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Abstract

This thesis delineates a generally applicable perspective on numerical meth
ods for scientific computation called residual-based a posteriori backward er
ror analysis, based on the concepts of condition, backward error, and residual, 
pioneered by Turing and Wilkinson. The basic underpinning of this perspec
tive, that a numerical method’s errors should be analyzable in the same terms 
as physical and modelling errors, is readily understandable across scientific 
fields, and it thereby provides a view of mathematical tractability readily in
terpretable in the broader context of mathematical modelling. It is applied in 
this thesis mainly to numerical solution of differential equations. We examine 
the condition of initial-value problems for ODEs and present a residual-based 
error control strategy for methods such as Euler’s method, Taylor series meth
ods, and Runge-Kutta methods. We also briefly discuss solutions of continuous 
chaotic problems and stiff problems. ^—

Keywords: BACKWARD ERROR ANALYSIS, CONDITION NUMBER, RESIDUAL, 

NUMERICAL STABILITY, FLOATING-POINT ARITHMETIC, NUMERICAL SOLU

TION OF ORDINARY DIFFERENTIAL EQUATIONS, STIFFNESS, LOCAL ERROR,

T a y l o r  s e r ie s  m e t h o d , c o n t in u o u s  R u n g e - K u t t a  m e t h o d
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Introduction

Corless and Fillion (201x), a forthcoming book of which this thesis will be a 
part, is a survey of numerical methods that gathers a wide range of material 
from floating-point arithmetic, numerical linear algebra, polynomials, function 
evaluation and root finding, interpolation, numerical differentiation and inte
gration, and numerical solutions of differential equations. Numerical analysis 
can be succinctly and accurately described as “the theory of constructive meth
ods in mathematical analysis” (Henrici, 1964). A slightly more long-winded 
definition would also specify that this disciplines develops, studies, and com
pares efficient numerical methods designed to find numerical approximations 
to the solution of mathematical problems stemming from practical difficulties 
in applications, while quantifying the magnitude of the computation error and 
qualifying the possible resulting misrepresentation of the system.

But why would a discipline devote energy to approximate solutions, instead 
of developing new methods to find exact solutions? The first reason is a 
pragmatic one, z.e., the urgencies of scientific practice:

The applications of mathematics are everywhere, not just in the 
traditional sciences of physics and chemistry, but in biology, medi
cine, agriculture and many more areas. Traditionally, mathemati
cians tried to give an exact solution to scientific problems or, where 
this was impossible, to give exact solutions to modified or simpli
fied problems. With the birth of the computer age, the emphasis 
started to shift towards trying to build exact models but resorting 
to numerical approximations. (Butcher, 2008)

A second reason is that, even if we could exactly solve the problems from
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applications, it would be practically necessary to resort to modification, uni- 
formization, compression, and simplification of the data and the information 
specific to the problem. Finally, a third reason is brought about by theoretical 
necessity. More specifically, mathematicians have produced many impossi
bility theorems, i.e., they have shown that some types of problems are not 
solvable, so that there is no computational route that leads to the exact so
lution. For instance, Abel and Galois showed that it is not possible to solve 
general polynomial equations of degree five or more in radicals (although there 
is a less-well-known algorithm using elliptic functions for the quintic itself), Li- 
ouville showed that many important integrals could not be expressed in terms 
of elementary functions (and provided a basic theory to decide just when this 
could in fact be done), Turing has shown that some number-theoretic problems 
cannot be finitarily decided, etc. With this in mind, Trefethen (1992) claims 
that the numerical analysts’

[... ] central mission is to compute quantities that are typically 
uncomputable, from an analytic point of view, and to do it with 
lightning speed.

Accordingly, both the nature of mathematics in itself and the role of mathe
matics in science requires a perspective and a theory on numerical approxima
tion to answer the following central epistemological question: when one cannot 
know the true solution of a mathematical problem, how should one determine 
how close to the true solution the approximate one is?1

Our guiding principle for the choice of perspective is that numerical meth
ods should be discussed as a part of a more general practice of mathematical 
modeling as is found in applied mathematics and engineering. Once mostly 
absent from texts on numerical methods, this desideratum has become an in
tegral part of much of the active research in various fields of numerical analysis 
(see, e.g., Higham, 2002; Enright, 2006). However, while this thesis focuses on l

lAs a philosopher by training, I cannot help but noticing the similarity of this question 
with the great questions that moved philosophers and scientists through the ages.
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applicable computational mathematics it will not present many actual appli
cations.

This thesis, as well as the book Corless and Fillion (201x), is based on a per
spective on the quality of numerical solution known as backward error analysis, 
which is seen as very accurately arriving at the aforementioned desideratum. 
The first use of backward error analysis is credited by Wilkinson (1971) to 
Givens, but it is broadly agreed that it was Wilkinson himself who began 
the systematic exploitation of the idea in a broad collection of contexts.2 As 
construed by Wilkinson and his followers, this approach gives a crucial role 
to the theory of conditioning or sensitivity of a problem, which originated in 
the works of Turing (Blum, 2004).3 The basic underpinning of the backward 
error perspective, that a numerical method’s errors should be analyzable in 
the same terms as whatever physical (or chemical or biological or social or 
what-have-you) modelling errors, is readily understandable across all fields of 
application. Similarly, the concept of sensitivity of a problem to changes in 
its data is also one that goes across disciplines.4 These ideas will be intro
duced with full generality in the first chapter, resulting in an approach that 
Corless and Fillion (201x) call a residual-based a posteriori backward error 
analysis, that provides mathematically tractable numerical solutions readily 
interpretable in the broader context of mathematical modelling.

The pedagogical problem that justifies the existence of this work is that, 
even though many excellent numerical analysis books exist, no single one of 
them provides a unifying perspective based on the concept of backward error 
analysis. The objective is to provide the reader with a perspective on scientific 
computing that provides a systematic method for thinking about numerical 
solutions and about their interpretation and assessment, across the subfields 
of numerical analysis. Accordingly, this thesis is mostly about making a new

2The first synthesis of this point of view is probably Wilkinson (1963). However, until 
the last two decades, it was mostly confined to numerical linear algebra.

3In this respect, an interesting historical fact is that Wilkinson began his career as a 
research assistant under Turing (Hodges, 1992).

4 A nice succinct presentation of these ideas in an elementary context can be found in 
Corless (1993).
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synthesis of already known results. The full-fledged use of the conceptual 
apparatus of backward error analysis is nowadays standard in numerical linear 
algebra. In the last two decades, it has also been progressively implemented for 
the numerical solution of differential equations.5 However, it is almost never 
encountered at a level of generality that shows what elements are common to 
all particular applications and how to apply them to various other subfields 
of numerical analysis, such as floating-point arithmetic, function evaluation, 
series manipulation, interpolation, etc.6 In this thesis, the most important 
thing is the development and the presentation of residual-based backward error 
analysis as a general perspective on computation, in order to show the essential 
unity of the subject. Naturally, given the limited length of this thesis, it 
will not be possible to show how the perspective developed applies generally. 
However, this is what Corless and Fillion (201x) aim to achieve, and this thesis, 
particularly chapter 1, serves as an canvas for that.

In chapter 1, we motivate the need for an error analysis of numerical 
computation by looking at floating-point arithmetic. Appendix A provides 
a brief presentation of what a floating-point number system is. We begin with 
floating-point arithmetic since we consider it logically primary; indeed, it is 
the underlying ground on which lies almost all computer-assisted numerical 
computation. Moreover, beginning in this way puts at our disposal a techni
cally simple theory that we can use to introduce the central concepts of error 
analysis without them being obfuscated by the internal difficulties of other 
fields of numerical analysis. Chapter 1 then goes on to introduce the central 
concepts of the residual-based a posteriori backward error analysis we pro
mote. It successively introduce the concepts of forward and backward error, 
residual, and condition number. The very general definition of residual given 
here appears to be new. We think that it sheds light on many aspects of the

5See Moir (2010) for a review of the recent literature on the use of backward error analysis 
for the numerical solution of differential equations.

6A book not so far from doing this is Higham (2002), and the pair of books by Deuflhard 
and Bornemann (2002) and Deuflhard and Hohmann (2003) does exactly that. However, 
Deuflhard and his co-workers refrain from the use of the concept of residual, which is here 
taken to be central. Higham does not refrain from using it, but does not define it generally 
and apply it across the board.
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literature. Finally, chapter 1 introduces properties of numerical algorithms 
such as stability and complexity. In this chapter as in the rest of the thesis, 
we make sure to present the material in a way that respects the distinction 
between properties of problems and properties of methods—a distinction often 
hard to trace in the literature.

Because of the limitation of space, Robert Corless and I had to decide on 
one type of problem for which we would show thoroughly how the backward 
error perspective developed can be applied. We decided upon the numerical so
lution of differential equations, specifically initial-value problems for ordinary 
differential equations (IVP). Accordingly, chapter 2 embarks on a presentation 
of the problem-specific aspect of it, while we reserve the method-specific aspect 
of it for chapter 3.7 In chapter 2, we want to be able to use and obtain nu
merical solutions of I VPs without going into the details of particular methods. 
Accordingly, we open the chapter with an introduction to the use of M a t l a b ’s 
codes and to the notation that we will require in the rest of the thesis. On that 
basis, we introduce the concept of residual and point at a simple connection 
with ideas from dynamical systems. Following this is the examination of the 
conditioning of I VPs from three perspectives: in terms of Lipschitz constants, 
in terms of the variational equations and Lyapunov exponents, and finally 
in terms of the Alexeev-Grobner theorem. We also show how to track the 
condition number of problems numerically. After this abstract presentation, 
we exemplify how the concepts apply in practice in an extended example, the 
three-body problem. We close chapter 2 by discussing in what sense numerical 
methods can and can’t be considered satisfactory for chaotic problems and, 
what is in some sense dual, what problem-specific properties contribute to the 
numerical phenomenon known as “stiffness.”

Chapter 3 examines particular numerical methods from our general per
spective. Our use of the concept of residual to characterize the properties of 
problems is extended to the method-specific concepts of error analysis such as 
convergence, consistency, order of a method, local and global error. We intro
duce these concepts by discussing Euler’s method in a way that emphasizes

7These are the chapters 12 and 13 of Corless and Fillion (20lx).

6



residual control as an error control strategy. We also briefly return to stiffness 
and sketch an argument that the success of implicit methods for stiff problems 
can be enlightened by examining the size of the residual of Taylor polynomials 
for the approximation of exponential growth. The way in which we introduce 
problem-specific and method-specific concepts of error analysis for the numer
ical solution of I VPs, however, demands that one treats numerical methods 
for the solution of differential equations as ones that produce differentiable 
solutions, and not merely a discrete set of solution values. We then introduce 
Taylor series method as a natural implementation of the idea that numerical 
methods provide piecewise continuous solutions. Thereafter, we introduce dis
crete Runge-Kutta methods and indicate how to move to continuous explicit 
Runge-Kutta methods from there.
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Chapter 1

Com puter Arithm etic & 
Fundamental Concepts of 
Com putation

1.1 M athem atical problems and com putabil
ity of solutions

We begin by introducing a few elementary concepts that we will use to discuss 
computation in the context of numerical methods, adding a few parenthetical 
remarks meant to contrast our perspective from that of others. We represent 
a mathematical problem by an operator </?, that has an input (data) space y  
as its domain and an output (result, solution) space & as its codomain:

<p : y  - »  6 ,

and we write y = In many cases, the input and output spaces will be W 1 
or Cn, in which case we will use the function symbols / ,  g , . . .  and accordingly 
write

y = f ( z  i>*2> •••.*!») =  /(z ).

9



Here, y is the (exact) solution to the problem /  for the input data z.1 But 
tp need not be a function; for instance, we will study problems involving dif
ferential and integral operators. That is, in other cases, both x  and y will 
themselves be functions.

We can delineate two general classes of computational problems related to 
the mathematical objects x, y, and p:

Cl. verifying whether a certain output y is actually the value of <p for a given 
input x , i.e., verifying whether y = p(x)\

C2. finding the output y determined by applying the map p  to a given input 
x , z.e., finding the y such that y =  p(x).2

The computation required by each type of problem is normally determined by 
an algorithm, i.e., by a procedure performing a sequence of primitive opera
tions leading to the solution in a finite number of steps. Numerical analysis is a 
mathematical reflection on complexity and numerical properties of algorithms 
in contexts that involve data error and computational error.

In the study of numerical methods as in many other branches of mathe
matical sciences, the reflection involves a subtle concept of computation. With 
a precise model of computation at hand, we can refine our views on what’s 
computationally achievable, and if it turns out to be, how much resources are 
required.

The classical model of computation used in most textbooks on logic, com
putability, and algorithm analysis stems from metamathematical problems 
addressed in the 1930s; specifically, while trying to solve Hilbert’s Entschei- 
dungsproblem, Turing developed a model of primitive mathematical operations 
that could be performed by some type of machine affording finite but unlim
ited time and memory. This model, that turned out to be equivalent to other 
models developed independently by Godel, Church, and others, resulted in a 
notion of computation based on effective computability. From there, we can

*We use boldface font for vectors and matrices.
2It is normally computationally simpler to verify whether a certain value satisfies an 

equation than finding a value that satisfies it.
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form an idea of what is “truly feasible” by further adding constraints on time 
and memory.3

Nonetheless, scientific computation requires an alternative, complementary 
notion of computation, because the methods and the objectives are quite dif
ferent from those of metamathematics. A first important difference is the 
following:

[... ] the Turing model (we call it “classical”) with its dependence 
on Os and Is is fundamentally inadequate for giving such a foun
dation to the modern scientific computation, where most of the 
algorithms—which origins in Newton, Euler, Gauss, et al.—are 
real number algorithms. (Blum et al., 1998, 3)

Blum et al. (1998) generalize the ideas found in the classical model to include 
operations on elements of arbitrary rings and fields. But the difference goes 
even deeper:

Rounding errors and instability are important, and numerical an
alysts will always be experts in the subjects and at pains to ensure 
that the unwary are not tripped up by them. But our central 
mission is to compute quantities that are typically uncomputable, 
from an analytic point of view, and to do it with lightning speed. 
(Trefethen, 1992)

Even with an improved picture of effective computability, it remains that the 
concept that matters for a large part of applied mathematics (including en
gineering) is the different idea of mathematical tractabilityi understood in a 
context where there is error in the data, error in computation, and where 
approximate answers can be entirely satisfactory. Trefethen’s seemingly con
tradictory phrase “compute quantities that are typically uncomputable” un
derlines the complementarity of the two notions of computation.

3For a presentation of the classical model of computation, see, e.g.y Davis (1982); Brassard 
and Bratley (1996); Pour-El and Richards (1989), and for a specific discussion of what is 
“truly feasible,” see Immerman (1999).
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This second notion of computability based on the engineering view of math
ematical tractability addresses the proper computational difficulties posed by 
the application of mathematics to the solution of practical problems from the 
outset. Certainly, both pure and applied mathematics heavily use the con
cepts of real and complex analysis. From real analysis, we know that every 
real number can be represented by a nonterminating fraction:

X =  [x\  . ¿ 1 ^ 2  ¿ 3  ( ¿ 4  £¿5 ¿6 * * *

However, in contexts involving applications, only a finite number of digits 
is ever dealt with. For instance, in order to compute \/2> one could use an 
iterative method (e.g., Newton’s method, which we cover in Corless and Fillion, 
201x, chap. 2) in which the number of accurate digits in the expansion will 
depend upon the number of iterations. A similar situation would hold if we 
used the first few terms of a series expansion for the evaluation of a function.

However, one must also consider another source of error due to the fact 
that, within each iteration (or each term), only finite-precision numbers and 
arithmetic operations are being used. We find the same situation in numerical 
linear algebra, interpolation, numerical integration, numerical differentiation, 
etc.

Understanding the effect of limited-precision arithmetic is crucial to com
putation for problems of continuous mathematics. Since computers only store 
and operate on finite expressions, the arithmetic operations they process neces
sarily incur an error that may, in some cases, propagate and/or accumulate in 
alarming ways.4 In this first chapter, we focus on the kind of error that arises 
in the context of computer arithmetic, namely representation and arithmetic 
error. In fact, we will limit ourselves to the case of floating-point arithmetic, 
which is by far the most widely used. Thus, the two errors we will concern 
ourselves with are the error that results from representing a real number by a

4But let us not panic: “These risks are very real, but the message was communicated 
all too successfully, leading to the current widespread impression that the main business 
of numerical analysis is coping with rounding errors. In fact, [ . . . ]” and we have already 
continued the quote on page 11 (Trefethen, 2008).
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floating-point number and the error that results from computing using floating
point operations instead of real operations. For a brief review of floating-point 
number systems, the reader is invited to consult Appendix A.

The objective of this chapter is not so much an in-depth study of error 
in floating-point arithmetic as an occasion to introduce some of the most 
important concepts of error analysis in a context that should not pose im
portant technical difficulty to the reader. In particular, we will introduce 
the concepts of residual, backward and forward error, condition number, 
which will be the central concepts around which this thesis revolves. To
gether, these concepts will give solid conceptual grounds to the main theme 
of this thesis: A good numerical method gives you nearly the right solution 
to nearly the right problem.

1.2 Representation and com putation error

Floating-point arithmetic does not operate on real numbers, but rather on 
floating-point numbers. This generates two types of roundoff errors: repre
sentation error and arithmetic error. The first type of error we encounter, 
representation error, comes from the replacement of real numbers by floating
point numbers. If we let x  £ M and O  : ® F be an operator for the standard 
rounding procedure to the nearest floating-point number5 (see appendix A), 
then the absolute representation error A x  is

A x  = O x  — x — x — x. (1.1)

5For the sake of simplicity, we will always assume that x  and the other real numbers are 
within the range of F.
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(We will usually write x  for x  + Ax.) If x ^  0, the relative representation error 
6x is given by

^ A x  _  x  — x  
x x

( 1 .2)

From those two definitions, we obtain the following useful equality:

x  = x + A x  = x{\ +  Sx). (1.3)

The IEEE standard described in appendix A guarantees that \Sx\ < p m , 
where pm  is half the machine epsilon Em -

In a numerical computing environment such as M a t l a b , Sm  —  2 2.2 #
10“ 16, so that pm  «  10~16.

The IEEE standard also guarantees that the floating-point sum of two 
floating-point numbers, written z  =  x®y,  is the floating-point number nearest 
to the real sum z = x + y of the floating-point numbers, ie ., it is guaranteed 
that

x ® y  = 0 ( x  + y)- (1-4)

In other words, the floating-point sum of two floating-point numbers is the 
correctly rounded real sum. As explained in appendix A, similar guarantees 
are given for ©, ®, and 0 .

Parallelling the definitions of equations (1.1) and (1.2), we define the ab
solute and relative computation errors (in addition) by

A z = z — z = (x (B y) — (x + y)

Sz =  Az =  ( x @ y ) - ( x  + y) 
z x + y

(1.5)

(1.6)
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As in equation (1.3), we obtain

x  © y = z  =  z +  A z  =  z( l  +  8z) (1.7)

with \8z\ < i±M' It follows directly from equation (1.3) that the real sum 
z =  x + y of the floating-point representations of x  and y is given by

z  =  x  +  y =  x ( l + 5x) +  y(l +  Sy)

=  (I  +  S ) ( 1 +  ^ ) .  (,S )

From this and equation (1.7), the total error generated by the floating-point 
addition of two floating-point representations of real numbers is given by

z = x ® y  = {1 +  8z)(x + y) =  (1 +  8z) (  1 +  (x + (1.9)V x  + y J

where 8z is the computation error and 8x and 8y are the representation 
errors. This equation gives us an automatic way to transform expressions 
containing iA’ and ‘®’ into expressions containing only real quantities and 
operations.

Similar results hold for subtraction, multiplication, and division. The real 
subtraction and multiplication of two floating-point numbers give us the fol
lowing equations:

i  =  + ^ ) ( . - » )  (1.10)

z = x x y  = (l + 8x + 8y + 8x8y)xy 

== (1 +  8x + 8y)xy (1.11)

Note that we use the “dot equal” symbol =  to signify that we neglect the 
higher-order terms (in this case, 0(82)). For division, since \8\ < 1, we use the
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fact that

1 1 1 + 62 l  +  <52
~  1 -  62 1 +  S2 ~  1 -  64 

(1 + J2)(l +  ¿4) ( l + J 2)(l +  a4)(l +  58)
1 _  ¿8 i -  ¿16 • • ' ’ [ ' >

which is true since all the <5s cancel out (we will often use this trick to obtain 
only the first-order error terms). So, for the real division of two floating-point 
numbers, we obtain

* = £/ y  = Xy ( \ ++5y) = +  6X){1 ~  6y) f t 1 +  ^

= { l + 6 x - 6 y ) ~  (1.13)
y

Finally, we obtain the following equations for the floating-point subtraction, 
multiplication, and division of floating-point numbers:

x Q y  -  (1 + 8z) ( l  +  )  (x y) (1.14)
V x - y  )

x  ® y = (1 +  Sx +  Sy + 6z)xy (1.15)
X

x  0  y =  (1 +  Sx — 6y — Sz)—
y

(1.16)

We can usually assume that y/x  also provides the correctly rounded result, 
but it is not generally the case for other operations, such as ex, lnx, and the 
trigonometric functions (see Muller et al., 2009).

The important point to observe about equations 1.8, 1.10, 1.11, 1.12 
and 1.9, 1.14, 1.15, 1.16 is that they contain no floating-point numbers and 
no floating-point operations on the right-hand side. Together, they pro
vide a set of equations that allow us to examine floating-point arithmetic 
using real arithmetic only. That makes it easier to analyze the error of 
computational methods, since we can rely on familiar tools.
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1.3 Problem atic cases for floating-point arith-

In this section, we motivate the introduction of the key concepts of error analy
sis by presenting some typical problematic cases that arise from representation 
and computation errors. Note that, from now on, we will use the term rounding 
error to refer (ambiguously) to representation or computation error.

Failure of standard axiom s of arithm etic on fields To understand 
floating-point arithmetic better, it is important to verify whether the stan
dard axioms of fields are satisfied, or at least nearly satisfied. As it turns out, 
many standard axioms do not hold, not even nearly. Consider the following 
sentences (for E F):

1. Associative law of ©: ——

m etic

x  © (y ® z) = (x © y) © z (1.17)

2. Associative law of

x ® ( y ® z )  = { x ® y ) ® z (1.18)

3. Cancellation law (for x  ^  0):

x ® y  = x ® z = > y  = z (1.19)

4. Distributive law:

x  (8) {y © z) =  (x (8) y) © (x ® z) ( 1 .2 0 )

5. Multiplication canceling division:

x®{y<2)x) = y ( 1 .2 1 )
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In general, the associative and distributive laws fail, but commutativity still 
holds. As a result of these failures, mathematicians find it very difficult to 
work directly in floating-point arithmetic—its algebraic structure is weak and 
unfamiliar. Nonetheless, floating-point arithmetic has some algebraic struc
ture in which one can provide an error analysis—Von Neumann and Goldstine 
(1947) famously did go through this excruciatingly painful process.

It will typically be more practical to use a different, less harrowing ap
proach. Using the results of section 1.2, we know how to translate a problem 
involving floating-point operations into a problem involving only real arith
metic on real quantities (x , A x , Sx , . . . ) .  This approach allows us to use the 
mathematical structures that we are familiar with in algebra and analysis. So, 
instead of making our error analysis directly in floating-point arithmetic, we 
try to work on a problem which is exactly (or nearly exactly) equivalent to 
the original floating-point problem, by means of the study of perturbations 
of real (and eventually complex) quantities. This insight was first exploited 
systematically by J.H. Wilkinson.

Error Accum ulation and Catastrophic Cancellation In applications, it 
is usually the case that a large number of operations have to be done sequen
tially before results are obtained. In sequences of floating-point operations, 
arithmetic error may accumulate. The magnitude of the accumulating error 
will usually be negligible for well-tested algorithms.6 Nonetheless, it is im
portant to be aware of the possibility of massive accumulating rounding error 
in some cases. For instance, even if the IEEE standard guarantees that, for 
£, y G F, x  © y = Q (x  + y), it does not guarantee that equations of the form

k k

® x i = o X > ’ k>2 (L22)
i— 1 1=1

hold true. This can potentially cause problems for the computation of sums, 
e.g., for the computation of an inner product x • y =  x iVi- this case,

6In fact, as explained by Higham (2002, chap. 1), errors can often cancel each other out 
to give surprisingly accurate results.
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the direct floating-point computation would be

k

i= 1
(1.23)

If we consider k = 1000, each multiplication introduces a maximum error 
//m , and so does each addition, for a total of 1,999h m - So, in 16-bit precision 
floating-point arithmetic, the result is only guaranteed to be accurate to about 
12 places. But this is a worst-case analysis, that returns the maximum error 
that can result from the satisfaction of the IEEE standard. In practice, it will 
often be much better. In fact, if you use a built-in routine for inner products, 
the accumulating error will be well-below that (Brent and Zimmermann, 2011).

Another typical case in which the potential difficulty with sums poses a 
problem is in the computation of the value of a function using a convergent 
series expansion and floating-point arithmetic. Consider the simple case of the 
exponential function (from Forsythe, 1970), f ( x ) =  ex, which can be repre
sented by the uniformly convergent series

x 2 x 3 x4e - 1 + X  + -  + -  +  -  +  . . . (1.24)

If we work in a floating-point system with a 5-digit precision, we obtain the 
sum

e-5'5 «  1.0000 -  5.5000 +  15.125 -  27.730 +  38.129 -  41.942 +  38.446 

-  30.208 +  20.768 -  12.692 +  6.9803 -  3.4902 +  1.5997 +  • • •

=  0.0026363.

This is the sum of the first 25 terms, following which the first few digits do 
not change, perhaps leading us to believe (incorrectly) that we have reached 
an accurate result. But in fact, e-5,5 «  0.00408677, so that A y = y — y ~  
0.0015. This might not seem very much, when posed in absolute terms, but 
it corresponds to Sy = 35%, an enormous relative error! Note, however, that 
it would be within what would be guaranteed by the IEEE standard for this
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(a) Plot of the Airy Function. (b) Forward error in thè Matlab naive Tay
lor series computation.

Figure 1.1: The Airy function

number system. To decrease the magnitude of the maximum rounding error, 
we would need to add precision to the number system, thereby decreasing the 
magnitude of the machine epsilon. But as we will see below, this would not 
save us either. A more efficient solution would be to use a more accurate 
formula for e~x.

There usually are excellent built-in algorithms for the exponential function. 
But a similar situation could occur with the computation of values of some 
transcendental function for which no built-in algorithm is provided, such as 
the Airy function. The Airy function (see figure 1.1(a)) is a solution of the 
differential equation x  — tx = 0 The first Airy function can be defined by the

Similarly, the function Ai(—t) is a solution of x  + tx =  0. This function occurs 
often in physics. For instance, if we study the undamped motion of a weight 
attached to a Hookean spring that becomes linearly stiffer with time, we get 
the equation of motion x  +  tx = 0, and so the motion is described by Ai(—t) 
(Nagle et al., 2000). Another case would be the important role the zeros of

integral

(1.25)
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the Airy function play for the optics of the rainbow (Batterman, 2002). And 
there are many more physical contexts in which it arises. So, how are we to 
evaluate it? The Taylor series for this function (which converges for all x) can 
be written as (see Bender and Orszag, 1978)

Ai(i) -2/3
4-OIL -

E l ________________3 - 4/3 V

9nn!r(n  + 2/z)—n ' ' ' 7i—n71=0

£3n+l

9nn!r(n  +  4/s)
(1.26)

As above, we might consider naively adding the first few terms of the Taylor 
series using floating-point operations, until convergence (ie ., until adding new 
terms does not change the solution anymore because they are small). This can 
be done simply with a M a t l a b  code of this ilk (using 16-digit floating-point 
arithmetic):

function [ Ai ] = AiTaylor( z )
XAiTaylor Taylor series about 0 evaluation of Ai(z)
X Try to use (naively) the explicitly-known Taylor series at 

z =0
X to evaluate Ai(z). Ignore rounding errors, overflow/ 

underflow, NaN.
X The input argument z may be a vector of complex numbers.
X y - AiTaylor( z );
X

THREETWOTH = 3.CT(-2/3);
THREEFOURTH = 3.0~(-4/3);

Ai = zeros(size(z)) ; 
zsq = z.* z; 
n = 0;
zpow = ones(size(z)); X zpow = z~(3n)

term = THREETWOTH*ones(size(z))/gamma(2/3); X recall n! = 
gamma(n+1) 

nxtAi = Ai + term;

X Convergence is deemed to occur when adding new terms 
X makes no difference numerically. 
while any( nxtAi ~= Ai ),
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22 Ai nxtAi;
23 zpow = zpow.*z; X zpow = z~(3n + l)
24 term = THREEF0URTH*zpow/9~n/factorial(n)/gamma(n+4/3);
25 nxtAi = Ai - term;
26 if all( nxtAi == Ai ), break, end;
27 Ai = nxtAi ;
28 n = n + 1;
29 zpow = zpow.*zsq; X zpow = z~(3n)
30 term = THREETWOTH*zpow/9~n/factorial(n)/gamma(n+2/3);
31 nxtAi = Ai + term;
32 end
33

34 X We are done. If the loop exits, Ai = AiTaylor(z).
35

36 end

Using this algorithm, can one expect to have a high accuracy, with error close 
to £m ? Figure 1.1(b) displays the difference between the correct result (as 
computed with M a t l a b ’s function a ir y )  and the naive Taylor series approach. 
So, suppose we want to use this algorithm to compute / ( —12.82), a value near 
the tenth zero (counting from the origin towards — oo), the absolute error is

A y  = |Ai(s) -  AiTaylor(x)| =  0.002593213070374, (1.27)

resulting in a relative error Sy «  0.277. The solution is only accurate to 
two digits! Even if, theoretically, the series converge for all re, it is of no 
practical use. We examine this example in more detail in Corless and Fillion 
(201x, chap. 2, “Polynomials and Series”) when discussing the evaluation of 
polynomial functions.

