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A bstract
Prostate cancer is the second leading cause of death from cancer in North American 

men, with a reported 32,050 deaths in the U.S. alone for 2010; lung cancer is reported 

as the number one leading cause of death from cancer in both men and women in 

North America, its estimated death toll in the U.S. alone in 2010 is over 157,000. 

One method of treating prostate cancer patients nowadays is by Low Dose Rate 

Brachytherapy, a process where radioactive seeds are placed in or near the tumor site 

to kill cancerous cells. For lung cancer, brachytherapy has begun to attract attention 

due to the advent of robotics assistance and there is increasing research currently in 

the area. While brachytherapy is gaining popularity as a commonly practiced method 

for treating cancer patients, the procedure itself has several drawbacks that require 

further research. One such drawback is that the dosimetry plan created based on the 

pre-operative imaging may not be accurate due to (a) the change in the tumor’s size as 

a result of the time elapsed between pre-operative imaging and seed implantation; and 

(b) movement of the organ under treatment from the position and orientation in pre­

operative imaging; this is particularly important in the case of lung brachytherapy 

as it would have to take into account lung deflation and respiratory and cardiac 

motions as well. In addition, seeds may be misplaced during implantation as a result 

of limitation of the manual or robotic procedures. When this happens, the final dose 

coverage of the tumor is no longer the same as the intended coverage in the dosimetry 

plan.

In this thesis, the development, implementation and evaluation of two algorithms 

are presented. The first algorithm is the pre-planning algorithm, which aims to reduce
m



the errors in the dosimetry plan caused by the change in the tumor’s size by providing 

a mechanism to perform dosimetry planning on-line. By doing this, the first algorithm 

can also eliminate the need for the patient to be imaged twice, so that the same set 

of images can be used for dosimetry planning as well as seed implantation. The 

second algorithm deals with intra-operative dynamic dose optimization, where real­

time seed compensation is performed to compensate for any seed misplacements so 

that an optimal final coverage can be achieved. The results of the experimental 

evaluation performed in this project indicate that these algorithms are feasible and 

have the potential to be applied in the operating room following appropriate animal 

and clinical validation.

Keywords: LDR Brachytherapy, Lung Cancer, Prostate Cancer, Dosimetry, Pre­

planning.
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Chapter 1 

Introduction

Cancer commonly manifests itself as malignant tumors that are fast growing and in­

vade surrounding tissue and cells, new tumor growth can also occur at other locations 

through a process known as metastasis. Treating the malignant tumor at an early 

stage is highly desirable to prevent métastasés, with surgical removal/resection (such 

as prostatectomy for prostate cancer or lobectomy for lung cancer) and chemotherapy 

being the traditional and commonly practiced methods. Other treatment methods are 

also available, such as the use of Hormonal Therapy (HT) for prostate cancer, which 

targets one specific type of cancer, is a procedure where testosterone production is 

decreased.

Radiation therapy is another technique for treating cancer, it uses high energy 

rays, usually in kilo-electronvolts (keV) or mega-electronvolts (MeV) to kill the tumor 

[1]. A traditional form of radiation therapy is the External Beam Radiotherapy 

(EBR). In EBR, keV x-rays, also known as superficial x-rays, are used for skin cancer 

and superficial structures; whereas MeV x-rays, also known as deep x-rays, are used 

for tumors that are deeply-seated, such as on the bladder, prostate, lung and brain 

etc. The application of radiation therapy on internal organs must be done with care 

since the high energy beam kills all cells that are within range, be it cancerous or 

healthy. Therefore the most difficult task in radiation therapy is to target the tumor 

cells only.
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1.1 P rostate  and Lung Brachytherapy

Brachytherapy, which translates to short-range-therapy, is a more recent development 

in radiation therapy compared to EBR. The biggest advantage of brachytherapy over 

other treatment methods from radiation therapy is that it is both safer and less time- 

consuming. In brachytherapy, it is possible to achieve a high ratio of cancer dose to 

normal tissue dose by placing radiation sources inside or next to cancerous tissue, 

thus avoiding harming normal and healthy tissue during the treatment process, and 

is an improvement over EBR. Nevertheless, no method is proven to be 100% safe and 

all may lead to undesirable side effects.

There are mainly three categories of brachytherapy in use today, they are Low 

Dose Rate (LDR), Medium Dose Rate (MDR) and High Dose Rate (HDR). The 

biggest difference between all these categories is the dose administered to the patient 

during treatment. For example, LDR is generally between 0.4G?/* 1 to 2Gy per hour, 

MDR is from 2Gy to 12Gy per hour, while HDR is usually more than 12Gy per hour. 

The focus of this thesis is on LDR brachytherapy in the prostate and the lung.

The LDR brachytherapy treatment procedure involves permanently placing the 

radioactive seeds inside the patient, which is why it can also be referred to as per­

manent brachytherapy, is usually composed of four steps with the support of several 

medical imaging modalities, such as transrectal ultrasound (TRUS), computed tomog­

raphy (CT) and radiography. The first step, which is known as pre-implant volume 

study, uses either TRUS or CT to determine the volume of the target [2, 3, 4]; the 

second step is called pre-planning, where a dosimetry plan is created by the radiation 

oncologist in an off-line environment; thus no imaging is required for this step. TRUS

1. Gray (symbol: Gy) is the SI unit of absorbed radiation dose of ionizing radiation.
1 Gy = ljL = 1 m2-s~2
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and radiography are usually used in step three, which is commonly known as seed 

implantation [2, 3]. CT is required some time after the implant to assess the quality 

of the procedure in step four, known as post-implantation [2, 3].

1.1.1 Brachytherapy Seeds

According to [5], there are three types of seeds commonly selected for interstitial 

brachytherapy, they are Iodine 125 (125I), Palladium 103 (103Pd) and Iridium 192 

(192Ir), while the less frequently used seeds are, Cesium 137 (137Cs) and Cobalt 60 

(60Co). All the elements listed above are the unstable radioisotopes of their stable 

atoms. For instance, the stable atom of Iodine has 53 protons and 74 neutrons, 

the sum of which gives an atomic mass of 127 for the stable form of Iodine. The 

radioisotope 125I on the other hand, has only 72 neutrons. Similarly, 103Pd has 57 

neutrons while the stable 106Pd has 60 neutrons. A more detailed description on the 

properties and radioactivity of 1251 are given in Appendix D. Section 1.1.1.1 discusses 

125I in more detail; here 103Pd and 192Ir are briefly examined.

The short half-life (7 \/2) of 103Pd of 17.0 days means that it is only good for per­

manent implants [5], and is a common replacement for 125I in permanent brachyther­

apy. Even the geometries of 1(l3Pd sources are very comparable to that of 125I sources. 

The high initial dose rate of 103Pd is appropriate when applied in interstitial implan­

tation of rapidly proliferating tumors. The Half Value Layer (HVL) for 103Pd at 

0.008mm is lower than the HVL for 125I, which is given by [6] as 0.025mm. HVL is 

discussed in more detail in Appendix D.

192Ir, has a longer half-life at 73.83 days [5]. They appear as small cylindrical 

sources for interstitial use in the United States, which are approximately 3mm  long 

and 0.5mm in diameter. In Europe however, 192Ir is most commonly used in the
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Figure 1.1: Size of brachytherapy seeds

form of a wire. As reported in [7], 192Ir has now established itself as the preferred 

radionuclide for all temporary brachytherapy applications, which are not LDR.

1.1.1.1 Iodine 125

By comparison, 125I is by far the most commonly used seed for LDR brachytherapy 

(details on the decay and radioactivity of 125I are given in Appendix D). Three 

models of the 125I seeds are available, they are the 6702 and 6711 type manufactured 

by Amersham and the 2300 type marketed by Best Industries. The 2300 type is said 

to be more isotropic in dose pattern due to the presence of iodine on the ends of the 

seed and on the surface of the tungsten wire that is inside the titanium encapsulation 

[8]. Even though the design and appearance of one seed differs from those of another, 

the size of all these seeds are generally no bigger than a grain of rice.

This thesis uses the 6711 model of 125I seed by Amersham; reference [5] provides 

detailed information on this type of seed. The half-life, of this seed is given by 

[5] as 59.4 days, which translates to 1426 hours. This type of seed is approximately 

4.5mm in length, and its diameter is about 0.8mm, enclosed in a 0.05mm thick
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titanium wall. This seed type offers air kerma strength of up to 6.3f/2, which is 

equivalent to an apparent activity of 5mCz3. The interior design of the Amersham 

seed consists of a hollow cylinder made of a double-walled titanium tube. Two of 

the advantages offered by this designed are that, one there is a higher isotropy of 

the irradiation field around the source, and two there is a reduced chance of seed 

migration [7].

1.1.2 State-of-the-art Prostate Brachytherapy

Despite brachytherapy being more advantageous than other radiation therapy treat­

ment methods as mentioned previously, it is not always recommended for all cancer 

patients. Even when brachytherapy is selected as the primary treatment method, 

additional therapy is sometimes required to complete the treatment process [6]. Re­

gardless of the treatment strategy employed, the long-term cure rate is always favor­

able for patients with early stage cancer. For example, patients with low-risk prostate 

cancer are usually recommended for the four-step prostate brachytherapy. Low-risk 

prostate cancer is defined for patients that have a Prostate-Specific Antigen (PSA) 

level of 10ng/m L  or less, a Gleason score of 6 or less, and clinical stage T2a or less 

[6]. PSA, the Gleason score and prostate cancer staging are discussed in more detail 

in Appendix A. The reason for choosing the four-step procedure for low-risk prostate 

cancer is that the disease would be more likely to have been confined to the prostate 

in these patients. In addition, there are other factors that could influence the decision 

to offer brachytherapy, such as the size of the prostate must be less than 60cc [9]. 

Once a patient is found to have met these criteria, and thus be eligible for prostate

2. U, unit for air kerma strength, usually specified at lm. 1U = 1 fiGy ■ m2 ■ h 1 [5]

3. Curie (symbol: Ci) is a unit of radioactivity. 1C* = 3.7 x 1010 decays per second
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Figure 1.2: A sample seed template used for prostate brachytherapy

brachytherapy, an ultrasound-guided prostate volume study must be performed as 

the first step.

1.1.2.1 Step 1 - Pre-implant Volume Study

During the volume study, the size of the gland and the relation of the gland to the 

pubic arch are assessed; this study also determines the target volume and tracks the 

urethra through the prostate. This volume study is carried out with the patient 

sedated in the lithotomy (treatment) position [9], usually with the aid of a TRUS 

probe to visualize the prostate in the transverse and sagittal dimensions [10]. This 

probe is mounted on a stabilization apparatus that’s affixed to the Operating Room 

(OR) table with a template grid attached, the angle of the mount and the probe are 

recorded. A sample template is shown in Fig. 1.2, the purpose of which is to assist 

needle insertion. The probe is then lubricated with ultrasound (US) jelly before being 

inserted into the rectum, this is to reduce air interference between the US probe and 

the rectal wall to achieve the best visualization of the prostate. CT or Magnetic 

Resonance Imaging (MRI) could also be used in place of US, though due to practical



7

Figure 1.3: TRUS probe and 2D input US images

operating room constraints, these modalities are only available at a limited number 

of institutions [10].

The set of images of the prostate are acquired at < 1° intervals by the TRUS 

probe as the probe is rotated about its axis. The acquired images appear as a fan 

and are in polar coordinates. A polar to rectangular transformation is required to 

construct the 3D volume in cartesian coordinates before these images can be used for 

contouring purposes. Figure 1.3 shows a graphical representation of the probe and 

the images obtained which are then used as input images for the polar to rectangular 

transformation.

Once the prostate and the surrounding organs are displayed, contours can be 

defined to identify the target and normal tissues. The contours of the target, namely 

the prostate, should then be compared with the length of the prostate that was 

measured on the sagittal views, the volume of the gland should also be recorded for 

comparison purposes. Hormonal treatment may be applied to abnormally large glands 

to shrink the prostate, the volume of which may decrease by as much as one third
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Figure 1.4: Cross-sectional view of the prescription contour enclosing the prostate

within 4 months of the treatment. For a prostate volume that is within the defined 

limits, these contours and images can be transferred to a treatment-planning system 

for step two of the procedure known as dosimetry planning, which is explained in the 

next paragraph. The current image acquisition software found in clinics superimposes 

a series of dots on the US images, which correspond to the holes in the seed template.

1.1.2.2 Step 2 - Pre-planning

The second step is called dosimetry planning, or pre-planning, the aim of which 

is to calculate the seed positions required to deliver the desired dose to the entire 

tumor volume [2]. During dosimetry planning, the intention is to enclose every cross- 

sectional image of the prostate within the prescription dose contour, as shown in 

Fig. 1.4. This is to ensure that the entire gland can receive a proper dose, since the 

size of the prostate gland is relatively small. Pre-planning for lung cancer is rather 

different, where only the tumors (and a specified margin around them) are to receive 

the prescribed dose and not the entire organ.

In any case, there are usually dosimetry constraints that govern the dosimetry
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planning process. For example, a constraint of dosimetry planning for the prostate 

is the amount of dose that can be delivered to the urethra. Reference [2] suggests 

that as much as 125% of the prescribed dose can be delivered to the urethra, even 

though the dose to the urethra should be kept as low as possible. Other constraints 

may include the dose to the rectum and to the boundary of the prostate itself. All in 

all, dosimetry planning tries to limit the number of low-dose regions or “cold spots”, 

which may lead to tumor relapse, while the number of high-dose regions or “hot 

spots” in normal tissues must also be limited, which may result in late complications 

[6] such as the killing or damaging of healthy tissue. Due to the presence of the seed 

template, the brachytherapy seeds are generally spaced at 10mm in the cranio-caudal 

direction, which would be the direction coming out of the page as in Fig. 1.4. In 

Cartesian coordinates, if the cranio-caudal direction is intepreted as the z-axis, then 

the seeds are spaced at 5mm  or more in the x and y directions, which are co-planar 

to the direction shown by view in Fig. 1.4.

1.1.2.3 Step 3 - Seed Implantation

Seed implantation is the next step after dosimetry planning, which usually takes place 

a few weeks after the volume study has been done [2], Before loading the seeds into 

the brachytherapy needles for implatation, the seeds are unpacked first and then their 

activity is checked in a calibrator. The activity defines the number of disintegrations 

within a given time for a particular radioactive source, which is a measure of how 

radioactive the source is; activity is discussed in more detail in Appendix C. The 

loading and checking of the seeds are done under sterile conditions. The seeds are 

then loaded in to the needles according to the dosimetry plan, also called a pre-plan. 

A sample pre-plan of prostate brachytherapy is shown in Fig. 1.5, which contains 

information for the ‘hole location’ of the needles expressed in terms of an alphabet and
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Figure 1.5: A sample pre-plan for prostate brachytherapy

a number that corresponds to the horizontal and vertical indices on the seed template 

to provide the exact location of where the needle should be inserted. Furthermore, 

the plan contains information on the depth at which the seeds should be deposited, 

indicated by the values under ‘retraction’. The preloaded needles with the seeds are 

kept within a shielded vault, they are only taken out of the vault and handed to the 

physician when he or she is ready to insert each individual needle.

A stylet is placed after the train of seeds in each needle in order to push the seeds 

out once the needle has been deposited at its destination. To protect the patient and 

staff while the patient is being anaesthetised and placed in the lithotomy position
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again, the loaded needles are stored in a shielded loading box. The TRUS probe 

and the seed template are then positioned to match the volume study positions as 

closely as possible. Under the guidance of US imaging, each needle is taken in turn 

and inserted through its assigned hole in the template to its desired depth. One 

limitation related specifically to the prostate brachytherapy procedure is that the 

seeds can only be placed in terms of grid and needle units, due to the presence of the 

seed template and the fact that the seeds are spaced at a minimum of 0.5cm inside 

the needles.

Once the needle is at the correct retraction depth, it is pulled back over the stylet 

to deposit the train of seeds at their destinations in the prostate. In the event that 

the needle has not been inserted through the correct hole in the template, or if the 

seed has been deposited at an incorrect depth, the surgeon may even take out the 

misplaced seeds using a procedure similar to the one described in [11]. These seeds 

need to be taken out because if any seed is left in an unintended location, the final 

coverage of the tumor will no longer be accurate since the location of the seeds will be 

different to the pre-plan. The used needle and stylet are discarded and the rest of the 

needles are inserted in the way described above. At the end of this step, radiography 

is used to check the positioning of the seeds. The post-implant dosimetry check-up, 

which is step four of the procedure, must be performed some time after the seed 

implantation has taken place.

1.1.2.4 Step 4 - Post-implant Check-up

The post-implant check-up is usually conducted using CT, the main goal of this step 

is for quality control purposes, as well as evaluating the dosimetry to the surrounding 

Organs At Risk (OAR). The time between seed implantation and post-implant check­

up have been suggested as anywhere between 1 to 30 days after seed implantation [9].
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According to [9], most post-implant check-up is done 4 weeks after implantation to 

allow the edema to subside. Ultrasound is not used in this step because the artifacts 

from the implanted seeds may cause image degradation. The CT images are imported 

into a treatment-planning system to identify the seeds in the prostate and analyze 

the dosimetry data based on the contours defined for the prostate. The data of 

importance are discussed in more detail in section 4.3.

The four-step prostate brachytherapy procedure described above suffers from a 

change in the size and volume of the prostate between volume study and seed im­

plantation, as mentioned previously in section 1.1.3 and in [9]. As a result, intra­

operative planning has been reported in [2], [6] and [9]. One advantage discussed 

in these literature is the improved accuracy of seed implantation since both the vol­

ume study and seed implantation are carried out at the same time, which effectively 

avoids any changes to the prostate compared to the four-step procedure; whereas in 

the four-step procedure the time spent waiting between the volume study and the ac­

tual implantation might be long enough for the tumor to expand. Another advantage 

is that the patient is required to be sedated only one time such that minimal dis­

comfort exists whereas in the four-step procedure the patient must undergo sedation 

for both volume study and seed implantation which means there is more discomfort. 

The disadvantage, as mentioned in [2], is that more seeds tend to be wasted since the 

precise number of seeds required is unknown in advance and they must be unpacked 

and loaded in the OR.

1.1.3 Procedural Deficiencies

As mentioned above, the brachytherapy procedure at the moment is far from perfect. 

In the prostate brachytherapy procedure, the dosimetry plan created in step two is
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based on the US images obtained from step one. The time between the creation of 

the pre-plan to seed implantation in step three can be long enough for the tumor size 

to change. Thus a pre-plan may no longer be accurate by the time seed implantation 

takes place [12]. The multiple TRUS imaging sessions could also create a certain 

amount of discrepancy between the US images acquired at different times as it is 

generally not possible to place the patient and insert the rectal probe in exactly the 

same way as before. Furthermore, seed misplacement was hard to avoid because of 

shifts in the prostate, tissue deformation and needle flexing. This makes the post­

implantation session an absolute necessity to check the actual coverage obtained after 

the seed implantation.

Compared with prostate brachytherapy, there is relatively Tittle work done to 

date on lung brachytherapy. Much of the work is still at a research stage with ad­

ditional interest created by the availability of surgical robotic systems where, in [13] 

the accuracy of manual seed implantation is compared to that of the ZEUS robot. 

Nonetheless, the accuracy of the current lung brachytherapy procedure has also been 

suffering from drawbacks such as the changes in tumor’s size and location between 

pre-planning and seed implantation, as well as the inability to compensate for inaccu­

rate seed placements [14]. The procedure is further complicated by the more sensitive 

area and the need to perform brachytherapy in the presence of motion (respiratory 

and cardiac).

1.2 R esearch M otivation

Given some of the drawbacks of the brachytherapy procedure at the current stage, 

the motivation behind this research is to reduce the errors in the brachytherapy 

procedure with reference to the lung and prostate brachytherapy. As mentioned
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before in section 1.1.2, a seed template is currently used to control the placement of 

seeds inside the tumor. However, the template may also be a nuisance in the sense 

that the template grid that is overlaid on the tumor in the pre-operative images are 

different to the template grid seen during actual implantation, which might lead to 

inaccurate dosimetry results; also seed misplacements may occur if a needle is inserted 

through the incorrect hole in the template. With the advances in medical robotics, 

the elimination of the template can prevent these errors mentioned above, where seeds 

can be deposited anywhere inside the tumor from any angle as desired. To this end, 

this research is conducted based on the availability of such a robotics set-up, which 

is described in more detail in section 4.1.1.2.

In particular, this research consists of two components, which are the pre-planning 

or dosimetry planning component, and the intra-operative dynamic dose optimization 

(IDDO) component. The first component attempts to provide a means for the online 

generation of a dosimetry plan for use in seed implantation, effectively reducing the 

time span between dose planning and seed implantation. The IDDO component aims 

to compensate for seed misplacements by updating the dosimetry plan dynamically 

to ensure that an optimal coverage is achieved at the end of the procedure. Post­

implantation evaluation is still required nonetheless, to verify the actual seed locations 

against the desired seed locations, i.e. to verify that the desired radiation coverage is 

achieved.

1.2.1 Goal of Pre-planning

The goal of the pre-planning component is to generate seed locations to deliver the 

prescribed dose to the target volume in on-line mode, in other words, to create the 

dosimetry plan in real-time. In doing so, the same images that are used to generate the
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dosimetry plan are also used during the actual implantation of the seeds; meanwhile 

the time span between the dosimetry planning step and the seed implantation step is 

reduced to a minimum. The pre-planning component essentially combines steps one 

and two of the four-step procedure described previously, thus reducing the amount of 

error that is present in the current four-step procedure between the intended tumor 

coverage of dosimetry planning and the actual tumor coverage at the end of seed 

implantation. There are mainly two factors that contribute to this error.

