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A B S T R A C T

The internal structure of the human hippocampus is challenging to map using histology or neuroimaging due to its
complex archicortical folding. Here, we aimed to overcome this challenge using a unique combination of three
methods. First, we leveraged a histological dataset with unprecedented 3D coverage, BigBrain. Second, we
imposed a computational unfolding framework that respects the topological continuity of hippocampal subfields,
which are traditionally defined by laminar composition. Third, we adapted neocortical parcellation techniques to
map the hippocampus with respect to not only laminar but also morphological features. Unsupervised clustering
of these features revealed subdivisions that closely resemble gold standard manual subfield segmentations.
Critically, we also show that morphological features alone are sufficient to derive most hippocampal subfield
boundaries. Moreover, some features showed differences within subfields along the hippocampal longitudinal
axis. Our findings highlight new characteristics of internal hippocampal structure, and offer new avenues for its
characterization with in-vivo neuroimaging.

1. Introduction

The hippocampus is one of the most heavily investigated brain
structures in neuroscience. Much research in recent years has focused on
questions about its subdivisions, guided by the idea that different regions
within the hippocampus may perform different functions andmay also be
differentially prone to disease (Small et al., 2011). These developments
pose central questions as to how to characterize subdivisions in
anatomical terms. Traditionally, most proposed subdivisions have relied
on histology and cytoarchitecture, leading to the notion of distinct hip-
pocampal subfields that typically include the subicular complex, Cornu
Ammonis 1 to 4, and the dentate gyrus (Duvernoy et al., 2013). More
recently, increasing interest has also emerged concerning graded differ-
ences along the anterior-posterior axis based on subfield composition and
connectivity (Strange et al., 2014; Poppenk et al., 2013; Plachti et al.,
2019). An organizational principle that shapes these dimensions, i.e.,
subfields and anterior-posterior differences, is the complex topology

within the hippocampus that results from folding during its ontological
development (Duvernoy et al., 2013; DeKraker et al., 2018). This prin-
ciple has received only limited investigation to date but requires careful
consideration in any effort to characterize the internal architecture of the
hippocampus. The current paper aims to investigate the relationship
between hippocampal morphology and laminar cytoarchitecture under a
topological framework in humans. In other words, the goal is to examine
laminar and morphological (ie. non-laminar) features, such as cortical
thickness or curvature, within a framework that explicitly honours 3D
continuity across 2D images. In order to pursue this goal, we took
advantage of the unique and powerful “BigBrain” dataset that provides
continuous histological sampling with full 3D coverage (Amunts et al.,
2013). A particular promise of this approach lies in its applicability to
in-vivo Magnetic Resonance Imaging (MRI).

While commonly used MRI measures do not allow for cytoarchitec-
tural characterization, MR-based protocols have been developed to
indirectly infer the locations of hippocampal subfields in humans based

* Corresponding author. Robarts Research Institute, Western University, 1151 Richmond St. N, London, Ontario, N6A 5B7, Canada.
E-mail address: jdekrake@uwo.ca (J. DeKraker).

1 co-senior authorship.

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage

https://doi.org/10.1016/j.neuroimage.2019.116328
Received 5 July 2019; Received in revised form 29 October 2019; Accepted 30 October 2019
Available online 1 November 2019
1053-8119/© 2019 Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

NeuroImage 206 (2020) 116328

mailto:jdekrake@uwo.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2019.116328&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2019.116328
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neuroimage.2019.116328


either on manually delineated landmarks or corresponding probabilistic
atlases that are informed by histological reference material (Yushkevich
et al., 2015a, 2015b; Iglesias et al., 2015). However, traditional histo-
logical references can be problematic for several reasons. First, they often
contain only select coronal slices taken from regions where folding is the
simplest, most frequently from the hippocampal body, with the notable
exception of (Ding and Van Hoesen, 2015) who focus greater attention on
the hippocampal head than most other investigations. Second, even in
the hippocampal body slices are taken sparsely, limiting the amount of
contextual features that can be gathered from neighbouring slices or
other planes of view. Third, histological preparation often deforms the
tissue of interest relative to its in-vivo state, which is a problem for MRI
co-registration unless the histological sample is also imaged prior to
histological preparation. Finally, even among neuroanatomists there is
some disagreement as to exactly which labels, stains, and histological
features should be used for defining hippocampal subfields (Wisse et al.,
2017). Some previous studies have made use of ex-vivo MRI to aid in the
translation of histology to MRI (Iglesias et al., 2015; Yushkevich et al.,
2009) in an effort to mitigate some of these issues. However, even with
such an approach, inter-individual differences in hippocampal
morphology can impose limitations for inferring subfields or other
structural features, when hippocampal topology is not considered.

It is well established that the human hippocampus is a folded
component of archicortex that is continuous with the neocortex
(Duvernoy et al., 2013; Nieuwenhuys et al., 2013). The hippocampal
folds include wrapping around its innermost region - the dentate gyrus,
as well as anterior-posterior folding that is sometimes referred to as
dentation, digitation, or gyrification. The gyrification seen in the hip-
pocampus is morphologically similar to gyrification in the neocortex
(although not necessarily based on the same ontogeny). It has been
shown to vary considerably between individuals (DeKraker et al., 2018;
Chang et al., 2018) and can be affected by age (Cai et al., 2019) or dis-
ease, such as temporal-lobe epilepsy (Blümcke et al., 2013). This folding
is an important aspect of understanding the internal structure of the
hippocampus, and for appreciation of the continuity of subfields,
particularly in its anterior portion that includes the uncus (Ding and Van
Hoesen, 2015). Topological analyses can provide a framework for
extracting these continuities, for example through unfolding (DeKraker
et al., 2018), and offer the basis for laminar and further morphological
characterization of complete hippocampal structure in 3D, including
subject-specific gyrification.

