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Abstract 1 
How is the primary motor cortex (M1) organized to control fine finger movements? We 2 

investigated the population activity in M1 for single finger flexion and extension, using 7T 3 

functional magnetic resonance imaging (fMRI) in female and male human participants, and 4 

compared these results to the neural spiking patterns recorded in two male monkeys performing 5 

the identical task. fMRI activity patterns were distinct for movements of different fingers, but 6 

quite similar for flexion and extension of the same finger. In contrast, spiking patterns in 7 

monkeys were quite distinct for both fingers and directions, similar to what was found for 8 

muscular activity patterns. The discrepancy between fMRI and electrophysiological 9 

measurements can be explained by two (non-mutually exclusive) characteristics of the 10 

organization of finger flexion and extension movements. Given that fMRI reflects predominantly 11 

input and recurrent activity, the results can be explained by an architecture in which neural 12 

populations that control flexion or extension of the same finger produce distinct outputs, but 13 

interact tightly with each other and receive similar inputs. Additionally, neurons tuned to 14 

different movement directions for the same finger (or combination of fingers) may cluster 15 

closely together, while neurons that control different finger combinations may be more spatially 16 

separated. When measuring this organization with fMRI at a coarse spatial scale, the activity 17 

patterns for flexion and extension of the same finger would appear very similar. Overall, we 18 

suggest that the discrepancy between fMRI and electrophysiological measurements provides new 19 

insights into the general organization of fine finger movements in M1. 20 
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Significance statement 21 
The primary motor cortex (M1) is important for producing individuated finger movements. 22 

Recent evidence shows that movements that commonly co-occur are associated with more 23 

similar activity patterns in M1. Flexion and extension of the same finger, which never co-occur, 24 

should therefore be associated with distinct representations. However, using carefully controlled 25 

experiments and multivariate analyses, we demonstrate that human fMRI activity patterns for 26 

flexion or extension of the same finger are highly similar. In contrast, spiking patterns measured 27 

in monkey M1 are clearly distinct. This suggests that populations controlling opposite 28 

movements of the same finger, while producing distinct outputs, may cluster together and share 29 

inputs and local processing. These results provide testable hypotheses about the organization of 30 

hand control in M1. 31 
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Introduction 32 
Dexterous movements of fingers require accurate coordination of different hand muscles. 33 

Hand muscles are innervated by motorneurons in the ventral horn of the spinal cord, which 34 

receive direct and indirect projections from the hand region of the contralateral primary motor 35 

cortex (M1) (Lemon, 2008). In monkey species capable of better finger individuation, direct 36 

(monosynaptic) projections from M1 to ventral horn motor neurons are more pronounced 37 

(Heffner & Masterton, 1983; Bortoff & Strick, 1993). Lesions to the corticospinal tract (Tower, 38 

1940; Lawrence & Kuypers, 1968; Lawrence & Hopkins, 1976; Sasaki et al., 2004) or to M1 39 

(permanent: Liu & Rouiller, 1999; Darling et al., 2009; reversible: Schieber & Poliakov, 1998) 40 

result in a significant loss of finger individuation. Such symptoms are also reported in human 41 

stroke patients who have damage to the hand area of M1 or the descending corticospinal pathway 42 

(Lang & Schieber, 2003; Xu et al., 2017). These results indicate that M1 is important for the fine 43 

control of individuated finger movements. 44 

What is less well understood is how this cortical control module for finger movements is 45 

organized. Here, we studied this question by investigating cortical activation patterns evoked 46 

during flexion and extension of individual fingers. Previous electrophysiological work in 47 

macaque monkeys (Schieber & Hibbard, 1993; Schieber & Poliakov, 1998) have indicated that 48 

motor cortical neurons have complex tuning functions, often responding to movements of 49 

multiple fingers and to both flexion and extension movements. Therefore, there exists no clearly 50 

organized “map”, with separate regions dedicated to the control of a single finger. Instead, the 51 

population of M1 neurons involved in hand control must be organized by some other principle.  52 

One plausible principle is that the statistics of natural hand use shapes the organization of 53 

neuronal populations in the hand region of M1. This idea predicts that movements that 54 

commonly co-occur in every-day life are represented in overlapping substrates in M1 (Graziano 55 

& Aflalo, 2007). In humans, fingers with high correlations between their joint-angle velocities 56 

during every-day hand movements (Ingram, et al., 2008) have been shown to have more similar 57 

M1 activity patterns, as measured with fMRI (Ejaz et al., 2015). The correlation structure of 58 

every-day finger movements nearly fully explained the relative similarities of M1 finger activity 59 

patterns, and fit the data better than a model that used the similarity of the required muscle 60 

activity patterns (i.e. predicting that movements that use similar muscles also have similar 61 
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activity patterns) or a somatotopic model (i.e. predicting that fingers are represented in an orderly 62 

finger map). 63 

In this paper, we asked to what degree this kinematic hypothesis could generalize to 64 

movements of the same finger in different directions. We measured the activity evoked in the 65 

hand area of M1 using high-field fMRI while human participants performed near-isometric 66 

single finger flexion and extension presses with their right hand. By extrapolating the model used 67 

in Ejaz et al. (2015) to this situation, we predicted that each movement should have its own, 68 

clearly separated representation in M1, as flexion and extension movements of the same finger 69 

can never co-occur. Indeed, it has been recently suggested that human motor cortex has multiple 70 

representations of each finger, one dedicated to flexion and one to extension (Huber et al., 2020). 71 

We found, however, that the measured M1 fMRI patterns for flexion and extension of the 72 

same finger were strikingly similar, much more similar than would be expected for two 73 

movements that cannot co-occur. This similarity was not the result of co-contraction during the 74 

task. To better understand these results, we investigated the representational structure of single-75 

neuron activity in M1 of two macaque monkeys trained on the same flexion-extension task (data 76 

from Schieber & Rivlis, 2005; Schieber & Rivlis, 2007). The spiking patterns in monkeys were 77 

quite distinct for fingers and directions. From these results, we propose two, non-mutually 78 

exclusive hypotheses about the organization of finger movement representations in the primary 79 

motor cortex. 80 
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Materials and Methods 81 

Human participants 82 
Nine healthy, participants were recruited for the study (5 males and 4 females, mean 83 

age=24.78, SD=4.68; mean Edinburgh handedness score=90.11, SD=11.34). Participants 84 

completed 3 experimental sessions. During the first training session, participants learned to 85 

perform the finger individuation task. In the scanner session, participants performed the finger 86 

individuation task while undergoing fMRI. In the EMG session, participants performed the 87 

finger individuation task while muscle activities were recorded. All participants provided 88 

informed consent before the beginning of the study, and all procedures were approved by the 89 

Office for Research and Ethics at the University of Western Ontario. 90 

Experimental design of human finger individuation task 91 
In all three (training, scanning, and EMG) sessions, the five fingers of the right hand were 92 

individually clamped between two keys (Fig. 1A). Foam padding on each key ensured each 93 

finger was comfortably restrained. Force transducers (Honeywell-FS series, dynamic range=0-94 

16N, resolution<0.02N, sampling rate=200Hz) above and below each key monitored the forces 95 

applied by each finger in extension and flexion directions. 96 

During the task, participants viewed a screen that presented two rows of five bars (Fig. 1B). 97 

These bars corresponded to flexion or extension direction for each of the five fingers of the right 98 

hand. The forces applied by each finger were indicated on the visual display as five solid white 99 

lines (one per finger). On each trial, participants were cued to make an isometric, single-finger 100 

flexion or extension press at one of three forces levels (1, 1.5, or 2N for extension; 1.5, 2, or 101 

2.5N for flexion) through the display of a white target box (Fig. 1B). Extension forces were 102 

chosen to be lower than flexion forces, as extension finger presses are more difficult (Valero-103 

Cuevas, Zajac, & Burgar, 1998; Li, et al., 2003) and can lead to more enslaving (i.e. co-104 

articulation) of non-instructed fingers (Yu, Duinen, & Gandevia, 2010). This design yielded two 105 

levels of matched target forces for flexion and extension presses (1.5 and 2N). The forces were 106 

similar to the low forces required in the monkey task design. The finger displacement required to 107 

achieve these force thresholds was minimal, such that the finger presses were close to isometric. 108 

