
Western University Western University 

Scholarship@Western Scholarship@Western 

Brain and Mind Institute Researchers' 
Publications Brain and Mind Institute 

1-1-2020 

Comparison of resting-state functional connectivity in marmosets Comparison of resting-state functional connectivity in marmosets 

with tracer-based cellular connectivity with tracer-based cellular connectivity 

Yuki Hori 
Robarts Research Institute 

David J. Schaeffer 
Robarts Research Institute 

Kyle M. Gilbert 
Robarts Research Institute 

Lauren K. Hayrynen 
Robarts Research Institute 

Justine C. Cléry 
Robarts Research Institute 

See next page for additional authors 

Follow this and additional works at: https://ir.lib.uwo.ca/brainpub 

 Part of the Neurosciences Commons, and the Psychology Commons 

Citation of this paper: Citation of this paper: 
Hori, Yuki; Schaeffer, David J.; Gilbert, Kyle M.; Hayrynen, Lauren K.; Cléry, Justine C.; Gati, Joseph S.; 
Menon, Ravi S.; and Everling, Stefan, "Comparison of resting-state functional connectivity in marmosets 
with tracer-based cellular connectivity" (2020). Brain and Mind Institute Researchers' Publications. 440. 
https://ir.lib.uwo.ca/brainpub/440 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/brainpub
https://ir.lib.uwo.ca/brainpub
https://ir.lib.uwo.ca/brain
https://ir.lib.uwo.ca/brainpub?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1010?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/404?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/brainpub/440?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Yuki Hori, David J. Schaeffer, Kyle M. Gilbert, Lauren K. Hayrynen, Justine C. Cléry, Joseph S. Gati, Ravi S. 
Menon, and Stefan Everling 

This article is available at Scholarship@Western: https://ir.lib.uwo.ca/brainpub/440 

https://ir.lib.uwo.ca/brainpub/440


Comparison of resting-state functional connectivity in marmosets with
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A B S T R A C T

Resting-state functional MRI (RS-fMRI) is widely used to assess how strongly different brain areas are connected.
However, this connection obtained by RS-fMRI, which is called functional connectivity (FC), simply refers to the
correlation of blood oxygen level-dependent (BOLD) signals across time it has yet to be quantified how accurately
FC reflects cellular connectivity (CC). In this study, we elucidated this relationship using RS-fMRI and quantitative
tracer data in marmosets. In addition, we also elucidated the effects of distance between two brain regions on the
relationship between FC and CC across seed region. To calculate FC, we used full correlation approach that is
considered to reflect not only direct (monosynaptic connections) but also indirect pathways (polysynaptic con-
nections). Our main findings are that: (1) overall FC obtained by RS-fMRI was highly correlated with tracer-based
CC, but correlation coefficients varied remarkably across seed regions; (2) the strength of FC decreased with
increase in the distance between two regions; (3) correlation coefficients between FC and CC after regressing out
the effects of the distance between two regions still varied across seed regions, but some regions have strong
correlations. These findings suggest that although FC reflects the strength of monosynaptic pathways, it is strongly
affected by the distance between regions.

1. Introduction

Resting-state functional magnetic resonance imaging (RS-fMRI) is
widely used to infer how strongly different brain areas are connected
(Damoiseaux and Greicius, 2009; Fox and Raichle, 2007; Johnston et al.,
2008; Park and Friston, 2013; Smith et al., 2013; Sporns, 2013), and how
these connections are altered as a function of various neuropathologies
(Greicius et al., 2004; Helmich et al., 2010; Rombouts et al., 2005; Rytty
et al., 2013; Wang et al., 2006; Wu et al., 2009; Zarei et al., 2013; Zhou
et al., 2010). However, canonically derived functional connectivity (FC)
between two brain areas simply refers to the correlation of blood oxygen
level-dependent (BOLD) signals across time (i.e., with no information
about the underlying axons and synapses responsible for connections).
Thus, it is still unclear how accurately FC reflects anatomical connec-
tivity, as mediated by the presence of axonal connections between the
two areas.

