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Abstract: Pannexin 3 (Panx3) is a mechanosensitive, channel-forming glycoprotein implicated in the
progression of post-traumatic osteoarthritis. Despite evidence for Panx3 expression in the interver-
tebral disc (IVD), its function in this cartilaginous joint structure remained unknown. Using Panx3
knockout mice, this study investigated the role of Panx3 in age-associated IVD degeneration and
degeneration induced by annulus fibrosus (AF) needle puncture. Loss of Panx3 did not significantly
impact the progression of age-associated histopathological IVD degeneration; however, loss of Panx3
was associated with decreased gene expression of Acan, Col1a1, Mmp13 and Runx2 and altered
localization of COLX in the IVD at 19 months-of-age. Following IVD injury in the caudal spine,
histological analysis of wild-type mice revealed clusters of hypertrophic cells in the AF associated
with increased pericellular proteoglycan accumulation, disruptions in lamellar organization and
increased lamellar thickness. In Panx3 knockout mice, hypertrophic AF cells were rarely detected
and AF structure was largely preserved post-injury. Interestingly, uninjured IVDs adjacent to the
site of injury more frequently showed evidence of early nucleus pulposus degeneration in Panx3
knockout mice but remained healthy in wild-type mice. These findings suggest a role for Panx3 in
mediating the adaptive cellular responses to altered mechanical stress in the IVD, which may buffer
aberrant loads transferred to adjacent motion segments.

Keywords: pannexin 3; intervertebral disc degeneration; mechanical stress; needle puncture injury;
transgenic mice

1. Introduction

As a leading cause of disability, back pain poses a significant socioeconomic burden
that is only predicted to rise as the population ages [1–3]. While the causes of back pain are
complex, several large-scale, cross-sectional studies have demonstrated a strong association
between back pain and degeneration of the intervertebral discs (IVDs) [4–6]. Despite efforts
to improve the management of back pain associated with IVD degeneration, no disease-
modifying treatments currently exist.

The IVD is a fibrocartilaginous tissue that forms the joints of the vertebral column.
Located between adjacent vertebrae, it functions to absorb axial loads and provide mobility
to the spine. The IVD is a heterogeneous structure made up of three tissues: the central
gelatinous nucleus pulposus (NP) contained by the concentric lamellar structure of the
annulus fibrosus (AF), interposed between the cartilaginous endplates (CEPs) that anchor
the IVDs to adjacent vertebrae. IVD function relies on the synergistic roles of its composite
tissues. The hydrostatic properties of the NP, attributed to its high proteoglycan content,
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enable it to resist compressive loads [7]. The radial forces exerted by the NP are balanced
by tensile loads generated across the collagen bundles of the AF lamellar network [7,8].
In addition to its structural role, the CEP enables nutrient and waste exchange between
vertebral bodies and the largely avascular IVD [9].

Numerous risk factors, including genetics and age, can predispose the IVD to degen-
eration [7,10,11]. IVD degeneration propagates through a cascade of maladaptive cellular
responses to biochemical or biomechanical changes in the microenvironment that lead to
progressive structural deterioration and loss of tissue function [7,12]. Increased matrix
degradation coupled with abnormal matrix synthesis in the NP contribute to reduced
tissue hydration and impair the ability of the IVD to resist axial load [13,14]. Consequently,
loads are transferred to the surrounding AF thereby altering its mechanical environment
and contributing to gradual loss of AF tissue integrity, evidenced morphologically as
lamellar disorganization and widened inter-lamellar spaces [7,8,15,16]. While it is clear
that the mechanical environment is an important determinant of IVD health and disease,
the molecular mechanisms that mediate responses of the IVD to mechanical stress are not
fully understood.

Pannexin 3 (Panx3), one of three channel-forming proteins of the pannexin family,
is abundantly expressed in skeletal tissues where it is implicated in processes of tissue
development and disease [17–20]. Functionally, Panx3 channels are involved in the release
of ATP at the cell surface and calcium from the endoplasmic reticulum, respectively, with
channel activity detected following mechanical stimulation or membrane depolarization
in vitro [17,18,21]. In cartilage, Panx3 is expressed in the prehypertrophic zone of the
growth plate where it plays a role in reducing chondrocyte proliferation and promoting
hypertrophic differentiation [17,19,20,22]. Previous work by our group investigating the
role of Panx3 in post-traumatic osteoarthritis (OA) demonstrated that both cartilage-specific
and whole-body Panx3 knockout (Panx3-/-) mice were resistant to developing OA following
destabilization of the medial meniscus [19]. Based on the these findings, we speculated
that Panx3 could promote tissue breakdown in cartilage following joint destabilization by
mediating hypertrophic differentiation of chondrocytes, a well-recognized driver of OA,
highlighting a catabolic role for Panx3 in mechanically stressed articular cartilage [19,23].