Each trial lasted 6000ms and consisted of four phases (Fig. 1B): a cue phase (1500ms), a 109 

press phase (2000ms), a hold phase (1000ms), and a 1500ms inter-trial interval. This trial 110 
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structure was designed to mirror the NHP task (see NHP methods and also  Schieber, 1991). 111 

During the cue phase, a white box appeared in one of the ten finger bars presented on screen, 112 

indicating the desired finger and direction. The desired pressing force was reflected by the 113 

relative location of the cue within the finger bar. After 1500ms, the cue turned green. This 114 

instructed the participant to initiate the finger press. Participants had up to 2000ms after the cue 115 

turned green to reach the specified force. Once the pressing force was within the target box 116 

(target force ±12.5%) the cue turned blue. Participants were trained to hold the force constant 117 

within this interval for 1000ms. When this time had elapsed, the cue disappeared and the 118 

participants were instructed to release the press by relaxing their hand. Importantly, participants 119 

were instructed not to actively move the finger in the opposite direction. A new trial started 120 

every 6s. For the scanning session, periods of rest were randomly intermixed between trials (see 121 

below). The muscle recording sessions lacked these rest periods, but otherwise had the same trial 122 

structure. 123 

Trials of the 30 conditions (5 fingers x 2 directions x 3 forces) were presented in a pseudo-124 

random order. Trials were marked as errors if the participant was too slow (i.e. did not initiate 125 

movement within 2000ms of the go-cue), pressed the wrong finger or in the wrong direction, or 126 

if the participant did not reach at least 0.5N force with the cued finger in the cued direction. Due 127 

to the pre-training, the participants had low error rates in both the fMRI (mean error rate across 128 

conditions=1.48% ±1.05% sem) and EMG (mean error rate across conditions=1.30% ±0.97%) 129 

sessions, and accurately produced the required target forces (fMRI: mean peak force 130 

accuracy=108.93% ±2.56% of the target forces; EMG: mean accuracy=107.80% ±2.19%). 131 

Therefore, we included all trials in subsequent analyses. 132 

We also did not exclude any trials based on finger co-activation. Overall, participants were 133 

able to individuate their fingers relatively well. During fMRI extension trials, the forces applied 134 

through the non-instructed fingers were, on average, 14.01% (±1.41%) of the forces applied by 135 

the instructed finger. During fMRI flexion, forces produced by non-instructed fingers was 136 

20.51% (±1.49%) of the force produce by the instructed finger. Most enslaving occurred during 137 

presses of the middle, fourth, and little fingers, all of which are difficult to individuate (Schieber, 138 

1991). Note, however, that the presence of enslaving does not compromise the main finding of 139 

our paper. To some degree, neural activity patterns related to flexion and extension of single 140 

fingers will always depend on the biomechanical coupling between fingers, either because the 141 
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cortical activation patterns need to overcome that coupling, or because coupling does occur, 142 

which then influences the recurrent sensory input. Our main conclusions are based on 143 

comparisons between flexion and extension presses, and remain valid whether we study the 144 

actions of isolated fingers, or groups of fingers (see discussion).  145 

fMRI acquisition and analysis 146 

Image acquisition 147 
We used high-field functional magnetic resonance imaging (fMRI, Siemens 7T Magnetom 148 

with a 32 channel head coil at Western University, London, Ontario, Canada) to measure the 149 

blood-oxygen-level dependent (BOLD) responses in human participants. For each participant, 150 

evoked-BOLD responses were measured for isometric, single-finger presses in the flexion and 151 

extension directions. 152 

There were 2 repeats of each condition during each imaging run (5 fingers × 2 directions × 3 153 

force levels × 2 repeats = 60 trials). Trial order in each run was randomized. In addition, 5 rest 154 

conditions of 6000ms were randomly interspersed between trials within each run. Each run lasted 155 

approximately 390 seconds. Participants performed 8 such runs during the scanning session.  156 

During each run, 270 functional images were obtained using a multiband 2D-echoplanar 157 

imaging sequence (GRAPPA, in-plane acceleration factor=2, multi-band factor=2, repetition 158 

time [TR]=1500ms, echo time [TE]=20ms, flip angle [FA]=45 deg). Per image, we acquired 32 159 

interleaved slices (without gap) with isotropic voxel size of 1.5mm. The first 2 images in the 160 

sequence were discarded to allow magnetization to reach equilibrium. To estimate magnetic field 161 

inhomogeneities, we acquired a gradient echo field map at the end of the scanning session. 162 

Finally, a T1-weighted anatomical scan was obtained using a magnetization-prepared rapid 163 

gradient echo sequence (MPRAGE) with a voxel size of 0.75mm isotropic (3D gradient echo 164 

sequence, TR=6000ms, 208 volumes). 165 

Image preprocessing and first-level analysis 166 
Functional images were first realigned to correct for head motion during the scanning 167 

session (3 translations: x,y,z; 3 rotations: pitch, roll, yaw), and co-registered to each participant’s 168 

anatomical T1-image. Within this process, we used a B0 fieldmap to correct for image 169 

distortions arising from magnetic field inhomogeneities (Hutton et al., 2002). Due to the 170 

relatively short TR (1.5s), no slice-timing correction was applied. Nor was the data spatially 171 

smoothed or normalized to a standard template. 172 
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The minimally preprocessed data were then analyzed using a general linear model (GLM; 173 

Friston et al., 1994) using SPM12 (fil.ion.ucl.ac.uk/spm/). Each of the finger-direction-force 174 

conditions were modeled with separate regressors per run, resulting in 30 regressors per run 175 

(30*8 runs = 320 task regressors), along with an intercept for each run. The regressor was a 176 

boxcar function that started at the presentation of the go-cue and lasted for the trial duration, 177 

spanning the press, hold, and release periods of each trial. The boxcar functions were convolved 178 

with a hemodynamic response function with a delayed onset of 1000ms and a post-stimulus 179 

undershoot at 7500ms. Given the low error rate, we did not exclude any trials from this analysis. 180 

To model the long-range temporal autocorrelations in the functional timeseries, we used the SPM 181 

FAST autocorrelation model with restricted-maximum likelihood estimation (see Arbuckle et al., 182 

2019 for details). High-pass filtering was then achieved by temporally pre-whitening the 183 

functional data with this temporal autocorrelation estimate. This analysis resulted in one 184 

activation estimate (“beta-weights”) for each of the 30 conditions per run for each participant. 185 

For visual display (as in Figure 2) and further analysis, the beta values were divided by the root-186 

mean-square error from the first-level GLM to yield a t-value per voxel for each condition in 187 

each run.  188 

Surface reconstruction and ROI definition 189 
Each participant’s T1-image was used to reconstruct the pial and white-grey matter surfaces 190 

using Freesurfer (Fischl, Sereno, & Dale, 1999). Individual surfaces were aligned across 191 

participants and spherically registrated to match a template atlas (Fischl, Sereno, Tootell, & 192 

Dale, 1999) using a sulcal-depth map and local curvature as minimization criteria. M1 was 193 

defined as a single region of interest (ROI) on the group surface using probabilistic cuto-194 

architectonic maps aligned to the template surface (Fischl et al., 2008). We defined M1 as being 195 

the surface nodes with the highest probability for Brodmann area 4 and who fell within 1.5cm 196 

above and below the hand knob anatomical landmark (Yousry et al., 1997). To avoid cross-197 

contamination between M1 and S1 activities along the central sulcus, voxels with more than 25% 198 

of their volume in the grey matter on the opposite side of the central sulcus were excluded. 199 

Multivariate fMRI analysis 200 
We used the cross-validated squared Mahalanobis dissimilarity (i.e. crossnobis dissimilarity) 201 

to quantify differences between fMRI activity patterns for each pressing condition within each 202 

participant (Walther, et al., 2016; Diedrichsen, et al., 2020). Cross-validation ensures the 203 
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dissimilarity estimates are unbiased, such that if two patterns differ only by measurement noise, 204 

the mean of the estimated dissimilarities would be zero. This also means that estimates can 205 

sometimes become negative (Diedrichsen, Provost, & Zareamoghaddam, 2016). Therefore, 206 

dissimilarities significantly larger than zero indicate that two patterns are reliably distinct.  207 

