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Abstract 

Polymers that depolymerize end-to-end upon cleavage of their backbones or end-caps, often 

referred to as “self-immolative” polymers (SIPs), have garnered significant interest in recent years. 
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They can be distinguished from other degradable and stimuli-responsive polymers by their ability 

to provide amplified responses to stimuli, as a single bond cleavage event is translated into the 

release of many small molecules through a cascade of reactions. Here, the synthesis and properties 

of the major classes of SIPs including poly(benzyl carbamate)s, poly(benzyl carbonate)s, 

polyphthalaldehydes, polyglyoxylates, polyglyoxylamides, poly(olefin sulfone)s, and poly(benzyl 

ether)s are presented. In addition, their advantages and limitations as well as their recent 

applications in areas including sensors, drug delivery, micro- and nano-patterning, transient 

devices and composites, coatings, antibacterial, and recyclable plastics are described. Finally, the 

challenges associated with the development of new SIP backbones and their translation into 

commercial products are discussed. 

Introduction 

Many traditional applications of polymers have relied on their high long-term stability. For 

example, consumers rely on plastic beverage packaging to retain its structure and impermeability 

under a wide range of conditions and polyethylene used in joint replacements should resist 

degradation in the human body over a period of decades. In recent years however, there has been 

an increasing interest in polymers that can be readily degraded. This interest is on the one hand 

motivated by increasing attention to the global problem of plastic pollution.1-2 At the same time, 

degradable polymers are of significant interest for the growing biomedical fields of drug delivery3 

and tissue engineering.4 Much attention in the area of degradable polymers has focused on 

polysaccharides5 and polyesters.6-7 These polymers typically undergo a gradual degradation, either 

in vivo or in the environment. In many cases, a polymer would ideally remain highly stable while 

being used in its application, and then would degrade rapidly on demand under specified 

conditions. 
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While the concept of triggered depolymerization is not new, over the last decade there has 

been a resurgence of interest in depolymerization. In particular, significant progress has been made 

in our ability to trigger depolymerization with specific stimuli and in demonstrating its application 

in smart materials and devices. Inspired by the notion of self-destruction, polymers that 

depolymerize end-to-end upon triggering have often referred to as self-immolative polymers 

(SIPs).8 Other naming conventions including continuous head-to-tail depolymerization9 and 

cascade depolymerization10 have also been used. We consider a defining feature of SIPs to be their 

ability to undergo complete end-to-end depolymerization following a single bond cleavage event 

by a stimulus. This provides an amplified response to the stimulus, as many molecules are released 

from a single stimulus event. End-to-end depolymerization can occur following the stimulus-

mediated cleavage of a polymer end-cap (Figure 1a), or backbone bond of either a linear (Figure 

1b) or cyclic SIP (Figure 1c).  

 

Figure 1. Depolymerization can be triggered by (a) end-cap cleavage; (b) backbone cleavage of a 

linear polymer; (c) backbone cleavage of a cyclic polymer. After the initial cleavage, the arrows 

represent a cascade of sequential reactions leading to depolymerization. 
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Depolymerizable SIP backbones can be categorized as either irreversible or reversible. 

Irreversible SIPs degrade to products that differ from the monomers from which they were 

synthesized, and therefore they cannot be repolymerized (Figure 2a). In contrast, reversible SIPs 

depolymerize to the monomers from which they were synthesized, making repolymerization 

possible, at least in principle (Figure 2b). The different SIP backbones and their derivatives vary 

widely in terms of their depolymerization rates, triggering chemistry, degradation products, as well 

as their thermal and mechanical properties. Therefore, they must be carefully selected and tuned 

according to the target application. Several comprehensive reviews on SIPs have been published 

over the years.9, 11-13 In this perspective, we will focus on the current major classes of reversible 

and irreversible SIPs, highlighting the advantages and limitations of each based on literature 

reports as well as our perspective and practical experience. We will emphasize recent 

developments and application areas where SIPs can offer new functions beyond those of traditional 

degradable and stimuli-responsive polymers as well as the challenges that need to be addressed to 

go beyond the proof of concept studies.  

 

Figure 2. After end-cap or backbone cleavage, SIPs can (a) irreversibly depolymerize to molecules 

different from the original polymerization monomers or (b) reversibly depolymerize back to 

monomers. 
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Irreversible SIPs  

The first reported irreversible linear SIPs were inspired by self-immolative dendrimers.14-16 Unlike 

the step-wise synthesis of dendrimers, the polymers were prepared in one-step reactions. 

Irreversible SIPs have been prepared by step-growth polymerizations and depolymerize by 

elimination and/or cyclization reactions. Poly(benzyl carbamate)s (PBCs) derived from 4-

aminobenzyl alcohol have been the most widely used irreversible SIPs. Polycarbonates and 

variations incorporating different linkers have also been introduced to tune the depolymerization 

rate and to introduce new properties and functions. Proof of concept studies with these polymers 

in different applications such as sensors and drug delivery vehicles have been performed.  

Poly(benzyl carbamates) (PBCs). The first PBC SIP was introduced by Shabat and coworkers in 

2008.8 A phenyl carbamate (1) was polymerized using dibutyltin dilaurate (DBTL) as a catalyst at 

100 ºC with an alcohol end-capping agent to afford PBCa (Scheme 1). The polymerization 

reaction is quite versatile and a variety of functional monomers as well as different end-caps have 

been incorporated. PBCs have also been incorporated as depolymerizable side chains on 

bottlebrush polymers.17 However, the degree of polymerization (DPn) has typically been limited 

to < 20, and the step-growth polymerization mechanism results in relatively broad dispersities (Đ) 

ranging from ~1.4–2.0. Following end-cap cleavage to reveal a terminal aniline, the 

depolymerization of PBCs is based on a 1,6-elimination-decarboxylation cascade.18 The released 

azaquinone methides (3) react with water or other nucleophiles to generate 4-aminobenzyl alcohol 

or its derivatives (2). In the presence of water, the depolymerization is relatively rapid, reaching 

completion over several hours.8 However, in less polar media the depolymerization reaction is 

very slow,19-21 often requiring days. Phillips and coworkers accelerated the depolymerization rate 

of PBC oligomers through the introduction of electron-donating methoxy groups or by reduction 
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of the aromatic character of the repeat units using naphthalene derivatives.22 Both of these 

approaches lowered the energetic costs of dearomatization involved in the depolymerization. 

 

Scheme 1. Synthesis and depolymerization PBCs having different pendant groups and end-caps. 

 PBCs have been incorporated into a number of different sensor designs. Shabat and 

coworkers incorporated ortho-acrylate substituents onto a PBC and 4-hydroxy-2-butanone as an 

end-cap, resulting in the water soluble SIP PBCb-4H2B.8 While the polymers were not 

fluorescent, cleavage of the end-cap by bovine serum albumin resulted in depolymerization to the 

corresponding aniline derivative, which fluoresced at 510 nm. Alternatively, 4-nitroaniline 

carbamates were incorporated as pendant groups, along with ortho-acrylates and a 

phenylacetamide end-cap (Scheme 1, PBCb/c-PAA).21 Cleavage of the end-cap by penicillin-G 

amidase triggered backbone depolymerization by the 1,6-elimination-decarboxylation cascade and 

release of 4-nitroaniline reporters by an analogous pendant group fragmentation. Most recently, 

Shabat and coworkers also developed poly(benzyl carbonate)s that depolymerized to release 

quinone methides.23 Schaap’s adamantylidene-dioxetane turn-ON chemiluminescence probe was 

incorporated into each monomer unit such that trapping of the quinone methide by water generated 

a phenolate-dioxetane, which spontaneously decomposed by a chemically initiated electron-

exchange process to generate an excited state benzoate and adamantanone. Emission of blue light 
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(499 nm) occurred as the benzoate decayed to the ground state. In all of the above examples, a key 

characteristic was the release of multiple reporter molecules in response to one end-cap cleavage, 

exemplifying the key amplification feature of SIPs. Signal amplification is particularly important 

for the fabrication of sensors as higher sensitivities provide better detection limits.24  

 Phillips and coworkers took a different approach for developing PBC-based sensors. 

