
Western University Western University 

Scholarship@Western Scholarship@Western 

Brain and Mind Institute Researchers' 
Publications Brain and Mind Institute 

12-1-2020 

Coexistence of perseveration and apathy in the TDP-43Coexistence of perseveration and apathy in the TDP-43Q331K Q331K 

knock-in mouse model of ALS–FTD knock-in mouse model of ALS–FTD 

Eosu Kim 
Yonsei University College of Medicine 

Matthew A. White 
King's College London 

Benjamin U. Phillips 
Behavioural and Clinical Neuroscience Institute 

Laura Lopez-Cruz 
Behavioural and Clinical Neuroscience Institute 

Hyunjeong Kim 
Yonsei University College of Medicine 

See next page for additional authors 

Follow this and additional works at: https://ir.lib.uwo.ca/brainpub 

 Part of the Neurosciences Commons, and the Psychology Commons 

Citation of this paper: Citation of this paper: 
Kim, Eosu; White, Matthew A.; Phillips, Benjamin U.; Lopez-Cruz, Laura; Kim, Hyunjeong; Heath, 
Christopher J.; Lee, Jong Eun; Saksida, Lisa M.; Sreedharan, Jemeen; and Bussey, Timothy J., 

"Coexistence of perseveration and apathy in the TDP-43Q331K knock-in mouse model of ALS–FTD" 
(2020). Brain and Mind Institute Researchers' Publications. 374. 
https://ir.lib.uwo.ca/brainpub/374 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/389658209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/brainpub
https://ir.lib.uwo.ca/brainpub
https://ir.lib.uwo.ca/brain
https://ir.lib.uwo.ca/brainpub?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1010?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/404?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/brainpub/374?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Eosu Kim, Matthew A. White, Benjamin U. Phillips, Laura Lopez-Cruz, Hyunjeong Kim, Christopher J. 
Heath, Jong Eun Lee, Lisa M. Saksida, Jemeen Sreedharan, and Timothy J. Bussey 

This article is available at Scholarship@Western: https://ir.lib.uwo.ca/brainpub/374 

https://ir.lib.uwo.ca/brainpub/374


Kim et al. Translational Psychiatry          (2020) 10:377 

https://doi.org/10.1038/s41398-020-01078-9 Translational Psychiatry

ART ICLE Open Ac ce s s

Coexistence of perseveration and apathy in the
TDP-43Q331K knock-in mouse model of ALS–FTD
Eosu Kim 1,2, Matthew A. White3, Benjamin U. Phillips2,4, Laura Lopez-Cruz2,5, Hyunjeong Kim1,2,6,
Christopher J. Heath5, Jong Eun Lee 6, Lisa M. Saksida2,7,8, Jemeen Sreedharan 3 and Timothy J. Bussey 2,7,8

Abstract
Perseveration and apathy are two of the most common behavioural and psychological symptoms of dementia (BPSDs)
in amyotrophic lateral sclerosis–frontotemporal dementia (ALS–FTD). Availability of a validated and behaviourally
characterised animal model is crucial for translational research into BPSD in the FTD context. We behaviourally
evaluated the male TDP-43Q331K mouse, an ALS–FTD model with a human-equivalent mutation (TDP-43Q331K) knocked
into the endogenous Tardbp gene. We utilised a panel of behavioural tasks delivered using the rodent touchscreen
apparatus, including progressive ratio (PR), extinction and visual discrimination/reversal learning (VDR) assays to
examine motivation, response inhibition and cognitive flexibility, respectively. Relative to WT littermates, TDP-43Q331K

mice exhibited increased responding under a PR schedule. While elevated PR responding is typically an indication of
increased motivation for reward, a trial-by-trial response rate analysis revealed that TDP-43Q331K mice exhibited
decreased maximal response rate and slower response decay rate, suggestive of reduced motivation and a
perseverative behavioural phenotype, respectively. In the extinction assay, TDP-43Q331K mice displayed increased
omissions during the early phase of each session, consistent with a deficit in activational motivation. Finally, the VDR
task revealed cognitive inflexibility, manifesting as stimulus-bound perseveration. Together, our data indicate that male
TDP-43Q331K mice exhibit a perseverative phenotype with some evidence of apathy-like behaviour, similar to BPSDs
observed in human ALS–FTD patients. The TDP-43Q331K knock-in mouse therefore has features that recommend it as a
useful platform to facilitate translational research into behavioural symptoms in the context of ALS–FTD.

Introduction
Amyotrophic lateral sclerosis (ALS) and frontotemporal

dementia (FTD) exist on a clinicopathological spectrum,
referred to as ALS–FTD complex or FTD with motor
neuron disease1,2. While patients diagnosed with ALS
primarily present with motor deficits and degeneration of
motor neurons, FTD, especially the behavioural variant
subtype, is usually associated with cognitive and

behavioural symptoms. However, particularly distressing
to both patients with FTD and their caregivers are the
behavioural and psychological symptoms of dementia
(BPSDs), which damage quality of life and accelerate
disease progression, leading to earlier institutionalisa-
tion3–6. Two of the most common BPSDs seen in FTD or
ALS–FTD are perseveration (inappropriate repetitive
behaviour) and apathy (reduced motivation)5–9. Despite
the substantial impact of BPSD in FTD, our under-
standing of BPSD in these patients is still lacking. One of
the reasons for this may be a limited availability of
translationally appropriate animal models of ALS–FTD,
and reliable methodologies with which to study complex
behaviours in such models.
Almost all cases of ALS and half of FTD cases are

characterised by pathological inclusions of the RNA-
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binding protein TDP-4310,11. The identification of muta-
tions in the gene encoding TDP-43 (TARDBP) in ALS and
FTD indicates a mechanistic link between TDP-43 and
neurodegeneration12,13. To better understand the role
that TDP-43 plays in disease, we recently created a novel