The fMRI activity patterns were first-level GLM beta-weights for voxels within the M1 ROI 208 

mask. Analyses were conducted using functions from the RSA (Nili et al., 2014) and PCM 209 

(Diedrichsen, Yokoi, & Arbuckle, 2018) MATLAB toolboxes. The crossnobis dissimilarity  210 

between the fMRI activity patterns ( ) for conditions  and  was calculated as 211 

, =  1 −  −  ~  

, where the activity patterns from run  are multiplied with the activity patterns averaged 212 

over all runs except  (~ ).  is the voxel-wise noise covariance matrix, estimated from the 213 

residuals of the GLM, and slightly regularized to ensure invertibility. Multivariate noise-214 

normalization removes spatially correlated noise and yields generally more reliable dissimilarity 215 

estimates (Walther et al., 2016). 216 

The dissimilarities are organized in a representational dissimilarity matrix (RDM). The 217 

RDM is a symmetric matrix (number of conditions x number of conditions in size) with off-218 

diagonal values corresponding to the paired distance between two conditions. Values along the 219 

diagonal are zero, as there is no difference between a pattern paired with itself. 220 

We calculated an RDM for the matched force conditions separately (i.e. the 1.5N and 2N 221 

presses, 10 conditions each), and then averaged the resulting RDMs within each participant. This 222 

yeilded one RDM per participant containing the crossnobis dissimilarities between presses of the 223 

five fingers in either direction (10 conditions, 45 dissimilarity pairs).  224 

Estimating spatial tuning of fingers and direction 225 
We considered the possibility that fingers and directions could be encoded at different 226 

spatial scales in M1. We therefore estimated the spatial covariance of tuning for fingers and 227 

directions. Within each imaging run, we averaged the fMRI activity patterns (t-values) for each 228 

condition across the matched forces (1.5 and 2N). This yielded a vector of 10 activity values per 229 

voxel (one value per each finger per direction), which we refer to as an activity profile. We 230 

modeled the activity profile values ( , ) of each voxel and partition using three components:  231 
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, = + + ,  

where  is the main effect of finger ,  is the main effect of direction , and ,  is the 232 

finger x direction interaction effect. We used ordinary least-squares regression to estimate the 233 

finger and direction components. The residual from the regression was taken as estimate of the 234 

interaction component.  235 

We first reconstructed the activity profiles using only the finger component ( ), and then 236 

estimated the covariance of the finger activity profiles between voxel pairs in M1. These 237 

covariances were calculated in a cross-validated fashion: we averaged the reconstructed activity 238 

profiles for odd and even runs separately, and then then computed the covariance of the activity 239 

profile of different voxels across independent partitions of the data. Given that the estimates for 240 

all components contained some noise, normal covariance estimates are biased by the spatial 241 

structure of the noise. Cross-validation alleviates the influence of noise on (co-) variance 242 

estimation, as the average of the product of noise across odd and even runs is zero.  243 

We then binned the covariances based on the spatial distance between each voxel pair and 244 

averaged the covariances within each bin. The first bin included only the cross-partition 245 

covariance between each voxel and itself (i.e. the cross-validated estimate of the voxel 246 

variances). The second bin contained the covariances between immediately and diagonally 247 

neighbouring voxels (1.5 to 2.6mm), the third bin the second layer of direct and diagonally 248 

neighbouring voxels (>2.6 to 5.2mm), and so on, up to a total distance of 20.8mm. Finally, we 249 

normalized the binned covariances by the cross-validated voxel variances (value of the first bin) 250 

to obtain an estimate of the spatial autocorrelation function (ACF) for fingers in M1. 251 

We used the same procedure to estimate the ACF for direction. Importantly, we included 252 

both the direction ( ) and the finger x direction interaction ( ) components in the activity profile 253 

reconstruction. We included the interaction component as we hypothesized that the tuning of 254 

voxels to flexion and extension patterns would be different across fingers.  255 

Finally, we estimated the smoothness of the finger and direction ACFs (Diedrichsen, 256 

Ridgway, Friston, & Wiestler, 2011). To do this, we fitted a function that decayed exponentially 257 

with the square of the distance ( ) between voxels ( ): 258 ( , ) =  exp (−2 ) 



 

12 
 

Here,  is the standard deviation of the ACF. If neighbouring voxels are relatively 259 

independent (i.e. low covariance), the value of  will be small. While we can use  to express the 260 

smoothness of the ACF, the smoothness can also be expressed as the full-width-half-maximum 261 

(FWHM) of the Gaussian smoothing kernel that- when applied to spatially independent data- 262 

would yield the same ACF. The standard deviation of this Gaussian kernel is 1/2 , and the 263 

FWHM is calculated as: 264 = 2 log(2)  
We applied this approach to the reconstructed finger and direction activity profiles 265 

separately to estimate the FWHM of fingers and direction M1. The goodness of fit (evaluated 266 

with R2) of the fitted exponential decays were both high (mean R2 of finger ACF=0.960 ±0.008 267 

sem, mean R2 of direction ACF=0.908 ±0.020 sem). Although there was a significant difference 268 

between the finger and direction model R2 (two-sided paired t-test: t8=2.412, p=0.0424), the 269 

mean difference was quite small (0.052 ±0.021sem). 270 

Centre-of-Gravity (CoG) Analysis 271 
We analyzed the activity patterns to determine if there were significant differences in the 272 

spatial arrangement of finger flexion and extension, as proposed by Huber et al. (2020). To 273 

ensure our analysis closely matched this previous report, we restricted the CoG analysis to 274 

include only surface nodes from Brodmann area 4a, as based on the probabilistic atlas (Fischl et 275 

al., 2008). We also restricted the analysis to the hand region by selecting only vertices within 276 

1.5cm of the hand knob anatomical landmark. On the flattened activity maps for each finger, we 277 

then calculated the centre-of-gravity (CoG) of each map as the average spatial location ( , ) of 278 

each surface node ( ), weighted by its respective t-value ( ): 279 = ∑∑  

= ∑∑ . 
In the above calculations, we set negative t-values equal to zero, thereby focusing our spatial 280 

analysis on regions that showed activity increases. We used a two-factor repeated-measures 281 

MANOVA to test for significant differences between the measured CoGs for different fingers 282 

and directions. To summarize the structure of the spatial arrangement, we calculated the pairwise 283 
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Euclidean distances between the CoG coordinates for each condition, and arranged them into an 284 

RDM. 285 

EMG recording and analysis 286 

EMG recordings and preprocessing 287 
In a separate session, we recorded hand and forearm muscle activity to ensure participants 288 

performed the task as instructed. During the EMG session, participants were seated upright, 289 

whereas during the fMRI session participants lay prone in the scanner. In both sessions, 290 

however, we ensured that the arm was in a relaxed position, the palm of the hand was supported 291 

by the device, the wrist slightly extended, and the elbow joint slightly bend. Thus, wrist and 292 

forearm posture, both known to influence muscle activity during finger movements (Beringer, et 293 

al., 2020; Mogk & Keir, 2003) were matched across the two sessions. Participants’ skin was 294 

cleaned with rubbing alcohol. Surface EMG of distal muscles of the hand were recorded with 295 

self-adhering Ag/AgCl cloth electrodes (H59P-127 repositionable monitoring electrodes, 296 

Kendall, Mansfield, Massachusetts, USA). Electrodes were cut and positioned in line with a 297 

muscle in a bi-polar configuration with an approximate 1cm inter-electrode distance. Surface 298 

EMG of proximal limb muscles were recorded with surface electrodes (Delsys Bagnoli-8 system 299 

with DE-2.1 sensors). The contacts were coated with a conductive gel. Ground electrodes were 300 

placed on the ulna at the wrist and elbow. The signal from each electrode was sampled at 301 

2000Hz, de-meaned, rectified, and low-pass filtered (fourth order butterworth filter, =40Hz).  302 

Multivariate EMG analysis 303 
We used the crossnobis dissimilarity to quantify differences between patterns of muscle 304 

activities for each movement condition, similar to the fMRI analysis. This metric is invariant to 305 

scaling of the EMG signals from each electrode, and has been established in previous work 306 