One is imaging errors between dosimetry planning (pre-planning) and seed implan­

tation, because dosimetry planning is carried out on the US images obtained during 

pre-implant volume study (section 1.1.2), while seed implantation is performed on a 

new set of real-time US images obtained in the OR during treatment. Since the im­

ages for the pre-planning step (which is taken at pre-implant volume study) and the 

seed implantation step are taken at different times and possibly different locations, it 

is very important that the patient, and the equipment are positioned in exactly the 

same way in both steps in order to obtain identical images in both steps. However, 

during seed implantation, it is nearly impossible to duplicate exactly the position of 

the patient and equipment from before, even though the angle of the mounting appa­

ratus of the probe and the angle of the probe itself are recorded during pre-implant 

volume study as mentioned in section 1.1.2. Even the smallest discrepancy between 

how the equipment or patient have been placed from one step to the other might lead 

to a significant amount of error between the images for pre-planning and seed im­

plantation. This will ultimately lead to a discrepancy between the intended coverage 

of the tumor which is based on images from pre-implant volume study and the actual 

coverage of the tumor which is based on a different set of images.

Another factor is due to the waiting time (usually a few weeks) in the currently 

practiced brachytherapy procedure between the off-line dosimetry planning and actual



16

seed implantation. The dosimetry plan is created based on the US tumor images 

obtained during pre-implant volume study, and the seeds are deposited in the tumor 

volume according to this plan during seed implantation. The time elapsed between 

pre-planning and seed implantation may have caused a change in the size and shape of 

the tumor, and thereby the dosimetry plan for the pre-implant tumor may no longer 

be appropriate for the tumor at seed implantation, even if the patient and equipment 

have somehow been placed in exactly the same way in both steps.

To this end, the aim of the pre-planning component is to solve these problems by 

doing everything ‘on-line’, from pre-implant volume study to creating the dosimetry 

plan, which would then be ready to be used for immediate seed implantation. Thus 

ideally only one US imaging session would be required, during which time pre-implant 

imaging, dosimetry planning, as well as seed implantation (which are the first three 

steps in the commonly practiced four-step procedure for brachytherapy) would all 

take place, thereby minimizing errors caused by different positioning of the patient or 

equipment during a later session; as well as minimizing errors caused by the natural 

growth of the tumor itself because the exact same images are used for both pre­

planning and seed implantation and that the time elapsed between the steps are very 

short. Thus, as long as the seeds are deposited accurately according to the dosimetry 

plan, the actual coverage of the tumor at the end of seed implantation will be much 

closer to, if not exactly the same as, the intended coverage at pre-planning.

1.2.2 Goal of IDDO

The second component of this research - Intra-operative Dynamic Dose Optimization, 

involves performing optimization in real-time in order to compensate for any seed 

misplacements.
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As described in section 1.2.1, the seeds must be accurately deposited according 

to the pre-plan in order to achieve the intended radiation coverage of the tumor. 

Though, as mentioned in section 1.1.2, needles can sometimes be inserted through 

the wrong hole in the seed template or the seeds themselves may be deposited at an 

incorrect depth. On top of these preventable human errors, there are other errors 

that are not preventable which will lead to a different coverage of the tumor volume 

as compared to the one from pre-planning. These errors may again be caused by 

the difference in the positioning of the patient and/or equipment from pre-implant 

imaging to seed implantation as in the case of prostate brachytherapy. As described in 

section 1 .1 .2, the current dosimetry planning software overlays the seed template grid 

on top of the US images, and thus the dosimetry plan is created with a pre-defined 

position of the seed template. It has been mentioned in section 1.2.1 that during the 

seed implantation step, it is difficult to mount the seed template exactly according 

to how it was done in pre-implant volume study. However, the template position 

from the pre-implant volume study is assumed by the dosimetry planning software 

as the template position that is used during seed implantation too. As such, during 

seed implantation, it might not be possible to deposit the seeds at their intended 

destinations due to a shifted seed template.

To account for this drawback, and therefore to compensate for any seed deviations, 

the IDDO component is used to generate a new dosimetry plan in real-time to best 

meet the intentions of the dosimetry plan as specified during pre-planning. IDDO can 

also compensate for seed misplacements due to tissue shift, needle bending or deflec­

tion. The IDDO component is necessary to guarantee that the best possible coverage 

can be achieved, thus eliminating the repetition or extension of the brachytherapy 

treatment. In the end, a post-implant check-up can be performed to ensure that 

adequate dosimetry coverage has been achieved.
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1.3 T hesis C ontribution

As a whole, this thesis improves upon the current LDR brachytherapy method with 

particular reference to prostate and lung cancer. In particular, one contribution of 

this thesis is to improve the accuracy of the overall procedure by performing dosimetry 

planning on-line. In terms of the four-step procedure, this implies that pre-implant 

volume study, dosimetry planning, and seed implantation are all performed together, 

thus reducing any errors that could be caused by the different positioning of the 

patient and/or equipment, or by the natural growth of the tumor, between pre­

operative imaging and treatment. In addition, the dosimetry planning in the four-step 

procedure is created off-line because it is quite time consuming since it is commonly 

done by the radiation oncologist by an educated guess. Achieving on-line dosimetry 

planning by this thesis effectively leads to the creation of a more accurate plan in 

very little time, which in turn would lead to a more complete and accurate coverage 

of the tumor volume.

The other major contribution of this thesis lies in the real-time compensation for 

any misplaced seeds during seed implantation, thereby ensuring that an optimal dose 

can be delivered to the entire tumor by the end of the procedure. Compensation for 

seed misplacement is in fact absent in the currently practiced four-step procedure, 

however seed misplacements do occur in the OR as mentioned previously in section 

1.1.2. By introducing real-time compensation for seed misplacements, in the event 

that seeds are deposited incorrectly or even if the dosimetry plan does not provide a 

complete coverage to the tumor volume, new seed locations can be generated on-the- 

fly so to speak to achieve the intended dose so that the final coverage of the tumor 

volume would still be satisfactory and the overall procedure would be more successful.

Both of the contributions described above are novel contributions in brachyther-
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apy, and will particularly improve the LDR brachytherapy treatment technique for 

prostate cancer and provide a viable approach for dosimetry planning for lung cancer. 

Application to the lung and the prostate are of particular interest in this thesis be­

cause for North American men, prostate cancer is the most commonly found cancer 

and the second leading cause of death from cancer [15, 16], while lung cancer is the 

most common cancer found in both genders worldwide [17] and it is the number one 

leading cause of death from cancer [15, 16, 17].

Another contribution of this thesis is the use of these algorithms with the aid of 

a robotic-assisted brachytherpay set-up (which is described in more detail in section 

4.1.1.2) under image-guidance, where seed insertion can be performed from various 

angles and there is no restriction of seed separation or discrete'locations because a 

template is no longer in place. It is important to develop online dosimetry planning 

approaches and also online procedure for correcting the effect of implantation errors as 

they have been done in this project so that a more complete coverage of the tumor can 

be obtained to take the brachytherapy procedure for the prostate, lung and possibly 

other organs, to the next level.

1.4 O rganization o f Thesis

Chapter 2 of this thesis presents an overview of the current research topics on lung and 

prostate brachytherapy. The details on the formulation of the optimization problems 

for dosimetry planning and seed compensation components are presented in Chapter 

3 while the experimental results are described in Chapter 4. Chapter 5 concludes 

the thesis by summarizing the achievements of this work, as well as outlining future 

research on the topic.
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C hapter 2

Background and L iterature R eview

This chapter presents a review of the work done in this field, specifically on the 

development of real-time intra-operative planning for prostate brachytherapy (section 

2.1.1). While there is currently not much work in the area of lung brachytherapy, 

an overview of some of the recent research work is presented in section 2.1.2 to show 

that this a promising treatment for lung cancer. Modeling of brachytherapy seeds is 

discussed briefly in section 2.2, and section 2.3 presents the parameters involved in 

calculating the dose delivered by brachytherapy sources.

2.1 Current Work

In the following, first the development of intra-operative dosimetry for prostate brachyther­

apy is described; followed by a description of some of the work in the area for the 

development of lung brachytherapy.

2.1.1 Prostate Brachytherapy

Referring back to the dosimetry planning step in the four-step procedure for prostate 

brachytherapy from section 1 .1 .2, it is generally not possible to deliver the exact 

amount of desired dose to the target volume while providing precise coverage at 

the boundaries of the treatment region, thus the solution to the dosimetry planning



21

problem becomes one of finding the ‘optimal’ solution [18]. This section starts with 

a brief history on prostate brachytherapy, before introducing the current research on 

intra-operative planning for prostate brachytherapy.

2.1.1.1 Background

In 1917, treating prostate cancer using prostate brachytherapy involved inserting 

radium needles transperineally [19]. Up to the 1960s, various radioactive substitutive 

materials were tried as a replacement for radium in prostate brachytherapy, including 

colloidal gold. It is mentioned in [20] that a transrectal ultrasound that was developed 

for use in prostate biopsies was extended to the implantation of iodine seeds. With 

the improvements in US imaging, the improved visualization of the prostate and 

surrounding structures lead to the first major attempt at prostate brachytherapy 

using 125I seeds in 1972 at the Memorial Hospital in New York [21]. In this work, the 

seeds were implanted by the retropubic approach, which is through a lower abdominal 

incision. Another attempt made in 1987 also used the retropubic approach [22]. Poor 

long term results were reported in [23] as due to the poor geometrical arrangement 

as a result of the implantation method. The US and perineal template combination 

insertion method was refined by Ragde and his colleagues in Seattle [24], which was 

later taken up across North America. Real-time implantation of permanent source 

into the prostate was introduced at the Mount Sinai Medical Center in New York in 

1990 [25].

Since then, much research and development have been devoted to the field of 

prostate brachytherapy, the focus of which is particularly on real-time implantation 

and intra-operative optimized planning. The sections below will describe some com­

mercial systems, as well as current research that is trying to achieve real-time im­

plantation and intra-operative planning.
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The commercially available systems presented in [12] are the Interplant System (Bur­

dette Medical System, Champaign, IL); PIPER (RTek, Pittsford, NY) which is short 

for Prostate Implant Planning Engine for Radiotherapy; SPOT (Nucletron Corpora­

tion, Veenandaal, Netherlands) which is short for Sonographic Planning for Oncology 

Treatment; Strata (Rosses Medical Systems, Columbia, MD); and VariSeed (Varian 

Medical Systems, Palo Alto, CA).

The Interplant System uses a built-in optical encoder to register the US images in 

real-time against the probe and template positions, thus providing instant feedback of 

the probe position within the prostate. Seed positions are estimated from the probe 

position and the needle track, so the plan can be updated if required [12].

The PIPER system offers automatic segmentation of the prostate, rectum and 

urethra on TRUS images, which can all be done in less than 2 minutes [12]. Live TRUS 

is used to identify the needle tracks, from which the needle path can be determined. 

The seeds are assumed to lie at their pre-planned positions in the z direction, so 

that compensations for deviations in the x and y directions can be done through an 

iterative process of isodose review, and dosimetry data analysis.

SPOT uses 3D US to identify the needles and seeds as they are implanted into the 

prostate volume. However, manual intervention is often required to localize many of 

the seeds and needles. The resulting absolute or percentage dosimetry data can be 

displayed with respect to the absolute, or percentage prostate volume [26]. In Strata, 

the seeds are assumed to have been deposited at their pre-planned locations, based 

on needle information extracted from TRUS and sagittal US images [26].

The VariSeed system assumes that the needles run straight and do not deviate [12], 

and the tip of the needles are identified using TRUS. As the seeds are inserted, their

2.1.1.2 Commercially Available Systems



23

positions are marked on the planning system, and the corresponding isodose curves 

are generated. As mentioned in [26], this system does not account for intra-operative 

seed motion.

2.1.1.3 Image Guidance & Robot Assisted Approach

In modern prostate brachytherapy, free-hand seed implantation has been replaced by 

the image guidance of MRI, TRUS [27], as well as fluoroscopy imaging. The ability of 

TRUS in providing real-time localization of the prostate and needles at the same time 

has seen TRUS being used as the primary source of image guidance in brachytherapy 

procedures nowadays. Due to the inherent noise in US images, segmentation of the 

prostate gland is commonly done manually, which is a tedious and time-consuming 

process if the planning is to be done intra-operatively. Reference [27] describes a 

method where US images are pre-processed to remove noise and increase the contrast, 

in order to segment the prostate gland automatically.

A four-step procedure has been proposed in [28, 29], where 3D TRUS guidance 

has been used throughout to achieve dynamic intra-operative prostate brachytherapy. 

The first step involves the semiautomatic segmentation of the prostate using a Discrete 

Dynamic Contour (DDC) model. The segmentation of the prostate is an iterative 

process where four points must be selected on an initial slice to start the segmentation 

process. The DDC model has been used in a similar fashion to the work in [30, 31, 32], 

which involves segmentation of the prostate using the DDC model. In the second 

step, the 3D dosimetry planning for the segmented volume is based on geometric 

optimization and simulated annealing. To perform dynamic replanning and intra­

operative dosimetry evaluation, needles and seeds are located in the 3D TRUS images 

in steps three and four, respectively. The accuracy of the overall brachytherapy
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procedure in [29] is further enhanced by the assistance of a robot, where the needle 

targeting accuracy has been reported to be 0.79mm ±  0.32mm.

Another method utilizing real-time TRUS guidance for dynamic intra-operative 

prostate brachytherapy has been proposed in [33], where the treatment planning 

software is supplied with real-time TRUS images. Each seed is identified in real-time 

by the dosimetrist with concurrence by the clinician, based on the needle tip that is 

visible in the sagittal view. In this work, real-time feedback of the deposited seeds 

forces the treatment planning software to update the dosimetry, with regard to the 

implanted seeds and seeds that are yet to be implanted. When the dosimetry result 

on 90% of the target is showing a difference of more than 5% from the intended dose, 

a re-plan is required. The re-plan takes into account the effect ofthe deposited seeds 

and generates a new dosimetry plan for the remaining seeds. Reference [33] reports 

satisfactory results in terms of dosimetry parameters, because there are no significant 

differences between the intra-operative dosimetry and the post-implant evaluation.

Reference [34] describes a technique that allows for accurate seed and needle 

placement also by using real-time US feedback. The technique does not require 

pre-planning and dynamically implants seeds into the prostate, taking into account 

prostate motion during implantation. In this work, the prostate volume is calculated 

from the US images in both transverse and longitudinal directions. Without the need 

for a pre-plan, the needles are then inserted based on the dosimetry evaluation from 

idealized and prior implants. In particular, [34] mentions that 60% to 70% of the 

needles will be inserted into the periphery of the gland, while the remaining needles 

are inserted into the interior of the gland. The seeds are then deposited using the 

Mick applicator. As mentioned in this work, the major advantage is the elimination 

of the time-consuming pre-planning. A similar technique has also been described in

[35].



25

An iterative algorithm has been described by [36], where one seed is placed at 

each step to achieve an optimal coverge of the prostate, using real-time interventional 

magnetic resonance (IMR). The use of real-time IMR can provide both geometric 

and dosimetric feedback during needle placement. In this work, the position of the 

needles are observed before the sources are placed, especially for needles that have 

been placed incorrectly. Incorporating this information into the treatment plan, and 

thereby evaluating the dose to the entire target volume at each step, the underdosed 

regions can then be determined as to where the next seed will be placed. The pre­

planned coverage reported in this work suggested that the prescribed dose covered at 

least 93% of the tumor; though as much as 13% coverage of the tumor was lost after 

updating the plan with real-time needle feedback.

A robotics-based prostate brachytherapy setup has also been developed at CSTAR 

(Canadian Surgical Technologies and Advanced Robotics) [37]. Force interaction 

between the needle and tissue are used to detect and control the location of needles 

and accurate placement of seeds inside the prostate. The same subject is discussed in 

a different paper in [38], in which the main focus is put on controlling the trajectory 

of the needle after insertion. Reference [38] proposes rotating the needle at particular 

locations during insertion in an attempt to insert the needle according to its desired 

trajectory. In particular, the developed algorithm is applicable for a period of time 

during a prostate brachytherapy procedure when imaging feedback is unavailable. 

Although the intention of this work is to improve the accuracy of needle insertion prior 

to visulization of the needle tip on the US screen, the authors also plan to integrate 

their work with real-time imaging to better control the motions of the needle once 

they are near the target.
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In [39], both TRUS and fluoroscopy are used to perform real-time dosimetry for 

prostate brachytherapy. TRUS and fluoroscopic images are registered using a single 

fluoroscopic image of the TRUS probe, edges of the probe are found in the fluoroscopic 

image by using an intensity-based edge detector and a least-squares fit. The tip of 

the needle, which is a white flash, is manually located in the TRUS image. The seeds 

are modelled as line sources, where the x, z coordinates of the seeds are determined 

from fluoroscopic images while the y coordinates of the seeds are determined from 

TRUS images. Based on the location of the seeds, dosimetry due to the currently 

deposited seeds can be calculated, and underdosed regions can be identified, so that 

the radiation oncologist can perform interactive planning and update the plan if 

necessary.

Reference [40] proposed performing intra-operative dosimetry for prostate brachyther- 

pay by the use of a nonisocentric C-arm, where the fluoroscopic images are registered 

to the US images. Fluoroscopy images of intraprostatic sources and fluoroscopy track­

ing fiducial (FTRAC) are taken from multiple angles, so that the source positions can 

be superimposed onto the US images of the prostate by running a source segmenta­

tion algorithm that computes the fluoroscopy angle from the fiducial image. The 

source segmentation was carried out by a morphologic top-hat transform, followed 

by thresholding and region labeling to obtain the regions that are source-like. Reg­

istration of US to fluoroscopy (RUF) is performed twice, once after the placement of 

approximately half of the planned seeds, and then after the completion of the place­

ment of all planned seeds. During RUF, a set of 4-5 C-arm images is obtained. The 

sources are reconstructed in the US space, before they are exported to the treatment 

planning system, where the deposited sources can be removed from the original plan

2.1.1.4 Image Registration Approach
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to generate a ‘residual implant plan’. Based on the ‘residual implant plan’, the physi­

cian can modify the remainder of the seeds to optimize the overall plan. This work 

presented the results from six patients, in all of which at least 88% of the tumor 

volume received 100% of the prescribed dose. The consequence of this however, is an 

undesired high dose (> 98% of the prescribed dose) to 30% of the urethra.

Elsewhere, in [41], the dynamic dose optimization relies on the updated structure 

volumes by registering images from the Fluoroscopic Frame of Reference (FFR) to 

the Ultrasound Frame of Reference (UFR). The FFR is the system of axes imposed 

by the C-arm geometry, while the UFR is the system of axes determined by the US 

probe and seed template. The contours of the prostate, and other structures are 

outlined by the physician in the UFR. In this work, first the coordinates of the seeds 

are automatically calculated with reference to the FFR. Then, the images from the 

FFR space is fused together with the UFR, which is done by identifying reference 

points (lead markers) in both the FFR and the UFR. The reference points are non- 

coplanar x-ray opaque markers imbedded in the US probe, so that they are visible 

in both frames. Generally speaking, five to seven markers are required to minimize 

errors. The transformation that allows the superposition of the two sets of markers 

effectively defines the translation-rotation transformation between the two systems. 

The lead markers are extracted from a grey-level image (fluoroscopic image) of the 

implanted seeds. The seeds must also be identified in each image, however separating 

a single seed from a cluster of two or more seeds is an apparent difficulty. Lastly, by 

verifying the results after registering images from the FFR to the UFR, a decision 

can be made regarding whether re-planning is necessary.
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Reference [42] describes a method for treatment planning using the 1251 or 103Pd 

seeds by calculating the dosimetry data in the volume before the placement of each 

individual seed, and thus determining the underdosed regions in the tumor and where 

the next seeds should be placed. The optimal seed configuration is one that has the 

minimum total activity due to all of the implanted seeds. The clinical results showed 

an improvement over the older treatment methods.

The algorithm developed by [43] for the purpose of intra-operative real-time plan­

ning is based on region of interest (ROI) adjoint functions. The adjoint functions 

have been defined as the sensitivity of the average dose in the ROI to a unit-strength 

brachytherapy source at any seed postion. Using the ratio of target to critical struc­

ture adjoint functions, the seed positions are ranked according to the amount of 

radiation delivered to the target ROI versus the critical structure ROIs. Before the 

optimization process, this ratio is computed for all seed positions, so that the opti­

mization process can select the appropriate seed position according to the computed 

ratio values. The main achievement in this work is that the proposed algorithm 

is about 1500 times faster than the branch-and-bound Mixed Integer-Programming 

(MIP) model.

The work by Alterovitz focuses on using Linear Programming for HDR brachyther­

apy, the goal here is also aimed at delivering a desired amount of dose to the target 

volume [44]. In this work, it is also stated that the objective function values have 

been significantly improved using linear programming than using Simulated Anneal­

ing. Due to the nature of the optimization technique, the potential seed locations are 

discretized in this work.

In [45], a genetic algorithm for the optimization of prostate implants was carried

2.1.1.5 Algorithm-based Approach
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out on an idealized model using 103Pd sources. In this work, the coordinates of the 

template grid within the field-of-view of the target volume’s image are encoded into 

a fixed-length linear string, where 0 indicates no seed placement and 1 indicates a 

seed has been placed. The algorithm presented is based on varying the distributions 

of needles and sources. In paticular, the quality of the source distributions has been 

expressed in such a way as to reflect dosimetric and clinical considerations, so that an 

optimal coverage can be achieved in the end. The results showed improvement over 

the implantation of unoptimized implants for the same given target volumes.

Several MIP models have been proposed by [46], where the optimization involved a 

number of branch-and-bound strategies. The focus of this work is on two dimensional 

prostate contours, where near-optimal seed placements are generated in less than five 

minutes on a 333 MHz machine; the extension to the three dimensional case involves 

the appropriate interrelation of a sequence of the two dimensional problems.