Non-invasive diffusion tractography and invasive chemical or viral
tracing techniques are widely used to detect anatomical connectivity.

The relationship between RS-fMRI-based FC and anatomical connectivity
in humans has been assessed using diffusion-based tractography (Dam-
oiseaux and Greicius, 2009; Greicius et al., 2009; Hagmann et al., 2008;
Honey et al., 2009; Koch et al., 2002; Skudlarski et al., 2008; Van den
Heuvel et al., 2008). The first study that compared FC with structural
connectivity (SC) obtained by diffusion tractography (Koch et al., 2002),
found positive correlations between FC and SC only along the central
sulcus. Following the growing interest and techniques of RS-fMRI,
several studies revealed more details about the relationship between
FC and SC. Two groups focused on the correspondence between SC and
FC within the default mode network (Greicius et al., 2009; Van den
Heuvel et al., 2008) and one group assessed the relationship between SC
and FC at single voxel levels (Skudlarski et al., 2008). These studies
concluded that although FC reflects SC to some extent, the precise rela-
tionship is unknown. Soon afterwards, Honey et al. reported that whereas
strong SC is robustly related to FC, the presence of FC does not auto-
matically imply SC (Honey et al., 2009). The authors also showed that a
part of FC without directional linkage can be accounted for by indirect

* Corresponding author. Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, N6A 5B7,
Canada.

E-mail addresses: yhori@uwo.ca (Y. Hori), severlin@uwo.ca (S. Everling).

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage

https://doi.org/10.1016/j.neuroimage.2019.116241
Received 13 July 2019; Received in revised form 7 September 2019; Accepted 1 October 2019
Available online 3 October 2019
1053-8119/© 2019 Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

NeuroImage 204 (2020) 116241

mailto:yhori@uwo.ca
mailto:severlin@uwo.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2019.116241&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2019.116241
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neuroimage.2019.116241


anatomical connection (polysynaptic connection). Although very valu-
able for many purposes, diffusion-based tractography is an indirect
method for assessing SC with its own problems (Shen et al., 2019),
particularly its difficulty to resolve crossing fibers (Jbabdi et al., 2015;
Jbabdi and Johansen-Berg, 2011).

The gold standard for directly identifying monosynaptic axonal
pathways is the chemical tracer technique that require ex-vivo tissue
processing (Abe et al., 2018; Burman et al., 2015; Majka et al., 2016;
Reser et al., 2017, 2013; Swanson, 1982; Warner et al., 2015; Zeater
et al., 2019) and thus can only be used in animal models. Non-human
primates are the most appropriate model because of their close phylo-
genetic relationship to humans and their similar brain organization
(Pozzi et al., 2014; Van Essen and Dierker, 2007). To date, only two
studies have investigated the relationship between FC and tracer-based
cellar connectivity (CC) in Old-World macaque monkeys (Mir-
anda-Dominguez et al., 2014; Shen et al., 2012). Shen et al. compared FC
with CC derived from the CoCoMac database (Stephan et al., 2001).
However, this database contains the qualitative (no, weak, moderate, and
strong) CC of 82 cortical regions rather than quantitative CC (e.g. the
fraction of extrinsic labeled neurons). In addition, different nomencla-
tures of the areas are used because data was collected by multiple in-
stitutes, making the comparability of the injections sites ambiguous in
some cases. Miranda-Dominguez and colleagues investigated the rela-
tionship between FC and quantitative CC derived from a retrograde
tracer study of 29 cortical areas in one hemisphere in macaques (Markov
et al., 2014). This study focused on an interspecies comparison of the
structure-function relationship between humans and macaques and did
not consider the effects of the distance between two brain regions on FC,
even though FC is affected by the distance. Thus, there is no direct
comparisons of RS-fMRI FC with quantitative tracer data that investi-
gated the effects of the distance between brain regions on FC.