Instead of employing released molecules to generate the signal, they exploited depolymerization 

as a solubility switch.25 Paper-based devices were prepared using the polymer as a hydrophobic, 

water-impermeable layer. End-cap cleavage triggered depolymerization to water-soluble products, 

allowing water to wick through the layer and dissolve a dye to provide a colored visual read-out. 

H2O2 was detected directly using an aryl boronate end-cap (Scheme 1, PBCd-AB), while Pb2+ and 

Hg2+ were detected using glucose oxidase (GOX) to generate H2O2, with the enzyme conjugated 

to an aptamer.25-26 For example, in the case of Hg2+, binding of the metal to the aptamer resulted 

in the immobilization of GOX on the surfaces of beads, allowing it to locally generate H2O2 in a 

defined location on the device. While the PBCs used in this work were technically oligomers (DPn 

= 2–8), they improved the device sensitivity by 104 compared to devices prepared using small 

molecules.  

PBC-based materials have also been explored for encapsulation and release applications. 

The ability to achieve high degrees of payload release in response to subtle chemical stimuli can 

provide advantages over traditional stimuli-responsive polymers. For example, Moore and 

coworkers prepared microcapsules from PBCs (Scheme 1, PBCe-BOC and PBCe-FMOC).27 The 

hydroxyl pendant groups of the PBCs were activated with 2,4-toluene diisocyanate, then 

microcapsules were prepared using an emulsion process with butandiol as a chain extender. The 

capsules prepared from BOC and FMOC end-capped polymers released their payload over 24 – 
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48 h using HCl and piperidine as stimuli respectively. Liu and coworkers also explored this concept 

by combining PBCs with hydrophilic poly(N,N-dimethylacrylamide) (PDMA) to afford 

amphiphilic block copolymers that self-assembled to form vesicles.28 End-caps including perylen-

3-ylmethyl carbamate (P3M), 2-nitrobenzyl carbamate (NB), and a PDMA-functionalized 

disulfide carbamate (PDMA-SS) were incorporated to enable triggering with visible light, UV 

light, and thiols respectively. Thiols in particular are biologically relevant stimuli as the reducing 

peptide glutathione is known to be present at higher concentrations in hypoxic tumors and also 

within cells compared to the extracellular environment.29 Stimuli-triggered depolymerization of 

the SIP block and consequent vesicle disintegration resulted in the release of various payloads such 

as doxorubicin (DOX), camptothecin, and enzymes.  

Shabat and coworkers also used PBCs for the activity-linked labeling of enzymes.30 

Penicillin-G amidase or the catalytic antibody Ab38C2 were used to trigger the end-cap cleavage 

of PBCb-PAA (Scheme 1). While the azaquinone methides released during depolymerization 

normally react rapidly with water molecules, their generation in the close vicinity of nucleophilic 

groups on the enzyme resulted in labeling of the proteins with the fluorescent 4-aminobenzyl 

alcohol derivatives. While promising for in vitro applications, the reactivity of azaquinone 

methides with proteins also provides a potential mechanism for toxicity which may hinder in vivo 

applications of PBCs.  

Polycarbamates containing linkers. Cyclization spacers have been incorporated into SIPs to 

modulate their properties and depolymerization rates. In the early days of SIP development, our 

group began working on PBCs without pendant functional groups. They were poorly soluble in 

most solvents, which hindered our efforts to study their depolymerization. While Shabat and 

coworkers introduced pendant solubilizing groups, based on the known favorable cyclization of 



 9 

N,N’-dimethylethylenediamine (DMED) derivatives to N,N’-dimethylimidazolidinones,31 we 

inserted DMED spacers to improve the solubility.10 The target SIP was synthesized from monomer 

4, containing a protonated amine (Scheme 2a). The addition of 4-dimethylaminopyridine 

(DMAP), NEt3, and BOC-protected monomer as an end-cap, afforded the BOC end-capped 

polycarbamate PBC-L with a DPn of ~16 and Đ of 1.6. Depolymerization was triggered by 

cleavage of the BOC group with trifluoroacetic acid (TFA) then immersion in pH 7.4 phosphate 

buffer:acetone (3:2). It occurred by a cascade of cyclization-1,6-elimination-decarboxylation 

reactions, requiring about 3 days to reach completion.  

 

Scheme 2. (a) Synthesis and depolymerization of a polycarbamate based on 4-hydroxybenzyl 

alcohol and DMED (PBC-L); (b) Chemical structures of related analogues containing 2-

methylaminoethanol (PBC-L2) or mercaptoethanol (PC-L) spacers.   

We also incorporated different cyclization spacers (Scheme 2b).32 For example, the 

replacement of DMED with 2-methylaminoethanol in PBC-L2 or the mercaptoethanol spacer in 

PC-L resulted in more rapid cyclization reactions. While PBC-L required 7 h to reach 50% 
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depolymerization after triggering, PBC-L2 was 50% degraded in 1 h, and polymer PC-L was 50% 

degraded in less than 30 min. Thus, the insertion of cyclization spacers allowed tuning of the 

depolymerization rate. However, a limitation of all of these backbones is the tendency to form 

cyclic oligomers during the polymerization (~20 wt%). These cyclic species are difficult to 

separate from the desired linear polymers and do not depolymerize upon end-cap cleavage as they 

do not possess end-caps. Cyclic species have not been reported for PBCs (Scheme 1), likely 

because their more rigid structures make intramolecular cyclization less favorable.  

Polycarbamates with linkers were the first SIPs incorporated into block copolymers and 

used in encapsulation and release studies.10 For example, we prepared an amphiphilic block 

copolymer by conjugating a hydrophilic PEG block to the end-cap of the hydrophobic SIP block. 

The resulting block copolymer PBC-PEG (Figure 3a) was self-assembled to form nanoparticles. 

Hydrolysis of the ester linkage between PEG and the SIP block resulted in the depolymerization 

of the SIP and degradation of the nanoparticles. Nile red, a hydrophobic dye molecule, was 

encapsulated into the SIP nanoparticles and was released as the nanoparticles degraded. In recent 

work, we used thermo-responsive poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) as a 

hydrophilic block conjugated by a UV light-responsive linker end-cap (Figure 3b, PBC-

PDMAEMA). PBC-PDMAEMA was self-assembled to form nanoparticles and we hypothesized 

that chain collapse of the PDMAEMA at elevated temperatures might increase the hydrophobicity 

of the SIP environment, slowing its depolymerization. However, the faster rate of background 

reactions at the temperatures required for the chain collapse of the PDMAEMA (60 ºC) made it 

impossible to observe the anticipated effects of PDMAEMA chain collapse. In the future, it may 

be ideal to use a polymer such as poly(N-isopropylacrylamide), which has a lower cloud point 

temperature.33   
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Figure 3. Structures of PBC-L block copolymers with (a) PEG and (b) PDMAEMA. 

 Almutairi and coworkers incorporated end-caps responsive to UV and near-infrared (NIR) 

light onto PBC-L and prepared nanoparticles from the resulting polymers using an emulsion 

process.34 The nanoparticles were degraded using UV or NIR light and released Nile red in 

response to these stimuli. The cytotoxicity of the polymers and their degradation products were 

also explored. The materials were found to be as well tolerated as poly(lactic-co-glycolic) acid, 

which is approved in certain clinical applications. Nevertheless, like the poly(benzyl carbamate)s 

described above, this class of polycarbamates releases azaquinone methides during their 

depolymerization and further investigations of potential toxicity are required. 