ALS–FTD mouse model harbouring a human-equivalent
point mutation (TDP-43Q331K) in the endogenous mouse
Tardbp gene12,14,15. We found that the TDP-43Q331K

knock-in mouse (referred to herein as the TDP-43Q331K

mouse) exhibits cognitive symptoms typical of FTD such

Fig. 1 Progressive-ratio (PR) schedules show enhanced responding in TDP-43Q331K mice. A Behavioural assessments and the age of animals at
which these tasks were conducted. B–J Motivation levels were evaluated using PR schedules. B PR4 breakpoint; main effect of genotype, F(1,30)=
4.08, P= 0.052; main effect of feeding, F(1,27)= 62.81, P < 0.0001; genotype × feeding interaction, F(1,27)= 0.53, P= 0.474. C Total number of correct
responses; main effect of genotype, F(1,30)= 3.69, P= 0.064; main effect of feeding, F(1,27)= 33.99, P < 0.0001; genotype × feeding interaction, F
(1,27)= 0.84, P= 0.368. D Reward collection latency; main effect of genotype, F(1,30)= 0.02, P= 0.881; main effect of feeding, F(1,28)= 4.43, P=
0.044; genotype × feeding interaction, F(1,28)= 1.94, P= 0.174. E PR8 breakpoint; P= 0.388. F PR8 total number of correct responses; P= 0.306. G
PR8 reward collection latency; P= 0.035. H PR12 breakpoint; P= 0.047. I PR12 total number of correct responses; P= 0.025. J PR12 reward collection
latency; P= 0.102. n= 15–16 per genotype.
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as inattention and memory impairment14. The TDP-
43Q331K mouse also demonstrates altered splicing of the
Mapt gene, which encodes the protein tau, which is also
closely associated with FTD pathogenesis16. This knock-in
model may have greater translational value than other
existing transgenic models as the observed phenotypes
cannot be overexpression artefacts and are therefore more
likely to reflect pathogenic changes that occur in human
ALS–FTD14.
Given the cognitive similarities between the TDP-

43Q331K mouse and ALS–FTD, here we evaluated these
animals for evidence of abnormal behaviours consistent
with human BPSDs, using the touchscreen-operant
chamber system, which enables comprehensive and sen-
sitive behavioural measures across multiple domains17.
Specifically, we report that the male TDP-43Q331K mice
exhibit perseveration and evidence of apathy-like beha-
viour. Our findings highlight the utility of this animal
model and the touchscreen-operant system in studying
the behavioural symptoms of ALS–FTD.

Materials and methods
Animals
Generation of the TDP-43Q331K knock-in mutant mouse

was described previously14. A total of 32 aged-matched
male mice (16 homozygous mutants, TDP-43Q331K/Q331K

and 16 littermate wild types, TDP-43+/+) were housed in
groups of 2–5 per cage under a 12-h light/dark cycle
(lights on at 7:00 pm). Sample size for behavioural testing
was based on our historical touchscreen data, which
indicates thr required group sizes of 15 animals per gen-
otype to detect an ~20% difference in performance
between groups. The order and genotype of animals tested
were randomised by one operator before subsequent
experimental studies were conducted by a second inves-
tigator14. All behavioural testing was conducted during the
dark phase. Animals were evaluated by a series of beha-
vioural tasks from 8 to 24 months of age (Fig. 1A). Animals
were food-restricted so that they were maintained at 85%
of free-feeding weight by daily provision of chow pellets
(RM3, Special Diet Services, Essex, UK). Drinking water
was available ad libitum. All experiments were conducted
in accordance with the United Kingdom Animals (Scien-
tific Procedures) Act (1986) and the United Kingdom
Animals (Scientific Procedures) Act (1986) Amendment
Regulations 2012 and reviewed and approved by the
University of Cambridge AWERB.

Apparatus and reagents
Cognitive testing was performed in Bussey-Saksida

touchscreen chambers (Campden Instruments Ltd.,
Loughborough, UK) as detailed elsewhere17. Milkshake
(Yazoo®, FrieslandCampina UK, Horsham, UK) was used
as an appetitive operant reinforcer18.

