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ABSTRACT 

Many potential pharmacological treatments for osteoarthritis (OA) can result in undesirable side 

effects due to the systemic administration of drugs, making the direct delivery of drugs to joints 

an attractive alternative. Poly(ester amide)s (PEAs) have been shown to exhibit promising 

properties for the development of particle-based intra-articular delivery vehicles. However, a 

limited range of PEA structures has been investigated. In this study, we prepared and 

characterized the properties of two different PEA particles composed of L-phenylalanine, sebacic 

acid, and either 1,4-butanediol or 1,8-octanediol (PBSe and POSe respectively). The anti-

inflammatory drug celecoxib (CXB) was encapsulated into the particles. Despite minor structural 

differences, PBSe and POSe exhibited different thermal and mechanical properties, and 

encapsulation of CXB influenced these properties. PBSe-CXB particles provided a slower 

release of drug in vitro relative to POSe-CXB. Toxicity studies showed that particles without 

drug exhibited low toxicity to ATDC5 and C2C12 cells, while the PBSe-CXB particles exhibited 

concentration-dependent toxicity. Host response to the particles was evaluated in an ovine 

model. No adverse effects were observed following intra-articular injection and it was observed 

that the particles diffused into the surrounding tissues. This work shows the importance of 

structural tuning in PEA delivery vehicles and demonstrates their potential for further 

development. 

Keywords: poly(ester amide), drug delivery, celecoxib, particles, intra-articular 

 

INTRODUCTION  

Osteoarthritis (OA) is a leading cause of mobility impairment and disability among adults 

worldwide.1  The disease is prevalent in older generations, but the number and prevalence 
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continues to rise in younger populations as well.2  Although there are a number of potential 

treatments under development, there are few clinically approved therapies. Physical therapy and 

lifestyle changes are often first steps in treatment,3 followed by the use of non-steroidal anti-

inflammatory drugs (NSAIDs) to treat mild-to-moderate musculoskeletal pain.4 However, 

systemically administered NSAIDs suffer from poor distribution to joints and significant side 

effects including gastrointestinal problems and cardiovascular risks. For example, celecoxib 

(CXB) is an NSAID that was approved for use in OA treatment in the late 1990s.5 It is a potent 

cyclooxygenase-2 inhibitor that blocks the production of prostaglandins and attenuates the 

inflammatory and pain responses that are associated with OA. However, its side effects have 

become apparent recently,  and arise in part due to the high plasma concentrations required to 

provide relief from OA symptoms.5,6 The intra-articular injection of the drug using a delivery 

system can potentially lead to a higher delivered dose while minimizing the side effects to off-

target tissues by reducing systemic drug levels.7  

Several different classes of drug delivery systems have been studied for intra-articular use 

including hydrogels,8 nanoparticles,9,10  and crystalline drug formations.11 Although each of these 

systems has different structures and properties, they are all designed to release the drug over 

prolonged periods after injection into the joint without adverse reactions of the joint tissue to the 

delivery platform. Polymer particles are promising drug delivery systems due to their tunable 

properties, ease of preparation, and potential for prolonged drug release.12  A wide variety of 

different polymers can be used, and the size and degradation rates of the particles can be 

controlled.13,14 Poly(ester amide)s (PEAs) are degradable polymers containing both ester and 

amide linkages in their backbones.15,16  Their thermal and mechanical properties as well as their 

degradation rates can be readily tuned through the incorporation of different monomers such as 
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amino acids, diols, and dicarboxylic acids.17,18 PEAs have shown favorable properties as 

potential drug delivery systems when formulated as micelles19 or microparticles.20-22  They have 

also been shown to support the growth of cells23-25 and to exhibit good biocompatibility when 

studied in vivo.26,27 Thus far, there are very few examples involving the use of PEAs for intra-

articular drug delivery. In one study, PEA particles were shown to release CXB in response to 

inflammation,21 while in another study they were demonstrated to release triamcinolone.22 In 

each case, the particles were shown to exhibit sustained drug release and retention in rat joints 

with good host response. However, there are many different structures of PEAs with different 

properties that remain uninvestigated to date.  

We describe here the comparative study of particles composed of two different PEAs – one 

composed of phenylalanine, 1,4-butanediol, and sebacic acid (PBSe) and the other composed of 

phenylalanine, 1,8-octanediol, and sebacic acid (POSe). This simple change in the diol 

component leads to different properties for the two polymers. The thermal and mechanical 

properties of the polymers with and without CXB were studied. The drug release rates and in 

vitro toxicity studies of the particles were evaluated. In addition, host response to the PEA 

particles was evaluated in a large animal (ovine) model. 

