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a b s t r a c t 

Changes in resting-state functional connectivity (rs-FC) under general anesthesia have been widely studied with 

the goal of identifying neural signatures of consciousness. This work has commonly revealed an apparent frag- 

mentation of whole-brain network structure during unconsciousness, which has been interpreted as reflecting a 

break-down in connectivity and a disruption of the brain’s ability to integrate information. Here we show, by 

studying rs-FC under varying depths of isoflurane-induced anesthesia in nonhuman primates, that this apparent 

fragmentation, rather than reflecting an actual change in network structure, can be simply explained as the result 

of a global reduction in FC. Specifically, by comparing the actual FC data to surrogate data sets that we derived 

to test competing hypotheses of how FC changes as a function of dose, we found that increases in whole-brain 

modularity and the number of network communities – considered hallmarks of fragmentation – are artifacts of 

constructing FC networks by thresholding based on correlation magnitude. Taken together, our findings suggest 

that deepening levels of unconsciousness are instead associated with the increasingly muted expression of func- 

tional networks, an observation that constrains current interpretations as to how anesthesia-induced FC changes 

map onto existing neurobiological theories of consciousness. 

1. Introduction 

While much work has focused on how different anesthetics affect 

ion channels and receptor function at the cellular level ( Anis et al., 

1983; Franks, 2006; Peduto et al., 1991 ), it remains poorly understood, 

by comparison, how anesthetics affect the coordinated activity of dis- 

tributed whole-brain networks ( Alkire et al., 2008; Brown et al., 2011 ). 

In recent years, resting-state functional MRI (rs-fMRI) has provided im- 

portant glimpses into the large-scale, network-level effects of anesthe- 

sia. This approach, which measures covariance structure in spontaneous 

low-frequency oscillations in neural activity ( Biswal et al., 1995 ), has 

repeatedly revealed an apparent fragmentation of functional brain net- 

work structure during various states of unconsciousness ( Boly et al., 

2012b; Hudetz and Mashour, 2016; Hutchison et al., 2014 ). These find- 

ings are broadly consistent with work using electroencephalography and 

electrocorticography reporting a similar breakdown in long-range corti- 
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cal communication under anesthesia ( Lee et al., 2009 ) and during sleep 

( Ferrarelli et al., 2010 ). 

Several authors (e.g. Boly et al., 2012b; Hudetz and Mashour, 2016; 

Hutchison et al., 2014; Standage et al., 2019 ) have, implicitly or ex- 

plicitly, interpreted these findings through the lens of various neuro- 

biological theories of consciousness, which posit that conscious experi- 

ence arises through the distributed processing of information through- 

out the neocortex. For example, the global neuronal workspace theory 

( Mashour et al., 2020 ) submits that information is made consciously 

accessible when it is broadcast widely throughout the cortex by a set 

of diffusely connected control regions in the prefrontal and parietal 

cortices. These regions in particular are frequently assigned a key role 

in the neural substrate of consciousness, and imaging research has re- 

vealed a reduction in frontal-parietal connectivity both during sleep 

( Spoormaker et al., 2012; Tagliazucchi et al., 2013 ) and under anes- 

thesia ( Boly et al., 2012a; Ku et al., 2011 ). By these, and other similar 
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accounts (e.g. Tononi, 2004 ), the fragmentation of network structure 

observed during sleep or anesthesia can be viewed as a causal signature 

of unconsciousness, resulting in a disruption of the brain’s ability to inte- 

grate information, or to broadcast it widely enough to create conscious 

awareness ( Mashour, 2013; Mashour and Hudetz, 2018 ). 

Work attempting to relate features of functional brain networks 

to consciousness faces two broad challenges: First, it must faith- 

fully recover and summarize the underlying network structure which 

gives rise to the observed brain activity; and second, it must deter- 

mine which components of this structure are causally related to con- 

scious experience, and are not merely epiphenomenal. It is impor- 

tant to distinguish between these two broad goals, given that a mis- 

leading characterization of brain network structure necessarily under- 

cuts any interpretations, consciousness related or otherwise, that stem 

from that network characterization. It is this first goal that the cur- 

rent study seeks to address; namely, deriving a faithful characteriza- 

tion of the whole-brain network changes that underlie the patterns 

of brain activity commonly observed across neuroimaging studies of 

consciousness/unconsciousness. Specifically, we investigate the well- 

characterized phenomena of network fragmentation, and the extent to 

which this is an accurate characterization of changes in network activity 

under anesthesia. 

Network fragmentation is often concluded on the basis of changes in 

graph properties (e.g., increases in modularity or the number of com- 

munities) estimated from thresholded correlation matrices using a fixed, 

magnitude threshold. However, in this regime, global decreases – or 

”muting ” – of functional connectivity may also produce the appearance 

of fragmentation by producing sparser, more disconnected networks 

(see Fig. 1 a). As an illustrative example, we contrast work which ob- 

served an increase in the modularity and number of communities of sig- 

nificance thresholded networks during sleep ( Boly et al., 2012b ), with 

work which found no such effect when using a relative threshold, cho- 

sen to obtain a fixed edge density ( Uehara et al., 2014 ). It is diffcult 

to reconcile these results, or to establish that they represent truly dis- 

tinct phenomena, as doing so requires a detailed analysis of the under- 

lying network structure. This consideration is particularly pertinent in 

the case of anesthesia, which has been observed to result in overall de- 

creases in correlation magnitude ( Bettinardi et al., 2015; Lv et al., 2016 ). 

Further, while several authors have highlighted diminished long-range 

connectivity under anesthesia – notably between the frontal and pari- 

etal cortices ( Hudetz and Mashour, 2016 ) – other work has observed 

similar decreases in local connectivity ( Monti et al., 2013 ). This sug- 

gests that anesthetic compounds may affect both short and long range 

cortical connections, and thus do not simply result in the disconnection 

of distant cortical regions, but disrupt coordinated neural activity at the 

local level ( Hudetz et al., 2016; Vizuete et al., 2014 ). 