(Ejaz, Hamada, & Diedrichsen, 2015). Briefly, we first calculated the average square-root EMG 307 

activity for each electrode and trial by averaging over the press and hold time windows (mean 308 

window= 1800ms, up to a max window of 3000ms). We then subtracted the mean value for each 309 

electrode across conditions for each run independently to remove any drifts in the signal. These 310 

values were then divided by the standard deviation of that electrode across trials and conditions 311 

to avoid arbitrary scaling. Finally, we calculated the crossnobis dissimilarity between pairs of 312 

EMG activity patterns for different conditions across runs. 313 
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Experimental design of monkey finger individuation task 314 
The behavioural task performed by two male Macaca mulatta monkeys (monkeys C and G) 315 

has been described previously (Schieber, 1991; Schieber & Rivlis, 2007). Briefly, the monkeys 316 

were trained to perform cued single finger flexion and extension presses. Each monkey sat in a 317 

primate chair and, similar to the human device described above, their right hand was clamped in 318 

a device that separated each finger into a different slot (Fig. 1C). Each slot was comprised of two 319 

microswitches (one in the flexion direction and one in the extension direction). One switch was 320 

closed by flexing the finger, the other by extending the finger. The absolute degree of movement 321 

required to close either switch was minimal (a few millimeters), and therefore the force required 322 

to make and hold a successful press was small- similar to the human finger individuation task. 323 

Therefore, like the fMRI task behaviour, these finger movements are very close to isometric 324 

presses. 325 

A series of LED instructions were presented to the monkey during each trial (Fig. 1D). A 326 

successful trial occurred when the monkey pressed the cued finger in the cued direction without 327 

closing any other switch. Similar to our human experiment design, the monkeys were trained to 328 

hold the cued switch closed for 500ms, before relaxing the finger (Fig. 1D). At the end of a 329 

successful trail, the monkey received a water reward. The monkey's wrist was also clamped in 330 

this device, and some trials required the monkey to flex or extend the wrist. Wrist trials were not 331 

included in the current analysis. Flexion and extension trials of each finger and wrist were 332 

pseudorandomly ordered. In the case of a behavioural error, trials were repeated until successful. 333 

Therefore, we excluded all trials with an error and also the successful trials that followed error 334 

trials to avoid potential changes in the baseline firing rate of the recorded neuron. 335 

In contrast to the human task, the required force level for the monkeys was the same for all 336 

trials – therefore, they did not receive continuous visual feedback about the force produced. 337 

Instead, they received small tactile feedback when the switch closed, a feature that was absent 338 

from the human task. In spite of these small differences in feedback, the task requirements were 339 

well matched across species: Both monkey and humans were required to produce low, well-340 

controlled forces with a single finger, while keeping forces on the non-instructed fingers 341 

minimal, either to avoid unwanted switch-closure, or excessive movement of the associated 342 

visual feedback.  343 

Analysis of single cell spiking data 344 
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Spike rate calculation 345 
Single cells were isolated and spike times were recorded while monkeys performed the 346 

finger individuation task. The details of the recordings are reported previously (Poliakov & 347 

Schieber, 1999). Each trial was labeled with a series of behavioural markers, indicating the time 348 

of trial onset, presentation of condition cue, switch closure, and reward onset. For the spike rate 349 

traces plotted in Figure 4, we calculated the spike rate per 10ms bin, aligned to press onset, and 350 

smoothed the binned rates with a Gaussian kernel (FWHM=50ms). For the dissimilarity analysis 351 

(see below), we calculated the average spike rate over time per trial starting at go cue onset 352 

(when the monkey was instructed as to which finger and direction to press) until the end of the 353 

hold phase (500ms after switch closure). This time window encompassed a short period of time 354 

prior to the start of the finger press and the entire hold duration of the press (Monkey C: mean 355 

window= 739ms; Monkey G: mean window=773ms). 356 

Multivariate spiking analysis 357 
Similar to the human fMRI and EMG analyses, we computed crossnobis dissimilarities 358 

between spiking patterns for different conditions within each monkey. To cross-validate the 359 

estimated distances, we restricted our analysis to include cells for which we had at least two 360 

successful trials for each finger in both directions. This criteria yielded 44801 trials from 238 361 

cells in monkey C (median number of trials per cell=168, median number of trials per condition 362 

per cell=19) and 5535 trials from 45 cells in monkey G (median number of trials per cell=115, 363 

median number of trials per condition per cell=12). After calculating the average spike rates, we 364 

arranged the spike rates into vectors per condition (Fig. 4B). In order to account for the Poisson-365 

like increase of variability with increasing mean firing rates, we applied the square-root 366 

transform to the average firing rates (Yu et al., 2009).  367 

For each cell per condition, we randomly split the square-root spike rates from different 368 

trials into one of two partitions. The random splits contained approximately the same number of 369 

trials, which ensured that each condition was approximately equally represented in each 370 

partition. We then averaged the spike rates within each partition. This yielded two independent 371 

sets of spiking patterns per monkey (10 patterns- 5 fingers x 2 directions). Per partition, we 372 

normalized each neuron’s spike pattern by dividing by the neuron’s max rate across conditions, 373 

and then re-weighted the normalized spike rates per cell according to the number of trials per cell 374 

(cells with more trials were up-weighted, vice versa for cells with fewer trials). Finally, we 375 
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calculated pairwise cross-validated Euclidean distances between the two sets of patterns. We 376 

repeated this RDM calculation procedure 1000x per monkey, each time using a different random 377 

partitioning of the data. We then averaged the RDMs across iterations to yield one RDM 378 

estimate per monkey. We note that results were not dependent on the normalization we chose- 379 

results were qualitatively consistent when using raw firing rates, z-scoring the firing rates, not 380 

applying trial re-weighting, and various combinations of these approaches. 381 

Kinematic finger model RDM 382 
As in Ejaz et al. (2015), we used the statistics of naturalistic hand movements to predict the 383 

relative similarity of single finger representations in M1. In the text we refer to this model as the 384 

kinematic model. To construct the kinematic model RDM, we used hand movement statistics 385 

from an independent study in which 6 male participants wore a cloth glove imbedded with 386 

motion sensory (CyberGlove, Virtual Technologies) while they performed everyday activities 387 

(Ingram, Körding, Howard, & Wolpert, 2008). These statistics included the velocities about joint 388 

angles specific to each of the five fingers of the participants’ right hands. Positive velocities 389 

indicated finger flexion, and negative velocities indicated finger extension. 390 

Because the movement in our finger pressing task was restricted to movements about the 391 

metacarpal (MCP) joint of each finger, we used the MCP joint velocities to predict cortical M1 392 

finger similarity. First, we split the data for each joint velocity into two vectors: one for flexion 393 

and one for extension, taking the absolute of the velocities in this process. During periods of 394 

finger flexion, we set the extension velocity to zero, and vice versa. This resulted in 10 velocity 395 

vectors (5 fingers x 2 directions). Then, to account for differences in scaling, we normalized each 396 

velocity vector to a length of 1. Finally, we calculated the dissimilarities between pairs of these 397 

processed velocity vectors. We averaged these RDMs across the six participants in the natural 398 

statistics dataset, yielding one kinematic model RDM. 399 

Experimental design and statistical analysis  400 

Statistical analysis of dissimilarities 401 
We summarized the RDMs by classifying dissimilarities into finger-specific and direction-402 

specific dissimilarities for each participant and dataset. Finger-specific dissimilarities were the 403 

dissimilarities between conditions where different fingers were pressed in the same direction (10 404 

pairs for flexion, 10 pairs for extension). Direction-specific dissimilarities were the 405 

dissimilarities between conditions where the same finger was pressed in different directions (5 406 
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pairs total). Within each category, dissimilarities were averaged. For the human data, we used 407 

one-sided, one-sample t-tests to test if mean finger and direction dissimilarities were greater than 408 

zero. To compare between the average finger and direction dissimilarities, we used two-sided 409 

paired t-tests. We report the mean and standard error of the dissimilarities where appropriate in 410 

the text. 411 

Statistical analysis of RDM correlations 412 
Pearson’s correlations between the vectorized upper-triangular elements of the RDMs were 413 

used to compare different RDMs (Ejaz et al., 2015). To calculate the stability of RDMs, we 414 

calculated the Pearson’s correlations between all possible pairs of the participants’ RDMs. This 415 

yielded 36 correlations (one per unique participant pair). We Fisher-Z transformed these 416 

correlations and calculated the mean and standard error. We used these values to calculate the 417 

lower and upper bounds of the 95% confidence interval, assuming normality. Finally, the mean 418 

and confidence bounds were transformed back to correlations. We report these values in the text 419 

as r=mean [lower bound - upper bound]. The same method was applied to correlations between 420 

measured RDMs and model predictions. Note that because we used a within-subject design, the 421 

muscle model predictions were specific to each human participant. In contrast, the kinematic 422 

model prediction was the same for each participant because data for this model was obtained 423 

from an independent study. Paired t-tests were performed on Fisher-z transformed correlations to 424 

compare fits between models. 425 

Estimating noise ceiling for RDM model fits 426 
Since the dissimilarities between fMRI patterns can only be estimated with noise, even a 427 

perfect model fit would not result in a perfect correlation with the RDM of each participant. 428 