MATERIALS AND METHODS 

General materials and procedures. PBSe and POSe were synthesized and characterized as 

previously reported.24 Poly(vinyl alcohol) (PVA) and the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide (MTT) were purchased from Millipore-Sigma (Oakville, ON). 

CXB was obtained from Ontario Chemicals Inc. (Guelph, ON). Dynamic light scattering was 

performed with a Zetasizer NanoZS from Malvern Instruments at 24.5 °C. The Z-average 

diameter and polydispersity index (PDI) for each type of particle were measured for three 
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different batches.  Differential scanning calorimetry (DSC) was performed on a Q2000 from TA 

instruments (New Castle, DE). The heating/cooling rate was 10 °C/min from 0 to +180 °C, and 

the data were obtained from the second heating cycle. Statistical analyses were performed by one 

way ANOVA (Microsoft Excel, 2016) with alpha set at 0.05, followed by a Bonferroni post-hoc 

analysis, when applicable.  

Tensile testing. Polymer samples, either pure or mixed with 30 wt% CXB (mixing was 

performed by co-dissolution of drug and polymer in CH2Cl2 followed by solvent evaporation), 

were prepared by melt pressing the polymer at 200 °C, and then cutting the resulting sheet into 

rectangular bars with dimensions of 25 mm ´ 10 mm ´ 1 mm (accurately measured with 

calipers). Tensile testing was performed on a CellScale Univert (Guelph, ON), in phosphate 

buffered saline (PBS) at 37 °C using a 10 N load cell. Samples were pulled at a rate of 2.5 

mm/min for 240 seconds. Testing was performed in triplicate (at minimum) for each system. 

Contact angle measurements. Solutions were prepared by dissolving either pure polymer or 

polymer with 30 wt% CXB in CH2Cl2 and then filtering the solution through a 0.2 µm filter. The 

solution was then added dropwise onto a silicon wafer until it was completely covered. The 

wafer was then spun at 1000 rpm for 1 min. The static water contact angles of the resulting films 

were then measured using 10 µL drops of deionized water with a Kruss DSA100 Drop Shape 

Analyzer (Hamburg, Germany). The drop was measured after 10 s of being on the surface. Three 

measurements were taken for each of the samples. 

Preparation of particles. Particles were prepared using an oil-in-water emulsion evaporation 

technique. The dispersed phase of the emulsion was prepared by dissolving 400 mg of polymer 

in 200 mL of CH2Cl2. For CXB-loaded particles, 175 mg of CXB was also added to the CH2Cl2 

phase. The continuous aqueous phase was prepared by dissolving 5 g of PVA in 1 L of deionized 
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water. The emulsion was made by slowly pouring the dispersed phase into the continuous phase, 

while stirring using a Waring Commercial immersion blender, set to low (~9000 rpm). The 

emulsion was mixed at 9000 rpm for an additional 2 min, then transferred to a 1 L beaker, and 

the organic solvent was evaporated under constant stirring overnight. Particles were collected the 

next day by centrifugation at 2800 g for 10 min and were then lyophilized. The dried samples 

were stored at 4 °C until use.  

Scanning electron microscopy (SEM). SEM was performed in the University of Western 

Ontario’s Nanofabrication Facility using a LEO 1530 instrument, operating at 2.0 kV and a 

working distance of 6 mm. Samples were mounted on stubs covered in carbon tape and coated 

with osmium using a SPI Supplies, OC-60A plasma coater. Particles in three different images 

and three representative sections (~30 ´ 30 µm) per image were measured to calculate the 

average diameters ± standard deviation.  

Determination of drug loading and encapsulation efficiency. 10 mg of dried particles were 

dissolved in 1 mL of deuterated dimethyl sulfoxide and 1H NMR spectra were obtained at 400 

MHz on a Bruker 400 NMR Spectrometer (Bruker Instruments, Milton, ON). Integration values 

of peaks for PEA, PVA and CXB were used to calculate the percentage of each (additional 

details in supporting information). Drug loading (DL) and encapsulation efficiency (EE) were 

calculated according to equations (1) and (2).  