For studies seeking to identify the neural correlates of unconscious- 

ness using functional connectivity, these facts suggest an important dis- 

tinction – between alterations in network structure on one hand, ver- 

sus overall changes in correlation magnitude on the other. These dif- 

ferent effects can be difficult to disentangle, as evidenced by findings 

of both (1) an increase in the modularity and number of communities 

during sleep, and (2) that, despite these network changes, overall net- 

work structure remained relatively preserved ( Boly et al., 2012b ). Given 

this general ambiguity, as well as the ambiguity as to how such results 

may support theories of consciousness ( Tononi, 2004 ), the goals of the 

present study were two-fold: First, to ascertain to what extent network 

fragmentation under anesthesia-induced unconsciousness is attributable 

to an overall decrease in connectivity strength; and second, to character- 

ize the structure of whole-brain functional connectivity across depths of 

unconsciousness. To unpack these relationships, we examined changes 

in rs-fMRI brain network structure in non-human primates across six 

increasing levels of anesthesia. This allowed us to test for fine-graded 

changes in network strength and structure across sedation levels, while 

also assessing critical components of neurobiological theories related to 

consciousness. 

2. Methods 

2.1. Data collection 

We reanalyzed data from five Macaque primates (M. Fascicularis; 4 

female; Mean age 7.8 yrs) collected as part of the experiment reported in 

Hutchison et al. (2014) . All surgical and experimental procedures were 

carried out in accordance with the Canadian Council of Animal Care 

policy on the use of laboratory animals and approved by the Animal Use 

Subcommittee of the University of Western Ontario Council on Animal 

Care. As data acquisition is thoroughly described by the original authors, 

we present a more condensed description here. Note however, that our 

fMRI preprocessing pipeline contains slight differences. 

Prior to image acquisition, subjects were injected intramuscularly 

with atropine (0.4 mg/kg), ipratropium (0.025 mg/kg), and ketamine 

hydrochloride (7.5 mg/kg), followed by intravenous administration of 3 

ml propofol (10 mg/ml) via the saphenous vein. Subjects were then intu- 

bated and switched to 1.5% isoflurane mixed with medical air. Each sub- 

ject was then placed in a custom-built chair and inserted into the magnet 

bore, at which time the isoflurane level was lowered to 1.00%. Prior to 

image localization, shimming, and echo-planar imaging (EPI), at least 

30 min was allowed for the isoflurane level and global hemodynamics to 

stabilize at this concentration. We then acquired 2 functional EPI scans 

at each of six increasing isoflurane levels: 1.00, 1.25, 1.50, 1.75, 2.00, 

and 2.75% (0.78, 0.98, 1.17, 1.37, 1.56, and 2.15 minimum alveolar 

concentration, respectively). We interleaved a 10 min period between 

each isoflurane level increase to allow for the concentration to stabilize, 

during which no fMRI data were collected. Throughout the duration 

of scanning, the monkeys spontaneously ventilated and we monitored 

physiological parameters (temperature, oxygen saturation, heart rate, 

respiration, and end-tidal CO2; see Supplemental Figure S2) to ensure 

that values were within normal limits. The acquisitions of two anatomi- 

cal images occurred during the stabilization periods between isoflurane 

levels. 

The monkeys were scanned on an actively shielded 7-Tesla 68-cm 

horizontal bore scanner with a DirectDrive console (Agilent, Santa Clara, 

California) with a Siemens AC84 gradient subsystem (Erlangen, Ger- 

many). We used a custom in-house conformal five-channel transceive 

primate-head Radio Frequency (RF) coil. Each functional run consisted 

of 150 continuous EPI functional volumes (repetition time [TR] = 2000 

ms; echo time [TE] = 16 ms; flip angle = 700; slices = 36; matrix = 96 

x 96; Field of view [FOV] = 96 x 96 mm2; acquisition voxel size = 1 

x 1 x 1 mm3), acquired with GRAPPA = 2. A high-resolution gradient- 

echo T2 anatomical image was acquired along the same orientation as 

the functional images (TR = 1100 ms, TE = 8 ms, matrix = 256 x 256, 

FOV = 96 x 96 mm2, acquisition voxel size = 375 x 375 x 1,000 mm3). 

We also acquired a T1-weighted anatomical image (TE = 2.5 ms, TR = 

2300 ms, FOV = 96 x 96 mm2, acquisition voxel size = 750 x 750 x 750 

mm3). 

2.2. fMRI preprocessing 

Functional image preprocessing was implemented using 

Nipype (Neuroimaging in Python: Pipelines and Interfaces; 

http://nipy.org/nipype ). The functional images underwent de-spiking, 

motion correction (six-parameter affine transformation), and slice-time 

correction, before brain extraction, and highpass temporal filtering 

(0.01 Hz; Hallquist et al., 2013; Power et al., 2014 ). Functional data was 

co-registered to its respective T1 anatomical (six degrees of freedom 

rigid transformation), and then linear (12 degrees of freedom linear 

affine transformation) and nonlinear transformed to the F99-template 

( Van Essen, 2002 ) and parcellated into 174 regions of interest (ROI) 

using the LVE atlas ( Lewis and Van Essen, 2000 ). All further analyses 

were done in R (version 3.6.1; R Core Team, 2019 ). 

Nuisance regression was performed using the six motion parame- 

ters, their derivatives, their squares, as well as mean white matter and 
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Fig. 1. Competing hypotheses, methods and an- 

alytic approaches – a) Alternative accounts of 

the apparent network fragmentation observed 

during unconsciousness. The fragmentation ac- 

count posits a splitting of conscious brain net- 

works into smaller subnetworks during uncon- 

sciousness. An alternative muting account ex- 

plains the apparent fragmentation by a global 

reduction in correlation magnitude, which re- 

sults in sparser, more fragmented networks af- 

ter applying a magnitude threshold. b) We col- 

lected twelve five-minute resting state scans –

two at each of six concentrations of isoflurane. 