The underlying phenomenon in the former examples, sometimes known as 
“the hump phenomenon,” could also occur in a floating-point number systems 
with higher precision. W hat happened exactly? If we consider the magnitude 
of some of the terms in the sum, we find out that they are much larger than 
the returned value (and the real value). We observe that this series is an alter
nating series in which the terms of large magnitude mostly cancel each other

22



out. When such a phenomenon occurs—a phenomenon that Lehmer coined 
catastrophic cancellation—we are more likely to encounter erratic solutions. 
After all, how can we expect that numbers such as 38.129, a number with only 
three significant decimal points, could be used to accurately obtain the sixth 
or seventh decimal point in the answer? This explains why one must be careful 
in cases involving catastrophic cancellation.

Another famous example of catastrophic cancellation involves finding the 
roots of a degree-2 polynomial ax2 + bx + c using the quadratic equation 
(Forsythe, 1966):

—b ±  y/b2 — 4ac 
2a

If we take an example for which b2 »  4ac, catastrophic cancellation can occur. 
Consider this example:

o = l - 1 0 " 2 6 = 1 -  107 c =  1 • 10~2

Such numbers could easily arise in practice. Now, a M a t l a b  computation 
returns x \  =  0, which is obviously not a root of the polynomial. In this case, 
the answer returned is 100% wrong, in relative terms.

1.4 Perspectives on error analysis: forward, 
backward, and residual-based

The problematic cases can provoke a feeling of insecurity. When are the results 
provided by actual computation satisfactory? Sometimes, it is quite difficult to 
know intuitively whether it is the case. And how exactly should satisfactoriness 
be understood and measured? Here, we discuss the concepts that will warrant 
confidence or non-confidence in some results based on an error analysis of the 
computational processes involved.

Our starting point is that problems arising in scientific computation are 
such that we typically do not compute the exact value y = <p(x), for the

23



reference problem p, but instead some other more convenient value y. The 
value y is not an exact solution of the reference problem, so that many authors 
regard it as an approximate solution, ie ., y «  <p(x). We find it much more 
fruitful to regard the quantity y as the exact solution of a modified problem, 
i.e., y = p(x),  where (p denotes the modified problem. For reasons that will 
become clearer later, we also call the modified problem an engineered problem, 
because it consists in modifying in a way that makes computation easier, or 
even possible at all. We thus get this general picture:

(1.28)

For example, if we have a simple problem of addition to do, instead of comput
ing y — f ( x  1, 0:2) =  x \ + ^ 2? we might compute y =  f ( x  1,^ 2) =  x\ © ¿ 2- Here, 
we regard the computation of the floating-point sum as a modified problem, 
and we regard y as the exact solution of this engineered problem. Similarly, if 
the problem is to find the zeros of a polynomial, we can use various methods 
that will give us pseudozeros. Instead of regarding the pseudozeros as ap
proximate solutions of the reference problem “find the zeros,” we regard those 
pseudozeros as the exact solution to the modified problem “find some pseu
dozeros” (see Corless and Fillion, 201x, chap. 2, “Polynomials and Series”). If 
the problem is to find a vector x such that A x =  b, given a matrix A and a 
vector b, we can use various methods that will give us a vector that almost 
satisfies the equation, but not quite. Then we can regard this vector as the 
solution for a matrix with slightly modified entries (see Corless and Fillion, 
201x, chap. 4, “Solving Ax =  b”). The whole book is about cases of this sort 
arising from all branches of mathematics.

W hat is so fruitful about this seemingly trivial change in the way the 
problems and solutions are discussed? Once this change of perspective is 
adopted, we do not focus so much on the question “how far is the computed

I
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solution from the exact one?” (i . e ., in diagram 1.28, how big is A y )  than on 
the question “how closely related are the original problem and the engineered 
problem?” ( i .e . ,  in diagram 1.28, how closely related are ip and (p). If the 
modified problem behaves closely like the reference problem, we will say it is 
a n e a rb y  p ro b le m .

The quantity labeled A y  in diagram 1.28 is called the f o r w a r d  e r r o r , which 
is defined by

A y  = y - y  = <p(x) -  <p(x). (1.29)

We can of course also introduce the re la tiv e  forward error by dividing by y . 

In certain contexts, the forward error is in some sense the key quantity that 
we want to control when designing algorithms to solve a problem.Then, a very 
important task is to carry a forward error analysis; the task of such an analysis 
is to put an upper bound on \\A y \\ = \ \p (x )  -  ^(x)||. However, as wè~will see, 
there are also many contexts in which the control of the forward is not so 
crucial.

Even in contexts requiring a control of the forward error, direct forward 
error analysis will play a very limited role in our analyses, for a very simple 
reason. We engineer problems and algorithms because we don’t know or don’t 
have efficient means of computing the solution of the reference problem. But 
directly computing the forward error involves solving a computational problem 
of type C2 (as defined on p. 10), which is often unrealistic. As a result, scientific 
computation presents us situations in which we usually don’t know or don’t 
have efficient ways of computing the forward error. Somehow, we need a more 
manageable concept that will also reveal if our computed solutions are good. 
Fortunately, there’s another type of a p r io r i  error analysis— i .e . , antecedent 
to actual computation—one can carry, namely, b a ck w a rd  e r r o r  a n a ly s is . We 
explain the perspective it provides in the next subsection. Then, in subsection 
1.4.2 and 1.4.3, we show how to supplement a backward error analysis with the 
notions of condition and residual in order to obtain an informative assessment 
of the forward error. Finally, in the next section, we will provide definitions
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for the stability of algorithms in these terms.

1.4.1 Backward Error A nalysis

Let us generalize our concept of error to include any type of error, whether it 
comes from data error, measurement error, rounding error, truncation error, 
discretization error, e tc . In effect, the success of backward error analysis comes 
from the fact that it treats all types of errors (physical, experimental, repre
sentational, and computational) on an equal footing. Thus, x  will be some 
approximation of x, and A x  will be some absolute error that may be or may 
not be the rounding error. Similarly, in what follows, 5 x  will be the relative 
error, that may or may not be the relative rounding error. The error terms 
will accordingly be understood as p e r tu r b a tio n s  o f  th e  in i t ia l ly  sp e c if ie d  da ta . 

So, in a backward error analysis, if we consider the problem y  =  p ( x ) ,  we will 
in general consider all the values of the data x  — x ( \  +  S x ) satisfymg-u. con
dition |<fo| < £, for some e  prescribed by the modeling context,7 and not only 
the rounding errors determined by the real number x  and the floating-point 
system. In effect, this change of perspective shifts our interest from particular 
values of the input data to sets of input data satisfying certain inequalities.8

Now, if we consider diagram 1.28 again, we could ask: can we find a pertur
bation of x  that would have effects on ip comparable to the effect of changing 
the reference problem <p by the engineered problem tp l Formally, we are asking: 
can we find a A x  such that tp {x  +  A x )  =  <p(x)? The smallest such A x  is what 
is called the b a ck w a rd  e rro r . For input spaces whose elements are numbers, 
vectors, matrices, functions, and the like, we use norms as usual to determine 
how big the backward error is.9 For other types of mixed inputs, we might 
have to use a set of norms for each component of the input. The resulting gen
eral picture is illustrated in figure 1.2(b) (see, e .g ., Higham, 2002), and we see 
that this analysis amounts to re f le c t the forward error back  into the backward

7Note that, since modeling contexts usually include the proper choice of scale, the value 
of e will usually be given in relative rather than absolute terms.

8For an alternative, more rigorous presentation of the concepts presented here, see Deu- 
flhard and Hohmann (2003, chap. 2).

9The choice of norm may be a delicate issue, but we will leave it aside for the moment.

26



input space output space 
x  :-------- y  =  <p(x)

6

backward error — ^

x  +  A x
\—  forward error 

y  =  p ( x  +  A x )

(a) Reflecting back the back- (b) Input and output space in a backward error analysis 
ward error: finding maps A

Figure 1.2: Backward error analysis: The general picture.

error.10 11 In effect, the question that is central to backward error analysis is, 
w h en  w e  m o d if ie d  th e  re fe re n c e  p ro b le m  ip to  g e t  th e  en g in e e re d  p r o b le m  <p, f o r  

w h a t s e t  o f  d a ta  h a ve  w e  a c tu a lly  so lv e d  the p r o b le m  ip?  If solving the problem 
p ( x )  amounts to having solved the problem ip (x  +  A x )  for a A x  smaller than 
the perturbations inherent in the modeling context, then our solution y must 
be considered completely satisfactory.11

Adopting this approach, we benefit from the possibility of using well-known 
perturbation methods to talk about different problems and functions:

The effects of errors in the data are generally easier to understand 
than the effects of rounding errors committed during a computa
tion, because data errors can be analysed using perturbation theory 
for the problem at hand, while intermediate rounding errors require 
an analysis specific to the given method. (Higham, 2002, 6 )

[t]he process of bounding the backward error of a computed solu
tion is called ba ck w a rd  e r r o r  a n a ly s is , and its motivation is twofold.
First, it interprets rounding errors as being equivalent to perturba
tions in the data. The data frequently contains uncertainties due 
to previous computations or errors committed in storing numbers 
on the computer. If the backward error is no larger than these un
certainties then the computed solution can hardly be criticized—it

10The ‘reflecting back’ terminology goes back to Wilkinson (1963).
11There are cases, however, where finding such a A x  will not be possible. See Higham 

(2002, p. 71).

a
:
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may be the solution we are seeking, for all we know. The second 
attraction of backward error analysis is that it reduces the question 
of bounding or estimating the forward error to perturbation the
ory, which for many problems is well understood (and only to be 
developed once, for the given problem, and not for each method). 
(Higham, 2002, 7-8)

One can examine the effect of perturbations of the data using basic meth
ods we know from calculus, various orders of perturbation theory, and the 
general methods used for the study of dynamical systems. Consider this (al
most trivial!) example using only first-year calculus. Take the polynomial 
p(x ) =  17a;3 +  l l x 2 +  2; if there is a measurement uncertainty or a perturba
tion of the argument x , then how big will be the effect? One finds that

A y =  p(x + A x) — p(x) = 51a;2 Aa; +  51a;(Aa;)2 +  17(Aa;)3 +  2 2 x A x ^ l l ( A x ) 2.

Now, since typically \Ax\ 1, we can ignore the higher degrees of Aa;, so that

A y = 5 lx2Ax.

Consequently, if a; =  1 =fc .1, we get y = 35 ±  5.1; the perturbation in the 
input data has been magnified by about 50, and that would get worse if x 
were bigger.

To end this subsection, let us consider an example showing concretely how 
to reflect back the forward error into the backward error, in the context of 
floating-point arithmetic. Suppose we want to compute y = f ( x i,a^) =  x \ —x\ 
for the input x  =  [12.5,0.333]. For the sake of the example, suppose we 
have to use a computer working with a floating-point arithmetic with 3-digit 
precision. So, we will really compute y =  ((a;i®a;i)(g>a;i)©((a;2 ®a;2)(8>a;2). We 
assume that x  is a pair of floating-point numbers, so there is no representation 
error. The result of the computation is y = 1950, and the the exact answer 
is y — 1953.014111, leaving us with a forward error A y  =  3.014111 (or, in 
relative terms, 6y = 3014111/ i953.oi4in  «  1.5%). In a backward error analysis,
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we want to reflect the arithmetic (forward) error back in the data, i .e . , we 
need to find some A x \  and A x 2 such that

A y = 3.014111 = y - y  = (12.5 +  Aaq) 3 -  (0.333 +  A x 2f  -  1953.014111.

A solution is Ax «  [0.0064,0] (whereby Sxi =  0.05%). But as one sees, the 
condition determines an infinite set of real solutions S', with real and complex 
elements. In such cases, where the entire set of solutions can be characterized, 
it is possible to find particular solutions, e .g ., the solution that would minimize 
the 2-norm of the vector Ax.

1.4.2 C ondition of problems

We have seen how we can reflect back the forward error in the backward error. 
Now, the question we ask is: w h a t is  th e  r e la tio n sh ip  b e tw een  th e  fo r w a r d  a n d  

th e  b a c k w a rd  e r r o r ? In fact, in modeling contexts, we are not really after an 
expression or a value for the forward error p e r  se . The only reason for which we 
want to estimate the forward error is to ascertain whether is it smaller than a 
certain user-defined “tolerance,” prescribed by the modeling context. To do so, 
all one needs is to find how the perturbations of the input data (the so-called 
backward error we discussed) are magnified by the reference problem. Thus, 
the relationship we seek lies in a problem-specific coefficient of magnification, 
i . e . } the sensitivity of the solution to perturbations in the data, that we call 
the c o n d it io n in g  o f  th e  p ro b le m . The conditioning of a problem is measured 
by the c o n d it io n  n u m ber. As for the errors, the condition number can be 
defined in relative and absolute terms, and it can be measured normwise or 
componentwise.

The n o r m w is e  r e la tiv e  c o n d it io n  n u m b e r  k re\ is the maximum of the 
ratio of the relative change in the solution to the relative change in input,
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which is expressed by

K re i =  SUp M
IMI

sup ■\\^/y\\
|A*/*II

sup
X

||(rt*)-rt*))/v(x)||

II*—All
for some norm As a result, we obtain the relation

I M I  <  Krel\\Óx\ (1.30)

between the forward and the backward error. Knowing the backward error 
and the conditioning thus gives us an upper bound on the forward error.

In the same way, we can define the n o r m w is e  a b so lu te  c o n d itio n  n u m b e r  

KabS as supx Ha ÎI/||Ax||, thus obtaining the relation

||Aj/|| < KabsWAx (1.31)

If hi has a moderate size, we say that the problem is w e ll-c o n d itio n e d . Oth
erwise, we say that the problem is i l l - c o n d it io n e d . 12 Consequently, even for a 
very good algorithm, the approximate solution to an ill-conditioned problem 
may have a large forward error.13 It is important to observe that this fact is 
totally independent of any method used to compute <p. W hat matters is the 
existence of hi and what its size is.

Suppose that our problem is a scalar function. It is convenient to observe 
immediately that, for a sufficiently differentiable problem / ,  we can get an 
approximation of hi in terms of derivatives. Since

v ày A y xlim —  =  lim —— • —
Ax->0 ox Ax—>o A x  y

limAx—>0
f ( x  +  A x )  -  f ( x )  x  

A x  f ( x )

x f \ x )  

/(* )  ’
12When « is unbounded, the problem is sometimes said to be ill-posed.
13Note the “may”, which means that backward error analysis often provides pessimistic 

upper bounds on the forward error.
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the approximation of the condition number

Krel ~
\x\\f'(x)\

l/(*) I
(1.32)

will provide a sufficiently good measure of the conditioning of a problem for 
small Ax. In the absolute case, we have Kabs ~  |/'(:*) I- This approximation 
will become useful in later chapters. If /  is a multivariable function, the 
derivative f '(x )  will be the Jacobian matrix

J / ( x i , X 2 , . . . , x n ) =  9f/dxi df/9.JX2 Of/*.xn

and the norm used for the computation of the condition number will be the 
induced matrix norm ||J|| =  max||x||=i ||Jx||. In effect, this approximation 
amounts to ignoring the terms 0 (A x 2) in the Taylor expansion of f ( x  + A x) — 
/(x ); using this approximation will thus result in a linear error analysis.

Though normwise condition numbers are convenient in many cases, it is 
often important to look at the internal structure of the arguments of the prob
lem, e.g., the dependencies between the entries of a matrix or between the 
components of a function vector. In such cases, it is better to use a com
ponentwise analysis of conditioning. The relative componentwise condition 
number of the problem ip is the smallest number Kre\ > 0 such that

max
i

Ifijx )  -  f i(x )|
l/i(2 ) I

<  krei max
i

\Xi -  Xi

\Xi
X X,

where < indicates that the inequality holds in the limit Ax -» 0 (so, again, it 
holds for a linear error analysis). If the condition number is in this last form, 
we get a convenient theorem:

Theorem  1 (Deuflhard and Hohmann (2003)). The condition number is sub- 
multiplicative, i.e.,

Krel(g°h,x) < Krei(g,h(x)) * Krei (h, x).

!

1
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In other words, the condition number of a composed problem g o h evaluated 
near x is smaller than or equal to the product of the condition number of the 
problem h evaluated at x  by the condition number of the problem g evaluated 
at h(x). □

Consider two simple examples. Firstly, let us take the identity function 
f{x ) = x  near x  = a (this is of course a trivial example). As one would 
expect, we get the absolute condition number

f^abs SUp ||/(q  + A a) -  /(a ) 
II Ao||

I a +  A a — a\\ 
II Aq||

=  1 . (1.33)

As a result, we get the relation ||Aj/|| <  ||Ax|| between the forward and the 
backward error. This surely has moderate size in any context, since it does 
not amplify the input error. Secondly, consider addition, /(a , b) =  a + b. Now, 
the derivative of /  is ——

f'(a ,b ) = ÊL ÊL
da db 1 1

Suppose we use the 1-norm on the 
numbers are nabs =  | | / ,(o ,6)||i =  || 1

Jacobian matrix. 
1 ||i =  2 and

Then, the condition

^ rei I a +  6 || i
il = 2 M ± f .J i \a + b\

(1.34)

(Since the function is linear, the approximation of the definitions is an equal
ity.) Accordingly, if |a +  6 | |a| +  |fr|, we consider the problem to be ill-
conditioned. We examine many more cases in Corless and Fillion (201x). 
Moreover, many other examples are to be found in Deuflhard and Hohmann 
(2003).
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1.4.3 R esidual-based a p o s te r io r i  error analysis

The key concept we exploit in what follows is the residual. For a given problem 
(p, the image y can have many forms. For example, if the reference problem tp 
consists in finding the roots of the equation £? +x£-\-2 = 0 , then for each value 
of x  the object y will be a set containing two numbers satisfying £2+ x £ + 2  =  0 , 
z.e.,

V = { t  U 2 +  z£ +  2 =  0 } . (1.35)

In general, we can then define a problem to be a map

x  — -  > I (t>(x,0  =  o} , (1.36)

where ( f ( x ^ )  is some function of the input x  and the output £. The function 
( j )(x,£) is called the defining function and the equation </>(£,£) =  0 te called 
the defining equation of the problem. On that basis, we can introduce the very 
important concept of residual:

Given the reference problem ip—whose value at x  is a y such that the 
defining equation (j){x, y) = 0 is satisfied—and an engineered problem <£, 
the residual r  is defined by

r  = (j)(x,y). (1.37)

As we see, we obtain the residual by substituting the computed value y 
(z.e., the exact solution of the engineered problem) for y as the second 
argument of the defining function.

Let us consider some examples in which we apply our concept of residual 
to various kinds of problems.

1. The reference problem consists in finding the roots of a2^2 +  aio;+ao =  0. 
The corresponding map is </?(a) =  {x \ 0(a, x) =  0} where the defining
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equation is <j>(a, x ) =  a2x2 +  aix  + o0 =  0. Our engineered problem 
<p could consist in computing the roots to three correct places. With 
the resulting ‘pseudozeros’ x, we can then easily compute the residual 
r = a2x 2 + a\X +  ao.

2. The reference problem consists in finding a vector x  such that A x =  
b, for a non-singular matrix A. The corresponding map is if(A, b) =  
{x|0(A , b, x) =  0} where the defining equation is </>(A, b, x) =  A x - b  =
0. In this case, the set is a singleton since there’s only one such x. Our 
engineered problem could consist in using Gaussian elimination in 5-digit 
floating-point arithmetic. With the resulting solution x we can compute 
the residual r  =  A x — b.

3. The reference problem consists in finding a function x ( t )  on 
0 < t  < 1 such that

x  =  f ( t ,  x )  =  t 2 +  x ( t )  -  -^ z4(i)

and x(0) =  0. The corresponding map is

( p ( x ( 0 ) , f { t , x ) )  = { x ( t )  | ( p { x ( 0 ) , f ( t , x ) , x ( t ) )  = 0} (1.39)

where the defining equation is

< p ( x ( 0 ) , f ( t , x ) , x ( t ) )  = x -  f ( t , x )  = 0 (1.40)

together with x(0) =  0 (on the given interval). In this case, if the 
solution exists and is unique (as happens when /  is Lipschitz) the set 
is a singleton since there’s only one such x ( t ) .  Our engineered problem 
could consist in using, say, a continuous Runge-Kutta method. With the 
resulting solution x ( t )  we can compute the residual r  =  x  — f ( t , x ) .

Many more examples of different kinds could be included, but this should 
sufficiently illustrate the idea for now.

the interval 

(1.38)
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In cases similar to our third example above, we can rearrange the equa
tion r — i  — f ( t , x )  to have x  =  f ( t ,  x )  +  r, so that the residual is itself 
a perturbation (or a backward error) of the function defining the integral 
operator for our initial value problem. The new “perturbed” problem is

< p ( x ( 0 ) , f ( t , x )  +  r ( t , x ) )  =  {x(i) \ 4 > { x ( 0 ) , f ( t , x ) + r { t , x ) , x ( t ) )  =  0},

and we observe that our computed solution x ( t ) is an exact solution of 
this problem. When such a construction is possible, we say that (p is a 
r e v e r s e -e n g in e e r e d  p ro b le m .

The remarkable usefulness of the residual comes from the fact that in scien
tific computation we normally choose p  so that we can compute it efficiently. 
Consequently, even if finding the solution of tp is a problem of type. C2 (as 
defined on p. 10), it is normally not too computationally difficult because we 
engineered the problem specifically to guarantee it is so. All that remains to 
do to compute the residual is the evaluation of 0 (x,y), a simpler problem of 
type C l. Thus, the computational difficulty of computing the residual is much 
less than that of the forward error. Accordingly, we can usually compute the 
residual efficiently, thereby getting a measure of the quality of our solution. 
Consequently, it is simpler to reverse-engineer a problem by reflecting back 
the residual into the backward error than by reflecting back the forward error

Thus, the efficient computation of the residual allows us to gain important 
information concerning the reliability of a method on the grounds of what 
we have managed to compute with this method. In this context, we do not 
need to know as much about the intrinsic properties of a problem; we can use 
our computation method a posteriori to replace an a priori analysis of the 
reliability of the method. This allows us to use a feedback control method 
to develop an adaptive procedure that controls the quality of our solution 
“as we go.” This shows why a posteriori error estimation is tremendously 
advantageous in practice.
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The residual-based a p o s te r io r i  error analysis that we emphasize in this 
thesis thus proceeds as follows:

1 . For the problem tp, use an engineered version of the problem to compute 
the value y =

2 . Compute the residual r  =  4 > {x ,y).

3. Use the defining equation and the computed value of the residual to 
obtain an estimate of the backward error. In effect, this amounts to 
(sometimes only approximately) reflecting back the residual as a pertur
bation of the input data.

4. Draw conclusions about the satisfactoriness of the solution in one of two
ways:

(a) If you do not require an assessment of the forward errot^_but only 
need to know that your have solved the problem for small enough 
perturbation Ax, conclude that your solution is satisfactory if the 
backward error (reflected back from the residual) is small enough.

(b) If you require an assessment of the forward error, examine the con
dition of the problem. If the problem is well-conditioned and the 
computed solution amounts to a small backward error, then con
clude that your solution is satisfactory.

We still have to add some more concepts regarding the stability of algorithms, 
and we will do so in the next section.

But before, it is important to not mislead the reader into think that this 
type of error analysis solves all the problems of computational applied math
ematics! There are cases involving a complex interplay of quantitative and 
qualitative properties that prove to be challenging. We examine one such ex
ample from the computation of trajectories in chaotic systems in subsection 
2.5. This reminds us of the following:

A useful backward error-analysis is an explanation, not an excuse, 
for what may turn out to be an extremely incorrect result. The
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explanation seems at times merely a way to blame a bad result 
upon the data regardless of whether the data deserves a good result. 
(Kahan, 2009)

Thus, even if the perspective on backward error analysis presented here is 
extremely fruitful, it does not cure all evils.

1.5 Num erical properties of algorithms

An algorithm to solve a problem is a complete specification of how, exactly, 
to solve it: each step must be unambiguously defined in terms of known oper
ations, and there must only be a finite number of steps. Algorithms to solve a 
problem ip correspond to the engineered problems <p. There are many variants 
on the definition of an algorithm in the literature, and we will use the term 
loosely here. As opposed to the more restrictive definitions, we wffi count as 
algorithms methods that may fail to return the correct answer, or perhaps fail 
to return at all, and sometimes the method will use random numbers, thus 
failing to be deterministic. The key point for us is that the algorithms allow 
us to do computation with satisfactory results, this being understood from the 
point of view of mathematical tractability discussed before.

Whether (p{x) is satisfactory can be understood in different ways. In the lit
erature, the algorithm-specific aspect of satisfactoriness is developed in terms 
of the numerical properties known as numerical stability, or just stability for 
short. Unfortunately “stability” is the most overused word in applied mathe
matics, and there is a particularly unfortunate clash with the use of the word 
in the theory of dynamical systems. In the terms introduced here, the concept 
of stability used in dynamical systems—which is a property of problems, not 
numerical algorithms—corresponds to “well-conditioning.” Here, “stability” 
refers to the fact that an algorithm returns results that are about as accurate 
as the problem and the resources available allow. The takeaway message is 
that well-conditioning and ill-conditioning are properties of problems, while 
stability and instability are properties of algorithms.
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The first sense of numerical stability corresponds to the forward analysis 
point of view: an algorithm (p is fo r w a r d  s ta b le  if it returns a solution y  =  p ( x )  

with a small forward error A y .  Note that, if a problem is ill-conditioned, there 
will typically not be any forward stable algorithm to solve it. Nonetheless, as 
we explained earlier, the solution can still be satisfactory from the backward 
error point of view. This leads us to define b a ck w a rd  s ta b ility '.

D efinition 1. A n  a lg o r ith m  (p en g in e e re d  to  c o m p u te  y  =  p ( x )  is  backward 
stable if, f o r  a n y  x ,  th e re  is  a s u ff ic ie n tly  s m a ll  A x  su ch  th a t

y  =  f ( x  +  A x ) ,  ||A^|| < e .

A s  m e n tio n e d  before, w h a t is  c o n s id e re d  “s m a l l”, i.e.; h o w  big e  is , is  p re sc r ib e d  

by th e  m o d e lin g  c o n te x t a n d , a cco rd in g ly , is  c o n te x t d e p e n d e n t. □

For example, the IEEE standard guarantees that x  © y  = #{i~+ 5 x )  + 
y ( l+  6 y ) ,  with S < £m - So, the IEEE standard in effect guarantees that the 
algorithms for basic floating-point operations are backward stable.