Given the role of Panx3 in regulating physiological and pathological processes in
cartilaginous tissues, we investigated Panx3 expression in the IVD. Microarray analysis sug-
gests a tissue-specific expression pattern of Panx3 in the IVD, with approximately 30-fold
greater expression detected in the AF relative to the NP in 2.5-month-old mice [24]. Despite
evidence of Panx3 expression in the IVD, its function in this tissue remains unknown. Using
the established global Panx3-/- mouse model (germline gene deletion; [19]), the current
study sought to investigate the hypothesis that Panx3 regulates the cellular responses
to mechanical stress in the IVD. We investigate the role of Panx3 in the IVD using both
age-associated and injury-induced models of IVD degeneration.

2. Results
2.1. Loss of Panx3 Does Not Alter Age-Associated IVD Degeneration

We first sought to characterize Panx3 expression in the IVD. Quantitative polymerase
chain reaction (qPCR) analysis detected Panx3 transcript levels in wild-type (WT) IVDs at
all time points assessed, with significantly greater expression at 2 months-of-age compared
to 6, 12, 19 and 24 months-of-age (Figure 1A). No significant differences in IVD Panx3
expression were detected between the 6, 12, 19 or 24-month time points. Since microarray
characterization suggested Panx3 is preferentially expressed in the AF [24], we assessed
Panx3 protein levels in intact IVD and AF tissues. Immunoblotting revealed robust Panx3
protein expression in both intact IVD and isolated AF samples, with no evidence of Panx3
protein in Panx3-/- mice (Figure 1B).
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43kD). Images are representative of three biological replicates (8 IVDs from the lumbar and tho-

racic spine pooled per mouse). (C) Representative mid-sagittal sections of lumbar IVDs stained 
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Figure 1. Loss of Panx3 does not alter age-associated intervertebral disc (IVD) degeneration.
(A) Analysis of Panx3 gene expression in thoracic IVDs from wild-type (WT) mice at 2, 6, 12, 19 or
24 months-of-age. Transcript levels were determined relative to a six-point standard curve and data
are presented as mean ± 95% CI. Values corresponding to each experimental animal are indicated by
individual data points on bar graph. Bars labelled with the same letter are not significantly different
based on p < 0.05; one-way ANOVA followed by Tukey’s post-hoc test (n = 6–8 mice per group,
6–8 IVDs pooled per mouse). (B) Western blot analysis of Panx3 protein in whole IVD or annulus fi-
brosus (AF) tissue from 2-month-old WT and Panx3-/- mice. Panx3 overexpressing human embryonic
kidney 293T cells (HEK + Panx3) served as positive control (expected size of Panx3 is 43kD). Images
are representative of three biological replicates (8 IVDs from the lumbar and thoracic spine pooled
per mouse). (C) Representative mid-sagittal sections of lumbar IVDs stained with safranin-O/fast
green from 6, 12, 19 or 24-month-old WT and Panx3-/- mice. Black arrows indicate disruption in
lamellar organization at the NP-AF boundary, white arrows indicate loss of defined NP-AF bound-
ary, arrowheads indicate increased glycosaminoglycan (GAG) staining in the inter-lamellar matrix.
Images are representative of 6–10 mice per group, 4–6 IVDs per mouse. (D) Histopathological scores
comparing WT and Panx3-/- IVD tissues. Scores were assigned to the NP, AF and NP/AF boundary
and summed for a total IVD score of 10. Higher scores represent a greater degree of degeneration.
Data are presented as mean ± 95% CI (n = 6–10 mice per group, individual data points on bar graphs
represent the average score of 4–6 IVDs per mouse).
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To investigate the role of Panx3 in age-associated IVD degeneration, WT and Panx3-/-

mice were aged to 6, 12, 19 or 24 months and lumbar spines were harvested for histopatho-
logical analysis. Mid-sagittal sections stained with safranin-O/fast green revealed no
overt differences in the histological appearance of lumbar IVDs between WT and Panx3-/-

mice at any of the time points assessed (Figure 1C). At 6 and 12 months-of-age, IVDs
from both WT and Panx3-/- mice appeared healthy with no histopathological features of
degeneration in either the NP or AF (Figure 1C,D). IVD tissues from WT and Panx3-/- mice
at 19 months-of-age showed early signs of IVD degeneration, including disruptions in the
lamellar organization at the NP-AF boundary and glycosaminoglycan (GAG) accumulation
in the inter-lamellar matrix of the inner AF (Figure 1C). At 24 months-of-age, IVD tissues
from WT and Panx3-/- mice showed features of progressive degeneration including a loss
of cellularity in the NP, loss of a defined NP-AF border, increased inter-lamellar space
throughout the AF and lamellar reversal in the inner AF (Figure 1C). Histopathological
scoring of degenerative changes showed no significant differences between IVD tissues of
WT and Panx3-/- mice at any of the time points examined (Figure 1D).