Hyperbranched polycarbamates containing linkers. Liu and coworkers inserted benzyl ether 

linkers into poly(benzyl carbamate)s to synthesize hyperbranched SIPs.35 The linkers were 

necessary to prevent intramolecular cyclization. The incorporation of self-immolative benzyl ether 

linkages enabled the polymerization of monomers such as 8 to afford hyperbranched polymers 

using DBTL as a catalyst at 110 ºC (e.g., Scheme 3, PBC-HB). Different end-caps were 

incorporated, such as P3M, AB, and diethanol disulfide (DES), and different backbone variations 

including benzyl thioethers were also synthesized, leading to polymers with Mn values of ~6–7 

kg/mol and Đ of 1.5–1.7. PEG and PDMAEMA were appended to the terminal hydroxyls, leading 

to amphiphilic copolymers. The PEG copolymers were dispersed in water and loaded with small 
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molecules such as DOX. Treatment with the stimulus, such as blue light for the P3M end-cap, led 

to release of the DOX over a few hours, even within cells. The cationic PDMAEMA chains were 

used to complex DNA and it was released upon treatment with glutathione for the DES end-capped 

system. Mitochondrial targeting through functionalization of the peripheral hydroxyls with 

CGKRK peptides was also explored, and the depolymerization of the AB capped polymer by 

endogenous H2O2 was demonstrated through the release of a fluorescent reporter. Colorimetric 

detection of H2O2 was achieved using gold nanoparticles combined with an enzymatic 

amplification sequence. In their in vitro studies, the authors did observe some cytotoxicity from 

the depolymerization products, suggesting that chemical and enzymatic assays may be more 

promising than in vivo applications. 

 

Scheme 3. Synthesis of a hyperbranched polycarbamate. 

Reversible SIPs 

Reversible SIPs are typically based on polymers with low (i.e., below room temperature) ceiling 

temperatures (Tc), where Tc is defined as the temperature above which, polymer of high molar 

mass is not formed in a given chain polymerization:36  
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𝑃! +𝑀	 → 𝑃!"#        (Equation 1) 

where Px is the growing chain with DP of x and M is a monomer. By definition, at the ceiling 

temperature DG = 0 for Equation 1, and consequently Tc = DH/DS. Thus, the ceiling temperature 

for a given polymerization depends on both enthalpic and entropic contributions. Tc also depends 

on the initial monomer concentration, and Tc(co) denotes the ceiling temperature for an initial 

monomer concentration of 1 M, while Tc(bulk) denotes the ceiling temperature for undiluted 

monomer. Polymers can be synthesized below the Tc, but above the Tc, depolymerization occurs 

spontaneously. Capping or cyclization of the polymer below its Tc prevents the depolymerization, 

but when the end-cap or backbone is cleaved at room temperature, depolymerization can occur. 

Many of the reversible SIP backbones have actually been known for decades, but in the past 

decade, there have been significant developments in the introduction of stimuli-responsive end-

caps that enable depolymerization to be triggered by a wide range of stimuli. This has facilitated 

the application of triggered depolymerization in diverse fields ranging from smart composites to 

drug delivery. Their depolymerization back to the monomers from which they were initially 

synthesized also endows reversible SIPs with the potential to be recycled through 

depolymerization and subsequent repolymerization. The most important classes of reversible SIPs 

are poly(benzyl ether)s, polyphthalaldehydes, polyglyoxylates, polyglyoxylamides, and 

poly(olefin sulfone)s. 

Poly(benzyl ether)s (PBEs). Inspired by the work of McGrath and coworkers on PBE 

dendrimers,16 as well as prior work on the anionic polymerization of quinone methides,37 Phillips 

and coworkers introduced depolymerizable PBEs.38 They polymerized 2,6-dimethyl-7-phenyl-1,4-

benzoquinone (9a) using 1-tert-butyl-2,2,4,4,4-pentakis(dimethylamino)-2λ5,4λ5-

catenadi(phosphazene) (P2-t-Bu) and an alcohol initiator at low temperatures (-10 to -20 ºC) to 
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afford polymer PBEa with high DPns, up to 2300 and Đ of 1.3–1.5 (Scheme 4). The methyl groups 

on monomer 9a were incorporated to prevent the uncontrolled polymerization37 and the phenyl 

moiety was incorporated to make depolymerization more favorable, as extended conjugation 

stabilizes the initial quinone methide depolymerization product compared to the (aza)quinone 

methides generated in the depolymerization of the polycarbamates and polycarbonates described 

above. End-capping was performed using chloroformates or alkyl or silyl chlorides to afford the 

corresponding PBEs responsive to light, fluoride, acidic environments and redox reactions.  

 

Scheme 4. Synthesis and depolymerization of PBEs with different pendant groups and end-caps. 

The ether backbone imparted higher stability to PBEs compared with other backbones such 

as PBCs when exposed to base, acid, and heat. However, they depolymerized by 1,6-elimination 

reactions (Scheme 4) in less than 1 h when exposed to stimuli, even in organic solvents. Different 

groups such as tri(ethylene glycol)s,39 fluoroalkyl chains,39 alkenes for thiol-ene reactions,40-41 

alkynes for CuAAC,42 and masked self-immolative moieties,43 were incorporated onto the pendant 

phenyl ring of PBEs (Scheme 4, PBEb-f). Furthermore, Zhang and coworkers prepared 
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bottlebrush PBEs by grafting PEG or polystyrene (PS) side chains.42 Interestingly, the PS-grafted 

polymer depolymerized more slowly, which was attributed to conformational constraints that 

made it more difficult for the backbone to attain the ideal geometry for the 1,6-elimination reaction.  

  Phillips and coworkers explored the triggered depolymerization of PBEs in the solid state. 

They combined hydrogen-terminated PBEs (PBEb-H and PBEc-H) with other polymers such as 

PS, polyethylene, and polypropylene, resulting in mixtures of plastics that could not be separated 

based on properties such as solubility.39 Addition of the base 1,8-diazabicyclo[5.4.0]undec-7-ene 

(DBU) resulted in selective depolymerization of the PBE in about 2 h at 23 °C (Figure 4). After 

recovering the monomers by extraction, they were repolymerized to afford PBE in 83% yield, 

compared to 87% yield for the original polymerization. Optimization of aspects such as cost and 

efficiency of monomer recovery would be required, but this was an interesting proof of concept 

for the use of SIPs in mixed plastic recycling. 

 

Figure 4. Separation of solid PBE (U) from solid polyethylene (P) and polypropylene (S) by 

selective depolymerization induced by DBU. Adapted with permission from reference 39. 

Copyright 2015, Royal Society of Chemistry. 
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While depolymerization occurred for the hydrogen-capped PBE in 2 h with DBU,39 Phillips 

and coworkers also noted that the depolymerization of most PBEs was very slow in the solid 

state.43 They attributed this to a lack of accessible end-caps at the solid-liquid interface, and 

therefore incorporated stimuli-responsive triggers, such as TBS-protected phenols, on each 

backbone repeat unit (e.g., PBEf-A, Scheme 4). Cleavage of these moieties resulted in 1,6-

elimination reactions of the resulting phenols, cleaving the backbone. Rigid polymer disks 

prepared from polymer PBEf-A were depolymerized to soluble products in less than 5 h in the 

presence of fluoride ions at 23 °C. In a related approach, Zhang and coworkers reported PBEs with 

pendant disulfide groups (PBEg-TBS, Scheme 4).44 Conjugation of PEG-SH via disulfide 

exchange led to graft copolymers, while reaction with HS-PEG-SH led to gels. The materials were 

degraded by a reducing agent (DTT), as the released thiol cyclized onto the carbonate group, 

releasing the phenol, which underwent a 1,6-elimination to initiate the depolymerization. In these 

latter two examples, the cleavage of the PBE through the pendant groups resulted in one fragment 

terminated with a phenol, that depolymerized, and another fragment terminated with a benzylic 

alcohol, which did not immediately depolymerize. In this sense, PBEs differ from polyaldehydes 

where backbone cleavage results in two unstable fragments as described in the next sections.  

