where the resistant 400 

caprock has been eroded, the weaker limestone slopes are less steep (<10°) and convex. 401 

Although in the Buffalo River Basin there are fewer constraints on erosion rate than in Young 402 

Womans Creek, the landscape morphology shows a clear signature of caprock control that may 403 

be responsible for the large amount of scatter observed in relationships between mean hillslope 404 

angle and erosion rate, even for similar rocks (Beeson et al., 2017). Such structural and lithologic 405 

controls on hillslope and channel erodibility can make straightforward interpretations of 406 

spatiotemporal variations in climate, tectonics, or divide migration problematic (e.g., Whipple et 407 

al., 2017). 408 

6. Conclusions 409 

This study highlights the complexities that can emerge in landscapes with layered rocks 410 

due to feedbacks among lithology, topography, and erosion rate. We showed how spatial patterns 411 

in erosion rate can be deconvolved in transient landscapes using a nested sampling strategy for in 412 

situ-produced 10Be in stream sediment paired with a spatially-distributed in situ-produced 10Be 413 

flux model. Based on constraints from lidar-derived geologic mapping at Young Womans Creek, 414 

we find that measured 10Be concentrations are most simply explained by a two-parameter model 415 
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with erosion rates of 11.5 m Myr-1 on low relief topography above a distinctive sandstone 416 

caprock and erosion rates of 36 m Myr-1 below this level. This contrast in erosion rates implies 417 

that Young Womans Creek is responding to a threefold increase in base-level fall that began ca. 418 

8 Ma, in agreement with regional estimates in the Susquehanna River Basin (Miller et al., 2013). 419 

Because the boundary of relict and adjusting landscapes is pinned at the caprock, we interpret 420 

that the presence of the caprock has prolonged the timescale of landscape adjustment. Below this 421 

caprock unit, hillslopes eroding at the same rate and underlain by the same rocks have drastically 422 

different morphology, depending on whether the overlying caprock is preserved on adjacent 423 

ridgelines or not. Field observations indicate that the resulting contrast in downslope soil 424 

transport efficiency is a consequence of coarse sediment derived from the caprock that armors 425 

underlying hillslopes. Thus, even a relatively simple case of increased base-level fall in gently 426 

folded rocks can lead to a complex morphologic response that is difficult to interpret without a 427 

dense, nested, detrital 10Be sampling strategy. 428 
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Table 1. Laboratory preparation and accelerator mass spectrometry (AMS) analysis information 593 
for 10Be samples. 594 

Sample ID Quartz Mass 
(g) 

9Be Added 
(μg) Be cathode number1 Measured 10Be/9Be2 

10Be concentration 
(atoms g-1) 

