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Abstract

Correlations between heterozygosity and fitness are commonly reported in the 

literature, but there is disagreement about the frequency of such correlations and the 

mechanisms which underlie them. Using a multi-year data set acquired from a wild 

population of song sparrows I investigated the relationship between heterozygosity and 

song complexity, an important sexually selected trait thought to be an indicator of genetic 

quality. Heterozygosity was determined at 17 putatively neutral microsatellites and 5 

microsatellites derived from the expressed sequence tag of zebra finch brain proteins. 

Song and syllable repertoire size were taken as measures of song complexity. Neither 

genetic marker type was predictive of song complexity. A further test failed to support the 

hypothesis that heterozygosity-fitness correlations at marker loci are due to closely linked 

coding genes. These results indicate that heterozygosity is unlikely to play a major role in 

individual song complexity in this outbred population of song sparrows.

Keywords: Heterozygosity-Fitness Correlations, Song Complexity, Song Sparrows, 

Melospiza melodia, EST-SSRs, Local Effects, Global Effects
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Introduction

It has long been recognized that genetic diversity is important to the long term 

viability of populations as it provides the raw material required for evolution by natural 

selection (Rails et al. 1988; Frankham 1995). A population that lacks sufficient genetic 

diversity is, for example, unable to evolve to better suit its environment or to adapt to 

ecological changes. Given the widespread implications of population genetic diversity, 

from agriculture to conservation, it is important to understand the mechanisms that lead to 

changes in genetic diversity in natural populations. With low levels of mutation and 

sustained directional selection it might be expected that genetic diversity would steadily 

decrease over time (e.g. Makinen et al. 2008), but there are natural mechanisms which 

preserve population genetic diversity. Although neutral theory suggests that much of the 

genetic variation seen in nature may simply be due to drifting unselected variation 

(Kimura 1991) several evolutionary forces have been identified that contribute to the 

maintenance of population genetic diversity, including the influx of novel alleles via 

migration (e.g. Wooding 1998), spatial and temporal variation in selection pressure (e.g. 

Prout 1968, Ellner and Hairston 1994), and mate choice associated with inbreeding 

avoidance (Sherborne et al. 2007; Neff and Pitcher 2009).

Inbreeding depression, the often observed decrease in fitness of offspring 

produced by consanguineous mating (Charlesworth and Willis 2009), and heterosis, the 

increase in fitness observed in the offspring of matings between distantly related 

individuals (Darwin 1876; Tulu 2001) are thought to be caused by two major 

mechanisms, termed dominance and overdominance effects. First, when deleterious



recessive alleles are widespread, such effects may occur through dominance effects 

(Charlesworth and Willis 2009), such that mating between individuals of similar 

genotypes produces offspring with a higher level of expressed deleterious recessive 

alleles, whereas mating between dissimilar individuals is more likely to mask each 

parent’s deleterious recessive alleles as they will express only the dominant non- 

deleterious alleles. Such dominance effects have been demonstrated by Xiao et al. (1995) 

in the Oryza indica X  Oryza japonica rice hybrid. Second, inbreeding depression and 

heterosis can arise through heterozygote advantage or overdominance, due to advantages 

associated with heterozygosity per se. For example, heterozygosity at the major 

histocompatibility complex (MHC) is often associated with enhanced disease resistance, 

presumably because MHC heterozygotes can defend against a broader array of pathogens 

(e.g. Penn et al. 2002). Similarly, some enzymes may function more efficiently in 

heterozygotes (e.g. octopine dehydrogenase; Sarver et al. 1992), resulting in enhanced 

metabolic efficiency and fitness.

Inbreeding depression has been well demonstrated in laboratory studies. An 

extensive comparison of self-fertilized (selfed) versus non-self-fertilized (crossed) plants 

was carried out by Darwin (1876) and showed across several species that the offspring of 

crossed plants outperform the offspring of selfed plants in fitness-related traits such as 

plant size and seed production. Since then, there have been many demonstrations of 

inbreeding depression in laboratory populations. For example, a study by Van Oosterhout 

(2000) showed negative effects of inbreeding on fecundity, survival and longevity in a 

laboratory population of the butterfly Bicyclus anynana, suggesting that inbreeding 

presents a substantial risk to population viability. Importantly, theory predicts that
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inbreeding depression should be even more pronounced in wild populations due to the 

harsher and less stable conditions typically encountered in the wild (Miller 1994). A 

meta-analysis by Cmokrak and Roff (1999) supported the prediction that inbreeding 

depression should be harsher in more stressful conditions, as have studies on both 

laboratory {Drosophila melanogaster, Miller 1994) and wild populations {Geospiza 

scandens; Keller et al. 2002). However, such studies generally rely on inbreeding 

coefficients derived from complete pedigrees, which are difficult to quantify in wild 

populations, especially those that are very large or experience frequent immigration such 

that pedigree analysis is not feasible. As a result of the difficulty of calculating inbreeding 

coefficients in large and open populations, most early demonstrations of inbreeding 

depression in the wild were restricted to a small number of isolated (often island) 

populations where the pedigree of every individual was known (e.g. Mandarte Island song 

sparrows Melospiza melodia, Keller et al. 1994, Keller 1998, Reid et al. 2003; Galapagos 

Island Finches Geospiza sp., Keller et al. 2002; Soay sheep Ovis aries, Overall et al.