The cortex was parcellated using the LVE at- 

las ( Lewis and Van Essen, 2000 ), and covari- 

ance matrices were estimated for each scan. 

c) We studied dose related changes in network 

statistics both in the real data, and in surrogate 

datasets in which either the correlation struc- 

ture or magnitude (the mean absolute value of 

the pairwise correlations) were held constant. 

In the former ( Constant Structure ), we simply 

scaled the correlation matrix associated with 

the lowest dose (1% isoflurane) to match the 

observed mean magnitude for each scan. In 

the second ( Constant Magnitude ), we scaled all 

correlation matrices to have mean magnitude 

equal to the lowest dose. d) To quantify the de- 

gree to which the data supported either a con- 

stant vs. dose dependent covariance structure, 

we split each subjects data in two datasets, each 

comprising one of the two scans at each dose. 

We then compared the correlation matrices in 

one half both to the lowest dose ( 1% isoflurane ) 

or to the corresponding dose ( Dose matched ) in 

the other. 

CSF signals, for a total of 26 regressors. We elected to use the un- 

whitened residuals rather than performing prewhitening, as the overall 

residual autocorrelation was minimal (mean Durbin–Watson statistic in 

the range [1.6-2] for all subjects and all scans; Supplemental Fig. S2). 

2.3. Functional connectivity estimation and comparison 

For each scan, we estimated a covariance matrix from the standard- 

ized residuals using the shrinkage estimator proposed by Ledoit and 

Wolf (2004) , which has been shown to perform better than the sample 

covariance matrix in high-dimensional, small-sample settings. 

Networks were constructed from the real and surrogate datasets by 

thresholding the entries of each correlation matrix using a one-tailed 

t-test with a threshold of 𝛼 = . 05 . All graph metrics ( Fig. 3 a) save small- 

worldness were computed from the binarized correlation matrices us- 

ing the R package igraph ( Csardi and Nepusz, 2006 ), and commu- 

nity detection was performed using the Louvain clustering algorithm 

( Blondel et al., 2008 ). Smallworldness was computed using the R pack- 

age brainGraph ( Watson, 2019 ). 

Structural similarity between correlation matrices was quantified us- 

ing the distance between the subspaces spanned by the leading five 

eigenvectors ( Fig. 3 b). These five eigenvectors constitute a basis for a 

five-dimensional subspace of the full space of 174 ROIs. The set of all 

such subspaces forms a manifold – called the Grassmann manifold – on 

which several natural distance measures can be defined ( Edelman et al., 

1998 ). We define the distance between two such subspaces to be the arc 

length of the geodesic between them, equivalent to the magnitude of the 

vector of principle angles between the subspaces. Specifically, let 𝐕 1 and 

𝐕 2 be matrices whose columns are the top 𝑘 eigenvectors of the correla- 

tion matrices 𝐒 1 and 𝐒 2 , respectively. Then the principal angles between 

the subspaces spanned by 𝐕 1 and 𝐕 2 are given by 𝜃𝑖 = cos −1 𝜎𝑖 , where 

𝛔 = { 𝜎1 , … , 𝜎𝑘 } are the singular values of 𝐕 

⊤
1 𝐕 2 . The distance between 

𝐕 1 and 𝐕 2 is then 

𝑑( 𝐕 1 , 𝐕 1 ) = ‖𝛉‖2 (1) 
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= 

√ √ √ √ 

𝑘 ∑
𝑖 =1 

𝜃2 
𝑖 

(2) 

2.4. Centering 

To center each subject’s correlation matrices, we took the approach 

advocated by Zhao et al. (2018) , which leverages the natural geometry 

of the space of covariance matrices. We have implemented many of the 

computations required to replicate the analysis in an R package spdm 

( s ymmetric p ositive- d efinite m atrix), which is freely available from a 

Git repository at https://github.com/areshenk-rpackages/spdm . 

The procedure is as follows. For each subject 𝑖, we computed a ge- 

ometric mean covariance matrix 𝑆̄ 𝑖 using the fixed-point algorithm de- 

scribed by Congedo et al. (2017) , as well as a grand mean 𝑆̄ 𝑔𝑚 over all 

subjects and all scans. We then projected each covariance matrix 𝑆 𝑖𝑗 

onto the tangent space at the corresponding subject mean 𝑆̄ 𝑖 to obtain 

a tangent vector 

𝑇 𝑖𝑗 = 𝑆̄ 

1∕2 
𝑖 

log ( ̄𝑆 

−1∕2 
𝑖 

𝑆 𝑖𝑗 𝑆̄ 

−1∕2 
𝑖 

) ̄𝑆 

1∕2 
𝑖 

, (3) 

where log denotes the matrix logarithm. We then transported each tan- 

gent vector to the grand mean 𝑆̄ 𝑔𝑚 using the transport proposed by 

Zhao et al. (2018) , obtaining a centered tangent vector 

𝑇 𝑐 
𝑖𝑗 
= 𝐺 𝑇 𝑖𝑗 𝐺 

⊤ (4) 

where 𝐺 = 𝑆̄ 

1∕2 
𝑔𝑚 𝑆̄ 

−1∕2 
𝑖 

. Finally, we projected each centered tangent vec- 

tor back onto the space of covariance matrices, to obtain the centered 

covariance matrix 

𝑆 

𝑐 
𝑖𝑗 
= 𝑆̄ 

1∕2 
𝑔𝑚 exp ( ̄𝑆 

−1∕2 
𝑔𝑚 𝑇 𝑐 

𝑖𝑗 
𝑆̄ 

−1∕2 
𝑔𝑚 ) ̄𝑆 

1∕2 
𝑔𝑚 , (5) 

where exp denotes the matrix exponential. 