Ergene and Palermo explored cationic PBEs as potential antibacterial polymers.40-41 They 

grafted primary and tertiary amines as well as quaternary ammonium groups onto alkene-

functionalized PBEs using thiol-ene chemistry (PBEd-TBS, Scheme 4). The primary amine-

functionalized PBEs had the highest activities. The tertiary amine-functionalized PBEs were much 

less active, and the quaternary ammonium systems had intermediate activities. Hemolysis, the lysis 

of red blood cells, often serves as an initial indicator of toxicity to mammalian cells. The primary 

and tertiary amine-functionalized PBEs were highly hemolytic, but the quaternary ammonium-
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functionalized PBE was much less hemolytic. Depolymerization of the primary ammonium-

functionalized polymer, induced by fluoride, greatly reduced its hemolytic toxicity, while retaining 

high antibacterial activity. In follow-up work, Ergene and Palermo grafted varying ratios of PEG 

and primary amines to PBEd-TBS to modulate their hydrophobic-hydrophilic balance.45 With 25–

50 mol% of 800 g/mol PEG, high antibacterial activities were retained while reducing hemolytic 

activities, and only minor changes in these activities were observed upon depolymerization. In 

contrast, grafting of 2000 g/mol PEG resulted in similar decreases in antibacterial and hemolytic 

activities. Overall, this work demonstrates a potential role for depolymerization in modulating the 

behavior of antibacterial polymers. Further work will be needed to determine the toxicity of the 

PBEs and their depolymerization products. The authors also noted the potential for SIPs in the 

development of antibiofilm coatings with a triggerable self-cleaning characteristic. Some initial 

efforts towards this approach were recently reported by Lienkamp and coworkers in collaboration 

with our group using UV light-sensitive PEtG as a sheddable coating layer.46  

Polyphthalaldehydes (PPAs). PPAs are polyacetals composed of o-phthalaldehyde (o-PA) or its 

derivatives.47 Because of the relatively small enthalpy change associated with the conversion of 

the aldehyde’s carbon-oxygen double bond to two carbon-oxygen single bonds in the polymer, the 

entropy gained through depolymerization overrides the enthalpic cost of depolymerization at 

relatively low temperatures, leading to low Tc values (e.g., -40 °C for o-PPA).48 Metastable PPAs 

can be prepared via cyclization or end-capping reactions, but when terminal hemiacetal moieties 

are revealed through either a backbone or end-cap cleavage, they rapidly depolymerize to the 

monomers at ambient temperatures. Significant advancements have been made in both the 

synthesis and application of PPAs over the past decade.  
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Cyclic polyphthalaldehydes. In 1960s, Aso and Tagami studied different acid catalysts for the 

polymerization of o-PA, including BF3·OEt2 (Scheme 5), TiCl4, SnCl4, and [Ph3C][BF4] at –78 

°C and suggested cyclic structures of the polymers (cPPAa).49-50 The polymerizations were rapid 

(less than 1 h) but they could not control the DPn of the isolated PPAs. Ito and coworkers used 

BF3·OEt2 for the polymerization of o-PA derivatives including 4-chlorophthalaldehyde, 4-

bromophthalaldehyde, and 4-trimethylsilylphthalaldehyde affording cPPAb-d.51 The electron-

withdrawing groups made the backbones less susceptible to cleavage. Moore and coworkers finally 

confirmed the cyclic structures of cationically synthesized PPAs via end-group analysis using 

NMR spectroscopy and mass spectrometry.52 They also discovered that under cationic conditions, 

the cyclic polyacetal backbone of PPAs could reversibly cleave to release or incorporate monomers 

before backbiting and forming the final cyclic polymers. Taking advantage of this scrambling 

mechanism, they prepared random and multi-block copolymers by simply mixing PPAs with 

different derivatives of o-PA (Figure 5).53 Kohl and coworkers later suggested that the BF3·OEt2 

mediated synthesis of PPAs involves zwitterionic intermediates and that the interactions of two 

chain ends with opposite charges allows the ring formation events.54 
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Scheme 5. BF3·OEt2 catalyzed polymerization of o-PA and its derivatives to give PPAs. Cleavage 

of the backbone leads to depolymerization to the corresponding monomers. 

 

 
Figure 5. Block and random cyclic copolymers of o-PA can be prepared by a reversible opening 

and closing of the cyclic PPA backbone. Adapted with permission from reference 53. Copyright 

2013, American Chemical Society. 

Kohl and coworkers also recently employed BF3·OEt2 to copolymerize o-PA with a series 

of aliphatic aldehydes.55 The copolymerization yield and average molar mass decreased by 

increasing the aliphatic aldehyde feed percentage. However, the mechanical properties of the lower 
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molar mass copolymers were enhanced by cross-linking using radiation-induced thiol–ene click 

chemistry. These results were important as pure PPAs are highly brittle, and the copolymerization 

strategy provided access to a range of PPA-based copolymers with varying mechanical properties 

and also functional groups. As for many commercial plastics, the properties of PPA have also been 

tuned through the incorporation of additives. For example, Sottos and coworkers showed that 

remaining solvents, such as CHCl3, CH2Cl2, or dioxane, from a solvent-casting process could serve 

as plasticizers and change the mechanical properties of PPA films.56 For example, depending on 

the solvent, they found different elastic moduli (2.5–3 GPa), tensile strengths (25–35 MPa), failure 

strains (1–1.5%), and Tg values (64–95 °C). The additive strategy was also explored by Kohl and 

coworkers through the incorporation of ionic-liquid and ether-ester plasticizers.57 Their study 

showed that plasticizers changed the thermal stability and mechanical properties. For example, 20 

parts per hundred bis(2-ethylhexyl) phthalate (BEHP) reduced the storage modulus to ca. 1.2 MPa, 

which is about half that of pure o-PPA. In addition, the additives lowered the melting point of the 

degradation products from 54.3 °C (pure o-PA) to 37.5 °C (for formulated mixtures), which 

enabled the degradation products to better maintain the liquid state. This can potentially improve 

the transient nature of PPA devices by allowing them to be more readily absorbed into the 

environment. 

Cyclic PPAs are metastable solids due to their susceptibility to backbone cleavage and 

depolymerization. This feature has garnered interest for a number of applications. Early work 

focused on lithography applications, wherein a resist was patterned using a depolymerization-

inducing beam to dry-develop a pattern. Ito and Willson initially exploited the pH-sensitivity of 

PPA’s acetal backbone by combining the polymer with photoacid generators (PAGs).58 In their 

early studies using linear PPAs, good light sensitivity and pattern development were observed.59-
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60 However, the required formulations were too sensitive and the depolymerization product o-PA 

contaminated the expensive optics. They also investigated the more stable halogenated derivatives 

cPPAb and cPPAc.51 However, they were not able to self-develop at temperatures below 100 °C 

and required a postbaking step. 

More recently, the groups of White, Rogers, and Moore fabricated transient electronics 

based on cyclic PPAs.61 They combined PPA with a PAG to create substrates for free-standing 

transistor arrays. Upon exposure to a UV light (379 nm), acid-triggered depolymerization led to 

disintegration of the array (Figure 6a). They also prepared thermally-triggerable transient 

electronics based on PPAs layered with an acid microdroplet-containing wax.62 Melting the wax 

released the acid, resulting in rapid device destruction (Figure 6b). Kohl and coworkers also 

explored strategies for the fabrication of PPA-based electronics.63 For example, they prepared 

materials by layering PAG-free PPA with a thin layer of PPA/PAG blend and showed that this 

method improved the shelf life of the materials.64 Building on this work, they investigated the 

application of different polynuclear aromatic hydrocarbons as PAGs and showed that the 

combination of a pentacene-based sensitizer with PPAs afforded a transient material able to 

depolymerize after 1 min in direct sunlight.65  

 
Figure 6. Acid release and destruction of PPA-based transistor arrays due to (a) the activity of a 

photoacid generator after irradiation with UV light and (b) melting an acid microdroplet-

(a)

(b)
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containing wax within the PPA. Adapted with permission from reference 61 (a) and reference 62 

(b). Copyright 2014, John Wiley and Sons. 

Mechanically-triggered depolymerization of cyclic PPA has also been investigated by 

Moore, Boydston, and coworkers.66 Their study showed that for PPA above a critical molar mass 

of about 30 kg/mol, mechanical forces applied using pulsed ultrasound induced heterolytic chain 

scission, created hemiacetalate and oxocarbenium chain ends, leading to subsequent 

depolymerization. Exploiting the potentially reversible depolymerization back to monomer, they 

recycled 67% of the resulting o-PA and repolymerized it to produce high molar mass PPA. 