YW01 21.546 248.11 BE40780 3.22E-13 ± 6.00E-15 2.48E+05 ± 4.62E+03 

YW02 22.889 247.87 BE40781 2.39E-13 ± 7.47E-15 1.73E+05 ± 5.41E+03 

YW03 20.557 247.31 BE40782 2.47E-13 ± 7.67E-15 1.98E+05 ± 6.17E+03 

YW04 22.102 248.11 BE40783 2.88E-13 ± 5.57E-15 2.16E+05 ± 4.18E+03 

YW05 24.659 247.31 BE40785 2.27E-13 ± 4.40E-15 1.52E+05 ± 2.95E+03 

YW06 15.725 247.84 BE40786 1.42E-13 ± 3.91E-15 1.50E+05 ± 4.12E+03 

YW07 22.255 246.78 BE40787 4.00E-13 ± 7.74E-15 2.97E+05 ± 5.73E+03 

YW08 17.547 247.99 BE40817 1.34E-13 ± 2.53E-15 1.27E+05 ± 2.39E+03 

YW09 18.027 247.34 BE40818 1.12E-13 ± 2.82E-15 1.03E+05 ± 2.59E+03 

YW10 14.233 247.64 BE40819 1.23E-13 ± 3.91E-15 1.43E+05 ± 4.54E+03 

YW11 20.146 247.70 BE40820 1.59E-13 ± 3.75E-15 1.31E+05 ± 3.08E+03 

YW12 22.390 247.40 BE40788 4.36E-13 ± 1.03E-14 3.22E+05 ± 7.63E+03 

YW13 22.034 246.84 BE40790 5.16E-13 ± 9.58E-15 3.86E+05 ± 7.18E+03 

YW14 20.833 245.78 BE40791 1.95E-13 ± 3.65E-15 1.54E+05 ± 2.87E+03 

YW15 20.366 246.90 BE40821 2.33E-13 ± 5.42E-15 1.89E+05 ± 4.39E+03 

YW16 20.038 246.52 BE40814 2.44E-13 ± 4.58E-15 2.00E+05 ± 3.77E+03 

YW17 20.301 247.17 BE40823 4.95E-13 ± 1.19E-14 4.03E+05 ± 9.65E+03 
 595 
1Identification for each sample within the database at the Center for Mass Spectrometry at Lawrence Livermore National 596 
Laboratory, Livermore CA. 597 
2Normalized using ICN standard 07KNSTD3110 with a ratio of 2.85 x 10-12 (Nishiizumi et al., 2007). Reported errors are 1σ 598 
AMS measurement uncertainties. Analyzed April 2016; data reduced using an average of n=3 process blanks (6.43 ± 2.00 × 10-599 
16).  600 
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Table 2. Sample catchment information. 601 

Sample ID Latitude Longitude Drainage 
area (km2) 

Mean 
elevation (m) 

Catchment mean 
slope (degrees) 

Apparent erosion 
rate1 (m Myr-1) 

YW01 41.3779 -77.7063 1.3 486 11.1 15.9 ± 0.3 

YW02 41.3740 -77.6998 92.8 523 15.4 24.0 ± 0.8 

YW03 41.3730 -77.6970 123.9 552 13.5 21.2 ± 0.7 

YW04 41.3926 -77.7093 2.1 503 12.6 18.7 ± 0.4 

YW05 41.4010 -77.7072 28.5 529 14.7 27.5 ± 0.6 

YW06 41.4006 -77.7067 49.8 536 16.2 28.2 ± 0.8 

YW07 41.3803 -77.7180 0.7 514 5.4 13.5 ± 0.3 

YW08 41.4387 -77.7026 41.9 547 15.6 33.8 ± 0.7 

YW09 41.4637 -77.7145 14.9 538 13.6 42 ± 1 

YW10 41.4821 -77.6816 12.7 566 13.2 30 ± 1 

YW11 41.5048 -77.6468 13.1 584 10.9 33.7 ± 0.8 

YW12 41.4950 -77.6069 14.3 608 7.4 13.4 ± 0.3 

YW13 41.4697 -77.6155 3.7 585 9.6 10.8 ± 0.2 

YW14 41.3584 -77.7047 220.1 537 14.4 27.3 ± 0.5 

YW15 41.4498 -77.6442 74.4 580 12.2 22.9 ± 0.6 

YW16 41.4352 -77.6630 92.9 574 12.9 21.4 ± 0.4 

YW17 41.4019 -77.7241 1.2 541 5.2 9.9 ± 0.3 
 602 
1 Apparent erosion rates (assuming uniform erosion rate) calculated using CRONUS calculator (Balco et al., 2008) wrapper script 603 
version 2.3, calc. 2.1, function 2, constants 2.3, muons 1, default calibration dataset, assuming density of 2.7 g cm-3.  604 
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605
Figure 1. Overview map showing topographic and geologic context of Young Womans Creek 606
watershed on the Appalachian Plateau, Pennsylvania, USA. (A) Topography, showing incised 607
valleys into low relief uplands. Black outline indicates extent of Young Womans Creek 608
watershed. Shaded area in inset shows location of study area in Pennsylvania, USA. (B) Geology 609
map (after Berg et al., 1980) showing approximate location of NE-SW trending folds that dictate 610
large-scale topography (excluding incised valleys). (C) Generalized stratigraphic section at 611
Huntley Mountain (star on panel (B); after Berg and Edmunds 1979). Caprock at Young 612
Womans Creek is defined as the Burgoon Formation sandstones and the upper blocky sandstones 613
of the Huntley Mountain Formation. (D) Cross section A-A’ showing regional structures and 614
location of Young Womans Creek (YWC - dashed box).615



!
!!

!

!!

!

!

!

!

!

!

!

!

!

!

!

02
01

17

16

15

14

13

12
11

10

09

08

07

06
05

04

03
!
!!

!

!!

!

!

!

!

!

!

!

!

!

!

! !

!
!!

!

!!

!

!

!

!

!

!

!

!

!

!

A B C

B

B’

Local slope

10Be sample watershed

Sample ID

0 60°

Patch mean slope

3 30°

Alluvium

Caprock

Caprock present on ridgelines

Caprock eroded

12

5 km
 Apparent erosion rate

10-19 m Myr-1

20-29 m Myr-1

30-39 m Myr-1

≥40 m Myr-1

!