Fixed and progressive ratios (FR/PR)
The animals involved in this study had previously

undergone touchscreen-based cognitive testing including
the 5-choice serial reaction time task (5-CSRTT) and FR/
PR schedules (at 7 months of age) as reported in our prior
publication14, thereby enabling a condensed behavioural
training programme to be used, with apparatus habitua-
tion and Pavlovian pretraining phases omitted. The
touchscreen FR and PR schedules have been described
previously19,20. Briefly, animals were first trained to
complete 30 trials in 30-min FR1 sessions and trained to
FR3 and FR5. After completion of FR5, animals were
evaluated in PR schedule, in which the reward response
requirement was increased on a linear + n basis (i.e., in
PR4; 1, 5, 9 and 13) upon completion of each trial. The
sessions terminated if no response to the screen or
magazine entry was detected in 5min. PR performance
was evaluated by breakpoint, which is defined as the
number of target responses emitted in the last successfully
completed trial of a session.
As we had previously observed hyperphagia in TDP-

43Q331K mice14, we also assessed performance on the
PR4 schedule following milkshake prefeeding to control
for potential genotype differences in reinforcer valua-
tion21. In prefeeding sessions, animals were allowed
60 min of free access to a bowl of milkshake put in the
touchscreen chamber prior to PR testing.
To further characterise PR performance, we also con-

ducted within-session response rate analysis in the first
PR session, as previously described18,21–23. The total
response time (TRT) of each trial was converted to rate
(responses per minute) and fitted with the equation, y=
a^(−b*x), using non-linear least-squares regression, in
which x indicates the number of trials and y is the
response rate. From this model, we obtained predicted
values for the peak response rate (a) and decay rate (b) for
individual animals. The peak response rate (a) suggests
the maximum level of motivation of each animal to obtain
reward, while the decay rate (b) indicates how this moti-
vation diminishes across subsequent trials. Here we used
this analysis on data collected from the PR4 and
PR8 schedules as we found that the PR12 schedule
resulted in data that could not be reliably fitted to the
model equation. All touchscreen testing was conducted
blind to genotype.

Evaluation of food intake
To assess for hyperphagia (a clinical feature of FTD), we

measured food intake in two ways. Firstly, we measured
the intake of freely available food by placing individual
animals in touchscreen chambers with a bowl of straw-
berry milkshake for 60 min. Secondly, we determined the
effect of introducing a low-effort work requirement on
intake by assessing animals in a 60-min FR1 session where
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the maximum number of trials available was uncapped
(FR1-uncapped). In both cases, animals were assessed in a
familiar environment (the touchscreen chamber to which
they had been previously habituated), thereby providing
measures of food intake in low-stress conditions. These
procedures were performed 60 min before animals routi-
nely received their daily allocation of RM3 diet.

Extinction task
Animals were first trained to complete 30 FR1 trials in

12.5 min for 5 consecutive days. During the following
extinction phase, the same screen stimulus was displayed
in the same screen location, but disappeared when tou-
ched (response) or after 10 s of presentation (omission).
No reinforcement was provided, regardless of response or
omission. Each extinction session consisted of 30 trials
with a 4.5-s ITI. The extinction task was performed until
trial omission reached at least 77% in two consecutive
sessions. Ten days after the last extinction session, ani-
mals underwent a 12.5-min/30-trial reinstatement ses-
sion, in which only the first three responses were
rewarded17.

Rolling wire hang test
Neuromuscluar strength was evaluated by the rolling

wire hang test described elsewhere24. Animals first
underwent 5-min habituation and were tested on a
separate day. Testing was limited to 5 min, and the latency
to fall off was recorded. All testing was conducted blind to
genotype.

Visual discrimination and reversal (VDR) task
Discrimination acquisition
Detailed procedures of touchscreen visual discrimina-

tion are described elsewhere17,25. Discrimination-
acquisition criterion was ≥80% correct response for 2
consecutive days. Two mice (one from each genotype)
which had not reached this criterion in 20 sessions were
excluded.

Reversal
After discrimination acquisition, animals received two

further discrimination sessions to reinforce reward con-
tingencies and ensure stable baseline performance. On the
following day, the correct and incorrect contingencies
were reversed, and all mice received reversal sessions
under the new contingencies until the last (slowest to
reverse) mouse reached ≥50% correct response for two
consecutive sessions. In contrast to discrimination
acquisition, we did not include correction trial in reversal,
since the main purpose of this assessment phase was to
examine perseveration rather than the learning of a new
association, with the prior reported to dominate the

reversal phase until performance exceeds 50% correct and
at which point new learning begins25,26.

Statistical analysis
Statistical analyses were conducted using R version 3.3.0

(https://www.r-project.org) and Prism version 8 (Graph-
Pad Software, Inc., San Diego, CA, USA). Normality of
data was examined by D’Agostino–Pearson omnibus test.
Between-group differences were evaluated using t test, if
needed for different group variance, with Welch’s cor-
rection or Mann–Whitney U test in cases where data
were not normally distributed. Repeated-measures data
were analysed by mixed-effects models to identify the
main effects of group or session and group-by-session
interactions. Data are presented as mean ± standard error
(SEM). Significance was set at α < 0.05.