To assess possible compensation between pannexin proteins in Panx3-/- mice, Panx1
and full length Panx2 gene expression were analyzed in IVDs from WT and Panx3-/- mice.
No significant difference in Panx1 gene expression was detected between WT and Panx3-/-

IVDs at any of the time points examined (Supplementary Figure S1). Panx2 expression was
assessed but was not reliably detected in IVDs of WT or Panx3-/- mice.

2.2. Loss of Panx3 Is Associated with Altered Gene Expression in the IVD

To assess early changes in IVD health and degeneration, we quantified the expression
of markers of IVD anabolism and catabolism. qPCR analysis of candidate genes demon-
strated no significant differences in transcript levels of the extracellular matrix (ECM) genes
Acan, Vcan, Col1a1 or Col2a1 between IVDs from WT and Panx3-/- mice at 6, 12 or 24 months-
of-age (Figure 2). At 19 months-of-age, Acan and Col1a1 expression were significantly
decreased in IVDs from Panx3-/- mice relative to WT, while no significant differences in
Vcan or Col2a1 expression were detected between WT and Panx3-/- mice (Figure 2).

Next we investigated the expression of aggrecanases that contribute to ECM break-
down in IVD degeneration [25,26]. At 6 months-of-age, IVDs from Panx3-/- mice showed
significantly reduced Adamts5 expression compared to WT mice, while no difference in
Adamts4 expression was detected (Figure 2). No significant differences were detected in
Adamts4 or Adamts5 expression between WT and Panx3-/- mice at 12, 19 or 24 months-of-age
(Figure 2).

Given the role of Panx3 in promoting hypertrophic differentiation in chondrocytes [17],
we assessed the expression of markers of chondrocyte hypertrophy in the IVD. At 6, 12
and 24 months-of-age, there were no significant differences in expression of Mmp13, Runx2
or Col10a1 in IVD tissues between age-matched WT and Panx3-/- mice (Figure 3). At 19
months-of-age, there was a significant decrease in the expression of Mmp13 and Runx2 in
IVD tissues from Panx3-/- mice relative to age-matched WT but no differences in Col10a1
expression (Figure 3).
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Figure 2. Effect of Panx3 deletion on expression of extracellular matrix (ECM) and aggrecanase
genes in the IVD. Analysis of Acan, Vcan, Col1a1, Col2a1, Adamts4 and Adamts5 gene expression in
thoracic IVDs from 6, 12, 19 or 24-month-old WT and Panx3-/- mice. Gene expression was determined
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experimental animal are indicated by individual data points on bar graphs.
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Figure 3. Effects of Panx3 deletion on expression of hypertrophic chondrocyte genes in the IVD.
qPCR analysis of Mmp13, Runx2 and Col10a1 gene expression in thoracic IVDs isolated from 6, 12, 19
or 24-month-old WT and Panx3-/- mice. Gene expression was determined by relative quantification
with values normalized to that of the Rps29 housekeeper and expressed relative to age-matched WT
controls. Data are presented as mean ± 95% CI (* indicates p < 0.05, Welch’s t-test; n = 4–8 mice per
group, 6–8 IVDs pooled per mouse). Values corresponding to each experimental animal are indicated
by individual data points on bar graphs.
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2.3. Loss of Panx3 Alters the Localization of COLX in the IVD

To localize expression of hypertrophic markers within the IVD, we conducted immuno-
histochemistry in lumbar IVDs from WT and Panx3-/- mice at 19 months-of-age. Neither
the abundance nor localization of MMP13 or RUNX2 in IVD tissues differed between WT
and Panx3-/- mice. In addition to chondrocytes within the CEP and vertebral growth plates,
MMP13 was primarily detected in the outer AF while RUNX2 was detected throughout the
AF, with the highest density of staining localized to the outer AF (Figure 4A). In contrast,
COLX staining was more abundant throughout the AF of WT mice compared to Panx3-/-