Moore and coworkers used cyclic PPAs for ion-triggered release of payloads from 

microcapsules.67 The core-shell microcapsules were prepared by emulsification followed by rapid 

solvent evaporation, and were then suspended in acidic solutions with or without coactivating salts 

such as LiCl. The microcapsules selectively depolymerized in the presence of specific ions and 

released their contents due to a specific ion coactivation effect. White, Moore, Sottos, and 

coworkers also recently reported o-PPA-based composites which can be quantitatively recycled.68 

As PPAs are not thermally stable, a 14 min heat treatment at 120 °C was sufficient to fully 

disintegrate the composite and yield the monomer in addition to the reinforcing materials before 

reusing them to reproduce the identical composites (Figure 7). Even after three full cycles of 

depolymerization and repolymerization, the composites retained the same moduli (4.5 GPa) and 

tensile strengths (30 MPa). 
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Figure 7. Composites composed of carbon fiber and PPA (left) can be fully disintegrated to the 

starting carbon fiber (right, bottom) and o-PA (right, top) before the reproduction of the composite. 

Adapted with permission from reference 68. Copyright 2019, American Chemical Society. 

 

Linear polyphthalaldehydes. Linear PPAs can be produced by anionic polymerization methods 

as the propagating species have only one charged terminus and thus the chance of cyclization by 

backbiting onto the other neutral terminus is negligible. In early work, Aso and Tagami used 

anionic initiators including t-BuOLi, Na with naphthalene, and Na with benzophenone to prepare 

linear PPAs.69 End-capping was performed with reagents such as acetic anhydride. Similar to 

cPPA, the backbones of linear PPAs can be cleaved using heat, acid, or mechanical force. To 

enable PPA cleavage using different stimuli, Phillips and coworkers incorporated different end-

caps. Using an n-BuLi-initiated o-PA polymerization, they introduced fluoride ion-responsive t-

butyldimethylsilyl (TBS) and Pd(0)-responsive allyl carbonate (AC) end-caps.70 However, the 

polymerization reactions were slow (3–12 days) and showed a negative deviation from the targeted 

DPn values. Building on a work by Hedrick, Knoll, and Coulembier, showing that phosphazene 

superbases served as suitable initiators for rapid and well-controlled polymerization of o-PA,71-72 

Phillips and coworkers used P2-t-Bu with functional alcohol initiators to successfully polymerize 

o-PA in 3 h, and directly installed stimuli-responsive end-caps (Scheme 6).73-74 Depolymerization 

was successfully triggered using stimuli corresponding to the specific end-caps.  
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Scheme 6. Anionic polymerization of PAs using phosphazene and various responsive end-caps.  

As the synthesis of different o-PA derivatives is tedious, a limited number of linear PPA 

derivatives have been reported. Phillips and coworkers used the phosphazene/alcohol initiated 

polymerization method to prepare poly(4,5-dichlorophthalaldehyde)s (PPAb, Scheme 6).75 Post-

polymerization modification is an alternative approach to modify the structure and properties of 

PPAs. Moore and coworkers used the phosphazene/alcohol initiated polymerization to 

copolymerize benzaldehyde derivatives with o-PA, resulting in random copolymers with 

functional groups for post-polymerization reactions.76-77 Pendant nitrophenyl, bromophenyl, 

aldehyde, alkene, alkyne, imine, and hydroxyl groups were then used for the formation of 

nanoparticles, networks, and graft copolymers.  
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As noted above, linear PPAs were investigated in early lithography applications with PAGs 

due to the intrinsic acid-sensitivity of their polyacetal backbones.59-60 More recently, Knoll, 

Duerig, and coworkers exploited their intrinsic thermo-sensitivity in thermal scanning probe 

nanolithography (t-SPL).78-79 In this method, a cantilever, resting at ca. 300 nm above the surface, 

was heated to 700 °C and created a 3-D pattern by the thermal depolymerization of a PPA film. 

The pattern could also be transferred to the silicon substrate by reactive ion etching (RIE) (Figure 

8).71, 80 Taking advantage of the high precision of t-SPL, a PPA pattern was created for a sorting 

device that separated 60- and 100-nm particles in opposing directions in seconds.81 

 

Figure 8. Scanning electron micrograph of a nanoscale pattern prepared by t-SPL of a PPA film 

followed by transfer to a silicon substrate by RIE. Adapted with permission from reference 80. 

Copyright 2010, John Wiley and Sons. 

Phillips and coworkers have employed PPA end-cap cleavage in their applications. In their 

early work, they prepared stimuli-responsive plastics via patterning of a TBS end-capped PPA 

within a control allyl ether (AE)-capped PPA (PPAa-TBS and PPAa-AE, Scheme 6).70 The 

depolymerization of PPAa-TBS was induced with fluoride ion, and resulted in a cylindrical hole. 

Using PPAa-TBS, they also prepared microcapsules with aqueous cores containing fluorescein-

labeled dextran.74 Exposure to fluoride ion resulted in holes in the capsule wall, causing release of 

the dextran. Exploiting its high stability, Phillips and coworkers later created multi-layered 

macroscopic patterns composed of PPAb with different stimuli-responsive end-caps.75 Different 
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layers were selectively degraded in the presence of specific stimuli such as Pd(0) and fluoride ion 

(Figure 9). They have also fabricated self-powered microscale pumps which generated flow based 

on the depolymerization of PPAa-TBS to soluble monomers in the presence of fluoride ions.82  

 

Figure 9. Visual ion sensors based on PPAb (red triangles, blue circles, and yellow grids are Pd(0), 

fluoride ion, and non-responsive PPAs respectively. Adapted with permission from reference 75. 

Copyright 2015, John Wiley and Sons.  

 

Polyglyoxylates (PGs). PGs are another class of polyaldehydes that exhibit low Tc, and 

consequently undergo depolymerization following an end-cap or backbone cleavage. Poly(ethyl 

glyoxylate) (PEtG),83 poly(methyl glyoxylate) (PMeG),84 and poly(glyoxylic acid) salts85 were 

reported over the past few decades and were initially stabilized through end-capping with 

isocyanates or vinyl ethers. With these end-caps, PGs degraded gradually by the hydrolysis of the 

pendant esters, backbone acetal cleavage, and backbone depolymerization, leading to the 

corresponding alcohols and glyoxylic acid hydrate (GAH).86 The conversion of GAH to CO2 

occurs through the glyoxylic acid cycle, an anaerobic variant of the Kreb’s cycle, which occurs in 

bacteria, plants, and protists. The degradation products of PEtG were found to be non-toxic to 

plants and also in an invertebrate model.87 GAH is also a metabolic intermediate that can be 

processed in the human liver, so it is anticipated to be nontoxic at low concentrations.88 

 In 2014, our group introduced stimuli-responsive end-caps to PGs to allow their triggered 

end-to-end depolymerization.89 We polymerized ethyl glyoxylate (EtG) in CH2Cl2 using catalytic 
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NEt3 at -20 ºC to afford PEtG (Scheme 7a). Rigorous purification of the commercial EtG, through 

distillation over P2O5, was critical to depolymerize oligomers, and dehydrate the EtG hydrate. 

Based on size exclusion chromatography and end-group analysis using NMR spectroscopy, the 

polymerization is initiated by trace EtG hydrate. Thus, the molar mass of PGs is strongly dependent 

on the monomer purity. We have reported PEtGs with Mn values between ~5–250 kg/mol and Đ 

of 1.4–2.1. Initially, 6-nitroveratryl carbonate (NVOC) was introduced as a stimuli-responsive 

end-cap, allowing depolymerization to be induced by UV light.89 It was later expanded to other 

stimuli including reducing thiols (DS, Azo), H2O2 (AB), acid (Trit, MMT, DMT), heat (DA), and 

multiple stimuli (light, reducing agents, and H2O2; MS) (Scheme 7a).90-92 
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Scheme 7. (a) Synthesis of PEtGs with different end-caps, its depolymerization back to monomer, 

and eventual monomer hydration and hydrolysis to afford GAH; (b) Synthesis of different 

glyoxylates from their fumaric or maleic acid esters.  