The dataset made publicly available by BigBrain (Amunts et al., 2013)
provides a unique opportunity to conduct topological analyses of his-
tology data in 3D, and to examine topological measures in unfolded tis-
sue. This dataset consists of 3D histology, digitally reconstructed from
images of serially sectioned and stained cadaveric brain tissue. In the
current project, we used reconstructed blocks of the left and right
hippocampi (40μm isotropic) from BigBrain to identify
topologically-derived laminar and morphological features under our
hippocampal unfolding framework. To characterize laminae, we focused
on 10 computationally derived features describing the distributions of
neurons (Amunts et al., 1999), which were also recently used to char-
acterize the neocortex in BigBrain (Wagstyl et al., 2018; Wagstyl et al.,
bioRxiv). Morphological features were also computationally derived and
included thickness, curvature, inner and outer surface textures, as well as
gyrification. We then compared these morphological and laminar fea-
tures to classic descriptions of subfields and examined variations along
the anterior-posterior hippocampal axis. We anticipated that the features
examined would differ substantially between subfields. Therefore, we
also tested whether it might even be possible to obtain successful subfield
segmentation with an unsupervised feature-based approach. This type of
approach is desirable for is objectivity, which could help resolve differ-
ences among neuroimagers and histologists on subfields definitions. It
also allowed us to examine which subsets of features are sufficient to
derive clusters resembling gold standard hippocampal subfields. For this
purpose, we contrasted the contributions of laminar and morphological

features, given that laminar features are used most prominently in his-
tology (see Duvernoy et al., 2013; Nieuwenhuys et al., 2013) but
morphological features, such as thickness, are more readily available in
high-resolution structural MRI (e.g. DeKraker et al., 2018).

2. Materials and Methods

The backbone of our analyses was to impose a topological unfolding
framework to manual hippocampal traces, a method that we previously
developed for 7T MRI (DeKraker et al., 2018). We then extracted various
morphological features of hippocampal structure from the left and right
BigBrain hippocampi. We computed laminar features based on the work
of (Amunts et al., 1999) and modelled as in (Waehnert et al., 2014). We
then performed unsupervised, data-driven clustering of these features
and compared resulting clusters to manually segmented hippocampal
subfields. Finally, we examined differences in hippocampal structure
along its longitudinal (i.e., anterior-posterior) axis.

2.1. Materials

Histological data used in this study came from the BigBrain dataset,
which consists of serially sectioned and stained brain tissue that was then
reconstructed in 3D. Specifically, in the present study we used bilateral
40 μm3 resolution hippocampal blocks (ftp://bigbrain.loris.ca/BigBrai
nRelease.2015/3D_ROIs/Hippocampus/) in addition to serial section
images at 20 μm2 resolution (ftp://bigbrain.loris.ca/BigBrainRelease.20
15/2D_Final_Sections/Coronal/Png/Full_Resolution/) (Amunts et al.,
2013). BigBrain preparation involved silver staining, which selectively
targets cell bodies, providing a contrast that is different from, but
conceptually similar to, Grey Level Index (Wagstyl et al., 2018;
Schleicher et al., 1999). Because of the large file sizes, tracing and
application of our unfolding framework were performed on down-
sampled images (80μm isotropic) before upsampling by
nearest-neighbour interpolation in the case of labelmaps, and linear
interpolation in the case of unfolding solutions.

2.2. Manual tracing

Detailed histological tracing was performed for each hippocampus by
a combination of manual tracing and the user-guided computational tools
in ITK-SNAP 3.6 (Yushkevich et al., 2006). ITK-SNAP is primarily used
for manual tracing using a 2D or 3D paintbrush, but it additionally
contains some semi-automated tools that were used at the manual tracer's
discretion, including morphological operations such as dilation and
erosion. Since these tools rely so closely on the supervision of the tracer,
we will refer to the use of these tools as a manual process throughout this
manuscript. All traces were performed in native space, using all three
view planes. A general label for hippocampal grey matter (subiculum and
CA1-4) was manually traced first, and this tissue was later manually
divided into subfields. Only the laminae which contained stained
neuronal cell bodies - stratum pyramidale, oriens, and lucidum - were
traced (Fig. 1). Stratum radiatum lacunosum and moleculare (SRLM) and
the alveus were not traced even though they are sometimes considered
laminae of the archicortex containing dendrites and axons of pyramidal
cells (Duvernoy et al., 2013); they were not stained by this contrast
(although note that some of these strata contain interneurons - see Sup-
plementary Materials section A for discussion).

Subfield segmentation (i.e. the division of archicortical grey matter
into distinct subfields) was performed in 3D by rater Kayla Ferko (KF)
according to the criteria outlined by (Ding and Van Hoesen, 2015). This
work provides a detailed and instructive guide to segmenting all subfields
of the hippocampus, including the hippocampal head with multiple
samples with varied folding structure. One limitation of our segmenta-
tions is that Ding et al.’s protocol includes the use of both neuronal body
and myelin stains, whereas no myelin stain is available in the BigBrain
dataset. To take full advantage of the histological features available in
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BigBrain and make use of the highest resolution available, original 20 μm
images were also consulted every 2mm. In other words, subfield borders
on the 80 μm 3D hippocampus were manually compared to borders on
20 μm 2D images and, where necessary, the 80 μm borders were updated
to best match 20 μm images. These segmentations included the sub-
iculum and CA1-4, but did not differentiate the regions within the sub-
icular complex due to lack of resolution and since no myelin staining was
available. Subfields were traced through the entire length of the hippo-
campus including the uncus and vertical component of the uncus, in
which (Ding and Van Hoesen, 2015) describe modified versions of the
same subfields. Because the vertical component of the uncus is very thin,
its subfields were not easily discriminable. As a consequence, they were
partially inferred from neighbouring regions of the hippocampus.
Smoothing of the final traces was then performed by label-specific dila-
tion (e.g. dilating subiculum 4 voxels over CA1; then dilating CA1 8

voxels over subiculum; then dilating subiculum 4 voxels over CA1 again,
while always ensuring dilation was balanced in both directions). This was
performed for all subfields in the order CA4-CA3-CA2-CA1-subiculum,
ensuring that subfield borders followed smooth transitions from slice
to slice.

Structures surrounding the hippocampus were traced only in the re-
gions that border the hippocampus. These labels included medial-
temporal lobe neocortex (MTLc) (entorhinal and parahippocampal re-
gions), hippocampal-amygdalar transition area (HATA), and indusium
griseum (ind. gris.). HATA borders were clearly discriminable from
archicortex by a marked change in density and physical separation from
archicortical neurons. Ind. gris. and MTLc borders were less clear, and so
they were demarcated using the heuristics used in previous work in MRI
(for example, the MTLc-subiculum boundary is defined at the super-
medial edge of the white matter in the parahippocampal gyrus. See

Fig. 1. Manual traces of hippocampal archicortex and segmentation into subfields. A) shows coronal slices through the left hippocampal head (rows 1–3) body (row 4)
and tail (row 5), with manual segmentations overlaid in the images to the right. Images were taken from coronal slices 716, 632, 590, 376, and 230 of the 40 μm native
space left hippocampal block. B) shows 3D models of each hippocampus as seen from their superior aspect, with the inferior aspect shown in C). Dotted lines in B)
indicate approximate locations of each coronal slice shown in A). SRLM, vestigial hippocampal sulcus, alveus, and fimbria were excluded from all labels. Red arrows
indicate anterior folding in the vertical component of the uncus, the orange inset in the third row highlights ‘islands’ of neuronal cell bodies in the subicular stratum
lacunosum, and yellow arrows indicate gyrifications in the posterior body and tail of the hippocampus.
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(DeKraker et al., 2018) for further details). See Supplementary Materials
section A for further discussion of these structures.