Lee’s MIP Models

Lee’s optimization approach in solving the dosimetry planning problem in [47] employs 

the MIP algorithm. Due to this integer-based approach, the seed space must be 

discretized. In this work, the variable Xj is used to record the placement (xj = 1) or 

non-placement (Xj = 0) of a seed at point j ,  where n is the total number of points 

available and X j  is the vector of the coordinates of point j. Two models are proposed 

in [18], the essence of these models is to deliver an optimal dose to the target volume, 

while constraining the dose delivered within an upper and lower limit. However, it is 

stated in their work that it is generally not possible to satisfy all the constraints.

The first model tries to maximize the number of points that will satisfy Uf, and 

Li, by first identifying a maximum feasible subsystem. is defined as the accepted 

upper bound of the prescribed dose, usually at more than 100%, while L5 is defined
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as accepted lower bound of the prescribed dose, usually at less than 100%. The 

constraints of this model are given below in Eq. (2.1),

n
£  OdIF -  X j||)xj + Np(l -  v%) > Lb 

n
£  D(llp -  *¿11)*) -  M p(1 ~«p)iUb
j= 1

where P  is a vector corresponding to the coordinates of the point of interest, so then 

for x j =  1, D(\\P — X j ||) refers to the dose at point P  due to the j th seed at location 

X j. In this equation, vp and vp have values of 0 or 1, and Mp and Np are positive 

constants. The goal of this model is to deliver a final dose that lies within the bounds 

Lfj and t/&, thus forcing vp and vp to be 1. The goal is stated as follows,

Maximize ^ 2 (a pvp + /3pvp + n/pvp U) (2.2)
P

In Eq. (2.2), ap and j3p are weighting factors to reflect that certain points might be 

more critical to achieve the target dose level than others. vp =  1 implies that the 

dose at point p is > Z ,̂ though the dose might even be greater than the imposed 

upper limit; on the other hand, vp =  0 implies that the dose is less than L^, and 

obviously less than too. vp = \  represents that the dose at point p is < [/¿, but 

might even be smaller than L^\ whereas if vp is equal to 0, this would mean that 

the dose at point p is larger than Û , in the meantime larger than too. A value 

of 0 for vp u  indicates that the dose at point p is either more than the upper limit or 

less than the lower limit, but if vp u  is equal to 1 , then the dose at point p is within 

the limits set by and L&. Thus it would be desirable to have vp u  = 1, for this 

condition would mean that vp and vp also have a value of 1 .

(2.1)
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The second model proposed by Lee in [18] attempts to minimize a weighted sum 

of the deviations, by calculating the amount of deviation from the desired target at 

each individual point in the tumor volume. The constraints for this model are similar 

to those in the first model and are given in Eq. (2.3),

'£ ,D ( \ \P -X j \\)xj + y l ; > L b

n
'£,D(1lP - X j \\)xj - y V  < U b 
j  = 1

(2.3)

where yfe and are positive continuous variables that represent the deviations from 

the lower limit and upper limit respectively. They are used as constraints in mini­

mizing the weighted objective function in Eq. (2.4):

Minimize +  PpVp ) (2.4)
P

Lee’s work proposes using the conformity index (a ratio of total volume enclosed 

by the isodose surface to the target volume enclosed by the same surface) and the 

coverage index (ratio of target volume enclosed by the isodose surface to the total 

target volume) to aid the assessment of the quality of their results. Section 4.3.4 

presents a comparison of the dosimetry planning results between Lee’s work and the 

algorithm proposed by this thesis.

2.1.2 Lung Brachytherapy

As for lung brachytherapy, there has been relatively little work done on dosimetry 

planning. Even for the equipment used in lung brachytherapy, adaptation from the 

prostate brachytherapy environment is difficult not only due to limited access because
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of the presence of the ribcage, but also more constraints need to be met for lung 

brachytherapy procedures since there are vital organs in close proximity and there is 

significant motion due to respiration and heart beat. Trejos et al. (from CSTAR) have 

developed devices, integrated systems and a test-bed for minimally invasive robot- 

assisted lung brachytherapy [48, 49, 50]. In [48], they discussed issues that affect the 

precision in seed deployment, such as the difficulty in the penetration of the needle 

to the correct destination due to obstacles as a result of anatomical structures and 

organs. Also the instability of the equipment while dropping the seeds might lead to 

seed misplacements. To account for these factors, and to reduce exposure to radiation 

for healthcare personnel during a brachytherapy session, the constructed device from 

[49] has been implemented in an integrated system along with commercially available 

dosimetry planning software to perform minimally invasive lung brachytherapy under 

the guidance of US imaging. Moreover in [50], the dosimetric results of the MIRA 

(Minimally Invasive Robot-Assisted) V system are assessed against various radiation 

parameters and the in vitro results obtained are acceptable.

Also, [51] reported a procedure for lung brachytherapy where 125I seeds are sewn 

into resection margins for T1 and T2 stage lung tumors. Lung tumor staging is 

explained in more detail in Appendix A. In this study, the 125I sutures are secured 

in a nonabsorbable mesh, which is then pushed through the endoscope and secured 

in a ‘tent-like’ fasion over the resection margins. This method is especially beneficial 

to patients with small T1 or T2 stage lung tumors who are unfit for lobectomy 

or pneumonectomy due to an inadequate pulmonary reserve. Experimentally, this 

procedure has been performed on two separate lobes in the right chest cavity of a pig 

with the help of the da Vinci robotic system. The seeds are sewn in place using either 

the ‘looping’ technique or the ‘longitudinal’ technique [51]. Reference [51] emphasizes 

that with the advent of robotic technology, new options for the treatment of lung
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cancer, such as the one that they proposed, may improve and overcome technical 

difficulties of instrumental manipulations in the narrow chest cavity.

In addition to the above technique, [9] also discussed how to physically implant 

125I seeds to cover the volume of disease in the lung, this procedure is called volume 

implant. Though the results of volume implant show inferior results as compared to 

surgery, at least it is an option to treat patients who cannot undergo any surgical 

resection.

2.2 M odeling Brachytherapy Seeds

The cylindrical nature of the brachytherapy seeds induces an anisotropic dose dis­

tribution around an individual seed, forcing the correct modeling of the seeds to be 

an important aspect in improving the overall accuracy of LDR brachytherapy. The 

anisotropicity is due to extra attenuation by greater length of material on the long axis 

of the source, which results in a higher dose rate in the transverse axis as compared 

to the long axis.

A study carried out by [52] examines the dose distribution of the 6711 model of 

125I in 2D space indicates that at a distance r from the center of the seed, the dose 

varies with angle 9, which is the angle relative to the seed’s long axis. The study also 

presentes an empirical expression that approximated the measured results, since the 

r-dependent dose distributions are different at different values of 9.

The dose distribution of 125I in 3D space was studied by [53] using a point source 

distribution formula by Berger, which neglected the dose deviation from the exact 

dose at distances less than 0.5cm. In this work, the radiation in 3D space has been 

calculated and measured, and they found that there is a 5% difference between the 

two results at an angle perpendicular to the seed’s axis. The formula used determines
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the 3D dose distribution at any point of interest with a 6% uncertainty. The work 

in [53] stated that a complete mathematical function describing the entire 3D space 

dose distribution in tissue is required if the precise 3D distribution is to be calculated.

2.3 D ose C alculation

Guidelines supplied by [5] from the American Association of Physicists in Medicine 

(AAPM) provided detailed information on brachytherapy seed types, isotope radioac­

tivity, dose rate calculation and suggested clinical dose. The work described in this 

thesis follows the recommendations of [5] and uses 144Gy as the suggested 100% dose. 

To calculate the dose at a particular point, the dose rate formula from [5] is used. 

The dose rate, D{r), due to a point source at r units away is given by the formula 

below:

D(r) =  Sk • A • g(r) ■ G(r, 0) • <Pan(r) (2.5)

In this equation, is the initial activity of the source, A is the dose rate constant, 

g(r) is the radial dose function in the transverse axis of the seed, G(r, O) is the 

geometry factor for the seed source, and $ an(r) is the anisotropy correction factor. 

The details for these parameters are given in Appendix B.

Prior to converting dose rate to dose (D(r)), Tiy2 of the source is required to 

calculate the meanlife of the radionuclide, r,

_  Tl/2 
T ~  ln{2)

A value of 1426 hours is used for /2 as mentioned in section 1.1.1.1. From here, the



dose at any point is given by 2.7 as in [7],

D(r,Q) = D (r ,6 ,t0) - t ■ ku (2.7)

where ku is a conversion factor in hours (h), and in this case, since the half-life is 

already expressed in h, the value of ku is 1 .

The details on the formulation of the optimization problems for dosimetry plan­

ning and dynamic dose optimization are explained in the next chapter.

35
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Chapter 3

O ptim ization-based P lanning Approach

This chapter starts with an overview of the proposed solution in section 3.1. Then the 

details on the formulation of the dosimetry planning and IDDO optimization prob­

lems are presented. In particular, an in-depth description of the dosimetry planning 

algorithm is given in section 3.2 while section 3.3 presents the details of the IDDO 

algorithm.

3.1 Proposed  Solution

In order to achieve the goals stated in section 1.2, two optimization problems are 

formulated and solved for each of the dosimetry planning and IDDO components. 

In general, the optimization problems are constrained by the condition that the dose 

at each and every point of interest throughout the volume has to be within the 

imposed bounds U& and L&. The purpose of the governing objective function is to 

deliver the desired amount of dose to all points under consideration.

Different from the results of Lee’s work which produced seed locations specified in 

discrete-space, the locations of the seeds produced by the proposed algorithms in this 

thesis are to be specified in continous-space, implying that there are no limitations 

on the final locations of the seeds so long as they are all within the volume of the 

tumor. The actual tumor volume is not defined in the continuous-space but has been 

discretized to make the problem more tractable, for a tumor volume defined in the
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continuous-space would be composed of an infinite number of points, and it would not 

be possible to consider and satisfy all these points for dosimetry. The discretization 

of the tumor volume is based on the tumor shape, and since no assumption has been 

made regarding the shape and size of the tumor, this guarantees that the optimization 

problem is applicable to all tumors.

The approach undertaken in this thesis is to optimize the overall dose that would 

be delivered to the target tumor, in such a way that the sum of rewards would be 

maximized while the sum of penalties would be minimized. A reward corresponds to

a point in the target volume that is feasible, i.e., satisfies the upper and lower limits

of the prescribed dose; whereas a penalty corresponds to an infeasible point in the 

target, i.e., one that receives a dose that is more than the upper'limit or less than 

the lower limit of the prescribed dose. Essentially, maximizing the sum of rewards is 

equivalent to minimizing the sum of penalties. So the objective of the optimization 

can be stated as either Eq. (3.1a) or Eq. (3.1b) below:

Maximize E(r) | L^ < D(r) < Uf, (3.1a)

Minimize E(r) | D{r) < L or, D(r) > £/& (3.1b)

Here, r  represents all points found in the tumor volume and D(r) represents the dose 

present at the particular point, r.

3.2 Pre-planning A lgorithm  D escription

This section describes the formulation of the optimization problem for dosimetry 

planning. The problem description is further broken down into three subsections, 

section 3.2.1 looks at how the problem is formulated in 3D space; section 3.2.2 explains
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Figure 3.1: Flowchart for 3D.Optimization

how the 3D problem is broken down into a series of 2D problems, which are then solved 

one by one using an optimization routine. The details of this optimization routine 

including the parameters involved are explained in section 3.2.3. The overall algorithm 

is given the name DOPAL, which stands for DOsimetry Preplanning ALgorithm.

3.2.1 Pre-planning 3D Problem Formulation

Figure 3.1 shows the basic steps involved in the 3D.Optimization algorithm. The 

following will examine these steps in more detail.

The target tumor’s 3D volume information is the first thing that is required to 

begin the pre-planning process using the proposed algorithm. Specifically, the algo­

rithm is to be provided a collection of points that describe the contour of the volume, 

which trace out a mesh of the actual target as seen in 3D space. Section 4.1.2 explains 

how to obtain the contour of ex vivo tumors, which must be done manually.
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Figure 3.2: Cross-sectional image of segmented prostate volume

Then the volume contour is segmented into a number of slices with equal separa­

tion <L/i between all slices. There is no strict limitation on the value chosen for d_/i; 

however better results are generally obtained when an approximate value of 0.50cm 

or less is selected. Figure 3.2 shows a cross-sectional image of a segmented prostate 

volume with all the slices, the separation shown here is 0.50cm.

Upon segmentation, the contour of each slice is to be interpolated to ensure that 

there is a sufficient number of points describing each slice so that a proper dose can be 

delivered to the entire slice. The reason for this is that the objective functions in Eq. 

(3.9) and Eq. (3.11) have no knowledge of the shape of the slice itself, so the objective 

functions are only concerned with delivering the desired dose to the shape described 

by the available contour points. From the algorithm’s point of view the target volume 

appears as a collection of points instead of a shape with surfaces or edges, so a circle 

described by 4 points might be misinterpreted by the algorithm as a square. As a 

result, when the contour points appear quite sparse due to the contour being described 

by an insufficient number of points, the outcome of the optimization algorithm for 

such a contour will only deliver dose to the few contour points present, leaving behind
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undosed areas in between the contour points. To prevent such misinterpretation from 

happening, the number of points defining the contour are interpolated to have at 

least 50 points. This value was chosen after numerous experimental evaluations. The 

same is done for all apparent contours on a slice, which may include the target region 

contour, as well as the forbidden contour. As in the case for a prostate tumor, there 

would be two contours present on every slice of the target volume, where one contour 

is for the prostate itself (i.e. target region contour), and the other contour is for the 

urethra (i.e. forbidden region contour). (A more detailed description on target and 

forbidden regions can be found in section 3.2.2)

After ensuring that the contours of all slices have a sufficient number of points, the 

Center Of Mass (COM) of each contour is calculated and provided to the optimization 

routine as a starting temporary seed, tempseed. The coordinates of the COM for a 

contour with n points are calculated based on the following formula,

n

^ 2 miXi
COMx = ^ ------  (3.2a)

i=0

n

^ m iV i
COMy =  ^ ------  (3.2b)

J 2 m i
i=0

where is the mass of point i and X{ and m are the x and y coordinates of point i 

respectively. In using the above formulas, each contour is assumed to have a uniform 

weight distribution, which implies that the value of nrii is 1 for each coordinate. 

Prior to invoking the DOPAL algorithm, the user is required to select values for U
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and Lf,. In the case of a prostate tumor, the user may specify and values for the 

target volume as 150% and 100% of the prescribed dose respectively; whereas for the 

urethra, the Uf, and L^ values may be specified as 120% and 100% of the prescribed 

dose [47]. For this reason, the values for Û  and L& were not hard-coded, to provide 

flexibility for the different values they may take as required by different types of 

tumor. These user-specified and values, along with the contour information of 

the 3D volume, as well as the contour information of the 2D slice of interest, are used 

as inputs to formulate the 2D optimization problem. The resulting output is a set of 

optimal seeds located on the current slice of interest.

A 2D optimization problem must be formulated for every slice from the current 

target volume, and the resulting volume-wise optimal seeds (DOPAL-2Dseeds) from 

each particular slice are stored and the corresponding volume-wise violation amount 

is calculated accordingly. A violation occurs when the dose delivered to point i , D(i), 

is greater than the accepted upper limited (D(i) > [/¿) which corresponds to an 

overdose, or less than the accepted lower limit (D(i) < which corresponds to an 

underdose. The violation amount (vio-amt) is defined below as the summation of the 

amount of overdose (overdose-amt) and underdose (underdose-amt), taken from each 

and all contour points. Thus for a volume with n slices, where each slice is defined 

by, say 50 contour points, overdose-amt, underdose-amt and vio-amt are given by:

n 50
underdose-amt = £ ( £ [ £ 6 -  D(i)]) for D(i) < Lb 

k=0 2=0 
n 50

overdose-amt =  £ (£ [£ > (> )  -  Ut}) for D(i) > Ub 
k=0 2=0

vio-amt =  underdose-amt + overdose-amt

This volume-wise slice-by-slice optimization is repeated in this manner until no
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further change is seen, at which time the output have converged to a solution. Even 

in the case when the solution does not converge, this algorithm is still terminated 

after a maximum number of iterations denoted by a value that is set by the user prior 

to executing the algorithm.

3.2.2 Pre-planning 2D Problem Formulation

This section of the algorithm is invoked for every slice contour that is a segment of 

the tumor volume, the goal here is to add more seeds to the slice of interest if it helps 

to provide a better dosimetry plan overall. Figure 3.3 illustrates the steps involved 

in the algorithm, which are discussed below in detail.

In some cases it appears better to leave the slice void of any seeds. As such, 

each slice invokes the optimization routine with no seeds present on this particular 

slice, but instead provides the seeds found on all other slices, which is referred to 

as seeds-otherslices. Based on seeds-otherslices, a vio-amt is calculated and stored 

so that it can be compared later against the new vio-amt due to new-DOPAL.seeds. 

new.DOPALseeds is a matrix containing the set of seeds from the previous execution 

of the optimization routine, plus one new entry of ‘modified temp.seed'. The values 

of the ‘modified temp-seed' and the reason for this modification are explained shortly.

When this algorithm {2D-Optimization) is executed, it assumes that other than 

the current slice of interest, there are seeds on all other slices throughout the volume. 

However on the first call of 2D-Optimization of the l 5i slice, this would not be the 

case since the entire volume would be empty of seeds. Nevertheless, the algorithm 

starts with the assumption that every contour point of the slice is either underdosed 

or overdosed, thus the total number of violation points of the current slice, which is 

defined as min-vio, is assigned a value that is equal to the total number of contour
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Figure 3.3: Flowchart for 2D-Optimization

points on the current slice. For instance, a slice contour having a total of 50 points 

would imply an initial number of 50 violation points, as in Eq. (3.4):

m in-vio — 50 (3.4)
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The current dosimetry plan - which would be empty and contains no seeds, is stored 

as the optimal plan DOPAL.2Dseeds. In other words, at the start of 2D.Optimization 

for each slice, DOPAL.2Dseeds is an empty matrix.

To continue with the 2D problem formulation, a new violation value named ‘viola­

tion points’ (vio.pts) has to be calculated, which is due to the presence of temp.seed. 

The matrix temp.seed contains the coordinates of one seed only, which corresponds 

to the location of the COM. The x and y coordinates of the temp.se.ed can be ob­

tained using the COM formulas from Eq. (3.2a) and Eq. (3.2b). The 2-coordinate 

of tempseed does not need to be calculated because it is supposed to be the same as 

the z-coordinate of the contour of the current slice, since temp.seed is to be added 

only to the current slice of interest in an attempt to reduce the number of contour 

points that are less than the lower limit or greater than the upper limit.

As the optimization process continues, a temp.seed is added to new.DOPAL.seeds 

whenever 2D .Optimization requests that a seed is to be added. To determine if a seed 

should be added or removed, 2D.Optimization keeps track of the number of under­

dosed points as well as the number of overdosed points. By comparing the two values, 

a decision can be made as to whether a seed should be added to new.DOPAL.seeds 

or removed from new.DOPAL.seeds. Intuitively, if there are more overdosed points 

than underdosed points, then seeds should be removed, and vice versa.

If seed removal is required, then a random seed is removed from new.DOPAL.seeds. 

If new.DOPAL.seeds is already empty, meaning that any seed addition would only 

cause more overdose, then DOPAL.2Dseeds is sent back to 3D.Optimization as an 

empty matrix and 3D.Optimization moves onto the next slice in the volume.

The calculation of vio.pts takes into account the effects of seeds from all slices in 

the volume, including the seeds from the current slice of interest, and tracks the total
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number of contour points that are overdosed (> U5) or underdosed (< Lb).

viojpts =

such that (3-5)

Dose(i) > Ub, or Dose(i) < L5

vio.pts is calculated on each run of the optimization routine, and if this new vio­

lation is strictly less than the initial miri-vio amount, meaning that one or more 

contour points are now dosed properly, then min.vio is overwritten by vio.pts and 

DOPAL.2Dseeds is updated to the values of new.DOPAL.seeds. In the event that 

new-D OPAL .seeds does not reduce the total number of violation points, neither 

miri-vio nor DOPAL.2Dseeds gets modified.

The most desirable outcome is having vio-pts equal to 0, which means that the 

value of the objective function of the minimization optimization routine is at its 

absolute minimum or is equal to zero, and that each and every contour point i is 

within the desirable range of the accepted dose such that,

Vi, Lf, < Dose(i) < Ub (3.6)

When this happens, the optimization process is terminated and the most recent 

new.D OPAL .seeds replaces DOPAL.2Dseeds, and is sent back to the 3D .Optimization 

algorithm for the 3D problem from the previous section.

It is possible that a target contour may never receive a perfect dose to all its 

points, implying that the value of the objective function may never reach an abso­

lute minimum, therefore it is necessary to make sure that the optimization does not 

get stuck in a loop by using a counter variable named run.num. The optimization
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process is allowed to iterate for a total of 18 times, a number which has been verified 

experimentally as being sufficiently large to produce satisfactory results. If the num­

ber of iterations exceeds run.num, meaning that the optimization process has not 

produced a dosimetry plan with a lower vio.pts than the current min.vio, the process 

is terminated and the currently stored DOPAL.2Dseeds (which may or may not be 

the most recent result but is the result that produced the lowest vio.pts) is returned 

to 3D.Optimization as the output of the optimization.

Care must be exercised in storing and updating the values in new.DOPAL.seeds. 

For instance, if new.DOPAL.seeds consists of only 1 seed, (which was taken from 

temp-seed) and is placed outside of the target volume, the seed is deemed unusable and 

would get removed, therefore making the DOPAL.2Dseeds variable empty. On the 

next consecutive iteration of 2D.Optimization, the same temp.seed is again added to 

and then removed from new.DOPAL.seeds, thus forcing the algorithm in to an infinite 

loop. The same scenario may also occur if the latest addition to new.DOPAL.seeds 

always produces a local minimum as a solution to the optimization problem, forcing all 

new seed additions to that particular solution. To prevent the above from happening, 

temp.seed is modified prior to every iteration by + 1  in the x direction and —1 in the 

y direciton. By doing this, the latest addition to new.DOPAL.seeds is different from 

the one that was added in the previous iteration. Using different initial seed locations 

on every iteration prevents the optimization routine from producing similar solutions, 

especially if the one produced is not valid. Also, using all different values of temp.seed 

in new.DOPAL.seeds allows maximum exploration of the entire seed domain.