Here we used New World common marmoset monkeys (Callithrix
jacchus) to address two long-standing questions about the relationship
between FC and CC: (1) how accurately does FC measured by RS-fMRI
reflect tracer-based CC; (2) does the FC reflect the strength of CC after
regressing out the effects of the distance between brain regions. For this
purpose, the Marmoset Brain Connectivity Atlas (www.marmoset
brain.org) (Majka et al., 2016) provides an extensive quantitative data-
base of retrograde tracer data (i.e., tracer connection strength is
included) in these monkeys, and the marmoset’s small size is ideal for
ultra-high field small-bore fMRI, affording high spatial resolution and
signal-to-noise ratio (SNR).

2. Methods

2.1. MRI data acquisition

All experimental procedures were in accordance with the Canadian
Council of Animal Care policy and a protocol approved by the Animal
Care Committee of the University of Western Ontario Council on Animal
Care. Nine marmosets (four females), whose weight ranged from 263 g to
480 g (mean� standard deviation: 372� 63 g) and ages ranged from 1.0
year to 6.0 years old (mean� standard deviation: 2.9� 1.9 years old),
were used in this study.

The marmosets were head-fixed in the stereotaxic position using a
custom-built MRI bed with ear bars and a palate bar housed within the
anesthesia mask (design details and computer-aided design (CAD) files
are available in Schaeffer et al., 2019c). They were initially sedated with
an intramuscular injection of ketamine (20mg/kg). After an animal was
positioned in an animal holder, anesthesia was maintained using the
inhalation of 1.5% isoflurane with a mixture of oxygen (1.75–2.25 l/min)
through the mask. During scans, a veterinary technician monitored
respiration rate, SpO2 and heart rate via a pulse oximeter and observed
these values to be within a normal range throughout scans. Body tem-
perature was measured and maintained using warm-water circulating
blankets, thermal insulation and warmed air.

Data were acquired using an 9.4-T, 31-cm horizontal bore magnet
(Varian/Agilent, Yarnton, UK) and Bruker BioSpec Avance III console
with the software package Paravision-6 (Bruker BioSpin Corp, Billerica,
MA), a custom-built high-performance 15-cm-diameter gradient coil
with 400-mT/m maximum gradient strength (Peterson et al., 2018),
and the 8-channel phased array receive coil (Gilbert et al., 2017). Radi-
ofrequency transmission was accomplished with a quadrature birdcage
coil (12-cm inner diameter) built in-house. All imaging was performed
at the Centre for Functional and Metabolic Mapping at the University
of Western Ontario. Functional images were acquired with 4–6
functional runs (at 600 vol each) for each animal, using gradient-echo
based single-shot echo-planar imaging sequence with the following pa-
rameters: TR¼ 1500m s, TE¼ 15m s, flip angle¼ 40�, field of view
(FOV)¼ 64� 64mm, matrix size¼ 128� 128, voxel size¼ 0.5mm
isotropic, slices¼ 42, bandwidth¼ 500 kHz, generalized autocalibrating
parallel acquisition (GRAPPA) acceleration factor (anterior-posterior)
¼ 2. A T2-weighted (T2w) image was acquired for each animal using
rapid imaging with refocused echoes (RARE) sequences with the
following parameters: TR¼ 5500m s, TE¼ 53m s, FOV¼ 51.2�
51.2mm, matrix size¼ 384� 384, voxel size¼ 0.133� 0.133� 0.5mm,
slices¼ 42, bandwidth¼ 50 kHz, GRAPPA acceleration factor
(anterior-posterior)¼ 2.