2.3. Topological unfolding framework

In previous work (DeKraker et al., 2018), we imposed a topological
unfolding framework on the hippocampus by solving Laplace's equation
over the domain of the hippocampus under multiple sets of boundary
conditions: anterior-posterior, proximal-distal, and laminar. The
anterior-posterior and proximal-distal solutions can then be used to index
regions of the hippocampus in 2D according to its topology, irrespective
of inter-individual differences in gyrifications, rotation, curvature, size,
orientation, or position of the hippocampus. This provides implicit
registration between hippocampi despite inherently different morphol-
ogies. Data can be transformed between native and unfolded space
bidirectionally using interpolation. We applied this same approach to
BigBrain hippocampal traces (see Fig. 2 for illustration). However, note
that several minor improvements were made to this code which are
detailed in Supplementary Materials section B. Most notably, instead of
binning maps into 100� 100 pixels, they were instead derived from a
midsurface mesh consisting of 512� 256 vertices, with data being
sampled from all features by nearest neighbour. The dentate gyrus (DG)
was not included in this unfolding. Although it was easily distinguishable
from other subfields by its very high cell density, it is topologically
disconnected from the rest of the archicortex, and therefore would be
out-of-plane (i.e. perpendicular) to our unfolded space (see Fig. 1 for
visualization).

Waehnert et al. noted that neocortical laminae are displaced due to
curvature in gyri and sulci, and they propose an ‘Equivolume’model that
captures this feature better than a Laplacian (or equipotential) solution
(Waehnert et al., 2014). Their model is motivated by the observation that
a given lamina, for example near the pial surface, will stretch at the apex
of a gyrus and compress at the depth of a sulcus, causing it to become
thinner and thicker in these respective regions, and vice versa for laminae
at the white matter surface. Thus, we also included an alternative laminar
indexing system using the Equivolume model solution obtained from
Nighres (Landman et al., 2013). Again, this was performed on the
downsampled (80μm) traces before upsampling as described above. The
resulting model had fewer gyrification-related artifacts in laminar

profiles and was used for all subsequent laminar analyses. However,
some other artifacts were observed under this model solution, likely as a
result of the rough texture of the subiculum surface (see Supplementary
Materials section C for details). These laminar profiles were extracted for
each unfolded point (512� 256� 16 points, or vertices) at the corre-
sponding nearest neighbour (full resolution) native space voxel.

2.4. Morphological feature extraction

Each morphological feature is illustrated in the top left panel of Fig. 3.
Thickness estimates were obtained across the unfolded space of the
hippocampus as in previous work, that is, by generating and measuring
streamlines in 3D across the laminar Laplacian solution obtained from
our topological unfolding framework. Curvature estimates were obtained
by generating a mid-surface along the hippocampus with the vertices
being interpolated xyz coordinates from each unfolded point at a laminar
distance of 0.5, which is the midpoint between the inner and outer sur-
face. Smoothing of face normals was applied, and mean curvature was
then estimated at each vertex (see Supplementary Materials section B for
details). The inner (i.e. adjacent to the SRLM; continuous with the
neocortical pial surface) and outer (i.e. adjacent to the alveus, continuous
with the neocortical white matter surface) surfaces of the hippocampus
were rougher than their mid-surface counterpart due to the presence of
other features, such as subicular ‘islands’ of cell bodies shown in Fig. 1.
Thus, we additionally computed curvatures of these surfaces after
smoothing as described above. Gyrification is typically defined as a ratio
outer surface area, for example that of a brain mask over gyrified surface
area, in this example including sulcal area (Larsen et al., 2006). Since the
hippocampus is an open-ended cortical surface it does not map easily to
an outer surface area or to a sphere as in the neocortex, and so our
unfolding framework instead maps it to a rectangle. We thus defined
gyrification as a ratio of native space surface area over unfolded surface
area at each unfolded point.

2.5. Laminar feature extraction

We extracted laminar profiles along the Equivolume laminar solution
described above, and then summarized these profiles using the same 10
features consistently used by (Amunts et al., 1999; Wagstyl et al., 2018).

Fig. 2. Topological unfolding framework in BigBrain with hippocampal subfields. A) Sagittal slice and 3D models of the Laplacian solutions (proximal-distal and
anterior-posterior) for the right hippocampus. Image was taken from sagittal slice 514 of the 40 μm native space left hippocampal block. B) Mid-surface topological
models of the left and right hippocampi in native and unfolded space.
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Briefly, this involved sampling staining intensities (y) along a laminar
profile through the cortex, and calculating the mean (Mean(y)). This
intensity profile was then treated as a distribution (x), and the mean
(Mean(x)) and first 3 moments (SD(x), Skew(x), and Kurt(x)) were
calculated. The absolute value of the derivative (Abs.Deriv) of the profile
was then calculated (y→y.d), and the same measures (e.g. Mean(y.d),
Mean(x.d), etc) were obtained. These methods are illustrated with cor-
responding terminology at the top of Fig. 3.

There were several methods developed for 3D MRI, which we were
able to incorporate into this analysis, with resulting differences when
compared with the analyses performed by (Amunts et al., 1999). Firstly,
we sampled laminar profiles under the 3D Equivolume model that min-
imizes distortions in laminae due to curvature (as discussed above).
Secondly, our laminar sampling was not as dense because of the reduced
resolution available in the current data, and the fact that the laminae of
the archicortex are generally thinner than those of the neocortex. Lastly,
we included only laminae containing neuronal cell bodies (as discussed

above). Further details on these differences between our methods and
those of (Amunts et al., 1999) can be found in Supplementary Materials
section B.