Note that an algorithm returning values with large forward errors can be 
backward stable. This happens particularly when we are dealing with ill- 
conditioned problems. As Higham (2002, p. 35) puts it:

From our algorithm we cannot expect to accomplish more than 
from the problem itself. Therefore we are happy when its error 
f ( x ) — /(# )  lies within reasonable bounds of the error f ( x )  — f ( x )  

caused by the input error.

On that basis, we can introduce the concept of stability that we will use 
the most. It guarantees that we obtain theoretically informative solutions, 
while at the same time being very convenient in practice. Often, we only 
establish that y  + A y  =  f ( x  +  A x )  for some small A x  and A y .  We do so either 
for convenience of proof, or because of theoretical limitations, or because we 
are implementing an adaptive algorithm as we described in subsection 1.4.3. 
Nonetheless, this is often sufficient from the point of view of error analysis. 
This leads us to the following definition (de Jong, 1977; Higham, 2002):
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X y = <p(x)x  z-----------y =  <p(x)

x  +  A x V = <P(x) 
-  / A y  
<p(x +  A x )

< V < e

x  +  A x -------- y  =  p { x  + A x )

(a) Representation as a commutative (b) Representation as an “approximately” 
diagram (Higham, 2002). commuting diagram (Robidoux, 2002). We

can replace by the order to which the 
approximation holds.

Figure 1.3: Stability in the mixed forward-backward sense

Definition 2. A n  a lg o r ith m  dp e n g in e e re d  to  c o m p u te  y  = <p(x) is  stable in 
the mixed forward-backward sense if, f o r  a n y  x ,  th e re  are  s u ff ic ie n tly  s m a ll  

A x  a n d  A y  su c h  th a t:

y  +  A y  =  f ( x  + A x ) ,  ||Ay|| < <r||y||, ||Ax|| < v\M -  (1-41)

S ee  f ig u re  1 .2 . I f  th is  ca se , e q u a tio n  (1.41) is  in te r p r e te d  as sa y in g  th a t y  is  

a lm o s t  th e  r ig h t a n s w e r  f o r  a lm o s t  th e  r ig h t d a ta  o r, a l te r n a tiv e ly , th a t  th e  

a lg o r ith m  dp n e a r ly  so lv e s  th e  r ig h t p ro b le m  f o r  n e a r ly  th e  r ig h t d a ta . W e w ill  

a lso  u se  th e  r e la tiv e  s e n s e  o f  s ta b i l i ty  w ith  ||&r|| in s te a d .

In most cases, when we say that an algorithm is n u m e r ic a lly  s ta b le  (or 
just stable for short), we will mean it in the mixed forward-backward sense of 
(1.41).

The solution to a problem <p(x) is often obtained by replacing <p by a finite 
sequence of simpler problems • • •, <Pn- In effect, given that the domains
and codomains of the simpler subproblems match, this amounts to saying that

<p(x) = Vn° <Pn-1 ° • • • O ¥>2 O i p \ { x ) .  (1.42)

For example, if the problem p (A ,b )  is to solve the linear equation A x =  b 
for x, we might use the LU factoring (■i . e ., A =  LU for a lower-triangular 
matrix L and an upper-triangular matrix U) factorization to obtain the two
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equations

Ly =  Pb

U x =  y.

(1.43)

(1.44)

We have then decomposed x =  p (A, b) into two problems; the first problem 
y =  p \(L , P, b) consists in the simple task of solving a lower-triangular system 
and the second problem x =  (¿>2(U ,y) consists in the simple task of solving 
an upper-triangular system (see Corless and Fillion, 201x, chap. 4, “Solving 
Ax =  b”).

Such decompositions are hardly unique. A good choice of p \ ,p 2, . . . ,  (¿>n 
may lead to a good algorithm for solving p  in this way: solve p\(x) using 
its stable algorithm to get yi, then solve <¿>2(2/1) using its stable algorithm to 
get y2, and so on. If the subproblems p\ and p 2 are also well conditioned, 
by theorem 1 , it follows that the resulting composed numerical algorithm 
for p  is numerically stable. (The same principle can be use as a very 
accurate rule of thumb for the formulations of the condition number not 
covered by theorem 1).

The converse statement is also very useful useful: decomposing a well-condi
tioned p  into two ill-conditioned subproblems p  =  p 2 o p x will result in an 
unstable algorithm for </?, even if stable algorithms are available for each of 
the subproblems (unless the very unlikely event that the errors in pi and p 2 
cancel each other out obtains14).

To a large extent, the problems we examine in this thesis and in Corless and 
Fillion (201x) are about decomposing problems into subproblems, and exam
ining the correct numerical strategies to solve the subproblems. In fact, if you 
take any problem in applied mathematics, chances are that it will involve as 
subproblems things such as evaluating functions, finding roots of polynomials, 
solving linear systems, finding eigenvalues, interpolating function values, etc.

14For examples of when this happens, see Higham (2002).
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Thus, in each chapter of Corless and Fillion (201x), a small number of “sim
ple” problems are examined, so that the reader can construct the composed 
algorithm that is appropriate for his own composed problems.

1.6 Com plexity and cost of algorithms

So far, we have focused on the accuracy and stability of numerical methods. 
In fact, this thesis focuses more on accuracy and stability than on cost and 
complexity. Nonetheless, we will at times need to address issues of complexity. 
To evaluate the cost of some method, we need two elements: (1) a count of the 
number of elementary operations required by its execution and (2 ) a measure
of the amount of resources required by each type of elementary operations, ||
or groups of operations. Following the traditional approach, we will only
include the first element in our discussion.15 Thus, when we will discuss cost of ¡¡|
algorithms, we will really be discussing the number of floating-point operations 
required for the termination of an algorithm. The computational complexity of 
a problem is the cost of the algorithm solving this problem with the least cost,
ie ., what it would require to solve the problem using the cheapest method.

Typically, we will not be too concerned with the exact flop (z.e., floating
point operation) count. Rather, we will only provide an order of magnitude 
determined by the highest-order terms of the expressions for the flop count. 
Thus, if an algorithm taking an input of size n  requires n2/2 +  n  +  2 flops, 
we will simply say that its cost is n<2/2 + 0 {n ) flops, or even just 0 (n2) flops. 
This way of describing cost is achieved by means of the asymptotic notation. 
The asymptotic notation uses the symbols 0 ,O ,f i ,o  and uj to describe the 
comparative rate of growth of functions of n  as n becomes large. In this 
thesis, however, we will only use the big- 0  and small-o notation, which are

15The second point in more relevant in computer science, where one might want to con
sider the relative computer costs of each type of floating-point operation and the memory 
requirements of methods as a whole.
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no n

Figure 1.4: Asymptotic notation: /(n )  =  0(g{n)) if, for some c, cg(n) asymp
totically bounds /(n )  above as n —> oo.

defined as follows:

/(n )  =  0(g(n)) iff 3c > 03noVn > no such that 

/(n )  =  o(g(ri)) iff Vc > 03noVn > no such that

Intuitively, a function /(n )  is 0(g(n)) when its rate of growth with respect 
to n is the same or less than the rate of growth of g(n), as depicted in figure 
1.4 (in other words, lim ^oo /(n)/ (̂n) is bounded). A function /(n )  is o(g(n)) 
in the same circumstances, except that the rate of growth of /(n )  must be 
strictly less than <?(n)’s (in other words, limn_̂ .00 f(n)/g(n) is zero). Thus, g(n) 
is an asymptotic upper bound for /(n ) . However, with the small-o notation, 
the bound is not tight.

In our context, if we say that the cost of a method is 0 (g (n )), we mean 
that as n becomes large, the number of flops required will be at worst g(n) 
times a constant. Let us introduce some standard terminology to qualify cost 
growth, from smaller to larger growth rate:

o < f in )  < c ■ g(n) 

0 <  f(n )  < c ■ g(n)

42



The cost /(n )  is The growth rate if the cost is
O (l) constant
O(logn) logarithmic
0 ( n ) linear
0 { n  log n ) quasilinear
0 ( n 2) quadratic
0 ( n k),  k  =  2 ,3 ,. . . polynomial
0 ( k n) exponential

We will also use this notation when writing sums. See appendix B.
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Chapter 2

Num erical Solution of ODEs

This chapter has two objectives. The first is to explain the use of basic state- 
of-the-art codes (such as the M a t l a b codes). The second is to introduce the 
concepts and the perspective on which we base our criteria determining when 
to trust (and when to distrust) numerical solutions of ODE. Since numerical 
solution is our principal tool for nonlinear problems, this occupies an important 
place in the more general practice of scientific modeling. Consequently, we 
adopt a backward error perspective centered on the concept of residual, as 
explained in chapter 1. The residual of a differential equation is also called 
the defect and the deviation in the literature. The use of residuals for ODE is 
old, going back at least to Cauchy. However, it has not been used as much as 
it could be in numerical analysis, in spite of its distinguished history. Within 
the last few decades, however, this has begun to change and we believe that 
the right approach to the pedagogy and the usage of numerical methods for 
the solution of ODE includes the residual.

But before we talk about the residual, we should ask why one would use 
numerical methods at all. As a modest but typical example, consider the 
following simple-looking initial value problem (we use both x '  and x  to denote
dx/dt)\

x ( t )  = 12 + x ( t )  -  z(0) =  0 (2.1)

on, say, the interval 0 < t  < 5. Differential equations of this ilk can easily be
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found in applications; although this is a made-up problem, one could imagine 
that it had to do with population growth, where t is the time, and where x 
represents a population with spontaneous generation and a power-law death 
rate. If one tries to find the solution of this equation, then difficulties arise:

• The exact solution of this problem is not expressible in terms of ele
mentary functions or known special functions (for methods to determine 
when this is the case, see, e . g Geddes et al., 1992; von zur Gathen and 
Gerhard, 2003; Bronstein, 2005) and

• High order power series solutions (see section 3.4) have numerical eval
uation difficulties for large (t — a) caused by catastrophic cancellation, 
similar to the difficulties suffered by other functions we have seen before 
such as AiryAi(:r) or e~x, due to “the hump” phenomenon—see chap
ters 1 and Corless and Fillion (201x, chap. 2).

Even for the problem posed in equation (2.1), which is vastly simpler than 
problems tha t occur in real models, the classical solution techniques fail us. 
In contrast, numerical solution on (for example) 0 < t <  5 is simplicity itself 
when we use state-of-the-art codes such as M a t la b ’s ode45 to get a reliable 
numerical solution. For this reason, in many applications, numerical solution 
will be considered the solution method par excellence.

2.1 Solving Initial Value Problem s with ode45
in M a tla b

M a t l a b ’s ode45 is an exemplar for easy-to-use state-of-the-art codes. We use 
it to introduce the reader to the idea of using professional codes. M a t la b ’s 
ode45 requires three arguments:

1. A function handle corresponding to f ( t ,x )  in x  =  f ( t ,x ) ;

2. A time span, i e . , a l x 2  vector corresponding to the interval over which 
we will solve the equation numerically;
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Figure 2.1: Numerical solution of equation (2.1).

3. An initial value. ——

For the problem described in equation (2.1), we could simply execute

1 f  = Q ( t , x )  t . ~ 2  + x -  x . ~ 4 / 1 0 ;
2  o d e 4 5 (  f ,  [ 0 , 5 ] ,  0 ) ;

These commands will dynamically generate the plot displayed in figure 2 .1. 
Note that the solver has apparently produced a continuously differentiable 
function as a solution and plotted it. In fact, this graph has been generated 
step by step, using discrete units of time, and between each pair of points 
lies a separate function, which are then pieced together to produce a piecewise 
differentiable function on the interval of integration. We denote this continuous 
approximate solution of our initial value problem by x(t). This shows how 
simple the use of ode45 can be. For most purposes, one will instead want to 
execute ode45 in M atlab  with a left-hand side, e.g.,

i s o l  = o d e 4 5 ( Q o d e f u n , t s p a n  , xO ) ;

For the problem in equation (2.1), the resulting solution so l will then be a 
structured object of this kind:

1 sol =
2 s o l v e r : ' o d e 4 5 '

47



3 extdat a :
4

5

6 

7

[lxl struct] 
x: [1x25 double] 
y: [1x25 double] 

stats: [lxl struct] 
idata: [lxl struct]

(Note that one could also write [t,x] = ode45(@odefun,tspan,x0) to put 
the values of so l.x  and so l.y  directly into other variables t  and x, which is 
sometimes useful.) The M atlab  command odeexamples can be considered a 
good go-to reference for the use of basic ODE codes.

We will see that this ‘solution object’ can be used in the same way that 
a formula can be used, in that the solution x(t) and its derivative x(t) can 
be evaluated at any desired point in the interval tspan. For now, we note 
that the points contained in the array so l.x  are called the ‘steps’, ‘nodes’, 
or ‘mesh’ tk for (here) 1 < k <  25, and the points in the array so l.y  are 
the corresponding values of x(tk) (these were plotted with the circles in figure 
2.1). We also note immediately that the value of x  and x  are available at off- 
mesh values of i, by use of the deval function, which automatically provides 
accurate interpolants and their derivatives for all solutions provided by the 
built-in solvers of M a t la b .

In older books, a numerical solution to an I VP is considered to consist 
merely of a discrete mesh of times (¿.e., so l.x ) , together with the corre
sponding values of x  at those times (¿.e., so l.y ). In those books, while 
an analytic solution to an IVP is a function for which we know the rule 
or formula, a numerical solution is merely a discrete graph. Nowadays 
it is different: since there are algorithms implemented for evaluating the 
numerical solution at any point, and its derivative if we choose to ask for 
it, the distinction between an analytic solution and a numerical solution is 
not so great.

In the above example, the use of M a t la b ’s ode45 required no preparation 
of the problem. However, it often happens that, if one wants to use standard

48



codes to solve a problem numerically, one has to rearrange the problem so that 
it is in a form that the code can process. The standard form of an initial value 
problem is

x  =  f(i,x (i)) , x(i) =  xo, (2.2)

where x : R —> Cn is the vector-solution as a function of time, x 0 G Cn is the 
initial condition, and f  : R x Cn —> Cn is the function equal to x. In terms of 
dynamical systems, f  is a velocity vector field and x  is a curve in phase space 
that is tangent to the vector field at every point. Equation (2.2) can thus be 
expanded as a system of coupled initial-value problems as follows:

¿1  =  fi(t,x i(t)> x2(t)}. . . , x n(t)), Xi (t0) = x h0

¿2 =  f2{t,X i(t),X2(t)y . . . ,Xn(t)), X2(t0) =£2,0

Xn fnifi X\ (t), X2 (i), • • • y » Xn(t{f) =  Xnfi

It is also sometimes convenient to write the system in matrix-vector notation,

x  =  f  (i, x(i)) =  A (t)x(t) +  b(i),

when dealing with linear or linearized systems, since the stability properties 
will then be partially explained in terms of the eigenvalues or the pseudospectra 
of A(i). In this case, the entries a^(i) of A are assumed to be continuous in 
t and, for linear systems, do not depend on any of the £*. For non-linear 
systems, the notation is sometimes abused to let the a^s depend on the XiS. 
The vector b(i) corresponds to the non-homogeneous part of the system, i.e., 
it is a function of t only.

Finally, we observe that the system can always be modified so that it 
becomes an autonomous system (where f  does not depend on f, i.e.} where 
f( t,x (i)) =  f(x(i))). In order to do so, we simply add an (n + l)th  component 
to x  if necessary, so that the /* are now of the form f i(x i( t) , . . . ,  x n(t)yx n+i(t))y
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and add an (n +  l)th  equation

¿ n + l  =  f n + l ( X i ( t ) ,  X 2 ( t ) ,  X n ( t ) ,  X n + i ( t )  ) =  1 Xn + i ( f 0) =  t 0 .

It is often convenient to deal with the autonomous form of systems, and we 
will freely do so. In this notation, we will often simply write x instead of x(<) 
and A instead of A(i).

As a first example, we show how to express systems of first-order equations 
in standard form. Consider the Lorenz system, in which we have a system of 
three first-order differential equations:

x = yz — fix  a?(0) =  27
y =  a(z  — y) y{ 0) =  - 8  (2.3)
z — y{p -  x) -  z 2 (0 ) =  8

We use Saltzman’s values of the parameters: a — 10, p =  28 and ¡3 =  8/3. To 
express this system in a way that M atlab  can process, we simply make the 
trivial relabeling of variables X\(t) = x(t), x2(t) =  y(t), and x 3(t) = z(t):

¿1 =  x2x3 -  (3xi 

x2 - a(x3 -  x2)

¿3 =  x2(p -  X\) -  x3

We can then, if we need, rewrite the system in matrix-vector notation:

¿1 x 2x 3 -  /3x 1 0 X2 Xi
X = ¿2 = cr(z3 -  x 2) — 0 —a a

¿3. x2{p -  Xi) -  x 3_ _ x 2 P -1_ _X3_
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Moreover, our initial conditions x(0), y(0), and z(0) now form a vector

Zi(0) ' 2 7 '
x (o) = £2(0 ) = —8

_Z3(0)_ _ 8 _

To conveniently treat in M a t l a b  a problem such as the one in our example 
above, we create an m-file similar to the one below :

1 function sol=lorenzsys
2

3 rho = 28;
4 sigma = 10;
5 beta = 8/3;
6 tspan = [ 0, 100 ];
7 y0 = [ 27, -8, 8 ];
8 sol = ode45 ( 0 (t,y)lorenzeqs(t,y ,rho,sigma,beta) , tspan, yO );
9

10 tplot = linspace( tspan(l), tspan(end), le4 ); 
n yplot = deval( sol, tplot );
12 %  f i r s t  f e w  p o i n t s  of th e  t i m e  h i s t o r y

13 p1ot ( tplot(1:200) ,yplot(1 ,1:200) k-' , tplot(1:200) ,yplot
(2,1:200) , 'k--' ,tplot(1:200) ,yplot(3,1:200) , ' k-. ' )

14 figure
is */9 p h a s e  d i a g r a m

16 plot3 ( yplot (1 , : ) , yplot(2,:), yplot(3,:), ' -k ' )
17

is end
19

20 function ydot = lorenzeqs(t,y ,rho,sigma , beta)
21 ydot (1 , : ) = -beta*y (1 , : ) + y (2 , : ) . *y (3 , : ) ;
22 ydot (2 , : ) = sigma*( y (3 , : )-y (2 , : ) );
2 3 ydot (3,:) = -y (2 , : ) . *y (1 , : ) + rho*y(2,:)-y (3 , : ) ;
24 end

Note the use of a ‘curried’ in-line function call1 X
XA curried function, named after Haskell Curry (see, e.g, Curry and Feys, 1958) but first 

developed by Schonfinkel (1924), a transformation of a multivalued function to treat it as a 
sequence of single-valued functions.
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(a) Time history of x(t) ,y(t)  and z(t). (b) Phase portrait for x(£).

Figure 2.2: Plots of the numerical solutions of the Lorenz system.

®(t,y)lorenzeqs(t,y,rho,sigma,beta)

in line 8 to create a function for ode45 that does not have explicit reference to 
the parameters cr, p, and /?. The first function simply provides the parameters 
and executes ode45 (lines 3-8). The second function defines f  (i, x) as described 
in equation (2.3) (line 20-24). Here, so l is a structure containing the 3 x 1,491 
array so l.y ; the row s o l .y ( i ,  :) will be the vector of computed values of 
X i ( t n ).  One can then easily obtain useful plots, such as time histories and phase 
portraits, using deval (lines 10-16). See figure 2.2. Note the use of deval to 
produce a good interpolation of the numerical solution, which is then fed into 
the functions p lo t  and p lo t3  to obtain graphical results.

Another trivial change of variables can be used to solve systems of higher- 
order differential equations in M a t l a b . This time, the change of variables is 
used to transform a higher-order differential equation into a system of first- 
order differential equations;2 we can then write it in vector notation as above 
if we like. In this case, a solution to the nth order initial-value problem is a

2Instead of this trivial change of variable, it is sometimes better to use physically relevant 
variables (see Ascher et al., 1988). In this thesis, we usually just use the trivial new set of 
variables.
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column-vector x(t) whose components are

For example, suppose we are given the differential equation

x +  2£uoX +  coqX =  0 (2.4)

for a damped harmonic oscillator. We first form the vector

x(t)  =
X\(t) x(t)
_X2 (t)_

so that

x  =
¿1 x{t) X2 x 2
X2m * ( 0 . X2_ —2(cjqX - LUqX

0 1 X\
-2(cj0X2 - ~tdn -2(cuo X2

=  A x =  f(i,x ).

We can then use the M atlab  routine ode45 to find a numerical solution to 
this initial value problem. Again, we create an m-file similar to the one below:

1 function sol=dampedharmonicoscillator
2

3 tspan = [ 0, 10 ] ;
4 yO = [ 0, 1 ]; %this is [x(0),x'(0)]
5 sol = ode45( Qodefun, tspan, yO );

7 tplot = linspace( tspan(l), tspan(end), 1000 );
8 yplot = deval( sol, tplot );9 plot( tplot ,yplot( 1 -k' , tplot,yplot( 2 --k' )

10 figure
11 plot ( yplot (1,:), yplot (2 , : ) , '-k ' ) Xphase portait
12 end
13

14 function f = odef un (t , y)
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(a) Time History for x(t)  and x(t). (b) Phase Portrait of x.

Figure 2.3: Damped Harmonic Oscillator

15 omega = 2*pi )
16 zeta = 0.1; %  p a r a m e t e r s  h a r d - c o d e d  t h i s  t i m e

17 f = [ 0, 1; -omega~2, -2*zeta*omega ]*y;
18 end

Here, s o l .y ( :  ,1) will be the computed values of x (tn) and s o l .y ( :  ,2) will 
be the computed values of x (tn). The graphical results are displayed in figure 
2.3.

The question we are generally addressing while attempting to solve 
a differential equation is: W hat do the solutions look like, for various 
initial conditions and parameter values? In the numerical context, we 
have various methods returning us various answers. The question thus 
becomes: Are the numerical solutions faithful representations of solutions 
to the reference problem?

In the next section, we look at an effective and efficient test based on 
computing the residual.
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2.2 Residual, aka  defect or deviation.

We show how to assess the quality of a solution by examining its residual 
‘Defect’ is a standard name (in the field of numerical methods for the solution 
of differential equations) for what we have called the residual so far. In other 
contexts, other works call this quantity deviation (e.g. Birkhoff and Rota, 
1989).

For a given initial value problem x(i) =  f(i,x (i)), if we knew the 
exact solution x(i) and its derivative, we would obviously find that x(i) — 
f(f,x (t)) =  0. However, the numerical methods do not return us the exact 
solution x(£) and its exact derivative x(£), but rather some approximate 
results x(i) and x(f) (this is, as we have seen, what deval returns). But 
then, x(i) — f(i,x (t)) will not in general be zero; rather, we will have

A(i) =  x -  f(t,x (t)),

where A(f) is what we call absolute defect or residual. We can also define 
the relative defect 6(t) componentwise (provided f(t,x(£)) ^  0) so that

m  = Xj -  fi( t,x ) Xj

fi(t,x)
- 1 .

As before, we can express the original problem in terms of a modified, or 
perturbed problem, so that our computed solution is an exact solution to 
this modified problem:

x =  f( i,x ) +  A (t).

The residual vector A is then a non-homogenous term added to the func
tion f , and equation (2.5) specifies a reverse-engineered problem that has 
been solved exactly by the numerical method.

Let us look at the residual from the point of view of dynamical systems. As
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Figure 2.4: A vector field with a nearly tangent computed solution.

we have seen, in an ODE of the form x =  f(i,x (f), the function f  determines 
a velocity vector and a solution x(i) is then a curve in the phase space that 
is tangent to the vector field at every point (see figure 2.4). By computing 
the residual A(i) =  x(t) — f(i,x(£)), we are in effect measuring how far from 
satisfying the differential equation our computed trajectory x(£) is, ¿.e., how 
close it is to be tangent to the vector field. Alternatively, we can then say that 
the computed trajectory x  is tangent to a perturbed vector field f  (£, x) + A (t).

Note that the residual is easily computed in M a t l a b . The ODE solver 
returns a structure so l containing the evaluation points tk (determined by the 
step sizes) as well as the values of x(i/t)- Using a suitable interpolant, we can 
then find a continuous and differentiable function x(f), as well as its derivative 
x(£). But this is all one needs to compute the defect, since the function f  is 
known from the beginning, being the definition of our initial value problem.

In practice, the computation of the defect is even simpler, since we usually 
don’t have to worry about numerically interpolating and differentiating the 
interpolant.3 For a given selection of points i* (defined, e.g., by linspace), 
the M a t l a b  command

Nonetheless, Corless and Fillion (201x) examines examples where the built-in inter
polant and its derivative have some difficulties.
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(b) With tolerance le-11.

Figure 2.5: Easily computed residual of the solution of (2.1) with ode45. 
Notice the scale difference.

i [ xhat , dotxhat ] = deval( sol , t )

returns us the values x(£) and x(i) at any point in the interval.' The defect 
is thus obtained almost automatically. As an example, consider again the 
problem in equation (2.1). One can obtain the residual as follows:

1 f = Q (t,x) t.~2 + x - x . "4/10;
2 sol = ode45( f, [0,5], 0 );
3 7, C o m p u t e  a n d  p l o t  th e  r e l a t i v e  r e s i d u a l  on a lot o f  p o i n t s

4 t = linspace( 0,5,1001 );
5 [xhat,dotxhat] = deval(sol,t);
6 deltat = dotxhat ./ f(t,xhat)-l;
7 semilogy( t, abs(deltat), 'k-' )

In figure 2.5(a), one finds the residual for this problem. Observe that the 
maximum residual over the interval is quite large, ie ., about 0.5.

T o reduce th e  size  of th e  residual, M a t l a b  offers th e  user th e  p ossib ility  

of sp ec ify in g  a to lerance. To b e specific , it  allow s th e  user to  sp ecify  a relative 
and an absolute tolerance. T h e  above exam p le  can  b e m odified  as follow s in 

order to  sp ec ify  th e  tolerance:

1 opts = odeset( 'RelTol' , 1.0e-ll, 'AbsTol' , 1.Oe-11 );
2 sol = ode45 ( f, [0,5], 0, opts );

The default absolute tolerance in M a t l a b  for ode45 is 1.0 x  10“6. If we run

(a) With default tolerance
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our above example at a tighter tolerance, we obtain the residual displayed in 
figure 2.5(b). Observe that the relative residual is not actually smaller than 
the tolerances everywhere, but i t’s small anyway, and it gets smaller with 
tighter tolerances. The tolerance and the relative residual are related, but still 
different quantities. We will examine their relation in subsection 3.2.

Something important has happened here. Notice that the numerical method 
gives you the exact solution to a nearby problem, and that you get to control 
just how nearby (we will examine this relationship in more detail in section 
3.2.2). You can look at the residual if you choose to do more computations.

As we do throughout this thesis, from our a posteriori backward error 
analysis point of view, we then use our computation to approximate a 
backward error, and henceforth say that our numerical solution gives us 
the exact solution of of a nearby problem.

In our first example, we can then claim that we have provided an exact 
solution to

x 2
x  = t2 + x  — — + 10 6v(t), 0 < t <  5,

where v(t) is some noisy function such that |u(i)| <  1. The value e = 10-6 
has been chosen based on the maximum computed value of the residual on the 
interval [¿o,i/].

In the example of the Lorenz system, we can find the residual over the last 
few points as follows (see figure 2.6):

1 t = linspace( sol.x(end-3), sol.x(end), 301 );
2 [yhat,dotyhat] = deval( sol, t );
3 Deltat = dotyhat - lorenzeqs( t,yhat, 28,10,8/3 );
4 plot( t, Deltat, 'k — ' )

As a result, we say that our numerical solution is the exact solution of the 
nearby problem

x =  lorenzeqs(x) +  10 6v(i)
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Figure 2.6: Residual components of the Lorenz system with le -9  tolerance 
with ode45.

where each component of the vector v(i) =  [vi(i)> v2(i)> V3(t)]T is less than 1, 
i.e., the vector satisfies ||v(t)||00 < 1.