Therefore, we estimated the noise ceiling, which places bounds on the expected model 429 

correlations if the model is a perfect fit. We first calculated the average correlation of each 430 

participant’s RDM with the group mean RDM (Nili et al., 2014), treating the mean RDM as the 431 

perfect model. The resulting average correlation is an overestimate of the best possible fit, as 432 

each RDM is correlated with a mean that includes that RDM (and hence also the measurement 433 

error of that RDM). To then estimate a lower bound, we calculated the correlation between a 434 

participant’s RDM and the group mean RDM in which that individual was removed. 435 
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Results 436 

M1 fMRI activity patterns differ strongly for different fingers, not for 437 
direction 438 

We measured activity patterns evoked in M1 in human participants (n=9) while they 439 

performed a near-isometric finger flexion-extension task in a 7T MRI scanner. Participants’ right 440 

hands were clamped in a device that had force transducers mounted both above (extension) and 441 

below (flexion) each finger (Fig. 1A) to record forces produced at the distal phalanges. The 442 

device limited the overall degree of movement to a few millimeters, thereby making the task 443 

near-isometric. On each trial, participants were cued to press a single finger in one direction, 444 

while keeping the other fingers as relaxed as possible (Fig. 1B). They had to reach the required 445 

force level, hold it for 1 second, and then simply relax their hand to let the force passively return 446 

to baseline. This aspect of the task instruction was critical to ensure that participants did not 447 

activate the antagonist muscles during release.  448 

Figure 2 shows the activity patterns measured in left M1 (contralateral to movement) for 449 

three participants during right-handed finger presses at 2N. As previously observed (Ejaz et al., 450 

2015), the activity patterns did not consist of focal regions of activity dedicated to each finger. 451 

Rather, the spatial patterns were complex and involved multiple overlapping regions within the 452 

M1 hand area. Furthermore, the inter-subject variability in the spatial organization of these 453 

patterns was considerable. 454 

One common observation across all participants, however, was that the activity patterns 455 

were different between different fingers (e.g. index flexion vs. fourth flexion), but rather similar 456 

for flexion and extension of the same finger (e.g. index flexion vs. index extension). We used 457 

representational similarity analysis (RSA) to quantify these observations by calculating a 458 

measure of dissimilarity (crossnobis dissimilarity, see Methods) between each pair of fMRI 459 

patterns. Large dissimilarity values indicate that the two patterns are quite distinct with little 460 

overlap. A value of zero indicates that the two patterns are identical and only differ by noise. We 461 

restricted the analysis to conditions with matched force levels across flexion and extension. The 462 

group-averaged representational dissimilarity matrix (RDM) is shown in figure 3A. Both within 463 

the finger flexion and extension conditions, there was a characteristic structure with the thumb 464 

activity pattern being the most distinct and neighbouring fingers tending to have more similar 465 

activity patterns. Across directions, activity patterns evoked by pressing the same finger in 466 
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different directions were the most similar. This representational structure was quite stable across 467 

participants (average inter-participant Pearson’s r=0.790, 95% CI: [0.754-0.820]).  468 

To obtain predictions for flexion and extension movements, we needed to adapt the natural 469 

usage model, proposed by Ejaz et al. (2015). This model used kinematic finger data, specifically 470 

the joint-angle velocities of the metacarpal (MCP) joints, recorded while subjects participated in 471 

their normal, every-day tasks (data from Ingram et al., 2008).  472 

Fingers were predicted to have more similar representations if their movement velocities, across 473 

flexion and extension, were positively correlated. For the current experiment, we split the data 474 

into periods of finger flexion and finger extension (see methods), resulting in 10 time series, and 475 

calculated the correlation between them (after taking the absolute value).  476 

The estimated kinematic RDM (Fig. 3B) showed similar structures within flexion and 477 

extension movements. The thumb was the most distinct compared to the other fingers, and for 478 

the remaining fingers there was a clear similarity structure with neighbouring fingers more 479 

similar than non-neighbouring. This structure very closely mirrored those found for fMRI 480 

activity patterns: flexion and extension fMRI RDMs correlated strongly with the corresponding 481 

kinematic models for flexion (r=0.727 [0.635-0.800]) and extension (r=0.797 [0.684-0.873]) 482 

RDMs (Fig. 3C, white). Compared to the noise ceiling (grey bar in Fig 3C, which reflects the 483 

best possible model fit given measurement noise: see methods) the natural use model accounted 484 

for 79.9% and 84.9% of the variance in the flexion and extension fMRI RDMs, respectively.  485 

In contrast, the kinematic model completely failed to predict the relationships between 486 

activity patterns for flexion and extension. Because flexion and extension of the same finger can 487 

never co-occur, the kinematic model predicts that the movements are associated with quite 488 

distinct cortical activity patterns. The measured fMRI patterns, however, were rather similar for 489 

these two actions. As a result, the full kinematic model was not a good fit to the full fMRI RDM 490 

(r=0.086 [0.038-0.133]), much below the noise ceiling (r=0.875 [0.822-0.913]).  491 

Thus, although the statistics of movement co-occurrence was a good predictor 492 

for representational similarity between the activity patterns for different fingers (i.e. within 493 

flexion or extension), this simple model failed to predict the relative organization of the patterns 494 

for flexion and extension of the same finger. Even though flexion and extension of the same 495 

finger cannot co-occur, their fMRI activity patterns were highly similar. In the remainder of the 496 
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paper, we explore a number of possible explanations for this finding and propose a candidate 497 

model of the organization. 498 

Similarities of cortical representations for presses in different 499 
directions cannot be explained by the patterns of muscle activity  500 

We first considered the possibility that the structure of similarity between flexion and 501 

extension presses can be explained by the patterns of muscle activity required by these 502 

movements. Specifically, it is possible that participants co-contracted both agonist and antagonist 503 

muscles, or that they activated the antagonistic muscles when returning to baseline. Given the 504 

temporally sluggish nature of the blood-oxygen level-dependent (BOLD) signal measured with 505 

fMRI, either behaviour could cause the cortical activity patterns evoked during flexion to 506 

resemble activity patterns during extension (and vice versa). Therefore, we conducted a control 507 

experiment with the same participants outside the MR scanner, during which we recorded 508 

surface electromyography (EMG) from 14 sites of the hand and forearm in the participants (Fig. 509 

4A), while they performed the same isometric finger flexion-extension task as in the fMRI 510 

session. Performance on the task was comparable to that during the fMRI scan. 511 

As an example, the participant-averaged EMG data from an electrode placed above the 512 

abductor digiti minimi (ADM) muscle (Fig. 4B) showed that the ADM muscle was recruited 513 

only during the flexion of the little finger. During extension of the same finger, the muscle was 514 

silent, both during hold and release. In general, we found very little evidence for co-contraction 515 

of the antagonist muscle. 516 

For a quantitative analysis, we averaged the muscle activity from the time of the go-cue to 517 

the end of the hold phase. The EMG patterns averaged across participants (Fig. 4C) already 518 

allow for two observations. First, the muscle activities for the same movement at different force 519 

levels were very similar and increased with increasing force. The average correlation across 520 

force levels for each finger-direction combination was high, indicating the same muscles were 521 

consistently recruited to perform the same finger press across different force levels (within 522 

participant correlations: r=0.860 [0.808-0.898]). Second, quite distinct muscle groups were 523 

recruited to produce forces with the same finger in different directions. The average correlation 524 

between the pattern of muscle activity recruited to press the same finger in different directions 525 

was low (within participant correlations: r=0.244 [0.150-0.334]). 526 
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We then derived a muscle-based RDM by calculating the crossnobis dissimilarity between 527 

normalized activity patterns for each condition. As for the fMRI analysis, we included the 528 

patterns for the matched force conditions only. The group averaged matrix RDM (Fig. 4D) was 529 

only moderately stable across participants (average inter-participant Pearson’s r=0.480 [0.379-530 