To gain some intuition for this procedure, note that centering a sam- 

ple of real numbers can be viewed as the process of computing a sample 

mean, and then applying a translation which takes the sample mean to 

zero. The resulting centered values can then be viewed as vectors de- 

scribing the deviations of the observed values from the mean. In the 

same way, the tangent vectors computed in Eq. (3) can be viewed as 

the deviations of each correlation matrix from the corresponding sub- 

ject mean. The transport in Eq. (4) translates these deviations to the 

grand mean, thus aligning them to a common baseline. A naive approx- 

imation to this procedure would involve, for each subject, simply sub- 

tracting the mean covariance matrix from the covariance matrix in each 

scan. This approach has several drawbacks; most importantly, the fact 

that the difference between two covariance matrices is not necessarily a 

covariance matrix, and so does not have an obvious interpretation. The 

procedure we have described above can be viewed as an adaptation of 

this approach, which respects the geometric structure of the space of 

covariance matrices. 

To visualize the effect of centering ( Fig. 4 a), we derived a two- 

dimensional embedding of the set of covariance matrices before 

and after centering using uniform manifold approximation (UMAP; 

McInnes et al., 2018 ). This procedure was applied to the distance matri- 

ces computed from the pairwise distances between covariance matrices 

( Smith, 2005 ), defined as 

𝑑( 𝑆 1 , 𝑆 2 ) = 

√ √ √ √ 

𝑛 ∑
𝑖 =1 

(10 log 10 𝜆𝑖 ) 2 (6) 

where ( 𝜆1 , … , 𝜆𝑛 ) are the generalized eigenvalues of 𝑆 1 and 𝑆 2 . 

2.5. Common component analysis 

After centering, we sought an interpretable, low-dimensional sum- 

mary of the observed covariance matrices in order to characterize 

changes in functional connectivity across depths of anesthesia. For a 

single covariance matrix, this could be accomplished by principal com- 

ponent analysis (PCA), where the eigenvectors of the covariance matrix 

are used as a basis for a low dimensional subspace capturing the domi- 

nant patterns of variability in the BOLD signal observed during a single 

scan. As we had observations for multiple scans and multiple subjects, 

we considered two approaches for simultaneously decomposing the full 

set of covariance matrices. 

The first is common principal component analysis (CPCA; Flury, 

1984; Trendafilov, 2010 ). The CPCA model attempts to simultaneously 

diagonalize multiple covariance matrices, and so (informally) assumes 

that the covariance matrices have identical factor structure, though they 

may differ in the degree to which they express those factors. As this 

is a restrictive assumption, we also considered a second model – the 

common component analysis (CCA) proposed by Wang et al. (2011) –

which relaxes the assumption that the set of covariance matrices may 

be simultaneously diagonalized at the expense of some interpretability. 

The CPCA model was fit using the R package cpca ( Ziyatdinov et al., 

2014 ), while the CCA model was fit using custom R code implementing 

the iterative algorithm proposed by Wang et al. (2011) . As both models 

returned highly similar results, we present only the results of CPCA. 

3. Results 

3.1. Reduction in correlation magnitude explains apparent network 

fragmentation 

Fig. 2 a displays summary statistics for the correlation matrices esti- 

mated from each scan. Consistent with previous work ( Xie et al., 2019 ), 

increasing dose was associated with an overall decrease in correlation 

magnitude, with no clear change in the ratio of positive to negative cor- 

relations (as in Bettinardi et al., 2015 ). We also observed a decrease 

in the spectral radius (the magnitude of the largest eigenvalue), sug- 

gesting an overall loss of low dimensional structure. This reduction in 

correlation did not appear to be driven by regions in any single net- 

work, but was present both in primary sensory and somatomotor re- 

gions, as well as in the frontal and parietal cortices, and connections 

between them ( Fig. 2 b,c). Although bilateral homologs displayed rel- 

atively high functional connectivity compared to non-homologous re- 

gions at low doses, this connectivity was likewise seen to sharply de- 

crease with increasing dose ( Fig. 2 d). Fig. 2 e,f displays the decrease in 

correlation magnitude at the level of individual ROIs, suggesting that 

all regions show a trend towards decreasing mean connectivity with in- 

creasing dose. Together, these effects indicate a global reduction in func- 

tional connectivity magnitude as isoflurane dose increases. This effect 

appears to be associated with an overall decrease in the low-frequency 

content of the BOLD signal (.01-.03 Hz; Fig. 2 g), which is itself con- 

sistent with the observed decrease in correlation, as the autocorrela- 

tion introduced by low-frequency signal fluctuations can often result in 

increased pairwise correlations between time series ( Christova et al., 

2011 ). Similar dose-dependent effects were also observed in summary 

statistics of the raw BOLD signal (Supplemental Figure S1); particularly 

in the mean and standard deviation, which decrease near monotonically 

with increasing dose (consistent with Baria et al., 2018; Huang et al., 

2014 ), and show an asymptote in the range of 1.75–2% isoflurane, sim- 

ilar to many of the within and between network correlations observed in 

Fig. 2 a–d. 

Next, to determine the extent to which network changes across dose 

can be attributed to actual changes in network structure, versus an over- 

all decrease in correlation magnitude, we computed graph summary 

statistics from the thresholded and binarized correlation matrices, as 

well as from two surrogate datasets in which either the average corre- 

lation structure or the correlation magnitude was held constant across 

dose. These surrogate datasets were important, as they provided a criti- 

cal basis for interpreting effects in the real data; if the appearance of net- 

work fragmentation is due primarily to an overall decrease in correlation 

magnitude, then the same pattern of results should be observed when 

4 

https://github.com/areshenk-rpackages/spdm


C.N. Areshenkoff, J.Y. Nashed, R.M. Hutchison et al. NeuroImage 231 (2021) 117830 

Fig. 2. Correlation magnitude decreases both globally and locally as a function of increasing anesthetic dose – a) Descriptive statistics for correlation matrices. In all 

figures, colored lines denote means for each each subject. Solid black line denotes the mean across all subjects. Error bars are one standard error. b) Parcelation of 

the cortex into primary sensory regions (somatomotor, auditory, and visual), and frontal and parietal cortices. c) Mean absolute correlation within each parcel, as 

well as between the frontal and parietal cortices (frontoparietal). d) Mean absolute correlation between bilateral homologues and non-homologous ROIs. e) Average 

muting of functional connectivity per ROI. Figures display the mean absolute correlation, as well as the change in mean absolute correlation relative to the lowest 

dose (1% isoflurane). f) Surface map of the change in mean absolute correlation at 2.75% isoflurane relative to the lowest dose. g) Mean spectrum at each dose. 