2.3 Conditioning Analysis

In the previous section, we have defined the residual and we have seen how 
to compute it without pain. We then use this computed value to estimate a 
backward error. Now, from the general perspective developed in chapter 1, an 
initial value problem can be seen as a functional map

ip\ (f(i,» ),X o ) -* jx ( i )  : x  =  f ( i ,x ( i ) ) | ,  (2.5)

where f is a functional R x Cn —» Cn (the tangent vector field) and Xo is the 
initial condition. We can then study the effects of three cases of backward 
errors: where we perturb f, where we perturb x0, and where we perturb both. 
In the previous section, we have given two examples of perturbation of f with 
£v, where the magnitude of e is the maximum computed residual and v  is a 
noisy function with \\v\\oo <  1 (v will sometimes be assumed to be a function of 
t only, as in subsection 2.3.2, and will sometimes be allowed to be a nonlinear
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input space 
( f ( i ,x ) ,x 0)

backward error ev-

output space
y =  {x(i) : x  =  f(t,x ),x (0 ) =  x 0}

<£, e.g.y ode45 ' — forward error «  cond x bea

(f (i,x) +£V,X0) x(i)

Figure 2.7: Commutative diagram for the backward error analysis of initial 
value problems. Note that we can also perturb x0, or both Xo and f. In some 
cases, this diagram will be implicitly replaced by an “almost commutative 
diagram” , as defined in chapter 1.

function of t and x, as in subsection 2.3.3). This situation is represented in 
figure 2.7.

The question we ask in this section is: what effect do perturbations of f , x 0,
or both have? That is what the conditioning of the initial value problem tells 
us. We begin by examining the effects of a perturbation of the initial condition 
only. Next, we examine the effects of a perturbation of the functional f .

2.3.1 C onditioning & Lipschitz constants

A first assessment of the conditioning of an IVP can be obtained from Lipschitz 
constants. Consider the initial value problem

x  =  f(i,x (i)) x(0) =  x0. (2.6)

The function f(i, x) is said to be Lipschitz continuous in x  with respect to a 
norm || • || over the interval t G [a, 6] if there is a constant L such that for any 
t G [a,b] and for any two X\(t) and x 2(i),

||f( i,x i) -  f ( t ,x 2)|| <  L||x! -  x 21|. (2.7)
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L is called a Lipschitz constant. Moreover, if the function f  in the initial value 
problem above is continuous in t and Lipschitz continuous in x, then there 
exists a unique solution x(i) to the IVP (a nice proof is given in Birkhoff and 
Rota, 1989, chap. 6).

From inequality (2.7), we see that the Lipschitz constant L has a bounding 
effect similar to the condition number that is studied in the context of numer
ical linear algebra (see Corless and Fillion, 201x, chap. 4, “Solving A x =  b ”). 
Observe that when xi =  x 2, (2.7) is trivially satisfied. Also, if xi ^  x 2, we 
have

||f(t,X!) -f(t,X2)|| <  L
| | x i - x 2||

Thus, L provides an upper bound on the effect that changes in x can have on 
f (i, x). Also, by the mean-value theorem, we can find that, for some x between 
Xi and x2,

||f(i,X i) - f ( i , x 2)|| =  ||f '( i,x )-  (xx — x2)|| < ||J f (x)||||xi - x 2||,

and so we can use the maximum norm of the Jacobian of f as Lipschitz con
stant.

However, we are not so much interested in the effects of a perturbation of 
x (i0) on f as in its effect on x(£), the solution of the initial-value problem. To 
examine this problem, we first need a lemma.

L em m a 1 (GronwalPs Lemma). I f x ( t ) satisfies

x(t) < ax(t) + 6, x(0) =  xo,

with a ,x o > 0, b constant, and, t > t0, then

x(t) < x 0eat + ~(eat -  1). (2.8)
a

Proof. Rearranging the terms of the assumption and multiplying by e~at, we
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get

e atx(t) — ae atx ( t) <  be at.

By Leibniz’ rule, we then obtain

4-x(t)e~at < be~at. 
d t K

Integrating both sides on [0, i], and with the help of the fundamental theorem 
of calculus, we obtain

x(t)eat — #(0) <  -(1  -  e_at), 
a

from which we get the lemma by rearranging the terms. □

Now, suppose that y (t) and z (t) are solutions of

y(i) =  f(i,y(<)), y(0) =  y0

z(i) =  f(i,z (i)), z(0) =  Z q

for a Lipschitz continuous f. Then, a bound on ||y (t) — z(i)|| in terms of 
||yo — z01| would give us an estimate of the sensitivity to perturbation of the 
initial condition. For practical purpose, we will typically be interested to 
establish this bound for the 2-norm. First, observe that for the 2-norm, a 
useful relation holds between the derivative of the norm of a function and the 
norm of the derivative of a function:

d_
dt ItoiOlla =  J t (9(t),9(t)) =  2 g (t)^g (t)  = 2 ( g(t), ^ g(t)

d_
' dV

d_
dV

So, by the Cauchy-Schwartz inequality, we have5lliWlll = 2(iW.|»W)<2 < 2 ||^ (i)l|2 ||^ (i)ll2 .
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Consequently,

5 W * > " >  -

d
OlU/VUL

d

Now, let g(t) = y(i) — z (t) in the above argument. Since f  is Lipschitz con
tinuous, we find that

| l l y W  -  < i) lb  < | | | ( y W  - z ( i ) ) | |2 =  ||f(f,y (i)) -  f( t,z ( i)) ||2 

< L ||y(t) - z ( i ) | |2.

Thus, ||y(£) — z(t)||2 satisfies the hypothesis of Gronwall’s lemma with a = L 
and 6 =  0.

Therefore,

||y(i) - z ( i ) | |2 <  ||y0 -  zo h eLt.

Consequently, if f is Lipschitz continuous and we know the Lipschitz con
stant L, we can find an upper bound on the effect of a perturbation of the 
initial condition on the trajectories. However, since L > 0, there may be 
exponential separation of the trajectories.

It is important to understand that L normally gives a pessimistic evaluation 
of the quality of the solution. Thus, if we want to use the Lipschitz constant as 
a condition number, it is important to consider the smallest Lipschitz constant 
for the problem. Moreover, even if the Lipschitz constant provides a tight 
bound, it is possible to tighten it further using the Dahlquist constant instead 
(Soderlind, 1984).
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2.3.2 C ondition v ia  the variational equation

Consider the autonomous initial-value problem

x =  f(x(t)), x(0) =  x 0 (2.9)

and the corresponding perturbed autonomous initial value problem

z =  f(z(i)) +  ev(t), z(0) =  z0. (2.10)

We denote their solutions x(t) and z (£), respectively, and we let x0 =  z0. 
Notice that since z (t) is the solution of the perturbed problem, we can also 
write z (t) = x (t,e )  as a regular perturbation series, using the notation of 
appendix B. In this context, e is a small number and ev  a small perturbation, 
and we will accordingly investigate ||x(i) — z(£)|| as £ —» 0. The question is 
then: as e —> 0, does x(i,s) converge to x(i) as t —> oo? We will examine the 
Grobner-Alexeev approach in the next subsection. However, we take an easier 
approach here, and linearize the exact solution about the computed solution.4 
This type of reasoning is standard in the theory of dynamical systems (see, 
e.g., Nagle et al., 2000; Lakshmanan and Rajasekar, 2003); in effect, we will 
study the relation between x and z in the tangent space. The information we 
obtain will be valid only insofar as the tangent space trajectories represent 
well the original trajectories (z.e., in a small neighbourhood).

Consider the asymptotic expansion of z (t)—which, remember, is just x (i, e )— 
in powers of the perturbation e:

By formula (B.9), since the limit of x(i,£) as e —> 0 is just x(i), we have 
x 0(i,E) =  x(i), giving us

z (t) = x 0(i) +  exi(i) +  0 (e 2).

z (t) =  x(i) +  xi(i)e +  0 (e 2). ( 2 . 11)

4We again assume that we have interpolated the numerical solution so that it has a 
sufficient number of derivatives.
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We want to solve for xi (t) to determine the first-order effect of the perturbation 
on the solution, since z (t) — x ( t) =  exi (i).

The derivative of equation (2.11) is

z (t) =  x(t) + ¿1 (t)e +  0 (e 2)

=  f(x(t)) +  Xi (t)e +  0 (e 2).

Since it follows from equation (2.11) that x(i) =  z(i) — x \(t)e  — 0 (e 2), we can 
substitute and expand f  about the computed solution z(i):

z (t) =  f  ^z(i) -  x i (t)e -  0 (e 2)^j +  x\(t)e  +  0 (e 2)

= f (z (t)) + f'(z(0) ^(z(i) -  exi(t) -  0(£2)) -  z(i)^ +  exj(i) +  0 (e 2)

-  f(z(i)) +  f'(z(i))(-ex i(i)) +  e x i(t) +  0 (e 2) ___

Now, by equation (2.10), we obtain

z(i) -  f(z(t)) =  ev(t) = e x i(t) -  ex i(i)J f(z(t),

where the partial derivative in the Jacobian J f are with respect to z.

Neglecting the higher powers of e and rearranging the terms, we finally 
obtain

*i(i) =  J f (z(i))xi(i) +  v(t), x i(i0) =  0. (2.12)

This is the first variational equation (Bender and Orszag, 1978).

The exact, analytic solution of this equation involves the machinery for 
linear non-homogeneous equations with (possibly) variable coefficients. In 
what follows, we only briefly sketch how to solve the equation for Xi in the 
matrix-vector notation (for more details, see Nagle et al. (2000) or Kaplan 
(2002)). This is an aside that does not have much to do with numerics, but
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it will help to fix the notation and to explain the mathematical objects we’re 
dealing with in the codes. We will see at the end of this section how to 
implement all of this numerically.

Consider the homogenous part of the variational equation (2.12), Xi =  
J f (z)xi (we’ll drop the subscript “1” below since the method applies generally 
to linear systems). If xi(£), X2( t) , . . . ,  xn(£) are solutions of x =  Jf(z)x  and 
the Wronskian is non-zero, ie ., if

. . .  ,x n) =  det Xl t̂ O,

then the solutions are linearly independent, so that the general solutions of 
x  =  J f  (z)x are

X/,(t) =  Xi(i)ci +  X2(i)c2 +  • • ■ +  X„(i)c„ =  X(i)c,

and X(i) is then called a fundamental solution matrix. As one can easily verify 
from the above definition, the fundamental solution matrix satisfies the matrix 
differential equation X(t) =  Jf(z)X (t). Moreover, we can always choose a 
fundamental matrix whose initial conditions will be £(0) =  I by applying a 
transformation X (t) = £(i)C (C constant), so that I =  X -1(0)C. Then,

m  = Jf(z)Ç(i), £(0) =  I (2.13)

is called the associated matrix variational equation. Note that there is no 
general method to identify the fundamental solutions filling up the matrix 
X(£), when the components of Jf(z) are not constant, in terms of elementary 
functions, but it is known for some classes of problems.5

Whenever X (i) is a fundamental matrix, it is non-singular, and as a result 
the coefficients c* are uniquely identifiable for a given initial-value problem as 
c =  X _1(t0)x(io)- Therefore, we find that the solution of the homogeneous

5Also, note that there are algorithms that will find solutions when they are findable, and 
prove that they are not when they are not. See, e.g., Bronstein and Lafaille (2002).
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system is

x h{t) = X ( t)X  1(t0)x(t0).

Once we know a set of fundamental solutions for the homogeneous part 
of the system, we can find a particular solution xp(£) to the non-homogenous 
system by variation of parameters, obtaining a general solution with the su
perposition principle x(i) =  x^(i) +  xp(i). The solution of the inhomogeneous 
system, x  =  J f (z)x +  v, is obtained by letting the coefficients c* be functions 
of i, so that xp(i) =  X (i)c(i). Note that the derivative of xp(i) is

Xp(i) =  X (t)c(t) +  X(i)c(i),

so that, by substituting in x =  Jf(z)x  +  v, we obtain

X (i)c (t) + X (t)c(t) = J f (z)X(i)c(i) +  v(i)

Since the fundamental solution matrix satisfies X(i) =  Jf(z)X (t), we find 
that c(i) =  X _1(i)v(i) (since X is invertible). By integration of c =  X _1v, 
we finally identify the variable coefficients and the particular solution:

Xp(t) =  X (i) f  X "1(r)v (r)d r.
Jto

Therefore, the general solution of the variational equation is (we reintroduce 
the subscript “1”):

x i(i) =  X i(i)X i(f0)xi(io) +  [  X i(t)Xx 1 (r)v (t)dr. (2.14)
Jto

But since x i( i0) =  0, the homogeneous term is just 0. This gives us the 
following expression for z (t) — x(£),

z(i) — x(i) =  6Xi(i) =  £ f
Jto

x i(i)x i 1(r )v(r)dr,
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where again we ignored the higher powers of e. Now, it follows that

|z(i) - x ( i ) | |  = e X i(i) f  X j ' ^ v ^ d r  < e ||X i(i) || f  ||X x 1('r)||||v(r)||dx 
J to J to

by the submultiplicativity of the norm.

Therefore, we obtain the inequality

l|z(0 - x ( t ) | |  <  ||X i(i)|| max ||Xj-1(r)|| f  e ||v (r) ||d r, (2.15)
to<r<t J tQ

where

«(X 1) =  ||X 1(i)|| max ||X r1(r)|| (2.16)
to<T<t

acts as a condition number and the integral of e||v|| is a norm of £V. Thus, 
if the fundamental solution matrix of the variational equation Xi is well- 
conditioned, then we can expect an accurate numerical solution since the 
term v(t) will be damped, or at least won’t grow too much.

As we show in Corless and Fillion (201x), the norm of a matrix A equals 
the largest singular value o\ of A and the norm of A -1 is the inverse of the 
smallest singular value of A, denoted a~l . Accordingly, we can write the 
condition number as

m a x  <7n ( r )
tQ<T<t

It is not an accident that the singular-value decomposition plays a role in this 
context. A standard tool for the evaluation of the effect of X on \\z(t) — x(i)|| is 
the computation of the Lyapunov exponents A* of X(£) (see, e.g., Geist et al., 
1990). These A* are defined as the logarithms of the eigenvalues of A, where

A =  lim (XTX ) ^ .  (2.17)
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In other words, the Lyapunov exponents are closely related to the eigenvalues 
of X TX. But as we show in Corless and Fillion (201x, chap. 4, “Solving 
A x =  b ”), the eigenvalues of X TX  are just the squares of the singular values of 
X  (since X TX  =  (U E V * J^U E V * =  V E 2V /f). Note that we use the analytic 
SVD in this case (Bunse-Gerstner et al., 1991). If we take a small displacement 
in x (so far, th a t’s what we labeled £Xi), the singular value decomposition gives 
us a nice geometrical interpretation of equation (2.17). The SVD factoring 
X  =  U E V 77 guarantees that X V  =  EU for some unitary (in the real case, 
orthogonal) set of vectors {v*} and {u*}. We can apply it to the displacement 
vector £Xi to get XV^Xi =  EUexi; since the unitary transformations Vexi 
and U exi of exi preserve 2-norm, we see that the singular values show how 
much the matrix X(i) stretches the displacement vector exx (here, since the 
original equation is nonlinear, the singular values will be function of t). Now, 
if we take the logarithmic average of the singular values when t —» oo (because 
we are interested with average exponential growth), we get

lim j  In <Ji(t) = lim In (of ( t) )2fc — lim lneig^(XTX )^  =  IneigTA) =  A*.

Thus, if the Lyapunov exponents of X are positive, the average exponential 
growth of the displacement sx \ will be positive, and so our initial-value prob
lem will be exponentially ill-conditioned. However, remember that this is the 
behaviour in the tangent space, since we linearized the initial value problem. 
Thus, this does not imply that the displacement exi is unbounded, since the 
non-linear terms might have an effect as we move away from the point about 
which we linearized. In fact, when it remains bounded, we will often face 
chaotic systems. We will return on this issue in subsection 2.5.

Now, all of these tools somehow require to compute X i(i) in some way, 
or at least a computation of Xi(t*.) on a sufficient number of nodes tk-6 An 
alternative to solving for x x (t) analytically consists in solving the variational 
equation numerically.

6It would also be possible to use a strictly qualitative approach consisting in finding the 
stable/unstable equilibria and to determine whether our trajectory is attracted/repulsed by 
it.
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However, the reader might want to ask: how do we know the numerical 
solution of the variational equation is reliable? It may seem that in order to 
determine whether it is or not, we would need to find its variational equation, 
and solve it numerically. Does it not lead to a regress ad infinitum? No. The 
first observation we need to make is that whereas the reference initial-value 
problem is in general nonlinear, the variational equation is linear. As a result, 
the variational equation is its own variational equation, and so there is no 
regress.

Moreover, our numerical solution of the variational equation can either 
show that the reference problem is ill-conditioned or not. On the one hand, if 
the computed solution shows that the components of Xi are large, then the 
variational equation is claimed to be ill-conditioned. This must be the case: 
if it were well-conditioned, then because we are using a stable method we will 
find a small forward error and thus a small X i). We may well not identify 
Xi very accurately, but we will see that it is large. On the other hand, if 
the computed solution shows that the entries of Xi are not large, then the 
variational equation is claimed to be well-conditioned. However, obtaining a 
computed solution with a small X x is consistent with an ill-conditioned solu
tion. How likely is it that an ill-conditioned X x will have all its errors arranged 
in such a way that the computed answer is small and thus the equation appears 
well-conditioned? This can indeed happen, but then:

Anyone unlucky enough to encounter this sort of calamity has prob
ably already been run over by a truck. (Higham, 2002, p. 242)

As a result, we will typically not worry about “false negatives.”
Let us examine an example in detail. Consider this initial value problem:

X \  =  - x \ x z ,  E i ( 0)  =  1
x 2 =  - x \ x \ ,  £2(0 ) =  1

We may solve this simple nonlinear autonomous system analytically to find

(2.18)
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that

S i(0  =  1 +  W (t) and x 2 (t) = e w w ,

where W  is the principal branch of the Lambert W  function (see Corless 
et al., 1996). This function has a derivative singularity at t =  — l /e =  —0.3679. 
Now, if we didn’t know all this, we would solve the problem numerically. 
As we show, we can also use the theory presented in this section to track 
the condition number of the problem numerically. Since we can also track 
the residual numerically as shown before, we have all the ingredient for an a 
posteriori error analysis of our solution.

The trick is to simultaneously solve the associated matrix equation of the 
variational equation (2.13), £(i) =  Jf(z)£(i) with £(0) =  I, and the system 
above. So, we first compute the Jacobian by hand (or with M a p l e ),

- 3z \ z 2 - z \

—z\ —2z\ Z2

and then expand the matrix product J f (z)£(t). We can then create an m-file 
solving for all the components of

y = X i £ll £l2 &1
T

simultaneously. The function f(f,y) will then be as follows:

51 function yp= bothode s(t,y)
52 yp=zeros (size(y)) ;
53 X y p  =  [xl;x 2 ; x i l 1 z xil2jcc't21 i x i 2 2 ] ;

54 y p d . ) =-yd.:) . "3 . *y(2 , :) i
55 yp(2, ) =-y(l.:) . *y (2 , : ) ."2 t

56 yp 0 , ) =-3*y (1 ,:) .“2.*y(2 ,: ) . *y(3 ,:>-yd, :) ~3 • * y (5
57 yp (4, ) =-3*y (1 ,:) . *2.*y(2 ,: ) . *y(4 : ) -y d  ,:) ~3 •*y (6
58 y p d , ) =-y(2 , : ) .“2.*y(3 ,:) -2*y (1 , ) -*y(2 , :) * y (5, :)
59 yp (5 , > =-y ( 2  , : ) . "2.*y (4 , : )-2* y (1 , ) . *y ( 2  , :) *y (6 , :)
60 end

71



1
2

3

4

56
7

8

9

10

11

12

13

14

15

16

17

18

W ith this function defined, we can then use the code below to do all these 
things:

1. Solve our initial value problem for x\ and x 2 (lines 2-11);

2. Solve for the components of the fundamental solution matrix (lines 
2-11 again, since they are solved simultaneously);

3. Find the absolute and relative residual (lines 23-27);

4. Estimate the condition number of the problem (lines 36-46);

5. Plot the results on the appropriate scale (lines 29-34 and 47-48).

In addition, the lines 13-21 are refining the mesh size to obtain more signifi
cant graphical output (the reader is invited to use deval on a mesh ignoring 
adaptive stepsize selection to see that the result does not look right).

function variationaleq_ex 
X Simple nonlinear autonomous example
X dotxl = -xl~3x2 and dotx2 = -xlx2~2, with xl (0) =x2 (0) =1.
X J - Jacobian matrix, so the associated matrix variational 

equation is dotXI = J XI, XI(0) = eye (2), 
tspan = [0,-0.36];
X Initial conditions for x_l, x_2, and xi = eye(2)
Y0 = [1,1,1,0,0,1];
X Integrate to reasonably tight tolerances
opts = odeset( 'reltol', 1.0e-8, 'abstol', 1.0e-8 );
X Put the solution in a structure, to compute the residual. 
sol = ode45( Qbothodes, tspan, Y0, opts );

X We refine the mesh ourselves so as to be sure that our 
residual computation reflects the actual changes in the 
solution as found by odê .5. 

nRefine = 9; 
n = length ( sol.x ); 
size( sol.x ) 
h = diff ( sol.x ) ;
tRefine = repmat ( sol.x (1:end-1) . ' , 1, nRefine ) ;
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i9tRefine = (t Re fine + (h.')*[0: nRef ine -1] / nRef ine ) . ' ;
20 tRefine = tRefine(:);
21 numpoints = length (tRef ine) ;
22

23 X N o w  c o m p u t e  th e  r e s i d u a l  .

24 [yhat,yphat] = deval (sol , tRef ine) ;
25 R e s i d  = y p h a t  -  b o t h o d e s ( t R e f i n e , y h a t ) ;

2 6 X T h e  r e s i d u a l  r e l a t i v e  to th e  s i z e  of t he r h s  is a l s o  of

i n t e r e s t .27 RResid = yphat./bothodes(tRefine,yhat) - 1;
28

29 figure (1) ,plot(tRefine,Resid(1 , :) , ' k - ')
30 title ('ResidualuinuX_l 1 )
31 figure (2) ,plot(tRefine ,Resid(2,:) , ' k- ' )
32 title (' Residualuinux_2 ' )
33 figure(3), semilogy(tRefine,abs(RResid) , 'k-')
34 title ('RelativeuResidual ' )
35

36 X  N o w  l o o k  at the c o n d i t i o n  n u m b e r

37 sigmal = zeros (1 ,n) ;
38 sigma2 = zeros (1 ,n) ;
39 cond = zeros (1 ,n) ;
40 for k = l:n,
41 Xt=[sol.y(3,k),sol.y(4,k);sol.y(5,k),sol.y(6,k)];
42 sigma = svd(Xt);
43 sigmal(k) = sigma(l);
44 sigma2(k) = sigma(2);
45 cond(k) = sigmal(k)/min(sigma2(1:k));
46 end
47 figure(4), semilogy (sol . x , cond k ' )
48 title ( ' Conditionunumber ' )
49 end

The results of this numerical a posteriori analysis of the numerical solution of 
the initial-value value problem are presented in figure 2.8. As we observe in 
figure 2.8(a), 2.8(b) and 2.8(c), the absolute and relative residuals of all the 
components on this interval of integration are smaller than 10-6 . So, we have
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computed the exact solution of

ÿ = f(y) +10 6v(î ), 11v 11cc < l.oo _

Moreover, as we observe in figure 2.8(d), the condition number increases sig
nificantly as we approach the singularity — l /e (reaching «  105), which is as 
expected from what a condition number does. Consequently, as we approach 
the singularity, we can expect that the exact solution and the computed solu
tion differ as

2.3.3 C ondition analysis based on the G robnef-A lexeev  
approach

In the previous section, we have assumed that v  depends only on t. Now, we 
allow it to be a nonlinear function of x and t. This is important for cases 
when the residual is correlated with the solution of the initial-value problem, 
as indeed it is usually for numerical methods.

T h eo rem  2 (Grôbner-Alexeev nonlinear variation-of-constants formula). Let 
x(£) and z (t) be the solutions of

Naturally, we would obtain better than 10 1 for tighter tolerance.

x(i) =  f(i,x (i)), 

z (t) =  f(i,z (i)) + ev(t, z)
x (i0) =  x0 

z {t0) = x0,

respectively. I f  J f  exists and is continuous, then

(2.19)
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(c) Relative residual in the six components (d) Condition number of the problem, 
of y.

Figure 2.8: Numerical, a posteriori analysis of the numerical solution of the 
initial-value value problem (2.18) with ode45.
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where the matrix G is given by

Gij(t, t, z(r)) := T^-(i,r,z(r))

and acts as a condition number, i.e., as a quantity dictating how ev(t, z) will 
be magnified over the interval of integration [to,tf\.

We will not give a proof of this theorem. The reader is referred to the 
excellent discussion by Hairer et al. (1993, chap. 14).

If we happen to know the analytic solution of the differential equation, 
then it is possible to compute dx/dx0 directly, making our life easy.

E xam ple  1. Consider this simple (scalar) problem:

x{t) =  x 2{t) x (t0) = Xo

z(t) =  z2(t) -  e z(t) z{to) -  x0.

The solution of this particular nonlinear problem is known analytically:

x o T t- io ) ’

which clearly has a singularity at t* =  io+V*o if  %o ^  0. Henceforth we suppose 
that Xo > 0 and to < t < t*. Remark that we have so far written explicitly the 
dependence of x on to and yo. This allows us to adopt a convenient notation 
for dx/dx0, a differentiation with respect to a parameter. In what follows, we 
will use instead the notation dx/dx0 = D ^x(tffo^o)- Then, we directly find that

D3x ( t , t0,x 0) =  (1 _ Xo(i_ io))2 =  (i _ z ( i o ) ( i _ i o ) ) 2 •

By theorem (2), the difference between z and x can be written as

Here again, our life is easy since we can solve z = z2(t) — ez analytically, and
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we find that

z(t) = e x 0
x0 — (xo — e)e€̂ ~tô  

We can then compute the resulting integral:

z(s) (  - x 0
/JtQ (1 -  z ( s ) ( t  -  s ))'■

ds =
(e — xo) e£ + xo {l — e t  + es)  

- Xo  , Xo
to

+
(e -  x 0)e e(t- t°) + x 0 e -  xo + x 0 (l -  e t  + e t0)'

It turns out to be just the same as z(t) — y(t), as it should be, according to the 
theorem. □

This example (and the theorem) shows that if we can differentiate the 
solution of our differential equation with respect to the initial conditions, then 
we can account for perturbations to the differential equation. This raises the 
question of how to, in general, differentiate a solution x(i) of a differential 
equation with respect to an initial condition when we cannot find a formula 
for x(t). As shown in Hairer et al. (1993, Chap. 14), this problem reduces to 
the seemingly conceptually easier question of differentiating with respect to a 
parameter. Suppose x(t) =  x ( i , i0,x 0,p) ^ the solution to

x =  i(t, x, p), x (i0) =  x0,

where p € C is a parameter, constant for the duration of the solution process. 
We want to find what Z?3jx(i,iojX0,p) =  dxo/dp is.

Suppose y  =  x(i, i0, x0,p) solves the given problem, and z =  x(£, t0, x0,p + 
Ap) solves the same problem with a slightly different parameter. Then, by 
taking the Taylor expansion about y and p + Ap, we find that the difference 
z — y satisfies

Z - y  =  f( i ,z ,p  + A p) -  f( t,y ,p )

=  J f (* .y ,p ) ( z - y )  + D3(i) ( t,y ,p )A p  + O (Ap)2. (2.20)
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As a result, if

_  d x i(t,t0,xo,p) X i(t,t0,xo ,p +  A p ) - X j( i , i0)xo,p)
(pi — 0 — lim ,dp Ap—»o Ap

then taking the limit of equation (2.20) divided by Ap, as Ap —»• 0, gives

(¡)(t) =  J f (t,x ,p )^(t) +  fp(t,x ,p ) . (2.21)

Examining the initial solutions of y =  f  (¿, x,p), for example by Euler’s method 
or a higher-order method, shows that 0(0) =  0. That is, in order to take the 
derivative of x(£,t0,x 0,p) w^h  respect to p, we differentiate the differential 
equation and then solve that resulting equation. Of course, we may solve this 
differential equation numerically, along with the solution of the original equa
tion. This is sometimes called the variational method of computing sensitivity.