2.2. Image preprocessing

Data was preprocessed using FSL software (Smith et al., 2004). Raw
MRI images were first converted to Neuro Informatics Technology
Initiative (NIfTI) format (Li et al., 2016) and reoriented from the sphinx
position. A brainmask was created using FSL tools and National Institutes
of Health (NIH) T2w brain template (Liu et al., 2018), which has only the
brain (as it is ex vivo, without a skull). The brain region was first roughly
identified from individual T2w images using the brain extraction tool
(BET) with the following options: radius of 25–35mm and fractional
intensity threshold of 0.3. The NIH T2w brain template (Liu et al., 2018)
was then linearly and non-linearly registered to individual brain images
using FMRIB’s linear registration tool (FLIRT) and FMRIB’s nonlinear
registration tool (FNIRT) to more accurately create the brain mask. Brain
images were then extracted using the brain mask and normalized to the
NIH template using FLIRT and FNIRT. RS-fMRI images were corrected for
motion using FLIRT and registered to the T2w image using FLIRT.
Principal component analysis (PCA) was applied to remove the un-
structured noise from RS-fMRI time courses, followed by independent
component analysis (ICA) with the decomposition number of 200 using
the Multivariate Exploratory Linear Optimized Decomposition into In-
dependent Components (MELODIC) module of the FSL software package.
The obtained components were classified as signal or noise such as eye
movement, cerebral spinal flow pulsation, heart rate and respiratory
artifacts based on the criteria as shown in a previous report (Griffanti
et al., 2017), and noise components were regressed out from the RS-fMRI
time course using the FSL tool (fsl_regfilt). All RS-fMRI images were
normalized to the NIH template using RS-fMRI-to-T2w and
T2w-to-template transformation matrices, followed by spatial smoothing
by a Gaussian kernel with full width of half maximum value of 1.0mm.

2.3. Calculation of functional connectivity

After preprocessing, full correlation coefficient were calculated as a
index of FC. All RS-fMRI images were concatenated and parcellated into
139 regions using the Connectome Workbench (Marcus et al., 2011) and
volumes of interest (VOIs) based on the Paxinos Atlas (Liu et al., 2018;
Paxinos et al., 2012). The VOIs used here were supplied by the NITRC
website (Liu et al., 2018) and modified to integrate left and right regions
(116 cortical regions and 23 subcortical regions). Abbreviations and lo-
cations of brain regions are summarized in Table 1 and Fig. 1, respec-
tively. The mean time signals for each region were obtained by averaging
the fMRI time series across all voxels contained within the VOI, and full
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correlation coefficients between all regions were then calculated. Finally,
FC values in only the 55 cortical regions corresponding to the tracer
datasets were extracted for comparison with CC.

2.4. Marmoset retrograde tracer data

Marmoset tracer-based connectivity data is openly available from the
Marmoset Brain Connectivity Atlas website (www.marmosetbrain.org)
(Majka et al., 2016). Briefly, the weighted and directed connectivity
matrix obtained using monosynaptic fluorescent retrograde tracers con-
sists of 116 (source)� 55 (target) areas in the Paxinos Atlas of 116
cortical areas. The fraction of extrinsic labeled neurons (FLNe), the
fraction of labeled neurons in a source area relative to the total number of
labeled neurons extrinsic to the injected area, can be obtained from the
website.

Using these data, we first extracted the complete datasets of both
sources and targets (i.e., 55� 55 matrix), and then symmetrization via
mean (i.e., (DCi,jþ DCj,i)/2) was performed to compare FC which has no
directional information; where DCi,j denotes direct connection values
(FLNe values) of source area index i and injected target area index j.
Finally, SC in this study was defined as this average value in logarithmic
(log10) units; within-area (area-to-self) connections were not considered.

2.5. Comparison of FC with CC

Both connectivity data were imported into MATLAB (TheMathworks,
Natick, MA), and the connectivity matrices of CC and FC were created to
visually compare FC with CC. To evaluate overall relationship between
CC and FC, Pearson correlation coefficients were calculated. For this
calculation, only non-zero CC values were considered (i.e., all false
positives and true negatives were excluded from the analysis). To eval-
uate the area-dependency of FC, we also obtained the Pearson correlation
coefficients between CC and FC at each seed region. Additionally, we
calculated the Euclidean distance among VOIs to determine the effect of
distance on the correlation between CC and FC. We then controlled for
the distance between VOIs using MATLAB’s “partialcorr” function.