the exact same correlation structure is held constant across doses, and 

only the magnitude is allowed to vary. Conversely, fragmentation should 

be abolished when correlation matrices are scaled to have the same av- 

erage magnitude. We created the Constant Structure surrogate dataset by 

replacing each correlation matrix (from 1.00% to 2.75% isoflurane) with 

a copy of the average of the subject’s two correlation matrices at the low- 

est dose (1.00%), scaled to have matching correlation magnitude to the 

real data (defined as the mean absolute value over all pairwise correla- 

tions). By contrast, we created the Constant Magnitude surrogate dataset 

by scaling each correlation matrix to have the same average correla- 

tion magnitude as in the corresponding subject’s lowest dose condition 

(see Fig. 1 c). We then thresholded and binarized each correlation matrix 

using an uncorrected, one-tailed t-test with a significance threshold of 

𝛼 = . 05 . For further comparison, we also binarized the observed correla- 

tion matrices using a relative threshold chosen to produce an constant 

edge density equal to the mean edge density at the lowest dose ( Den- 

sity Threshold ). If increasing dose is characterized primarily by a overall 

decrease in correlation strengths, rather than a change in network struc- 

ture, then graph properties of density thresholded networks should be 

relatively preserved across dose. 
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Fig. 3. The appearance of network fragmentation is an artifact of an increasingly muted network structure – a) Network summary statistics. Values denote means across 

all subjects, while error bars denote one standard error. Observed denotes the actual, observed correlation matrices. For Constant Magnitude , correlations at each dose 

level were scaled to match the average magnitude of the correlations at the lowest dose ( 1% isoflurane). For Constant Structure , the correlation matrix for the lowest 

dose was replicated across all scans, and scaled to match the observed average magnitude. Networks were constructed by thresholding and binarizing correlation 

matrices by significance using a one-tailed t-test with 𝛼 = . 05 . For comparison, we also thresholded the observed correlation matrices using a relative threshold to 

achieve a fixed edge density of .3 ( Density threshold ). Communities were estimated using the Louvain clustering algorithm. Note that the effect of isoflurane on the 

observed networks is consistent with the scaling of a constant correlation structure. b) Between scan reliability of each network statistic, defined as the correlation 

between the first and second scans at each dose. Despite the short scan length, network statistics were generally highly reliable. c) Mean spectrum of the correlation 

matrices at each dose (top). The x-axis is shown on a log scale to better display the effects of dose on the leading eigenvalues. After splitting each subjects data into 

two halves – comprising the first and second scans at each dose, respectively – we compared the correlation matrices in first half either to the corresponding dose 

( Dose Matched ), or to the lowest dose ( 1% Isoflurane ) in the other. Correlation matrices were compared using the distance between the subspaces spanned by the 

leading five eigenvectors (middle). The bottom figure displays the correlation between the vectorized correlation matrices from the two scans at each dose, suggesting 

that the reliability of functional connectivity estimates decreases with increases depth of anesthesia. 

Broadly consistent with previous work ( Boly et al., 2012b; Hutchi- 

son et al., 2014 ) – and the interpretation that brain networks become 

increasingly fragmented and/or disconnected at increased levels of se- 

dation – we observed an increase in sparsity, the number of communi- 

ties, modularity, and small-worldness with increasing dose, along with 

a decrease in network efficiency ( Fig. 3 a). Despite the short scan length, 

these effects were generally highly reliable, with most subjects showing 

high correlations in all network statistics across both scans at each dose 

( Fig. 3 b). 

Notably, we observed a nearly identical pattern of results in our 

surrogate dataset in which the correlation structure was held constant 

across dose (Constant Structure), and only the correlation magnitude 

was varied. Furthermore, these effects were completely abolished in our 

surrogate dataset in which the correlations were scaled to have com- 

mon magnitude across dose, or when the networks were thresholded to 

achieve a fixed edge density. These results, when taken together, sug- 

gest that the observed effect of increasing dose on network statistics (i.e., 

fragmentation) is better explained as a reduction in overall correlation 

magnitude, or the muting of constant network structure. 

3.2. Dose effects are well explained by a constant network structure 

If the observed dose effects can be explained by the muting of a 

constant network structure, then the correlation structure at all dose 

levels should be well approximated by the structure at the lowest dose 

(1% isoflurane). We directly tested this by splitting each subject’s data 

into two halves, comprising the first and second scans at each dose, 

respectively. We then compared each whole-brain correlation matrix in 

the first set either to the corresponding dose in the second, or to the 

lowest dose, using the distance between the subspaces spanned by the 
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Fig. 4. Latent structure of brain networks is present across 

all dose levels, but becomes increasingly muted – Common 

principal component analysis (CPCA) of subjects’ centered 

covariance matrices. The number of displayed components 

was selected on the examination of the spectrum of the ob- 

served correlation matrices (see Figure 3 b). Prior to CPCA, 

subject covariance matrices were centered to remove static 

subject differences in functional connectivity. a) Two- 

dimensional embedding of subject covariance matrices by 

uniform manifold approximation (UMAP; McInnes et al., 

2018 ) using a distance matrix constructed by the pairwise 

geodesic distances. Note the subject level clustering in the 

uncentered data. b) . Spatial maps for the top five com- 

ponents. c) Component scores for each subject and each 

scan. 

leading eigenvectors (the geodesic distance on the Grassmann manifold; 

Edelman et al., 1998 ). We chose the subspace spanned by the leading 

five eigenvectors, as this was the range of the spectrum most strongly 

affected by dose ( Fig. 3 c, left). 