Now let us adapt this idea to the differentiation of x(f) with respect to the 
initial condition, which does not appear in the differential equation (usually). 
A little thought shows that, instead of equation (2.21), we can formulate an 
equation for $(£), which is a matrix, each entry of which is 0*i(Mo.*o)/0*Oj, 
the derivative with respect to one component of the initial condition. It is 
convenient to package them all at once:

6(i) =  J f (t,x )$ (i) (2.22)

where now the initial condition is $ (i0) =  I, the identity matrix. This is, in 
fact, exactly the first associated matrix variational equation.

In more complicated examples, of course one must solve for x(£) and <!>(£) 
simultaneously, by some numerical scheme. It has been our experience that 
M a t l a b  is perfectly satisfactory for the process, once a Jacobian Jf(£,x) has 
been coded; of course, Computer Algebra systems help with that, as we show 
in the next section’s extended example.
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2.4 An extended example: the Restricted Three- 
B ody Problem

W hat follows is a discussion of a much-used example of numerical solution 
of initial-value problems for ordinary differential equations. The model in 
question dates back to Arenstorf (1963), where it was derived as a perturbation 
model intended to analyze part of the three-body problem in the limit of when 
one of the masses goes to zero. Further discussions of this model can be found 
in Hairer et al. (1993) and in Shampine and Gordon (1975), and in M a t l a b  

it is taken up in the o rb itode  demo.
In spite of its simplistic nature (or perhaps because of it), the example is a 

good traditional one, in that it shows the value of adaptive step-size strategies 
for efficiency. Since the example has been well-studied, there are a great 
many solutions existing in the literature that the reader’s computation can be 
compared to. Besides that, it is interesting, and produces surprising pictures. 
However, it is (nowadays) a curious problem, in that there seems little point 
in the idealizations that give rise to the model: one might as well integrate 
Newton’s equations of motion directly, and indeed direct simulations of the 
solar system are of great interest, and are highly advanced.7 Nonetheless, we 
use the model equations and extend the discussion a bit to show that the 
example is also excellent for showing how residual (defect) computations can 
be interpreted in terms of the physical modelling assumptions: in particular, 
we will see that if we have the solution of a model with a small residual, then 
we have just as good a solution as an exact solution would be. We also take 
the discussion a bit further and exhibit the conditioning of the initial-value 
problem.

In the Arenstorf model, there are three bodies, moving under their mutual 
gravitational influence8. Two of the bodies have nontrivial mass, and move

7See for example the JPL simulator, at h t tp : / /s p a c e .jp l .n a s a .g o v / .
8We do not claim to be computational astronomers. This discussion is by no means 

complete and should not be considered authoritative. The discussion is intended only to 
motivate the model, and to remind the reader of some of the idealizations made, for com
parison with the numerical effects of simulation.
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about their mutual center of gravity in circular orbits. If we are thinking of 
these bodies as the Earth and the Moon, then already this is an idealization: 
the Earth-Moon system more nearly has the Moon moving elliptically, with 
eccentricity about 0.05, about the center of gravity of the Earth-Moon system. 
If we are thinking about the Sun-Jupiter pair, then again Jupiter’s orbit is not 
circular but rather eccentric. So, again, a circular orbit is an idealization. The 
third body in the model is taken to be so small that its influence on the two 
larger bodies can be supposed negligible. One thinks of an artificial satellite, 
with mass less than a thousand tonnes (106 kg). The mass of the Moon is 
M m = 7.3477 x 1022 kg, so the satellite’s mass is less than 10-16 of that 
(coincidentally, not too different from the machine epsilon of roundoff error 
in M a t l a b ). Therefore, supposing that this body does not affect the other 
two bodies is a reasonable assumption. By making this assumption, the actual 
mass of the satellite drops out of the computation.

Another assumption, common in gravitational models since Newton, is that 
the bodies act as point masses. Neither the Earth, the Moon, the Sun, nor 
Jupiter, nor even the satellite, are point masses. In fact, the radius of the Earth 
is about 1/eo the Earth-Moon distance, and while the gravitational effects of a 
uniform spherical body are indeed, when outside the body, identical in theory 
to those of a point mass, the Earth is neither uniform nor exactly spherical (it’s 
pretty close, though, with a radius of 6 ,378.1km at the equator and 6 ,356.8km 
at the poles). Similarly for Jupiter, which departs from sphericity by more 
than the Earth does (71,492km radius at the equator and 66,854km radius 
at the poles). This departure from ideal point-mass gravity has a potentially 
significant effect on the satellite’s orbit.

Finally, we neglect the influence of the other bodies in the Solar System. 
For the Earth-Moon system, neglecting the influence of the Sun, which differs 
at different points of the satellite’s orbit around the Earth-Moon pair, means 
that we are neglecting forces about 10“11 of the base field; a smaller influence 
than the eccentricity of the orbit, and smaller than the effects of departure 
from the point-mass idealization, but larger than the effects of the trivial mass 
of the satellite. For the Sun-Jupiter pair, this is not a bad assumption—the
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most significant other body is Saturn, and Saturn is far enough away that its 
effects are detectable only cumulatively.

Once these assumptions are made, then we put M  equal to the mass of 
the largest body, and m  equal to the mass of the smaller nontrivial body; 
the total mass of the system is then M  + m, and we place the origin of our 
coordinate system at the center of gravity. The larger mass is treated as a 
point at distance

777
= (2.23)

from the origin, in units of the diameter of the orbit, and the smaller mass is 
then at /¿* =  1 — fi.

In the rotating coordinate system  that fixes the large body at — n  and the 
small body at 1 — /i, the equations of motion of the tiny satellite are given 
in Arenstorf (1963) as follows:

* x  +  a  X — LI*
x = 2y + x - f i  — —  -  M d3

•̂ 13
y = - 2 x  + y - S - ^ - f i r j ^  (2.24)

where the distances i?i3 =  y /(x  + fi)2 +  y2 and i?23 =  ~  A**)2 +  V2 be
tween the tiny satellite and the massive body and the minor body, respectively, 
are consequences of Newton’s law (and an assumption of smallness of /¿). The 
problem parameters used by the M a t l a b  demo orbitode are:

1 % Problem parameters
2 mu = 1 /  8 2 . 4 5 ;
3  mus t ar  = 1 -  mu;
4 yO = [ 1 . 2 ;  0; 0; - 1 . 0 4 9 3 5 7 5 0 9 8 3 0 3 1 9 9 0 7 2 6 ] ;
5 t s p a n  = [ 0 7 ] ;

Note that 1/s2.45 =  0.01213. The value of used by Hairer et al. (1993) is, how
ever, fi =  0.012277471, and they use 30 decimals in their initial conditions for 
their periodic orbits. On the other hand, if we take the values of the Earth’s 
mass and the Moon’s mass given in Wikipedia, we get /i =  0.0121508..., 
different in the 4th significant figure from either of these two. While these
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(a) Restricted three-body problem orbit (b) Distances and stepsizes

Figure 2.9: Solution of the Arenstorf model restricted three-body problem for 
the same parameters and initial conditions as are in orbitodedemo, intended to 
be similar to a small satellite orbiting the Earth-Moon system in a coordinate 
system rotating with the Earth and Moon. When distances to either massive 
body are small, stepsizes (computed as speed times delta t ) also get small.

differences in parameters are alarming, if we take the model equations at all 
seriously, they are not terribly significant given that the model’s derivation has 
neglected things like the eccentricity of size about 0.05. Finally, Arenstorf’s 
derivation has at one point replaced ^/(l -  y) with just /¿, a simplification from 
the point of view of perturbation theory but no simplification at all for nu
merical solution; this makes a further difference of about 1.2% in the terms of 
the equation.

Computing the solution to this problem, with the parameters given above 
and analyzing the results, we find figures 2.9, 2.9(b) and 2.10(b). We see 
that the step sizes are not uniform—indeed, they change over the orbit by 
a factor of about 30. As seems physically reasonable, the steps are small 
when the satellite is near one of the massive bodies (and thus experiencing 
relatively large forces and accelerations). We also see, from figure 2.10(b), that 
the residual is small, never larger than 10-4 , approximately. Since we have 
neglected terms in the equations whose magnitude is 10-2 or so, we see that
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Residuai in 2nd derivative for x and y Sensitivity of the solution, cf stepsizes

(a) Residual for solution by ode45 with rel- (b) Sensitivity by solving the variational 
ative tolerance 1.0 x 10- 6 . equations (2.22) using ode45 with relative

tolerance 1.0 x 10“6.

Figure 2.10: Measured residual and sensitivity in the Arenstorf restricted 
three-body problem.

we have found a perfectly adequate model solution: this plot tells us precisely 
as much as an exact solution to the Arenstorf restricted three-body problem 
would. Finally, we need to know how sensitive these orbits are to changes 
in ¡i or to the initial conditions are. Using the first variational equation and 
plotting the norm of the fundamental solution matrix in figure 2.9(b) we see 
that the orbit gains sensitivity as the satellite plunges towards the Earth, but 
shows a rapid decrease in sensitivity as the satellite moves away; both of these 
observations agree with intuition.

We have pointed out the different values of \i used in the various books. 
How much difference does this make to the orbits? We can use our variational 
equation

* = Jf(x)V + fM

where 'F(O) =  0 and the Jacobian matrix Jf(x) and the partial derivative 
f/x are easily computed by a computer algebra system. Here are the Maple 
commands used to do so for this example.

1 f  [ l ]  := y [3 ] ;
2 f  [2] := y [4 ] ;
3 mustar := 1-mu;
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4 r 1 3 := ((y[l]+mu)-2+y[2]~2)-(3/2)s
5 r23 := ((y[1]-mustar)~2 + y [2]"2)~(3/2);
6 f [3] := 2*y [4]+ y [1]-mustar*(y [1]+mu)/rl3-mu*(y[1]-mustar)/((1-

mu)*r23);
7 f [4] := -2*y[3]+y[2]-mustar*y [2]/rl3-mu*y[2]/((1-mu)*r23)»
8 with(LinearAlgebra);
9 with(VectorCalculus);

10 J := Jacobian ( [seq (f [k] , k = 1 .. 4)], [seq(y[k], k = 1 .. 4)])
>

11 CodeGeneration [Matlab](J, optimize);
12 fp := map(diff , [seq(f[k], k = 1 .. 4)], mu);
13 CodeGeneration[Matlab](Vector(fp) , optimize);

The output of these commands are then bundled up into M atlab  m-files 
and used in the call to ode45. We explain below how we created a modified 
version of M a t la b ’s orbitode. We first define the parameters of the problem:

1 function t=orbitodejac
2

3 7, Problem parameters
4 mu = 1 / 82.45; % Shampine & Gordon
5 mustar = 1 - mu;
e yO = [1.2; 0; 0; -1.04935750983031990726; 0; 0; 0; 0]; X 

Shampine & Gordon
7 tspan = [07]; % Shampine & Gordon

As before, we solve the problem with the command

i [t , y , te , ye , ie] = ode45 (Qf , tspan , yO , opt ions ) ;

The command is slightly different than in the previous examples, since we use 
the “event location” feature. We then plot the results using the following list 
of commands:

1 X Plotting circles representing earth and moon
2 rade = 6371/384403;
3 radm = 1737/384403;
4 th=linspace(-pi,pi , 101) ;
5 esx = rade * cos (th) -mu ;
6 esy = rade*sin(th);
7 msx = radm*cos(th)+1-mu;
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8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

msy = radm*sin(th); 
close all 
f igure
X Plot timesteps scaled by speed so they are " distance - steps " 
avevel = (y (1:end-1 ,3:4)+ y(2:end,3:4) )/2; 
avespeed = sqrt( avevel(:,1).~2 + avevel(:,2).~2 );
XPlots Below: 'k— ' line is the distance of the satellite to 

the moon; 'k' line is the time-steps scaled by average
speed; 'k-. 1 line is the distance of the satellite to the
earth

semilogy( t, sqrt( (y(: ,1)-mustar) ."2 + y(:,2).~2 ), 1k —  1 ,t(2:
end), diff(t).*avespeed, 1k * , t, sqrt( (y(:,1)+mu).~2 + y 
( : ,2) .~2 ) , 'k-. • )

title(1DistanceutOutheumoonuanduearth,ucfustepsizesuused1) 
figure
plot(y (: ,1) ,y (: ,2) , ' k -. ' ,esx,esy, 1k ' ,msx,msy, 1k '); 
hold on
X Estimate of the size of filled circle was obtained by trial 

and error on actual radius of earth and moon figures, later 
not needed.

scatter( -mu, 0, 50, 'k ' , 'filled');
scatter( 1-mu, 0, 50*(radm/rade)~2, 1k ', 'filled' );
axis([-1.5,1.5,-1.5,1.5])
axis('square')
title('Satelliteuorbit ,uwithuplanetaryusurf aces ')
hold off
figure
s e m i l o g y ( t ( 2 : end)  ,d i f f ( t ) , ' k — ' , t ,s q r t ( y (:  , 5) . ~2 + y ( : , 6 ) . ~2 + y

(:  , 7 )  . ~ 2 + y (: , 8 )  . “2)  , ' k ' )
title ( 'Sensitivityuofutheusolution,ucfustepsizes ') ; 
figure

X Inefficiently, solve it again, so we may compute the residual 
(should have done this the first time) 

sol = ode45(Of ,tspan,yO,opt ions) ; 
np = 4003;
tt = linspace( tspan(l), tspan(end), np);
[yb,ypb] = deval( sol, tt ); 
res = zeros(1,np);
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38 for i = l: np ,
39 rr = ypb ( : , i ) - f(tt(i), yb(:,i) );
40 res(i) = sqrt (rr (3) ~2 + rr (4) "2) ;
41 end;
42 semilogy( tt , res, 1 k ' )
43 title( 'Residualuinu2nduderivativeuforuxuanduy ' )

It remains to describe the code for the function handle @f passed to the com
mand ode45. The code begin as

1 function dydt = f(t,y)
2 X Derivative function -- mu and mustar shared with the outer

fund ion.
3 r13 = ((y (1) + mu)“2 + y(2)~2) ~ 1.5;
4 r23 = ((y (1) - mustar)*2 + y(2)~2) ~ 1.5;
5

6 X Jacobian computed by Maple
7 cgO = zeros (4,4); — —
8 cg2 = zeros(4,1);
9 tl = 1 - mu;

10 t2 = y (1) + mu;

and th en  it is follow ed by th e  M A PLE-generated M a t l a b  code. U sin g  these, 

w e finally  define our fu n ction  dydt=f ( t  ,y):

1 dydt = [ y(3)
2 y (4)
3 2*y(4) + y(l) - mustar*((y(1)+ mu)/r13) - mu/mustar

*((y(l)-mustar)/r23)
4 -2*y(3) + y(2) - mustar*(y(2)/r13) - mu/mustar*(y

(2)/r23)
5 cg2 (1)
6 cg2(2)
7 cg2(3)
8 cg2(4)] ;

Thus, the use numerical solutions in combination with computer algebra sys
tems is a very effective way to estimate the condition of an initial value problem 
(or, in other words, the “sensitivity” of the orbits).
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2.5 W hat good are numerical solutions of chaotic 
problems?

Chaotic systems can be studied from many perspectives and, accordingly, 
chaotic motion can be defined in many ways.9 In all cases, some intuitions 
drawn from physics motivate the various approaches:

The concepts of ‘order’ and ‘determinism’ in the natural sciences 
recall the predictability of the motion of simple physical systems 
obeying Newton’s laws: the rigid plane pendulum, a block sliding 
down an inclined plane, or motion in the field of a central force 
are all examples familiar from elementary physics. In contrast, 
the concept of ‘chaos’ recalls the erratic, unpredictable behavior of 
elements of a turbulent fluid or the ‘randomness’ of Brownian mo
tion as observed through a microscope. For such chaotic motions, 
knowing the state of the system at a given time does not permit 
one to predict it for all later times. (Campbell and Rose, 1983, vii)

The idea is that a chaotic motion x(t) satisfying a deterministic nonlinear 
differential equation x(t) =  f  (i, x(i)) is bounded (z.e., x(t) does not go to oo as 
t oo), aperiodic (i.e., for no T  does x(f) =  x (t + T )) and extremely sensitive 
to initial conditions. Now, if two trajectories x(t) and z(t) were uniformly 
diverging (i.e., if the distance between the two trajectories were continuously 
increasing with t), at least one of them would be unbounded. But because of 
the non-linearity of the equation, the distance between the two curves varies 
in very erratic ways. It is thus practically impossible to track how close our 
two trajectories are from one another in the long run (and often even in the 
short run!). To establish sensitivity to initial condition, the important thing is 
that, on average, for finite time, the trajectories diverge from each other. This 
is exactly what positive Lyapunov exponents (as defined in equation 2.17, and

9Martelli et al. (1998, p. 112) claim amusingly, “with a bit of exaggeration, that there are 
as many definitions of chaos as experts in this new area of knowledge.” Concerning some of 
the conceptual issues involved with different definitional attempts, see Batterman (1993).
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interpreted in terms of the SVD factoring) show. But then, it also follows that 
solutions of chaotic initial-value problems are exponentially ill-conditioned.

This situation raises two related questions regarding the reliability of nu
merical methods:

1. are the computed trajectories satisfactory, and in what sense are they to 
be regarded satisfactory?

2. are the numerical methods introducing spurious chaos or suppressing 
actual chaos?

These questions turn out to be quite tricky. We only mention the most impor
tant aspects here and refer the reader to Corless (1992, 1994a,b) for a more 
complete answer. The first and foremost observation to make is that, because 
chaotic problem are exponentially ill-conditioned (they have positive Lyapunov 
exponents), one cannot hope to obtain numerical solutions with small forward 
error. Accordingly, errors in the initial conditions, discretization error, and 
even rounding error will be exponentially magnified as time increases. As a 
result, one can obtain huge forward error, ie ., important lack of correlation 
between the projected motion and the actual motion. But is this a reason to 
claim that our algorithm is a bad one, ie ., that it is unstable?

No. The solutions can be satisfactory in the backward sense, since it is 
unreasonable to ask of a numerical method more than the problem allows for. 
For chaotic problem, good methods such as the one implemented in ode45 do 
solve a problem near the reference problem. As we explained in chapter 1, for 
genuine (as opposed to artificial) problems, we will have to consider physical 
perturbations anyway. For the Lorenz system, which is already a truncation 
of a much more complex fluid model, physical perturbations are important, 
and the detailed trajectory is very sensitive to perturbations. This explains 
why the results of our simulations of chaotic systems agree with experiments.

To sum up, if we concern ourselves primarily with position in the phase 
space, the computed trajectories of chaotic systems can be satisfactory in
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the backward sense (if computed with a backward stable method). How
ever, if one is asking whether they are satisfactory in the forward sense, 
the answer is that they are not, because of the ill-conditioning of the prob
lems. Consequently, in answer to such concerns, the analysis we provide is 
literally the same as the one presented in section 2.3.

However, there are other aspects of chaotic systems that are not so easily 
explained by the backward error perspective. Even if x(i) is sentive to initial 
conditions, some features of chaotic systems may not be, such as the dimension 
of the attractor, or the measure on the attractor, and numerical solution can 
be expected to give us good information about those things. But in this case, 
the situation is tricky. Consider for example the Gauss map

X k + 1  =  G (xk),

where

G(x)
0 if x  =  0
x~ l mod 1 otherwise

It can be shown that this map is ultimately periodic for rational numbers and 
solutions of quadratics, but that it is chaotic for other real numbers. Now, 
would this be revealed by a simulation using floating-point operations? To 
begin with, observe that since the set of floating-point numbers F is a finite 
subset of Q, any floating-point implementation iterated n times as n —> oo will 
necessarily be periodic. As a result, we see that the method appears to suppress 
chaos. Nonetheless, as we see from picture 2.11(a), if we use Xo = n  as initial 
condition, the trajectory seem to be completely erratic. This would suggest 
chaos. At the same time, if we take we take x 0 =  —V2 + >/3, as illustrated in 
figure 2.11(b), we are supposed to have a periodic orbit (in exact arithmetic) 
but, as we see, the floating-point operations introduce spurious chaos.

W hat are we to do with such results? To begin with, such examples show 
that it is healthy to entertain an initial skepticism of chaos known only through
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(a) Gauss map with xo =  tt. Aperiodic be- (b) Gauss map with xo =  — V2 +  \/3  being 
havior. the solution of a quadratic. Initially periodic

behavior becoming aperiodic.

Figure 2.11: Time histories for the floating-point Gauss map, linearly interpo
lated.

numerical solutions. As we mentioned in chapter 1, “a useful backward error- 
analysis is an explanation, not an excuse, for what may turn out to be an 
extremely incorrect result” (Kahan, 2009).

2.6 Solution of stiff problems

Stiffness is an important concept in scientific computation. So far, we have 
seen that standard methods such as the one implemented in M a t la b ’s ode45 
can be relied upon to accurately and efficiently solve many problems. Even 
for chaotic problems, we have seen that such methods can be relied upon to 
give stable results, in the backward sense. With stiff problems, however, we 
are facing a different computational phenomenon that does not fall under the 
themes treated so far. As Shampine and Gear (1979, p. 1) put it,

[t]he problems called ‘stiff’ are too important to ignore, and they 
are too expensive to overpower. They are too important to ignore 
because they occur in many physically important situations. They 
are too expensive to overpower because of their size and the in
herent difficulty they present to classical methods, no matter how
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great an improvement in computer capacity becomes available.

In the literature, authors often discuss “stiff problems” and “stiff methods;” 
this is however somewhat misleading, since stiffness is a property that only 
makes sense when applied to a problem (in its context) and a method taken 
in combination. Thus, it will be important to keep in mind this accurate 
semi-pragmatic characterization from A. Iserles:

Stiffness is a confluence of a problem, a method, and a user’s ex
pectations.

Even if there is no generally accepted rigorous definition of stiffness, there is a 
widely shared consensus as to what stiffness involves in practice. In this sec
tion, we explain the problem-specific aspect of stiffness, and delay the method- 
specific aspects to chapter 3, insofar as this is possible.

When a problem is moderately conditioned and we try to solvejt with a 
reasonably tight tolerance, we will usually observe that the stepsize automati
cally selected by the program decreases. This is because state-of-the-art codes 
ultimately control the residual of the computed solution by reducing the step- 
size when necessary. Let us reconsider the example from equation (2.18), but 
let us now turn our attention to the stepsize as we approach the singular point 
— l/e. As we can see in figure 2.12(a), ode45 takes 71 steps to solve the prob
lem. The largest step size, near the beginning, is 2 x 10“2. The smallest step 
size, occurring at the very end when the problem is the most ill-conditioned, is 
3 x 10-4 . The difference would be even larger if we required a tighter tolerance. 
As we see, the amount of work required increases with the condition number.

Now, what would happen if we had a very well-conditioned problem in
stead? Our user expectation would be that the stepsize would remain large 
and that we would obtain a cheap solution to the problem. Even if this will of
ten be the case, stiff problems are such that this is precisely what fails. A stiff 
problem is extremely well-conditioned; loosely speaking, its Jacobian matrix 
has no eigenvalue with large positive real part, but it has at least one eigen
value with large negative real part. Accordingly, it is not an accident that we 
examine stiff problems immediately after chaotic problems since, in a sense,
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(a) Reduction of the stepsize in the so
lution of (2.18) as the problem becomes 
increasingly ill-conditioned.

(b) Reduction of the stepsize in the solu
tion of (2.25) when the problem is very 
well-conditioned.

Figure 2.12: Stepsize adaptation of ill-conditioned and well-conditioned prob
lems with respect to step number.

they are opposite on the same spectrum. Chaotic problems are badly condi
tioned: since they have large, positive real Lyapunov exponents, the nearby 
trajectories diverge very quickly from the trajectory exactly solving the initial 
value problem. The difficulty with stiff problems comes from the fact that 
they are too well-conditioned.

Consider an example:

x  = x2 — t, x(0) =  — (2.25)

We will look at two intervals: I\ =  0 <  t <  1 and I2 = 0 < t <  103. 
The solution of this problem is displayed in figure 2.13, together with many 
other solutions using different initial values. We see that the trajectories all 
converge to the same one extremely fast. Our expectation would thus be 
that our program would find the numerical solution without being too strict 
about stepsize, since even relatively large errors on each step would quickly 
be damped. In fact, for the first time span ode45 takes 11 steps only and 
has residual <  8 • 10-7 (see figure 2.14(a)). This agrees with our expectations: 
ode45 does just fine. However, as we see in figure 2.12(b), the stepsizes required 
to go over I2 remain very small, the minimum one being 3 x 10-4 . For this
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Figure 2.13: Extreme well-conditioning of a stiff problem.

(a) Absolute residual on I\, 11 steps 

Figure 2.14: Residual for the

5

0 100 200 300 400 500 600 700 800 900 1000

(b) Absolute residual on 72 , 12,718 steps 

solution of (2.25) on two intervals.
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Figure 2.15: Step size increases with respect to t.

interval, ode45 takes 12, 718 steps and the residual is huge (see figure 2.14(b)). 
This goes against what we would expect, since as t increases, the problem 
becomes increasingly better conditioned. On the other hand, on the same 
problem for the interval / 2, ode 15s takes only 57 steps! If we examine the 
step sizes (see figure 2.15), we see that as t increases and the problem becomes 
better conditioned, odel5s takes bigger and bigger steps.

This situation is not unique to this problem. In fact, in practice, a common 
diagnosis tool to identify stiff problems consists in trying to solve the problem 
with a standard ODE solver, e.g., ode45. If it has a hard time, try it with 
odel5s. This test brings some authors to define stiffness pragmatically as 
follows:

A problem is “stiff” if in comparison ode 15s mops the floor with 
ode45. (L.F. Shampine)

In fact, as we will see in chapter 3, when a problem is stiff, the so-called 
“implicit” methods (such as ode 15s) will mop the floor with the so-called 
“explicit” methods (such as ode45). This is because, when the problem is 
very well-conditioned, explicit methods become unstable for large step sizes. 
In this spirit, Higham and Trefethen (1993) claim that

It is generally agreed that the essence of stiffness is a simple idea, 

Stability is more of a constraint than accuracy.

94



More precisely, an initial-value problem is stiff (for a given interval of very 
good condition) whenever the stepsize required to maintain the stability of 
the method is much smaller than the stepsize required to maintain a small 
residual. However, to explain this statement in more detail, we will need to 
look at the method-specific aspects of the numerical solutions of IVPs for 
ODEs.
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Chapter 3

Num erical M ethods for ODEs

In the previous chapter, we have investigated what a numerical solution to an 
initial-value problem is as well as how to use state-of-the-art codes to obtain 
one. We have re-introduced the concept of condition number in the context 
of IVPs; here, as for all numerical methods, we have seen that conditioning 
is an intrinsic property of a problem rather than a property of a particular 
numerical method to solve it. We have also explained how to make a residual- 
based a posteriori error analysis resulting from the use of a given code to solve 
a given problem. Together with condition analysis, this gives us a general 
method to determine if our numerical method has exactly (or nearly exactly) 
solved a nearby problem, and enables us to estimate the influence changes to 
the problem have. Moreover, the analysis follows the outline of chapter 1 and 
parallels all the other applications of this methods developed in Corless and 
Fillion (201x).

Now, i t ’s time to investigate what’s under the hood, ¿.e., what the codes 
are actually doing, and why they work or fail for certain types of problems. We 
will begin our investigation with a venerable method, namely Euler’s method. 
Through the presentation of this method, we will introduce some key concepts 
such as the distinction between implicit and explicit method, local and global 
error, as well as their relations to the residual, adaptive stepsize selection, 
etc. On that that basis, we will show that Euler’s method turns out to be 
a particular case of more general methods. Generalizing in one way, we will 
obtain the Taylor series methods whereas, if we go another way, we obtain
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the Runge-Kutta methods. From there, Corless and Fillion (201x) turn to yet 
another generalization, multistep methods, particularly Adams’, who is very 
important in practice. It is there shown how John Butcher introduced the 
notion of General Linear Method to unify these generalizations. Moreover, as 
we will see, these methods will come in two flavours: explicit and implicit (the 
latter being used for the solution of stiff problems). In this thesis chapter, 
however, we will only include the Taylor series method and the continuous 
Runge-Kutta methods. The point we wish to make is that numerical methods 
do in fact produce continuous solution, contra the standard presentation of 
those methods. Showing that it is so for Runge-Kutta methods should suffice, 
since they are the most popularly used in broadly distributed software suites. 
Consequently, it is hoped that the idea of using residual control as an error 
control strategy will appear natural.