2005; Scandinavian wolves Canis lupis, Liberg et al. 2005). It is important to note that 

while inbreeding depression has been well demonstrated, outbreeding has been shown to 

be disadvantageous in certain situations as well (Fenster and Galloway, 1999) as it may 

break up locally adapted gene complexes or introduce alleles not suited to the local 

environment.

The advent of soluble allozyme markers, variable enzymes produced at a single 

locus, and later microsatellites, short repetitive sequences of DNA, gave researchers the 

opportunity to directly assess individual heterozygosity and thus extend studies of 

inbreeding effects into non-insular natural populations, even those with large population



sizes and frequent immigration. Early studies using allozyme markers in natural 

populations showed correlations between marker heterozygosity and a wide variety of 

traits such as growth rate in American oysters (Crassostrea virginica; Singh & Zouros 

1978) and tiger salamander (Ambystoma tigrinunr, Pierce and Mitton 1982) and mating 

success in brine shrimp {Artemia franciscana', Zapata et al. 1990). More recent studies 

using putatively neutral microsatellite markers, which are not thought to add to nor 

detract from individual fitness, also frequently show correlations between marker 

heterozygosity and many fitness components, including disease susceptibility in sea lions 

(Zalophus calif ornianus; Acevedo-Whitehouse et al. 2003), parasite load in white- 

crowned sparrows (Zonotrichia leucophrys\ MacDougall-Shackleton et al. 2005), song 

repertoire size in song sparrows (Reid et al. 2005), fecundity in Chinook salmon 

(Oncorhynchus tshawytscha; Heath et al. 2002) and juvenile survival in alpine marmots 

(Marmota marmot; Cohas et al. 2009). However, despite the widespread reporting of 

such heterozygosity-fitness correlations (HFCs) it is not clear whether heterozygosity at a 

set of markers is reflective of heterozygosity throughout the genome. Indeed, several 

studies have found little or no relationship between marker heterozygosity and inbreeding 

coefficient (e.g. Coopworth sheep Ovis aries, Slate et al. 2004; great tits Par us major, 

Chapman and Sheldon 2011). Moreover, recent theory has also shown that the number of 

markers generally used in HFC studies (often fewer than ten) may be inadequate for 

detecting genome-wide heterozygosity (Balloux et al. 2004; Dewoody and Dewoody 

2005). Given the complicating factors, the degree to which such findings reflect 

inbreeding depression is by no means certain.
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The debate over the underlying cause of HFCs centres around three major 

hypotheses: the direct, global and local effects hypotheses (Hansson and Westerberg 

2002). The direct effects hypothesis, which posits that HFCs result from heterozygote 

advantage at the marker loci themselves (Thelen and Allendorf 2001; Pujolar et al. 2005), 

applies primarily to studies of allozyme heterozygosity. Microsatellites were thought to 

sidestep the question of direct effects, as these markers are putatively non-coding and 

neutral (Da Silva et al. 2009; but see Westgaard and Fevolden 2007). The global effects 

hypothesis (e.g. Coltman et al. 1998) posits that HFCs observed at microsatellite loci can 

be attributed to the effects of genome-wide heterozygosity on fitness (i.e. inbreeding 

depression); this assumes that microsatellite heterozygosity reflects genome-wide 

heterozygosity and inbreeding coefficient. Alternatively, however, the local effects 

hypothesis (Hansson et al. 2004) posits that HFCs result from fitness effects of genes 

closely linked to the marker loci, and that heterozygosity at a set of marker loci does not 

necessarily reflect genome-wide heterozygosity and inbreeding coefficient.

Distinguishing between local and global effects hypotheses in explaining 

microsatellite-related HFCs has historically involved several types of analyses. First, the 

locus by locus dropout approach asks whether the removal of any single locus from an 

analysis significantly affects the overall relationship of heterozygosity with fitness; if not, 

global effects have been inferred (e.g. Hoffman et al. 2004; Charpentier et al. 2005).

Local effects have also been inferred when the model that best predicts fitness includes 

effects of all individual loci (Brouwer et al. 2007), or when significant correlations with 

fitness are found at one or more individual loci (Lieutenant-Gosselin and Bematchez 

2006). Another frequently used test involves determining whether heterozygosity is
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significantly correlated among marker loci, which Balloux et al. (2004) have argued is 

necessary if the global effects hypothesis is to be supported. However, Szulkin et al. 

(2010) recently criticized many of these approaches as being insufficiently rigorous tests 

for local effects, and described what they consider more appropriate testing while noting 

that local and global effects may not be mutually exclusive alternatives.

Beyond the debate over the underlying mechanisms of HFCs, the true extent of 

HFCs may be less than previously thought. Recent theory (Szulkin et al. 2010) predicts 

that HFCs should often be very weak and detectable only in populations with substantial 

variation in inbreeding coefficient. In contrast, many empirical studies have reported 

strong and positive HFCs, even in small populations where most individuals are highly 

inbred (e.g. Reid et al. 2005) and in large contiguous populations where most individuals 

are very genetically diverse (e.g. MacDougall-Shackleton et al. 2005). Recent studies 

have also identified widespread publication bias in the field (Coltman and Slate 2003), 

with a meta-analysis by Chapman et al. (2009) suggesting that studies with high effect 

size but low sample size are more likely to be published than studies with high sample 

sizes, because the latter often show little or no correlation between heterozygosity and 

fitness.