%	𝐷𝑟𝑢𝑔	𝐿𝑜𝑎𝑑𝑖𝑛𝑔 = .
𝑀𝑎𝑠𝑠	𝑜𝑓	𝑑𝑟𝑢𝑔	𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑	𝑖𝑛	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙	𝑚𝑎𝑠𝑠	𝑜𝑓	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 9 𝑥	100			(1) 

%	𝐸𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = .
𝐴𝑐𝑡𝑢𝑎𝑙	𝐶𝑋𝐵: 𝑃𝐸𝐴	𝑚𝑎𝑠𝑠	𝑟𝑎𝑡𝑖𝑜

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙	𝑚𝑎𝑥. 𝐶𝑋𝐵: 𝑃𝐸𝐴	𝑚𝑎𝑠𝑠	𝑟𝑎𝑡𝑖𝑜9 𝑥	100			(2) 

In vitro release of CXB. 300 mg of particles were suspended in 5 mL of pH 7.4 phosphate 

buffered saline (PBS) containing 2 wt% Tween 20. The suspension was dialyzed at 37 °C using a 
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10 kDa molecular weight cut-off dialysis membrane against 350 mL of PBS containing 2 wt% 

Tween 20. Aliquots (2 mL) of the dialysate were taken daily for 20 days, and then every 5 days 

for up to 60 days to measure the CXB released from the particles. The amount of released drug 

in the dialysate was quantified using UV-visible spectroscopy at a wavelength of 253 nm based 

on an extinction coefficient of coefficient of 1.65 ´ 104 L·mol-1·cm-1 for CXB in the same buffer 

system. All removed aliquots were replaced with PBS containing 2 wt% Tween 20. Furthermore, 

the dialysate was replaced completely when absorbance values were higher than 0.8.  

In vitro degradation of particles in PBS. The particles were incubated in PBS at 37 °C and 

were removed after 7, 14, 30 and 60 days. Once removed, the samples were washed once with 

deionized water then lyophilized and imaged by SEM as described above.  

Cell culture. ATDC5 and C2C12 cells were thawed and cultured as previously described.28,29 

Reagents were purchased from Sigma Aldrich (Oakville, ON). ATDC5 cells were grown in 

culture medium containing 225 mL of Dulbecco’s Modified Eagle’s Medium (DMEM) and 225 

mL F12 media with the addition of 10 mL of penicillin-streptomycin (1000 units/mL), 5 mL of 

L-Glutamine (200 mM) and 50 mL of Fetal Bovine Serum (FBS). C2C12 cells were grown in 

medium comprising 500 mL of DMEM supplemented with 10 mL of penicillin-streptomycin 

(1000 units/ mL), 5 mL of L-Glutamine (200 mM) and 50 mL of FBS.  Cells were cultured at 37 

°C in an incubator with 5% CO2. ATDC5 cells were induced to differentiate into chondrocytes 

with 1% Insulin-Transferrin-Selenium (ITS) in DMEM prior to experimentation. 

In vitro toxicity. Cells were seeded at a density of 5000 cells per well in a 96-well plate and 

incubated for 24 h prior to treatment. Varying concentrations of particles (0.025 -1.0 mg/mL) or 

free CXB (5-100 µg/mL) were suspended in cell culture media and added to the cells. Media 

alone was used as a negative control, and sodium dodecyl sulfate (SDS) was used as a positive 
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control. After 48 h, the medium was aspirated and replaced with 100 µL of fresh medium 

containing 0.5 mg/mL of MTT reagent and allowed to react for 4 h in the incubator. After 4 h 

the plate was removed and the MTT reagent solution was aspirated. 50 µL of dimethyl sulfoxide 

was added to each well to solubilize the purple crystals. The plate was then placed in a plate 

reader (Tecan Infinite M1000 Pro) and the absorbance at 540 nm was measured to quantify the 

relative metabolic activities of the cells. Four biological replicates were performed, as well as six 

technical replicates per plate.  

In vivo host response. All procedures were done in compliance with the guidelines of The 

Canadian Council on Animal Care guidelines (University of Guelph Protocol 3974). An ovine 

model was used to test the in vivo host response of the particles. Intra-articular injections of 50 

mg of PBSe-CXB particles suspended in 1 mL of sterile saline were made into one knee 

(femoropatellar) joint of four sheep. Sheep were monitored daily for lameness, joint effusion, 

periarticular swelling, fever, and heart rate. Synovial fluid samples and plasma samples were 

collected under sedation  at day 0, 8, and 15 days to measure leucocyte concentration using a 

solid state chip cytometer according to the manufacturer’s instructions (Orflo Technologies, 

Ketchum, ID) and total protein content using a Goldberg refractometer.30 Two animals were 

sacrificed on day 8 and two on day 15. After macroscopic assessments of the joint space, 

synovial membrane samples were harvested, fixed in 10% buffered formalin, and embedded in 

paraffin to create 5 µM histological sections that were stained with a hematoxylin and eosin 

(H&E) stain.  