3.1 Euler’s m ethod and basic concepts

Euler’s method is in some sense the most fundamental method for numerically 
solving initial-value problems. In its barest form, it is of limited use because it 
is not very accurate.1 Nonetheless, since it is theoretically and pedagogically 
important, it is worth looking at it in some details. We will use it to introduce 
a number of fundamental concepts that will reappear in our study of more 
refined methods. We will also see that such methods correspond to different 
ways of generalizing Euler’s method.

The basic idea of Euler’s method is one shared by many important methods 
of calculus. Consider the initial-value problem x(t) = f( t ,x ( t) ) ,  x(to) = Xo, 
and let x(t) be a solution. Since we are given the values to, Xo, and x(to) 
(because we can compute f(to ,x(to )), we can make the construction shown 
in figure (3.1). Now, consider a forward time step h so that t\ = to + h 
and X\ =  Xo +  h f( x o). In general, we won’t have the exact equality x{t\) = 
X \ .  Nonetheless, if h is small, we will have the approximation x(t\) X l .

xIt should be noted, however, that there are special circumstances where, until recently, 
it was the most efficient method known (see Christlieb et al., 2010).
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Figure 3.1: A step with Euler’s method, where Xk =  x(tk) is assumed to be 
known exactly.

Euler’s method precisely consists in replacing the computation of x(t\) by the 
computation of X \ .  Since it is enough to have the point (io>^o) and the value 
of f(to,Xo) to find the equation of the tangent of x(t) at (£0,^ 0), we have:

xi =  x 0 + h f( to ,x 0).

In other words, we treat the problem based on the fact that the value of x 
changes linearly as h —> 0, with /  as its slope. Then, if X\ is close to x{t\)) 
we can pretend that this point is on the curve x ( t), and repeat the same 
operation, with f( t i ,X \)  as the slope. We will thus get a point (i2,# 2)> which 
will hopefully satisfy #(¿2) ~  £2 to a sufficient degree. Using the map

xn-\~i x n 4- h f( tn ix n),

we can then generate a sequence of values #i, • • •, %n  at the mesh points
io>ii,i2> • • • that approximates x (to ),x (ti) ,x ( t2) , . . .  ,x ( tN). This iterative 
process gives rise to algorithm (1). Analytically, as we approach the limit 
/i —> 0, it is expected that the approximation will become arbitrarily good. 
An example is presented in figure (3.2). Numerically, however, it is important 
to be careful, since for very small values of /i, floating-point error may prevent 
us from obtaining the desired convergence.

Euler’s method is not limited to scalar problems. For an I VP posed in
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A lgorithm  1 Fixed Stepsize Explicit Euler Method______________________
Require: The right-hand side f  (i, x(f)) of an IVP in standard form, an initial 

value Xo, a time span [io,i/], and a stepsize h 
n = 0
w hile tn < t f  do

Zn+l =  Hri “I" h f i t f i^Xn)

tn+i =  tn +  h 
n  :=  n  +  1 

end w hile
Obtain a continuous function x( t ) by somehow interpolating on t ,x , typi
cally piecewise, 
return x{t)

Figure 3.2: Effect of reducing the step size in Euler’s method
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standard form, we have the vector map

xn-|_i — x„ -)- h f(tn,x n) Xo x ( t0). (3-1)

The method then produces a sequence of vectors x 0,x i ,x 2, . . .  ,x fc, . . .  ,Xjv 
whose Ah components x \  approximate the value of the Ah equation at time k,
i.e., x k ~  x 'itk). Again, we can interpolate those points to obtain a continuous 
approximation x.(t) to x(t). Algorithm (1) can be rewritten in vector form in 
an obvious way.

Observe the notation x \. In this chapter, we use superscript i to denote 
the All component of a vector—typically x  or f—and subscript k to denote 
the time step tk. In context, there should not be confusion with exponents.

Because x(f) is iteratively generated by a discrete time variable in order to 
approximate x(i), Euler’s method (and all the later explicit methods) is often 
called a marching method. In general, such methods will produce the-value of 
Xfc+i by means of the values of x k, x k- i , . .. ,x i ,x 0. Thus, we can introduce 
the notation

Xfc+1 =  $(£*; Xfc+1, Xfc, Xfc_i,. . . ,  xo; /i; f), (3.2)

to represent an arbitrary method. If $  does not depend on x/c+i, the method 
is said to be explicit Euler’s method is an explicit method. However, if $  
depends on x^+i, then we will have to solve for x^+i in some way (perhaps 
using a variation of Newton’s method); in this case, the method is said to be 
implicit

3.2 Error Control

Prom now on, we assume that the methods can have varying stepsizes. So, we 
will add a subscript k to h to indicate hk = i/c+i — tk . This is important since 
all good methods use an adaptive stepsize. In fact, the programs implementing 
such methods will automatically increase or decrease the stepsizes on the basis 
of some assessment of the error. Accordingly, let us turn to error estimation.
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3.2.1 T he R esidual

We have seen in chapter 2 that the residual of a numerical solution is

A(t) =  x - f ( i , x ( t ) ) ,

where x(i) is differentiable (or at least piecewise differentiable). That the 
numerical solution be differentiable is very important for the use of the concept 
of residual in error control, since its evaluation requires the derivative x  of the 
numerical solution.

W hat is the residual for the Euler method? As we have seen, the Eu
ler method generates a sequence of point x0, xj, x 2, . . . ,  x̂ r based on the rule 
Xfe+i =  Xfc +  /ifcf(f*;,Xfc). The numerical solution is then generated from those 
points by interpolation.

We then say tha t the numerical solution x is the interpolant of those 
points on the given mesh. The residual will naturally be different depend
ing on the choice of an interpolant.

Given the rudimentary character of the Euler method, it makes sense to 
choose the equally rudimentary piecewise linear interpolation, which is the one 
used in figure 3.2. Between the point tk and ffc+i, the interpolant will then be

x fc(f) =  x fc +  (t -  tk) ^ ± — ^  =  x fc +  (f -  tfc)f(tfc, x fc). (3.3) 
tfc+i — tk

Moreover, if we let

ek t -  t k 
tfc+l — Ik

t ~  tk 
hk ’

we can write the pieces of the interpolant as

x*(0fc) =  x*, +  0fc(xfc+i -  x fc) =  Xfc +  Mfcf(tfc, Xfc). (3.4)

Then, the argument 9k ranges over the interval [0,1[. As a result, for the mesh
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points io> ii, • • •, tn  and the generated points x 0, x i , . . . ,  xjy, the interpolant is

t0 < t < t\ 
t x < t < t 2

tk ^  t < i^+i

¿TV—1 — t  ^  tji

or it can equivalently be written as a function of 9.

T h e o re m  3. The Euler method has an 0 (h ) residual

We will give a detailed proof tha t includes the typical series manipulations 
and introduces some notation tha t we will use in the whole chapter. '

Proof. W ithout loss of generality, we choose an interval t^ < t  < tk+1- We can 
substitute the explicit expression of (3.3) for x  in the definition of residual:

A (£) =  (xfc +  {t -  t k) f( tk, x k)) ~  f  ( i ,x fc + ( t -  m u , * , ) )

= f ( tk,xk) -  f  ( i ,x fc +  (t -  i fc)f( ifc,Xfc)). (3.5)

Now, we will expand f(i,Xfc + (t — tk) f( tk, x k)) in a Taylor series about the 
point (tfc)Xfc):

f ( i ,x fc + { t -  tk) f( tk, x k)) =

f  (tk, Xfc) +  (t -  ifc)ft(ifc, Xfc) +  (t -  ifc)fx(tx, Xfc)f (tfc, Xfc) +  0 ( ( t  -  ifc)2)

Here, X*) is the vector of partial derivatives of f  with respect to t and 
£x(ifc>Xfc) is the Jacobian matrix with partial derivatives with respect x, both 
evaluated at (i*,Xfc). From now on, we will not explicitly write the point of 
evaluation of f  and its derivatives when it is (i*, x^), and simply write f , ft and 
fx, for otherwise the expressions would quickly become unreadable. Adding

then defined piecewise as

*o(0
*i (*)

x(t)  =  <
Xfc(i)

X jv - l( i)
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the fact tha t 6khk =  t — i*, we obtain the much more neat

f  (i,Xfc +  6khk f) =  f  +  9khk(ft +  fxf) +  0(h%)

Putting this in equation (3.5), we find that

a (t) = f  -  (f +  ekhk(ft +  fxf) +  o ( /i2fc))

= - 6 khk(ft + fJ )  + 0(hl),

which is 0(h) since k was arbitrarily chosen. □

Note that, in this proof, we have also given an explicit expression for the 
first term  of the residual of the numerical solution on an arbitrary subinterval. 
It can be expanded in vectors and matrices as follows:

A(i) =  — 0 kh

/
'Bfi/at'

dh/dt
®f2/dx i

d fl/dx 2 
dfo/dX2

• df l/dxn

• df 2/dxn
v r
h

\

+ : •

V

X «
. II II
 

X-~ ?r ̂ dfn/dxi dfn/dx2 • dfn/dxn t= tkX=Xfc

■+-J ?sII II 
~ X

Note that, instead of giving an explicit expression for the residual in terms 
of its Taylor expansion, there are situations in which we are satisfied with only 
a bound for it. Suppose that f satisfies a Lipschitz condition with Lipschitz 
constant L. Moreover, without loss of generality, suppose f is autonomous. 
The residual of a numerical solution generated with the Euler method is then

A (t) =  x(i) -  f(x) =  ^ ( x fc +  (t -  tfc)f(xfc)) -  f(xfe + (t -  ifc)f(xfc))

=  f(xfc) -  f(Xfc +  (t -  tk)f(Xfc))
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and so

||A(t)|| < L||xfc - x k - ( t -  ifc)f(xfe)|| 

< L/ifc||f(xfc)||.

This is a natural inequality given the connection between the Jacobian and 
the Lipschitz constant.

We can now define the important concept of the order of a method.

D efin itio n  3 (Order of a method $ ). I f  a method 4> has residual 0 (h p), then 
it is said to be a pth order method.

In general, the higher the order of a method is, the more accurate it is for 
smooth problems. For instance, the M a t la b  code ode45 implements an order 
4 method. In the literature on the numerical solutions of ODEs, the concept 
of accuracy is usually formulated using the following definition:

D efin ition  4 (Global error). The global error ge(£) for the numerical solution 
from  io to t is simply

ge(i) =  x ( t ) - x ( f ) .  (3.6)

As we see, the global error is simply what we have so far called forward 
error. In fact, it is much preferable to use the term “forward error,” since it 
makes explicit the uniformity of the methods of error analysis about differ
ential equations and about other things, such as matrix equations, roots of 
polynomials, interpolation, etc..

Note that, since the global error is nothing but the forward error, we can 
use the formulas of section 2.3 for it, such as the Grobner-Alexeev formula

z(i) — x G (i,r , z(r))A(r)dr.

We can also use the inequality

z ( i ) - x ( i ) | |  < «(X i)||A (i)||,
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provided tha t the correlation between the solution and the residual does not 
m atter too much (which, in practice, is always a correct assumption). More
over, in chapter 2, we simply assumed that the residual was some function 
£v with 11v 11oo < 1. Now, if we know what method has been used for the 
computation of the numerical solution, we can actually find an expression for 
ev, if we wish to do so.

This shows tha t the order of the residual and the order of the global error 
are the same, so the order of a method can be characterized by one or the 
other interchangeably.

3.2 .2  Local error: an old-fashioned control o f error

An old-fashioned way to control the error in the numerical solution of ODEs 
is based on the concept of local error.

D efin ition  5 (Local truncation error). The local truncation error or, for  
short, local error, is the error le incurred by the method $  over a single time 
step [tk,tk+1] of length hk as hk —> 0. Accordingly, assuming that x(i^) =  
holds exactly at the beginning of the interval, the local error is

le =  x ( ifc+1) -  x fc+1 =  x (ifc+1) -  ^(ifcjXfc+i.Xfc.Xfc-!,.. .,x o ;/i;f )  (3.7)

as h —> 0. Associated with le is the local error per unit step, lepus, which is 
just

lepus =
le
hk

The concept of ‘local error’ has traditionally been used in construction of 
numerical methods for the solution of differential equations, but has been used 
nowhere else. We strongly believe (following Shampine, Enright, and others) 
tha t the concept of residual is more general, more physically intuitive, and 
more understandable. In fact, as the reader will see, there’s no reasonable 
interpretation of the local error in terms of the modeling context in which 
the computation occurs. However, since local error is commonly used, we will

107



explain it briefly here, and show how it relates to our approach in terms of 
residual.

To begin with, let us find the local error of Euler’s method.

T h e o re m  4. The local error in Euler’s method is 0 (h 2).

Proof. Suppose x(tk) is known exactly at tk, i.e., suppose x (ifc) =  x*. If we 
expand the solution x(f) about tk, we obtain

x (0  =  $ 3  x ,r j -~ (*  ~  <*)* =  x (i fe) +  * (4*) +  ~  tk)2 + 0 ( ( t -  tk)3)
k=0

(3.8)

Because x  =  f( i,x ) , we have

x(i) =  x ( ifc) +  f(ifc,xfc)(t -  tk) +  -  ife)2 +  O ((i -

Note tha t the derivative of f  at (tk,Xk) is just f  =  ft +  fxx  =  ft +  fxf, by the 
chain rule. Accordingly, we can rewrite equation (3.8) in this way:

x(i) =  x(ifc) +  (t -  tk){ +  ^  ^  (ft +  fxf) +  o  ((t -  tk)3)

Now, we evaluate x(i) at t = tk+i using this series:

x(ifc+i) =  x(ifc) +  (tk+1 — i*)f +  - k+l 2— ~  ^  (fas+i "" ^ ) 3)

=  x(i^) +  /ifcf +  -— (ft +  fxf) +  O (h i)

So, the local error le =  x(i*;+1) — x/^+i is:

le =  x ( tfc+1) -  x fc+1 =  M  (ft +  fxf) +  O (/t3fc) =  O (/t2) (3.9)

Therefore, the local error is 0 (h 2). □

In our reasoning about local truncation error, we have assumed that x(t^) =
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Xfc holds exactly to find out the error over a single step. However, when we 
use the method, we are only guaranteed tha t x(io) =  x0; the further points 
x i, X2, . . . ,  x n will not in general be exactly on the curve x(i). Thus, for each 
step k > 0, we based our calculation on approximate initial points, and we 
must ask how the error accumulates as we go through the interval. This 
cumulative local truncation error gives another expression for the global error:

ge =  x ( ifc) -  x fc

=  x(it ) -  (xo +  $(to; xi,  x0; h; f) +  . . .  + $(t*_u xfc> x fc_ i , . . . ,  x0; h; f))

This formula is to a large extent why, traditionally, the error analysis of numer
ical solution to differential equations has focused on the control of local error. 
By controlling the local error, we obtain a way to keep a certain control on the 
global error, which is what we really want to control. This formula, however, 
involves a lot of bookkeeping and obfuscates the relation between error control 
in numerical analysis for ODEs and other fields of numerical analysis.2

Now, controlling the residual gives a more direct control of accuracy, and 
it also characterized the order of the method.3 As an error-control strategy, 
controlling the local error provides satisfactory results because it gives an 
indirect control on the residual. We make this precise below with a theorem 
improving the one in Stetter (1973).

T h e o re m  5. Controlling the local error (specifically, the local error per unit

2The concept of local error is also potentially deceitful in another way. Many users think 
that setting r t o l= l  .Oe-6 in Matlab means that the code will attempt to guarantee that

||x(i) - x(t)|| » 10-6||x(t)||. (3.10)
Instead, it only tries to make it so on a given interval h*, assuming that x(tk)  =  x(i/c) holds 
exactly. The relationship to global error and the residual is more remote than many users 
think. Consequently, local error adds to the difficulty of interpretation of the quality of the 
numerical solution.

3Traditionally, the order of a method is said to be p when the local error is of order p + 1. 
This is awkward; the definition in terms of the residual is more natural.
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step) indirectly controls the residual Moreover, ifh ^L ^  < B  and lepus < e,

||A(f)|| < (4 + B )(2 + B)e. (3.11)

Proof. W ithout loss of generality, we assume that the problem x =  f(x) is 
autonomous. Suppose also that the underlying numerical solution method 
used the mesh i0 < ii < • • • < tk <  ifc+i < . . .  <  tN and that the mesh has 
been chosen in such a way as to ensure tha t the lepus is less than or equal to 
a given tolerance e >  0 on each subinterval.

Moreover, let x^(i) be the local solutions on intervals tk < t  < tk+1, so that

tions x ( tk) =  x k(tk) ,x '{ tk) =  f (x fc(ifc) ) ,x ( ifc+i) =  x fc(ifc+1) and x '( tk+1) =  

f(xfc(ifc+i)):

Another interpolant could have been chosen, but this one is good enough. 
Note tha t the derivative of this interpolant is

x fc(i) =  f(x), x ( t k) =  Xfc, t k <  t < tk+1.

As defined above, we also have le =  Xfc+1 — x(ifc+i) and lepus =  1 e /h k.
Now, consider the following theoretical interpolant satisfying the condi-

(t ~  t kf ( t  -  tk+i)
hi

* '(t) -  x'k(t) -
k

) (

2(f -  t k)(t -  tk+1) + ( t -  tk)2
hi
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So, the residual A(t) =  x ' — f(x) is

A(<) =  x'k(t) -  f(x (t)) -  h^ k\ e

+ (x '( tk+1) -  x k(tk+1) +  ^ - le )  — tk+ } ) ^ i t.— ^ 1 )  (t _  tk)

=  f(xfc(i)) -  f(x (i)) -  -  ifc)le

+ (f(x(i*+i)) -  f(xfc(ifc+i)) + ^ le )  — Îfc+1̂ + ■"—~ )  -  h )-

Therefore, using the fact tha t (t — t k) /h  = 9 < 1, we find that

IIAWII < l|f(**(0) -  f(*(i))ll + « H + 3 ||f ( * (W ) -  f(xi (ft+1))||.
hk

By the definition of this theoretical interpolant, we also have

{ t - t k f ^  ( r , ^ x ^  a  u  , 2 \  (t — tn)2(t — tk+l)x fc(i) -  x (i) =  — - 2— le -  ( J (x ( ifc+i)) -  f(x fc(ifc+1)) +  — l e j ---------- ^ ----------

from which, using the Lipschitz condition, it follows that

||xfc(f) -  x(i)|| <  ||le|| +  hk ^L ||le|| +  ^ - | |l e | |)  =  (3 +  hkL ) ||le||.

As a result, we finally obtain

||A(i)|| <  L(3 +  hkL)\\le\\ +  | - | | le | |  +  3L||le
hk

g
—— K L(3 +  hkIS) +  3L 
hk

Alternatively, we have the following expression In terms of lepus:

||A(i)|| <  (8 +  hkL k{3 +  hkL k) +  3/ifcL*) ||Iepus||, (3.12)

where L k < L  is the local Lipschitz constant on this subinterval. Moreover, if
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we let hkL k = B , we obtain

||A(t)|| < (4 +  B)(2  +  B ) e . (3.13)

This completes the proof. □  □

This bound is apt to be pessimistic in most cases; admittedly the bound 
hnL n < B  might be inconvenient in practice as well. Nonetheless, it gives a 
clear rationale for expecting that controlling the local error per unit step will 
also control (up to a problem-and-method-dependent constant B ) the residual. 
In addition, note tha t this analysis is independent of the method used to 
generate the mesh or the solutions at the mesh points or the method used 
to guarantee tha t ||lepus|| <  e. This analysis works for one-step methods 
and for multisptep methods (indeed for Taylor series methods and general 
multistep methods too).

3.2 .3  C onvergence and consistency  o f m ethods

We begin our discussion of convergence with the simplest initial-value problem, 
namely

x  = f ( t ,x )  = Xx, #(0) =  Xq. (3.14)

Then, the analytic solution is x(t) =  XoeXt. If we use Euler’s method (with 
fixed stepsize) to tackle this problem, we can then give a general expression 
for the XkS:

x k+i = x k + h f ( tk, Xk) =  x k +  h \x k =  (1 +  h \) x k = (1 +  hX)kx 0. (3.15)

The region of convergence for this method is then a disk of radius 2 centered 
at —1 in the complex plane. If |1 +  h \\  < 1 ,  i.e., if hX is inside the disk, the 
computed solution x(t) will go to Xo a s i —» oo. If this condition fails, ie ., 
if hX is outside the disk, the computed solution x ( t) will go to oo as t —» oo. 
Now, suppose the problem is ill-conditioned, ¿.e., suppose A > 0. Then, since

112



h > 0, the condition will fail and the computed solution x(t) will go to oo. 
This, however, is unproblematic from the point of view of convergence, since 
x(t) = XoeXt will also go to oo as t —> oo (in this case, however, it might be 
problematic from the point of view of accuracy, as we have seen).

Now what happens if A < 0? In this case, convergence requires a relation 
of inverse proportionality: the larger |A| is, the smaller h will have to be. 
Accordingly, as the problem becomes increasingly well-conditioned, we have 
to make the stepsize h —> 0 to guarantee convergence. In practice, however, 
this means that, as the condition number increases, the cost of the solution 
increases, since the program will have to take more steps to go through an 
interval. We will come back to this point in the next section.

For now, let us formally introduce the concepts involved in order to pre
cisely establish a key connection between them:

D efinition 6 (Consistency of a method). A method is said to be consistent if

lim A(i) =  0,h—»0

i.e., i f  the residual of the method tends to 0 as h —> 0.

Obviously, any method whose residual is the product of some power of h by 
some factor independent of h will be consistent. As we have seen in theorem 
3, this is the case for Euler’s method.

D efinition 7 (Convergence of a method). A method is said to be convergent

i f

lim ||X(i) - x ( i ) | |  =  0,h—>0

i.e., i f  the forward error of the method tends to 0 as h —» 0.

Note that, as we have explained in chapter 2, the forward error is bounded 
by the product of the condition number and the norm of the residual, i.e.

||x(i) - x ( i ) | |  <  « ||A (i)||.
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In this case, if the method is consistent then it will also be convergent, provided 
tha t the problem is well-conditioned (e.g., a badly conditioned problem with 
k — l/ ||A ( t) || could make the condition fail).

3.3 Stiffness and Im plicitness

As shown in section 2.6, stiff problems are very well-conditioned problems for 
which numerical methods have to reduce the stepsize in order to maintain 
stability, even if accuracy would allow for large stepsizes. In the example of 
equation (3.14) in the last section, we have seen just that: when A is large 
and negative, we have to take very small stepsizes to maintain convergence. 
As a result, the method becomes extremely inefficient. In section 2.6, we also 
suggested tha t the cure to this problem is the use of implicit methods. So, let 
us consider a first-order implicit method, namely Euler’s implicit method:

Xfc+i =  Xfc + h f( tk+u x k+i) (3.16)

If we again consider the example from equation (3.14), we obtain 

*£/c+1 =  %k  4“ hf(tk+ u x k+i) =  Xh  4“ h \ x k + i ,

so that

Xk+1 l  — hX X k = 1 — hX Xo-

The region of convergence for this method is then the entire complex plane 
minus a disk of radius 2 centered at 1. For any well-conditioned problem, hX 
will be in the left half-plane, and thus Euler’s implicit method will converge 
without restriction. The software will thus be able to take the steps as large 
as accuracy permits.

However, we should note that the much larger region of stability does not 
justify using implicit methods by default. For non-linear problems with vector 
functions f , the cost of solving the system for the implicit value will be very
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high. Only seriously stiff problems justify the use of implicit methods from 
the point of view of efficiency.4

Note tha t this example gives us grounds to draw practically general con
clusions since, in practice, the numerical solution of a problem involves lin
earizing the equation, fixing the variable coefficients to some value of interest, 
and finally diagonalizing the system to obtain decoupled differential equations 
(Higham and Trefethen, 1993). But then, the decoupled equations will have 
the form of the equation in this example.

The story above, explaining the success of implicit methods in terms of 
regions of stability is, however, not the whole story. Let us once again assume 
that we have linearized our problem, tha t we have fixed the coefficients, and 
tha t we have decoupled the equations. In this common context, fundamental 
solutions of differential equations have the form eAi, and the general solutions 
of the homogeneous part are linear combinations of such terms (as we have 
seen in section 2.3.2). Now, we have seen tha t the explicit Euler method in 
fact corresponds to the two leading terms of a Taylor expansion. Moreover, as 
we will see later in the chapter, higher-order methods are also constructed so 
tha t they match the leading terms of the Taylor series. Accordingly, we will 
examine the accuracy of Taylor polynomials to approximate the exponential 
function.

To begin with, we observe the asymmetric relative accuracy 8exp of trun
cated Taylor series for ex:

,  v X 2 X 3 X 4 X 5
K x) =  l + x +  T  +  ¥  +  -  +  —

s„p(x) =  pM_z £  =  plx)e- ,  _  j
ex

Note 8exp(—2.0) =  0.508 is more than 30 times as large as 8exp(2.0) =  0.016. 
Accuracy is quite a bit better to the right, with a relative error of less than 
2%, but more than 50% on the left. See figure 3.3. The more terms we keep 
in the series, the bigger the factor is. Lower order approximations are not

4There is also a significant practical difficulty: solving the nonlinear systems for large h
may be difficult, or even impossible.
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Figure 3.3: Approximation of ex by a Taylor polynomial has a larger relative 
error for negative x  than it does for positive x.

quite as bad; if we only keep p(x) =  1 +  x  +  x*/2 + x3/3, we have a factor of 
24 difference. However, the asymmetry persists at all orders, as can be seen 
by series expansion of 6exp(x)1 showing tha t the series has alternating signs 
and thus must be larger on the left, with negative x , when all the terms have 
the same sign. Naturally, if we examine e~x and its corresponding Taylor 
polynomials, the ‘left’ and ‘right’ above will be interchanged.

W hat does this asymmetry mean? It means tha t Taylor polynomials are 
good at growing, but tha t they are not so good at flattening out. Now, ex 
grows to the right (faster than polynomials can, i t ’s true), and flattens out 
very quickly to the left. Fitting a polynomial at one point only, as we are 
doing with Taylor series, reflects this asymmetry. This phenomenon can be 
observed no m atter about what point we expand ex, as one can easily check.

W hat does tha t mean for the example we have been examining? Suppose 
we integrate forward for positive time. On the one hand, if the problem is ill- 
conditioned, then At is going to be positive. In this case, the Taylor polynomial 
will have a better relative residual on the right-hand side, as shown in figure 
3.3. Thus, explicit methods based on Taylor series will do better than implicit 
methods. On the other hand, if the problem is well-conditioned, then Ai 
will be negative. Accordingly, the situation will be reversed and the Taylor 
polynomial will have a better residual on the left-hand side. In this case, 
implicit methods based on Taylor series will do better than explicit methods.
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For a fuller discussion, see Corless and Fillion (201x).

3.4 Taylor Series M ethod

We now look at a first generalization of Euler’s method in terms of Taylor 
series. Let us first consider how Taylor series methods are used analytically 
to find solutions in terms of series, and then we will examine how they are 
implemented numerically. Consider the initial-value problem

x(t) = x (t)2 - t ,  x { \)  = 2. (3.17)

Now, we suppose the existence of a solution x ( t) that can be written as a 
Taylor series about to =  1:

x(t) = x ( t0) + x ( t0)(t - 10) +
x (t0)

2!
(t -  to)2 +  — g|°"(t -  to)3 +

k=0 k\

The Taylor series method consists in determining the coefficients xW (*«)/*!—we 
will denote them by x ntk—in a recursive way. That is, given that we know x (t0) 
(henceforth denoted æo,o) and that we know how to differentiate the differential 
equation, we can find all the coefficients xn}k automatically. Coming back to 
our example, we obtain x (t0) — x ( l)  by direct substitution in (3.17):

¿(1) =  x ( l)2 — 1 =  22 — 1 =  3.

We can then differentiate the differential equation as many times as needed 
and then evaluate at to =  1, e.g.,

x (t) = 2x{t)x{t) -  1 ¿(1) =  2 - 2 - 3 -  1 =  11

'¿'(f) =  2(x(t)x(t) + ¿ (t)2) '¿'(1) =  2(2 • 11 +  32) =  62,
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Figure 3.4: Analytic Continuation, ie ., successive application of the Taylor 
series method.