The boundary of this domain is the boundary of the solution to this optimization 

problem, and is essentially denoted by the bounds for the location of all potential 

seeds. The ¿-direction bound for a seed is restricted to the value of the ¿-coordinate 

of the contour of the current slice, in the same way that the ¿-coordinate of temp.seed
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Figure 3.4: Figure illustrating 3 seeds having identical z-coordinate values

was restricted as well. In other words, the result of running the optimization routine 

on every slice produces a set of seeds that have identical z-coordinate values, because 

they are all on the same slice. As a result, bounds only have to be specified in the x 

and y directions to control the location of the seeds.

Figure 3.4 shows a volume with 3 slices where there are 3 seeds on each slice. 

Assume that seeds Si, S2 and S3 (Seed 1, Seed 2 and Seed 3 in Fig. 3.4) are the 

elements of DOPAL-2Dseeds (which is the output of 2D-Optimization). It is clear that 

the values of the x and y coordinates for all 3 seeds are different but the z-coordinate 

value for all three seeds are identical. Furthermore, the seeds from 2D-Optimization 

are required to fall inside the target contour defined by the x and y coordinate values 

of the contour, because it makes no sense for a seed to be deposited outside of the 

tumor volume.

The bounds for each slice can be approximated by a rectangular region, since the 

contour of a slice is assumed to be in the shape of a random polygon. The respective
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Figure 3.5: Bounds Sx and Sy for one slice in the shape of a random polygon 

bounds Sx and Sy in the x and y directions are given as follows,

Sx e [min(Px), max(Px)\
(3.7)

Sy e [min(Py), max(Py)\

where Px and Py are the collection of the x and y coordinates of the points that 

describe the slice contour. In Fig. 3.5, the contour is described by Px and Py, and 

Sx and Sy form the rectangular bound that defines the potential location of all seeds 

on this slice. As can be seen from this figure, the bounds are not the exact shape 

of the contour and include space outside of the contour that are not usable as seed 

locations. For this reason, the location of each seed still needs to be verified to make 

sure that it is in fact inside the contour.

For a target contour that encloses a forbidden contour, e.g., a slice from the 

prostate tumor volume, the single rectangular bound from Fig. 3.5 is then further 

divided up into four smaller rectangular bounds, which is illustrated by Fig. 3.6. 

In Fig. 3.6(c), the 4 smaller rectangular bounds are overlaid on top of the planar 

view of a simplified prostate contour in the shape of a donut, where the inside circle
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is a representation of the urethra and the outside circle is a representation of the 

prostate. The equations for the four rectangular bounds are given in Eq. (3.8), where 

Sxi indicates the bounds in the x direction for a seed in the l si region; likewise Sy3 

indicates the y-axis bounds for a seed in the 3rd region.

Sx 1 e [min(PX0), min(Pxi)\

Syi e [min(Pyo), max(Pyo)]

Sx2 e [min(Px0), max(PX0)\

Sv2 e [m a x ( P vi ), m a x ( P yo)]
(3.8)

Sx3 e [max(Pxi), max(PX0)\

Sys e [min(Py0), max(Py0)\

Sx4 t [min(Pxo), max(PXo)]

Sy4 e [min(Pyo), min(Pyi)]

In Eq. (3.8), Pxo and Py0 are the respective values of the x and y-coordinate that 

describe the outside contour, which corresponds to the target region; while Pxi and Py{ 

are the respective values of the x and y-coordinate that describe the inside contour, 

which corresponds to the forbidden region. The essence in employing this approach 

is to try and avoid placing seeds in or near the forbidden contour. Evident in Fig. 

3.6(c), the four rectangular bounds combine together to cover up the majority of the 

target region, but cover no part of the forbidden region at all. When these bounds 

are used to control the placement of a new seed, the forbidden region is effectively 

avoided.

One drawback here is that there is a certain amount of space included in the 

bounds that in fact belong to neither the target region nor the forbidden region. To 

account for this inclusion of unusable space, the location of each of the optimized
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(a) Bounds for regions 1 and 3 (b) Bounds for regions 2 and 4

(c) All four bounds overlaid on top of sim­
plified prostate contour

Figure 3.6: Boundaries of the 4 regions for seed placement

entries in new-DOPALseeds must be verified to ensure that none of the seeds are 

outside of the target. If a seed has been found to lie outside of the target region, i.e. 

outside of the contour itself, it is removed from the new-DOPALseeds matrix and 

the value of temp.seed is modified like previously mentioned. So that when temp.seed 

is added to new.DOAPLseeds on the next iteration, the new optimizatoin based on 

the updated new-DOPALseeds will not run into the same problem.

These bounds are especially useful in dosimetry planning for prostate cancer, 

where it is crucial to try and avoid delivering dose to the urethra, which runs through 

the center of the prostate. The urethra thus becomes the ‘forbidden region’, and the
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Figure 3.7: Bounds on a tumor of elongated shape

surface of the urethra becomes the inside boundary of the ‘target region’ so it would 

get protected from being overdosed. The actual ‘target volume’ of the prostate tumor 

is therefore defined by two sets of contour points. In the case of the lung, because of 

the significantly greater complexity in the thorax and the current state of the robotic 

lung brachytherapy project, ‘forbidden regions’ in the lung (which could be quite 

complex) were not considered in this initial study. This problem will be addressed in 

depth in a more detailed study in the future.

When the method mentioned above is applied to a tumor that is more elongated 

than usual, the portion of the tumor covered by the bounds is shown in Fig. 3.7. 

It can be seen from this figure that there is also a certain amount of unusable space 

being covered by the bounds. The surface area of an ellipse with a major axis of 

radius, a, and a minor axis of radius, b, is given by

SA of Ellipse = 7t ■ a ■ b

while the overall surface area of the bounds can be calculated as 2a x 2b. Ignoring 

the bounds around the forbidden region, the unusable space around the target region 

is 4ab — nab = ab(4 — n). The unusable space around the target region for a regular
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circular shape with radius r is, 4r 2 — nr 2 =  r 2(4 — n). It can be shown from the 

above that as both a and b become increasingly bigger, the amount of unusable space 

in an elongated tumor becomes larger than that of the circular tumor. Such an 

exaggerated shape is of no particular concern to prostate or lung tumors at this time; 

nevertheless there is still a method that corrects for this should it occur. The trick is 

to break down the four rectangular bounds into ever smaller rectangular bounds. The 

smaller the bounds are, the more accurately they approximate the actual elongated 

shape. The disadvantage in employing such an approach is that there are more 

computations required to figure out the exact parameters that define these smaller 

bounds. Though, the improved accuracy in the resulting dosimetry plan may be worth 

the effort. In addition, this correcting method would also improve the accuracy of 

the shape-approximation for a general circular tumor too.

Once all the parameters have been obtained, i.e., contour information of the cur­

rent slice, contour information of the present volume which is composed of all slices 

from the 1st to the current slice, the set of temporary seeds to be optimized, Uf, and 

Lfr values, as well as the xyz bounds for potential seed locations, the optimization 

routine ‘fmincon’ is ready to be invoked to solve the problem at hand.

3.2.3 Pre-planning’s <‘f m i n c o n ' >

‘fmincon' is the constrained minimization routine from MATLAB’s optimization tool­

box. This particular routine was selected because it offers the option to minimize the 

objective function subject to a set of constraints. Figure 3.8 is an illustration of 

how ‘fmincon’ has been used by 2D.Optimization to solve the dosimetry planning 

problem.

The objective function requires the following parameters as its input,
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Figure 3.8: Flowchart for ‘fmincorì

• Current slice seeds (curseeds), which is equivalent to new-DOPALseeds

• Seeds from other slices (seeds.otherslices)

• Volume contour (voLcontour), which is made up of all slices prior to and in­

cluding the current slice

• Ub and Lb

• Desired % dose (desd.goal)

• z value of the current slice (z.val)

As for the optimization constraint, the required input parameters are as follows,

• Current slice seeds (curseeds), which is equivalent to new.DOPALseeds
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• Seeds form other slices (seeds.otherslices)

• Inside contour of the current slice (inner.cont)

• Outside contour of the current slice (outer.cont)

• z value of the current slice (z-val)

The objective of the optimization is to ensure that as many contour points would 

receive a dose that is no less than the imposed Lb and no more than the imposed Ub as 

possible, which is in fact a maximization process. The objective function (Objjn) for 

maximization must be modified to fit the requirements of the minimization routine - 

fmincon. Essentially, the solution to the minimum of a negated objective function is 

equivalent to the solution of maximizing that same objective function. In any case, 

the objective function is mathematically stated below:

53(0» I Vi, * e (Px , Py), where Lb < D(i) < Ub (3.9)

where D(i) is the total amount of dose present at point i. Since 'fmincon' is invoked by 

2D-Optimization for every slice of the contour volume, and because 2D-Optimization 

is an iterative process where each successive optimization includes the contours from 

all previous iterations, then Px and Py are coordinates that describe the volume which 

is made up of all slices from the l si slice to the current slice. In words, Eq. (3.9) 

states that for the contour described by Px and Py (which is the collection of points 

from the first point on the first contour slice to the last point on the current contour 

slice), the dose at every point i is desired to be > Lb and < Ub at the same time. 

References [18, 54] stated that the total dose at a particular contour point can be 

approximated as the summation of dose from all available seeds. Mathematically, the
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approximation of the dose at point Pq can t>e expressed as:

¿ B ( | |P o - S J )  (3.10)
¿=0

In this equation, D(r) denotes the dose contribution of a seed to a point at a distance 

of r units, || • || denotes the Euclidean norm, and is the vector of the coordinates 

of seed i of a total of n seeds. Equation (3.10) says that, the total dose apparent at 

point Pq is the summation due to the dose from each of the seeds from Sq to Sn. The 

dose of each seed, as stated in [18, 54], is based on the Euclidean distance between 

the point of interest (Pg) and the location of the seed {Si), where the seed itself can 

be approximated as a point source. Specific to the work in this thesis, the irradiation 

of a single seed is approximated using the point source formula provided by [5], which 

was given in Eq. (2.5).

In the objective function stated in Eq. (3.9), the total amount of dose, D(i), at 

each point is calculated using Eq. (3.10). So the total dose is the summation of dose 

contributions from all seeds in the volume, essentially this is the summation of the 

dose contributions from seeds-otherslices, and the dose contributions from cur.seeds. 

Therefore, even though the dose calculation is performed in a 2D setting, it still takes 

into consideration the dose contributions within the 3D volume.

It is worthwhile to note here that voLcontour was divided up into the outside 

volume contour (outer.cont) representing the target volume, and the inside volume 

contour (inner.cont) representing the forbidden volume. Should there be no need 

for a forbidden region (such is the case of lung tumors at the current stage), then 

inner-cont is an empty matrix that does not affect the outcome of the optimization. 

Ub and Li values may be specified differently for each set of contour, thus effectively 

controlling the amount of dose that can be delivered to different volumes.



56

Furthermore, the objective function attempts to minimize the total dose deviation 

at all points on the contour from desd-goal (which may be 100% of the prescribed 

dose), using a least squares method, the mathematical expression is given below:

Minimize {^[£>(z) — desd-goal]2}, where i e (Px , Py) (3.11)
i

Here, desd-goal may be set to different values for the target and the forbidden volumes 

to achieve the respective desired dose.

The exact value of the desired dose at point j ,  D (j), is specified by the optimiza­

tion constraints (OpLCons), given below:

Vi e [0, n]

D(j) = Desired % Dose

Different to the objective function, the optimization constraints are applied to the 

current slice only, where n can be interpreted as 50 to represent the number of points 

defining the contour of a slice. Then, Eq. (3.12) states that for all points on the 

current contour, the intention is to deliver the desired amount of dose to each and 

every one of them. The only complication here is that constraints for the inside and 

outside contours need to be specified separately, because the urethra (e.g. forbidden 

region) and the prostate (e.g. target region) have different dose bounds [47]. To 

maximize the amount of prescribed dose delivered to the target region, the algorithm 

in [47] incorporates a conformity index on the target region. To achieve the same 

goal, the algorithm proposed in this thesis simply specifies a different desd-goal for 

each of the inside and outside contours. For simplicity, the variable desd-goal for all 

the slice contours in the target region are given identical values. Similarly, the same 

value of desd-goal is used for all slices of the forbidden region.

(3.12)
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One possible, although invalid, solution to the optimization problem is having 

multiple sources at the exact same location to achieve the desired overall cover­

age of the entire tumor volume. This was mentioned before in the previous section 

and the prevention method was to use a modified tempseed value for each entry in 

new.DOPALseeds. Another constraint (Eq. (3.13)) is used to control the spacing 

between adjacent seeds and to further emphasize the importance in preventing this 

undesirable outcome. Even though a solution consisting of say 10 seeds at the exact 

same location can still produce a complete coverage to the entire tumor volume, in 

which the seeds assume a point source approximation, it is physically impossible to 

place multiple seeds at the exact same location due to the actual size and shape of 

the brachytherapy seeds. Thence, the equation below is used to specify the minimum 

allowable distance k between two adjacent seeds,

||Sj+l — 5j|| > k, for Si e S~Xy (3.13)

where Sj  and S j + \  are available seeds in the matrix S xy  and || • || is the Euclidean 

norm. Equation (3.13) basically says that for all neighboring seeds on the same slice, 

the minimum separation between any two seeds must be more than k units.

The results obtained from ‘fmincon’ is sent back to the 2D-Optimization algorithm 

where the seed locations are checked and verified again to make sure that all seeds are 

inside the target region but outside the forbidden region if applicable. The algorithm 

then returns to the start of the 3D-Optimization algorithm and once again the number 

of violation points is checked and the above procedure is repeated until covergence is 

obtained.

The solution is said to have converged if there are 0 vio-pts in the volume, implying 

that each and every contour point is within the accepted upper and lower limits
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(a) Iteration vs. vio-pts graph of a conver- (b) Iteration vs. vio-pts graph of a non- 
gent solution convergent solution

Figure 3.9: Graphs showing convergent and non-convergent solutions of DOPAL

of the prescribed dose, at which time both 2D-Optimization and 3D-Optimization 

algorithms are terminated immediately because an optimal solution is found (Fig. 

3.9(a)).

In the case when convergence is not achieved, two conditions are in place to 

make sure that a most optimal solution is produced and that the algorithms do 

not run indefinitely. The first condition is that the user can specify the maximum 

number of times the 3D-Optimization algorithm should iterate, so that the total 

number of executions of the 3D-Optimization algorithm cannot be more than this 

value regardless of whether the solution converged or not. The second termination 

condition deals with the case when a sub-optimal solution is found for a problem where 

the globally-optimal solution may not even exist. To do this, for a volume that has n 

slices, when a seed configuration has been found that produces a minimum number 

of violation points (not necessarily 0), the 3D-Optimization algorithm is allowed to 

iterate for an extra n • 2 number of times. During this time, the 3D-Optimization
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algorithm is terminated if and only if none of the new seed configurations produces a 

lower number of violation points. This is illustrated in Fig. 3.9(b), which was obtained 

using a sample volume with 5 slices. It can be seen that on the 10th iteration there 

was a minimum of 4758 violation points, however the process is terminated after 

another 5 • 2 =  10 iterations because by the 20th iteration vio-pts is still above 5000.

The subsections described above combine together to form the DOPAL algorithm, 

in which the dosimetry planning problem is solved. The output of the DOPAL al­

gorithm is essentially the dosimetry plan, which is represented by a variable named 

DOPALSDseeds.

3.3 ID D O  A lgorithm  D escription

This section gives an in-depth description of the IDDO algorithm. The details on the 

formulation and solving of the IDDO problem are given in section 3.3.1. Section 3.3.2 

provides the details of the optimization routine employed by the IDDO algorithm. 

Figure 3.10 explains the details of this algorithm.

3.3.1 IDDO Problem Formulation

Similar to DOPAL, IDDO also requires the contour information of the tumor volume 

to start with. Unlike DOPAL however, (in which voLcontour was made up of all slices 

up to and including the particular slice of interest), IDDO deals with the entire tumor 

volume all at once to achieve a volume-wise optimal seed compensation. Therefore, 

the volume contour information provided to IDDO does not have to be segmented. 

Even so, the same segmented volume from DOPAL are currently used for simplicity 

purposes. As inputs, the IDDO algorithm requires a set of seeds from pre-planning 

(preplanseeds) as well as a set of currently deposited seeds (cur.depseeds). Using
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Figure 3.10: Flowchart for IDDO

these two sets of seeds, IDDO can then calculate the desired dose (desd.dose) due 

to preplan.seeds, also the actual dose (cur-dose) due to cur.dep.seeds. These values 

are required to achieve the goal of the IDDO algorithm, which is to compensate for 

any cold spots (underdosed target volumes) or hot spots (overdosed target volumes) 

caused by seed misplacements.

Additional seeds can be added for any cold spots; however seeds cannot be removed 

to compensate for any existing hot spots. Thus the optimal plan devised by IDDO 

is one where the overall sum of overdose and underdose is kept to a minimum. It is 

worthwhile to note here that the IDDO algorithm is designed not only for use with 

the DOPAL algorithm, but also as a stand-alone algorithm by itself, provided that 

it is given vol.contour, preplan.seeds and cur.dep.seeds. Either way, there are two 

scenarios that need to be taken into consideration.

The first scenario is that the dosimetry from preplan.seeds provides perfect cov­
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erage to the entire tumor site, thus the only concern for IDDO is to compensate for 

seeds that have deviated from the original dosimetry plan. To do so, the user has 

to specify an accepted percentage tolerance value (toLval), on both the target vol­

ume contour, as well as the forbidden volume contour if applicable, to formulate new 

values for Ub and Lb as given in Eq. (3.14):

Uf, =  (desd-dose due to preplan seeds) + toLval 

Lb =  (desd-dose due to preplanseeds) — toLval
(3.14)

For instance, if toLval is specified as 5%, and the pre-planned dose is 100%, then the 

new Ub would be 105%, whereas the new would be 95%. Also, since preplanseeds 

in this scenario provides a perfect coverage, the desired amount of dose at each contour 

point desd-dose is thereby equal to the dose due to preplanseeds.

The second scenario deals with an imperfect dosimetry due to preplanseeds. In 

which case, the result of IDDO must be an improvement from the dosimetry of pre­

planseeds. To put the second scenario in another way, the pre-planned seeds provided 

to IDDO are incapable of delivering the desired dose to all regions of the target vol­

ume, thus it is insufficient for IDDO to only compensate for seed deviations from 

preplanseeds, since this is still not enough to produce a complete coverage to the 

entire target volume. IDDO in this case should know the actual desired Ub and Lb 

values imposed on the target volume, so that in addition to compensating for any 

seed deviations from preplanseeds, IDDO may also take the liberty to add extra seeds 

in an attempt to compensate for the cold spots from the original dosimetry. In this 

scenario, there are no values specified for toLval, rather the desired Ub and Lb values 

must be specified manually, for instance at 120% and 100%. In addition, the deter­

mination of desd-dose at each contour point can no longer be based on preplanseeds,
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which means that the desired dose for both the target and forbidden contours are no 

longer equal to the dose from preplan.seeds, instead they must be specified manually 

like it has been done in DOPAL using Eq. (3.13).

In any case, based on desd.dose and cur.dose, the required dose (req.dose) at each 

of the contour points throughout the volume can be calculated, req.dose is really 

the amount of dose that must be delivered to each contour point to produce a full 

coverage to the entire target volume. The values in req.dose are going to be different 

to each other, in contrast to desd.goal for the DOPAL algorithm, which were all 

identical to each other. This is because req.dose is the difference between desd.dose 

and cur-dose, as shown in Eq. (3.15), where values for cur.dose for instance, are 

likely to be 46.35% as a result of cur.dep.seeds, as compared to say exactly 100% for 

desd.goal from DOPAL.

req.dose =  desd.dose — cur.dose (3.15)

The next step in the algorithm is to check for the amount of violation cur­

rently present, based on cur.dose and the new and L^. Similar to how it was 

done in DOPAL, this volume wise violation amount is stored and referred to as 

min.vioamt.IDDO. As new seed locations (new.seeds.IDDO) are generated by the op­

timization routine, its corresponding volume wise violation amount cur.vioamt.IDDO 

is calculated and compared to the currently stored min.vioamt.IDDO. The value of 

min.vioamt.IDDO will get overwritten by cur.vioamt.IDDO if and only if IDDO 

produces a plan with better dose coverage and less violations.

It is worth noting here that the user is also given the option to choose whether the 

amount of violation should take into account the total number of seeds to be used. If 

the user chooses not to include the weight of the seeds, this means that the calculated
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cur.vioamtJDDO is equal to the absolute violation only, which is the summation of 

the amount of overdose and underdose throughout the volume; otherwise 70% of 

the violation will come from the amount of overdose or underdose throughout the 

volume, whilst the remaining 30% comes from the total number of seeds that are 

implanted. These percentage values at this stage are completely experimental and 

do not reflect the actual effort in implanting an extra seed in to the tumor site. For 

now, the absolute violation option has been employed, which means that the number 

of implanted seeds plays no role in the calculation of the overal amount of violation.

TopNW  =  min(Px) D max(Py) fl max(Pz).

TopNE = max(Px ) fl max(Py) fl max(Pz)

TopSW  = min(Px) D min(Py) fl max(Pz)

TopSE = maxiPx) fl min(Pv) fl max(Pz)
(3.16)

BotNW  = min(Px) fl max(Py) D min(Pz)

BotN E  = max(Px) D max(Py) fl min(Pz)

BotSW  = min(Px) fl min(Py) fl min(Pz)

BotSE  =  max(Px) fl min(Py) n  min(Pz)

Next, the x and y bounds for the potential locations of the seeds must be specified. 