mice, where staining appeared limited to the outer AF (Figure 4A). Additionally, COLX
staining was more consistently detected across the AF-CEP boundary in WT compared to
Panx3-/- mice where it was limited to the AF-CEP boundary in the outer AF (Figure 4A).
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Figure 4. Localization of hypertrophic chondrocyte markers in Panx3-/- IVDs. (A) Representative
mid-sagittal sections of lumbar IVDs from 19-month-old WT and Panx3-/- mice immunostained for
either MMP13, RUNX2 or COLX (indicated by brown stain). Sections were counterstained with
methyl green. Black boxes highlight the CEP-AF interface (n = 5 mice per group, 4–6 IVDs per
mouse). (B) Serial sections of a representative WT lumbar IVD at 19 months-of-age stained with
either safranin-O/fast green (red stain indicative of proteoglycan content) or anti- MMP13, RUNX2 or
COLX antibody (indicated by brown stain) counterstained with methyl green. Arrowheads indicate
enlarged AF cells.

In keeping with previous reports [27,28], we noted the presence of enlarged hyper-
trophic cells in the AF at 19 and 24 months-of-age, coincident with the accumulation of
degenerative changes. To determine if these cells phenotypically resemble hypertrophic
chondrocyte, we assessed the localization of MMP13, RUNX2 and COLX. While enlarged
AF cells were detected in both WT and Panx3-/- mice at 19 months-of-age, these hyper-
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trophic cells did not consistently show expression of markers of chondrocyte hypertrophy
(Figure 4B), suggesting a phenotype distinct from that of hypertrophic chondrocytes.

2.4. Loss of Panx3 Is Associated with Maintenance of AF Tissue Integrity Following IVD Injury

Using a percutaneous IVD puncture model in the caudal spine (Figure 5A), we in-
vestigated the role of Panx3 in injury-induced IVD degeneration to assess its role in the
context of altered disc biomechanics. In this model, acute injury is induced by a needle
inserted through the AF into the central NP causing NP depressurization, mechanical
instability and altered load distribution within the injured and adjacent IVDs [29,30]. Initial
validation of this procedure confirmed the characteristic morphological changes in the
IVD induced by AF injury, including loss of NP tissue evident immediately following
puncture and fibrous NP repair tissue evident one week post-injury (Supplementary Figure
S2E). Six weeks following injury, expected histopathological changes were detected in
both WT and Panx3-/- mice, including loss of NP cell density and increased NP matrix
accumulation compared to uninjured control IVDs (Figure 5B). While IVDs from both WT
and Panx3-/- mice showed evidence of AF disruption associated with needle puncture, AF
tissue architecture appeared better preserved in Panx3-/- IVDs compared to WT (Figure 5B).
Specifically, hypertrophic cells were detected throughout the AF of WT mice following
puncture but rarely detected in IVDs from Panx3-/- mice (Figure 5D). These enlarged AF
cells were often found in clusters, appeared to contribute to widened inter-lamellar septa
and were often associated with increased pericellular inter-lamellar GAG staining. Changes
in ECM organization following puncture were assessed using Masson’s Trichrome staining
(Figure 5C). In WT mice, the AF displayed disruptions in lamellar organization marked
by areas of lamellar reversal, regions of undefined lamellar structure and loss of a defined
NP-AF boundary. In contrast, the AF lamellar structure was generally preserved in Panx3-/-

mice (Figure 5C). To quantify alterations in AF lamellar structure, we measured lamellar
thickness (inclusive of both the lamellar and inter-lamellar widths), variables shown to
increase with IVD age and degeneration [16,31,32], on the side of AF injury in WT and
Panx3-/- mice. Following injury, a significant increase in the average lamellar thickness was
detected in the AF of WT mice relative to Panx3-/- mice (Figure 5E).

2.5. Loss of Panx3 Accelerates NP Degeneration in IVDs Adjacent to Site of Puncture

Although IVD injury was limited to caudal IVDs 7/8 and 8/9 in our model, we noted
changes in histopathological features of the adjacent uninjured caudal IVD 9/10 in Panx3-/-