2.6. Detection performance of FC

To assess the quality of our RS-fMRI datasets, we evaluated the
detection ability of FC estimated by full correlation coefficient for CC in a
binary fashion. The receiver operating characteristic (ROC) curves,
sensitivity, and specificity were used to measure the capacity of RS-fMRI.
If the CC value was not negative infinity (i.e., FLNe6¼0), this connection
was considered to be a true connection. For FC, on the other hand, we set
cut off values from�0.5 to 1 and a FC value greater than the cut off value
was considered to be a predicted connection from FC. The area under the
curve (AUC) in ROC curves quantifies the classifier’s accuracy. A value of
1 indicates perfect prediction of CC, while a value of 0.5 is chance level.

3. Results

3.1. Comparison of FC with CC

The FC matrix based on the Paxinos Atlas (139 VOIs) was calculated
and FC values in only the 55 cortical regions corresponding to the
tracer datasets were extracted and compared with CC and Euclidean
distance (Fig. 2A, B and 2C). The FC matrix was visually in good agree-
ment with the matrices of CC and inverse Euclidean distance. The scatter
plots between FC and CC against inverse distance in the 55 VOIs are
shown in Fig. 3A an 3B, respectively. Both FC and CC significantly
increased with the increase in the inversed distance between those re-
gions (FC¼ 0.18� inverse Euclidean distance - 0.055, r¼ 0.73,
p< 1.0� 10�183; CC¼ 5.3� inverse Euclidean distance - 3.5, r¼ 0.54,
p< 1.0� 10�83). Fig. 3C shows the scatter plots between CC and FC. The
FC values were highly correlated with CC values calculated by retrograde
tracers (Fig. 3C; FC ¼ 0.13 � CC þ 0.58, r ¼ 0.52, p < 1.0 � 10�76), but
the slopes of these correlations were different, varying around CC of �3
(FC¼ 0.059� CCþ 0.33, r¼ 0.17, p< 1.0� 10�3 for �6 ≦ CC ≦�3; FC
¼ 0.27 � CC þ 0.83, r ¼ 0.58, p < 1.0 � 10�60 for �3 < CC < 0).
Additionally, when the distance between those regions was short, the
correlation between CC and FC was strong, while the distance was long,
the correlation was weak (FC ¼ 0.12 � CC þ 0.78, r ¼ 0.45, p < 1.0 �
10�11 for distance < 5 mm; FC ¼ 0.063 � CC þ 0.42, r ¼ 0.29, p < 1.0 �
10�9 for 5 mm< distance< 10 mm; FC¼ 0.029� CCþ 0.15, r¼ 0.17, p
< 1.0� 10�2 for10mm< distance< 15mm; FC¼�0.0053� CC - 0.022,
r¼�0.031, p¼ 0.70 for distance> 15mm).

3.2. Regional differences in the relationship between CC and FC

To evaluate the regional differences of the reliability of FC, we

Table 1
Abbreviation and region names used in this study.