The placement of seeds in IDDO is different to the placement of seeds in DOPAL, 

where seeds were placed only on the current slice of interest. In IDDO, the algorithm 

has been designed to facilitate seed placement at any location throughout the volume. 

This freedom in placing a seed anywhere in the volume is only made available with 

the brachytherapy set-up at CSTAR (a more detailed description can be found in 

section 4.1.1.2), which allows seed deposition at any arbitrary location due to the
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Figure 3.11: Bounding volume for seed locations for the IDDO algorithm

absence of a template grid. To this end, the IDDO algorithm has to specify bounds 

for the seeds in all three ( X Y , X Z  and YZ)  planes. As such, a rectangular volume 

is created based on the minimum and maximum values of the 3D coordinates of the 

volume contour. The eight corners defining the bounding volume are given in Eq. 

(3.16).

This bounding volume encloses the entire target volume, as well as some space 

exterior to it (Fig. 3.11). As a result, a verification process has to be run on the 

actual location of the seeds after every optimization call to make sure that the seed 

has actually fallen inside the target volume and not outside of it. In Eq. (3.16), 

TopNW  represents the north-west corner of the top of the volume, while BotSE  

represents the south-east corner at the bottom of the volume. Px, Py and Pz are the 

collection of x, y and z coordinates of the contours from all slices. The volume contour 

shown in Fig. 3.11 is the actual contour of a sample lung tumor made specifically for 

this project, and the dotted lines represent the bounding volume.

For a more regular 3D volume (such as a sphere), a more elegant and efficient 

algorithm was devised to define the boundaries of the potential locations of the seeds.
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This algorithm makes use of the fact that if the spherical volume was placed on the 

xyz coordinate system, where the center of the volume coincided with the center of 

the coordinate system, then the top half of the volume is more or less a mirror-image 

of the bottom half of the volume. Based on this fact, several rectangular volumes are 

created. The combination of all these rectangular volumes approximate the overall 

spherical volume where each rectangular volume defines one volumetric space for the 

placement of the seeds.

This algorithm works better with an even mumber of slices, though it is still 

applicable to an odd number of slices. For the former, if the center of the volume is 

treated as 0, then the first rectangular volume is created from the slices immediately 

above (+1 slice) and below (—1 slice) this center. The cross-sectional view of the 

l si rectangular volume is shown in Fig. 3.12(a). The assumption here is that for a 

relatively spherical body, these two slices will have similar, if not identical coordinates 

defining their respective contours. As such, these two slices can be considered as 

‘corresponding slices’, which implies that using the planar bounds created from these 

two slices as the top and bottom surfaces, a rectangular volume can be formed by 

joining up the eight corners of the two planar bounds. Moreover, this volume will 

more or less be in the shape of a rectangular volume. The volume is still defined by 

the equations in Eq. (3.16); however Px, Py and Pz are now the contours of slices 

+1 and —1, instead of being the contours of the entire volume. The 2nd rectangular 

volume is constructed using the same set of equations but Px, Py and Pz take up the 

coordinate points of slices +2  and —2, because the slices of interest here are +2 and 

—2. Similarly, the 3rd volume is constructed using slices +3 and —3, and so on and 

so forth.

As more rectangular volumes are constructed this way, the corresponding slices 

become farther apart from the center of the volume and from each other. So the
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Figure 3.12: Cross-sectional and planar views of IDDO bounds

volumes have progressively smaller top and bottom surfaces (planar bounds) due to 

less 2D areas covered by Px and Py of the corresponding slices but greater length in 

the z direction due to the slices being farther apart from each other. Figure 3.12(b) 

shows the cross-sectional view of the 4 ^  volume, and Fig. 3.12(c) shows the cross- 

sectional view of the 5^  volume. Comparing Fig. 3.12(b) and (c) to Fig. 3.12(a),
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it is clear that the lengths in the z direction for volumes 4 and 5 are much bigger 

than that of volume 1; whereas the top and bottom surfaces of volumes 4 and 5 (Fig. 

3.12(e), (f)) are becoming smaller compared to the top and bottom surfaces of the 

l si volume (Fig. 3.12(d)).

The collection of rectangular volumes from all slices combine together to form 

the approximate spherical volume. Each time ‘fmincon’ is invoked by the proposed 

algorithm, a different volume is selected for seed placement. The aim is to go through 

all the rectangular volumes the same number of times, thereby exploring all available 

space in the x, y and 2 directions. This ensures that the seeds will be placed uniformly 

and efficiently.

In the case of a spherical volume with a hollow tube, which is a possible repre­

sentation of the urethra, the above algorithm is modified slightly to accommodate 

this change. In contrast to a solid sphere where one rectangular volume is created 

from two corresponding slices, now four rectangular volumes will be created instead. 

The planar bounds for the top and bottom surfaces are still defined by Eq. (3.8), 

so that there are now 4 regions. The rectangular volumes are still created the same 

way as before, by joining up the same regions from corresponding slices, e.g., joining 

region 2 on slices + 1  and —1 will create a rectangular volume that covers part of the 

target volume but not the forbidden volume. In this way, 4 rectangular volumes will 

be created from each pair of corresponding slices. For such a shape, the optimization 

routine has to cycle through four times as many volumes on each call of ‘fmincon’ 

to uniformly place the seeds throughout the spherical volume. In this manner, the 

placement of seeds in the forbidden (hollow) region of the volume will be avoided 

with the best effort.

Having specified the bounds for potential locations of a seed in all (x, y and 

z) directions, the last requirement prior to invoking the optimization routine is to
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provide the location of an arbitrary temporary seed (temp.seed). Similar to how it 

has been done in DOPAL, temp.seed for IDDO is also calculated using the COM 

formula given in Eq. (3.2a) and Eq. (3.2b). The goal of the optimization routine is 

to move temp.seed to a location that will provide an optimal radiation coverage to 

the whole target, confined in the space set by the equations given in Eq. (3.16). The 

actual location of the seeds (new.seedsJDDO) produced by the optimization routine 

are checked and verified to make sure that they are all within the tumor volume, while 

the overdose and underdose violation amount due to new.seedsJDDO are calculated 

again.

This process is repeated for a maximum of 10 iterations, unless convergence has 

been reached before then. This number has been chosen experimentally and can be 

varied as desired. During these iterations, the current minimum violation amount 

cur.vioamt.IDDO is checked every time new.seedsJDDO is produced by IDDO. If 

IDDO’s current violation amount due to newseedsJDDO is lower than the currently 

stored min.vioamt.IDDO, then final.seeds.IDDO, which is the eventual output of the 

IDDO algorithm, gets replaced by new.seedsJDDO and min.vioamt.IDDO gets re­

placed by cur.vioamt.IDDO and the optimization process can continue on for another 

10 iterations. The only condition under which IDDO is terminated immediately is 

when cur.vioamt.IDDO due to new.seedsJDDO happens to be 0, implying that all 

contour points in the entire volume are within the accepted upper and lower limits of 

the prescribed dose. At this time, final-seeds.IDDO is replaced by new.seedsJDDO 

and gets produced by IDDO as the final solution.
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3.3.2 ID D O ’s <‘f m i n c o n ' >

The IDDO algorithm also uses the ‘fmincon’ optimization routine from MATLAB’s 

optimization toolbox. In contrast to the complex objective function that governed 

the optimization of the pre-planning algorithm, this particular objective function 

(IDDO-Obj-Fn) is given below simply as:

n
Minimize {^\req-dose(i) — D(z)]2} (3-17)

¿=0

where req-dose(i) and D(i) correspond to the required dose and the actual dose at the 

ith point on the contour volume, respectively. D(i) here is the summation of dose from 

all seeds that are currently inside the tumor volume, which consist of cur.dep.seeds 

and newseedsJDDO. Thus, the aim of the objective function in Eq. (3.17) is to 

minimize the squared sum of the difference between the actual dose delivered and the 

desired dose at each point on the contour volume.

The optimization constraints for the IDDO algorithm, IDDO-Opt-Cons, are also 

similar to the pre-planning optimization constraint in Eq. (3.13). In a sense that it 

also specifies a certain spacing between adjacent seeds (given below in Eq. (3.18)). 

The only difference here is that the spacing is defined in three-dimensional space 

whereas for pre-planning, the spacing was only applicable in the XT-plane. So that 

for every ith seed, S{, that belongs to the matrix of seeds Sxy, the IDDO-Opt.Cons 

is:

\\Si+i -  5t-|| > k, for Si e S~xy (3.18)

where || • || is the Euclidean norm in 3D space.
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C hapter 4

E xperim ents and R esu lts
This chapter presents information on how the experiments were conducted on a vari­

ety of shapes in the simulation environment, as well as in the ex vivo environment on 

sample lung tumors and prostate phantoms. The equipment involved in the exper­

iments for ex vivo lung tumors and prostate phantoms is described in section 4.1.1. 

Section 4.1.2 and 4.1.3 give a description of the evaluation procedure for DOPAL 

and IDDO respectively, with particuar focus on how to use an existing dosimetry 

planning software to verify the accuracy of these proposed algorithms. Lastly, the 

experimental results are presented in section 4.2 and discussed in section 4.3.

4.1 E xperim ental Evaluation Procedure

In this section, first, the equipment used to evaluate the proposed algorithms is pre­

sented, followed by a detailed description on how an existing dosimetry planning 

software will be used to verify the accuracy of both DOPAL and IDDO.

4.1.1 Equipment Set-up

4.1.1.1 Additional Software

Seed configurations for both DOPAL and IDDO are obtained in the MATLAB envi­

ronment, since both algorithms have been programmed in MATLAB. However, MAT- 

LAB alone is not sufficient for evaluating the accuracy of these algorithms. As such,
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a dosimetry planning software provided by Dr. Fenster at Robarts, is used to com­

pare and verify the accuracy of the dosimetry planning results produced by DOPAL. 

This software will be referred to as RDP, short for “Robarts Dosimetry Planning” 

software, for ease of reference. A commercial version of this software for prostate 

brachytherapy is called Sonographic Planning for Oncology Treatment (SPOT) and 

was described in section 2.1.1. The RDP software used for this project was modified 

by the Robarts group for the lung brachytherapy project in [50].

4.1.1.2 Additional Hardware

As described in Chapter 3, both DOPAL and IDDO require a set of contour images 

of the target volume before they can be executed. Therefore accurately obtaining 

US images of the tumor volume is crucial for the evaluation of the algorithms. To 

this end, an ultrasound machine (Philips iU22) shown in Fig. 4.1 was used to obtain 

the US images for ex vivo lung tumors. The tumors were constructed based on 

the approach in [55]; the tumors have diameters 5mm, 10mm and 20mm. Tumors 

in operable lung cancer patients are generally less than 3cm across [56]. For our 

experiments, the tumors were made from agax (Sigma Gelrite Gellan Gum), water 

and barium, and were heated before they were injected into cold, collapsed porcine 

lungs. The lungs with injected tumors were refrigerated overnight for the tumors to 

solidify. The C-Arm was used to verify the location of the tumors prior to acquiring 

the US images using the Philips iU22 US machine. A sample x-ray image obtained 

from the C-Arm is shown in Fig. 4.2. Tumor 1 in Fig. 4.2(a) is smaller in comparison 

to the other tumors in Fig. 4.2(b), where the tumors above the lobe (tumors 3 and 

4) are considerably larger.

For prostate brachytherapy on the other hand, to obtain US images for the life- 

sized prostate phantom shown in Fig. 4.4, the TRUS probe in Fig. 4.3 is used, which
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Figure 4.1: Philips iU22 ultrasound machine

(a) X-ray image showing locations of (b) X-ray image showing locations of 
tumors 1 and 2 tumors 2, 3 and 4

Figure 4.2: X-ray images of samples tumors in pig lung

is a part of the prostate brachytherapy set-up from CSTAR [57].

The prostate phantom in Fig. 4.4 was not built for this project; however it is still 

applicable to the research conducted in this project since the size of the phantom

_



73

Figure 4.3: Prostate brachytherapy set-up at OSTAR

Figure 4.4: Life-sized prostate phantom

matches that of a prostate from real life. Nonetheless, it is necessary to evaluate 

both DOPAL and IDDO algorithms on more than one test subject. To achieve this 

goal, two sets of US images were acquired using the same phantom. In the first set 

of images, there was slightly more noise present, which made it difficult to identify 

the whole prostate; while the second set of images contained little noise so that the 

entire prostate was easily identified. The ends of the figure in the first set of images 

(where there were more noise) were deleted from the image set, thereby resulting in 

a prostate that was slightly smaller than the prostate from the second set of images.

In terms of seed placement, the AESOP brachytherapy set-up shown in Fig. 4.5 

was used. This equipment is different from the current clinical set-up, in the sense
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that there is no seed template (that was shown in Fig. 1.2) required to deposit the 

seeds at their desired locations. Furthermore, the AESOP set-up provides improved 

precision in seed placement such that the locations of the needles no longer need to 

be specified in terms of the hole location on the seed template. Instead the location 

of the seeds can be specified in terms of its desired xyz Cartesian coordinates. This is 

in the best interest of the IDDO algorithm, which has been implemented to deposit 

seeds at any location within the volume to achieve an optimal radiation coverage of 

the tumor. In fact, the algorithms described in Chapter 3 were designed to be used 

with a robotics-assisted brachytherapy set-up, similar to the AESOP set-up in Fig. 

4.5, for use in the prostate, the lung and possibly other organs where seed insertion 

could be done from various angles due to the absense of a seed template.

However, there is also a disadvantage associated with it from the algorithm imple­

mentation point of view. If a seed template is in place, then there would be a limited 

number of potential seed locations, as is the case with Lee’s MIP optimization. In the 

absence of a seed template, associated with the AESOP set-up is an infinite number 

of potential seed locations, making the optimization problem more difficult to solve 

because more calculations and more logical eliminations are required to determine 

the seed locations of an optimal plan.

With these additional hardware and software, the DOPAL and IDDO algorithms 

can be properly evaluated. The evaluation procedure for these algorithms are de­

scribed below.

4.1.2 Evaluation Procedure for DOPAL

The evaluation of the performance of the algorithms starts with simple 2D shapes 

such as a circle, or a planar donut (a simplified representation of a prostate with the
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Figure 4.5: AESOP brachytherapy set-up at OSTAR

Figure 4.6: 2D view of the prostate with urethra

urethra), before moving on to a slightly more complicated scenario such as a realistic 

planar view of the prostate with the urethra, as shown in Fig. 4.6.

The next step of the evaluation process involves performing dosimetry planning 

on simple 3D shapes, such as a solid cylinder, a cylinder with a hollow tube or, a 

sphere with a hollow tube. These figures are shown in Fig. 4.7.

The DOPAL algorithm is invoked to produce a dosimetry plan on the shapes 

illustrated in Figs. 4.6 and 4.7, their corresponding results are presented in section 

4.2.1 and section 4.2.2. The target regions have all been assigned a Ub value of 110% 

of the desired dose, and a Lb value of 90% of the desired dose. The Ub and Lb values
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(a) Solid Cylinder (b) Cylinder with Hollow tube (c) Sphere with Hollow tube

Figure 4.7: Simple 3D shapes

assigned to the forbidden regions in Fig. 4.7(b) and Fig. 4.7(c) are 110% and 80% of 

the desired dose, respectively. These values were chosen relatively close to the desired 

dose at 100% to reflect the accuracy of the DOPAL algorithm. Depending on the 

and Lf, values chosen, the resulting coverage would also be different.

To evaluate the performance of the algorithms for ex vivo tumors against existing 

dosimetry planning software such as RDP, dosimetry plans created by DOPAL are 

imported into RDP and compared against RDP’s own optimized dosimetry plans. 

As described in section 3.2, DOPAL requires only the 3D contour of the target vol­

ume, which may be acquired through any imaging modality. However, to prove that 

DOPAL is working correctly, the same target volume information also has to be pro­

vided to RDP for verification purposes. Due to the fact that RDP works exclusively 

with US images, these experiments were therefore limited to the US imaging modality 

only.

After obtaining the ultrasound images of the tumors as explained in section 4.1 .1 .2, 

the images are imported into RDP for contouring. Contouring in RDP has to be 

done manually by clicking and selecting points on every slice of the target volume. 

The minimum interval for contouring in RDP is 1mm along the 2-axis, however the 

minimum interval at which the contour can be viewed is 2.5mm, as shown in the 

bottom of Fig. 4.8. As a result, needles and seeds can only be added to consecutive
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Figure 4.8: 3D view of a sample tumor in RDP

contours at multiples of 2.5mm, meaning that the minimum spacing between seeds 

on adjacent slices is 2.5mm if added manually. Needles and seeds can also be added 

to slices that are 5.0, 7.5 or 10mm apart, and so on up to the last contour in the 

volume. For instance, if the first contour slice is placed at z = 0mm, then seeds can 

only be added on slices with a 2-coordinate of 2.5, 5.0, or n x 2.5, where n is the 

nth consecutive slice from the first slice. This implies that the 2-coordinate of a seed 

(Sz) must be at a distance of multiples of 2.5mm  from where the first slice is, which 

effectively limits the location of the seeds produced during pre-planning and seed 

compensation. Even if DOPAL can be designed to cope with this, the same cannot 

be done for IDDO since seed compensation should produce seeds anywhere inside the 

tumor volume as long as a compensated coverage can be obtained. This is to say that 

seeds produced by IDDO cannot be placed in RDP for verification purposes.

Nonetheless, the target volume is in fact defined by a discrete number of slices, so
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to get a 3D surface rendering of the target volume, the values in between the slices 

are interpolated using RDP’s own built-in interpolation scheme. The 3D surface 

rendering from RDP is a useful feature in displaying the volumetric isodose coverage, 

a 3D surface rendering of a sample target volume is shown in Fig. 4.8.

Next, the set of points describing the volume is recorded and stored in RDP, how­

ever RDP offers no direct exportation to MATLAB so the only way to use this infor­

mation in MATLAB is to first store it in another program, say for example Microsoft 

Excel™. Once the 3D contour information has been pasted into Excel, which contains 

the x , y and z coordinates of the volume contour in a slice-by-slice arrangement, it 

is then imported into MATLAB for use in the DOPAL and IDDO algorithms. The 

results obtained from these algorithms can be compared against the results obtained 

from RDP.

RDP also contains an optimization feature that can generate dosimetry plans 

automatically. Spacing between neighboring seeds on the same slice can be selected 

as either 5mm  or 10mm; spacing between neighboring seeds on adjacent slices can also 

be selected as either 5mm or 10mm. Therefore there are a total of four optimization 

schemes from RDP, so in total 4 dosimetry plans are generated by RDP for the ex 

vivo lung tumors and the prostate phantoms.

To compare the above dosimetry plans from RDP against the dosimetry plan 

from DOPAL, we use several parameters obtained from the Dose Volume Histogram 

(DVH), as done in [47, 50, 58, 59, 60]. A sample DVH graph is shown in Fig. 4.9, 

where the percentage dose is the horizontal axis while the percentage volume is the 

vertical axis. In Fig. 4.9, approximately 83.8% of the volume is receiving 100% 

of the dose as indicated. To evaluate the dosimetry plan for a lung tumor, we use 

the same DVH parameters as the ones that are used in [50], they are D90 (dose to 

90% of the volume), V90 (volume receiving at least 90% of the dose), VI00 (volume
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Figure 4.9: Sample Dose Volume Histogram from RDP

receiving at least 100% of the dose) and V200 (volume receiving at least 200% of the 

dose). The V90 and VI00 parameters have been shown to be uninfluenced by seed 

misplacements, which implies that values close to 100% for these two parameters will 

ensure a good plan has been achieved. For prostate brachytherapy, D90, D100, V100, 

V I20 and V I50 are used in [47, 58, 59, 60]. These parameters will also be used in 

this thesis. Reference [6] also provides recommended values for V150 and D90 for an 

optimal plan in prostate brachytherapy.

In order to obtain DVH parameters in the same environment so that they are 

consistent between both RDP and DOPAL, it was decided that the DVH function 

from RDP will be used instead of writing another program in MATLAB to do the 

same thing. To obtain DVH parameters for the dosimetry plan from DOPAL, the 

seeds from the DOPAL plan must be plotted in RDP, where a xyz translation was
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performed to translate the seeds from MATLAB units to RDP units. In RDP, and 

like in any other dosimetry planning software, the position of the needles and seeds 

can be viewed after they have been added manually. In contrast, now that the desired 

locations of the seeds are known, needles and seeds can be added accordingly. By 

activating all the seeds that are deposited at their desired locations, an overall slice- 

by-slice isodose coverage can be obtained similar to the one shown in Fig. 1.4. An 

isodose coverage shows regions within a target volume receiving the same amount of 

dose. Then the pre-planning DVH parameters from both RDP and DOPAL can be 

obtained from their corresponding DVH graphs like the one shown in Fig. 4.9.

The pre-planning results obtained from RDP and DOPAL are presented in section 

4.2.2. The discussion of these results are given in section 4.3.2 for the lung tumors 

and section 4.3.4 for the prostate phantoms.

4.1.3 Evaluation Procedure for IDDO

To verify the functionality of the IDDO component, a portion of the seeds obtained 

from DOPAL are manipulated such that the new coverage is no longer the same as 

the coverage of the original plan from DOPAL. These manipulated seeds are used 

as an input (cur-dep seeds) to the IDDO algorithm, and IDDO is asked to generate 

new locations for the remaining seeds (newseedsJDDO) in order to compensate for 

the manipulations that took place. The final coverage as a result of the combination 

of cur-depseeds and newseedsJDDO should satisfy the imposed upper and lower 

limits of the accepted dose. These limits were described in section 3.3.1, the values of 

which can be either the summation of pre-plan’s intended dose and the user-specified 

toLval or new upper and lower limits specified by the user.