 In addition to EtG, other glyoxylate monomers were synthesized and polymerized. We 

prepared methyl glyoxylate (MeG), n-butyl glyoxylate (BuG), benzyl glyoxylate (BzG) and L-

menthyl glyoxylate (MenG) from their corresponding maleic or fumaric diesters (11) by 

ozonolysis under reducing conditions (Scheme 7b).89, 93 So far, a key criterion for obtaining pure 

monomer has been the ability to purify the glyoxylate by distillation over P2O5, at less than 165 

°C, as the P2O5 drying byproduct H3PO4 contaminates the distillate at higher temperatures. Other 

drying agents such as CaH2 resulted in slow cracking of oligomers and impure product.94 In 

addition, the monomer precursors must be stable to ozonolysis, preventing the incorporation of 

double and triple bonds as pendant groups, as they would undesirably be cleaved by ozonolysis. 

We polymerized MeG, BuG, BzG, and MenG, and copolymerized them with EtG.89, 93 The 

homopolymers had low Mn (2.1–3.8 kg/mol), which can in some cases be attributed to steric 

hindrance (e.g., BuG, MenG). However, it has also been challenging to achieve purities as high 

as we achieved for EtG. With further optimization of the monomer distillation process, higher 

DPns will likely be achieved. In contrast, copolymers of the different glyoxylates with EtG 

typically had relatively high DPns (Mn ranging from 30–40 kg/mol), suggesting that this approach 

mitigates issues of monomer purity and steric hindrance.  

In addition to the NEt3-mediated polymerization method, anionic polymerization of 

glyoxylates has also been investigated. Moore and coworkers used n-BuLi as an initiator for EtG 

polymerization and end-capped the resulting polymer with phenyl isocyanate.95 However, the fact 

that the resulting polymer had two end-caps, based on NMR spectroscopy, suggested that the 
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polymerization was not directly initiated from n-BuLi. Instead, EtG hydrate quickly quenched the 

n-BuLi, producing hydrate-based initiators that grew bidirectionally, resulting in two polymer 

termini that were later end-capped. To address this, we developed and reported a rigorous 

purification procedure for EtG and re-explored its anionic polymerization.94 Initiation with n-BuLi 

at 20 ºC, followed by cooling to -20 ºC for 10 min, led to good dispersity values (Đ ~1.5) and good 

control over DPn up to ~200 repeating units (Mn ~20 kg/mol). Beyond this, the concentration of 

added initiator became so low that even trace hydrate initiators became significant and the DPn 

deviated from the expected value. Up to a DPn of 200, the end-group fidelity was greater than 90%, 

dropping to 71% at a targeted DPn of 400. Different alkyllithium reagents and alkoxides were also 

effective initiators.  

 Moore and coworkers have also investigated the cationic polymerization of EtG using 

different initiators such as BF3·OEt2, SnCl4, and Ph3CBF4.95 No end groups were found on 

cationically synthesized PEtG, suggesting a cyclic structure. Based on mass spectrometry results, 

Lewis acid initiators and high monomer concentrations led to backbiting of the growing PEtG 

chain on a pendant ester, leading to loss of an ethyl group. On the other hand, lower concentrations 

and carbocationic initiators led to backbiting on the backbone acetal. Both cyclic and lariat-shaped 

polymers were formed. Cationic copolymerization of EtG and o-PA was used to reduce the 

brittleness of PPA and increase its thermal stability.95 The Tg and decomposition temperatures 

varied according to the ratio of monomers, with higher EtG leading to lower Tg and increased 

decomposition temperature.  

PGs are attractive for biomedical applications as they eventually degrade to GAH, a 

metabolic intermediate. We prepared PEG-PEtG-PEG block copolymers by first introducing a 

linker end-cap containing both a photo-responsive moiety and a terminal alkyne (Scheme 7a, 



 30 

NVOC-link), and then attaching the PEG blocks using copper-assisted azide-alkyne cycloaddition 

(CuAAC).89 The resulting amphiphilic block copolymers were self-assembled to form micelles in 

aqueous solutions. Irradiation with UV light led to the depolymerization and disintegration of the 

micelles in less than 1 h. The approach was also extended to linker end-caps such as DS and AB-

link (Scheme 7a), which are responsive to reducing thiols and H2O2 respectively.96 These stimuli 

are intrinsically present in the body and are associated with inflammation and cancer. Conjugation 

of PEG via disulfide exchange or CuAAC led to triblock copolymers that could also be self-

assembled to form micelles. Treatment with the appropriate stimulus led to rapid depolymerization 

and micelle disintegration. The micelles were used to encapsulate Nile red, Dox, and curcumin. 

All payloads were rapidly released in the presence of low concentrations of stimuli, suggesting an 

amplification effect.  

In the course of the work on PEG-PEtG-PEG micelles, we found that not all of the drugs 

we investigated could be encapsulated at high loadings into the PEtG micelle core. This was 

addressed by changing the pendant groups on the PG block.93 By incorporating BuG, MenG, or 

chloral (non-glyoxylate aldehyde), we tuned the hydrophobicity of the micelle core and its 

compatibility with the drug celecoxib. Cytotoxicity studies were performed on the micelles in 

MDA-MB-231 human breast cancer cells. The different glyoxylate systems had different effects 

on cell metabolic activity and the degraded (triggered) micelles had different effects than the intact 

micelles. However, caution must be used in interpreting the results of these studies, as it is known 

that degradation products such as glyoxylate and ethanol can be metabolized in the liver but not in 

MDA-MB-231 cells.88  

Using a thermally-triggerable PEG-PEtG-PEG triblock copolymer that was prepared using 

the DA-link end-cap (Scheme 7a), capable of undergoing a retro-Diels-Alder-elimination cascade, 
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we also investigated the indirect triggering of nanoassemblies in collaboration with the Sandre 

group.91 A 63 kg/mol PEtG block was coupled to either 750 or 5000 g/mol PEG, leading to vesicle 

and micellar assemblies respectively (Figure 10a,b). Direct triggering of PEtG was achieved by 

heating the assemblies at 75 ºC. For indirect triggering, we encapsulated iron oxide nanoparticles 

(IONPs) into the micelle cores (Figure 10c). Oscillating magnetic fields are known to induce 

localized heating around IONPs, an effect termed magnetic field hyperthermia (MFH).97 MFH led 

to a rapid increase in particle diameter and decrease in DLS count rate for the IONP-loaded 

micelles, which was attributed to their depolymerization followed by aggregation and 

sedimentation of the released hydrophobic IONPs.  

 

Figure 10. TEM images of assemblies formed from thermo-responsive PEG-PEtG-PEG triblock 

copolymers (a) micelles; (b) vesicles; (c) IONP-loaded micelles. Adapted with permission from 

reference 91. Copyright 2017, Royal Society of Chemistry. 

We also prepared PEtG-based particles for drug delivery applications by using an emulsion 

process.98 We blended PEtG with PLA to achieve a two-stage release process, where a portion of 

loaded drug was released through an initial triggered depolymerization of PEtG, and a slower 

second-stage release occurred through the gradual degradation of PLA. Both NVOC and DS end-

capped PEtG were used and gave particles with diameters of 130–150 nm. The particles were 

loaded with Nile red as a probe and with the drug celecoxib. In each case, the extent of release 

following triggering with the stimulus (UV light or DTT) increased with an increasing PEtG:PLA 

ratio, showing in principle that the extent of initial release could be tuned according to the particle 
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composition. However, in cytotoxicity studies with MDA-MB-231 cells we found that the sodium 

cholate surfactant was relatively toxic. Thus, less toxic surfactant should be used in future studies.  