# Abbreviation Name

1 A1/2 Areas 1 and 2 of cortex
2 A10 Area 10 of cortex
3 A11 Area 11 of cortex
4 A19DI Area 19 of cortex; dorsointermediate part
5 A19M Area 19 of cortex; medial part
6 A23a Area 23a of cortex
7 A23b Area 23b of cortex
8 A23c Area 23c of cortex
9 A24d Area 24d of cortex
10 A32 Area 32 of cortex
11 A32V Area 32 of cortex; ventral part
12 A3a Area 3a of cortex (primary somatosensory)
13 A3b Area 3b of cortex (primary somatosensory)
14 A45 Area 45 of cortex
15 A46D Area 46 of cortex; dorsal part
16 A47L Area 47 (old 12) of cortex; lateral part
17 A4ab Area 4 of cortex; parts a and b (primary motor)
18 A4c Area 4 of cortex; part c (primary motor)
19 A6DC Area 6 of cortex; dorsocaudal part
20 A6DR Area 6 of cortex; dorsorostral part
21 A6M Area 6 of cortex; medial (supplementary motor) part
22 A6Va Area 6 of cortex; ventral; part a
23 A8aD Area 8a of cortex; dorsal part
24 A8aV Area 8a of cortex; ventral part
25 A8b Area 8b of cortex
26 A8C Area 8 of cortex; caudal part
27 A9 Area 9 of cortex
28 AIP Anterior intraparietal area of cortex
29 AuA1 Auditory cortex; primary area
30 AuCM Auditory cortex; caudomedial area
31 AuCPB Auditory cortex; caudal parabelt area
32 AuML Auditory cortex; middle lateral area
33 AuRT Auditory cortex; rostrotemporal part
34 LIP Lateral intrapartietal area of cortex
35 MIP Medial intraparietal area of cortex
36 MST Medial superior temporal area of cortex
37 OPt Occipito-parietal transitional area of cortex
38 PE Parietal area PE
39 PEC Parietal area PE; caudal part
40 PF Parietal area PF
41 PFG Parietal area PFG
42 PG Parietal area PG
43 PGM Parietal area PG; medial part
44 PGa_IPa Parietal areas PGa and IPa
45 S2E Secondary somatosensory cortex; external part
46 TE3 Temporal area TE3
47 TEO Temporal area TE; occipital part
48 TPO Temporo-parieto-occipital association area
49 V1 Visual area 1
50 V2 Visual area 2
51 V3A Visual area 3A (dorsoanterior area)
52 V4 Visual area 4 (ventrolatereral anterior area)
53 V4T Visual area 4; transitional part
54 V5 Visual area 5 (middle temporal area)
55 V6 Visual area 6 (dorsomedial area)
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Fig. 1. Cytoarchitectonic borders based on the Paxinos atlas (Liu et al., 2018) in lateral (A), medial (B), dorsal (C) and ventral (D) views. Abbreviations used in this
study were summarized in Table 1.

Fig. 2. Matrices of (A) functional connectivity, (B) cellular connectivity, and (C) Euclidean distance. The matrices consist of 55 regions (see Table 1 for labels and
ordering of regions #).

Fig. 3. (A) Scatter plots of functional connectivity (FC) and (B) cellular connectivity (CC) against inverse Euclidean distance. Dashed lines indicate the regression lines
between Euclidean distance and connectivity. (C) Scatter plots of FC against CC. Color circles indicate the distance between two regions (red: distance< 5mm; yellow:
5 mm< distance< 10mm; green: 10mm< distance< 15mm; blue: distance> 15mm).
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obtained the relationship between CC and FC for each seed region (Figs. 4
and 5). Pearson correlation coefficients between CC and FC varied
markedly across seed regions and ranged from 0.19 (A23a) to 0.83 (A1/
2) (Fig. 4A). The average and standard deviation (s.d.) of the correlation
coefficients were 0.54� 0.15. Fig. 5 shows examples of FC maps with CC
maps. Some areas like 23c and 1/2 exhibited strong correlations between
FC and CC (Fig. 5A and B), other areas like 11 and 6DC showed inter-
mediate correlations between full FC and CC (Fig. 5C and D), and some
areas like 45 and 23a exhibited weak correlations between full FC and CC
(Fig. 5E and F). Area 23c was structurally connected to sensorimotor
areas (1/2, 3a, 3b, and 4 ab), parietal areas (PE and PFG), and cingulate
areas (23a, 23b, and 24d). The FC maps exhibited patterns similar to the
CC maps (Fig. 5A). This tendency was also consistent when the seed re-
gion was area 1/2 (Fig. 5B). In contrast, areas 11, 6DC, 45 and 23a were
sparsely connected to various cortical regions in CC maps, but the dis-
tributions of FC maps were restricted to the specific regions (Fig. 5C, D,
5E and 5F). To regress out the effect of the distance between two brain
regions, we also calculated the Pearson correlation coefficients between
CC and FC for each seed region, while controlling for the distance be-
tween VOIs (Fig. 4B). Pearson correlation coefficients between CC and FC
still varied markedly across seed regions and ranged from �0.10 (A23b)
to 0.67 (A19DI). The average of the correlation coefficient were lower