mice. In WT mice, uninjured IVDs adjacent to the site of injury remained healthy 6 weeks
post-injury (Figure 6). In contrast, in Panx3-/- mice, IVDs directly distal to the site of injury
showed signs of accelerated NP degeneration, including increased matrix density and
reduced cellularity on the side of injury (Figure 6); changes observed in 3/6 Panx3-/- mice
and 0/6 WT mice.
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Figure 5. Panx3-/- mice maintain AF tissue architecture following NP depressurization of caudal IVDs. (A) Representative
X-ray images of WT and Panx3-/- caudal IVDs undergoing needle puncture. (B,C) Representative mid-sagittal sections
of caudal IVDs 7/8 and 8/9 from WT and Panx3-/- mice harvested 6-weeks following needle puncture stained with (B)
safranin-O/fast green and (C) Masson’s Trichrome. Adjacent, uninjured caudal IVD 6/7 served as the control. Images
representative of n = 6 mice per group, 2 IVDs per mouse. Arrowheads indicate enlarged AF cells detected in WT mice
following injury, arrows mark the needle puncture track. (D) Magnified view of AF cells in WT and Panx3-/- caudal
IVDs 6-weeks following needle puncture. Images correspond to areas indicated by boxes in panel B. (E) Average AF
lamellar thickness in WT and Panx3-/- IVDs following needle puncture injury. Lamellar thickness (inclusive of lamellar
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averaged per IVD. (* indicates, p < 0.05, unpaired t-test; n = 6 mice per group, 2 IVDs per mouse).
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Figure 6. Degenerative changes identified in adjacent uninjured NP tissue of Panx3-/- mice following
needle puncture. Representative X-ray image demonstrating caudal IVD 8/9 undergoing needle
puncture injury. Dotted red circle highlights caudal IVD 9/10 of the motion segment distal to the
site of injury. Representative safranin-O/fast green-stained mid-sagittal sections of uninjured caudal
IVDs distal to the punctured IVDs, harvested 6-weeks after injury. Images are representative of n = 6
mice per group. Black arrow indicates accelerated NP degeneration marked by increased matrix
density and reduced cellularity.

3. Discussion

Panx3 is a channel-forming glycoprotein implicated in physiological and pathological
functions in skeletal tissues. In cartilage, previous research suggests Panx3 mediates



Int. J. Mol. Sci. 2021, 22, 1080 9 of 15

hypertrophic differentiation of growth plate chondrocytes [17,20,22] and the development
of post-traumatic OA in articular cartilage [19]. Given the catabolic role of Panx3 in related
tissues, we investigated the role of Panx3 in the IVD using previously characterized Panx3-/-

mice [19]. Our findings show that while loss of Panx3 did not alter age-associated IVD
degeneration, it appears to confer protection to the AF following acute NP herniation in an
injury-induced model of IVD degeneration. Furthermore, our work suggests that Panx3
may play a role in the adaptive cellular response to altered mechanical load.

Consistent with previous transcriptomic analysis by our group [24], we confirmed
robust expression of Panx3 mRNA and protein in the IVD at 2 months-of-age. Our analysis
also demonstrated a strong temporal regulation of Panx3 expression in the IVD. Compared
to expression levels at 2 months, expression of Panx3 was decreased in the IVDs of mice
from 6 to 24 months-of-age. IVDs of WT and Panx3-/- mice showed a similar progression
of age-related degenerative changes as assessed by histopathological evaluation, with
no evidence of compensatory upregulation in Panx1 or Panx2 gene expression in the
IVD. ECM genes Acan and Col1a1 and hypertrophic markers Runx2 and Mmp13, were
downregulated in Panx3-/- mice at 19 months-of-age, which may suggest subtle differences
in the cellular microenvironment between WT and Panx3-/- mice. While decreased aggrecan
in the NP is associated with degeneration [33,34], its increase in the AF is associate with
early degenerative changes [33]. Similarly, while increased type I collagen is associated
with NP fibrosis [34,35], it is the primary collagen of the AF lamellar network [36]. Since
we assessed gene expression in intact IVDs, we cannot differentiate whether the observed
decreases in Acan and Col1a1 expression in Panx3-/- IVDs are indicative of a catabolic or
anabolic response.

The downregulation in Runx2 and Mmp13 expression detected in Panx3-/- mice is in-
triguing given the role of Panx3 in promoting hypertrophic differentiation of chondrocytes
and its reported role as a target of Runx2 [20]. Runx2 and Mmp13 are well-characterized
in the context of chondrocyte hypertrophy and OA [23]. Elevated Runx2 transcription
was reported in human IVDs with moderate degeneration [37] and RUNX2 has been
localized, along with other hypertrophic markers such as MMP13, to the NP and AF of
degenerated human IVDs [25,38]. Previous work suggests a positive correlation between
Panx3 and MMP13 expression in OA cartilage [19], consistent with the downregulated
Mmp13 expression we observed in IVDs of Panx3-/- mice. These data suggest a subtle
protective role for the loss of Panx3 in the IVD, associated with a delay in expression of hy-
pertrophic markers at the onset of degeneration. Based on its role in articular cartilage, we
considered that Panx3 may be regulating hypertrophic-like changes in the IVD. Despite the
changes in gene expression, immunohistochemical analysis revealed no overt differences
in MMP13 or RUNX2 localization between WT and Panx3-/- mice at 19 months-of-age, with
subtle differences detected in COLX staining at the AF/CEP interface. Importantly, we
demonstrate that enlarged cells detected in the AF with age-associated degeneration do
not express classical markers of chondrocyte hypertrophy (i.e., MMP13, RUNX2, COLX).
While the presence of enlarged AF cells has been reported as a histopathological feature of
degeneration [27,28], to our knowledge the phenotype of these cells has not been directly
investigated; our findings suggest that phenotypic changes associated with hypertrophy in
the AF are distinct from those of chondrocytes and warrant further investigation.