 

RESULTS  
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Particle preparation and characterization. The PEAs PBSe and POSe (Figure 1) were 

synthesized as previously reported and were characterized by 1H NMR spectroscopy, size 

exclusion chromatography, and DSC (Figures S1-S5).24 The batch of PBSe used in the current 

work had a number average molar mass (Mn) of 30 kg/mol and dispersity (Đ) of 2.0 while POSe 

had an Mn of 18 kg/mol and a D = 1.9. PBSe had a glass transition temperature (Tg) of 34 °C, 

while POSe had a Tg of 14 °C and a melting temperatures (Tm) of 106 and 150 °C. Using these 

PEAs, four different types of particles were prepared: non-drug-loaded PBSe (PBSe-NDL), non-

drug-loaded POSe (POSe-NDL), CXB-loaded PBSe (PBSe-CXB) and CXB-loaded POse 

(POSe-CXB). The average particle size was determined using the SEM and DLS (Figure 2, 

Table 1). Based on DLS, PBSe-NDL had a Z-average diameter of 790 ± 64 nm, which was not 

statistically significantly different from PBSe-CXB with a Z-average diameter of 836 ± 51 nm (p 

= 0.56). In contrast, both POSe-NDL and POSe-CXB were smaller with Z-average diameters of 

487 ± 10 nm and 398 ± 13 nm, respectively, and were statistically significantly different from 

one another (p = 0.02).  SEM confirmed that the particles were all spherical. The diameters 

measured by SEM were generally larger than those obtained by DLS, but the trends were similar, 

with both POSe-based particles being statistically smaller than their PBSe counterparts (p = 

0.03). Based on SEM, neither PBSe or POSe exhibited a significant change in diameter when 

loaded with CXB (p = 0.09).  The drug loading was 23 wt% for PBSe particles, and 20% for 

POSe, with encapsulation efficiencies of 84 and 69%, respectively.  

DSC was used to investigate the effects of 30 wt% CXB incorporation on the thermal 

properties of the bulk polymers (Figure S5). For PBSe, incorporation of CXB resulted in glass 

transitions at 31 and 45 °C, while for POSe it resulted in disappearance of crystallinity and an 

increase in the Tg to 29 °C. DSC was also performed on the particles (Figure 3). PBSe-NDL had 
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a Tg of 38 °C while POSe-NDL had a Tg of 30 °C. The addition of CXB to the particles resulted 

in a small increase in Tg for PBSe-CXB to 41 °C, but no change for POSe-CXB. No melting 

point for CXB was observed.  

Tensile testing of PBSe and POSe as well as their blends with and without 30 wt% CXB was 

performed in water at 37 °C. POSe had the highest Young’s modulus of 26 ± 16 MPa, while 

PBSe had a modulus of 1.17 ± 0.19 MPa (Table 2). The addition of CXB to the polymers 

decreased the Young’s moduli to 0.43 ± 0.15 MPa and 0.83 ± 0.68 MPa for POSe-CXB and 

PBSe-CXB, respectively.  

Contact angle measurements were performed to compare the hydrophobicities of the polymers 

and their blends with CXB in the form of thin films (Table 2). PBSe was more hydrophilic, 

having a contact angle of 77.4 ± 0.9 °, compared to POSe having a contact angle of 85.3 ± 1.7 °. 

The incorporation of CXB significantly increased the hydrophilicity in each case, lowing the 

contact angle to 72.3 ± 0.8 ° for PBSe-CXB and 79.2 ± 0.1 ° for POSe-CXB.     

In vitro release of CXB and particle degradation. The release of CXB from PBSe-CXB and 

POSe-CXB particles was determined through dialysis and detection of the CXB in the dialysate. 

Both particle systems exhibited a slower release than free CXB, which was used as a control 

(Figure 4). PBSe-CXB had a slower release than POSe-CXB. At 40 days, 25% of the loaded 

CXB had been released from PBSe-CXB, while 70% had already been released from the POSe-

CXB. The degradation of particles in pH 7.4 PBS at 37 °C over time was probed by SEM. PBSe-

CXB particles showed a distinct surface degradation at all time points, with increased 

degradation over time (Figure 5A-C). However, particles were still visible at day 60. POSe-CXB 

underwent more rapid degradation, with the loss of most particles apparent by 7 and 14 days 

(Figure 5D-E).   
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In vitro and in vivo studies. Based on their CXB release and degradation properties, PBSe 

particles were evaluated using MTT assays in two different cell lines – mouse cartilage-like 

ATDC5 cells and mouse myoblasts C2C12. After 48 h of incubation with PBSe-NDL particles 

both cell lines retained high metabolic activity at all concentrations evaluated, up to 1 mg/mL 

(Figure 6), as measured by MTT activity. In contrast, PBSe-CXB particles exhibited 

concentration dependent decreases in metabolic activity for both cell lines, with a 50% reduction 

at ~0.1 mg/mL. Free CXB also exhibited concentration-dependent toxicity with a 50% reduction 

in metabolic activity of ATDC5 and C2C12 cells at ~20 µg/mL and 40 µg/mL, respectively 

(Figures S8-S9). 