than those before controlling for the effect of the distance (0.28� 0.19;
p< 1.0� 10�17; paired t-test), but some regions have strong correlations.

3.3. Detection performance of FC for CC

To assess the quality of our RS-fMRI datasets, we evaluated the
detection ability of FC estimated by full correlation coefficient for CC in a
binary fashion. The ROC curve, sensitivity and specificity are shown in
Fig. 6. The AUC in ROC curves quantifies the classifier’s accuracy. A
value of 1 indicates perfect prediction of CC, while a value of 0.5 is
chance level. The AUC in the ROC curve was 0.72, which is similar to that
for a recent study which compared diffusion tractography with tracers in
postmortem macaque monkeys (AUC¼ 0.71–0.72) (Donahue et al.,
2016). The intersection between sensitivity and specificity curves cor-
responds to a FC cut-off value of 0.068, which offers a balanced
compromise between maximizing true positives and minimizing false
positives.

4. Discussion

RS-fMRI is widely used to assess how strongly different brain areas
are connected (Damoiseaux and Greicius, 2009; Fox and Raichle, 2007;

Fig. 4. Pearson correlation coefficients between functional connectivity (FC) and cellular connectivity (CC) in each seed region, before (A) and after (B) controlling
the effects of the distance between two brain regions.
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Johnston et al., 2008; Park and Friston, 2013; Smith et al., 2013; Sporns,
2013). However, it has yet to be quantified how accurately FC reflects
CC. In this study, we quantified FC in marmosets using RS-fMRI and
addressed these long-standing questions about the relationship between
FC and CC. Our main findings are: (1) overall FC was highly correlated
with tracer-based CC (r¼ 0.52), but correlation coefficients between FC
and CC varied remarkably across seed regions; (2) the strength of FC
decreases with increase in the distance between two regions; (3) corre-
lation coefficients after regressing out the effect of the distance between

two regions still varied across seed regions, but some regions have strong
correlations. These findings suggest that FC reflects the strength of
monosynaptic pathway, although FC is strongly affected by the distance
between regions.

From the comparison of FC with Euclidean distance between brain
regions, we found that the strength of FC decreases with the distance
between regions (r¼ 0.73). We also found that when the distance be-
tween two regions is short, the correlation between CC and FC is strong,
while when the distance between two regions is long, the correlation is