Results
TDP-43Q331K mice show increased responding under PR
schedules
To determine if TDP-43Q331K mice demonstrate

reduced motivation (apathy), we used touchscreen FR/PR
schedules. Since TDP-43Q331K mice in a free-feeding state
showed hyperphagia14, we conducted PR4 with and
without prefeeding to control for potential genotype dif-
ferences in appetite or reinforcer valuation. Neither a
main effect of genotype or genotype × feeding condition
interaction was identified (Fig. 1B, C). As expected, pre-
feeding was associated with an increased reward collec-
tion latency (Fig. 1D), but was not genotype dependent. A
trend towards a higher breakpoint in TDP-43Q331K mice
was detected under the PR4 schedule.
We then transitioned the mice to systematically more

demanding PR schedules (PR8 and PR12) to determine if
a greater rate of work-requirement increase would more
fully unmask a genotype difference. In PR8, no main effect
of genotype was detected on breakpoint or total touches
(Fig. 1E, F), but reward collection latency was significantly
increased in the TDP-43Q331K group (Fig. 1G).
Unexpectedly, under the PR12 schedule, the TDP-

43Q331K mice showed a significantly higher breakpoint
(Fig. 1H) and a higher number of total correct touches
(Fig. 1I) with a similar reward collection latency relative to
wild-type (WT) littermates (Fig. 1J). Blank touches were
similar between genotypes across PR schedules (Supple-
mentary Fig. 1A–C), suggesting equivalent target specifi-
city and engagement.
Higher PR breakpoint is canonically associated with

increased motivation for reward, although the incon-
sistent genotype-dependent effects across the different PR
schedules observed here suggested a more complex phe-
notypic presentation. Given the frontal lobe dysfunction,
previously characterised in the TDP-43Q331K animals14,
we speculated that the abnormally enhanced responding
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we observed under the very strenuous PR12 schedule
might be a manifestation of a tendency for these animals
to exhibit behavioural perseveration27, effectively causing
them to over-respond in the PR schedule relative to WT,
even though their motivation for reward is not sig-
nificantly different. Indeed, the probability of the TDP-
43Q331K animals exhibiting increased motivation for
reward is further reduced by the comparable or higher
reward collection latencies (Fig. 1D, G, J) and slower FR
acquisition we observed in these animals relative to WT
(Supplementary Fig. 1d, e).

TDP-43Q331K mice show decreased PR response rates
To determine if the apparently increased PR responding

in the mutant mice was due to perseveration or hyper-
motivation, we further analysed within-session response
rates, as this can reflect changes in animals’ motivation
throughout a PR session18,22. PR4 response rate showed a
significant genotype × trial interaction, with a significant
genotype difference in the initial phase where relatively
low levels of responding are required (Fig. 2A). Consistent
with this, the maximal response rate was significantly
lower (Fig. 2B) in TDP-43Q331K mice, indicating a deficit
in activational motivation. Response decay rates across
trials were also slower in the mutant mice (Fig. 2C).

Analysis of the PR8 session also revealed a lower rate of
responding at the outset of the session in TDP-43Q331K

mice (Fig. 2D–F).
The delayed reduction in response rate in the TDP-

43Q331K mice could be indicative of perseveration, in that
it could explain how animals with an initially lower level
of motivation would persist in continuing to emit PR
responses such that they ultimately engage with the task
for longer than WT, achieve a higher breakpoint and
appear to be equally or even more highly motivated. This
effect would be magnified in a strenuous schedule such as
PR12, where the frequency of reinforcement is lower, such
that WT would be more likely to reach the breakpoint
earlier than the perseverating TDP-43Q331K group. Taken
together, this within-session rate analysis supports the
presence of an apathy-like state in the TDP-43Q331K mice,
which would have otherwise been masked by their com-
parable (in PR4 and PR8) or higher (in PR12) breakpoints.

Motor function of TDP-43Q331K mice
Motor deficits might have caused the genotype differ-

ence in the response rate in PR (Fig. 2). Thus, we analysed
beam-break rate in PR sessions to examine locomotor
behaviour and also conducted the rolling wire hang test24

to examine muscle strength. We found no genotype

Fig. 2 Within-session response rate analyses of PR suggest reduced motivation in TDP-43Q331K mice. Response rate was analysed to evaluate
motivation changes within PR sessions. A Response rate across trials throughout a session of PR4 (without prefeeding). Main effect of genotype,
F(1,29)= 0.15, P= 0.704; main effect of trial, F(12,348)= 74.56, P < 0.0001; genotype × trial interaction, F(12,348)= 3.66, P < 0.0001; simple main effect
of group at the first trial, P= 0.011. B Peak response rate in a PR4 session. P= 0.003. C Response decay rate in a PR4 session. P= 0.004. D Response
rate across trials throughout a session of PR8. Main effect of genotype, F(1,28)= 0.01, P= 0.927; main effect of trial, F(9,252)= 120.40, P < 0.0001;
genotype × trial interaction, F(9,252)= 2.68, P= 0.006; simple main effect of group at the first trial, P= 0.062. E Peak response rate in a PR8 session.
P= 0.023. F Response decay rate in a PR8 session. P= 0.026. n= 15–16 per genotype.
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differences in beam-break rate with only an exception in
PR8 (Supplementary Fig. 2a–d). There was no genotype
difference in latency to fall and body weight in the wire
hang test (Supplementary Fig. 2e, f). Together, these data
argue against contribution of motor deficits to PR per-
formance in the mutant mice.