After intra-articular injections of PBSe-CXB (50 mg particles in 1 mL of saline) in sheep, 

there was minimal effusion for 48 hours, but no lameness, fever, changes in eating habits, or 

changes in social interactions were observed. Synovial fluid analysis showed a small but 

significant increase in both white blood cells (WBC) and total protein concentrations post 

injection (Figure 7). Histological analysis showed mild synovial intimal hyperplasia, with some 

increase in vascularity but no cellular infiltration. Specifically, the particles could be identified in 

the synovial lining and subintimal layer, but there was no cellular response (Figure 8).  

 

DISCUSSION  

A wide variety of PEAs having different structures and properties have been previously 

reported.15,16 For the current work, PBSe and POSe were selected as they are easily synthesized, 

and have shown promising biological properties such as high cell compatibility in previous 

work.23,24 In addition, despite the minor structural difference of containing butyl versus octyl 

chains in their backbones, they have been shown to exhibit different thermal and mechanical 
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properties.31 The Tg value of 34 °C for the bulk PBSe used in the current work was similar to 

those previously reported for this polymer (38 – 40 °C).24, 31 POSe was semicrystalline in the 

bulk state with Tm values of 106 and 150 °C similar to those previously reported.24, 31 However, 

the Tg of 14 °C measured for POSe was significantly lower than that previously reported (22 – 

28 °C), which can likely be attributed to its lower molar mass (Mn of 18 kg/mol for current 

versus 30 – 78 kg/mol previously). 

CH2Cl2 was selected as the organic solvent for the emulsification-evaporation particle 

preparation because it is a good solvent for both PEA and CXB and is immiscible with water, as 

required for the process. In contrast to previously reported work on PEA particles, the use of 

CH2Cl2 did not lead to particles of irregular shape.20 This may result from different parameters 

such as solvent ratios, mixing time and evaporation time used in the current work.32 We fixed the 

PEA concentration at 2 mg/mL because of solubility limitations. In addition, we fixed the 

water:CH2Cl2 at 5:1 mL based on previous work.20 Different emulsification processes were 

explored and an immersion blender operating at 9000 rpm proved to be the best, whereas a 

magnetic stir bar led to large conglomerates of material in addition to spherical particles and 

sonication appeared to result in breakdown of particles. 5 wt% PVA in the water was the most 

appropriate concentration as lower concentrations led to insufficient particle stabilization and 

consequent agglomeration, whereas higher concentrations led to particles that were immersed in 

a large excess of PVA and were difficult to purify.  

It has been suggested that particles of different sizes have different advantages and limitations 

in the context of intra-articular drug delivery. The size of synthesized particles was consistent 

with what is believed to be suitable for intra-articular delivery. With a diameter of 500-1000 nm, 

it is expected that particles will be small enough to not induce a significant immune response, but 
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large enough to have a long residence time in the joint, and not be rapidly cleared.33 The 

diameters measured by DLS were consistently smaller than those measured by SEM across all 

samples. While larger particles are often emphasized in DLS measurements due to their 

increased scattering of light relative to smaller particles, in this case it is likely that the larger 

particles settled during the measurement and were thus not completely captured in the size 

distribution. POSe particles were significantly smaller than the PBSe particles in both their CXB-

loaded and non-loaded forms. However, a small fraction of larger (>1000 nm) particles was 

detected for POSe-NDL by both DLS and SEM.  As supported by the contact angle 

measurements, POSe is more hydrophobic, owing to the increased length of the diol component. 

This may make these particles more difficult to disperse, while at the same time favoring 

interactions with the PVA surfactant, which may lead to the stabilization of smaller particles. It 

was also notable that the incorporation of CXB produced particles with higher purity (less 

surrounding material) in the case of both POSe-CXB and PBSe-CXB. As previously reported, it 

was expected that the CXB could play the role of a surfactant, which could further stabilize the 

emulsion and allow for morphologically-optimized particles.34  

High drug loading contents and acceptable encapsulation efficiencies were achieved for both 

the PBSe and POSe particles. High hydrophobicity of CXB results in its preferential partition 

into the organic phase, thereby resulting in its encapsulation rather than loss into the aqueous 

phase. The high drug content achievable also suggests high compatibility of CXB with the PEAs 

used here. It is notable that the drug content of our particles was much higher than the 5 wt% 