Several ways of improving the reliability and interpretability of HFC studies have 

been proposed. These include using appropriate statistical tests for local effects (Szulkin 

et al. 2010), increases in sample sizes and in the number of marker loci used (Balloux et 

al. 2004), publishing negative and null results in addition to positive results (Chapman et 

al. 2009), examining fitness components from multiple life stages (Szulkin et al. 2007)



and using a variety of marker types to compare patterns observed (Hansson et al. 2004; 

Szulkin et al. 2010). Although obtaining large sample sizes from wild populations is often 

easier for theoreticians to prescribe than for field biologists to achieve, newly identified 

genetic markers now allow us to increase the number of marker loci and to compare 

patterns among different marker types. Expressed sequence tag short sequence repeats 

(EST-SSRs) are microsatellites closely linked to coding genes, and have been found to be 

highly transferrable between relatively distantly related taxa (Karaiskou et al. 2008).

Thus, after EST-SSRs have been identified from sequence analysis of a well studied 

model species they can be applied to other, non-model, species, thus avoiding the need to 

develop species-specific microsatellites (Karaiskou et al. 2008). Another advantage of 

using EST-SSRs in combination with traditional (‘anonymous’) microsatellites is that 

together they provide a test for local effects, because the local effects hypothesis predicts 

that microsatellites that are linked to genes may have much higher correlations with 

fitness than anonymous microsatellites.

Free-living song sparrows (Melospiza melodia) can provide a good study system 

for examining HFCs. Studying the fitness consequences of genetic variability in wild 

populations is important because the relatively harsh and variable environment 

encountered in the wild is reflective of natural conditions; the fitness consequences of 

inbreeding may not be apparent in captive laboratory studies with their relatively benign 

and predictable environments (Halverson et al. 2006). More specifically, song sparrows 

occupy a wide variety of environments and comprise of many subspecies that differ 

widely in migration behaviour, population size and history, and degree of genetic 

structuring (e.g. island vs. mainland populations). There has been extensive study of
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HFCs in this species. In the sedentary Mandarte island population, for example, 

inbreeding coefficient is negatively related to survivorship (Keller et al. 2002), 

immunocompétence (Reid et al. 2007) and to song complexity, an important sexually 

selected trait (Reid et al. 2005). In the migratory mainland study population, positive 

HFCs have been observed in nestling growth rate (Potvin and MacDougall-Shackleton 

2009), maintenance of paternity and nestling provisioning by males (Kewin 2010) and 

song repertoire size (Pfaff et al. 2007), although this last study was based on only a small 

number of loci. Interestingly, however, a strong negative relationship between 

heterozygosity and overwinter return rate has also been observed in this population 

(Kewin 2010), suggesting that the relationship between heterozygosity and fitness in the 

study population may be more complex than that observed in more inbred populations.

In this thesis, my first objective was to examine the relationship between 

multilocus heterozygosity and song complexity as measured by song repertoire size and 

syllable repertoire size in this large and open population of song sparrows. Song 

complexity is an important trait in this and other populations of song sparrow; associated 

with many aspects of fitness including female choice (Searcy 1984), reproductive success 

(Reid et al. 2004), longevity (Reid et al. 2005), immunocompétence (Reid et al. 2005), 

and stress response (MacDougall-Shackleton et al. 2009a). Because they are costly, and 

therefore thought to be an honest indicator of genetic quality, face strong sexual selection 

and show a great degree of variation (Gonzalez et al. 2010), sexually selected traits have 

been predicted to show strong HFCs (Von Hardenberg et al. 2007; Gonzalez et al. 2010) 

and thus represent a promising area of study. A finding of a positive relationship between 

microsatellite heterozygosity and song complexity would support the idea that HFCs can 

occur even in large, open populations. Conversely, finding no relationship between

8



heterozygosity and song complexity would suggest that the population lacks sufficient 

variation in heterozygosity and inbreeding to generate HFCs or that overdominance 

effects on song complexity are simply not present at the markers studied in this 

population. Finally, a nonlinear relationship between heterozygosity and one or both 

aspects of song complexity might be observed, suggesting some optimal level of genetic 

diversity (Neff 2004).

The second objective in this thesis was to investigate the genetic mechanisms 

underlying any observed HFCs, that is, to distinguish between the local and global effects 

hypotheses. By using a combination of approaches, I attempted to conduct a robust 

analysis of these mechanisms. First, I present tests for local effects suggested by Szulkin 

et al. (2010) to determine if models incorporating single-locus effects explain 

significantly more variation than those using multilocus heterozygosity (MLH). As a 

complementary test, I compare HFCs at different marker types (anonymous 

microsatellites and gene-linked EST-SSRs). The global effects hypothesis would be 

supported if models incorporating single-locus effects fail to explain significantly more 

variation than those using only MLH and if both marker types explain similar proportions 

of variance in fitness. Conversely, the local effects hypothesis would be supported if 

models with single locus effects account for significantly more variation than those with 

only MLH, and if EST-SSRs show stronger associations with song complexity than do 

anonymous microsatellites. Although a test only comparing marker types may not be 

conclusive due to the linkage of the anonymous markers being unknown, together these 

approaches provide a comprehensive examination of heterozygosity-fitness relationships

9



in a large and free-living population open to immigration, as well as the genetic 

architecture underlying such patterns.