Accordingly, the solution can be written as

x(t) =  2 +  3(i -  1) +  y  (t -  l ) 2 + J ( t  -  l ) 3 +  • • • . _(3.18)

Now, associated with the Taylor series about tn is a radius of convergence. 
W ithin the radius of convergence, we can use a Taylor polynomial containing 
the first N  terms of the the series to approximate x(t) with a residual which 
is at most 0 ( ( t  — tn)N), but there is no such guarantee outside the radius of 
convergence. Accordingly, any time step within the radius of convergence will 
give valid approximating results. So, if we let tn be in the radius of convergence, 
we can find x (tn) to the order of accuracy desired. Moreover, we can then use 
this as a new initial value and expand x ( t) in a Taylor series about this point. 
If this new expansion has a convergence disk not entirely overlapping with the 
original one, this allows us to advance outside the original convergence disk. 
See figure 3.4.

More generally, for an initial-value problem

x = f ( t , x( t ) ) ,  x( t0) = x 0, t0 < t < t N, (3.19)
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let us denote by

x n(t) = Xntk(t -  tn)k (3.20)
k=0

the Taylor expansion of x{t) about tn (then, notice that #0,0 =  £o(io) =  £o)- 
For any tn+i in the disk of convergence of this series, we may then find (in 
theory)

oo
*£71(̂ 71+1 ) == ^ y 7̂l,fe(̂ 7t+l 7̂1) (3.21)

k=0

The analytic continuation idea is just to repeat this procedure: let x n(tn+\) =  
£71+1,0 be the new initial value and find a new Taylor series of the problem

x  = / ( i ,  x(t)), x (tn+1) =  xn+lf0 - — (3.22)

and repeat. By piecing together these series, we find a complete solution along 
the path from to to tjv (Barton et al., 1971).

In numerical practice, the Taylor series method uses not series but polyno
mials:

N
®n(0 = ^ 2  Xn<k(t -  tn)k. (3.23)

k=0

The resulting (absolute) residual about t = tn is then

An(t) = x n -  f ( x n) (3.24)
N /  N \

=  ^ 2  kxn,k(t ~  tn)k~l ~  f  1 ^ 2  Xn’k^  ~  tn^k ) (3‘25)
k= l \ k = 0  J

= rN{t -  tn)N +  rN+i(t  -  tn)N+1 + ■■■ (3.26)

To obtain an automatic numerical procedure, we need a way find an itera
tive numerical substitute to repeatedly differentiating the differential equation.
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This is done by using the algebra of power series studied in Corless and Fillion 
(201x, chap. 2).

Observe tha t we could think about this method in a dual way, which is the 
one used for computation. The presentation above assumes tha t the coeffi
cients in the series representation of the solution are Taylor series coefficients 
(as in equation (3.20)), from which it results as a matter of fact tha t the first 
N  coefficients of the residual are zeros. Instead, we can merely assume that 
the solution is represented a a formal power series, and we make no assumption 
as to whether they are Taylor coefficients. Then, we can impose the constraint 
tha t the first N  coefficients of the residual are zeros, and conclude that the 
coefficients of the formal power series for the solution are indeed Taylor coeffi
cients. This dual perspective would be better named “minimal residual formal 
power series method.” But in any case, it is the one used in practice.

Let us examine an example we discussed in chapter 2 (but we don’t  use 
Xi,X2 to avoid ambiguity in the indices):

S  = - S 3I, 5(0) =  1 (3.27)

/  -  - S I 2, 7(0) =  1.

Let us examine it with the series method. To begin with, we let

N N
Sn(t) =  Sn,k(t -  tn)k and In(t) =  -  tn)k (3.28)

fc=0 k—0

be truncated power series approximating S(t) and I(t). We define auxiliary
quantities to deal with S I , S I 2,S 2, and S 3I, since we will encounter these
quantities in the evaluations of the derivatives S (tn) ,S ( tn), S ( tn) , . . and
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/(£n), / ( i n), I  (tn)> • • • required to find the series coefficients. So, let

N
C = S I  = J 2 c nJt( t - i n)k

fc=0 
N

D  =  S I 2 = C I  =  J 2 D nik( t - t n ) k
k=0 
N

E  = S 2 = J 2 En A t ~ t n)k
k=0
JV

F  =  5 3/  =  C£; =  5 ] F fc=o ( i - i n ) fc,
n,k

where the coefficients satisfy the conditions for series multiplication:

k

C n ,k  =  ^  ^ I n j S n ^ k —j

j=0
k

En,k = ^   ̂Snj S nyk-j 
k=0 

k

F n,k =  ^   ̂C n j E n h - j .  
j=0

Observe tha t these sums are just inner products, so they pose no numerical 
difficulty, as we will see below. The residuals in S  and / ,  denoted As  and A /, 
are defined to be

N
A s = S  + S 31 = J 2  A s,fc(i -  t n ) k +  0 ( t  -  tn)N+1 (3.29)

k=0 
N

A ,  = i +  S I 2 =  Y ^  A I A t  -  Q k +  0 ( t  -  tn)N+1, (3.30)
k=0
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where the coefficients then satisfy

(3.31)

(3.32)

As,* =  {k  +  l)<Sn,*+i +  F n,k 

A/,* =  (k +  l)/n,*+i +  Ai,*

for all k, 0 <  k <  N . Note tha t Sn,N+i = In,N+1 =  0 because we truncate 
this series. As a result, for 0 < k < N  — 1 , we may set both As,* and A/,*, to 
zero as follows: because both Dk and Fk are known once all Snj  and Inj  with 
0 < j  < k are known, we may simply set

Sn,k+l  —
n,k

k +  1
and Ai,*+1 k +  1

(3.33)

Then, the first N  coefficients of A s and A/ are zeros and, consequently, the 
SU'k and Intk in the truncated power series are the coefficients of the Taylor 
polynomials. So, we have a recursive method in terms of power series to 
find the coefficients of the Taylor series without having to differentiate the 
differential equation directly. Note also that, since

ASl* =  Fn,k k > N  (3.34)

A /lfc =  Dn,k k > N  (3.35)

our procedure for computing Taylor series also automatically computes Taylor 
series for the residual. Thus, with little extra effort we will have an error 
estimate at hand. Of course, we may evaluate both A s(i) and A /(i) directly, 
just as easily, and this is usually best.

For our example, we can easily implement the scheme numerically in M a t - 

l a b . Firstly, the coefficients are computed in a straightforward way with this 
compact code:

1 function [I ,S] = tsw(10,SO,N ,sg)
2 X Taylor series coeffs of solution of S' = -S~3*I, I'= -S*I~2
3 X S(tn)=S0, I(tn)=I0; sg is the direction o f integration.
4 X if tn=0, I0=S0=1, then I=exp(-W(t)) and S = 1/(1+W(t)).
5 I = zeros(1,N+l);
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Is F ISS = I; C = I; D = I; E = 
1(1) = 10; S(l) = SO;
for k=l:N ,

C (k) = S (1:k)*1(k:-1:1). ' 
D (k) = C (1:k)*1(k:-1:1) . ' 
E(k) = S (1:k)*S(k:-1:1).’ 
F (k) = C (1:k)*E(k:-1:1). ' 
S(k+1) = -sg*F(k)/k ; 
I(k+1) = -sg*D(k)/k;

end
end

Then, the residual is also easily computed:

function [I,S ,r ,dt,It,St]=tswresid4text (In , Sn , N , sg)
[I,S]=tsw(In,Sn,N ,sg); XFind the coefficients. 
t = linspace(0 , .5,256);
It=polyval(I(end:-1:1),t); _ ^
St=polyval(S(end:-l:l),t);
Std=polyval([N:-l:l].*S(end:-1:2),t);
Itd=polyval([N:-1:1]. *1(end:-1:2),t); 
r=[Itd+sg*St . * It . "2;Std+sg*St."3.* It]; 
rsq = sqrt(r(1,:).~2+r(2,:)."2);
semilogy(t,abs(r(l,:)),'k — ',t ,abs(r(2,:)),'k-. ')
XFind the numerical value dt at which the residual start to be 

bigger than the tolerance, here 1.0e-6, and evaluate the 
Taylor polynomial at this point to have new initial values. 

ii=find(abs(rsq)>1.Oe-6); 
if numel((ii))>0, 

ig=ii(1)-1; 
if ig==0,

error('failure',rsq(1))
end
dt = t ( ig) ;
It = It(ig);
St = St ( ig) ;

else
dt = 1.0;
It = It (end) ;
St = St (end) ;
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Figure 3.5: Residual of the Taylor polynomials of S  (dotted line) and I  (hard 
line).

2 5  end — _
26 end

Let us take two steps explicitly with this method. For no particular reason, 
take N  —  7 and start with n  =  0 and tn =  t0 —  0. Here 5(0) =  s0,o — 1 and 
7(0) =  /o,o =  1- The program above gives

50(i) =  1 -  t + 2t2 -  4.5f3 +  10.6667Î4 -  26.0417Î5 +  64.8f6 -  163.4014Î7 

/ o(i) =  1 - t  + 1.512 -  2.66713 + 5.2083i4 -  10.8t5 +  23.3431Î6 -  52.0127t7

where as usual we have printed only the usual short M a t la b  representation 
of the coefficients; more figures are used than shown. By inspection of the 
graphs of

A s ( t )  = â  + S3î  and A /(t) = Î  + S Î \  (3.36)

we see tha t y /A g  + A j < 10-6 if 0 <  t  < 0.0431. We thus take t\ — 0.0431
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and evaluate the Taylor polynomials at this point, so that

Si.o =  5o(0.0431) =  0.9603 (3.37)

I l0 = / 0(0.0431) =  0.9595 (3.38)

are our initial values for the second step (these are the S t and I t  in the 
program). We can then generate new truncated Taylor series about t\\

S'i(i) =  0.9603 -  0.8495(i -  ti) +  1.5188(t -  tQf  +  . . .  -  71.184(f -  t0)7 

I \ (i) =  0.9595 -  0.8840(f ~ h )  + 1.2085(t -  t0)2 +  . . .  -  24.6896(f -  0.0545)7.

Again, the program indicates tha t y jA ^ is smaller than 10-6 if 0 <
t -  0.0431 <  0.0490.

This process can obviously be repeated. Provided that we cafTalways 
take in+1 so that hn = tn+ i— tn is bounded below by some minimum stepsize, 
say SMtn, so tha t in+i > tn in floating-point arithmetic, we may integrate 
x  =  f{ x )  from to to some fixed tjv by taking a finite number of steps of this 
method. At the end, we will have a mesh t0 < t\ < t^ <  . . .  <  t ^ - \  < t ^  
and a collection of polynomials Xk(t) with residuals A kit) on i* < i < 
tk+1, where ||rfc|| is at most our tolerance e. All together, we will have 
a continuous (but not continuously differentiable) piecewise function x(t) 
solving x  = f( x )  +  ev{t) and x{to) =  2/0 , with ||^||oo 1.

The caveat, that we must be able to make progress, z.e., in+i > tn in 
floating-point arithmetic, turns out to be interesting. For tight tolerances, 
we are not be able to get much past t = —l/e = 0.3679. This is because 
the solution is singular there (more precisely, it has a derivative singularity). 
Location (or merely just detection) of singularities is an interesting topic, and 
useful in and of itself. We remark tha t the Taylor series method offers a way 
to detect such singularities essentially for free; if there is one, then keeping 
l|A„|| <  e ensures hn —> 0.
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There are widely-distributed Taylor series codes. For instance, M a p l e  

offers dsolve/num eric  with the ta y lo r s e r ie s  optional method, written by 
Allan W ittkopf, works very well. A code for DAE, called DAETS, by Nedialkov 
and Pryce, is available for industrial applications. The package ATOMFT by 
Corliss and Chang is freely available. Nonetheless most industrial or other 
high-quality codes use other methods. A set of historical, evolutionary traps 
locking in the results of earlier decisions have likely played a role, as follows.

In the early days of computation, there was neither computing time nor 
memory available to compute or represent interpolants: numerical methods 
for ODE were expected to produce only a table of values at selected points 
(and tha t was hard enough, given limited hardware). There was also little 
understanding of the code generation needed for what is now called automatic 
differentiation—and symbolic differentiation, done badly, generates exponen
tial growth in the length of expressions. Finally, and perhaps most important, 
many problems are not smooth, such as

x  = \1 — x 2\j x(0) =  0 (3.39)

and so derivatives were set aside, as being too much work for too little gain. A 
more interesting objection is that not all interesting functions have differential 
equations associated with them. E.g., solving

m =  r ( f )  +  (3.40)

by Taylor series needs special treatment because the derivatives of T are them
selves special. However, in practice this seems not to be an issue.

Nonetheless, before moving on, let us recount the advantages of the Taylor 
series method:

1. It provides a free piecewise interpolant on the whole interval of integra
tion;

2. It provides an easy estimate of the residual from the leading few terms 
in x  — f(x );
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3. It is a good tool for singularity detection and location;

4. It is flexible as to order of accuracy5 N  > 1  and adaptive stepsize hn =

¿n+l ¿n!

5. And finally, but perhaps most importantly, it is now understood how to 
make program to implement them.

All this is by the way. The fact is tha t people did turn away from Taylor 
series methods, not realizing their advantages, and invented several classes of 
beautiful alternatives. Using Taylor series methods as the underlying standard, 
we now discuss one such class of alternatives, the Runge-Kutta methods.

3.5 R unge K utta  m ethods

Marching methods, including Euler’s method and explicit Runge-Kutta meth
ods, share the following structure: start at x*, and more to xfc+1 by making 
a step of length hk along a line whose slope approximated the slope of the 
secant connecting and x(i*;+i). In the case of Euler’s method, we simply 
used f(ifc,xfc) as our approximate value for the slope of the secant. The idea 
of Runge-Kutta methods is to evaluate the function f  (t, x) more than once, at 
different points, and to use a weighted average of the values thus obtained as 
an approximation of the slope of the secant. Then, depending on how many 
evaluations of f the method use and on how well the weights of the average 
have been chosen, the methods so constructed will have a higher or lower order 
of accuracy. Let us examine a few examples.

5We have high accuracy if the solution is smooth and N  is large, at a reasonable cost. 
It has been shown that Taylor series method has cost polynomial in the number of bits of 
accuracy requested (Ilie et al., 2008; Corless et al., 2006)
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3.5.1 E xam ples o f 2nd-, 3rd- and 4th-order R K  m eth 
ods

If we consider adding a second evaluation of the function f , then the natural 
thing to do is to compute it at the point (i*+i,x (i*+i)). This is exactly what 
the Improved Euler method does:

Xfc+i — x* -\- h (  (i/j, X*) +  2 ^ (fk+h Xfc +  h f  (i/j, x^) (3.41)

This method just takes the arithmetic mean (z.e., the weights are l/2) of the 
slope at the beginning of the interval and at the end of it. At the end of it 
we substitute the exact point (i*+i, x(tk+i)) by the approximation (i*+i,x* + 
/if(ifc,Xfc)). Then, we need to find a way to interpolate the data generated in 
an appropriate manner, so as to make it possible to define and compute the 
residual. ——

As it turn  out, we gain an order of accuracy with this method:

T h e o re m  6. The Improved Euler method is a 2nd-order.

We will examine later how to construct continuous Runge-Kutta methods, 
and we will then be able to find the order of methods based on their residual. 
But since we do not have this available yet, we will show instead that the order 
of the local error of the Improved Euler method is 0 ( /i3), which implies that 
this is an order 2 method, since this approach does not require an interpolant. 
Moreover, in this section, we will assume without loss of generality tha t the 
functions f  are autonomous, since we can always rewrite a non-automous sys
tem as an autonomous system of higher dimension using the trick presented in 
chapter 2. This assumption simplifies very much the Taylor series expansion. 
Moreover, we will continue to simply write f , f x, efc, to denote the evaluation 
of those derivatives of x at x&.

Proof. First, notice that

f (xfc +  h f )  =  f +  h f j  +  0 ( h 2),
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so tha t the solution computed by the improved Euler method can be expanded 
as

Xfe-f! =  x k +  ^ (f +  f(x* +  h i ) )  =  x fe +  ^ (f +  h f j  +  0 ( h 2) )

=  X fc +  h f + y f xf +  0(h3).

Moreover, the exact solution x(tk+1) =  x(i^ +  h ) can be expanded about tk as

h2
x(ifc+i) =  x(i* +  h )  =  x (ifc) +  h x ( t k) +  yx(ifc) +  0 { h 3)

=  x fc +  /if +  y f xf +  0 ( / l3).

As, a result, the local error le =  x(ifc+i) — x^+i is 0 (h 3). Therefore, the 
method is second order. □

As we will examine higher-order method, we will need more machinery to 
deal with the Taylor series. Expanding vector-valued scalar functions in Taylor 
series does not require much notation beyond what is found in vector and 
m atrix analysis. However, doing so for vector-valued vector functions requires 
the introduction of tensors. Even for this simple second-order method, if one 
tries to find the explicit expression for the first term of the local truncation 
error, we tha t the matrix-vector notation is cumbersome (but it can be done, 
with a lot of patience). For higher-order terms, however, it becomes essential 
to use tensor notation. So, for now, we will simply present a 3rd- and a 
4th-order method without providing any proof.

Here’s is a standard third-order RK method works. We use ki for the
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various values of f  we compute:

ii — to h (3.42)

ki = f(io ,x0) (3.43)

k2 = f(to + h ,x 0 + h k \) (3.44)
ct± , h h k i + k 2 

k3 -  f(io +  2 ,X° +  2 2 (3.45)

k\ + k2 +  4 A: 3
xi =  x0 +  h

0
(3.46)

The computations of f  are called stages. Each stage of this method is illus
trated  in figure 3.6. Remark that in the case in which f  depends only on i,
and not on x, the problem amounts to x(f) =  f  (t)dt, so 
in effect is the very same as Simpson’s rule for quadrature.

that the method

Here is a fourth-order Runge-Kutta method:

t\ == ¿o +  h (3.47)

h  = f(io ,x0) (3.48)

» n/ h h i \ k2 — f{to + —, x 0 +  —k\) (3.49)

i n / h - v
^3 =  f [to +  —, x 0 +  2 ^2) (3.50)

k4 =  f  (io +  h, Xo +  hk$) (3.51)
uk\ +  2k2 +  2k3 +  k*

X\ = x 0 +  h ------------ -------------
6

(3.52)

In fact, this method is one of the most popular Runge-Kutta methods. It is 
often simply referred to as RK4 or “the classical Runge-Kutta method.” W ith 
these representative examples, it should be clear what strategy Runge-Kutta 
methods exploit. To continue our investigation, we will now introduce a gen
eral notation for the Runge-Kutta methods, and then return to the mechanics 
of constructing the methods.
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(a) Stage 1. We compute the stage 
k\ =  f ( t o , x 0) at s i  =  (t0,x 0).

(b) Stage 2. We move h along the tangent, 
whose slope is k\t to the point S2 — ’{ti>xo +  
hk\). Then, we compute & 2  = /(¿i,xo + hki).

(c) Stage 3. The slope at S2  is &2 - We come back 
to s i and move h / 2  on a straight line whose slope 
is fci + fc2/2> the average of k\ and &2 to the point 
S3  =  (to +  h/*,xo +  (V2)(fcl + *2/2))-

(d) We make the step h with the 
weighted average of k\,kz and k$. 
The resulting point is ( t i ,x i )

Figure 3.6: RK3.
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3.5.2 G eneralization  and B utcher Tableaux

We have seen two examples of Runge-Kutta methods above, in (3.46) and 
(3.52). Other simple methods include the following:

x fc+i =  x fc +  h f( tk, x fc) =  x fc +  hki 

x*.+i =  X* +  h i ^ k i  +  ^k 2)

with k2 = f ( t k + h, x fc +  /ifci)

Xfc+i =  Xfc +  hk2

with k2 = f ( t k + ^ h ,x k + ^h k i)

Euler

Trapezoidal

Midpoint

The trapezoidal method is the one we called “improved Euler” before. We 
observe tha t each of these 5 methods consists in computing a num berof slopes 
at different points and take a weighted average of them, where the number s of 
slopes ki computed corresponds to the number of stages of the method. Thus, 
if we let the weights be bi, i = 1 ,2 , . . . ,  s, the general form for these rules is

8

Xfc+i =  x 0 +  h(biki +  . . .  +  bsk2) = x k +  h ^  b{ki. (3.53)
2=1

Moreover, we observe tha t the computation of some of the ki depends on other 
values kj (in the explicit cases considered here, only for j  < i). For instance, 
in the trapezoidal rule, k2 depends on ki for the value of the second variable 
in f(i, x(i)). The parameters indicating how much weight have the previous 
steps j  in finding the new point of evaluation of f to determine kt are denoted 
a,ij. Moreover, as we have seen in the midpoint rule, for instance, there is a 
constant dictating how big a time step we take. Thus, for explicit methods,
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we get the general form:

fci= f(i* ,x jt) (3.54)

k2 =  f  (ifc +  c2h, x k +  a2ik x) (3.55)

k3 =  f  (tk + c3h, x k +  a3ifci +  a32k2) (3.56)

i (3.57) |

ks — i ( tk +  c2h ,x k +  a3\ki +  as2k2 +  . . .  +  a3}S- \k 3- i)  (3.58)

In general, for explicit methods, we have

t-i
ki  =  f  (tk + a h , x k + h Y :  a-i jkj) . (3.59)

j=i

Since we always begin with an evaluation of the slope at (tk, x k), we have 
ci =  0. Moreover, since the evaluation of k\ cannot depend on previously 
computed values of ki in an explicit method, we have a lti =  0, i =  1 ,2 , . . . ,  s. 
In the Trapezoidal rule, we have c2 — 1 and 021 =  1. In the midpoint rule, we 
have c2 — l/2 and <221 =  l/i.

As we see, the weights b, the size of time steps c and the weights ay of pre
viously computed values of kj, j  < i, fully determines a Runge-Kutta method. 
This information for explicit methods can conveniently be summarized in a 
tableau, called Butcher tableau, having the following form:

bT
(3.60)

where A is a lower-triangular matrix with zeros as diagonal entries. We typ
ically leave the Os out, leaving the cell blank. As one can expect, an implicit
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Runge-Kutta method of the form

k\ =  f  (ífc +  C\h  ̂x/¿ +  as\k\ +  as2k2 +  • •■ • "f" a$>s_1^8— 1 "h (Lss^s) (3.61)

k2 =  f(i/c +  c2h, Xfc +  a3\k\ +  as2k2 +  • ■■ • 0's,s— \k3— i “h O'saks) (3.62)

k3 =  f  (tk + c3h , Xfc +  as\k\ +  as2k2 +  ..• • "h (̂ 3}3—\ks—i d* a*33k3) (3.63)

• (3.64)

k8 =  f (tk + csh , Xfc +  a3\k\ +  as2k2 +  ..• • “1" ^3,3—1^3— 1 "h O'ssks) (3.65)
8

x fc+i =  x* + h V'bjfcj. (3.66)
i= 1

would have a full Butcher tableau:

Cl an ai2 * * * &ls
C2 a 2i 2̂2 * • &2s

C3 C'sl 0*32 * ’ * Cj83

bi b2 ••• b„

(3.67)

Let us illustrate this notation by giving the Butcher tableau of some methods 
we have encountered. The midpoint rule gives

0

V2 1/2

0 1

The trapezoidal rule gives

0
1 1

l/2 l¡2

(3.68)

(3.69)

Finally, the classical Runge-Kutta method RK4 has the following Butcher
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tableau:

72  7 2 

72  0 7 2 

1 0 0 1

0

(3.70)

76 7 3 V3 V6

3.5 .3  H ow  to  construct a d iscrete m ethod

We now introduce the traditional strategy to construct a discrete Runge-Kutta 
method, i.e., a method tha t returns a discrete set of points X o , x , . . . ,  x / v  and 
the corresponding mesh points. However, this is just a transition stage we

Runge-Kutta method in a didactically acceptable way. Ideally, we would prefer 
to skip this entirely and move directly to the continuous approach, buf'^e have 
not yet found an acceptable way to do so.

The traditional strategy goes as follows. We begin by expanding the exact 
solution x(tk+1) about tk

up to the desired order. We then specify the order p of the method we want to 
build, as well as the number s of stages we allow (there is, however, a minimum 
number of stages required to build a method of given order). Then, we solve 
for the bi, Ci, and aiy Let us give the simplest non-trivial example: p =  2 and 
s — 2. For s — 2, the Runge-Kutta method is given by

make in order to introduce the strategy for the construction of a continuous

(3.71)

S

1=1

where the stages are k\ =  f(i*,,x*:) = f and

k2 = f (tk + c2h,xk + ha2,iki). (3.73)
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The first step in the construction is to expand the ki (here, we have only one) 
in Taylor series about tk:

&2 =  f  +  /ic2f* +  hd2\i^k\ +  0 (h 2) =  f  +  /102ft +  /i&2ifxf 0 (h 2). (3.74)

We then substitute in equation (3.72):

Xfc+1 =  Xfc +  h (b\f +  &2 (f +  hC2$t +  /lU2lfxf +  0 (h 2)))

=  x k +  /if (61 +  62) +  /i2(62c2ft +  fcoaifxf) +  0 (/i3). (3.75)

Finally, we match the coefficients of the exact solution (3.71) and of the nu
merical solution (3.75) (assuming that x(i*) =  x*), to get a set of constraints 
for the 6t, q , and a^. In this case, we find that:

1 =  6i + 6 2 _  (3.76)

\  = h c 2 (3.77)

\  =  i>2a2i (3.78)

These equations are called order conditions. Now, since we have only three 
equations for four unknowns, there is a free degree of freedom, i.e., there is 
an infinite family of two-stage order two Runge-Kutta method. The popular 
second-order methods we have examined before fall in this category. Setting 
62 =  V2 gives the trapezoidal method. Setting b2 = 1 gives the midpoint 
method. Many more naturally exist. To go into the details of higher-order 
methods, we need tensor notation, which we introduce later to discuss the 
general theory of order conditions.

3.5 .4  Investigation  o f C ontinuous E xplicit R un ge-K utta  
M eth od s

The idea of a continuous Runge-Kutta method, CERK for short, is quite 
natural. We already have the idea of generating a discrete set of points
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Xo, X i,. . . ,  x n on a mesh to ,tt . . . ,  t n  with a Runge-Kutta method. Moreover, 
we have already seen the importance of somehow interpolating our discrete set 
of points in order to be able to evaluate and interpret the results. The idea of 
CERKs is then: instead of doing this in two stages, why not combining them?

How are we to do this? Following Hairer et al. (1993), we simply do as we 
did in the last subsection, i.e., expand expressing in Taylor series and match 
coefficients to find order conditions restricting the parameters of the method, 
to the exception tha t we let the weights bi be variable and ranging over a 
subinterval [tk,tk+i]. We have already used this notation before to describe 
Euler’s method interpolated piecewise linearily in equation (3.4). Adapting 
this equation to our current Runge-Kutta notation, we find:

Xfc(i) = x k + hk9kf ( tk,x.k) CERKm\  x (0 ) = x k + hbi(9)ki,

where bi(9) = 9. In general, for the construction of a CERK, as opposed to a 
discrete Runge-Kutta method, the rule generating the points x, will have the 
form

S
x(0) =  x fc +  h ^ 2  bi(Q)ki. (3.79)

¿=1

Note also that, where we used the notation x^(i), a function of t indexed 
for subintervals, we now use the variable 9 and drop the index, since it is 
already built in 6 = (t — tk)/hk . Also, note tha t in addition to the order 
conditions found by the process described in the last section, we also impose 
other constraints on the constants a^, such as

i-1
=  (3.80)

3=1

where, remember, C\ =  0.
When constructing a continuous Runge-Kutta method, we will again choose 

an order p  for the method and a number of stages s. In this context, the resid-
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ual is

(3.81)a w = |  u r n  -  m e » -

Since 9 — (t — tn)/h , this gives

A (9) = ± x '(9) -  f(x(9)), (3-82)

where the prime now denotes differentiation with respect to 6. By definition of 
order, the choice of order imposes a constraint on the residual of the method 
defined in (3.79), namely is required tha t A (t) = 0 (h p).