Our finding of a subtle phenotype in Panx3-/- mice with age is consistent with previous
characterization of pannexin knockout mouse models. Despite its broad expression, multi-
ple Panx1 knockout mouse models show seemingly normal anatomy and health [39,40].
In a Panx3-deficient mouse model, Yorgan et al., reported delayed ossification at birth but
the absence of a skeletal phenotype in mature mice [41]. Similarly, characterization of the
Panx3-/- mouse model used in this study demonstrated differences in the size of muscle
attachment sites and diaphysis lengths [42] but overall normal skeletal development [19].
Of note, two additional Panx3 knockout mouse models have been reported with more
prominent bone abnormalities [22,43]. The reason for these phenotypic discrepancies may
relate to differences in Cre drivers or background strains used to generate the transgenic
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mice [44]. Recent characterization of a Panx1/Panx3 double knockout mouse model re-
ported reduced body weight, decreased long bone length and alterations in skull shape
and size in neonatal mice compared to WT, suggesting the importance of these proteins in
early stages of skeletal development [45].

Interestingly, studies report more robust phenotypes in pannexin knockout mice in re-
sponse to stress or injury [19,46,47]. Results from the current study using an injury-induced
model of IVD degeneration support the hypothesis that pannexins contribute to tissue-
specific adaptation to mechanical stress. Following injury, WT mice displayed characteristic
changes in the AF including the accumulation of clusters of large, rounded cells associated
with increased pericellular GAG staining and AF lamellar disorganization. In contrast, fol-
lowing NP depressurization, AF tissues in Panx3-/- mice maintained structural integrity and
did not show evidence of cellular changes or matrix reorganization. These findings are in
keeping with recent studies showing that Panx3-/- mice were resistant to surgically-induced
OA [19]. Of interest, however, was the observation that IVDs adjacent to the site of injury
(which experience altered biomechanics due to adjacent IVD depressurization) were prone
to accelerated NP degeneration on the side of injury in Panx3-/- mice, changes not detected
in WT mice. In humans, IVDs adjacent to immobilized motion segments following spinal
fusion show accelerated degeneration as a consequence of altered mechanical stress [48].
Taken together, we speculate that changes in AF cell morphology and ECM deposition
following injury in WT IVD tissues are evidence of an adaptive response to alterations in
mechanical loading and contribute to the preservation of tissue homeostasis at adjacent
IVD levels. The hypertrophic, GAG-producing AF cells at the site of injury may buffer
mechanical stresses transferred to the AF by synthesizing an altered inter-lamellar ECM in
response to the high compressive loads experienced following NP depressurization. This
adaptive response may dampen transmission of aberrant loads to adjacent IVD tissues. Our
data suggest a role for Panx3 in mediating the response of AF cells to altered mechanical
stress, possibly through its functional role in ATP release at the cell surface or calcium
release from the endoplasmic reticulum, as characterized in chondrocytes [17,18]. However,
further investigation is required to better characterize the longitudinal response of Panx3-/-

mice to IVD injury and to understand the underlying molecular mechanisms involved.
This work highlights a complex, context-dependent role of Panx3 in the IVD. Our

analyses demonstrate that Panx3 does not play a significant role in the progression of
age-associated IVD degeneration but may be involved in mediating the response to altered
mechanical stress. We show that Panx3 is expressed in the AF where it may play a role
in mediating responses to altered mechanical load, associated with the propagation of
aberrant loads across spinal segments.