10

Materials and Methods

Study Population and Site

I conducted field work from April to June 2010 on a free-living population of 

song sparrows (Melospiza melodia melodia) breeding on the Bracken tract owned by the 

Queen’s University Biological Station, near Newboro, Ontario (44° 38’60 N/ 76° 19’0 

W). The study site consists of forest, swamp and old fields, with sufficient edge habitat to 

support at least 30-40 breeding pairs of song sparrows. The population is migratory, 

returning to breed in March or April and first nesting in late April or early May. The 

study population shows reasonably high adult philopatry, with a yearly return rate of 30- 

50% for breeding adults. Individuals that have bred at the site generally return to or 

within 30 meters of their previous territories (MacDougall-Shackleton et al. 2009b). By 

contrast, only about 5% of the nestlings banded at the study site return to breed the 

following year, and only about 15% of breeders at the study site are first banded as 

nestlings on the site, suggesting that natal philopatry is low relative to adult philopatry 

and that some juveniles disperse away from their natal populations to breed.

Field Methods

Between April and June 2010, the research team captured adult song sparrows in 

mist nets in combination with song playback, and in seed-baited treadle traps. We
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identified the sex of birds based on the presence of a cloacal protuberance (in males) then 

outfitted each with a uniquely numbered metal leg band (Canadian Wildlife Service), plus 

a unique combination of coloured plastic leg bands for field identification. We collected a 

blood sample from each bird via brachial venipuncture. About 25 pL of whole blood was 

blotted onto high wet strength filter paper, fixed with a drop of 0.5 M EDTA (pH 8.0) and 

allowed to dry awaiting genetic analysis (described below).

Song Recording and Analysis

I recorded song repertoires from territorial males, using the criterion of either 300 

consecutive or 450 non-consecutive songs established for this population by Pfaff et al. 

(2007). Songs were recorded onto Marantz PMD 671 solid state recorders using Telinga 

Twin Science Pro parabolic microphones. In some cases males had had their repertoires 

recorded (and scored, by previous members of the lab) in previous years. These birds did 

not need to be rerecorded as song sparrows are closed-ended learners that do not alter 

their repertoires in adulthood (Nordby et al. 2002). In all, when including data available 

from other projects, complete repertoires were available for 57 males breeding in 2010. 

Repertoire data collected by previous members of the lab were also available for an 

additional 32 males that bred in 2008 but not 2010 (see below).

Song recordings were visualized as spectrograms using SYRINX V2.6 (John Burt; 

www.syrinxpc.com). I visually sorted all spectrograms into distinct song types, following 

techniques used by Pfaff et al. (2007), to determine the number of song types in each 

male’s repertoire (hereafter “song repertoire size”). As a complementary measure of song 

complexity, I followed the criteria of Stewart and MacDougall-Shackleton (2008) to 

identify each song type’s component syllables and counted the total number of distinct

http://www.syrinxpc.com
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syllables within each male’s song repertoire (hereafter “syllable repertoire size”). Syllable 

repertoire size and song repertoire size are correlated (n = 89, Pearson’s r = 0.517, p <

0.001) but predict different aspects of fitness (MacDougall-Shackleton et al. 2009a) and 

singing behaviour (MacDougall-Shackleton et al. 2009b). Because song and syllable 

repertoire size are related to distinct and somewhat independent elements of fitness I 

examined both of these elements of song complexity separately.

I used a total of 89 adult males with song and syllable repertoire sizes scored 

between 2008 and 2010 to determine the relationship between song complexity and 

genetic diversity (see below). Because some males bred at the site in multiple years I 

assigned them to the year in which their repertoire was originally recorded and made note 

of the recording year for each individual to account for potential differences in song 

scoring between years due to different researchers.

Genetic Analysis

DNA was extracted from field blots using a protocol adapted from Laitinen et al 

(1994). Initial DNA concenentrations were determined using a spectrophotometer and 

adjusted to approximately 25ng/uL for use in PCR reactions by dilution with sterilized 

distilled water. I genotyped 57 adult males from the 2010 field season at 17 anonymous 

microsatellite loci (Table 2.1). In addition, all males that bred in 2008, 2009 and/or 2010 

for whom I had repertoire data (n = 89) were genotyped at five polymorphic EST-SSR 

loci characterized in zebra finches (Taenopygia guttata; Table 2.1), although birds 

sampled in 2009 were subsequently dropped from the analysis due to low sample size. An 

additional eight EST-SSR loci (Tgu58, Tgu35, Tgul3, Tgu52, Tgu85, Tgu4, Tgu8 and 

Tgu66; Karaiskou et al. 2008) were screened for amplification and variability across ten
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Table 2.1: Overview of loci. Table shows expected (He) and observed (H0) 
heterozygosity, population allele count, size range and repeat size in base pairs, marker 
type (anonymous vs. EST-SSR) and marker source for 89 adult male song sparrows 
(Melospiza melodia). Loci that deviated significantly from Hardy-Weinberg equilibrium 
are marked with asterisks. One asterisk denotes a heterozygote deficit, two a heterozygote 
excess.