Unfortunately, the result of IDDO - newseedsJDDO, cannot be plotted in RDP
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for comparison like it was done for DOPAL. This is because the result produced by 

IDDO contains seeds throughout the entire tumor volume, not necessarily fixed to the 

available slices. As mentioned previously, since the seeds produced by IDDO cannot 

be plotted in RDP to verify their accuracy, 3D radiation coverage graphs are then used 

to compare the seed compensation results before and after running IDDO. A separate 

program was written solely for this purposes, which is called isodoseSD. It displays 

the isodose coverage, in both planar (2D) and volumetric (3D) views. The coverages 

shown by isodoseSD will be used to evaluate the accuracy of the IDDO algorithm. 

The seed compensation figures are presented in section 4.2.4 and the discussion on ex 

vivo lung tumors is given in section 4.3.3 and in section 4.3.5 for prostate phantoms.

4.2 R esu lts

4.2.1 Result for 2D Shapes

Figure 4.10 shows the simulation results of the simple 2D shapes. Figure 4.10(a), (c) 

and (e) show the configuration of the seeds according to the dosimetry plan produced 

by DOPAL, their corresponding radiation coverages at 100% of the prescribed dose 

are shown in Fig. 4.10(b), (d) and (f). It can be seen from Fig. 4.10(a) and (c) that 

for circular shapes, the seed arrangements are very uniform, even in the presence of an 

enclosed circle as in Fig. 4.10(c). As a result, Fig. 4.10(b) and (d) show very uniform 

and complete radiation coverages at 100% of the prescribed dose. The robustness of 

the algorithm is illustrated in Fig. 4.10(e) and (f), where the seed arrangement and 

the 100% radiation coverage are also uniform and complete, even though this time it 

is for an irregular, complex shape such as the prostate with the urethra.
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(f) Radiation coverage of Prostate

(a) Seed placement in Circle

(c) Seed placement in Coax Circle (d) Radiation coverage of Coax Circle

(e) Seed placement in Prostate

(b) Radiation coverage of Circle

Figure 4.10: Simulation results for simple 2D shapes
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Figure 4.11: Simulation results for simple 3D shapes
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4.2.2 Result for 3D Shapes

The simulation results for simple 3D shapes are shown in Fig. 4.11, the shapes of 

interest here are the Solid Cylinder (Fig. 4.11(a)), a Cylinder with a Hollow tube 

(Fig. 4.11(b)), and a Sphere with a Hollow tube (Fig. 4.11(c)). In Fig. 4.11, the 

location of the seeds for each shape is shown in the first row of each column, while 

the 100% radiation coverage due to the seeds viewed in X Y , X Z  and Y Z  planes are 

shown underneath for a complete illustration. The radius of the cylinders and sphere 

are different from each other, and the radius of the hollow tubes are also different. 

This was done purposefully to demonstrate that the algorithm works for all shapes 

and sizes.

In the first column, the radius of the cylinder (r.cyl) is given a value of 5 units. 

Figure 4.11(d) shows that the coverage at 100% of the prescribed dose in the X Y  

plane is complete and uniform, however the coverages in X Z  and Y Z  planes shown in 

Fig. 4.11(g) and (j) are spherical toward the two ends of the cylinder. This occured 

because of the absence of the constraint that governs the distance between adjacent 

seeds (Eq. 3.13), and was in fact done on purpose to illustrate the effect and the 

importance of this optimization constraint (details on this was explained in section 

3.2.3). Examining the distribution of the seeds in Fig. 4.11(a), it can be seen that 

the seeds bunch together in the center of the top and bottom slices. This bunching of 

seeds has led to the hemi-spherically shaped coverages on the top and bottom slices 

shown in Fig. 4.11(g) and Fig. 4.11(j). To prevent this from happening again, the 

optimization constraint of the neighboring seeds are made available in DOPAL for 

dosimetry planning for the Cylinder with a Hollow tube (Fig. 4.11(b)) and the Sphere 

with a Hollow tube (Fig. 4.11(c)).

The cylinder in Fig. 4.11(b) has a r-cyl value of 9 units, while the hollow tube has
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a radius (r.tube) of 3 units. The seeds in this figure can be seen to have assumed an 

uniform distribution, which resulted in uniform and complete coverages in the X Y , 

X Z  and Y Z  planes shown in Fig. 4.11(e), (h) and (k).

Similarly, uniform and complete coverages have been achieved in all X Y , X Z  and 

Y Z  planes for the Sphere with a Hollow tube, where the radius of the sphere (rsph ) 

is 10 MATLAB units and r.tube is 2 units. The only drawback here are the small 

underdosed regions (cold spots) close to the top and bottom slices of the sphere shown 

in Fig. 4.11(i) and (1). Had this been a solid sphere without a forbidden region, these 

cold spots would not have been present. The top and bottom slices of the sphere have 

a target radius of only 6 units, where r.tube is consistently at 2 units from one end 

to the other. The value of r.tube on these slices in relation to thè“relatively smaller 

value of r.sph makes it difficult to deliver the perfect amount of dose to these slices. 

Despite the observable cold spots for the coverage at 100% of the prescribed dose, 

these regions are fully dosed at 90% of the prescribed dose, therefore still satisfying 

the Ub and L^ conditions.

4.2.3 e x  v i v o  and Phantom Pre-planning Results

The effectiveness of the dosimetry plans from DOPAL on ex vivo tumors and prostate 

phantoms are compared against all four of RDP’s optimization schemes. The most 

optimal plan would consist of high values (~ 100%) for V 100 parameters, and low 

values for 1/200 or 1/150 parameters. This is beacuse the amount of dose delivered 

to the entire volume should be as close to 100% of the prescribed dose as possible, 

while the amount of volume receiving > 100% of the prescribed should be limited in 

order to prevent damage to the surrounding anatomical structures.

Tables 4.1-4.3 show the DVH values of all five plans (4 from RDP and 1 from
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Table 4.1: DVH parameters of 5mm diameter tumors
Plan D90 V90 V100 V200

DOPAL 82.5Gy 64% 56.9% 19.5%
109.9Gy 80% 74% 31.9%

RDP 5.5 DNE DNE DNE DNE
54.9Gy 61.9% 58.7% 33.8%

RDP 5.10 DNE DNE DNE DNE
DNE DNE DNE DNE

RDP 10.5 DNE DNE DNE DNE
DNE DNE DNE DNE

RDP 10.10 DNE DNE DNE DNE
DNE DNE DNE DNE

DOPAL) for lung tumors with diameters of 5mm, 1cm and 2cm. These tumor sizes 

were selected because the tumors found on clinically operable patients are less than 

3cm as suggested by [56]. The first row under each plan name refers to the first 

experimental tumor while the second row refers to experimental tumor number two. 

The convention used to distinguish the four different plans from RDP is done by the 

use of two numbers, for example in RDP5-5, the l si number represents the distance 

between neighboring seeds on the same slice, while the 2nd number represents the 

distance between neighboring seeds on adjacent slices. The results in these tables are 

obtained using the default value for the initial strength of the source at If/.

One thing worth mentioning here is that when DOPAL was used on the 1cm 

tumor, the and values were specified as 10% higher than the and values 

for the 5mm and 2cm tumors. This resulted in the elevated values for the D90 and 

V200 parameters in Table 4.2, in comparison to the lower D90 and V200 values in 

Tables 4.1 and 4.3.

Table 4.4 shows the DVH values of all five plans for the target region of the prostate 

phantom, and Table 4.5 shows the DVH values of all five plans for the urethra region. 

Both tables follow the same convention to the lung tumor tables, where the first row
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Table 4.2: DVH parameters of 1cm diameter tumors
Plan D90 V90 V100 V200

DOPAL 169.lGy 
160.lGy

97.2%
96.7%

95.3%
93.7%

51.7%
59%

RDP 5_5 163.9Gy 
146.lGy

99%
92.8%

94.4%
90.4%

60.4%
71.3%

RDP 5.10 76.1Gy 
133.lGy

68.3%
89.6%

60.1%
88.2%

32.4%
69.8%

RDP 10.5 30.lGy
DNE

27.4%
DNE

26.4%
DNE

10%
DNE

RDP 10_10 30.1Gy
DNE

27%
DNE

25.7%
DNE

10.5%
DNE

Table 4.3: DVH parameters of 2cm diameter tumors
Plan D90 V90 V100 V200

DOPAL 149.9Gy 
140Gy

96.7%
93.3%

92.1%
88.8%

40.5%
54.2%

RDP 5_5 24.6Gy 
185.4Gy

28.1%
98.8%

26.6%
98%

12.3%
70.5%

RDP 5.10 24.6Gy 
133.9Gy

28.3%
91.2%

27%
87.4%

12.3%
51.4%

RDP 10_5 DNE 
106.3Gy

DNE
78.8%

DNE
71.6%

DNE
27.5%

RDP 10.10 DNE
84.4Gy

DNE
63.8%

DNE
55.8%

DNE
19.1%

under each plan name represents the values for the l si prostate phantom, and the 

second row represents the values for the 2nd phantom. The naming of the dosimetry 

plans in these table also use the same convention as before.

Lee’s results from [47] are also presented in these two tables. Due to the 0.571/ 

source strength used in [47], DOPAL and RDP results in Table 4.4 and 4.5 have also 

used the same source strength. Reference [47] presents the DVH values for certain 

parameters only, thus Not Available (N/A) are used in places in Tables 4.4 and 4.5 

where values for the desired DVH parameters from [47] are unknown.
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Table 4.4: Target DVH parameters of prostate phantoms
Plan D90 D100 V93 V100 V150

DOPAL 150.9Gy 
153.lGy

87.5Gy
99.7Gy

96.7%
96.8%

93.3%
94%

40.8%
42.3%

RDP 5.5 115.8Gy 
129.9Gy

50.8Gy
68Gy

85.9%
88.9%

83.4%
86.6%

57.4%
65.8%

RDP 5.10 115.4Gy
127Gy

42.8Gy
68.5Gy

85.5%
87.8%

82.7%
85.2%

58%
62%

RDP 10.5 23.7Gy
34.2Gy

9.7Gy
20.9Gy

28.8%
22.6%

25.4%
20.2%

9.9%
9.0%

RDP 10_10 13.6Gy
lO.lGy

5.8Gy
5.3Gy

7.2%
6.3%

4.7%
5.7%

3.5%
3.7%

Lee N/A N/A 100% N/A N/A

4.2.4 e x  v i v o  and Phantom IDDO Results

As described in section 4.1.3, only MATLAB figures are used to verify the accuracy of 

the IDDO component, which is due to the fact that IDDO allows seed placement in the 

entire z-space of the target volume, meaning that the seeds are likely to fall in regions 

between slices, which cannot be specified in RDP since the slices in RDP are fixed. In 

any case, it would be sufficient to verify the accuracy of the IDDO component using 

MATLAB figures alone, as long as the coverage displayed by isodoseSD of this thesis 

(refer to section 4.1.3) can be shown to match the figures from RDP. Figure 4.12(a) 

shows the isodose coverage on every slice of a target volume obtained from RDP, 

and Fig. 4.12(b) shows the isodose coverage from isodoseSD of the same slices of the 

same volume using the same seeds. There are only a few small differences at certain 

points, the causes of which are explained in section 5.1. Nonetheless, the differences 

are negligibly small so that the slice-by-slice views from RDP are considered to be 

identical to the slice-by-slice views from MATLAB.

To show a different coverage to the one from dosimetry planning, seeds from pre­

planning are deliberately misplaced or skipped, the resulting coverages due to this are
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Table 4.5: Urethra DVH parameters of prostate phantoms
Plan D90 D100 V90 V100 V120 V150

DOPAL 142.lGy 
148Gy

117.1Gy 
122.8Gy

97.1%
99.5%

86.4%
95.7%

18.6%
28.4%

0.3%
3.7%

RDP 5_5 98.3Gy 
144.2Gy

60.6Gy
92.3Gy

75.9%
95.7%

71.7%
90.1%

62.2%
74.7%

42.8%
55.9%

RDP 5.10 85.5Gy 
122.lGy

49.6Gy
75.8Gy

81.1%
87.2%

77.1%
80.6%

68%
64.6%

44.4%
33.9%

RDP 10.5 20.2Gy
35.9Gy

11.9Gy
29.4Gy

20.8%
5.3%

10.6%
2.5%

1.3%
0.5%

0%
0.1%

RDP 10.10 11.3Gy
5.9Gy

7.1Gy
3.8Gy

0.5%
0.2%

0.1%
0.1%

0%
0%

0%
0%

Lee N/A N/A N/A N/A > 50% N/A

(a) Slice by slice isodose views of a tumor vol­
ume from RDP

0
- 4 - 2  0 2

Xaxis

(b) Same isodose views as in Fig. 4.12(a) from 
isodoseSD

Figure 4.12: Isodose comparison between RDP and isodose3D

shown in the l si and 2nd columns of Figs. 4.13 and 4.14. These two figures show the 

coverage at 100% of the prescribed dose for the lung tumors in the XT-plane due to
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the pre-plan seeds, manipulated seeds as well as the compensated seeds from IDDO, 

in columns 1, 2 and 3 of each figure respectively. Each row in these figures represents 

the same slice.

Figures 4.17 and 4.18 provide a comparison between the original coverage (first 

row in each figure), coverage due to seed manipulations (second row in each figure), 

and the coverage after compensating for the manipulation by running IDDO (third 

row in each figure), for the two prostate phantoms. The compensated results in Fig. 

4.17(e) and (f) are obtained by running IDDO with the aid of a tolerance value, which 

was specified as toLval= 5; on the otherhand, the coverage due to seed compensation 

in Fig. 4.18(e) and (f) are obtained without toLval, which means that and Lj, 

values of the target volume were specified manually.



Y 
ax

is 
Y 

ax
is

 
Y 

ax
is 

Y 
ax

is 
Y 

ax
is

91

- 4 - 2  0 2
X axis

6

- 4 - 2  0 2
X axis

X axis

- 4 - 2  0 2
X axis X axis X axis

Figure 4.13: Before and after seed compensation for tumor 1 in AT-plane
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X axis

X axis X axis

-2 0 2 
X axis

X axis X axis

X axis

Figure 4.14: Before and after seed compensation for tumor 2 in XF-plane
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Figure 4.15: Before and after seed compensation for tumor 1 in X Z  and yZ-planes
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Figure 4.16: Before and after seed compensation for tumor 2 in X Z  and Y Z-planes



(a) Original coverage in X Z -plane for (b) Original coverage in YZ -plane for
phantom No. 1 phantom No. 1

■5
N
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Yaxis

(c) Coverage in X Z -plane due to seed (d) Coverage in YZ -plane due to seed 
manipulations for phantom No. 1 manipulations for phantom No. 1

(e) Coverage in X Z -plane after seed (f) Coverage in YZ -plane after seed 
compensation with IDDO for phantom compensation with IDDO for phantom 
No. 1 No. 1

Figure 4.17: IDDO results for prostate phantom No. 1
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(a) Original coverage in XZ-plane for (b) Original coverage in FZ-plane for 
phantom No. 2 phantom No. 2

(c) Coverage in XZ-plane due to seed 
manipulations for phantom No. 2
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(e) Coverage in XZ-plane after seed 
compensation with IDDO for phantom 
No. 2

(d) Coverage in Y Z-plane due to seed 
manipulations for phantom No. 2

(f) Coverage in FZ-plane after seed 
compensation with IDDO for phantom 
No. 2

Figure 4.18: IDDO results for prostate phantom No. 2
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4.3 D iscussion

4.3.1 Discussion on Simulation Results for Simple Shapes

These simple 2D and 3D shapes are only graphed by DOPAL in MATLAB, nothing 

was done in RDP because these shapes are only used to test the basic functionality 

of the algorithm. As a result there are no DVH parameters available. Even so, it 

can be easily seen in Figs. 4.10 and 4.11 that all the shapes have been properly 

dosed, since all the 100% radiation coverages appear to cover the entire surface of the 

planes (Fig. 4.10) or the entire volume (Fig. 4.11). However, realistic tumors will 

never assume such perfect shapes, therefore these results are not sufficient to indicate 

whether DOPAL is clinically applicable; it is merely indicating that the algorithm is 

functional.

It is worth noting here that the spacing between the slices (dJi) plays an important 

role in the overall coverage produced by DOPAL and IDDO. The selected value 

for dJi was 2 MATLAB units for the images in Fig. 4.11. It has been verified 

through experimentation that the algorithms work best with a d-h value of less than 

4 MATLAB units, anything larger will force DOPAL and IDDO to deliver dose to 

the specified contour slices only, leaving the space between these slices un-dosed. The 

effect of this is illustrated in Fig. 4.19 using the same volume as in Fig. 4.11(b). The 

only difference here is that d_/i has been increased to 10 units. The images in Fig. 

4.19 clearly indicate that the large spacing in between the slices is not dosed properly, 

even though each individual slice has received adequate coverage.

This is not unexpected since the optimization schemes in DOPAL and IDDO 

have no knowledge of the large spaces in between the slices, for their only concern 

is to deliver the desired dose to the points provided to them. This implies that 

to completely dose one entire volume that is composed of well separated slices, the
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Figure 4.19: Coverage due to large spacing between slices

contours of the slices have to be traced out at no more than 4 MATLAB units, which 

converts approximately to less than 15mm  between slices. This does not affect the 

experiments, since the spacing between slices in DOPAL can be specified as low as 

1mm, as was mentioned in section 4.1.2.

4.3.2 Discussion on DOPAL for Lung Tumors

In Table 4.1, the majority of RDP’s optimization schemes were not able to produce 

a dosimetry plan, indicated by DNE (Dose Not Exist), while DOPAL was able to 

produce satisfactory plans for both tumors. Comparing the only result from RDP
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(RDP5.5) on the second 5mm  tumor against the DOPAL result on the second tumor, 

the first three parameters from RDP are all lower than the corresponding DOPAL 

result. The only value that is higher than the value of DOPAL belongs to P200, but 

this in fact is desirable to be kept low. Therefore it is clear that DOPAL performs 

better than RDP when working with tumors with a 5mm diameter.

In Table 4.2, four dosimetry plans were created by RDP’s optimization schemes for 

tumor 1, but only two plans were created for tumor 2. With regard to the l si tumor, 

again the only comparable result from RDP to the plan by DOPAL is RDP5.5. Even 

though both these plans have values for £>90 at more than 160Gy, this is acceptable 

because if the entire volume is to receive 144Gy (£>100 =  144Gy), the dose to 90% 

of the volume should be higher than 144Gy. Comparing DOPAL and R£>P5_5, the 

plan from DOPAL has a higher P100 value and a lower P200 value than RD P5_5, 

implying that the DOPAL plan is actually more preferable. As is described in [50], 

1/100 is less likely to be affected by seed displacements, so it is better to have a higher 

value in order to achieve a better coverage. For the 2nd tumor, the DOPAL plan 

produced better values than both RDP5-5 and RDP5A0 in terms of P90, P100 and 

P200. A higher percentage volume receiving 90% and 100% of the prescribed dose 

is always desirable as this implies a more complete coverage, while there should be 

a lower percentage volume receiving 200% of the prescribed dose to limit radiation 

to the OAR. DOPAL managed to achieve higher values than the plans from RDP 

for both P90 and P100, while a lower value was achieved for P200. The plan from 

DOPAL has a higher £>90 value than the plans from RDP, but this is still acceptable 

since the overall radiation is actually ‘harming’ less tissue than RD P5_5 or RDP5A0 

as shown by the P200 values. The remaining results from RDP were not comparable 

to DOPAL’s results and therefore they will not be discussed here.

Regarding the results of the first 2cm tumor that are displayed in Table 4.3, not
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only is RDP capable of producing just 2 valid results, but these results have extremely 

low values for the 1/100 parameter, no more than 27%. Comparing this, as well as 

the values of all other parameters to the values shown under DOPAL, even though 

the V200 value from RDP5.5 is as low as 12.3%, but the inferior D90, 1/90 and 

1/100 values mean that the prescribed dose is unlikely to be delivered to the tumor. 

Therefore, this implies that the pre-plan from DOPAL is better even if the value for 

1/200 is higher. As for the second tumor, the plan from DOPAL is very similar to the 

one produced by RDP5.10. Although RDP5.5 has a considerably better 1/100 value 

than DOPAL , the 1/200 value from this plan is far too high, thereby more likely to 

cause damage to the OAR than the one from DOPAL. The 1/200 value of the latter 

is about 25% lower. Like in the case of the 1cm tumors, RDPlO'Jb and RDP10A0 

are all too poor compared to DOPAL and are omitted for discussion purposes.

Overall, the proposed pre-planning algorithm - DOPAL, has outperformed most 

of RDP’s optimization schemes, for a range of different sized lung tumors. Not only 

are most of the dosimetry plans from DOPAL more capable at delivering the desired 

dose, but they are also less likely to harm other anatomical structures than the 

corresponding plans from RDP.

4.3.3 Discussion on IDDO for Lung Tumors

Since isodoseSD from MATLAB has been proven to provide identical coverage to the 

isodose graphs from RDP (Fig. 4.12), the IDDO algorithm can be verified by visually 

comparing the AT-plane coverage before and after updating the dosimetry plan with 

IDDO’s output. The figures in the 2nd column of Fig. 4.13 show the slice-by-slice 

radiation coverage at 100% prescription dose due to manipulated seeds on the 1cm 

tumor, where the 1st figure in that column corresponds to the l si slice and the last
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figure is for the last slice. In this column of figures, slices 3 and 4 show the most 

significant effect due to seed manipulations, where greater underdosed regions can 

be observed closer to the boundary of the tumor. This is evident when compared 

to the same images from the l si column, which are the 100% radiation coverages 

from pre-planning. The seeds on these figures also appear to be clustered, but only 

because the seeds on these slices are viewed all at once in the X Y -plane, when in fact 

every individual slice contains far fewer seeds. The 3rd column in Fig. 4.13 shows the 

slices after seed compensation with IDDO. Slices 3 and 4 in this column show that 

the cold spots from the same images from the 2nd column are no longer present, due 

to the newly deposited seeds as a result of IDDO. The new IDDO seeds are visible 

upon closer inspection, since the seeds on each slice in the 3rd column in Fig. 4.13 

are different from the seeds seen in the previous two columns. The overall coverage 

shown in the last column is very similar, if not identical, to the original coverage in 

the first column, which indicates that IDDO is working well for the 1cm tumor.