4. Materials and Methods
4.1. Experimental Animals

All experiments were performed in accordance with the policies and guidelines
set forth by the Canadian Council on Animal Care and approved by the Animal Use
Subcommittee of the University of Western Ontario (protocols 2017-154 and 2015-031).
Genotyping confirmed homozygous deletion of Panx3 in the whole-body Panx3-/- mice
previously reported by our group [19]. Age-matched WT C57BL/6 mice were used as
controls. Mice were housed in standard cages on a 12-h light/dark cycle with rodent chow
and water available ad libitum. Mice were euthanized at 2, 3.5, 6, 12, 19 (±2 weeks) or 24
(±2 weeks) months-of-age. Intact lumbar (L1-L6) or caudal (C5-C12) spines were harvested
for histological and immunohistochemical analyses. Thoracic IVDs (T5-T13; including NP,
AF and CEP) were pooled (6–8 IVDs per mouse) for gene expression analyses. Intact IVDs
or AF tissues were microdissected from alternating spinal levels (T3 to L6) and pooled
(8 IVDs per mouse) for protein analysis.
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4.2. Gene Expression Analysis

Immediately following dissection, thoracic IVDs from WT and Panx3-/- mice were
placed in TRIzol (Life Technologies, Carlsbad, CA, USA), homogenized and total RNA ex-
tracted according to the manufacturer’s protocol. RNA concentrations were determined us-
ing a NanoDrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA, USA), followed
by reverse transcription of 350 ng of RNA/sample (iScript cDNA Synthesis Kit, Bio-Rad,
Hercules, CA, USA). Gene expression was assessed by qPCR using the Bio-Rad CFX384
system (Hercules, CA, USA). Reactions were run in triplicate with 140 ng cDNA/reaction,
with the exception of Panx1, Panx2 and Panx3 that were run with 420 ng cDNA/reaction.
Each reaction contained 470 nM of forward and reverse primers (using previously validated
primers and PCR parameters [47,49,50]; primer sequences provided in Supplementary
Table S1) and 2 x SsoFast EvaGreen Supermix (Bio-Rad, Hercules, CA, USA). Transcript lev-
els were quantified using ∆∆CT, normalized for input based on expression of Rps29 [51,52]
and expressed relative to age-matched WT controls. Panx3 transcript levels were quantified
relative to a six-point standard curve (1/5 serial dilution with initial input of 240 ng/µL)
made from cDNA generated from IVD tissues at postnatal day 28.

4.3. Western Blot Analysis

Intact IVDs and AF tissues were harvested from 2-month-old (8 ± 2 weeks) WT and
Panx3-/- mice for protein analysis. Human embryonic kidney 293T cells overexpressing
mouse Panx3 (described in [21]) served as control. Total protein was harvested following
tissue homogenization (PRO250 homogenizer, PRO Scientific, Oxford, CT, USA) and
sonication (Sonic Dismembrator 100, Fisher Scientific, Waltham, MA, USA) in Triton-
based extraction buffer as previously described [21]. Following quantification using the
bicinchoninic acid assay, 16 µg total protein were separated by gel electrophoresis on a 10%
sodium dodecyl sulfate-polyacrylamide gel and transferred to a nitrocellulose membrane.
Membranes were blocked for 1.5 h with 3% (w/v) bovine serum albumin in phosphate
buffer saline (PBS) and incubated overnight at 4 ◦C with rabbit polyclonal anti-Panx3
primary antibody (1:1000; described in [21]). Membranes were washed and incubated for
45 min with IRDye 800CW goat anti-rabbit secondary antibody (1:10,000; LiCor, Lincoln,
NE, USA; 925-32211) prior to visualization using Odyssey LiCor infrared imaging system
(Lincoln, NE, USA). GAPDH was detected using a mouse monoclonal primary antibody
(1:5000; Millipore Sigma, Burlington, MA, USA; MAB374), followed by incubation with
IRDye 680RD goat anti-mouse secondary antibody (1:10,000; LiCor, Lincoln, NE, USA;
925-68070).

4.4. Histology

Spines harvested for histological analyses were fixed overnight with 4% (w/v) parafor-
maldehyde in PBS, followed by 7 days of decalcification with Shandon’s TBD-2 (Thermo
Scientific, Waltham, MA, USA). Following standard processing, tissues were embedded in
paraffin and sectioned at a thickness of 5 µm. Mid-sagittal sections of lumbar and caudal
spines were stained with 0.1% safranin-O/0.05% fast green or Masson’s Trichrome and
imaged using a Leica DM1000 microscope (Wetzlar, Germany) with Leica Application
Suite software. Safranin-O/fast green stained sections of lumbar spines were assessed for
IVD degeneration based on an established histopathological scoring system [16] to assess
the NP, AF and NP/AF boundary (4–6 IVDs scored per mouse). ImageJ (version 1.51s;
National Institute of Health, Bethesda, MD, USA) was used to measure the lamellar widths
in Masson’s Trichrome stained sections of caudal spines following AF puncture, defined
as the distance between the medial edges of adjacent lamellae (inclusive of lamella and
inter-lamellar matrix), perpendicular to the orientation of each lamella. Lamellar widths
were assessed for all lamellae on the side of needle puncture with measurements taken
as closed to the mid-IVD level as possible, while avoiding the needle puncture track. All
lamellae on the side of puncture were measured and averaged for each IVD. A single
section was assessed per IVD and two IVDs were assessed per mouse (n = 6 mice/group).
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4.5. Immunohistochemical Analysis