CXB reported by Janssen et. al in different PEA particles.21 Higher drug content is desirable to 

minimize the dose of polymer required to administer a given quantity of drug.  
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In comparing the thermal properties of the bulk polymers to those of the particles both with 

and without CXB, PBSe-NDL particles had a slightly higher Tg of 38 °C compared to 34 °C for 

the bulk polymer. A secondary Tg was observed at 60-70 °C for all of the particles, which likely 

corresponds to the PVA coating the particles and it is possible that some incorporation of PVA 

into the particles modestly increased the Tg. The incorporation of CXB into the PBSe particles 

increased the Tg by 3 °C, suggesting that interactions between CXB and PBSe decreased the 

mobility of the polymer. The incorporation of CXB into bulk PBSe resulted in a main Tg value of 

31 and a small secondary Tg of 45 °C, suggesting the presence of small CXB-rich domains due 

to some degree of phase separation. This phase separation may have been induced by the melt 

pressing process, but it was deemed important to process the samples in the same way as for the 

tensile testing samples in order to correlate their properties. While POSe in the bulk state was 

semicrystalline, no Tm was observed for POSe particles and instead a single Tg value of 30 °C 

was observed. This result highlights the importance of the processing conditions on the 

properties of the polymers. While the incorporation of CXB into the POSe particles did not affect 

their Tg, the incorporation of CXB into bulk POSe resulted in complete loss of crystallinity and a 

single Tg value of 29 °C, a result that is important for understanding the tensile properties of the 

samples. The thermal properties of bulk POSe-CXB were consequently very similar to POSe-

CXB particles. No melting point for CXB was observed in the expected range (157-159 °C) for 

any of the particles, suggesting that CXB was mixed well with the PEAs.  

The Young’s moduli and ultimate tensile strengths of melt pressed polymers and their blends 

with CXB were explored. These tests were performed with the samples in a hydrated state at 37 

°C to mimic physiological conditions, particularly because water is known to have a significant 

plasticizing effect on amorphous polymers.35 Indeed, increasing the temperature to 37 °C 
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immersed in water relative to ambient temperature in the dry state lowered the Young’s modulus 

of PBSe from ~1 GPa to 1.17 ± 0.19 MPa.31 The addition of CXB resulted in a further decrease 

in modulus to 0.83 ± 0.68 MPa. The decrease may correlate with the observed lowering of the 

main Tg for bulk PBSe-CXB relative to PBSe. Consistent with a decreased water contact angle 

upon CXB incorporation, it may also be attributed to CXB’s ability to hydrogen bond to water, 

thereby enhancing interactions of the blends with water, further increasing the water 

plasticization effect. This brings the modulus into a range similar to articular cartilage,36 which is 

desirable as the injection of high modulus materials into the joint may be expected to cause 

irritation. Similar trends were observed for the ultimate tensile strength, with immersion in water 

resulting in a ~30-fold decrease relative to the polymer in the dry state at ambient temperature 

and CXB inducing a further decrease.31 POSe-NDL had a higher Young’s modulus and higher 

tensile strength in water at 37 °C, which likely arises from its semi-crystallinity in the bulk, and 

would not likely be reflective of the properties of the particles, which were not semicrystalline. 

However, upon incorporation of CXB, POSe-CXB became completely amorphous, resulting in a 

decrease in the Young’s modulus to a value lower than that of PBSe-CXB. Plasticization by 

water may play an additional role in decreasing the modulus as a decrease in water contact angle 

was also observed for POSe upon CXB incorporation. The mechanical properties of the bulk 

POSe-CXB should reflect those of the POSe-CXB particles as they had very similar thermal 

properties. Overall, these results highlight the importance of small PEA structural variations as 

well as processing conditions in controlling the properties of the polymers under different 

conditions. 

Due to CXB’s very low solubility in water, 2 wt% of the surfactant Tween 20 was added to 

the dialysis release medium.  A control experiment performed by the addition of unencapsulated 
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solid CXB into a dialysis bag showed that CXB dissolution and diffusion through the dialysis 

bag was still quite slow with ~50% release after 10 days. However, it was faster than for CXB 

loaded into PEA particles, confirming that particle encapsulation was able to provide sustained 

release of drug due to rate-limiting release from the particles. PBSe-CXB in particular showed 

very slow release of drug, with only 36% released over 60 days. SEM images of the particles 

after 14, 30, and 60 days in PBS at 37 °C supported that the slow release can likely be attributed 

to slow degradation of the particles. The lack of burst release and ability of the PBSe particles to 

retain the drug over a prolonged time period are favorable properties for an intra-articular 

delivery system as it is desirable to maximize the time between required doses. On the other 

hand, POSe-CXB exhibited a release rate of CXB that approached that of the free drug and SEM 

images showed a rapid loss of particle structure even after 7-14 days. We attribute this behavior 

to the low Tg of POSe-CXB in water, which may result in particle fusion and reorganization, 

processes which are accompanied by the loss of CXB. It is also possible that the lower molar 

mass of POSe compared to PBSe resulted in more rapid polymer degradation. 