As for the 2cm tumor in Fig. 4.14, the most visible effects due to seed manip­

ulations (column 2) are found on slices 4, 5 and 6. Similar to the 1cm tumor case 

before, the 100% prescription dose coverages of slices 4, 5 and 6 in Fig. 4.14 due 

to seed compensation by IDDO (column 3) show very well compensated coverages 

since the cold spots that are visible in the manipulated coverage can no longer be 

seen. Intuitively, for IDDO coverage to be similar to the original coverage, the seed 

configuration from IDDO should also be similar to the original seed configuration. 

This is evident when taking a closer look at the seeds present between the original 

and IDDO configurations, even though the IDDO seeds are a little different from the 

original seeds, they look very similar indeed.

Column 1 in Fig. 4.15 (1cm tumor) and Fig. 4.16 (2cm tumor) show the pre­

planned 100% coverage in the X Z , and Y Z  planes, while column 2 shows the coverage
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due to misplaced seeds and column 3 shows the coverage after seed compensation. 

These figures indicate that the results for X Z  and Y Z  planes are consistent with 

those for XT-plane.

4.3.4 Discussion on DOPAL for Prostate Phantoms

With regard to prostate brachytherapy, both [59] and [6] have suggested adequate 

values in obtaining a robust and optimal dosimetry plan. In [59], the suggested value 

for 1/100 in the target region (i.e. the prostate and not the urethra) is > 80%, and 

the suggested value for £>90 is between 140 to 160Gy. This matches the value given 

in [6], in which the recommended value for £>90 is given as 160Gy. [6] also suggested 

that an optimal plan for prostate brachytherapy should result in a value of 40% for 

1/150, also for the target region.

Intuitively, the most optimal plan is one that has a V I00 value of 100% with 

1/200 of 0%. Obviously this can only be a ‘goal’, since it is not realistic for prostate 

brahchytherapy due to the presence of the urethra, bladder and rectum. The urethra 

runs through the center of the prostate, and it would receive more dose than the 

desired 100% prescription dose if the whole prostate itself has actually been delivered 

144Gy of dose. Therefore the upper dose limit imposed on the urethra in [47] is 

actually 150%, which resulted in the urethra from half of the test cases receiving 

more than 120% of the prescribed dose. Although this value is higher than 100%, it 

is to ensure that the prostate can still receive adequate dosage. Even so, the work 

in [47] suggested that the dose to the rectum cannot exceed the upper limit of 78%. 

The violation of this limit is strongly correlated with a high dose on the prostate 

[47, 61]. It is necessary to mention here that the work in [47] has used an initial 

source strength of 0.5717, which is slightly lower than the 1U source activity used
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for the evaluation of the ex vivo lung tumors. To be consistent with the work from 

[47], the same source strength of 0.57U is used for evaluating the DOPAL results for 

the prostate phantoms. For simplicity, the RDP and DOPAL results regarding the 

prostate phantom in Table 4.4 and 4.5 are also obtained using a source strength of 

0.57 U.

To examine the robustness of the proposed algorithm on prostate phantoms, there 

are two regions that must be examined, namely, the target region (the prostate) where 

the full prescription dose should be delivered to the entire volume; and the forbidden 

region (the urethra) where ideally no dose should be delivered to any part of the 

region at all. First, from the urethra DVH values in Table 4.5, it can be seen that 

the V150 value for both RDP5-5 and RDP5A0 are well above 30% for tumors 

1 and 2. Although for each tumor RDP5.5 and RDP5A0 produced lower values 

than the corresponding DOPAL result with regards to £>90, £>100, V90 and V'lOO, 

the 1/120 result of DOPAL is significantly lower than both RDP5-5 and RDP5A0 

which is desirbed to be kept low to prevent harming the surrounding OAR. Since it 

is not possible to prevent the urethra from receiving a substantial amount of dose, 

it is important that the maximum dose delivered to the urethra should be kept to a 

minimum, which is described by the 1/120 value. It is safe to say that based on the 

1/120 and 1/150 urethra values, DOPAL has performed better than both RDP5.5 

and RDP5A0] the remaining two plans from RDP - RDP10-5 and RDP10A0 seem 

to have outperformed DOPAL with regards to the dosimetric values of the urethra. 

However, the DVH parameters for the prostate must also be analyzed to determine 

the effectiveness of RDP10.5 and RDP10A0 versus DOPAL.

In addition, the average urethral dose has been given as 156% as a result of the 

intra-operative 3D algorithm (I-3D) by [60], this translates to more than 224Gy of 

dose for £>100 for the urethra. This is not at all desirable and is not comparable to



103

DOPAL’s £>100, which has been kept below the prescribed dose. Also, [40] presents 

the data from their research, which shows an average £>30 for the urethra from 6 

patients as 180.72Gy. In comparison, the average dose delivered to 30% of the urethral 

volume by DOPAL is 167.7Gy. Since the urethra is the subject of interest here, it is 

desirable to have a low value for £>30. As such, DOPAL also performs better than 

the method proposed in [40].

In Table 4.4, RDP10-5 and RDP10.10 also show very low values for all the DVH 

parameters. Even though the low values for 1/150 is desirable, but it can be seen from 

all the other values that there is hardly any dose delivered to the target volume by 

these two plans. The maximum volume receiving the full amount of the prescribed 

dose is from RDP  10.5, which is just over 25%. This is not a fa ll comparable to 

DOPAL’s 1/100 at 93.3%. Therfore, RDP10-5 and RDP10A0 are not performing as 

well as DOPAL is in delivering a good dose to the tumor volume. Furthermore, all 

parameters under DOPAL show better values than all the other two plans from RDP 

(RDP5-5 and RDP5-10). For £>100 and 1/100, which are parameters that should 

have a high value, the values from DOPAL are much higher than those from RDP, 

while 1/150, which should be as low as possible, the value under DOPAL is at least 

17% lower than its corresponding value from RDP. It can be concluded then that for 

the prostate phantom, DOPAL has performed much better than RDP.

The 1/100 and 1/150 values from [60] were given respectively as 96% and 71%. 

This high VO 00 result has been obtained at the expense of increasing dosage to the 

entire volume. Evidence of this is the high 1/150 value, as well as the high urethral 

dose at 156% as mentioned previously. In this respect, DOPAL is arguably better 

than the I-3D algorithm proposed by [60], since DOPAL delivered a relatively high 

dose to the prostate, while delivered relatively little dose to the urethra. Also, the 

average 1/150 value for the prostate given by [40] is 70.3%, and the average 1/100
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value given is 96%. It can be seen that in terms of the F I00 parameter alone the 

algorithm from [40] performs better than DOPAL. However, considering the fact that 

the average F100 value from DOPAL for the prostate is 93.7% (which is very close 

to 96%), and that the average F150 value from DOPAL is 41.5%, and the fact that 

DOPAL harms the urethra less than the algorithm from [40], in an overall sense the 

DOPAL algorithm may be better than the proposed algorithm in [40].

Elsewhere, reference [62] reported that an average of 86.34% was achieved for 

F100 of the prostate among data from five treatment centers, which is somewhat 

inferior to the results produced by DOPAL. Also, F100 presented by [63] for the 

prostate is 95%, while £>100 is 190Gy for the urethra. The F100 for the prostate 

from this work is slightly higher than the result from DOPAL, however the urethral 

£>100 result from DOPAL («  120Gy) is significantly lower and thus better than the 

one from [63].

The results for Lee et a/.’s work on prostate dosimetry planning are given in [47], 

in which it is stated that 93% of the prescribed dose was delivered to the gland, 

which can be intepreted as F93 =  100%, as shown in Table 4.4. Reference [47] also 

stated that 50% (total of 15 patients) of the urethra received more than 120% of the 

prescribed dose on average, with the range of the dose delivered to the urethra being 

100% to 150%. This can be intepreted as F I 20 > 50% for the urethra, which is shown 

in Table 4.5. Since these are the only values that are explicitly provided by [47], it is 

not possible to perform a complete comparison between DOPAL and Lee’s work. For 

the available values that are shown in Table 4.4, the results from Lee’s work appear 

to have a slight advantage over DOPAL, their F93 value is less than 5% better than 

the F93 value of DOPAL. On the other hand, no information is given regarding how 

Lee’s algorithm performed in terms of £>90 and F100, but it can be seen that the £>90 

results from DOPAL are within the suggested 140Gy to 160Gy range, while the F100
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results are well above the suggested adequate 80% mark. In terms of the prostate 

alone, even though DOPAL did not perform as well as Lee’s algorithm did for P93, 

they are still good dosimetry plans overall.

The urethra comparison against Lee’s work has to rely on the P I 20 results only. 

In [47], more than 50% of the urethra volume received 120% of the prescribed dose, 

whereas the values under DOPAL are at least 30% lower as shown in Table 4.5. The 

one concern for the results in this table is that the results from Lee’s work were based 

on 15 patients, while DOPAL’s results were from two prostate phantoms. It might 

be a possibility that values for P120 will increase as more data is collected; however, 

the consistency shown by the values from the prostate DVH parameters, as well as 

the P120 and P150 values for the urethra is a sign that similar results to those shown 

in Table 4.5 would be produced even when DOPAL is tested on a number of test 

subjects.

It was also mentioned in [6] that an optimal use of the brachytherapy sources 

should result in a value of 40% for P I50 and 160Gy for D90, for the prostate. The 

DOPAL results shown in Table 4.4 show that the D90 values for the two phantoms 

are at 150.9Gy and 153. iGy, while the P150 values are at 40.8% and 42.3%. These 

DOPAL values are very close to the values suggested in [6].

Overall, it can be concluded that DOPAL is comparable to Lee’s MIP based 

dosimetry planning algorithm, if not better. The urethra is clearly receiving much 

less dose with the dosimetry plan from DOPAL, even though 93% of the prescribed 

dose isn’t delivered to as much of the target volume as Lee’s algorithm did.
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4.3.5 Discussion on IDDO for Prostate Phantoms

The IDDO results for the l si prostate phantom is shown in Fig. 4.17, which shows 

the pre-planned 100% prescription coverage in the first row, 100% coverage due to 

seed manipulations in the second row, and 100% coverage after seed compensation 

with IDDO in the third row. As mentioned in section 4.2.4, the IDDO compensation 

results in this figure (4.18(e), (f)) are obtained by using a toLval= ±5%, which means 

that the new upper limit is now 5% more than the upper limit of the pre-planning 

seeds, while the new lower limit is 5% lower than the lower limit of the pre-planning 

seeds. As shown in Fig. 4.18(c) and Fig. 4.18(d), only seeds in the bottom half 

of the prostate have been kept in their original positions. Upon closer inspection, 

the seeds (which are hexagons in the figures) after running IDDO compensation are 

different from those from pre-planning, even though the compensated coverages are 

almost identical to the original coverage, even at places where a slight overdose is 

visible. This further confirms that IDDO is working well, since a toLval= 5% has 

been specified prior to running the algorithm, the desired outcome of which is a 

compensated coverage of no more and no less than 5% of the original coverage.

For the 2nd phantom (Fig. 4.18), the seeds have been manipulated differently from 

those in the 1st phantom, where the seeds have been kept on various slices throughout 

the volume and not just on the bottom half. Furthermore, and values on the 

target and forbidden regions have been specified manually in IDDO to obtain the 

compensated coverages shown in Fig. 4.18(e) and (f), meaning that a toLval was 

not in place. These has been done purposefully to show that the IDDO algorithm is 

working for another scenario than the in the l si phantom. Although the compensated 

coverages at 100% prescribed dose in Fig. 4.18 still closely resemble the original 100% 

coverages, the overdosed regions on the top and bottom slices seen in Fig. 4.18(a)
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and (b) are no longer visible in Fig. 4.18(e) and (f). This can be easily explained 

since a toLval was not used for this phantom, such that the seed compensation of 

IDDO no longer focuses on delivering the same dose to the entire volume as the dose 

from pre-plan, rather its concern now is to deliver the dose according to the new 

Ub and Lf, specified by the user. Evidently, IDDO is working fine with or without 

toLvai, however one can argue that it might be better to include toLval in IDDO. 

Simply because in Fig. 4.17(a) and (a) the pre-planning seeds already provided a 

good coverage.

In Fig. 4.18(e), the bottom slice is covered but not the space below it. This space 

refers to the completeness of the prostate volume, and even though the space below 

the bottom slice in Fig. 4.18(a) dose not seem to be properly covered either, at least 

the two ends of the coverage are more prostate-like than those displayed in Fig. 4.18(e) 

and (f). Nonetheless, the IDDO algorithm itself is proven to be fully functional and 

produces the desired coverage to the tumor volume given to it. Supplying the IDDO 

algorithm with a more complete description of the tumor volume would most likely 

resolve the issue mentioned above regarding the un-dosed space below the bottom 

slice.
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C hapter 5

C onclusion and Future Work

In this chapter, the sources of error that affected the accuracy of the results of this 

research are first discussed. Then in section 5.2, the various areas that require further 

work are discussed. Concluding remarks are given in section 5.3.

5.1 Sources of Error

One source of error in this work comes from the slight discrepancies observed when 

comparing Fig. 4.12(a) and (b). These are due to differences in the dose calculation 

formulas employed by RDP and DOPAL. In the implementation of DOPAL, an inverse 

squared method has been used to calculate the dose delivered to various points. In 

particular, the dose calculation in DOPAL is based on the point source approximation 

suggested by [5], which has also been used by Lee et al. [18] in their research. It is not 

clear what is the exact formula used by RDP as it is a commercial and proprietary 

package. This uncertainty is the likely cause of the offset observed in Fig. 4.12. 

Reference [5] discusses the possible cause of this offset, which is likely due to the 

values of the parameters involved in Eq. (2.5). It was noted in [5] that although it 

is sufficient to approximate the dose using the point source formula, it might lead to 

errors in the range of 3% to 9%.

Another source of error is with regard to the values presented in Tables 4.4 and 

4.5 for the prostate and urethra pre-planning results, because the DVH values of the
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DOPAL plans from these tables have been obtained using different methods from 

Lee’s plans. RDP was used to obtain the DVH values for the DOPAL plans, which 

are then compared against Lee’s DVH values, even though there is no indication 

as to how the DVH values in Lee’s work in [47] have been obtained. On the other 

hand, it is justified to use RDP to obtain the DVH values for the plans generated by 

both RDP and DOPAL in Tables 4.1 to 4.5, because the DVH values from DOPAL 

are compared against those from RDP. Other than the fact that obtaining the DVH 

values from a commercial software such as RDP provided a certain degree of validity, 

it would have been better to have known the seed locations from [47] instead of the 

DVH values, so that the seeds from both DOPAL and [47] can be plotted in RDP and 

their corresponding DVH values can be obtained using the same program to minimize 

any discrepancies.

This led to another error for the results in these tables, which is the lack of 

knowledge of the prostate volume used by Lee in [47]. The results from [47] have been 

obtained from a wide range of test subjects, the prostate volume in these studies are 

likely to be of various shapes and sizes. As was shown by the DOPAL results for the 

two prostate phantoms in this thesis, the DVH parameters for each prostate phantom 

are different. So, without knowing the exact volume and shape of the test subjects 

used by [47], the results displayed in Tables 4.4 and 4.5 may not provide an objective 

comparison.

5.2 Future Work

One area of improvment that can be done in the future is to test the DOPAL and 

IDDO algorithms in the ex vivo environment for the lung, kidney and other organs in 

the presence of forbidden regions that have a more complex shape than the urethra.
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The algorithms should work very well regardlessly of the shapes of the forbidden 

regions, but tests are still planned to get a qualitative and quantitative feedback.

As was mentioned in section 4.3.4, the results in [47] from Lee’s dosimetry planning 

algorithm has been tested on prostate data from 15 patients. In contrast, the DOPAL 

algorithm proposed in this thesis has been verified on two sets of prostate data only. 

Despite the reasonable results shown in Table 4.4 and Table 4.5, not enough results 

were available to make a statistical comparison with Lee’s approach. Also, it was not 

possible to draw conclusions about robustness of the algorithm by comparing only 

two sets of DVH values (V93 for the target and V120 for the urethra), which are 

the only values provided by [47]. A robust algorithm is one that can deliver a high 

dose to the target and low dose to the other organs such as the urethra, bladder, 

or rectum. An overall better (more robust) algorithm can only be determined by 

performing dosimetry planning using DOPAL on a number of test subjects, as well as 

comparing DVH values from both algorithms that cover a greater variety of aspects. 

This is planned for future work.

Another concern is related to the induced edema upon needle tissue interaction. 

Edema is the abnormal accumulation of fluid beneath the skin, which may occur when 

brachytherapy needles penetrate the skin to deposit seeds. This edema might even 

cause the tumor size to change during seed implantation, thus reducing the degree 

of accuracy of the dosimetry plan. If IDDO does not account for edema either, its 

accuracy would be reduced as well. So the correct modeling of induced edema can 

further improve the overall accuracy in brachytherapy.

Also, both DOPAL and IDDO currently work with only one type of seed -  125I, or 

103Pd, but not both. It might be beneficial to expand the algorithms to use multiple 

sources in the future, which could involve the expansion of the dose calculation module 

to take into consideration the irradiation and interaction of two or more types of seeds.
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From an optimization point-of-view, even though good results were obtained for 

dosimetry planning and seed compensation, the solutions to DOPAL and IDDO are 

not globally-optimal. For example, the location of the initial seed tempseed affects 

the outcome of the final seed configuration. In Fig. 4.10 for the 2D results, the 

COM value was used as the initial tempseed location. However, if a very different 

location was used as the initial temp.seed value, e.g., one on the boundary of the 

contour slice, then the final seed configuration would be different to those shown in 

Fig. 4.10. Therefore, although DOPAL’s DVH values and IDDO’s radiation coverage 

all showed good results with sub-optimal results, this is a potential drawback for these 

algorithms.

MIP might provide a global solution to these optimization problems, however the 

discretized solution space might also reduce the accuracy that DOPAL and IDDO 

currently possess. On the other hand, as was mentioned in [18], the solution to the 

dosimetry planning problem might never satisfy all constraints. In other words, the 

global solution may not exist for such a problem. And even if a global solution can 

be found, it might take too long to arrive at that solution. It is worth noting here 

again that one focus of the DOPAL algorithm is to address the problems that resulted 

from time delay between pre-operative image-based planning and the implantation 

stage. So as long as the currently sub-optimal solutions from the algorithms can be 

proven to be clinically acceptable, it is still more advantageous over a time-consuming 

globally optimal solution. Nevertheless, future work is planned in upgrading the 

current algorithm implementation if a method can be found that provides an optimal 

trade-off between the size of the solution space and the speed to arrive at a solution.

Finally, precise contouring of the implanted tumors using US images was some­

times difficult, as was the case with ex vivo lung tumors, where the vessels and air 

ducts made contouring of the tumor difficult even if the lung had already been col-
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lapsed. However, the US images have only been used to compare pre-planning results 

from DOPAL with the results from RDP, so there are options of employing other high 

quality imaging modalities in the future for contouring, such as x-ray. Furthermore, 

experimental in vivo testing on animal models is planned for the near future.

5.3 C oncluding Rem arks

In summary, this thesis presented the development of a dosimetry pre-planning algo­

rithm (DOPAL) and an intra-operative dynamic dose optimization algorithm (IDDO), 

which can be used in a robot-assisted brachytherapy procedure for the prostate, lung 

and other organs. In the proposed algorithms, there are no pre-defined shapes for 

which they can work with. Thus although the focus of this thesis has been on the lung 

and the prostate, the algorithms have actually been designed to work with a range of 

cancer tumors. Even though commercial software can also be used in a robot-assisted 

brachytherapy procedure, the results in section 4.2.3 and 4.2.4 clearly show that they 

cannot provide the accuracy comparable with those from DOPAL and IDDO.

The main achievement of DOPAL is on-line real-time dosimetry planning. In doing 

so, two potential sources of error linked with the current brachytherapy method are 

addressed. The first error is related to the reduced accuracy of the dosimetry plan 

from the time of its creation to the time of its use. In the current brachytherapy 

procedure, especially with regard to the prostate, there is a long waiting time (usually 

several weeks) between the pre-plan and the seed implantation. The tumor’s size is 

likely to have been enlarged by the time seed implantation takes place, making the 

pre-plan not as accurate anymore. DOPAL is able to perform dosimetry planning 

right before seed implantation, so the pre-plan produced by DOPAL is based on the
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shape of the tumor at seed implantation, thereby making the pre-plan as accurate as 

it can possibly be.

The second issue is also related to the accuracy of the pre-plan, this time due 

to errors in the images used for pre-planning and seed implantation. In the current 

procedure, dosimetry planning is performed based on images acquired during pre­

operative imaging with the patient in lithotomy position. When seed implantation 

takes place (based on the dosimetry plan created), the patient is again placed in 

lithotomy position but most likely not in the exact same way. Due to this difference 

in how the patient has been placed between the pre-operative imaging stage and the 

seed implantation stage, the images for the dosimetry plan are going to be different 

from those for seed implantation. Thus, the intended locations from the dosimetry 

plan could be inaccurate. DOPAL is able to perform dosimetry planning in real-time, 

meaning that the exact same images that are used for dosimetry planning are also 

used for seed implantation. Therefore, making the pre-plan more accurate than the 

current method.