0.570]), likely reflecting the fact that there was some degree of inter-individual variation in 531 

electrode placement.  532 

We tested to what degree the patterns of muscle activity, specific to each participant, could 533 

explain the cortical similarity structure between individual finger movements within the flexion 534 

or extension directions. For the flexion direction, the fit of the muscle model (r=0.611 [0.408-535 

0.757]) was lower than that for the kinematic model in 6 out of 9 participants (Fig. 3C), but the 536 

difference did not reach statistical significance (one-sided paired t-test kinematic>muscle: 537 

t8=1.775, p=0.0569). For the extension direction, the muscle model fit substantially worse 538 

(r=0.020 [-0.147-0.187]), significantly less than the kinematic model (one-sided paired t-test 539 

kinematic>muscle: t8=5.588, p=2.59e-4). This generally confirms the results reported in Ejaz et 540 

al. (2015) that the relative similarities of M1 finger flexion activity patterns is better explained by 541 

the correlation structure of everyday movements than the correlation structure of the required 542 

muscle activity patterns. Our new results now show that this observation generalized also to 543 

extension movements.  544 

Critically, however, the muscle activity model did not provide a good explanation for the 545 

similarity between flexion and extension patterns. The fit for the full muscle model (r=0.146 546 

[0.055-0.235]) was as poor as for the kinematic model (two-sided paired t-test muscle vs. 547 

kinematic: t8=1.082, p=0.3108) and significantly below the noise ceiling (two-sided paired t-test 548 

noise ceiling vs. muscle: t8=12.701, p=1.39e-6). Thus, neither the co-occurrence of movements, 549 

nor the pattern of muscle activities can explain the high similarity of activity patterns for finger 550 

flexion and extension in M1. 551 

M1 spiking output differs equally for fingers and direction  552 
To what degree is the high similarity between flexion and extension patterns a function of 553 

fMRI as the measurement modality? To approach this question, we analyzed the spiking activity 554 

of output neurons in M1 during an equivalent single-finger individuation task in two trained non-555 

human primates (Macaca mulatta, data from Schieber & Rivlis, 2005 & 2007). To facilitate this, 556 

we had designed the behavioural task for the human fMRI experiment to closely match the task 557 
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for the monkeys, such that we could make strong comparisons across species and measurement 558 

modalities. Figure 5A shows the condition averaged firing rate traces from a single neuron from 559 

this data set. This neuron displayed strong preference (increased firing rates) for flexion of the 560 

middle finger and extension of the index finger. As previously reported (Schieber & Hibbard, 561 

1993), the population of M1 neurons demonstrated complex, heterogeneous tuning across fingers 562 

and directions.  563 

To compare the representational structure from spiking data to that obtained with fMRI, we 564 

calculated the mean firing rate for each neuron from the go-cue onset to the end of the hold phase 565 

during each trial. We then calculated dissimilarities between the population responses for 566 

different conditions (see Methods), similar to the analysis of the human EMG and fMRI data. 567 

The average RDM is shown in Figure 5C. Similar to the structure of representations in human 568 

M1, the thumb activity patterns for both directions were the most distinct, and neighbouring 569 

fingers had more similar activity patterns. In contrast to the fMRI data, however, the spiking 570 

patterns for flexion and extension of the same finger were quite distinct.  571 

To quantify this observation, we averaged dissimilarities between different fingers pressing 572 

in the same direction (finger-specific) and the same finger pressing in different directions 573 

(direction-specific). The finger and direction-specific dissimilarities were close in magnitude for 574 

both monkeys (Fig. 6A). Also, the human EMG patterns had roughly matched direction and 575 

finger-specific dissimilarities (Fig. 6B). In contrast, the same analysis on the human fMRI data 576 

showed a clear and significant difference between these two kinds of dissimilarities (Fig. 6C).  577 

For a statistical comparison, we then calculated the ratio between dissimilarities between 578 

different directions and dissimilarities between different fingers (Fig. 6D). The fMRI ratio was 579 

significantly lower than 1 (mean ratio=0.298 ±0.071; one-sided one-sample t-test: t8=-9.858, 580 

p=4.72e-6), indicating stronger representation of fingers compared to direction. In contrast, both 581 

the spiking patterns (monkey C ratio=1.173, monkey G ratio=1.025) and the human muscle 582 

patterns (mean ratio=0.984 ±0.051) differed similarly for different fingers and different 583 

directions, with the muscle ratios being significantly larger than those for human fMRI (two-584 

sided paired t-test: t8=9.733, p=1.04e-5). Thus, we found a clear difference between the structure 585 

of fMRI patterns and the structures of spiking and muscle activity patterns.  586 

We suggest that this difference is informative about the general organization of finger 587 

flexion and extension movements in M1. The discrepancy between the two measurement 588 
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modalities can likely be attributed to two (non-mutually exclusive) differences between fMRI 589 

and electrophysiology. First, the fMRI signal is dominated by excitatory inputs and local 590 

synaptic signaling, and only partly reflects the spiking activity of output neurons (Logothetis, 591 

Pauls, Augath, Trinath, & Oeltermann, 2001). Therefore, the overlapping fMRI activity patterns 592 

for flexion and extension might reflect similar inputs and shared local processes within these 593 

cortical areas, while the output spiking of these two population remains quite distinct in order to 594 

produce the different patterns of muscle activity required for fine finger control.  595 

Second, fMRI samples a proxy of neuronal activity in a coarse manner, averaging across 596 

~200,000 cortical neurons per mm3 in M1 (Young, Collins, & Kaas, 2013). Thus, even high-597 

resolution fMRI is biased to functional organization at a coarse spatial scale (Kriegeskorte & 598 

Diedrichsen, 2016), and so our results could be caused by an organization where neurons tuned 599 

to different movement directions for the same finger (or combination of fingers) are clustered 600 

together, while neurons that control different fingers or finger combinations are more spatially 601 

separated. 602 

Spatial organization of finger and direction related fMRI patterns  603 
To investigate the second explanation directly, we attempted to determine whether the 604 

activity patterns associated with different fingers were organized on a coarser spatial scale than 605 

the patterns associated with flexion and extension of a given finger. Using the fMRI data, we 606 

calculated to covariance of the finger-specific and direction-specific activations for each pair of 607 

voxels within M1, and binned these covariances according to the spatial distance between voxel 608 

pairs (see Methods). If direction is encoded at a finer spatial scale than fingers, we would expect 609 

finger effects to be correlated over larger spatial distances. 610 

In contrast to this prediction, the spatial correlation functions for fingers and direction were 611 

quite similar (Fig. 6E). We estimated the full-width at half-maximum (FWHM) of the spatial 612 

autocorrelation functions. To account for outliers, we evaluated the median FWHMs. The 613 

median FWHM of the finger spatial kernel in M1 was 3.22mm (mean=3.44mm ±0.24 sem), 614 

comparable to previous reports (Diedrichsen, Ridgway, Friston, & Wiestler, 2011; Wiestler, 615 

McGonigle, & Diedrichsen, 2011). The median FWHM of the direction spatial kernel in M1 was 616 

4.65mm (mean=4.77mm ±0.84 sem), and there was no significant difference between the two 617 

(two-sided paired Wilcoxon signed-rank test, finger vs. direction: W=11, p=0.2031; two-sided 618 

paired t-test finger vs. direction: t8=-1.417, p=0.1942). Therefore, we did not find any direct 619 
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empirical support for the idea that differences between flexion and extension patterns are 620 

organized at a finer spatial scale than differences between fingers. However, our analysis was 621 

itself limited by the spatial resolution of 7T fMRI, such that we cannot rule out the possibility 622 

that subpopulations for different directions are interdigitated at a sub-voxel scale. 623 