!

!

!

Stratigraphic control of landscape response to base-level fall Draft 8/27/2018

32

616
Figure 2. Young Womans Creek watershed (location shown on Fig. 1). (A) Detrital 10Be sample 617
location map (circles = catchment outlet sample sites, outlines = watersheds) highlighting spatial 618
pattern in apparent erosion rates. YW prefix in sample names omitted for clarity. (B) Map 619
showing mean slope of n = 70 landscape “patches” (black outlines) that represent zones with 620
similar hillslope morphology, which was used for input into slope-dependent erosion model (Fig. 621
3, Fig. 5B). (C) Simplified geomorphic map highlighting extent of caprock (Burgoon Formation622
and upper Huntley Mountain Formation - Fig. 1C), topography where caprock is present on 623
ridgelines, and areas where caprock has been completely eroded from ridgelines. B-B’ indicates 624
location of cross section shown in Fig. 7.625
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626
Figure 3. Regional relationship between erosion rate determined from detrital 10Be 627
concentrations in stream sands and mean hillslope angle for the Appalachian Plateau. Solid line 628
indicates linear regression through Young Womans Creek (YWC) data. Dashed line indicates a 629
fit to all data using the hillslope-averaged form of the nonlinear soil transport model (Roering et 630
al., 2007), assuming a critical slope, Sc, of 45°, mean hillslope length, Lh, of 200 m, and rock/soil 631
density ratio of 2. Error bars for Appalachian Plateau data indicate 1σ analytical uncertainty. 1σ 632
error bars for YWC data are smaller than the symbol size.633
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634
Figure 4. Spatially-distributed in situ-produced 10Be flux model performance for 3 parameter 635
erosion model, with contours of root mean squared error (RMSE) between measured and 636
predicted concentrations for caprock erosion rate equal to: (A) 10 m Myr-1; (B) 11.5 m Myr-1;637
and (C) 13 m Myr-1. Blue star in (B) indicates global minimum for 3 parameter model (Figure 638
5C). Red star in (B) indicates best-fit case with uniform erosion for areas below caprock (2 639
parameter model: Figure 5D). Dashed line indicates 1:1 line between caprock-protected hillslope 640
E and eroded caprock hillslope E (i.e., 2 parameter model space).641
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642
Figure 5. Results from spatially-variable erosion rate model comparing predicted versus 643
observed 10Be concentrations in nested catchments of Young Womans Creek. (A) Null case, 644
assuming uniform erosion rate (20 m Myr-1 is best fit scenario). (B) Slope-dependent erosion 645
case, showing over prediction of concentrations in areas of catchment where the caprock has 646
been eroded (Red circle, samples YW08-YW11 - Fig. 2C). Black symbols indicate linear fit in 647
Fig. 3, and grey symbols indicate nonlinear fit in Fig. 3. (C) Best-fit case for 3 parameter model 648
(see Figure 2C for mapping). (D) Best fit case for 2 parameter model (grouping all areas below 649
caprock together). Error bars (1σ analytical uncertainty) are smaller than the symbol size.650
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651
Figure 6. Map of channel network in Young Womans Creek with drainage area greater than 1 652
km2 colorized by: (A) normalized channel steepness index; and (B) local channel gradient. 653
Knickpoints are indicated by white circles. Base map is colorized by the spatial pattern in erosion 654
rate for the best-fit 2-parameter model (Fig. 5D).655
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656
Figure 7. Cross section B-B’ across Young Womans Creek watershed (see Fig. 2C for location), 657
indicating contrasting hillslope morphology in areas where the caprock has been eroded versus 658
where the caprock is still present along ridgelines. Dashed blue line indicates the projected 659
elevation of tributaries on western side of Young Womans Creek and maximum structural depth 660
of erosion, with tributary channel knickpoint indicated by the white circle. Dashed black line 661
indicates the location and extent of the caprock contact, which has been projected onto cross 662
section based on exposure on adjacent ridges along-strike.663



Stratigraphic control of landscape response to base-level fall Draft 8/27/2018

38

664
Figure 8. Contrasting soil texture of hillslopes with: (A) caprock eroded; and (B) caprock 665
present. Hillslopes in panels A and B are underlain by similar bedrock stratigraphy and are 666
eroding at similar rates. However, a coarse armor of sandstone blocks derived from upslope 667
caprock units (C) leads to steeper hillslopes where the caprock is present.668
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