TDP-43Q331K mice showed no hyperphagia
We also measured food intake to rule out hyperphagia,

which might also have caused increased PR responding in

the mutant mice. No effect of genotype was detected in
performance on the non-trial-limited FR1 session (Fig.
3A). We then measured food consumption during 60 min
of free access to a bowl of milkshake. Unexpectedly, TDP-
43Q331K mice consumed less milkshake (Fig. 3B) than WT
with comparable initial body weights (Fig. 3C).
These results rule out hyperphagia in the TDP-43Q331K

mice. Rather, given that all animals had been food-
restricted, and that sweetened strawberry milkshake is
highly palatable to mice19, reduced free intake may

Fig. 3 Eating behaviour and its relationship to PR responding. Food intake was measured to rule out hyperphagia in the mutant mice. A The
total number of rewards earned in an uncapped fixed-ratio1 (FR1-UC) setting over 60 min. P= 0.206. B Amount of intake with free access to
milkshake over 60 min. P= 0.003. C Body weights. P= 0.391. D Heatmaps showing the relationship (Pearson’s r) between progressive-ratio (PR)
breakpoint and food intake and body weight. E Changes in response rate through the session of FR1-UC. F Peak response rate in FR1-UC. P= 0.104. G
Decay rate in FR1-UC. P= 0.774. n= 15–16 per genotype. Free_intake amount of milkshake in 60 min, fr1_trial the FR1 trial number, bp breakpoint,
bp4_fed breakpoint in PR4 with prefeeding.
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indicate anhedonia in the mutant mice. Based on this
speculation, we explored relationships between PR
responding, food intake and body weights (Fig. 3D). These
relationships were obviously dissociable between the two
groups (Fig. 3D). This may suggest a genotype difference
in how eating behaviour affects PR responding: in the
mutant mice, an overall positive relationship was identi-
fied between breakpoints and free milkshake intake (Fig.
3D), supporting the possibility that reduced intake of the
free-access milkshake (Fig. 3B) indicates anhedonia in the
mutant mice.
To further rule out the possibility that lower appetite or

earlier satiation might cause reduced intake of the free-
access milkshake in the mutant mice (Fig. 3B), we ana-
lysed the response rate in the FR1-uncapped session, by
which we can observe temporal changes in satiety18.
Overall, no significant genotype differences were noted in
the response rate change (Fig. 3E), the peak response rate
(Fig. 3F) that may reflect the levels of hunger at the initial
stage of a session and the decay rate (Fig. 3G), which
shows mean satiation rate through the session. Thus, it is
unlikely that altered appetite contributed to reduced
milkshake intake in the mutant mice.

TDP-43Q331K mice exhibit increased omissions during early
extinction trials
As TDP-43Q331K mice showed enhanced responding in

PR12 in which reinforcement frequency is very low, we
also assessed them in the extinction task under conditions
of no reward28 to determine if this could interfere with
behaviour. Despite our prediction that the extinction task
would reveal perseveration in the mutant mice, there was
no main effect of genotype on overall extinction perfor-
mance, as indicated by the comparable number of ses-
sions to criterion (Fig. 4A) and percentage of responses
emitted across sessions (Fig. 4B).
We further examined extinction performance by seg-

regating each session (consisting of 30 trials) into early,
middle and late phases (10 trials per phase; Fig. 4C, D and
E, respectively), since TDP-43Q331K mice showed
decreased response rates in the initial phase of each PR
session (see Fig. 2) and reduced response in FR training
(Supplementary Fig. 1d, e). As expected, TDP-43Q331K

animals responded less (exhibited a higher number of
omissions) in the early phase (Fig. 4C).
Given the normal overall extinction learning perfor-

mance observed (Fig. 4A, B), higher omissions restricted

Fig. 4 Increased omissions in TDP-43Q331K mice in the early phase of each extinction session. Extinction was tested to assess instrumental
responding in the absence of reward. A The number of sessions required to reach criterion (>77% omissions in two consecutive sessions) P > 0.999. B
Response percentage across extinction sessions. Main effect of genotype, F(1,28)= 0.347, P= 0.560; main effect of session, F(6,168)= 63.39, P <
0.0001; genotype × session interaction, F(6,168)= 0.98, P= 0.442. C, D Response percentage in the early (C; main effect of genotype, F(1,28)= 4.53,
P= 0.042; main effect of session, F(6,168)= 56.70, P < 0.0001; genotype × session interaction, F(6,168)= 1.72, P= 0.117), middle (D, n.s. main effect of
genotype and genotype × session interaction) and late (E, n.s. main effect of genotype and genotype × session interaction) phase of each session. F
Response percentage in a reinstatement session conducted 10 days after the last extinction session to confirm the degree of extinction learning.
Only the first three trials provided reward. P= 0.225. n= 14–15 per genotype.
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to the early phase of a session (Fig. 4C) may suggest
reduced task engagement or slow action initiation linked
to diminished motivation29. The extinction reinstatement
session revealed no main effect of genotype on perfor-
mance (Fig. 4F), suggesting equivalent levels of task
acquisition across the genotypes30.