Locus
Name

He Ho Allele
Count

Size
Range
(BP)

Repeat
Unit
(BP)

Marker Type Reference

Sospl* 0.897 0.792 37 216-394 4 Anonymous 1
Sosp2 0.502 0.621 7 157-185 4 Anonymous 1
Sosp3* 0.936 0.885 30 178-256 2 Anonymous 1
Sosp4* 0.858 0.777 14 172-228 4 Anonymous 1
Sosp5* 0.758 0.590 10 98-142 4 Anonymous 1
Sosp7 0.522 0.583 7 86-106 4 Anonymous 1
Sosp9 0.250 0.276 3 90-106 4 Anonymous 1
Sospl2 0.533 0.397 16 170-248 2 Anonymous 1
Sospl3 0.846 0.862 22 159-159 2 Anonymous 1
Sospl4* 0.903 0.850 20 211-315 4 Anonymous 1
Mmel 0.751 0.773 16 135-183 2 Anonymous 2
Mme7* 0.924 0.847 20 110-150 2 Anonymous 2
Mmel 2* 0.833 0.756 20 121-193 2 Anonymous 2
Escul 0.883 0.870 23 128-180 2 Anonymous 5
Pdou5 0.933 0.938 31 217-289 2 Anonymous 3
ZoleB03* 0.907 0.432 21 236-344 4 Anonymous 4
ZoleC02 0.853 0.837 23 176-284 4 Anonymous 4
Tgu 1 0.862 0.887 14 271-307 2 EST-SSR 6
Tgu 16 0.783 0.770 9 292-310 2 EST-SSR 6
Tgu 40* 0.862 0.757 16 179-213 4 EST-SSR 6
Tgu 69** 0.515 0.554 8 204-220 2 EST-SSR 6
Tgu 74 0.325 0.285 5 243-261 2 EST-SSR 6

References refer to:
1. LF Keller, unpublished sequences, pers. comm, to EA MacDougall-Shackleton
2. Jeffery et al. 2001
3. Griffith et al. 1999
4. Poesel et al. 2009
5. Hanotte et al. 1994
6. Karaiskou et al. 2008



unrelated individuals but either failed to amplify or showed only a single allele, so were 

not pursued further.

Sets of primers with similar annealing temperatures and amplification conditions 

were combined into multiplexes for reactions: these included multiplex 1 (Sospl, 5, 7), 

multiplex 2 (Mmel, Pdou5, ZoleH05), multiplex 3 (Sosp3, 13,14), multiplex 4 

(Mme2,7,Escul), multiplex 5 (Sosp2,4,9, ZoleC02), multiplex 6 (Tgu40, Tgu74) and 

multiplex 7 (Tgu69, Tgul6). Mmel2, ZoleB03 and Tgul could not be easily multiplexed 

and were amplified individually.

Polymerase chain reaction (PCR) amplifications were conducted in a final volume 

of 10 pL and included 10 mM Tris-HCl, 50 mM KC1, 0.1% Triton x-100, 0.2 mg/mL 

BSA, 2.5 mM MgCh, 0.2 mM of each dNTP, 0.1-0.4 mM of each primer, 0.5 U Taq 

polymerase (Fisher Scientific) and approximately 25 ng of DNA. One primer at each 

locus was dye-labelled (Applied Biosystems, Foster City, CA). For most multiplexes, 

PCR cycling began with an initial denaturing step of 180 s at 94°C, and then went through 

28 cycles of 30 s at 94°C, 90 s at the annealing temperature (see below) and 60 s at 72°C; 

followed by a final extension step of 270 s at 72°C. Multiplex 4 differed in that it had an 

initial step at 94°C for 270 s and annealing times of 40 seconds. Annealing temperatures 

were 54°C for ZoleB03, 55°C for multiplex 1, and 57°C for Mmel2, Tgul, and 

multiplexes 2 and 3. Multiplexes 6 and 7 were run with a touchdown profile with 

annealing temperatures dropping from 54°C to 49°C and 52°C to 48°C, respectively. 

Amplified PCR products were sized using an Applied Biosystems 3130 Genetic Analyzer 

and Genemapper software.

I used IR Macro N4 (Amos et al. 2001) to estimate null allele frequencies at each 

locus. I tested for deviations from Hardy-Weinberg equilibrium (HWE) using Genepop
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4.0.10 (Rousset 2008) with Markov Chain parameters including a dememorization 

number of 10,000, 20 batches and 5000 iterations per batch. Ten of the loci analyzed 

(Sosp5, Sospl, ZoleB03, Sosp3, Sospl4, Mme7, Mmel2, Sosp4, Tgu40 and Tgu69) 

deviated significantly from HWE, in almost all cases due to heterozygote deficit, except 

Tgu69 which showed a slight heterozygote excess (Table 2.1). Because deviations from 

HWE are not necessarily due to the presence of null alleles, especially considering the 

population history of selection against heterozygotes (Kewin 2010) the main analyses 

were run with all loci. However, as a check I also repeated all analyses using just the 

subset of 13 loci that were in HWE, and determined that the results were qualitatively 

similar. Moreover, standardized multilocus heterozygosity (sMLH; see below) calculated 

across all loci was highly and significantly correlated with that calculated across the 

subset of 13 loci conforming to HWE (Figure 2.1, Pearson’s r = 0.820, df = 88, p < 0.001) 