Additionally, we did not find evidence of a substantial spatial separation of flexion vs. 624 

extension movements, as was suggested by Huber et al. (2020). These authors observed two sets 625 

of digit maps in Brodmann area 4a, with one set being more activated for whole hand grasping, 626 

and the other more activated for whole hand retraction movements. From this, the authors 627 

suggested that each individual finger map has a preferential function role in guiding flexion and 628 

extension movements. To test this idea with our fMRI data, we calculated the centre-of-gravity 629 

(CoG) of the activity maps for each finger pressing in the flexion and extension directions in 630 

Brodmann area 4a (see Methods).  631 

As shown in figure 6F, both finger flexion and extension CoGs revealed the expected overall 632 

somatotopic gradient, with thumb movements activating more ventrolateral areas and the little 633 

finger activating more dorsomedial areas in 4a (2-factor repeated-measures MANOVA, finger 634 

factor: Wilks’ Λ(4,32)=0.28, p=2.2075e-6). However, there was no significant difference in these 635 

digit maps across flexion and extension movements (2-factor repeated-measures MANOVA, 636 

direction factor: Wilks’ Λ(1,8)=0.88, p=0.6427; finger x direction interaction: Wilks’ Λ(4,32)=0.65, 637 

p=0.0793). We then calculated the pairwise Euclidean distances between the condition CoGs 638 

(Fig. 6G) and compared the between and within finger distances, as done previously. Replicating 639 

the results from the fMRI RSA analysis, we found that pressing different fingers resulted in more 640 

spatially distinct activation patterns compared to pressing the same finger in different directions 641 

(mean ratio=0.67 ±0.04; one-sided one-sample t-test ratio<1: t8=-8.003, p=4.356e-5). This 642 

finding in inconsistent with the idea of separate flexion and extension finger maps.  643 
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Discussion 644 
Here we investigated how the population activity in M1 is organized for control of flexion 645 

and extension of single fingers. We analyzed M1 population activity measured in humans with 646 

7T fMRI and spiking data from NHPs while participants made isometric single finger presses in 647 

either direction. Importantly, we ensured the behavioural tasks in both experiments were 648 

carefully matched to allow us to compare results across the two datasets.  649 

We first demonstrated that the representational structure of single finger flexion or extension 650 

presses in human M1 measured with fMRI were relatively well explained by the natural statistics 651 

of every-day movements, replicating the flexion results reported in Ejaz et al. (2015) and 652 

extending them to single finger extension movements. The same model, however, failed to 653 

correctly predict the relationship between flexion and extension movements. Because flexion and 654 

extension of the same finger cannot temporally co-occur, the model predicted quite separate 655 

representations for the two actions. In our data, however, we observed the opposite effect – 656 

cortical M1 activity patterns measured with fMRI in humans were very similar for the flexion 657 

and extension of the same finger, as compared to the quite distinct patterns for different fingers. 658 

We also analyzed spiking data from a similar task in two monkeys and found that the similarity 659 

of finger flexion and extension were specific to fMRI: In the monkey electrophysiological 660 

recordings, different movement directions were associated with distinct patterns of neuronal 661 

activity.  662 

The discrepancy between the fMRI and electrophysiological measures suggest a specific 663 

organization of finger flexion and extension movements in M1 (Fig. 7). This suggested 664 

architecture has two characteristics that likely contribute to the observed difference between 665 

measurement modalities.  666 

First, we hypothesize that neurons that contribute to the flexion of a finger receive similar 667 

sensory input as neurons that contribute to the extension of the same finger (dashed line, Fig. 7). 668 

There is evidence in the literature to support such an organization. In macaque M1, single 669 

neurons tuned to torque production at the shoulder integrate information from the shoulder and 670 

elbow joints to facilitate rapid corrective responses to mechanical arm perturbations (Pruszynski 671 

et al., 2011). Thus, these neurons receive common sensory input about the shoulder and elbow 672 

joints, but the output is largely specific to movements about the shoulder. Additionally, units 673 

controlling flexion and extension of the same finger a likely to directly communicate with each 674 
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other (curved solid arrows, Fig. 7). Such coordination would be necessary to orchestrate fast 675 

alternation of finger movements and to finely control the grip force during object manipulation. 676 

This organization would lead to highly similar fMRI activity patterns. In cortical grey 677 

matter, the BOLD signal measured with fMRI reflects mainly excitatory postsynaptic potentials 678 

(EPSPs), caused by input to a region or recurrent activity within a region (Logothetis et al., 679 

2001). This is because much of the metabolic costs associated with signal transmission arise 680 

from re-establishing resting membrane potential of neurons after an EPSP (Attwell & Laughlin, 681 

2001; Magistretti & Allaman, 2015; Yu et al., 2018). Given that the input to subpopulations 682 

controlling flexion and extension of the same finger will be highly temporally correlated, the 683 

fMRI activity patterns for the two movements should also be very similar.  684 

At the same time, the two subpopulations need to produce distinct spiking outputs. To do so, 685 

the populations must receive a control signal input that defines whether to flex or extend a finger. 686 

Indeed, in our fMRI data, although flexion and extension patterns for the same finger were 687 

highly similar, we could still discriminate between the patterns. This control signal would 688 

influence how neurons react to sensory inputs and the information they exchange. Thus, the 689 

observed local variations in metabolic activity would be dissociated from the local neural firing 690 

rates (Picard, Matsuzaka, & Strick, 2013). 691 

As a second characteristic, we also hypothesize that units controlling muscle patterns that 692 

produce flexion and extension of the same effector are spatially co-localized to support fast and 693 

efficient communication. Because fMRI samples activity in a coarse manner, even high-694 

resolution fMRI is biased to functional organization at a coarse spatial scale (Kriegeskorte & 695 

Diedrichsen, 2016). Therefore, features that exist at fine spatial scales in the neural population 696 

are under-represented in fMRI activity patterns. Our results could therefore be caused by an 697 

organization where neurons tuned to different movement directions for the same finger (or 698 

combination of fingers) are clustered together, while neurons that control different fingers or 699 

finger combinations are more spatially separated. We did not find any evidence for a difference 700 

in spatial organization of fingers and direction in the fMRI data. However, given that this 701 

comparison itself is limited by the spatial resolution of fMRI, we cannot rule out that differences 702 

in the fine-grained spatial organization also contributed to the observed effect.  703 

Although we experimentally studied the flexion and extension of single fingers, we do not 704 

suggest that isolated finger movements are explicitly represented in M1. Rather, M1 output 705 
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neurons will produce a complex pattern of muscle activity. This complexity likely arises because 706 

the neuronal populations are optimized to produce muscle activities which elicit combinations of 707 

finger movements that are useful in everyday tasks (Poliakov & Schieber, 1999; Gentner & 708 

Classen, 2006; Ejaz et al., 2015). When we measure activity patterns related to movements of 709 

isolated fingers, we simply observe the specific combination of neuronal populations that need to 710 

be active to move a single finger (Schieber, 1990). The core of our hypothesis is that populations 711 

of neurons that produce opposing muscular patterns form a functional unit with increased 712 

communication, common sensory input, and potentially also spatial co-localization.  713 

Our findings are at odds with the organization suggested by Huber et al. (2020). Using high-714 

resolution functional imaging in humans, the authors reported evidence of two spatially distinct 715 

finger maps in M1, one for flexion and one for extension. Consistent with Huber et al., we found 716 

that individuated finger activity patterns in M1 are fractured and have multiple hotspots (Fig. 2). 717 

However, we found no evidence for a clear spatial separation of flexion and extension finger into 718 

two action maps (Fig 6F-G). Even though the spatial resolution of BOLD imaging in our study 719 

was lower than that of the blood-volume based method employed by Huber et al., we should 720 

have been able to detect larger spatial separations between flexion and extension movements 721 

than between individual fingers. Instead, the opposite was the case. Both the RSA and the spatial 722 

analyses showed greater differences between fingers than between directions. These results, 723 

however, are not unexpected. Partial inactivation of neurons in the hand area of macaque M1 724 

result in a complex loss of flexion and/or extension movements of different fingers (Schieber & 725 

Poliakov, 1998), and electrophysiological recordings from this same area show flexion and 726 

extension preference is not spatially clustered (Schieber & Hibbard, 1993). We believe that the 727 

differences between our results and those of Huber et al. are likely explained by the fact that 728 