As an example, consider again the case of a second-order two-stage method:

h  =  f(x fc) (3.83)

k2 = f (i/t +  c2h ,x k +  ha2ik i)  ... (3.84)

x(9) =  Xfc +  h (h (9 )ki +  b2{9)k2) . (3.85)

To begin with, note tha t the Taylor series of the exact solution is

u2q2
x k(t +  Oh) =  x* +  hdki +  — (ft +  fxf) +  0 (/i3).

In order to match the coefficients of x(0) with the exact solution, 
expand

/¡?2 =  f  +  C2hft +  hd2\^k \ +  0 (h 2) (3.87)

As a result, the computed continuous solution has the form

Xfc+i =  x*; +  hk\(b\{6)k\ +  62(0 )) +  ^2(^2(^)c2it +  &2(0 )fl2ifx&i) +  0(h?)

(3.86) 

we first
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We can now match the coefficients, thus finding the order conditions:

bi(0) + b2(0) = 0

d— = b2(9)c2
q2
— =  b2(6)a2i

Consequently, we can use c2 — a2i =  a  as a free parameter, so that

92
b2(9) = 2a

bl(9) = 9 -  b2(9) = 9

(3.88)

(3.89)

We have accordingly generated a family of two-stage second-order continuous 
explicit Runge-Kutta methods

h92 , h 9 \x  =  x fc +  h9ki -  —— k\ + ~— k2 
2a 2 a

(3.90)

whose Butcher tableaux are

0

a a
bi(9) b2(9)

a (3.91)
9 — °2/2a 92/2a

This shows how we can solve for the order condition to construct continuous 
Runge-Kutta methods. If we let a  =  1, the we have a continuous trapezoidal 
method. If we let a  — l/2, then we have a continuous midpoint method. Now, 
finding the higher-order terms to construct methods of higher order would 
require new notation. However, it appear to be a good place to end our 
discussion of CERKs.
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C onclusion

This thesis has delineated a generally applicable perspective on numerical 
methods for scientific computation called residual-based a posteriori backward 
error analysis, based on the concepts of condition, backward error, and resid
ual. The basic underpinning of this perspective, tha t a numerical method’s 
errors should be analyzable in the same terms as physical and modelling er
rors, is readily understandable across scientific fields, and it thereby provides a 
view of mathematical tractability readily interpretable in the broader context 
of mathematical modelling. As a result, we maintain tha t this perspective 
arrives at the desideratum of integrating the study of numerical methods as 
a part of a more general practice of mathematical modelling as is found in 
applied mathematics and engineering

Based on the pioneering work of Turing and Wilkinson, and on the many 
works produced in the last decades, we have described backward error analy
sis at a level of generality seldom reached in the literature. In particular, we 
have provided a new general definition of the concept of residual that shows 
explicitly what is common to the applications of this concepts to all numerical 
methods, whether it is about floating-point arithmetic, numerical linear alge
bra, function evaluation and root finding, numerical solutions of differential 
equations, or other topics. As we went along, we have maintained a high stan
dard of rigour regarding the distinction between the properties of problems 
and the properties of numerical methods. As a result, we obtain a better in
sight as to when aspects of numerical solutions are genuinely representative of 
the solution of a problem, and when it is induced by the choice of a particular 
method.
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A shortcoming of the thesis, due to limitation of space, is tha t we have not 
effectively shown how the general method applies to all numerical methods, 
despite claiming it a number of times. The forthcoming book by Corless and 
Fillion (201x), however, does just that. In this thesis, the residual-based a 
posteriori backward error analysis perspective is applied mainly to numeri
cal solution of differential equations, with some fragmentary applications to 
floating-point arithmetic. Chapter 2 has provided an introduction to the use 
of state-of-the-art codes without explaining the mechanics of the methods they 
implement. The idea was to allow the reader to be able to obtain numerical 
methods, and to examine properties of problems without paying attention to 
the particular details of the methods providing numerical results. As a matter 
of fact, measuring the error in a numerical solution of a differential equa
tion a posteriori by the residual precisely disregards what particular method 
has been used to generate it. Following this line of thought, we have pre
sented three different mathematical ways of characterizing the most important 
problem-specific property of initial-value problems, namely conditioning. We 
have shown how this allows us to understand the numerical solution of chaotic 
problems as being satisfactory in the backward sense. The second chapter 
has also introduced the problem-specific aspects of the numerical phenomenon 
known as stiffness in a way that show a duality with chaotic problems.

Our analysis of the properties of problems has been geared toward the use 
of the concept of residual across the board. This analysis, however, demands 
tha t one adopt the unusual perspective that numerical methods for the solu
tion of differential equations produce continuous, even continuously differen
tiable, solutions and not merely a discrete set of solution values. Accordingly, 
we introduced method-specific concepts of error analysis such as convergence, 
consistency, order of a method, local and global error in terms of residual con
trol. This habit of thought is possible nowadays because professional-quality 
solvers already provide access to accurate interpolants together with the dis
crete solution values. In order to concretely show that it is practically feasible 
to treat numerical methods as such, we have presented Taylor series methods 
and Runge-Kutta methods in a way tha t was, once again, based on residual
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control. We also discussed, en passant, how the success of implicit methods 
for stiff problems can be enlightened by examining the size of the residual of 
Taylor polynomials for the approximation of exponential growth.

The main advantage—for a large class of initial-value problems for ODEs— 
of thinking continuously is that numerical methods can be seen to deliver an 
exact solution, and in many cases precisely as good a solution as an analytic 
exact solution of the reference problem, when physical perturbations of the 
original problem are taken into account. In other words, thinking continu
ously about solutions allow us to use the perspective provide backward error 
analysis. Consequently, we believe tha t the general perspective we have de
veloped represents a notion of effective computation complementing in many 
respect the notion of effective computation developed by Turing that is used 
in metamathematics. Instead of being based of the notion of effective com
putability, it takes into account the modelling context to impose standards of 
mathematical tractability.

To conclude this thesis with good conscience, however, we have to add 
a dissonant note. We have devoted our effort to showing when we can use 
this type of backward error analysis fruitfully. Further work will be required 
in order to investigate when we can expect the perspective we promote to 
encounter serious problems. In this respect, it is important to bear in mind 
the words of Kahan tha t we cited before: A useful backward error-analysis 
is an explanation, not an excuse, for what may turn out to be an extremely 
incorrect result.
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A ppendix A

Floating-Point A rithm etic

James Gosling (1998), creator of Java, claimed tha t “95% of the folks out 
there are completely clueless about floating-point.” Nonetheless, one distinc
tive feature of computer-assisted mathematics is that, instead of making com
putations tha t operate on elements of continuous fields (e.g., the realtor the 
complex numbers), one operates on a discrete, finite set of digital objects. 
The real numbers, for instance, can be exactly represented by infinite strings 
of digits, and the operations on them can be seen as acting on those infinite 
strings. However, computation on a digital computer is not making such oper
ations, since only finite strings of digits are manipulated. Many nice number- 
theoretical properties—such as associativity of operations—are typically not 
satisfied in floating-point arithmetic. One sees, therefore, that it is a quite 
different type of mathematics; key concepts such as roundoff error, underflow, 
and overflow emerge when we switch to floating-point operations. As a result, 
floating-point arithmetic can be seen as an independent mathematical theory 
tha t explains how we can accurately represent and operate on real numbers 
with finite strings of digits. One of the main challenges is to guarantee that 
floating-point operations are correctly rendering results, where “correctly” is 
measured on the basis of standard arithmetic.

Many systems of digital arithmetic have been developed. This appendix 
will introduce you to the central concepts used to characterize a number sys
tem, and to the IEEE Standard 754, which is nowadays used by most com
puters. The reader interested in more details is invited to consult Goldberg
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(1991), Ercegovac and Lang (2004) and Overton (2001).

A .l  N um ber R epresentation

A digital number system associates digital representations with numbers. To 
take a simple example, we can associate the number ‘four’ with the decimal 
representation “4,” with the binary representation “100,” or with the roman 
numeral “IV.” Such digital representations are also called numerals. Thus, a 
digital number system is composed of a set of numbers N , a set of numerals 
W , and a representation mapping (f> : N  —► W . If the association is one- 
one, we can similarly write <t>~1 : W  —► N . In this case, we could write, 
e.g., 0 (four) =  IV and 4>~1(IV) =  four. As we see, 0 associates the number 
four—a uniquely identifiable element of a number structure (e.g., a ring or a 
field)—with its digital representation in roman numerals.

Integer and rational representation A non-negative integer x  € N0 is 
represented by a digit-vector

[ d n - \ i  d n —2> • • • i ^1) do] i

from which we obtain the more standard cp(x) =  dn_idn_2 . . .  did0 by concate
nating the elements of the digit-vector. The concatenated digit-vector is what 
we called a numeral. The number of digits n is called the precision. Each d, 
belongs to a set D, the set of digits available for the representation (e.g., {0 , 1 } 
in the binary case). If D  contains m  elements, it will then only be possible to 
form |W | =  m n distinct numerals. Since m  and n are finite, |W | is also finite. 
This is much less than the integers or rationals tha t we want to represent! 
In fact, each numeral will be used to represent many numbers.

The cases we are interested with here are the so-called weighted or posi
tional representations of fixed radix. If we let r be the radix, we associate a
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number x  e  N  with a numeral w  by a mapping (f) such that

The most familiar system—the decimal system—has r  =  10 and D = { 0 ,1 ,2 ,. . . ,  9}.
For instance, in the decimal representation, we have

0(nine hundred eighty-four) =  9 • 102 +  8 • 101 +  4 • 10° =  984.

Note that, for computer implementation, r = 2 and D = {0,1} is usually 
favored.

From the definitions above, it follows that the range of non-negative inte
gers tha t can be exactly represented with a precision-n and radix-r number 
system is [0 , r n — 1]:

To represent both positive and negative integers—ie ., to represent signed 
integers—we need a way to determine the sign of the integer represented by a 
given numeral. There are two main types of representations:

1 . use a bit for the sign and the rest for the magnitude;

2 . use all the bits for the magnitude and add a bias;

In the former case, we reserve a digit in the word to determine the sign. 0 
usually represents *+,’ while 1 represents .’ Then, for an n-bit word, the 
range is

In the latter case, all the bits are determining the magnitude; the value rep

i=o t=0

[—r n_1 +  1 , r n_1 -  1]. (A.2)

resented is then the value it would represent under the standard positional

146



representation, minus a certain bias B. A standard bias for an n-bit radix- 
r representation is B  — rn~l — l .1 Then, for an n-bit word, the range is 
[—r " -1  +  1 , r n — 1 — (rn_1 — 1)], i.e.,

[—rn_1 +  1, rn-1(r — 1)]. (A.3)

In the binary case r = 2, it just results in [—r n_1 +  1, r n_1]. In comparison 
to the sign-and-magnitude representation, we see tha t it provides us with one 
additional value.

Note tha t rational numbers can be written in the form

dn-\dn-z ... • d - i d - 2  ■ • • d-f-zd-f-\df.

Hence, we see tha t it is simply a pair of words with respective precisions n 
and / .  The first word is the integer part, and the second is the fractional part. 
Provided tha t the radix is the same for both words,

n — 1

x  =  di • rx. (A.4)
»=-/

It is usually assumed that the integer part is a signed integer, whereas the 
fractional part is a positive integer.

Floating-point representation We now introduce the notion of floating
point number. A floating-point number is any real number tha t has an exact 
floating-point representation. Formally, if we let F be the set of floating-point 
numbers, W  the set of floating-point words (to be defined), and (p : F —> W  
some floating-point representation mapping (to be defined), we have

F =  {x  G M | (p(x) =  w for some w G W } . (A.5)

xWe will always use this bias, unless otherwise specified.
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discrete set discrete set
—oo max |x|

x€F_
♦____ I__ __ L

min Ixl 0 min |x| max |x|
xGF_ ' ' x€F+ ' x€F+

Figure A .l: Floating-point number line. The intervals (—oo, m ax^F , |x|) and 
(maxx6F+ |a?|), oo+) are called, respectively, negative and positive overflow. 
Similarly, the intervals (minxeF_ \x\,0) and (0,minxGF+ |x|) are called negative 
and positive underflow.

Since there will be, once again, only a finite number of exactly representable 
numbers, F is finite. As a result, F has unique minimal and maximal elements, 
both for the positive and negative numbers. Consequently, we find tha t the 
floating-point number “line” can be represented as in figure A .l.

An n-bit floating-point representation has two components:

1 . An m-bit word (0 < m  < n) called mantissa or significant2 representing 
a signed rational number M  with sign S m (using a sign-and-ittagnitude 
representation);

2. An n —m-bit word called exponent, representing a signed integer E  (using 
a biased representation).

The choice of type of representations for the signed integers M  and E  follows 
the IEEE standard. We will assume that the significand and the exponent 
have the same radix r. The corresponding floating-point number in a base-6  

system is then

M  x bE. (A.6 )

The IEEE standard requires tha t M  be normalized, i.e., of the form ± 1  .F  
where F  is the fractional part. It is then not required to use a bit for the integer 
part (the “1” is said to be a hidden bit), and the m  bits for the significand

2ra is often used for the length of the unsigned significand. It is of course just a notational 
convention; one must simply keep track of all the +1 and —1 in the exponents to have 
agreeing results.
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B it n u m b er 1 2 32

Figure A.2: 32-bit word for a floating-point number. The biased exponent 
occupies 8 bits and the significand occupies 24 bits (one for the sign, 23 for 
the fractional part or the normalized significand).

-----exp.
s ig n i f ic a n a ' '^ '- ^ ^ -11 -1 0 -01 ± 0 0 01 10 11

1 .000 0.125 0.25 0.5 1 2 4 8
1.001 0.140625 0.28125 0.5625 1.125 2.25 4.5 9
1 .010 0.15625 0.3125 0.625 1.25 2.5 5 10
1.011 0.171875 0.34375 0.6875 1.375 2.75 5.5 11
1 .100 0.1875 0.375 0.75 1.5 3 6 12
1.101 0.203125 0.40625 0.8125 1.625 3.25 6.5 13
1 .110 0.21875 0.4375 0.875 1.75 3.5 7 14
1.111 0.234375 0.46875 0.9325 1.875 3.75 7.5 15

Figure A.3: F (7 ,4 ,2,2): represented values when n =  7, m  =  4 ,r^= -2 ,6  =  
2. The words for the significand and the exponent are written in binary. 
For convenience, the values are in decimal. Only the positive values of the 
significand have been listed.

are used for the sign and the fractional p a rt .3 In the rest of this appendix, we 
will deal with such normalized numbers. In figure A.2, one can see the bits 
partition for a representation of a floating-point number with 32 bits.

V alues re p re se n te d  As we have seen, the set of (normalized) floating-point 
representations W  is determined by three numbers n, m, r. The set of floating 
point numbers F is, in turn, determined by the set of representations W  and 
by a basis b. We can then write F(n, m ,r, 6). For a given number system 
F(n, m, r, 6), one can list all the values tha t can be represented in a finite 
table, as in table A.3. The values computed in table A.3 are represented on

3We should note that restricting representation to normalized M  makes it impossible to 
represent some very small numbers. The IEEE standard also defines unnormalized repre
sentations (also called denormals or subnormals) to deal with those numbers. However, we 
will ignore this refinement in this appendix.
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Figure A.4: The F (7 ,4,2,2) positive number “line” .

the “F (7 ,4 ,2 ,2) number line” in figure A.4. One sees at a glance that the 
numbers are not uniformly distributed. In fact, they are much more densely 
distributed close to 0 . As is easy to see, the distribution depends on n ,m ,6  

and r.

R ange and m achine epsilon The main advantage of floating-point num
bers is their range, which is much larger than the range of fixed-point num
bers. As we have seen, the largest number tha t can be represented by an n-bit 
radix-r word is rn — 1, resulting in the range [0, r n — 1]. However, the largest 
floating-point number in the set F (n ,m ,r ,6) is Mmax • bEm*x, where Mmax and 
i?max are, respectively, the largest significand and the largest exponent. In the 
normalized case, since Mmax =  l .F max, we obtain

r m - 1 _  j

M n a x  =  1-Fm ax =  1 H ^rn-l

£max =  r n-m-1(r -  1)

F =  ( i  +  !r i r i )  ■ (A.7)

As an example, the largest 32-bit radix-2 fixed-point word is 2 32 — 1 «  4 • 109. 
If we make it signed, so that it includes negative numbers, the largest one 
will be 231 — 1 «  2 • 109. However, the largest base-2 floating-point number 
represented by 32-bit words partitioned as in figure A.2 will have significand 
+ 1  followed by twenty-three ‘1’ for the fractional part and biased exponent 
with eight T ’, i.e .,
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We see tha t the range is much larger. This fact is very important in applica
tions, since numbers can become very large, much larger than 109. W ithout 
extended range, computations would produce lots of overflows and underflows. 
This is why floating-points are preferred for scientific computing, despite the 
sacrifice in precision involved.

An important notion for the analysis of floating-point error is the unit in 
the last place, or ulp, which is the difference of two consecutive values of the 
significand. Since the values of the significand are uniformly distributed, ulp 
is a constant. For given values of m and r, we find that

ulp —
rm 1 — (x +  1)

yTYl— 1
)

(A.8 )

Assuming b = r, it follows immediately tha t the difference between two 
floating-point numbers x \ and x2 with the same exponent E  will be given

by

Ax =  xi — x 2 = (Mi -  M 2)rE = r ~m+1r E = r £"m+1. (A.9)

For normalized floating-point numbers between 1 and 2, where E  — 0, we 
simply obtain ulp.

The spacing of floating-point numbers when E  — 0 is called the machine 
epsilon, which is denoted 'e m ' Each number system has its value of £m , 
and they generally differ.

In the case of F (7 ,4,2,2) discussed above, Em  = 2 4+1 =  0.125.

An important related value is the maximum relative error due to the 
floating-point representation, called the roundoff level, which is just Em / 2 . 
We will denote this quantity by '% / 2 ’ or ‘/iyv/’ interchangeably. Since 
roundoff is the main source of arithmetic error, the machine epsilon will 
be used throughout this book as a unit of error.
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T he IEEE Standard 754 Some additional constraints are given by dif
ferent floating-point representations. The current standard for floating-point 
arithmetic has been developed by the IEEE (Institute of Electrical and Elec
tronics Engineers). The single precision format represents numbers with 32 
bits, while the double precision format represents them with 64 bits. M a t l a b  

uses the double-precision format by default, and so we will present this format 
in this section.

The number system associate with the IEEE standard 754 double precision 
format is basically just F(64,53,2,2) with a few tweaks. The radix and the 
basis are both 2, which is the standard practice for binary arithmetic. The 64 
bits are partitioned as follows:

• Significand: m  =  53;

•  Exponent: n — m  =  11.

As mentioned before, the significand is a normalized signed integer with a 
sign-and-magnitude representation and the exponent is a signed integer with 
a biased representation. Thanks to the hidden bit, this format has precision 
p — 53. The range of the values represented by the significand is

1, 1 +
rpTTl 1 _  J 
rpm—1 1 +

2 52 _  j -  

252 [1,2).

The bias of the exponent is the standard bias:

(A.10)

B  = r n_m_1 -  1 =  210 -  1 =  1023 (A .ll)

Consequently, the range of the values represented by the exponent is

+  l, r n -  1] =  [—210 +  1, 210] =  [-1023, 1024]. (A.12)

However, —1023 and 1024 are reserved to denoted negative and positive infin
ity, i.e., - I n f  and In f in M a t l a b . As a result, the range of the exponent is 
[-1022, 1023].
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Consequently, the range of the positive double-precision floating-point 
numbers is

[Mmin • 2£min, Mmax • 2£max] =  2 1022, ^1 +  2 252 *) •21023

[2.2 -IO"308, 1.8 - IO308] (A.13)

M a t l a b  calls the limit points of this range realmin and realmax. Finally, 
the machine epsilon—M a t l a b  calls this value eps—is

e M = r - m+1 =  2“52 «  2.2 • 10” 16. (A.14)

Finally, since zero has no direct representation in this system (due to nor
malization), the word with M  = 1.0 and E  = 0 is used to represent 7tT

A .2 O perations and Roundoff

The IEEE standard also defines the result of floating-point arithmetic oper
ations (called flops). It is easy to understand the importance of having such 
standards! In the last section, the reader might have noticed tha t floating
point representation works just like the scientific notation of real numbers—in 
which numbers are written in the form a -106—to the exception tha t we mostly 
use base 2 and tha t both a and b have length restrictions. The same analogy 
will hold true for the four basic operations.

The four basic operations on the real numbers are functions * : R2 —> R, 
with

* € {+i x ? /}

In floating-point arithmetic, we use similar operations, but using floating
point numbers. The four basic operations on floating-point numbers are thus
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functions © : F2 -» F, with

These operations have many different implementations. Given our expectation 
tha t floating-point operations return us results tha t are very close to what the 
real operations would return, the important question is: how do © ,© ,0 ,0  
relate to their counterparts + , —, x , /  in the real numbers? The best-case sce
nario would be the following: given a rounding procedure converting a real 
number into a floating-point number, the floating-point operations always re
turn the floating-point number which is closest to the real value of the real 
operation. The good news is, if we are only interested with the impact of 
floating-point arithmetic in applications, there is no need to examine the de
tailed implementations of the floating-point operations. The IEEE standard 
guarantees that, for the four basic operations ©, ©, 0 , 0 ,  the best-case scenario 
obtains.

Let us formulate this more rigorously. A rounding operation □  : R -» F 
is a procedure converting real numbers into floating-point numbers satisfying 
the following properties:

1. O r =  x  for all i 6 F ;

2. x  <  y => O r  <  Dy for all x, y € R;

3. □ (—x) =  —Q r for all i e R .

There are many rounding operations satisfying this definition. In what fol
lows, we will use the rounding to the nearest floating-point number (with ties 
towards +oo), denoted ‘Q -’ If we let / i ,  f ri be two consecutive floating-point

®  € {©,©,«>,0}
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numbers and x  G R such tha t f \  < x  < f 2, then Q  *s defined by4

Q x  =
fi  if | x - / i |  < | x - / 2|
h  if \ x - f i \  > \ x - f 2\

(A.15)

Then the IEEE standard guarantees tha t the following equations holds:

x  ©  y = O i x  +  y) (A.16)

x Q y  =  0 ( x  -  y ) (A.17)

x  ®  y = 0 { x  x  y) (A.18)

x @ y  = 0  (x/y) (A.19)

ie .,  for * : K2 —> R and Q  : ® ► F, we obtain © : R2 —> F such that

M2 — *— * R .o
F

These equations jointly mean tha t the result of a floating-point operation 
is the correctly rounded result of a real operation.

However, if things are so nice, why do we need error analysis? We need error 
analysis precisely because it is not always so nice for sequences of operations. 
For example,

((((^i © x 2) © x 3) © a?4) © £ 5) =  O0*i + x 2 - x 3 +  x 4 -  x$) (A.20)

does not hold generally. So, the big question is: when are compound operations 
reliable? When no result of guaranteed validity exists, the error analysis must

4To consider the cases where x  does not lie within the range of the floating-point number 
system, we need to specify that if | O  x \ >  m ax{|2/| : y € ¥ }  or 0 <  | O x l < min{ |t/| : 0 ^  
y €  F}, the rounding procedure returns, respectively, overflow and underflow.
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be left to the hands of the user. This leads us to chapter 1.
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A ppendix B

A sym ptotic Series in Scientific 
C om putation

Niels Henrik Abel (1802-1829) wrote

The divergent series are the invention of the devil, and it is a shàïne 
to base on them any demonstration whatsoever. By using them, 
one may draw any conclusion he pleases and tha t is why these 
series have produced so many fallacies and paradoxes [...] . (cited 
in Hoffman, 1998, p. 218)

Nowadays, the attitude is different, and closer to what Heaviside meant when 
he said

The series is divergent; therefore we may be able to do something 
with it. (cited in Hardy, 1949)

In fact, asymptotic series will be used a lot in this book, and we will often 
not care too much whether they converge. This is because, in many contexts, 
the first few terms contain all the numerical information one needs; there’s no 
need to ponder on what happens in the tail end of the series.
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The key to understanding asymptotic series is to realize that there are two 
limits to choose from, with a series. Suppose we have for example

m  =  E  (* -  “)* +  (B .l)
k=0

as the usual truncated Taylor series for f ( z ) near z = a. We can take the 
first limit, N  —> oo, to get the familiar mathematical object of the infinite 
series. This only makes sense if the limit exists. [There is some freedom to 
alter the definition of limit that we use in this case; we do not pursue this 
here.] If tha t limit exists, we say the series is convergent. However, there 
is another limit to be considered here, which often leads to very useful 
results. Namely, do not let N  —> oo, but rather keep it fixed (perhaps 
even at N  =  1 or N  =  2). Instead, consider the limit as z a. Even
if the series is divergent in the first sense, this second limit often gives 
enormously useful information, typically because R n ( z ) (as it is written 
above) is well-behaved near z = a, and so the term (z — a)N+1 ensures 
tha t the remainder term vanishes more quickly than do the terms that are 
kept. The rest of this section explores tha t simple idea.

We often want to consider the behavior of a function y{x) in the presence 
of some perturbations. Then, instead of studying the original function y(x),  
we study the asymptotic behavior of a 2-parameter function y(x,e),  where e 
is considered “small” .

An asymptotic expansion for the function y(x,e)  has the form

oo
y(x,e)  =  yo(x)<h(e) + yi(x)fa(e) + y2(x)fa(e)  +  . . .  =  yk(x ) M e ) ,  (B-2)

k = 0
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where </>fc(e) are referred to as gauge functions, z.e., they are a sequence of 
functions {<fik(£)} such that, for all /c,

lim = o.
e- vo

(B.3)

The type of gauge function we will use the most often are the power of the 
perturbation e, i.e., =  £k, in which case we simply have a formal power
series:

y (x , e ) = y0(x) + yi(x)e + y2{x)e2 + . . .  = ^ y fc(x)efc. (B.4)
k=0

We then have to solve for the yk(oc), k =  0 ,1 , . . . ,  N . To find the first coefficient 
yo(x), divide equation (B.2) by c/)o(e), and then take the limit as e —> 0:

V(x,e)
M £)

1
=  y ^ x ) +  1 7 7 \ E  Vk(x ) M £)

M £) t l
l i m ^ ^  = i/°(x).e-> o 0 0 ( e )

(B.5)

(B.6)

All the higher-order terms vanish since <j>k{e) is a gauge function. This gives 
us yo(x). Now, subtract y o (x ) M£) fr°m both sides in equation (B.2); we then 
divide both sides by <pi{£) and take the limit as e -» 0:

y{x,e) -  y0(x)M£) / s . 1 v ' , r \
— m — =Mx)+m ^ y t { x ) M e )

(B.7)
k=2

SO

lim,(x,£)-i,.(X)fe(e)_
01 (e)

(B.8)

As we see, we will in general have

yk(x) =  lira e) -  yt(x)M£)J ■ (B-9)
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Convergence of a series is all about the tail, which requires an infinite 
amount of work. W hat we want instead is gauge functions tha t go to zero 
very fast, i.e., tha t the speed at which they go to zero is asymptotically faster 
from one term to the next.

which gives a perfectly definite meaning to each of the entries in the asymptotic 
series. Notice that the series diverges for any x  ^  0, i f  we take the limit as

perfectly accurately for small enough x, say x  =  0.03: summing the six terms 
gives 0.9716545240 whereas the exact value begins 0.9716549596, which differs 
by about 5 • 10“7.

That is, we have used a divergent series to give us a good approximation to 
the correct answer. Heaviside was right, and this often happens. The reason 
this works is that it is the limit as x —> 0 tha t is dominating, here: if we 
had wanted an accurate answer for x  = 10, we would have been out of luck. 
Asymptotic series are extremely useful in numerical analysis. We will often 
be concerned with the asymptotic properties of the error as the average mesh 
width (call it h) goes to zero, for example, and methods will be designed to 
be accurate in tha t limit.

E x am p le  2. Consider the (convergent) integral and the (divergent) asymptotic 
series

(B.10)

One can discover that series by replacing 1/(1 +  xt) (exactly) with the finite 
sum  1 — x t + x 2t2 H-----(xt)n +  (—xi)n+1/ ( l  +  xt),  giving

(B .ll)

n —> oo. Nonetheless, taking (say) n  =  5 allows us to evaluate the integral
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