TDP-43Q331K mice show impaired visual discrimination
acquisition
To further explore the possibility of perseveration in

TDP-43Q331K mice, we assessed them in the VDR task.
TDP-43Q331K mice were slower than WT littermates in
acquisition, as indicated by the higher numbers of ses-
sions (Supplementary Fig. 3a), trials, errors and correction
trials (Fig. 5A–C) required to reach criterion. S+ (correct)
and S– (incorrect) response latencies were also higher in
TDP-43Q331K animals than WT (Supplementary Fig. 3b,
c), again suggestive of lower motivation. However, moti-
vation to obtain reward did not differ between genotypes
as indicated by comparable reward collection latencies
(Supplementary Fig. 3d). Also, a genotype difference in
locomotor function was not indicated by beam-break
rates or time spent in the food tray for reward consuming
(Supplementary Fig. 3e–g).

TDP-43Q331K mice show perseveration during reversal
Following two baseline sessions of the discrimination-

acquisition task, which indicated comparable perfor-
mance between genotypes (Fig. 5D), daily reversal ses-
sions with switched stimulus-reward contingencies began
and continued until all mice reached the performance
criterion (50% accuracy in two consecutive sessions).
TDP-43Q331K mice were significantly impaired on

reversal learning: they were slower in acquisition (Sup-
plementary Fig. 4a and Fig. 5d), required more trials (Fig.
5E) and made more perseverative errors (Fig. 5F) than
WT littermates to reach the performance criterion.
Genotypes did not differ in either response latency
(Supplementary Fig. 4b, c) or reward collection latency
(Supplementary Fig. 4d). Also, beam-break rates and time
spent to consume reward (Supplementary Fig. 4e–g)
showed no genotype differences, ruling out confounding
effects of locomotor deficits in mutant mice. Thus, these
results indicate cognitive inflexibility in the TDP-43Q331K

mice. Specifically, this impaired cognitive flexibility can be
attributed to perseveration rather than difficulty in
learning a new stimulus-reward association since perse-
veration dominates reversal performance when accuracy
is below 50%25. In addition, to further rule out the pos-
sibility that deficits in reversal learning in the mutant mice
might be only a reflection of their generalised learning
difficulty as observed in the visual discrimination task, we
examined the relationship between performance on visual
discrimination and reversal learning. In contrast to the

case of wild-type mice, visual discrimination performance
was inversely correlated with reversal performances in the
mutant mice (Fig. 5G), supporting that reversal deficits
observed in these mice indicate perseveration rather than
generalised learning difficulty.

Discussion
The central finding of this study is that the TDP-

43Q331K mouse, a new model of ALS–FTD, exhibits a
perseverative phenotype that may mask apathy assessed
by PR schedules. These findings are reflective of the two
most common BPSDs, perseveration and apathy, in
ALS–FTD5–9, suggesting that this model may be useful
for studying not only the cognitive impairments14, but
also the behavioural symptoms that have been identified
as particularly problematic aspects of this disease.
The TDP-43Q331K mouse may provide an example of a

strain, in which increased behavioural responding due to
perseveration effectively causes them to ‘over-respond’ in
the PR assessment and therefore may mask a motivational
deficit. In fact, both perseveration and apathy, while see-
mingly opposing in nature (an increase vs. a decrease in
behavioural output), are highly coincident in FTD, with
similar neural correlates31,32. It has been found that
patients with FTD who display apathy may also show
increased reward-seeking behaviour. This increased pur-
suit of reward may look like increased motivation. How-
ever, it is sometimes difficult to determine whether such
‘over-responding’ is due to excessive drive for reward, or
to insensitivity to negative feedback. Several clinical stu-
dies with bvFTD have suggested that lack of sensitivity to
negative consequences is central to abnormal reward
processing in FTD33. Thus, insensitivity to negative
feedback (absence of reward) in the mutant mice might
contribute to continuous perseverative responding in the
high -ratio schedules (where reinforcement frequency is
low) and also to the ‘stimulus-bound perseveration’ in the
reversal task34. Consistent with this idea, our previous
study with mGluR5-deficient mice also showed a possible
link between perseveration and increased PR responding,
and insensitivity to the absence of reward was attributable
to this phenotype27.
Of note, a previous study has found that increased

reward-seeking behaviour in patients with bvFTD was
actually associated with their severity of apathy35. This
finding may suggest that apathy and abnormally increased
reward-seeking behaviour, although seemingly opposite to
each other, may stem from a common pathology, such as
disturbance in the salience network36. In other words,
reduced function in this network may cause blunted sal-
ience sensitivity not only to negative consequence
(absence of reward) but also to newly presented stimulus
so that both perseveration and initiation apathy can co-
occur. Consistent with this idea, reduced activity in the
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salience network has been identified in bvFTD (but not in
Alzheimer’s disease)37. This result may account for the
underlying mechanism of abnormal reward processing
seen in FTD, as the salience network includes structures

known to be involved in reward. Moreover, reduced
activity in the salience network has also been associated
with the severity of apathy in FTD or late-life
depression38,39.