Critically, we found a near identical pattern of results in the lowest 

dose and in the dose matched comparisons ( Fig. 3 c, middle), indicating 

that the dominant patterns of network structure at higher dosages are 

well approximated by the structure already present at the lowest dose. 

To visualize this structure, we used common principal component 

analysis (CPCA; Flury, 1984; Trendafilov, 2010 ) to derive a set of com- 

ponents summarizing the correlation structure across dosages. Prior to 

applying CPCA, subject correlation matrices were centered to remove 

subject differences in functional connectivity. This decision was moti- 

vated by previous findings ( Gratton et al., 2018; Xu et al., 2019 ) that 

variability in functional connectivity in Humans and non-human pri- 

mates is dominated by stable, subject level effects, which may mask the 

relatively small differences induced by task manipulations. Consistent 

with these findings, we found strong clustering of the correlation matri- 

ces at the subject level ( Fig. 4 a, left) in the uncentered data, which we 

were able to remove through our approach ( Fig. 4 a, right). 
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Fig. 4 b,c shows the spatial maps of the components extracted by 

applying CPCA to the centered correlation matrices, as well as the con- 

tributions of these components at each dose. The first of these (CPC1) 

constitutes a gradient separating visual and medial ventrotemporal ar- 

eas from parietal, frontal and superior temporal regions. CPC2 consti- 

tutes a gradient separating somatomotor areas from the rest of the cor- 

tex. CPC3 constitutes a gradient separating right frontoparietal cortex 

and bilateral superior temporal cortex from the rest of cortex; CPC5 is 

a near-mirror image of this same gradient; finally CPC4 constitutes a 

gradient separating bilateral frontoparietal cortex from the rest of the 

cortex. The top components are consistent with some of the gradients 

reported by others in both non-human primates ( Margulies et al., 2016; 

Yacoub et al., 2020 ), and in humans ( Hong et al., 2020 ). Together, these 

findings support the notion that a constant network structure is present 

across all dose levels, and that it is only the expression of this constant 

network structure that changes across dose. With respect to the latter, 

indeed we find that these components decreased almost monotonically 

with increasing dose, asymptoting at approximately 2% isoflurane. 

Although we are wary of drawing conclusions from a single subject, 

we also note that subject M5, who experienced an adverse reaction to 

2.75% isoflurane, stands out from the remaining subjects both in show- 

ing low correlation magnitude compared to the remaining subjects even 

at low doses ( Fig. 2 ), as well as showing a muted expression of several 

components ( Fig. 4 ). This may suggest a hypersensitivity to isoflurane 

which is detectible even at low doses. 

4. Discussion 

We analyzed static resting state functional connectivity (rs-FC) un- 

der increasing depths of anesthesia in order to characterize dose-related 

changes in cortical whole-brain network structure. Increasing dose was 

associated with an increase in network modularity and the number of 

communities, as well as a decrease in network efficiency, all of which 

is consistent with the apparent fragmentation discussed in previous lit- 

erature ( Hudetz and Mashour, 2016 ). However, comparisons with sur- 

rogate datasets in which either the correlation structure or magnitude 

were held constant revealed that these above effects, rather than reflect- 

ing a qualitative change in network structure (i.e., network fragmenta- 

tion), could be fully explained as an overall reduction in correlation 

magnitude, which we refer to as muting. Further supporting the idea 

that network structure was unchanged across dose levels, we showed 

that the principal components of the functional connectivity matrices at 

each increasing dose level (from 1.00% to 2.75%) were just as similar 

to the components at the lowest dose (1.00% isoflurane) as they were to 

the components in another, dose-matched scan. This suggests that there 

is no explanatory benefit to assuming a change in correlation structure 

across dose levels, as this structure can be just as well approximated 

assuming a fixed structure, already present at the lowest dose. Finally, 

we used common principal component analysis to derive a set of com- 

ponents that summarize the correlation structure across dose, and show 

that the expression of these components decreases in a near monotonic 

fashion as dose increases. Taken together, these findings suggest that 

deepening levels of unconsciousness are associated with the increasingly 

muted expression of a constant functional network structure, rather than 

a break-down or fragmentation of this structure. Below, we discuss the 

implications of these findings; first, to research attempting to character- 

ize whole-brain network changes associated with consciousness using 

fMRI; and second, to the broader literature attempting to characterize 

neural signatures of consciousness. 

4.1. The interpretation of graph theoretic measures in prior work 

Several neurobiological theories of consciousness center on the 

brain’s capacity for information exchange across multiple distributed re- 

gions, with unconsciousness being a result of the disruption of this infor- 

mation transmission ( Mashour et al., 2020 ). This perspective has found 

support from fMRI studies of large-scale brain networks during waking 

and various states of unconsciousness, which have often relied on the in- 

terpretation of graph summary statistics describing the global structure 

of these networks. This work has found a reduction in network efficiency 

in both local and global brain networks during anesthetic- and sedative- 

induced unconsciousness ( Hashmi et al., 2017; Monti et al., 2013 ), as 

well as in patients with consciousness disorders, such as unresponsive 

wakefulness syndrome and the minimally conscious state ( Chennu et al., 

2014 ), and has been interpreted as reflecting a dysfunction in communi- 

cation across the cortex. Likewise, increases in whole-brain modularity 

and the number of network communities have been observed during 

both non-rapid eye movement sleep ( Boly et al., 2012b ) and isoflurane- 

induced anesthesia ( Hutchison et al., 2014; Standage et al., 2019 ), which 

has been interpreted as reflecting a literal fragmentation of brain net- 

works into smaller, more isolated processing units. 