2.6. Unsupervised clustering

In order to cluster visually-homologous regions of the feature maps
into segments, we applied a scale-space representation employing image
pyramids. That is, for each of the selected features, we smoothed the data
in unfolded space with a Gaussian kernel and a Laplacian of Gaussian
kernel of sizes sigma¼ 0.16, 0.32, 0.64, 1.28, and 2.56mm in order to
capture features at various spatial scales. Because unfolded space does
not necessarily have correspondence to real-world size, we reparame-
terized our unfolded space according to real-world distances between
points prior to smoothing, and then returned the resulting smoothed
feature maps to the original unfolded space parameterization. See Sup-
plementary Materials section E for details and visualization of this

Fig. 3. Characterization of the hippocampus using morphological and laminar features. The top diagrams illustrate how each feature is derived (see Materials and
Methods section for details). Top left shows an example segment of cortex, while the top centre and top right show an example laminar profile and its absolute
derivative (Abs.Deriv), respectively (Amunts et al., 1999). Heat maps below show the z-scored values of each feature across the unfolded hippocampus in the left and
right hemispheres, with the same colour scaling in both hemispheres. Overlaid in white are manually defined subfield borders, the top edge being the border with the
DG which is out-of-plane.
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reparameterization. This multi-scale smoothing is meant to reduce noise
in the data, but also to provide some spatial regularization of features,
ensuring that resulting clusters will not be distributed in only small
patches. The anterior 10% and posterior 10% of each feature were dis-
carded due to high noise.

All morphological and laminar features from the left and right
hippocampi were then reshaped into single vectors, z-scored, and entered
into a principal components analysis (PCA). K-means clustering was then
computed on the first 8 components, which explained >1% variance
each, with a fixed number of output clusters of k¼ 5 (since manual
segmentations contained 5 subfield labels). PCA followed by K-means
clustering was ideal for this type of analysis for several reasons: 1) Co-
linearity among features can be clearly assessed using PCA prior to k-
means clustering; 2) Clusters were expected to be of comparable sizes,
which k-means is biased towards; and 3) The number of clusters is known
a-priori. Clusters were then assigned subfield labels based on highest
overlap. Dice overlap scores were calculated (Dice, 1945; Sørensen,
1948) in unfolded space for each subfield (i.e. disregarding thickness),
excluding the 10% anterior and posterior edges that were removed due to
high noise. Dice was also calculated in native space, which is shown in
Supplementary Materials section D. In this case, however, clusters had to
be extrapolated over the 10% anterior and posterior regions leading to
lower total overlap scores. We also explored clustering under k¼ [2,4,8,
16,32], and performed alternative clustering methods, in order to
determine the consistency of subfields and sensitivity to further sub-
divisions in the data, with results described in Supplementary Materials
section D. In brief, these results support the validity of the clustering
methods we employed, and show that when other methods are used,
cluster boundaries occur at locations similar to those reported in themain
body of this article. PCA variance explained per component, component
loadings and visualization of the first 8 components can be viewed in
Fig. 5, along with the correlations between all features.

In order to determine whether subfield clustering could be derived
using only laminar features or only morphological features alone, we
repeated the above process for the subsets of morphological and laminar
features separately. We used the same '>1% variance explained'
threshold to remove PCA ‘noise’ components, which resulted in 5 com-
ponents in the laminar feature clustering, and 3 components in the
morphological feature clustering. Morphological features of inner and
outer surface textures were excluded since they capture subicular 'islands'
of cell bodies in stratum lacunosum, which could be considered a laminar
feature. This exclusion was also based on the limited value of these two
features for any MRI assessment.

2.7. Anterior-posterior variation

One hypothesis that we had based on prior literature was that there
may be anterior-posterior differences in some aspects of hippocampal
structure (Strange et al., 2014; Poppenk et al., 2013; Plachti et al., 2019).
We thus plotted select features of interest across the anterior-posterior
axis within each subfield. All features can be seen in a Supplementary
Materials section A, where we additionally fit linear trends to the data to
determine whether anterior-posterior gradients were present in any
subfield. In Fig. 6 we display the features mean neuronal density
(Mean(y)), thickness, and gyrification that most clearly differed between
subfields and are of immediate interest in MRI.

3. Results

3.1. Manual tracing

Fig. 1 shows BigBrain coronal slices alongside manually segmented
subfields in the head, body, and tail of the hippocampus, as well as
corresponding 3D models. Several features were detected in tracings of
the hippocampus in BigBrain that were not detected in previous in-vivo
MRI work that we know of. Clusters of pyramidal cells or ‘islands’ can be

seen on the inner surface of the subiculum (stratum lacunosum), which
have been observed in histology throughout the presubiculum (Duvernoy
et al., 2013; Ding and Van Hoesen, 2015). A medial and anterior fold
along the vertical component of the uncus, approximately 0.3mm thick
and up to 3.6 mm in length, was observed, as described in (Duvernoy
et al., 2013; Ding and Van Hoesen, 2015). Finally, numerous gyrifications
throughout the posterior body and tail of the hippocampus were
observed, which have previously also been observed usingMRI in (Chang
et al., 2018), although not to the extent seen here. This was most
prominent in CA1, but was also present in the DG and in CA4, which
followed the same gyrification scheme as CA1. Models of the dentate
gyrus alone and additional anatomical notes can be found in Supple-
mentary Materials section A. Total volumes of each subfield can be seen
in Table 1. Note that these volumes are smaller than what is typically
reported in MRI. This may be due to our exclusion of alveus and SRLM
laminae, which can be hard to differentiate from partial voluming in
MRI, but may also be influenced by tissue shrinkage during histological
processing. Furthermore, the issue of partial voluming in MRI may be
exacerbated by the presence of gyrifications, which appeared more
prominent in the right BigBrain hippocampus. These gyri are discussed in
greater detail in Supplementary Materials Section A.

3.2. Topological unfolding

Fig. 2A shows the proximal-distal and anterior-posterior Laplacian
solutions that make up the two axes of our topological unfolded space.
The dentate gyrus (DG) was not unfolded. Although it was easily
distinguishable from other subfields by its very high cell density it is
topologically disconnected from the rest of the archicortex, and therefore
would be out-of-plane (i.e. perpendicular) to our unfolded space (see
Fig. 1 for visualization). Fig. 2B shows a mid-surface mesh of the hip-
pocampus, coloured according to manually segmented subfields as in
Fig. 1. This surface was then mapped to 2D unfolded space according to
the anterior-posterior and proximal-distal Laplace solutions. In unfolded
space, subfields are relatively constant from anterior to posterior, with
subiculum being proportionally larger in the very anterior and smaller in
the very posterior extent. However, these differences may be artifacts of
manual segmentation since these regions are very small in native space.
This unfolding is illustrated in our online video (created through linear
interpolation of all points between native and unfolded space).