While the above work involved PG-based assemblies in solution, we also investigated the 

solid state depolymerization of PEtG. For example, PEtG-NVOC (Scheme 7) films were 

immersed in aqueous buffer solutions at pH 3 to 8.92 For irradiated films, the degradation rate 

depended on the pH, with a rate minimum at pH 5, consistent with a hemiacetal fragmentation 

mechanism. The degradation time was also dependent on the film thickness. For instance, a 25 µm 

thick film required 3 days for complete erosion and increasing the film thickness to 150 µm 

increased the time to 10 days. Another determining factor was the temperature as much faster 

erosion was observed at 30 °C compared to that at 20 °C. We also found that the degradation rate 

was not dependent on the presence of water, and complete depolymerization was observed in the 

dry solid state.92 In the absence of water, the monomer remains unhydrated. With a boiling point 

of 110 °C, EtG can readily evaporate from the surface. We used this feature to demonstrate single 

step micropatterning as well as a depolymerization-repolymerization sequence. 

While PEtG-NVOC films are very stable in the absence of UV light, we observed that 

trityl end-capped PEtGs such as PEtG-MMT and PEtG-DMT (Scheme 6a) were surprisingly 

unstable in the solid state.99 For example, films of PEtG-DMT were stable for more than 30 days 

at 6 °C, but completely degraded in less than 5 days at 30 °C. PEtG-MMT films were more stable, 

requiring more than 30 days for complete depolymerization at 30 °C. We attributed this behavior 

to an equilibrium between the capped and uncapped polymer, the position of which depends on 

the stability of the corresponding trityl cation. In the uncapped state, depolymerization occurs and 

is irreversible due to evaporation of monomer from the surface. To demonstrate the potential 

application of the system as a thermal history sensor, we incorporated Nile red and IR-780 dyes 
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into the films. Depolymerization led to aggregation of the dyes and changed the colour of the films. 

We envision that these materials can potentially be used for smart packaging applications.  

 PEtG is an amorphous polymer with low Tg of about -10 °C. Therefore, it forms tacky and 

rubbery coatings at ambient temperatures. To improve its properties, we recently blended PEtG-

NVOC with polyesters including polycaprolactone (PCL), poly(lactic acid) and poly(R-3-

hydroxybutyrate.100 We found that PEtG exhibited micro-scale phase separation with the 

polyesters, resulting in glassy or crystalline polyester domains. The mechanical properties of the 

blends were intermediate between those of the corresponding homopolymers, indicating that it was 

possible to tune the physical properties of the films through blending and to achieve non-tacky 

films. For example, while PCL had a Young’s modulus of 490 MPa and tensile strength of 13 

MPa, the 50:50 PCL:PEtG blend has values of 192 MPa and 5 MPa respectively. Mass loss studies 

and SEM images of the films showed that light-triggered degradation of the PEtG blocks was 

achieved, leaving a porous matrix of polyester that eroded more slowly. These coatings may be 

useful for the controlled release of drugs or fertilizers, as the payload may be released through the 

porous eroded film.  

Polyglyoxylamides (PGAMs). We recently reported PGAMs as a new class of SIPs with the aim 

of removing the hydrolytically labile pendant esters of PGs and enabling further structure-property 

tuning.90 The PGAMs were synthesized by the reaction of PEtG with different amines at ambient 

temperatures for 48 hours (Scheme 8). High (> 95%) conversions of the esters to amides were 

obtained with a variety of primary amines, and with the secondary amine pyrrolidine. Other 

secondary amines led to lower conversions, suggesting steric hindrance impeded the reaction. 

Another consideration is that the PEtG end-cap must be stable under the amidation conditions. For 

example, the carbonate-based end-caps were cleaved during the amidation, leading to 
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depolymerization, while trityl end-caps were stable. The depolymerization mechanism for PGAms 

is the same as that of the polyglyoxylates, involving hemiacetal degradation, and produces the 

corresponding glyoxylamide hydrates as depolymerization products. 

 

Scheme 8. Synthesis of PGAMs with different pendant groups starting from PEtG with a MMT 

end-cap. 

The PGAMs had very different properties than their corresponding esters. For example, 

PMeG and PEtG have Tg values of 25 and -9 °C respectively,89 whereas poly(methyl 

glyoxylamide) (PGAMa) and poly(ethyl glyoxylamide) (PGAMb) have Tg values of 90 and 85 

°C respectively.90 These differences can be attributed to the abilities of the PGAMs to form 

hydrogen bonds. Some PGAMs (PGAMa,f,g) were soluble in water, opening opportunities for 

applications requiring water solubility. For example, in collaboration with Ree and Kelland we 

reported the study of PGAMs as kinetic hydrate inhibitors for the prevention of gas hydrate 

plugging in oil and gas lines.101 Overall, there are many potential applications of PGAMs that 

remain unexplored. However, the limited availability of end-caps that are stable to the amidation 

reaction, yet undergo stimuli-selective cleavage is an ongoing challenge that must be addressed to 

fully exploit the PGAMs. 
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Poly(olefin sulfone)s (POSs). POSs are another class of low Tc polymers that has been exploited 

for their depolymerization behavior. They are composed of alternating SO2 and vinyl monomers 

(13), copolymerized via free-radical polymerization using initiators such as tert-butyl 

hydroperoxide (tBuOOH) in liquefied SO2 below -10 ºC (Scheme 9a).102-103 Thus far, stimuli-

responsive end-caps have not been incorporated into POSs. Instead, the depolymerization has been 

initiated by random backbone cleavage at the relatively weak C-S bond, followed by entropically 

favoured release of gaseous SO2 and the corresponding vinyl monomer. The depolymerization can 

follow a free-radical (Scheme 9b)104 or E2 elimination (Scheme 9c)105 mechanism depending on 

the stimulus, conditions, and specific POS structure. In principle, the depolymerization products 

can be collected and repolymerized, although this has not yet been explicitly demonstrated. One 

advantage of the free-radical synthesis method of POSs is its high functional group tolerance. A 

vast array of different vinyl monomers has been incorporated, some of which are depicted in 

Scheme 9. Depending on the vinyl monomer, POSs generally have high Tgs, ranging from 77 °C 

for 1-hexadecene to 177–200 °C for styrene derivatives.102-103 

 

Scheme 9. (a) Synthesis of POSs, showing the incorporation of different vinyl monomers, and 

their depolymerization by (b) free-radical and (c) E2 mechanisms. 
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POSs have been of significant interest for photolithography applications due to their 

depolymerization to volatile products in response to deep-UV and soft-X-ray irradiation. Early 

examples included POSa and POSb (Scheme 9), which were cleaved by electron beams and UV 

light.102-103 Fréchet and coworkers investigated poly(t-butyl vinyl carbonate sulfone) (POSc), and 

found that while the polymer exhibited high lability to X-ray radiation and self-development 

capabilities, it did not have sufficient thermal stability to serve as a resist material.106 Moore and 

coworkers recently showed that the degradation temperature could be tuned from 91–213 °C using 

different isomeric butyl carbonate side chains (POSc-f), with increased branching at the b-carbon 

to the carbonyl group leading to higher thermal stability.107 To enhance the sensitivity of POSs to 

UV light, a number of groups have also explored the incorporation of photobase generators (PBGs) 

as pendant groups (e.g., POSg) which can accelerate light-mediated backbone cleavage by the E2 

mechanism.105 

More recently, other applications of POSs have been explored. For example, Lobez and 

Swager employed POSs in smart composite materials.108 A POS with pendant azide moieties 

(POSh, Scheme 9) was functionalized with pyrene to enhance its compatibility with multiwalled 

carbon nanotubes (MWCNTs) and with a bismuth complex to enhance sensitivity towards ionizing 

radiation. Exposure of devices composed of the POS and MWCNTs to gamma irradiation resulted 

in the depolymerization of the POS, increasing connectivity between the MWCNTs, and providing 

a signal. It was proposed that the resulting sensors could be used for the detection and dosimetry 

of ionizing radiation in applications such as national security and nuclear research. Using the 

pendant azides on POSh, Lobez and Swager also prepared elastomeric composites via CuAAC-

mediated conjugation to an alkyne-functionalized polydimethylsiloxane.109 The mechanical 

properties of the composites were tuned based on the polymer ratios, lengths, and cross-linking 
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density. The composites were broken down by piperidine, and the process was visualized by the 

release of a dye molecule. Depolymerization of POS has also been exploited for the development 

of detachable adhesives. Sasaki and coworkers used a POS composed of volatile olefin and cross-

linkable carboxylic acid moieties, with a PBG between two glass slides (Figure 11).110 Curing 

with a carbodiimide resulted in strong adhesion of the slides. After irradiation and heating at 100 

°C, the adhesive strength decreased by 50% after 5 min, and almost completely disappeared after 

1 h. 