Graph measures are thought to quantify key aspects of information 

transmission in the brain, and many of them, such as modularity and 

efficiency, neatly map onto existing frameworks and hypotheses con- 

cerning theories of consciousness (and disruptions thereof). However, 

these measures are two layers of abstraction removed from the underly- 

ing functional network structure: First, they are low dimensional sum- 

maries of large-scale networks spanning, in many cases, the entirety of 

the cortex; and second, the networks themselves, often constructed by 

thresholding BOLD signal correlations, are merely proxies for informa- 

tion flow between cortical regions. The interpretation of these summary 

measures thus relies on strong assumptions about the ways in which 

changes in cortical information processing manifest as changes in graph 

properties. As we have shown, global decreases in functional connectiv- 

ity, possibly related to changes in the low frequency (.01-.03 Hz) content 

of the BOLD signal, can manifest as an increase in modularity and in the 

number of communities in whole-brain networks, despite no apparent 

selective decoupling between distributed networks (e.g. frontoparietal 

regions). 

4.2. Muting and fragmentation are not necessarily mutually exclusive 

Our findings demonstrate that global decreases in functional connec- 

tivity (muting) can lead to the false appearance of network fragmenta- 

tion with graph theoretic analyses. Nevertheless, it is important for us 

to emphasize that such results do not actually undermine the widely 

held view that unconsciousness is the result of such network fragmen- 

tation (e.g. Mashour et al., 2020 ). Indeed, some models argue that con- 

sciousness is the result of a non-linear process ( Dehaene et al., 2003; 

Mashour et al., 2020; Moutard et al., 2015 ), by which there is some 

minimal level of functional connectivity required in order to sustain 

effective information transfer between regions. Under this framework, 

a drop in functional connectivity below the critical threshold required 

to sustain communication between two brain regions would result in a 

functional ”disconnection ” between those regions. In this way, global 

muting would actually lead to network fragmentation. 

The work of Yang et al. (2014) may provide a relevant perspec- 

tive. The authors study a computational model of resting state func- 

tional connectivity and observe a relationship between variability and 

connectivity, wherein increases in either self-coupling or global cou- 

pling strength are associated with increased global signal variability. 

Huang et al. (2014) likewise found a correlation between BOLD signal 

variability and BOLD synchronization between local and distant corti- 

cal regions. These findings are broadly consistent with our observation 

that BOLD standard deviation decreases with increasing dose (Supple- 

mental Figure S1), and that the asymptote of this trend in the range of 

1.75-2.75% isoflurane matches similar patterns of within and between 

network correlation strength ( Fig. 2 a–d). The idea of a global decrease 

in connectivity is thus consistent with both the changes in within and 

between network correlation we have observed across dose, as well as 

the changes in global signal variability. 
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Thus, to clarify, our results are not incompatible with the view that 

unconsciousness stems from a fragmentation in network structure. What 

we show, however, is that amidst the backdrop of the global muting of 

network structure, increases in graph theoretic measures alone, such as 

whole-brain modularity and the number of network communities, can- 

not be used as evidence to support this view of network fragmentation. 

4.3. Local versus long-range connectivity in unconsciousness 

One of the main observations to emerge in the anesthesia litera- 

ture, and which has been frequently used to bolster neurobiological 

theories of consciousness, is that disruptions in consciousness are as- 

sociated with a break-down in long-range frontal-parietal connectivity 

Mashour et al. (2020) . For example, recent work has shown that the 

decoding of a tactile stimulus is abolished in the macaque primary mo- 

tor cortex (area M1) but not the primary somatosensory cortex (area 

S1) after ketamine exposure ( Schroeder et al., 2016 ). This finding was 

attributed to the preservation of thalamocortical input to S1, but im- 

paired information transfer from S1 to M1. This general result accords 

with earlier findings showing that connectivity (as measured by Granger 

causality) between the ventral thalamus and S1, but not M1, is preserved 

under ketamine Kim et al. (2012) , and it is also broadly consistent with 

other work (e.g. Ku et al., 2011; Lee et al., 2009 ) showing impaired 

fronto-parietal connectivity under anesthesia. Here we observed similar 

reductions in frontal-parietal connectivity under increasing depths of 

anesthesia; notably, however, we found that this effect was not unique 

to long-range connectivity, as we also observed comparable decreases 

within both the frontal and parietal cortices individually, as well as the 

primary sensory (visual, auditory) and somatomotor (primary sensory 

and motor) areas. 

In light of this seemingly contradictory finding, it is worth not- 

ing that the preservation of thalamocortical connectivity under anes- 

thesia may be dependent on the specific anesthetic agent. For ex- 

ample, impaired thalamocortical connectivity has been observed un- 

der isoflurane ( White and Alkire, 2003 ), as well as under propo- 

fol ( Malekmohammadi et al., 2019 ) anesthesia. Furthermore, disrup- 

tions in cortico-cortical connectivity under propofol do not appear 

to selectively target long-range connections as compared to short- 

range connections ( Monti et al., 2013 ). Other researchers have also 

found disruptions in local neural dynamics under anesthesia, includ- 

ing Vizuete et al. (2014) and Hudetz et al. (2016) , who find that neu- 

ral activity in the primary visual cortex becomes more entropic and 

variable under anesthesia, despite an overall preservation of the reper- 

toire of activity patterns. While these findings, as well as our own re- 

sults, seemingly depart from the view that long-range frontal-parietal 

networks play a unique role in conscious experience per se, they nev- 

ertheless comport with the broader view, shared by several theories, 

that unconsciousness stems from a more global disruption of informa- 

tion processing throughout the brain. It is also not inconsistent with 

views which assign frontal-parietal regions a privileged position due to 

their role as hub regions facilitating the broadcasting of information 

widely across the cortex ( Mashour et al., 2020 ), as this broadcasting 

may be impaired not only by selective disruption of frontal-parietal re- 

gions, but also by more global impairments in connectivity. Finally, it is 

important to distinguish neural investigations of the effects of anaesthe- 

sia with respect to sensory manipulations ( Schroeder et al., 2016 ) ver- 

sus examinations of spontaneous brain activity at rest. Indeed, whereas 

Schroeder et al. (2016) observed preserved local neural representations 

in the presence of a sensory stimulus, examinations of resting-state ac- 

tivity Vizuete et al. (2014) and Hudetz et al. (2016) reveal disruptions 

in local spontaneous activity. In this regard, it is worth noting that stim- 

ulus onset has been associated with a similar decline in neural vari- 

ability across various species in both awake and anesthetized condi- 

tions ( Churchland et al., 2010 ), and thus the sensory information carried 

through thalamocortical input may contribute to the robustness of local 

sensory representations against the local effects of anesthesia. 