Several measures of individual genetic diversity have been proposed and used, the 

most common being multilocus heterozygosity (MLH; Chapman et al. 2009), which is a 

calculation of the proportion of loci at which an individual is heterozygous; internal 

relatedness (IR; Amos et al. 2001) which weights homozygosity for rare alleles more 

heavily than homozygosity for common alleles, standardized heterozygosity (SH; 

Coltman et al. 1999), which standardizes loci heterozygosity by weighting them 

according to the population observed heterozygosity and mean d (Coulson et al. 1998), 

which takes into account differences in allele sizes for heterozygous individuals. Because 

these measures of individual genetic diversity are all highly correlated with one another, 

to avoid pseudo-replication I chose in advance to use only a single measure, as 

recommended by Chapman et al. (2009). Because there was high variation in 

heterozygosity between markers (Figure 2.1) and the dataset contained missing data I

15



Figure 2.1: Standardized multi-locus heterozygosity at Hardy-Weinberg 
expectations loci vs. all loci in 89 male song sparrows (Melospizcrmelodia). sMLH 
(standardized multi-locus heterozygosity) calculated across the subset of loci conforming 
to Hardy-Weinberg expectations (HWE) was highly correlated with sMLH calculated 
across all loci in 89 male song sparrows (Melospiza melodia).



calculated standardized multilocus heterozygosity (sMLH) following guidelines from 

Szulkin et al. (2010). Specifically, all missing values for heterozygosity were filled with 

the population mean heterozygosity for the locus in question. As mean heterozygosity 

varied substantially between loci these values were then standardized using the formula

from Szulkin et al. (2010):

, _ hi
l,std 1-7u (1+52)

Where histd is the standardized heterozygosity for locus i, hi is an individual’s observed 

heterozygosity for locus i, hi is the population mean heterozygosity for locus i, and g2 is 

the identity disequilibrium (David et al. 2007), which I calculated using the program 

RMES (http://ftp.cefe.cnrs.fr). I calculated sMLH for each individual as the average of all 

single-locus values of hifStd. For each individual, I also calculated two additional values of 

sMLH, one based solely on heterozygosity at the 17 genotypic (anonymous) loci and 

another based solely on heterozygosity at the five EST-SSR loci.

Statistical Analyses

I tested all continuous variables for normality using Kolmogorov-Smimov tests. 

Both song repertoire size (n = 89, KS = 0.03, p > 0.15) and syllable repertoire size (n =

89, KS = 0.05, p > 0.15) were normally distributed, as was MLH (n = 89, KS = 0.09, p = 

0.06) and sMLH (n = 89, KS = 0.09, p = 0.10). Because outbreeding depression, or 

heterozygote-disadvantage is a possibility all statistics were two-tailed. Tests were 

performed using the student version of Minitab 14 (2003).

To test the hypothesis that individual genetic diversity predicts song complexity, I 

used linear regression with sMLH calculated over all 22 loci (i.e. pooling anonymous and
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EST-linked markers). Because this analysis included males whose repertoires had been 

recorded and scored over multiple years by multiple student researchers, I controlled for 

potential effects of variation among researches by including year as a factor in the initial 

model, as well as year-by-sMLH interaction. However, I observed no significant year-by- 

sMLH interaction (data not shown) so my final models included only main effects of 

sMLH (with year included as a factor). This analysis involved two separate tests, one 

investigating the effect of sMLH on song repertoire size, the second investigating the 

effect of sMLH on syllable repertoire size.

To determine whether local chromosomal effects explain a significant proportion 

of heterozygosity-fitness correlations, for each of the relationships examined above I 

performed an F-ratio test to compare a model which included sMLH but no single-locus 

effects (model 1) to a more complex model including separate effects of hi std at each 

locus (model 2). F statistics were calculated following Szulkin et al. (2010), using the 

formula

F = (resSSl -  resSS2V(df\- df2)  

resSSl/d fl

Where resSSl is the residual sum of squares for model 1, resSS2 is the residual sum of 

squares for model 2, dfl is the sample size (n) and df2 is (n -  number of loci (L) -1). I 

then assessed the statistical significance of the above F statistic using (dfl-df2, df2) 

degrees of freedom to determine whether model 2 had significantly more predictive 

power than model 1 (Szulkin et al. 2010).

As a complementary test for local chromosomal effects, I compared the 

relationship between song complexity and sMLH calculated across the 17 anonymous 

microsatellites versus sMLH across the five EST-SSRs. Using a general regression model

18
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(GRM) I tested for homogeneity of slopes between sMLH calculated at each marker type 

and song complexity by testing whether the interaction between marker type and sMLH 

was a significant component of a model predicting song complexity. If heterozygosity- 

fitness correlations are primarily due to linkage disequilibrium between the marker loci 

and loci associated with fitness (local chromosomal effects) then the gene-linked EST- 

SSRs should have stronger predictive power in relation to fitness traits than do an 

assortment of putatively unlinked loci. Conversely, if heterozygosity-fitness correlations 

arise primarily from variation in genome-wide heterozygosity, both marker types may 

have similar power to predict fitness traits.