 

Figure 11. (a) A POS composed of a volatile olefin and a cross-linkable carboxylic acid-

functionalized olefin was deposited between glass slides with a PBG and a cross-linker, and then 

thermally cured leading to adhesion of the slides. Irradiation with UV light, followed by heating 

to release volatile monomer detached the surfaces. (b) Schematic showing the conversion of PBG 

to amine base, then the resulting depolymerization and volatilization of the POS with heat. 

Adapted with permission from reference 110. Copyright 2016, American Chemical Society. 
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Goodwin and coworkers explored the potential for POSs in drug delivery applications. 

They showed that poly(vinyl acetate sulfone) (POSi, Scheme 9) could be triggered to 

depolymerize by reactive oxygen species such as Ca(OCl)2, FeCl2/H2O2, KO2, and NaOCl, and by 

mechanical activation with ultrasound.111 While the conditions were relatively harsh, the potential 

for POS to be cleaved by more biologically relevant stimuli was demonstrated. They also prepared 

a series of different poly(vinyl carbamate sulfone)s (e.g., POSj-l, Scheme 9).112 Polymer POSl 

was then used for the preparation of dye-loaded nanoparticles via a nanoprecipitation process. The 

particles underwent degradation more rapidly at pH 7.0–7.4 than at pH 5.3, presumably due to the 

more rapid E2 elimination-based degradation at higher pH. Because of their increased 

susceptibility to degradation at neutral compared to mildly acidic pH, the particles were proposed 

for mucosal delivery, and the release of dyes in simulated mucosal fluid was demonstrated. While 

promising, further work will be needed to explore the stability of POSs in biological media as well 

as the toxicity of their depolymerization products.  

 

Perspective and outlook 

In the growing quest for “smart” degradable materials, interest in SIPs has steadily increased over 

the past decade. Different backbones have been explored and applied to a vast array of different 

applications. Properties of some of the different backbones are summarized in Table 1. Each 

backbone has its own advantages and limitations in terms of synthetic access, physical and 

toxicological properties, as well as depolymerization kinetics in solution and the solid state. Thus, 

it is important to select an appropriate backbone for a given application.  

 

Table 1. Summary of different SIP backbones. 
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Backbone Monomer 

synthesis 

Polymer 

synthesis 

Depolymerization 

mechanism 

Physical 

properties 

Applications 

PBC 1 step from 

commercial 

material  

Sn(IV) catalysed 

step-growth 

polymerization 

1,6-elimination-

decarboxylation  

Not reported Sensors, drug 

delivery, activity 

linked labeling of 

enzymes 

PBC with 

linkers 

6 step (total) 

convergent 

synthesis  

DMAP 

catalyzed step-

growth 

polymerization 

Cyclization-1,6-

elimination-

decarboxylation 

Not reported Drug delivery 

PPA Commercially 

available 

monomer; 

challenging 

syntheses of other 

monomers  

Anionic (linear) 

or cationic 

(cyclic) chain 

addition 

polymerization 

Hemiacetal 

fragmentation 

Majority are high 

Tg, brittle solids; 

tunable through 

copolymerization 

and use of 

additives 

Lithography, 

transient 

electronics, smart 

composites, 

microscale pumps  

PGs Purify 

commercial 

monomer or 

synthesize in 2 

steps 

Proton transfer, 

anionic, or 

cationic chain 

addition 

polymerization 

Hemiacetal 

fragmentation 

Low Tg for 

PEtG, variable 

for other PGs 

and for PGAMs, 

tunable through 

blending 

Drug delivery 

smart coatings, 

thermal sensors 

POS Commercially 

available or 

custom-

synthesized 

Free radical 

chain addition 

polymerization 

Free radical or E2 

elimination 

Highly 

dependent on 

vinyl monomer  

Lithography, smart 

composites and 

adhesives, drug 

delivery 

PBE 3 steps Anionic chain 

addition 

polymerization 

1,6-elimination  High Tg and high 

thermal stability  

Mixed plastics 

recycling, 

antibacterials 

 

While new depolymerizable backbones have been continually introduced over the last 

decade, and older low Tc polymers have been endowed with new stimuli-responsive properties, 
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there are still a limited number of backbones. In our view, the introduction of new backbones is 

hindered by a few key challenges. In the area of irreversible SIPs, where depolymerization is 

generally based on cyclization of nucleophilic groups or elimination reactions involving electron-

rich aromatics, careful monomer and polymer design are required so that the reactive groups are 

not revealed during polymerization so as to introduce competing self-immolative reactions. In the 

field of reversible SIPs, Tc values falling within a limited range of temperatures are required for 

successful backbone development. Generally, it is desirable that the Tc be at or below room 

temperature so that the polymer will spontaneously depolymerize upon triggering. In some 

applications, it may be acceptable to have a Tc somewhat above room temperature. However, at 

much elevated temperatures other undesirable reactions may occur. On the other hand, Tc defines 

the temperature below which depolymerization must be performed, and to obtain high conversion 

of monomer it should generally be performed well below Tc. Most irreversible SIPs have been 

synthesized at -78 to -10 ºC. Below these temperatures, slow polymerization kinetics, low 

monomer and polymer solubility, and practical difficulties in performing the polymerization 

reaction become challenges. Thus, the Tc should ideally fall in the range of ca. -40 to 20 ºC, and 

careful selection and/or modification of monomers is required in order to achieve this. 

In terms of applications, it is important to consider where the key feature of 

depolymerization and amplification of the triggering signal can offer benefits beyond those of 

traditional degradable polymers. Even for well-established polymers such as poly(L-lactide), cost 

has been a barrier to their widespread use, as the prices of competing products such as polyethylene 

and poly(ethylene terephthalate) are much lower. It is likely the cost barriers would be even higher 

for SIPs. Therefore, it is unlikely at this stage that SIPs would be used in large scale commodity 

applications. Instead, they are more likely to find use in niche areas such as self-destructing 
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devices, lithography, sensors, or smart coatings which truly take advantage of their amplified 

responses to stimuli. Even for these applications, there are additional barriers aside from cost, such 

as requirements to change procedures and instrumentation in manufacturing processes, which 

hinder the introduction of new materials. In addition, in some cases it will be important to tune the 

physical properties of SIPs. For example, PPA is a brittle solid, while PEtG is a tacky rubbery 

material at room temperature. There have been some recent advancements in tuning these 

properties through the formation of copolymers, blends with other polymers and additives, and in 

the preparation of composites, but further efforts will be needed. Ultimately, the required 

properties will depend on their application. 

SIPs have been of particular interest for biomedical applications, as the changes in 

conditions are often subtle in vivo, and the concentrations of biological stimuli are very low. The 

ability to achieve amplified responses to stimuli offers the potential for enhancing the release of 

drugs or other molecules at specific sites in vivo. So far, various classes of SIPs have been used in 

the preparation of micelles, vesicles, nanoparticles, and microcapsules. Cost will likely not be a 

major issue for the use of SIPs in biomedical applications due to the relatively high value of the 

payloads that they carry. However, further work will be needed to explore the toxicities of the 

polymers and their host responses in vivo. Even with this data, there is always significant hesitancy 

to adopt new polymers as translation can be achieved more quickly using polymers that are already 

approved for some applications. Therefore, it will be important to continue work in academic 

laboratories and to engage companies with a long-term vision for developing new products. 

In conclusion, there have been many advancements in SIPs, particularly over the past 

decade. Nevertheless, tremendous opportunities still exist for the development of new SIPs with 

enhanced properties and depolymerization behavior and for their application in many different 
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areas, some of which certainly remain unexplored to date. The key for SIPs to enter the 

marketplace in commercial products will be to find applications where their unique 

depolymerization behavior can be exploited, while at the same time providing suitable properties 

that are compatible with their applications. 
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