PBSe particles were selected for biological studies due to their favorable CXB release and 

degradation properties. Cytotoxicity studies were performed on ATDC5 “chondrocyte-like” cells 

and C2C12 myoblast cells. The use of two different cell lines allows for the detection of cell 

line-dependent responses to the particles, and should provide an indication of how different 

tissues might react to the particles. C2C12 was selected as it is a commonly used cell line for in 

vitro work. High metabolic activities were retained for the PBSe-NDL particles in both cell lines 

at concentrations up to 1 mg/mL. This was expected as previous studies have shown that PBSe 

was well tolerated by cells.23,24 On the other hand, concentration-dependent toxicity was 

observed for PBSe-CXB in both cell lines. This was expected as we observed significant toxicity 
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of free CXB on both cell lines at 20 – 40 µg/mL and PBSe-CXB particles can release CXB 

during the assay. It is also in agreement with previous studies, where CXB has been showed to 

exhibit toxicity in vitro.37  

In vivo pilot studies were performed in an ovine model. This large animal model allowed for a 

robust histological examination, and serial synovial fluid analysis. Intra-articular injections were 

performed on 4 sheep, which was sufficient to provide an initial indication of host response to 

the PBSe-CXB particles. A dose of 50 mg/animal was selected in order to have the most possible 

CXB injected into the joint, while maintaining the injectability of the drug delivery system. As 

reported by Janssen et al. for different PEA particles, PBSe-CXB particles appeared to have been 

engulfed by synovial lining cells and local macrophages, resulting in particles within the 

synovial villi.21 The mild increase in vascularity and intimal lining cells is consistent with the 

trauma of synovial fluid collection. The particles themselves appeared to be remarkably inert. 

White blood cell and protein concentrations in the synovial fluid post injection did increase 

significantly, but the increase was small and within the levels expected from arthrocentesis 

alone. Overall, our observations were similar to those reported previously following the injection 

of a CXB-containing hydrogel into horse joints.38 

CONCLUSIONS 

Particles composed of two different PEAs were prepared and characterized. It was found that 

small structural differences in the polymers led to significant changes in the particle properties 

including their Tg values and Young’s moduli and also led to different CXB release rates. The 

slower release profile of the PBSe-CXB particles makes them more ideal for intra-articular drug 

delivery. PBSe-NDL particles were found to be well tolerated by both ATDC5 and C2C12 cells, 

while the presence of CXB in the PBSe-CXB particles induced concentration-dependent toxicity 
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in both cells lines. Initial in vivo results in an ovine model showed that the PBSe particles 

migrated to the synovial membrane and surrounding tissue and were well tolerated at a dose of 

50 mg/animal. 
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Figure 1. Chemical structures of the polymers PBSe and POSe. 

 

Figure 2. A) DLS diameter distributions by volume % for CXB and non-drug-loaded particles 

made from either PBSe or POSe; B-E) SEM micrographs of prepared particles showing their 

spherical structures and size distributions: B) PBSe-NDL; C) PBSe-CXB; D) POSe-NDL; E) 

POSe-CXB. Material surrounding the particles in B and D is likely PVA. 

 

Figure 3. DSC thermograms of the drug-loaded and non-drug-loaded particles showing that the 

Tg was increased through CXB incorporation only for PBSe. A subtle transition corresponding to 

PVA was observed at 60 – 70 °C but no melting temperature was observed for CXB. 

 

Figure 4. CXB release from PBSe-CXB particles and POSe-CXB particles in pH 7.4 PBS 

containing 2 wt% Tween 20 showing slower release of CXB from the PBSe-CXB particles. The 

release of insoluble free CXB through the dialysis membrane was also measured as a control to 

show that the release rate was not limited by the drug dissolution rate. 

 

Figure 5. Degradation of PEA particles in pH 7.4 PBS at 37 °C: A-C) PBSe-CXB particles after 

A) 14, B) 30 and C) 60 days; D-E) POSe-CXB particles after D) 7 and E) 14 days. All images 

were obtained at the same magnification. While particles were still observed for PBSE-CXB at 

60 days, most of the POSe-CXB particles were rapidly eroded. 