Results

Variation in Song Complexity Between Years

Unexpectedly, the two years examined varied significantly in the average 

observed syllable repertoire size (Figure 3.1; ANOVA, F i,85 = 9.58, p = 0.003), although 

not song repertoire size (Figure 3.2; ANOVA, Fi,gs = 0.61, p = 0.438). A follow-up 

analysis suggests that this among-year variation was due to differences among researchers 

in categorizing syllables, not to actual cohort differences in song complexity. Ten males 

whose vocal repertoires were scored in both 2008 and 2010 generally received lower 

syllable repertoire scores in 2010 than 2008 (Figure 3.3) despite the fact that song 

sparrows are closed-ended learners that do not change their repertoire content after 

maturity (Nordby et al. 2002).
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Figure 3.1: Median syllable repertoire size by year for 87 male song sparrows 
(Melospiza melodia). Mean measured syllable repertoire size was significantly lower for 
male song sparrows {Melospiza melodia) scored in 2010 than for those scored in 2008 
(2008 n = 30, 2010 n = 57). Boxplots show medians, 3rd quartiles and 1st quartiles. 
Whiskers show minimum and maximum values.
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Figure 3.2: Median song repertoire size by year for 87 male song sparrows 
(Melospiza melodia). Mean song repertoire size did not differ significantly depending on 
in which year the bird’s {Melospiza melodia) repertoire was scored (2008 n = 30,2010 n 
= 57). Boxplots show medians, 3 rd quartiles and 1st quartiles. Whiskers show minimum 
and maximum values.

.
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Figure 3.3: Syllable repertoire sizes for ten male song sparrows (Melospiza melodia) 
whose vocal repertoires were recorded and scored in both 2008 and 2010. The dashed 
line is the expected 1:1 line and the solid line is a line of best fit for the actual data. There 
is a clear tendency to lump rather than split similar syllables in 2010 compared to 2008, 
demonstrated by the fact that most syllable repertoire sizes were scored higher in 2008 
than 2010.
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Variation in sMLH Between Years

sMLH of adult males decreased from 2008 to 2010 (Figure 3.4; ANOVA, Fi;85 = 

12.91, p = 0.001), consistent with Kewin’s (2010) finding that more heterozygous males 

were less likely to return to breed the following spring.

Individual Genetic Diversity and Song Complexity

Standardized multilocus heterozygosity (sMLH) calculated over all 22 loci did not 

predict either song repertoire size (Figure 3.5, P +/- SE = 0.119 +/- 0.429, t2,84 = 0.28, p = 

0.782; overall model F2.84 = 0.34, r2a(jj = 0.0, p = 0.714) or syllable repertoire size, 

although the overall model was significant due to the difference in syllable repertoire size 

between years (Figure 3.6, P +/- SE = 1.433 +/- 1.702, t2,84= 0.84, p = 0.402, overall 

model F2,84 = 5.13, r2adj = 8.8, p < 0.01).

Local Vs. Global Effects On Song Complexity

I found no convincing evidence for local chromosomal effects on song 

complexity. F-ratio tests indicated that models containing sMLH did not explain 

significantly less of the variation in song complexity than did more complex models that 

incorporated single-locus values of histd, for either song repertoire size (Table 3.1; F63,84 = 

0.825 , p= 0.788) or syllable repertoire size (Table 3.2; F63.84 = 0.877, p= 0.706). 

Heterozygosity at one locus (Mmel) was significantly positively related to syllable 

repertoire size in the model incorporating multiple single-locus effects (Table 3.2), but 

this is likely due to chance given the large number of loci tested.

A general regression model (GRM) with sMLH split by marker type (anonymous 

vs EST) did not reveal a significant difference between marker types in the slope of the
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Figure 3.4: Median standardized multi-locus heterozygosity by year for 87 male 
song sparrows (Melospiza melodia). Mean sMLH (standardized nttrki-locus 
heterozygosity) calculated across all 22 loci was significantly lower among adult male 
song sparrows (Melospiza melodia) breeding in 2010 (N = 57) than in 2008 (n = 30). 
Boxplots show medians, 3rd quartiles and 1st quartiles. Whiskers show minimum and 
maximum values. Males breeding in both 2008 and 2010 are included only in the year 
that their song complexity was scored.
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Figure 3.5: Standardized multi-locus heterozygosity and song repertoire size for 87 
male song sparrows (Melospiza melodia). sMLH (standardized multi-locus 
heterozygosity) calculated across all 22 loci does not predict song repertoire size in 87 
male song sparrows (Melospiza melodia; 2008 n = 30, 2010 n = 57).
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Figure 3.6: Standardized multi-locus heterozygosity and syllable repertoire size for 
87 male song sparrows (Melospiza melodia). sMLH (standardized multi-locus 
heterozygosity) calculated across all 22 loci does not predict syllable repertoire size in 87 
male song sparrows (.Melospiza melodia; 2008 n = 30,2010 n = 57).
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Table 3.1: Linear multiple regression of heterozygosity on song repertoire size for 87 
male song sparrows (Melospiza melodia). A linear multiple regression of heterozygosity 
on song repertoire size of 87 male song sparrows {Melospiza melodia) including separate 
effects of heterozygosity at each locus. The overall model did not significantly predict 
song repertoire size (F23.63 = 0.78, p = 0.740, r2adj= 0-0)-__________ _______________