3.3. Characterization of the hippocampus in unfolded space

Fig. 3 shows a full characterization of the left and right BigBrain
hippocampi with respect to the 5 morphological and 10 laminar features.
These features are illustrated at the top of the figure, but additional de-
tails can be found in the Materials and Methods section. As in related
work (Duvernoy et al., 2013; DeKraker et al., 2018), thickness was
highest in the subiculum and CA4 and lowest in CA2. Curvature was
generally high in subiculum, which reflects its outward curling away
from the rest of the hippocampus. In CA1, vertical bands of positive and
negative values can be seen that correspond to the hippocampal gyr-
ifications displayed in Fig. 1. This region is also highlighted by our gyr-
ification measure, which differs from curvature in that it does not vary by
direction. Inner surface texture shows an almost honeycomb texture that

Table 1
Volumes of each manually defined subfield (mm3).

Left Right

Sub 345.9 282.5
CA1 574.0 534.0
CA2 46.6 40.6
CA3 66.9 54.4
CA4 109.0 107.4
DG 140.1 131.1
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is most prominent in the subiculum, where subicular ‘islands’ of neurons
are found in stratum lacunosum (Duvernoy et al., 2013). Outer surface
texture appears smoother, and more closely resembles the mid-surface
curvature measure. Note that the surface textures measures differ from
the curvature measure only in that they capture very local details. Thus,
they may not be available in lower resolution data. By contrast, features
such as thickness and gyrification may be especially of interest in
translation of this work to MRI, particularly because they show such clear
distinction between subfields.

Of the laminar features computed here, Mean(y) was highest in re-
gion CA2, which also agrees with the high neuronal densities observed in
this region (Duvernoy et al., 2013). Mean(x) showed almost the inverse
pattern, with high values in all regions except CA2. This means that the
distribution of neurons was shifted towards the inner surface in CA2.
SD(x) was highest in CA2, indicating a wide distribution of neurons
relative to the thickness of that tissue. This was counter-intuitive since in
native space CA2 appears to have a tight distribution of neurons; how-
ever, relative to its small thickness the distribution is wide. The
remaining 8 laminar features become more complex and quite similar to
Mean(y), Mean(x) or SD(x). Thus, some of these features may be
redundant. We nevertheless included them for consistency with previous
work in the neocortex (Amunts et al., 1999). Although we did not
perform any systematic comparison, there is visibly very high consis-
tency in all features between the left and right hippocampus, particularly
with respect to the subfields.

3.4. Unsupervised identification of hippocampal subfields using
combination of morphological and laminar features

By visual inspection, many of the features in Fig. 3 show a clear
distinction between the different manually defined subfields. Therefore,
we sought to determine whether a combination of these features could be
used to derive some or all of the subfield boundaries between subiculum
and CA1 to CA4 computationally, using PCA followed by k-means clus-
tering (see Materials and Methods for details). In this endeavor we also
examined whether morphological or laminar features in isolation would
be sufficient to allow for successful clustering, i.e. to derive clusters that
closely resemble gold standard hippocampal subfields. For consideration
of morphological features, we excluded surface textures given that they
include subicular ‘islands’, which arguably also qualify as laminar fea-
tures (see Supplementary Materials section D, and Ding and Van Hoesen,
2015; Ding, 2013 for further discussion). Fig. 4 shows the results of un-
supervised clustering of the combined feature sets, laminar features only,
and morphological features only. We compared clusters to their closest
corresponding manually defined subfield (gold standard) using Dice
overlap scores in Table 2. When all features were combined in this
analysis, good (0.7) to very good (0.8þ) overlap was found for most
subfields. Specifically, subfields subiculum, CA1, as well as combined
CA2 and CA3 showed overlap with gold standard segmentations.
Manually defined region CA2 had two clusters that overlapped with it
(orange and green in Fig. 4). The green cluster corresponded to the most
dense regions of CA2 (e.g. where Mean(y) and SD(x) were high), and
several other laminar features echoed this pattern. The fact that multiple
features showed this pattern may have contributed to the generation of
two clusters in CA2. In other words, the variance within CA2 may have
been amplified by the presence of redundant features. Using a combi-
nation of labels CA2 and CA3, as is often done in MRI segmentation
protocols (Yushkevich et al., 2015a), increased the Dice overlap scores as
expected. We note that subfield CA4 did not emerge as a unique cluster
and was instead included in the same cluster as CA1 or CA3. This
remained true even when the number of clusters (k) was increased up to
k¼ 16 (Supplementary Materials section D). Overlap of CA4 with CA3 is
to be expected given their topological closeness, but overlap with CA1 is
more surprising. One possible explanation is that despite their topolog-
ical separation, both of these regions were thicker, had higher gyr-
ification, and contained a lower density of neurons than CA2 and CA3

(see Fig. 3; CA4 is at the very top of each map). Relabeling clusters 1 and
2 (when they were present) past a proximal-distal distance of 200
allowed us to force a separation based on its break in continuity (i.e.,
separation in unfolded space, see Table 2). It should be noted that this
latter approach is not purely data-driven and only offers a heuristic that is
built on a-priori knowledge. Finally, the current analyses did not reveal
any evidence for the subregions of the subicular complex as described by
(Ding, 2013). This is not surprising because BigBrain only contains a
single contrast (neuronal cell bodies); other contrasts (particularly
myelin) or even immunochemical profiles are typically used to detect
these subregions (Ding and Van Hoesen, 2015; Ding, 2013). Converging
evidence was obtained for these results using different numbers of clus-
ters, k, in k-means clustering, and using a different clustering algorithm,
i.e., hierarchical clustering (see Supplementary Materials section D).