4.4. Methodological considerations 

Our findings should be interpreted in light of a few methodological 

limitations. Before addressing these, we think it is important to stress 

the distinction between the implications of our findings to theories of 

consciousness per se, versus the implication of our findings to methodol- 

ogy which attempts to use functional brain networks, estimated by fMRI, 

to characterize brain-network changes during states of unconsciousness. 

In the former case, we stress some important aspects of our design that 

limits our ability to draw general conclusions about the neural signa- 

tures of consciousness. In the latter case, we note that the many of our 

findings are broadly applicable to many similar research designs, and to 

network-based approaches to the study of consciousness, in particular. 

First, although we track network structure across increasing depths 

of anesthesia, we lack an awake condition for comparison. Our re- 

sults thus reflect network changes spanning degrees of unconscious- 

ness, rather than the transition between unconsciousness and wak- 

ing. Bettinardi et al. (2015) observe a gradual re-emergence of cor- 

related brain activity during recovery from deep sedation, culmi- 

nating in an eventual restoration of waking connectivity. Similarly, 

Chennu et al. (2014) observe features of functional brain networks 

which correlate with the degree of wakefulness in patients with dis- 

orders of consciousness. These results suggest that our protocol, while 

lacking an explicit waking comparison, may nonetheless capture a seg- 

ment of a continuous trajectory spanning wakefulness and deep seda- 

tion. 

Second, we track network changes only through progressively in- 

creasing doses of isoflurane, rather than using a randomized order, or al- 

ternating increasing and decreases doses. This decision was partly prag- 

matic, as we were concerned about residual effects from the extremely 

high dose in the 2.75% condition (indeed, one subject experienced ad- 

verse reactions at this dose), as well as the time required to stabilize 

subjects when transitioning to a lower dose. Nevertheless, the use of 

a counterbalanced dose order would allow the study network changes 

associated with both induction and recovery from anesthesia, although 

some authors who have tracked brain activity from initial induction to 

full recovery of consciousness (e.g. Blain-Moraes et al., 2017 ) have ob- 

served a gradual return of anesthesia induced network changes back 

to baseline levels. This suggests that the use of a counterbalanced dose 

order may not have revealed much new information. 

Third, subjects were sedated at 1.5% isoflurane prior to stabilization 

at 1% before the beginning of the first scan. It is thus possible that resid- 

ual effects from the initial, higher dose persisted during the initial scans, 

giving an inaccurate view of brain network structure during lower doses. 

Although some residual effects are possible, we note that the physiolog- 

ical recordings, BOLD signal correlations, and network summary mea- 

sures show clear changes in the range of 1–1.5% isoflurane, suggesting 

that some degree of recovery had indeed occurred, and that network 

structure at sub-1.5% doses does not merely correspond to residual ef- 

fects from the initial sedation. 

Finally, initial sedation was accomplished through the use of several 

agents, including propofol, ketamine, and isoflurane, making it difficult 

to disentangle the effects of isoflurane itself from the distinct effects of 

the other anesthetic agents. Further complicating interpretation is the 

fact that different anesthetic agents may affect distinct neurotransmit- 

ter systems, and are known to affect whole-brain functional connectiv- 

ity differently ( Jonckers et al., 2014; Williams et al., 2010 ). First, this 

kind of polypharmacy is commonplace across numerous studies (e.g. 

Bettinardi et al., 2015; Hight et al., 2014; Huang et al., 2014; Kim 

et al., 2012; Li et al., 2019 ), and thus our methodological interpreta- 

tions remain relevant to the broader literature on this topic. Second, this 

speaks to a broader issue, which is that research investigating sedative 

induced unconsciousness faces the hurdle of disentangling brain net- 

work changes due to unconsciousness, versus changes due to the unique 

action of the particular anesthetic compound on the brain. We stress that 

although this complicates attempts to relate anesthesia-induced changes 
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in brain network structure to consciousness, it does not undermine our 

broader point that commonly used network summary measures may be 

entirely misleading in the absence of a detailed characterization of net- 

work structure. 

4.5. Conclusion 

Theories relating consciousness to the information processing ca- 

pacity of the brain must ultimately generate concrete predictions de- 

scribing the patterns of brain activity supporting conscious awareness. 

Functional neuroimaging plays a central role in the testing of these pre- 

dictions, as these techniques allow for the precise characterization of 

brain activity across various states of consciousness and unconscious- 

ness. Although fMRI affords the opportunity to study the large-scale, 

structural features of whole-brain networks, the complexity of this data 

necessitates careful analysis, and it is essential to determine rigorously 

the way in which predicted changes in the brains functional network 

structure may manifest as changes in estimated functional connectiv- 

ity, or in network summary measures. As we have shown, quantita- 

tive changes in overall functional connectivity (muting) are sufficient 

to produce changes in network structure more commonly interpreted 

as reflecting the selective disconnection of distributed networks. Dis- 

tinguishing between these possibilities requires the detailed analysis of 

whole-brain network structure beyond that which is provided by graph 

summary measures. It likewise requires consideration of the underlying 

changes in the brains functional circuitry which may give rise to these 

effects measured by fMRI functional connectivity. Although we charac- 

terize the effects which we have observed as muting, we do not address 

its causal role in consciousness, or whether it may simply mask struc- 

tural network changes associated with unconsciousness. Recent work 

( Pal et al., 2020 ) suggests that anesthesia induced unconsciousness can 

be dissociated from the effects of anesthesia on the cortex, and thus the 

relationship between consciousness and cortical information processing 

may be more complex than can be decoded from BOLD signal correla- 

tions alone. 
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