Huber et al. did not study flexion and extension of individual fingers, but relied on a large spatial 729 

gradient detected between whole-hand grasping and retraction. We think this is problematic, as 730 

the control requirements of individual finger movements is qualitatively different from those of 731 

whole hand grasping. That is, neuronal activity during whole hand grasping is not the sum of the 732 

neural activity during individuated finger flexion movements (Ejaz et al., 2015), but rather 733 

engages a different control mechanism. Consistent with this idea, electrophysiological studies 734 

have shown that the neural control of whole hand and individuated finger movements relies on 735 

different neural subpopulations (Muir & Lemon, 1983; Lemon, 2008).  736 
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There are of course many caveats when comparing results across different recording 737 

methodologies, experimental setups, and species. While we tried to make the behavioural tasks 738 

across human and macaques as similar as possible, species differences or the extensive training 739 

for the non-human primates may account for some of the differences.  740 

Overall, however, we believe that the comparison between fMRI and spiking provides some 741 

interesting insights into the organization of the hand region of the primary motor cortex. Cortical 742 

representations of single finger movements are not purely dictated by the kinematics of hand 743 

usage. We posit that the deviation from this organization appears to reflect a control process, 744 

where neurons tuned to movements of a specific finger receive common sensory input and share 745 

local recurrent processes. These tightly coordinated populations then produce the spiking output 746 

that needs to be quite distinct for the flexion and extension of the same finger.   747 
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Figure Legends 
Figure 1. Experiment paradigms. (A) Human participants made isometric single finger presses 882 

in the flexion and extension directions on a custom-built keyboard. Each finger of the right hand 883 

was clamped between two keys, and each key was associated with a force transducer either 884 

above (keyboard on top of hand) or below (keyboard under the hand) the key to monitor forces 885 

applied in the flexion and extension directions, respectively. (B) Schematic illustration fo a 886 

single trial in the fMRI and EMG sessions, with associated visual feedback shown below. The 887 

white lines represent the produced force for each finger. Applying flexion to a finger key moved 888 

the associated line down (vice-versa for extension). The cue box (centred at target force) was 889 

initially presented as white at the trial start, and turned green to cue the participant to make the 890 

finger press (here, index finger extension). The box turned blue to instruct participants to 891 

maintain the current force. At the end of the press hold, the cue box disappeared and participants 892 

relaxed their hand. (C) The monkey hand configuration and device (illustration from Schieber, 893 

1991). (D) Trial schematic for the monkey task. The columns represent 5 LED cues (one per 894 

finger) which instructed the monkey both what finger and what direction to press. The monkeys 895 

had up to 700ms from the onset of the go cue to press the cued finger in the cued direction. They 896 

were trained to hold the press for 500ms before relaxing the finger. 897 

 898 

Figure 2. fMRI activity patterns for finger flexion and extension in human M1. Evoked 899 

fMRI activity maps (t-values) for three participants for each of the 5 fingers pressing in the 900 

extension and flexion directions at 2N. Results were normalized to a surface-based atlas. Maps 901 

are shown in the hand-knob region of the left (contralateral) hemisphere. The black dotted line 902 

shows the fundus of the central sulcus. The upper inset shows the average sulcal depth. 903 

 904 

Figure 3. Representational structure of fingers and direction in human M1. (A) Group 905 

average of the fMRI representational dissimilarity matrix (RDM). (B) Predicted RDM from the 906 

kinematic model. To aid visual inspection, the values of the RDMs in A and B are plotted as the 907 

square-root of the dissimilarities. All statistical analyses of the RDMs are done on squared 908 

distances. (C) Model fits (Pearson’s correlation) of the kinematic (white) and muscle (grey) 909 

models to the M1 RDM for flexion, extension, and the full RDMs (the indicies for each RDM 910 

are shown on the right). The muscle model was specific to each participant and was estimated 911 
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from the EMG data. The grey bars denote noise ceilings (theoretically the best possible fits). 912 

Each dot reflects one participant, and thin grey lines connect fits of each model to the same 913 

participant. Black bars denote the means, and black dashed lines denoted the mean paired 914 

difference. *significant differences between model fits (one-sided paired t-test, p<0.05); 915 ⟊ significantly lower than the noise ceiling (two-sided paired t-test, p<0.05); n.s. not significant 916 

(p>0.05). 917 

 918 

Figure 4. Quantifying similarity of muscle activity patterns during finger flexion and 919 

extension. (A) Fourteen surface electrode sites. (B) Group averaged normalized EMG 920 

(normalized, per participant, to peak activity from this electrode across trials) from the abductor 921 

digiti minimi (ADM) muscle during 2N little finger (5) flexion (dark grey) and extension (light 922 

grey) trials, aligned to hold onset (0s). During extension movement (light grey trace, >1000ms), 923 

this flexor muscle was not recruited. Shaded areas reflect standard error of the mean. Traces 924 

were smoothed with a gaussian kernel (FWHM=25ms). (C) Average muscle activity across 925 

participants, normalized by peak activation across conditions (per participant), recorded from the 926 

14 electrode sites during the flexion extension task. Each condition was measured under 3 force 927 

conditions. (D) Group average representational dissimilarity matrix (RDM) of the muscle 928 

activity patterns. As in figure 2, the RDM is plotted as square-root dissimilarities to aid visual 929 

inspection. 930 

 931 

Figure 5. Analysis of M1 spiking activity during monkey single finger flexion and 932 

extension. (A) Trial averaged firing rates from one cell (monkey C). Traces are aligned to press 933 

onset (0s). This cell demonstrates selective tuning to middle finger flexion and index finger 934 

extension. Firing rates were calculated for 10ms bins and smoothed with a gaussian kernel 935 

(FWHM=50ms). Shaded areas reflect standard error across trials. (B) Averaged firing rates for a 936 

subset of cells from monkey C, arranged by condition. Cell #13 is plotted in A. Firing rates are 937 

normalized to the peak rate per cell. (C) Average monkey RDM (square-root dissimilarities). 938 

 939 

Figure 6. Comparing strength of finger and direction representations across datasets. The 940 

average finger and direction-specific dissimilarities for the spiking (A), human EMG (B), and 941 

human fMRI (C) datasets. Each dot denotes one participant, and lines connect dots from the 942 
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same participants. Black bars denote the means, and black dashed lines reflect the mean paired 943 

differences. ⟊  dissimilarities significantly larger than zero (one-sided t-test, p<0.05). *significant 944 

difference between finger and direction dissimilarities (two-sided paired t-test, p<0.05). (D) The 945 

ratio of the direction-to-finger dissimilarities for each dataset. Values <1 indicate stronger finger 946 

representation. ⟊ dissimilarities significantly lower than one (one-sided t-test, p<0.05). 947 

*significant differences between dissimilarity ratios (two-sided paired t-test, p<0.05). (E) 948 

Estimated spatial autocorrelations of finger (black) and direction (grey) pattern components in 949 

human M1, plotted as a function of spatial distance between voxels. No significant difference 950 

was observed between finger and direction tuning in M1. The thick lines denote the median 951 

spatial autocorrelation functions, and small lines are drawn for each participant for each pattern 952 

component. The vertical shaded bar denotes the distance between voxel size, for which 953 

correlations can be induced by motion correction. (F) Centre-of-gravity (CoG) of activation 954 

elicited by single finger presses in the flexion or extension direction for each participant. CoGs 955 

were aligned across participants prior to plotting by subtracting the centre of the informative 956 

region within each participant (i.e the mean CoG across all conditions). A somatotopic gradient 957 

for finger flexion and extension in Brodmann area 4a is visible with the thumb being more 958 

ventral and the little finger more dorsal. (G) Group average RDM of the paired Euclidean 959 

distance between condition CoGs. 960 

 961 

Figure 7. Summary model of M1 organization. Output neurons in M1 produce complex 962 

patterns of muscular activity. We refer to groups of neurons that, together, evoke a complex 963 

pattern of muscle activty that results in single finger movements as functional units (circles). 964 

These functional units receive a control signal input for the upcoming movement (solid lines 965 

with arrows). Functional units that evoke movements of the same finger in opposite directions 966 

receive common inputs (dashed lines) and share strong recurrent connections (circular lines). 967 

The spiking output (solid lines without arrows) of these units, however, is directionally specific. 968 

Additionally, under the spatial scale model, functional units tuned to finger movements in 969 

different directions are clustered together according to their finger tuning. 970 
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