 

Figure 6. Metabolic activity of A) ATDC5 cells and B) C2C12 cells as measured by an MTT 

assay after a 48 h incubation with PBSe-CXB or PBSe-NDL particles (N = 4).  
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Figure 7. Synovial fluid analysis of injected sheep joints: A) Protein levels in synovial fluid at 

days 0, 8 and 15. * Indicates a significant difference between day 0 and day 8. (ANOVA p = 

0.04) B) WBC levels at days 0, 8 and 15. * Indicates a statistically significant difference between 

day 0 and day 8 (ANOVA p = 0.0001). N = 4 at days 0 and 8 and N = 2 at day 15. 

 

Figure 8. Immunohistochemical analysis of the synovial membrane of an injected sheep 15 days 

post injection. Hematoxylin and eosin staining was performed on sections of sheep synovium.  

Particles are visible within the membrane (indicated with red arrows). 
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Table 1. Average diameters of the PEA-based particles obtained by DLS and SEM and CXB 

loading and encapsulation efficiency measured by NMR spectroscopy. 

Particle 

Composition 

Z-Average 

diameter 

(DLS) (nM) 

Measured 

particle 

diameter (SEM) 

(nM) 

CXB 

loading 

(wt%) 

CXB 

encapsulation 

efficiency (%) 

PBSe-NDL 790  ± 64 870 ± 74 - - 

PBSe-CXB 836 ± 51 1040 ± 100 23 ± 1 84 ± 4 

POSe-NDL 487 ± 10 867 ± 92 - - 

POSe-CXB 398 ± 13 637 ± 101 20 ± 4 69 ± 15 
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Table 2. Young’s modulus and ultimate tensile strengths of the polymers and their blends with 

CXB, as measured by tensile testing in water at 37 C and contact angles of polymer films. 

Errors on the measurements correspond to the standard deviations. 

Polymer Composition Young’s modulus 

(MPa)

Ultimate Tensile 

Strength (MPa)

Contact angle ()

PBSe-NDL 1.17  0.19 0.66  0.3 77.4  0.9

PBSe-CXB 0.83  0.68 0.04  0.01 72.3  0.8

POSe-NDL 26  16 5.6  2.2 85.3  1.7

POSe-CXB 0.43  0.15 0.16  0.04 79.2  0.1
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Figure 1. Chemical structures of the polymers PBSe and POSe. 
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Figure 2. A) DLS diameter distributions by volume % for CXB and non-drug-loaded particles made from 
either PBSe or POSe; B-E) SEM micrographs of prepared particles showing their spherical structures and size 
distributions: B) PBSe-NDL; C) PBSe-CXB; D) POSe-NDL; E) POSe-CXB. Material surrounding the particles in 

B and D is likely PVA. 
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Figure 3. DSC thermograms of the drug-loaded and non-drug-loaded particles showing that the Tg was 
increased through CXB incorporation only for PBSe. A subtle transition corresponding to PVA was observed 

at 60 – 70 C but no melting temperature was observed for CXB. 
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Figure 4. CXB release from PBSe-CXB particles and POSe-CXB particles in pH 7.4 PBS containing 2 wt% 
Tween 20 showing slower release of CXB from the PBSe-CXB particles. The release of insoluble free CXB 

through the dialysis membrane was also measured as a control to show that the release rate was not limited 
by the drug dissolution rate. 
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Figure 5. Degradation of PEA particles in pH 7.4 PBS at 37 C: A-C) PBSe-CXB particles after A) 14, B) 30 
and C) 60 days; D-E) POSe-CXB particles after D) 7 and E) 14 days. All images were obtained at the same 
magnification. While particles were still observed for PBSE-CXB at 60 days, most of the POSe-CXB particles 

were rapidly eroded. 
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Figure 6. Metabolic activity of A) ATDC5 cells and B) C2C12 cells as measured by an MTT assay after a 48 h 
incubation with PBSe-CXB or PBSe-NDL particles (N = 4). 
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Figure 7. Synovial fluid analysis of injected sheep joints: A) Protein levels in synovial fluid at days 0, 8 and 
15. * Indicates a significant difference between day 0 and day 8. (ANOVA p = 0.04) B) WBC levels at days 
0, 8 and 15. * Indicates a statistically significant difference between day 0 and day 8 (ANOVA p = 0.0001). 

N = 4 at days 0 and 8 and N = 2 at day 15. 
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Figure 8. Immunohistochemical analysis of the synovial membrane of an injected sheep 15 days post 
injection. Hematoxylin and eosin staining was performed on sections of sheep synovium.  Particles are 

visible within the membrane (indicated with red arrows). 
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