Fig. 5 Perseveration in TDP-43Q331K mice revealed by a reversal learning task. Visual discrimination and reversal learning were conducted to
assess perseveration. A The number of trials required to reach the visual discrimination criterion (>80% accuracy in two consecutive sessions), P=
0.012. B The number of errors made prior to reaching the discrimination criterion. P= 0.028. C The number of correction trials required to reach the
discrimination criterion. P= 0.037. A–C n= 15 TDP-43Q331K/Q331K and 13 TDP-43+/+ mice. D Baseline performance on two visual discrimination
sessions (B1, 2) followed by reversal learning acquisition. Main effect of genotype, F(1,24)= 4.81, P= 0.038; main effect of session, F(18,432)= 75.45,
P < 0.0001; genotype × session interaction, F(6,168)= 1.34, P= 0.160. E The number of trials required to reach the reversal criterion (>50% accuracy in
two consecutive sessions). P= 0.001. F The number of perseverative errors made prior to reaching the reversal criterion. P= 0.003. G Heatmaps
indicating the relationship of performance between pairwise visual discrimination (PD) and reversal (REV) learning. Trial numbers of PD (PD_trial)
were not correlated with numbers of REV trial (Pearson’s r= 0.232, P= 0.468) or perseverative error (REV_error; r= 0.237, P= 0.458) in wild types
(+/+) but inversely correlated with reversal performances in the mutant mice (for trial numbers, r=−0.540, P= 0.046; for perseverative errors, r=
−0.607, P= 0.021). StoC number of sessions to criterion, CT number of correction trials. D–G n= 14 TDP-43Q331K and 12 TDP-43+/+ mice.
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Interestingly, our TDP-43Q331K mice displayed reduced
responses especially in the initial phase of several tasks:
slower acquisition in initial FR1 training (Supplementary
Fig. 1), slower initial and peak response rates during a PR
session (Fig. 2) and higher omissions in the initial epoch
of each extinction session (Fig. 4C). Thus, we also
examined response speed in the first trial of the first VDR
session and consistently observed slower initiation in
mutant mice (Supplementary Fig. 5).
These data may be interpreted in terms of initiation

apathy40,41. According to a ‘model of goal-directed beha-
viour’, apathy can be differentiated into three compo-
nents: initiation, planning and motivation. The
Philadelphia Apathy Computerised Task (PACT), which
has been developed to measure these three components of
apathy in humans, revealed that patients with FTD show a
significant impairment in initiation as well as in other
components41,42. Interestingly, the way to detect initiation
apathy using the PACT is very similar to how we interpret
slowed response rate in PR sessions as initiation apathy:
the PACT criteria for initiation apathy require slowed
response time in the first trial of a simple reaction task
without generalised slowness41. According to this criter-
ion, more generalised slowness in response speed in
complex task conditions could not be interpreted as
initiation apathy, but may indicate motor deficits41.
In a similar vein, detailed consideration of the beha-

vioural profile of the mice indicates an explanation in
terms of initiation apathy, and not of motor slowness in
general. First, as shown in Fig. 2A and D, the response rate
of the mutant mice was slower only at the initial part of
the session, which is highly consistent with initiation
apathy detected in the computerised test for human
patients (PACT)41. After this initial slowness, the mean
response rate of mutant mice was, although not statisti-
cally significant, higher than that of wild-type mice at
several trials. This rules out an interpretation in terms of a
general, pervasive slowing of behavioural output. If the
mutant mice had been generally slower (e.g. due to ALS-
related motor deficits), one would expect such motor
deficits to be observed throughout the session across the
trials, and also in other measures or tasks such as
response and/or reward latencies, beam-break rate,
rotarod and wire hang test. In addition, the total running
time of each session was not significantly different
between genotypes (P= 0.648 for PR4; P= 0.862 for PR8;
P= 0.282 for PR12), arguing against slower PR perfor-
mance in mutant mice. This analysis shows that initiation
apathy explains the full behavioural profile, and a general
motor slowness does not. Of note, it has been shown that
initiation apathy significantly increasing in patients with
ALS was independent of motor dysfunction8.
Altered appetite could be another confounding factor in our

study; both abnormally increased and decreased appetite

might cause perseverative responding and reduced task
initiation, respectively. In the previous study14, we observed
significant hyperphagia in the mutant mice, a symptom that is
also observed in patients with FTD or ALS–FTD7,43. However,
we found no evidence of hyperphagia in the present study;
instead, we observed reduced intake of highly palatable milk-
shake (Fig. 3B), which if anything may indicate anhedonia in
the mutant mice. Moreover, the trial-by-trial analysis of
response rate in the uncapped FR1 session (Fig. 3e–g) did not
support the possibility of alterations in appetite or satiation
rate in the mutant mice.
Of note, there was a discrepancy regarding eating

behaviour between our previous14 and current studies.
This is likely due to differences in the availability of food
across the two experiments: hyperphagia was observed in
the TDP-43Q331K mice only when food was always avail-
able14. Importantly, it has been reported that human FTD
patients show hyperphagia even without overtly increased
appetite43,44. Based on this, we speculate that hyperphagia
leading to weight gain of the mutant mice in our previous
study14 was also mediated by perseverative (compulsive)
eating rather than increased appetite. Even mild perse-
veration could cumulatively increase total intake of food
and body weight over a sustained period of constant food
availability. Consistent with this interpretation, a positive
relationship between body weight and PR breakpoint
(especially in the prefeeding condition) was observed in
the mutant mice, whereas a negative relationship was
observed in the WT mice (Fig. 3D). Importantly, these
findings also suggest that the relationships between
hedonia, motivation and appetitive drive might be dis-
connected in the mutant mice. Given the findings of
dissociations between breakpoint and initial response
speed in PR sessions (Fig. 2), such disconnection may be
attributed to the perseverative phenotype in these mice.
This implicates that care should be taken in interpretation
of PR breakpoint data, which could be dissociated with
motivation factors in genetically modified disease models,
especially in those with the frontal dysfunction27.
Assessment of reversal learning further suggested a