3.5. Unsupervised identification of hippocampal subfields using
morphological or laminar features in isolation

We next asked whether subsets of features (i.e. morphological fea-
tures alone or laminar features alone) could be used to derive hippo-
campal subfield borders. Laminar features alone were able to capture
most boundaries with good accuracy, with the exceptions of CA1, CA2,
and CA3 which had Dice scores below 0.7. (Fig. 4; Table 2). Again,
combining CA2 and CA3 lead to good (0.7þ) agreement with manually
defined gold standard segmentations. CA1 was less well defined using
only laminar features, and indeed there is some disagreement over the
exact border between subiculum and CA1 in the histological literature
(some disagreement may depend on the inclusion of prosubiculum as its
own region or simply a transition zone; see (Wisse et al., 2017).
Morphological features alone revealed two clusters within subiculum and
two within CA1, and did not differentiate between CA2 and CA3 at all.
Clustering using these features also highlighted boundaries surrounding
CA4, but CA4 did not contain a unique cluster. Rather, the same clusters
that were assigned to CA1 were assigned to CA4, similarly to when all
features were included in clustering. However, it is worth noting that
when their topological separation is considered visually, CA4 can easily
be distinguished from CA1. Overall with the exception of differentiating
CA2 from CA3, morphological features were sufficient to delineate hip-
pocampal subfields with very good (0.8 þ in most cases) accuracies, at a
level similar to clustering based on the combination of all features.

3.6. Relative contributions of individual features to subfield clustering

In order to better understand the inherent structure of the data used in
the above k-means clustering of all features, we revisited the PCA that
guided clustering and examined various PCA metrics. Fig. 5A shows the
total variance explained by each PCA component; only the first 8 com-
ponents explained >1% of the variance and were included in subsequent
analyses. Fig. 5B and D shows a breakdown of the first 8 principal
components. The first and most prominent component was most highly
correlated with most laminar features, except Mean(x), Skew(x), and
Mean(x.d) which showed an anti-correlation. Visualization of this
component shows consistently high values in CA2. This makes sense
since most laminar features showed uniquely high values in CA2, while
Mean(x), Skew(x), and Mean(x.d) contained low values in this region
(Fig. 3). Subsequent components explain a decreasing portion of the total
variance in the data, but correlate with different input features. Visual
inspection of these components shows that some loosely follow the
contours of the subfields. For example, component 3 quite clearly alter-
nates high and low between subiculum, CA1, CA2, and CA3. Others,
particularly components 5–8, appear to contain little subfield-related
variance and may reflect noise captured by the later components. Inter-
estingly, components 2 and 3 appear to show gradual anterior-posterior
differences, with higher values in the anterior and lower values in the
posterior extent in component 2, and the opposiate pattern in component
3.
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Of the features used in this analysis, some were more correlated with
each other than others (Fig. 5C). In particular, all morphological features
tended to be correlated with each other. All laminar features tended to be
correlated or anti-correlated with each other, with only small correla-
tions between morphological and laminar features. The fact that laminar
features tended to be uncorrelated with morphological features is in line

with the goal of the Equivolumemodel (Waehnert et al., 2014), which we
applied in order to remove the effects of curvature on laminar displace-
ment. Thus, overall, when modelled in 3D using the appropriate
methods, morphological and laminar features represent different levels
of structural information about tissue within the hippocampus. One
notable exception is that thickness was anti-correlated with many
laminar features. This could be due to measurement bias: If thickness
were overestimated in manual segmentation, then laminar profiles would
be systematically shifted. However, this may also relate to how micro-
structural differentiation of local tissue features contribute to overall
cortical thickness (see Wagstyl et al., 2018 for discussion).

3.7. Structural variation along the longitudinal hippocampal axis

In a final set of analyses, we aimed to explore qualitatively whether
subfields would show differences in feature composition along the
anterior-posterior axis of the hippocampus. Towards this end we visu-
alized possible trends along the axis in each manually-defined subfield
(Fig. 6). We primarily focused on the features gyrification, thickness, and
mean neuronal density (Mean(y)), given that these features showed high
contrast between different subfields. (Data for all other features are
included in Supplementary Materials section A). Note that with this
visualization, a high degree of separation can be seen between some
subfields, as previously described (see Fig. 3). Thickness and gyrification
tended to show lower values at the anterior and posterior extremes, or in
the vertical component of the uncus and tail of the hippocampus. This
pattern was also observed during manual tracing (Fig. 1). However, in
the remainder of the hippocampus, namely the head and body, thickness
remained relatively constant in each subfield while gyrification gradually
decreased, as observed during manual tracing. This is most notable in
CA1 where gyrification is especially prominent (note that in the Sup-
plementary Materials section A, we also report a similar linear decrease
in gyrification in CA3, but at a much smaller scale). Neuronal density was
notably lower in most subfields in the anterior sections, approximately
corresponding to the vertical component of the uncus. Additionally,
subfield CA1 and CA4 showed linear increases in density from anterior to
posterior (Supplementary Materials section A). Overall, these visualiza-
tions suggest that anterior-posterior differences are clearly present in
gyrification in CA1, and in density in CA1 and CA4.

4. Discussion

In the present study we show, for the first time, unsupervised clus-
tering of human hippocampal subfields that closely resembles the
manually defined gold standard. We additionally show that morpholog-
ical features alone are sufficient to derive most hippocampal subfield
boundaries. Moreover, our findings reveal that some features, most
notably gyrification in CA1, showed within-subfield differences along the
anterior-posterior hippocampal axis. The current study sheds new light
on the relationship between hippocampal topology, morphology, and
laminar cytoarchitecture with respect to hippocampal subfields and the
anterior-posterior axis.

4.1. Structural characterization of the hippocampus in BigBrain

Manual tracing and 3D modelling of the hippocampus (Fig. 1) at the
level of resolution available in BigBrain revealed several features not
seen in any 3D atlas that we are aware of. First, medial folding in the
posterior end of the vertical component of the uncus was observed,
similar to the inward ‘curling’ of the CA fields around the innermost DG
in the rest of the hippocampus. Second, ‘islands’ of pyramidal neurons
were present in stratum lacunosum in the subiculum. Third, gyrifications
were present throughout the head, body, and tail of the hippocampus but
were most prominent in CA1. These gyrifications were also echoed in the
underlying DG (where the term dentation is often used to refer to this
feature), and region CA4 that the DG partially encircles. Each of these