Mid-sagittal sections of lumbar spines were used for immunohistochemical analyses.
Antigen retrieval was performed in 0.1% (v/v) Triton-X followed by incubation in 3% (v/v)
hydrogen peroxide in methanol. Slides were blocked in species-specific serum (5%) in PBS
for 30 min at room temperature, followed by primary antibody incubation in a humidified
chamber overnight at 4 ◦C. Primary antibodies were diluted in blocking solution as follows:
rabbit polyclonal anti-COLX (1:750; abcam, Cambridge, England; ab58632); rabbit poly-
clonal anti-MMP13 (1:200; Proteintech, Rosemont, IL, USA; 18165-1-AP); rabbit polyclonal
anti-RUNX2 (1:100; Novus Biologicals, Centennial, CO, USA; NBP1-77461). As negative
control, slides were incubated overnight in blocking solution in the absence of primary
antibody and IgG isotype controls were included for MMP13 and RUNX2 immunostaining.
Slides were incubated in secondary antibody diluted in PBS [goat anti-rabbit for RUNX2
immunodetection (1:100; R&D Systems, Minneapolis, MN, USA; HAF008), goat anti-rabbit
for MMP13 and COLX immunodetection (1:250; SantaCruz, Dallas, TX, USA; sc-2004)] for
1 h at room temperature. Secondary antibodies were conjugated with horseradish peroxi-
dase and visualized following incubation with diaminobenzidine substrate (Dako Omnis,
Santa Clara, CA, USA), followed by counterstaining with 0.5% methyl green.

4.6. Percutaneous IVD Needle Puncture

To induce IVD degeneration, we adapted a percutaneous needle injury model based
on previous methods [53]. 2-month-old WT and Panx3-/- mice (n = 6 per genotype) were
anesthetized using 1.75% isofluorane and dorsal view X-ray images were used to locate cau-
dal IVDs in reference to a landmarking device (Supplementary Figure S2A). X-ray images
were acquired at a peak energy of 60 kVp and a tube current of 20 mA using the PXM-20BT
PLUS portable X-ray unit (United Radiology Systems Inc., Deerfield, IL, USA). Caudal IVDs
7/8 and 8/9 were marked on the dorsal side of the tail (Supplementary Figure S2B) then
punctured with a 30-gauge needle inserted through the skin. The depth of puncture was
standardized using a 22-gauge needle sleeve designed to expose 1.4 mm of the 30-gauge
needle for a puncture depth at 50–70% of the IVD width (Supplementary Figure S2C). The
needle was held in place for 45 s and depth of the puncture was confirmed with a lateral
view X-ray (Supplementary Figure S2D). Following the procedure, mice were returned to
conventional housing and euthanized 48 h, 1 week or 6 weeks later.

4.7. Statistical Analysis

Statistical analyses were performed using GraphPad Prism Software version 6.0c
(San Diego, CA, USA). Data from qPCR analysis of Panx3 gene expression was assessed
using a one-way ANOVA followed by Tukey’s multiple comparison test. qPCR analy-
ses comparing gene expression between Panx3-/- and WT mice were assessed using a
two-tailed, unpaired t-test with Welch’s correction, followed by the ROUT outlier test.
Histopathological scores were compared using a Mann-Whitney U nonparametric test.
Average lamellar width measurements were compared using two-tailed, unpaired t-test.
mboxemphp < 0.05 was considered statistically significant.

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/1422
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Acan Aggrecan
ADAMTS-4 A disintegrin and metalloproteinase with thrombospondin motifs 4
ADAMTS-5 A disintegrin and metalloproteinase with thrombospondin motifs 5
AF Annulus fibrosus
CEP Cartilaginous endplates
CI Confidence interval
Col1a1 Collagen, type I, alpha 1
Col10a1 Collagen, type X, alpha1
COLX Collagen type X
Col2a1 Collagen, type II, alpha 1
ECM Extracellular matrix
GAG Glycosaminoglycan
IVD Intervertebral disc
MMP-13 Matrix metalloproteinase-13
NP Nucleus pulposus
OA Osteoarthritis
Panx3 Pannexin 3
Panx3-/- Whole-body Panx3 knockout
PBS Phosphate buffer saline
qPCR quantitative polymerase chain reaction
Rps29 Ribosomal protein S29
Runx2 Runt-related transcription factor 2
Vcan Versican
WT Wild-type
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