In addition, the upper and lower limits of the dose delivered to the target volume 

can be adjusted as required. So in the event that a different dose needs to be admin­

istered to a particular organ, the desired dose can be separately specified for each of 

the organs present, such as the case for the prostate tumor, where the imposed f/& 

and Ljj on the urethra and prostate were given different values from each other to 

obtain a high dose to the prostate but a low dose to the urethra. In reference [47], 

a similar approach is also described. In contrast, commercial software such as RDP 

does not offer this flexibility, which might have lead to the poor dosimetry results in 

Tables 4.4 and 4.5. In these tables, the urethral dose from RDP are as high as the 

prostate dose, when in fact the dose to the urethra should have been much lower.

The main achievement of IDDO lies with the real-time compensation for seed
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misplacements. As mentioned earlier in this thesis, seed misplacements may occur 

due to inaccurate seed deposition by the physician or robot. If the remaining seeds 

are still deposited according to their original plan, the overall coverage of the tumor 

is going to be different from the intended coverage as a result of these misplacements. 

IDDO is able to compensate for any seed deviations from their intended locations by 

generating new locations for the remaining seeds, such that the overall coverage at 

the end of the procedure is as close to the intended coverage as possible.

Similar to RDP, both DOPAL and IDDO also provide the option to exchange the 

type of seeds to be implanted, for instance between 125I or 103Pd, or even amongst 

different types of 125I. Each type of seed has different radiation properties, and thus 

the values involved in dose calculation are also different. These values for the chosen 

seed type for this thesis, type 6711 of 125I, have all been stored in an individual file 

which can be called-upon when performing dose calculation. These values are given 

in Appendix B for reference. There are no limits on the number of seed types that 

DOPAL and IDDO can work with, accurate results can be obtained as long as there 

is a file that contains the values of the corresponding radiation parameters.

The algorithms can be used as stand-alone components or they can be used 

together. Either use of the algorithms must be accompanied by a robot-assisted 

brachytherapy set-up, one such set-up is the AESOP which was described in sec­

tion 4.1.1.2. The aim of either use is to minimize the errors present in the current 

brachytherapy procedures and to improve the overall radiation coverage results. The 

algorithms have been tested experimentally using artificial tumors of different sizes 

embedded in ex vivo porcine lung tissue and prostate phantoms. The outcome of the 

tests have shown superior performance in comparison with a commercially available 

software.
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A ppendix  A

Tumor C lassification

A .l  P rostate  Specific A ntigen

Prostate Specific Antigen (PSA), is a protein (glycoprotein of the kallikrein family - 

kallikrein 3) produced by the cells of the Prostate Gland. The size of the prostate 

gland is similar to that of a pea at birth, and it continues to grow as the man ages. By 

the time the child has reached puberty the size of the prostate is doubled. The size 

of the prostate of an adult is comparable to that of a walnut. The prostate specific 

antigen is found in small quantities in the serum of normal men, whereas in men with 

prostate cancer or other prostate disorders, the quantities of PSA are usually elevated. 

Table A.l shows the normal PSA values for men of different races from different age 

groups [64]. PSA is useful in the early detection, staging and follow-up of patients 

who have prostate cancer [65]. A PSA level of 4ng/ml or under are considered normal 

while level over 4ng/ml are considered abnormal.

Table A.l: PSA values for different ages groups and races
Age Caucasian Blacks Asian

40~49 2.5 2 2
50~59 3.5 4 3
60~69 4.5 4.5 4
70~79 6.5 5.5 5
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The possible cause of prostate cancer is unknown, but it is thought to be mostly 

related to unhealthy diet, age, genetics, heredity, etc. Measuring PSA level in blood, 

known as a PSA test, is the most effective way right now to determine prostate can­

cer. A rise in PSA levels over time indicate prostate cancer or benign (not cancerous) 

conditions. The most common form of benign condition is Benign Prostatic Hyper­

plasia, which is the englargement of the prostate gland; or Prostatitis, which is the 

inflammation or infection of the prostate gland [66]. Therefore, a single level of PSA 

is an unreliable measure of the extent of the disease in this context.

Scientists at Michigan Medical School discovered a possible cause for prostate 

cancer, their findings show that in prostate cancer cases, specific genes merge due 

to a recurring pattern of scrambled chromosomes. The outcome of this research is 

aimed at developing more accurate diagnosis of the disease, as well as improving its 

treatment [67].

Recently, the BBC has reported that men with longer index fingers than their ring 

fingers are less likely to develop prostate cancer. However, the lead of this research, 

Dr. Helen Rippon also states that men with shorter index fingers does not imply that 

they will definitely develop prostate cancer [68].

A .2 G leason Score

The Gleason score, or the Gleason grading system is the sum of two numbers that 

classifies the grade or the stage of the prostate cancer. The first number defines the 

most common tumor pattern and is given a number of 1 to 5, where 1 implies that 

the cancerous prostate closely resembles healthy prostate tissue, and 5 implies that 

the prostate gland is no longer recognizable. The second number defines the second 

most common tumor pattern, and is numbered in the same way as the first number.
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Categories TNM staging
Stage 1A T1 NO MO
Stage IB T2 NO MO
Stage 2A T1 N1 MO

Stage 2B T2 N1 MO 
T3 NO MO

Stage 3A

TI N2 MO 
T2 N2 MO 
T3 N1 MO 
T3 N2 MO

Stage 3B Any T N3 MO 
T4 Any N MO

Stage 4 Any T Any N Ml

Thus the lowest Gleason score is 2, and the highest Gleason score is 10, which is the 

worst prognosis. It is important to point out that a Gleason score of 4 + 3 =  7 is 

more severe than a Gleason score of 3 + 4 = 7.

A Gleason score of 2 — 4 is categorized as Grade 1 (Gl), a Gleason score of 5 — 6 

is categorized as Grade 2 (G2) and a Gleason score of 7 — 10 is categorized as Grade 

3 (G3) [65],

A .3 Lung Cancer Staging

The two most common classifications of lung cancer are Non-Small Cell Lung Carci­

noma (NSCLC), and Small Cell Lung Carcinoma (SCLC), with the latter being less 

common. SCLC is strongly associated with smoking, while lung cancer patients who 

have never smoked before are commonly diagnosed with NSCLC [69]. For NSCLC, 

the severity of the tumor is described by threes letter, T, M and N.

T stands for tumor size and invasiveness, which ranges from T1 to T4. T1 tumors 

are < 3cm; T2 tumors are either > 3cm or extend into the main bronchus; T3 tumors
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extend into the chest, but may be operable; T4 tumors invade the mediastinum (the 

area and organs between the lungs) and cannot be surgically resected. N stands 

for Nodal involvement, which ranges from NO to N3. NO impies that there is no 

regional lymph node metastasis; N1 implies metastasis to ipsilateral peribronchial 

and/or ipsilateral hilar lymph nodes; N2 implies metastasis to ipsilateral mediastinal, 

and/or subcarinal lymph node(s); and N3 is metastasis to contralateral mediastinal, 

contralateral hilar, ipsilateral or contralateral scalene, or spraclavicular lymph node(s) 

[70]. M stands for métastasés, where MO indicates no distant metastasis present while 

Ml means distant metastasis is present.

In [71], NSCLC are further categorized as in Table A.2. It can be seen in this 

table that Stage 4 is the worst diagnosis since the tumor is spreading as indicated by 

Ml, with a one year survival rate of 19% and five year survival rate of 1% [72].

A .4 Clinical Staging for P rostate  Cancer

In prostate cancer, clinical staging is an expression of both tumor volume and extent 

of disease (EOD). Clinical staging for prostate cancer uses the same TNM convention 

as for lung cancer; more specifically, T refers to the size of the primary tumor in 

the prostate (T1 to T4); N refers to the involvement of and cancer spread to the 

lymph nodes, where NO implies there is no regional lymph node metastasis and N1 

implies there is metastasis in the regional lymph node(s); and M (métastasés) refers 

to whether the cancer has spread to other body parts, where MO means there is no 

distant metastasis and Ml means distant metastasis is present [73].

Furthermore, there are four categories that further classify the clinical stage of 

the primary tumor (T) [65, 73], which is given below in Table A.3.
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Table A.3: Clinical staging of primary tumor (T)

T1

T la

T ib

Tic

Clinically inapparent tumor not palpable or 
visible by imaging
Tumor incidental histological finding in 5% or less 
of tissue resected
Tumor incidental histological finding in more than 
5% of tissue resected
Tumor identified by needle biopsy (e.g. because of 
elevated PSA)

T2
T2a
T2b

Tumor confined within the prostate
Tumor involves one of the prostate gland’s two lobes 
Tumor involves both of the prostate gland’s two lobes

T3
T3a
T3b
T3c

Tumor extends through the prostate capsule
Unilateral extracapsular extension 
Bilateral extracapsular extension 
Tumor invades the seminal vesicle(s)

T4 Tumor invades any of bladder neck, external 
sphincter, or rectum

T4a

T4b

Tumor invades any of bladder neck, external sphincter 
or rectum
Tumor invades levator muscles and/or the pelvic wall

Based on the T, N and M values given above, as well as the Gleason score grades, 

there are also four groups that differentiate the severity of prostate cancer, which is 

shown in Table A.4.



127

Table A.4: TNMG stage grouping for prostate cancer
Categories TNM staging

Stage 1 T la  NO MO Gl

Stage 2

T la  NO MO G2/G3 
T lb NO MO Any G 
Tic NO MO Any G 
T l NO MO Any G 
T2 NO MO Any G

Stage 3 T3 NO MO Any G

Stage 4
T4 NO MO Any G 

Any T NI MO Any G 
Any T Any N Ml Any G
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A ppendix B

D ose R ate and D ose

B .l  D ose R ate

The Dose Rate (D(r)) for a point source approximation as given in [5] is as follows:

D(r) = Sk • A • g(r) ■ G(r, 0) ■ $an(r) (B.l)

• Sh is the initial activity of the source in units of U, where 1U is equal to 1 

unit of air kerma strength. The quantity hernia, which is short for kinetic 

energy released per unit mass, refers to the amount of kinetic energy liberated 

by uncharged particles such as photons from charged particles such as electrons 

and positrons. The kerma can be expressed as joules per kilogram (J/kg ), which 

is equivalent to the unit of absorbed dose, gray (Gy). Air kerma strength is a 

measure of the brachytherapy source strength, which is defined as the product 

of air kerma rate at a calibration distance, d, in free space, K(d), and the square 

of the distance, d. K  (d) is measured along the transverse bisector of the source. 

So,

sk = k(d) ■ d2 (B.2)
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Table B.l: Recommended dose rate constant in a water medium
Seed cGy hr 1U 1
lyzfr 1.12
125I Model 6702 0.93
125I Model 6711 0.88
103Pd 0.74

So if kerma, time and distance are specified in units of //Gy, h, and m, respec­

tively, then Sk will have units of //Gy m2h_1 [5]. Then,

1 U =  1 ¡iGy m2 h 1 

= 1 cGy cm'? h~l
(B.3)

The calibration of the source must be done at a distance d large enough so that 

the source can be treated as a mathematical point. Though, it is customary 

to specify the air kerma strength at a reference calibration distance, do, of lm. 

Kerma rate, K, can usually be defined for a specific material at a point inside 

a medium; in this case the medium is air. The unit of kerma rate is Jkg_ 1s_1, 

and is given as the derivative determined from the amount of change in kerma, 

dK, over the time interval, dt, i.e.,

dt

• A is the dose rate constant, the precise definition is given in [5] which basically 

translates to the dose rate at a distance of 1cm in water for a source with air 

kerma strength of 1U. The 1cm used in determining the value of the source 

is specified along the transverse axis of the actual source, as opposed to an 

idealized point source. The dose rate constant is an absolute quantity, which
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accounts for geometric effects, source encapsulation, scattering in water, as well 

as radioactivity and self-filtration within the source. The recommended dose 

rate constant in a water medium is given by [5] in Table B.l.

Three models of the 1251 seed are mentioned in [5], they are the 6711 model, 6702 

model and the 2300 model. However, only the first two models are described 

in detail in [5]. Since sufficient information has been provided by [5] for the 

6711 model of the 125I seed, it is chosen for this thesis. Due to the fact that 

the human body can be considered as a water medium for research purposes, a 

value of 0.88cGf//i_ 1[/- 1  is used for A in Eq. (B.l) [5].

• g(r) is the radial dose function, which accounts for absorption and scattering 

effects in the medium along the transverse axis of the source. The values for 

g(r) at different distances along the transverse axis areis given in Table B.2. As 

is evident from the data in Table B.2, the values of g(r) define the falloff of dose 

rate along the transverse axis due to absorption and scattering in the medium.

• Due to the spatial distribution of activity within the source, the relative dose is 

varied. This variation is accounted for by the geometry factor G(r,0),  which 

can be approximated as for a point source [5]. It ignores the effects due to 

photon absorption and scattering in the source structure.

• ^an{f) is the anisotropy factor. Though as suggested in [5], for the 6711 model of 

the 1251 seed, <Pan(r) can be approximated by a distance-independent constant, 

<Pan, which is called the anisotropy constant and is usually less than 1.00. The 

particular value used in this thesis for the 6711 model of the 125I seed, which is 

given in [5], is 0.93.
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Table B.2: Radial dose function, g(r)
Distance along 

transverse axis(cm)
Radial dose function, g(r)

125I Model 6711 125I Model 6702
0.5 1.04 1.04
1.0 1.00 1.00
1.5 0.926 0.934
2.0 0.832 0.851
2.5 0.731 0.760
3.0 0.632 0.670
3.5 0.541 0.586
4.0 0.463 0.511
4.5 0.397 0.445
5.0 0.344 0.389
5.5 0.300 0.341
6.0 0.264 0.301
6.5 0.233 0.266.,
7.0 0.204 0.235

B .2 D ose

In order to calculate the dose at a particular point, a conversion is required to convert 

D{r) to D(r).

The mean life of a radionuclide is given by

(B-5)

where A is the decay constant of the source radionuclide, and

ln(2)
T \ / 2

(B.6)

and Ti /2 is the half-life of the radionuclide.



132

Equation (8.56) in [7] is equivalent to Eq. (B.7) for a point source approximation,

D(r) =  £)(r)r(l — e” ) (B.7)

_ T
where e r «  0 for LDR in particular, since for permanent implants (LDR), T, the 

irradiation time, is much higher than the mean life of the radionuclide r, so T >  r. 

For a source whose r  is expressed in hours, the corresponding value of the time 

conversion factor ku (expressed in hours) is equal to 1. Therefore, the dose for a 1251 

source with a half-life of 1426 hours, is given by

D(r) =  D(r) ■ t ■ ku
T

= Sk - A g ( r ) - G ( r , e ) - * a n ^ (B.8) 

=  Sk ■ 0.88 • g(r)■ - t  • 0.93 • 1.443 • 1426 • 1
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A ppendix C 

R adiation

C .l R adiation

The most significant effect of ionizing radiation is the damage to cells, mainly through 

damage to the Deoxyribonucleic Acid (DNA). Even subtle damage to the DNA could 

lead to mutations, which would further lead to cancer. When the dose is high enough, 

radiation effectly kills cells [74], Generally speaking, cells under rapid division are 

more sensitive to damage by radiation, such as the gonads in males and the uterine 

area in females, as compared to muscles and nerves that divide slower and are not 

easily damaged. In a way, this could be understood as that the radiosensitivity of a 

cell type is proportional to its rate of division [75].

The two broad categories of radiation-related effects in humans are stochastic 

and nonstochastic [75]. Effects that are generally observable soon after exposure to 

radiation are called nonstochastic effects. Some examples of the damage done by 

ionizing radiation for this category include depression of bone marrow cell division, 

or NVD (nausea, vomiting, diarrhea) that is often observed in victims after radiation 

exposure in the central nervous system. Here, a few examples are given regarding the 

effects due to various amount of doses [74],

• 2 to 3Gy to the skin can result in the reddening of the skin, similar to a mild 

sunburn. May also result in hair loss due to damage to hair follicles.
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Table C.l: Differences between stochastic and nonstochastic radiation effects
Characteristic effects of 
Nonstochastic Effects

Characteristic effects of 
Stochastic Effects

A threshold exists below which 
the effects will not be observed A threshold may not exist

The magnitude of the effect increases 
with dose above this threshold

The probability of the effect 
increases with dose

Effect is clearly associated with 
the radiation exposure

Effect cannot be definitively associated 
with the radiatione exposure

• QGy to the ovaries or testicles can result in permanent sterilization.

• 0.5Gy to the thyroid gland can result in benign tumors, which are noncancerous.

The Gray (Gy) is the SI unit for the absorbed dose, which is defined by [76] as a 

measure of energy deposition in any medium by any type of ionizing radiation. 1 Gy 

is equivalent to 1 joule of energy per kilogram of mass. The mathematical equation 

for absorbed dose is [7],
_  de _  1 de 

dm pdV

where de is the mean energy imparted in a volume of mass dm, and dm =  pdV. 

The traditional unit for absorbed dose is rad, where 1 rad is the equivalent of 1 cGy 

(centigray) and lOOcGy is equal to 1 Gy.

The other category of radiation-related effects, stochastic effects, are effects that 

are probabilistic. Examples of this type of effects include cancer induction and ge­

netics effects that may affect offspring. The three important characteristics that 

distinguish between the two categories are given in Table C.l.

Together with the abosorbed dose described above, there are three other quantities 

that are of interest to radiation measurements, and they are the equivalent dose, 

radioactivity and exposure [74]. The equivalent dose takes into consideration that
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not all types of radiation would have the same effect in biological systems. Thus it 

is necessary to apply a quality factor (Q) which essentially represents the ability of 

the particular type of radiation to cause damage [76]. Mathematically, the equivalent 

dose is expressed as,

equivalent dose =  absorbed dose x Q (C.2)

where the SI unit for equivalent dose is the Sievert (Sv), and the absorbed dose is 

in units of Gy. The value of Q is 1 for x-rays, 7 -rays and electrons, while for alpha 

particles, the value of Q is 20. The sievert is a very large dose of radiation. A more 

useful unit is the millisievert (mSv). The dose received by human beings around the 

globe due to cosmic background radiation is about 3mSv per year. The traditional 

unit for equivalent dose is rem, short for Röntgen Equivalent in Man. 1 rem is equal 

to O.OlSu.

A precise definition for exposure is given in [75], which basically translates to the 

sum of one type of ion produced by radiation, divided by the mass of air. The SI unit 

of exposure is C/kg,  whereas the traditional unit is the Röntgen (R), which is the 

same as 2.58 x 10—4C'/A:̂ .

The radioactivity is defined as the number of nuclear transformations per unit 

time occurring in a given sample of radioactive material. Mathematically, this can be 

defined as,
„ dN 

dt

where dN is the number of decays observed during the time interval dt. The tradi­

tional unit of radioactivity is the Curie (Ci), which is equal to 3.7 x 1010 transfor­

mations per second. The SI unit for radioactivity is the Becquerel (Bq), which is
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Table C.2: Units used in measuring ionizing radiation
Quantity Definition Units

Absorbed dose The amount of energy 
deposited per unit mass

SI unit: gray (Gy) 
1 Gy =  lJ/kg 
Historie unit: rad 
1 rad =  100 erg/g 
100 rad = 1 Gy

Equivalent dose Product of the absorbed dose 
and the quality factor Q

SI unit: sievert(Sv) 
SI unit: Sievert (Sv) 
Historie unit: rem 
rem=rad x Q 
1 Sv =  100 rem

Radioactivity The number of decays over 
a given time

SI unit: Becquerels (Bq) 
Historie unit: Curie (Ci) 
1 Bq =  27 pCi 
1 Ci =  37 billion Bq

Exposure

The Röntgen is defined as the 
generation of 1 electrostatic 
unit of charge per 1 cm3 
of air

SI unit: C/kg
Historie unit: Röntgen (R)

equivalent to a single transformation, so that 1 Ci =  3.7 x 10w Bq. Table C.2 presents 

the quantities mentioned above, along with their SI and traditional units.

In the United States, brachytherapy sources are still sometimes specified according 

to the traditional units. For instance, the nominal value of a 125I source may be 

specified as OAlmCi (range 0.16 to 1 mCi) [9], instead of using the SI units.
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A ppendix  D  

R adioactiv ity  o f 125I

D .l  R adioactivity  o f 125I

Iodine 125, or 125I, is currently the most commonly selected source for low dose rate 

brachytherapy, especially for permanent interstitial implants for prostate cancer [7]. 

It is an isotope of 2̂7I. The 125I radionuclide was discovered in 1946 by Allen Reid 

and Albert Keston, though the clinical use of 125I for interstitial brachytherapy did 

not take place for another 20 years [7]. 125I is usually created from 125Xe, which is 

usually created from 124Xe in a nuclear reactor. The decay chain of 125I is shown 

below in Eq. (D.l),
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T ij2 associated with 525Xe is 16.9h while T^ 2 associated with ^25I is 59.49d.

1251 decays to the first excited state of 125Te through electron capture, a process 

during which 1 electron had been sacrificed. 7% of the de-excitation to the ground 

state of 125Te is via emission of a 35.5keV 7 -ray, which is also known as gamma 

decay. Meanwhile, 93% of the de-excitation is through internal conversion, which 

gives rise to characteristic x-rays. Model 6711 employed by this research emits silver 

characteristic x-rays with energies of 22.1 and 25.5keV. The average photon energy 

for this type of seed is 27AkeV, with an average of 1.4 photons being emitted for 

every disintegration of 125I.
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Since the energy of the emitted photons is very low, minimum effort is required 

regarding shielding thus making the handling of the sources easy and safe. In partic­

ular, the HVL, or Half Value Layer, of lead for 125I is as thin as 0.025mm [6]. HVL is 

defined as the thickness of the material, usually lead, required to reduce the radiation 

of a source to half of its original amount. Therefore, a radioactive source that emits 

high energy photons usually requires a higher HVL value.

Although the main current application field of 125I radionuclide is for low dose 

rate prostate brachytherapy, it has also been used for permanent interstitial implants 

for lung, pancreas and breast cancer; as well as temporary and permanent interstitial 

implants for brain tumors [7].
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