Fig. 4. Unsupervised k-means clustering of features. The left images show k-
means clusters in unfolded space at k¼ 5, with manually defined subfield bor-
ders overlaid in white. The right images show the same data in native space,
with 10% anterior and posterior edges extrapolated by nearest neighbour.
Clustering was completed for the combined set of all features, laminar features
only, and morphological features only.
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features has been described in histology (Duvernoy et al., 2013; Ding and
Van Hoesen, 2015), but has not been reconstructed in a 3D model at this
level of detail. For example (Adler et al., 2018), and (Iglesias et al., 2015)
both performed detailed and fully 3D segmentation of the hippocampus
and its subfields using ex-vivoMRI data, with additional histological data
in the same participants provided by Adler et al. Our approach extends
these studies by utilizing higher-resolution tracing and by using

histological cues inherent in the same images. Furthermore, our manual
traces and quantitative analyses fully respect the topology of the hippo-
campus and, in turn, the continuity of each subfield throughout the entire
length of the hippocampus. We note that the topology developed here
does not cover the dentate gyrus, which has its own topological
arrangement that is perpendicular to the rest of the cortex (including
archi- and neo-cortex). This difference in topology arises from a different
trajectory in ontogeny, in which the DG ‘breaks with’ the rest of the
cortex and wraps around the distal-most archicortex, i.e., CA4 (Duvernoy
et al., 2013; Nieuwenhuys et al., 2013). In future work, the DG could also
be unfolded using a general framework similar to what is presented here.
Critically, however, this approach would require employment of end-
points in a different plane.

After applying our topological unfolding framework, we computa-
tionally extracted morphological and laminar features from the hippo-
campus (Fig. 3). Many of these features agree with qualitative
descriptions by neuroanatomists, as discussed in the Results section.
Some of these features may be informative for in-vivo imaging as well.
For example, measures of thickness and gyrification can be obtained
under our topological unfolding framework given sufficiently detailed
segmentations, regardless of the availability of cytoarchitectonic

Fig. 5. Exploration of inherent feature variance. A) shows PCA component loadings from each feature with a dotted line at 1% after which subsequent components
were discarded. B) shows the feature loadings of the first 8 components, with multiple rows for the various smoothing kernels applied to each feature. C) shows the
correlation between all features, with separate boxes around morphological and laminar features. D) shows a visualization of the first 8 components, with manually
defined subfield borders overlaid in white.

Fig. 6. Features of interest plotted with respect to the anterior-posterior axis of the hippocampus. Colours indicate manually defined subfields, and shaded areas
indicate standard deviation. Data are combined across the left and right hippocampi. a.u. stands for arbitrary units, see Materials and Methods section for addi-
tional details.

Table 2
Dice overlap scores between k-means clusters and their closest corresponding
manually defined subfield.

All features Laminar features Morphological features

Left Right Left Right Left Right

Sub 0.87 0.83 0.83 0.79 0.92 0.87
CA1 0.67 0.63 0.61 0.61 0.80 0.74
CA2 0.72 0.67 0.73 0.68 0 0
CA3 0.56 0.55 0.53 0.52 0.59 0.56
CA2&CA3 0.84 0.77 0.84 0.75 0.84 0.80
CA4 0.59a 0.41a 0 0 0 0

a After additional post-processing (see text).
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features. These two features in particular show good contrast between
subfields subiculum, CA1, and CA4. Thus, they could be explicitly
leveraged to guide segmentation or registration to histological reference
materials in future MRI work. This may have been underappreciated in
other in-vivo studies, including our own previous MRI study, where some
of the gyrifications in the body and tail of the hippocampus could not be
detected. This prior lack of detail would also lead to overinflated thick-
ness measures, larger overall volumes, and perhaps differences in the
proportional sizes of some subfields along the anterior-posterior extent of
the hippocampus. Quantitative MR, such as T1 mapping, may addition-
ally provide cues to approximate cytoarchitectonic features. Indeed, in
our previous work we observed higher T1-weights in CA2 and CA3
(DeKraker et al., 2018), which may be driven by the higher neuronal cell
densities observed in the current study. Thus the features described here
show clear promise for characterising or segmenting the hippocampus in
future MRI work.

4.2. Unsupervised clustering of all features reveals hippocampal subfields

We performed unsupervised clustering of all features to determine
whether we could identify the classically described hippocampal sub-
fields using a completely unsupervised computational approach. Results
from clustering yielded generally high overlap with manual subfield
segmentations in most cases (Table 2), with several exceptions that are
outlined in the Results section. One particularly interesting observation
was that CA4 was consistently assigned the same cluster as CA3 or CA1,
even though it shares no topological boundary with CA1. The shared
structural elements between CA4 and CA1, particularly their relatively
high thickness, gyrification, and low density of neurons, may relate to
why certain diseases, such as subtypes of epilepsy, selectively affect CA1
and CA4 similarly (Duvernoy et al., 2013; Blümcke et al., 2013). In future
imaging work, CA1 and CA4 may be differentiated from each other,
particularly under our unfolding framework, due to their topological
separation.

Finally, to further explore the inherent dimensionality of the struc-
tural feature space under consideration, we also examined its principle
components (Fig. 5). In these analyses, we noted that the most prominent
components varied in ways that followed the contours of some or all
subfield borders (see Results section). This pattern suggests that the
inherent structural variance in the hippocampus most naturally follows a
proximal-distal patterning, as seen in the classic histological subfield
definitions. Some components additionally hinted at inherent anterior-
posterior differences across the hippocampus.

4.3. Morphological features are sufficient to approximate most subfield
boundaries

In addition to clustering using all features, we also asked whether
hippocampal subfields could be derived using only the subset of
morphological features or the subset of laminar features (Fig. 4 and
Table 2). Clustering using laminar features revealed all hippocampal
subfields with reasonable accuracy with respect to manually defined gold
standard segmentations (except CA4, and CA2 versus CA3were not easily
distinguished from one another). This was expected, since laminar fea-
tures provide the key criteria used by histologists to define subfield
boundaries (e.g. Duvernoy et al., 2013; Ding and Van Hoesen, 2015).
However, when we examined morphological features alone we also
found unsupervised clusters that closely resembled subfields subiculum,
CA1, and a combined CA2 and CA3 region. Additionally, CA4 was
assigned the same clusters as CA1, similar to when clustering was per-
formed on all features combined. This outcome was not expected based
on histological data, and provides support for the notion that morpho-
logical features capture an independent set of subfield-related structural
elements. The observation that morphological feature are sufficient to
determine most subfield boundaries holds great promise for future
refinement of MRI protocols for subfield delineation, given that

histological- or laminar-level details are not available in current imaging
protocols. Indeed, many of the MR-based subfield segmentation pro-
tocols presently available rely on some combination of structural land-
marks within or surrounding the hippocampus, but only indirectly on
morphological features (see Yushkevich et al., 2015a).