Fig. 5. Representative cellular (CC) and functional connectivity (FC) on the surface map. Seed regions were A23c (A) and A1/2 (B) for the examples of strong
correlations, A11 (C) and A6DC (D) for the examples of intermediate correlations, and A45 (E) and 23a (F) for the examples of weak correlations, respectively.
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weak. These findings are consistent with a previous study using RS-fMRI
and diffusion tractography in humans (Honey et al., 2009). It is already
known that FC between brain regions is affected by the distance between
brain regions (Salvador et al., 2005), and this effect could result from
distance-dependent factors, including (1) activation spread along the
surface of the cortex via local circuitry, and (2) spatial blurring of the
BOLD signal because of vascular drainage (Honey et al., 2009; Rubino
et al., 2006). These factors might artifactually increase the correlation
between FC and tracer-based CC. In fact, when seed regions were areas
1/2 and 23c, these regions were anatomically connected to regions close
to the seed regions and FC maps were in good agreement with CC maps.
To overcome this problem, we also calculated the Pearson correlation
coefficients between CC and FC for each seed region, while controlling
for the Euclidean distance between two regions. The correlation co-
efficients still varied across seed regions, but some regions had high
correlations between FC and CC. These findings suggest that FC reflects
the strength of monosynaptic pathways, and the variation of correlation
coefficients reflect the relative contributions of monosynaptic and poly-
synaptic pathways. Because FC reflects not only direct (monosynaptic)
connection but also indirect (polysynaptic) connection while CC reflects
only direct connections, the high correlation areas indicate those regions
that have a lot of monosynaptic connections like a hub region. Indeed, it
is known that areas 8aD, PG, LIP, and PGM play important roles as hubs
(Ghahremani et al., 2016; Liu et al., 2019), and FC in these regions were
highly correlated with CC. The low correlation areas may reflect the ef-
fect of polysynaptic connection on FC, but testing this idea was beyond
the scope of the present study because cellular connectivity data is not
available for all regions. To assess the quality of our RS-fMRI datasets, we
evaluated the detection ability of FC estimated by full correlation co-
efficients for CC in a binary fashion. The AUC in the ROC curve was 0.72,
which was similar to that for recent diffusion tractography versus tracers
in postmortem macaque monkeys (AUC¼ 0.71–0.72) (Donahue et al.,
2016). This result indicates that this RS-fMRI dataset has reasonably high
quality to reflect CC. The intersection between sensitivity and specificity
curves corresponded to a FC cut-off value of 0.068, which offers a
balanced compromise between maximizing true positives and mini-
mizing false positives. These performance evaluations will be useful for
assessing the quality of future RS-fMRI data in marmosets.

In this study, we aimed to compare FC with tracer-based CC
anatomical connections because it is currently considered as a gold
standard technique to detect the direct anatomical connections; however,
even this technique has methodological limitations. Repeated tracer in-
jections into the same area often yield different estimated connection
values (Markov et al., 2011), presumably reflecting a combination of

individual variability in connection weight, differences of types of fluo-
rescent tracers, statistical fluctuation and technical limitations. The
variability in the connections of different parts of the same cytoarchi-
tectural area (Paxinos et al., 2012) is also one of the factors. For example,
the connections of the foveal representation of cortical areas are very
different from those of the peripheral representation (Palmer and Rosa,
2006). The connections of the representations of the face, hand and legs
in primary motor cortex are also different. Another potential limitation is
that we scanned the marmosets under 1.5% isoflurane anesthesia to
avoid the effects of motion and physiological stress, even though it re-
mains unclear how isoflurane affects FC in marmosets. However, recent
fMRI studies with isoflurane anesthesia demonstrated clear functional
boundaries in anterior cingulate cortex and lateral prefrontal cortex
(Schaeffer et al., 2019a, 2019b), and global functional networks in
marmosets under isoflurane anesthesia (Ghahremani et al., 2016). In a
previous macaque study (Hutchison et al., 2014), our group suggested
the use of up to 1.5% isoflurane anesthesia was acceptable because the
spatial structure of the functional network was preserved. These findings
show that 1.5% isoflurane anesthesia reveals functional networks in
marmosets.

RS-fMRI in marmosets is recently expected as a preclinical model to
evaluate the brain mechanisms underlying neuropsychiatric disorders,
because of its characteristics such as well-developed frontal lobe (Okano
and Mitra, 2015) and the recent developments of transgenic marmosets
(Park et al., 2016; Sasaki et al., 2009; Tomioka et al., 2017). Overall, our
results showed that FC obtained by RS-fMRI in marmosets reflects the
strength of tracer-based CC, but we also demonstrated that correlation
coefficients varied remarkably across seed region. Although what are
other factors affecting FC is an important question for future inquiry, our
findings reveal the feasibility of FC to infer how strongly different brains
are connected and provide a critical foundation for future work that aims
to test FC changes in marmoset models as an alternative to human.
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