perseveration-related phenotype in the mutant mice,
given that the genotype effect was expressed when
reversal performance was below 50% accuracy25. This
phase of reversal is considered the period when perse-
veration dominates behaviour. When reversal accuracy
exceeds 50%, new learning is considered to control beha-
viour, and the learning curves for the TDP-43Q331K/Q331K

and WT animals were parallel in this epoch, suggesting
intact learning of the new association. Most importantly,
performance between visual discrimination and reversal
learning was inversely correlated in the mutant mice
(Fig. 5G), arguing against the possibility that reversal def-
icits were due to generalised learning deficits rather than
perseveration.
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This perseverative phenotype in reversal learning is
consistent with frontal-specific cognitive deficits observed
in human FTD patients45 and also with evidence of
frontal/executive dysfunction in the TDP-43Q331K mice:
inattention was indicated by increased omission errors in
the 5-CSRTT at 6 months of age14. This was one of the
earliest behavioural abnormalities we identified in these
mice, together with marble-burying deficits at 5 months
of age. At this age, a reduced number of frontal
parvalbumin-positive (PV+) interneurons was identi-
fied14. Interestingly, it has been reported that a deficiency
in PV+ interneurons is associated with both high omis-
sion errors in 5-CSRTT46 and reversal deficits47. There-
fore, this suggests a common pathological mechanism
underlying both inattention and perseveration in our
model. However, since we had found no abnormal FR/PR
responding at 7 months of age in the mutant mice14, the
current findings suggest that perseveration is a relatively
late-stage phenotype during the progression of the dis-
ease, preceded by inattention and memory deficits.
It should be noted that our interpretation of initiation

apathy and perseveration came from different protocols of
PR schedule: the former from the rate analysis of PR4 and
PR8, and the latter from breakpoint of PR12 (we were
unable to fit the PR12 data to a model for the rate ana-
lysis). That this conclusion could be reached from two
different conditions, PR8 and PR4, gives us confidence in
our interpretation. Data from PR12 and reversal learning
helped explain why breakpoints were comparable between
genotypes in PR4 and PR8, despite the mutant mice
exhibiting initiation apathy: if the initial lower response
rate was the only reason for the reduced decay rate in the
mutant mice, their breakpoints would have been lower
than those of WT.
In this regard, our analysis illustrates the advantages of

an approach to behavioural phenotyping in which animals
are tested on a battery of tasks, in which parameters are
varied to load on a construct of interest, and in which
each task has its own internal controls, but in which in
addition, tasks complement each other and can act as
controls for each other. In this way, the most likely
interpretation of behaviours can be arrived at by taking
into consideration the complete behavioural profile of an
animal (for another example, see our recent study of
mGluR5 KO mice27, which similarly showed persevera-
tion and abnormally high breakpoint in PR): characteris-
ing the coexistence of perseveration and apathy in this
strain would not have been possible with a single-domain
behaviour assay or without refined data analyses such as
the PR rate analysis and the temporal segregation analysis
of the extinction data. Combined with the high transla-
tional potential of the touchscreen system48,49, this mouse
model will be highly valuable in developing a deeper

understanding of the pathophysiology of BPSD in the
ALS–FTD context.
This study has several limitations. Firstly, we only used

male animals to avoid any behavioural consequences
potentially resulting from the common occupancy of the
operant chambers and housing rooms by both sexes. This
limits generalisation of our findings. Secondly, we did not
directly examine depressive-like symptoms such as
anhedonia and whether it may or may not correlate with
the apathy-like behaviour. Depression is also a very
common symptom in neurodegenerative diseases. How-
ever, apathy and anhedonia involve the two different
systems of motivation, which are complementary yet
dissociable50. Likewise, it has been shown that apathy
exists independent of clinical depression in patients with
ALS9. Thus, a further study is needed to identify differ-
ential manifestation of depressive-like behaviour and
apathy in our model. For instance, exploring differential
effects of serotonergic versus dopaminergic drugs would
help further characterise motivation-related phenotype of
this model. Thirdly, although perseveration and apathy
are BPSDs most commonly found in human patients with
FTD or ALS, it remains to be elucidated whether beha-
vioural findings in this study truly indicate human-
equivalent BPSDs or simply endophenotypes of this
model animal. Finally, we did not examine region-specific
neurodegeneration that may correlate with our beha-
vioural findings. Regional brain volume changes in these
mice should be the subject of a future study with a par-
ticular interest in the orbitofrontal and anterior cingulate
cortex and striatum, all of which have been associated
with perseveration and (initiation) apathy9,25,40,42.
In conclusion, we report that a recently generated TDP-

43 knock-in ALS–FTD mouse model exhibits evidence of
perseveration and apathy, the most commonly observed
behavioural symptoms in ALS–FTD patients. This study
suggests the translational utility of this animal model and
highlights the value of a multi-domain behavioural
approach in studies of BPSD in neurodegenerative
disorders.
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