4.4. Anterior-posterior structural variation

Anterior-posterior structural differences in the hippocampus are
particularly of interest, given the growing body of literature suggesting
functional gradients along the longitudinal axis of the hippocampus (e.g.
Strange et al., 2014; Poppenk et al., 2013; Plachti et al., 2019; Zeidman
and Maguire, 2016). Structural anterior-posterior gradients are difficult
to assess using conventional histology, given that coronal or sagittal
sections are typically out of plane with respect to the different subfields
in most of the hippocampal head and tail. This highlights the utility of the
3D BigBrain dataset. Fig. 6 shows features gyrification, thickness, and
neuronal density along the anterior-posterior axis of the hippocampus.
Most notable anterior-posterior differences included differences in most
features at the very anterior and posterior extents of the hippocampus.
Previous work by (Ding and Van Hoesen, 2015) described the anterior
most region - the vertical component of the uncus - as containing
modified subfields that were much thinner than their counterparts
throughout the rest of the hippocampus, consistent with our
observations.

Gyrificaton was low in the anterior uncus, high in the remainder of
the hippocampal head, and gradually decreased towards the posterior
end of the hippocampus, most notably in CA1. Qualitatively, similar
trends in gyrification have been observed in our previous 7T MRI study
(DeKraker et al., 2018) and in other work (Chang et al., 2018). However,
both of these studies were limited in their ability to detect small gyr-
ifications (i.e. those detected in this study had peak-to-peak distances as
low as 2mm). Biophysical models of the development of gyrification
suggest a relationship between gyrus size and cortical thickness (Zilles
et al., 2013; Striedter et al., 2015). Yet, no systematic anterior-posterior
differences in thickness were seen in the present data despite clear de-
creases in gyrification size towards the posterior extent. Other structures
such as white matter might also constrain gyrification patterns (Striedter
et al., 2015), which may additionally have consequences for functional
properties of different gyri. For example (Henderson and Robinson,
2014), examined gyrification and structural connectivity in the neocortex
and found more unified or modular graph theoretical properties within
gyri, as opposed to sulcal regions which were more diffusely connected or
hub-like. Similarly (Plachti et al., 2019; Libby et al., 2012), recently
performed parcellation of the hippocampus according to its functional
connectivity and observed divisions primarily along the
anterior-posterior extent of the hippocampus, rather than across sub-
fields (although some proximal-distal clustering was also observed, as in
the present study). This functional parcellation may even relate to
modular divisions of function within a given gyrus, as proposed for the
neocortex by (Henderson and Robinson, 2014).

It is also interesting that neuronal density increased from anterior to
posterior sections in subfields CA1 and CA4 in the present study. It should
be noted that the current methods cannot differentiate density from
neuronal size, but other related work has also found similar effects in
density (Dam and Mouritzen Dam, 1979).

4.5. MRI applications and future directions

There are several clear implications of this work for in-vivo neuro-
imaging studies of the human hippocampus. Firstly, as described in the
Introduction section, considerable research has gone into defining the
hippocampal subfields according to available landmarks in MRI. Yet,
relatively few studies have explicitly investigated the 3D shape of the
underlying archicortex in which those subfields are embedded. Most
subfield delineations rely directly or indirectly on manual segmentation
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performed predominantly in the coronal view, in which the only visible
gyrifications are in the hippocampal head (Yushkevich et al., 2015a).
Because of this complication, many protocols have elected not to divide
subfields in this region, or else to simplify them. The same concern also
applies in the hippocampal tail, albeit at an even finer spatial scale. In our
previous 7T MRI study (DeKraker et al., 2018), we demonstrated the use
of topological modelling to overcome this challenge, but we note that this
previous work captured fewer details than the current histological study
due to resolution limitations. In future work, we anticipate it will be
possible to explicitly model gyrifications and all other aspects of hippo-
campal topology considered in the present study. In addition, topological
modelling of the hippocampus in MRI can open new lines of structural
investigation, including the development of more precise measures of
thickness, gyrification, and, at higher resolutions, potentially laminar
features. Our approach promises to be of particular value in overcoming
systematic partial voluming with white matter structures within the
hippocampus and in adjacent structures. At a broader level, consider-
ation of the hippocampal features highlighted in our study may also
allow researchers and clinicians to link pathological changes, or behav-
ioural and cognitive phenotypes, to more specific structural elements
within the hippocampus. Finally, our current results may also help bridge
the gap between microcircuit level modelling of the hippocampus and
subfield modelling at the scales currently available in MRI. Because we
found that subfields are characterized by unique morphological feature
combinations, we may even be able to infer a relationship between
subfield microcircuitry and fMRI measures in future work.

5. Data and resources made available

Alongside this publication, we release our detailed manually defined
hippocampal subfields, unsupervised clustering results, topological
unfolding framework, Equivolume laminar model solutions, and each of
the unfolded morphological and laminar features computed here for the
BigBrain dataset. These resources can be used as templates in other
studies,. Alternatively, registration of these features to new data in our
unfolded space can be used to guide future subfield segmentation. In
addition, we have also made the code used in this project available via
Open Science Framework (https://osf.io/x542s/). A toolbox for per-
forming hippocampal unfolding, feature extraction, and other useful
operations on more general datasets can be found at https://github.com/
jordandekraker/Hippunfolding.

6. Conclusions

In the current project, we mapped the human hippocampus in detail
by combining three methods. First, we used a unique dataset, BigBrain,
that contains both histological-level detail and macroscopic 3D spatial
context. Second, we imposed a topological unfolding framework to the
hippocampus. Third, with this framework we extracted a set of
morphological and laminar features, the latter of which have been used
prolifically in neocortical characterization and parcellation. Using these
methods we highlight three novel empirical observations. First, unsu-
pervised clustering of these features closely resembles classically defined
hippocampal subfields. Secondly, despite traditional reliance on laminar
features in histology, morphological feature alone are sufficient to closely
approximate most hippocampal subfields. Finally, some features such as
gyrification in CA1 show, at least qualitatively, subfield-specific anterior-
posterior differences that might relate to functional differences described
in the extant literature. Overall, these findings highlight new structural
characteristics of the hippocampus, and offer promising avenues for
improved delineation and characterization of hippocampal subfields
using in-vivo neuroimaging.
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