Predictor P SE t P

Year 0.024 0.439 0.06 0.956

Sosp7 -0.131 0.160 -0.82 0.414

Sosp5 0.081 0.171 0.47 0.637

Sospl 0.054 0.103 0.52 0.607

M m el 0.147 0.112 1.31 0.196

Pdou5 -0.010 0.056 -0.18 0.861

M m el2 -0.153 0.277 -0.55 0.582

ZoleB03 0.188 0.256 0.74 0.465

Sosp l3 0.000 0.082 0.00 0.998

Sosp3 -0.013 0.081 -0.16 0.870

Sospl4 0.030 0.084 0.36 0.719

Mme7 0.024 0.084 0.29 0.773

M m el2 -0.067 0.122 -0.55 0.584

Escul 0.008 0.082 0.10 0.924

Sosp9 -0.128 0.346 -0.37 0.713

Sosp2 -0.020 0.154 -0.13 0.896

Sosp4 -0.041 0.111 -0.37 0.712

ZoleC02 0.123 0.098 1.25 0.215

Tgu 40 -0.210 0.134 -1.57 0.121

Tgu 69 0.226 0.186 1.22 0.228

Tgu 74 -0.504 0.445 -1.13 0.262

Tgu 16 0.038 0.114 0.33 0.744

Tgu 1 -0.088 0.078 -1.13 0.264
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Table 3.2: Linear multiple regression of heterozygosity on syllable repertoire size for 
87 male song sparrows (Melospiza melodia). A linear multiple regression of 
heterozygosity on syllable repertoire size of 87 male song sparrows {Melospiza melodia) 
including separate effects of heterozygosity at each locus. Asterisks indicate loci with 
significant effects at p < 0.05. The overall model did not significantly predict syllable 
repertoire size (F23.63 -  1.23, p = 0.253, r2adj = 0.059). ___________________________

Predictor P SE t P

Year -2.259 1.731 -1.31 0.197

Sosp7 0.187 0.629 0.30 0.767

Sosp5 -0.007 0.674 -0.01 0.992

Sospl 0.284 0.408 0.70 0.488

M m el 0.914 0.443 2.06 0.043*

Pdou5 -0.116 0.221 -0.52 0.602

M m el2 -0.080 1.091 -0.07 0.942

ZoleB03 0.344 1.009 0.34 0.734

Sospl3 -0.174 0.325 -0.53 0.595

Sosp3 0.522 0.318 1.65 0.105

Sospl4 0.176 0.330 0.53 0.596

Mme7 -0.479 0.332 -1.44 0.155

M m el2 -0.193 0.483 -0.40 0.690

Escul -0.023 0.322 -0.07 0.945

Sosp9 0.652 1.362 0.48 0.634

Sosp2 -0.056 0.605 -0.09 0.926

Sosp4 -0.565 0.437 -1.29 0.201
ZoleC02 0.385 0.386 1.00 0.323
Tgu 40 -0.091 0.527 -0.17 0.864

Tgu 69 0.585 0.733 0.80 0.427
Tgu 74 -0.659 1.752 -0.38 0.708
Tgu 16 -0.185 0.450 -0.41 0.683

Tgu 1 0.380 0.308 1.23 0.222



relationship between heterozygosity and song repertoire size as shown by the non

significant effect of the interaction between marker type and sMLH on song repertoire 

(Figure 3.7; Table 3.3; p +/- SE = -0.419 +/- 0.410, t4,i69 = -0.102, p = 0.309, overall 

model: F4J 69 = 0.590, p = 0.668, r2adj = 0.0%). A second GRM with sMLH split by 

marker type (anonymous vs EST) did not reveal a significant difference between marker 

types in the slope of the relationship between heterozygosity and syllable repertoire, as 

shown by the non-significant effect of the interaction between marker type and sMLH on 

syllable repertoire, although the overall model was significant due to between-year 

differences in measured syllable repertoire sizes (Figure 3.8; Table 3.4; P +/- SE = -0.129 

+/- 1.635, t4j 69 = -0.08, p = 0.937, overall model: F4J69 = 4.99, p = 0.001, r2̂  = 8.4%).
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Figure 3.7: Comparison of the relationship between anonymous and expressed 
sequence tag microsatellite heterozygosity on song repertoire size for 87 male song 
sparrows (Melospiza melodia). The slope of the relationship between song repertoire 
size and sMLH (standardized multi-locus heterozygosity) calculated at 17 anonymous 
microsatellite loci does not differ significantly from that calculated at 5 EST-SSR loci in 
87 male song sparrows (Melospiza melodia-, 2008 n = 30,2010 n = 57).
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Figure 3.8: Comparison of the relationship between anonymous and expressed 
sequence tag microsatellite heterozygosity on syllable repertoire size for 87 male 
song sparrows (Melospiza melodia). The slope of the relationship between syllable 
repertoire size and sMLH (standardized multi-locus heterozygosity) calculated at 17 
anonymous microsatellite loci does not differ significantly from that calculated at 5 EST- 
SSR loci in 87 male song sparrows (Melospiza melodia; 2008 n = 30, 2010 n = 57).
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Table 3.3: Comparison between EST and anonymous marker type’s effectiveness in 
predicting song repertoire for 87 male song sparrows (Melospiza melodia). GRM with 
sMLH split by marker type (anonymous vs. EST) did not reveal a significant difference in 
the relationship between heterozygosity and song repertoire size between marker types in 
87 male song sparrows (Melospiza melodia). Overall model: = 0.590, p = 0.668,
r̂ adi =  0-0-____________________ __________ ___________  ’_______________________

Predictor P SE t P
Year -0.217 0.247 -0.880 0.381
sMLH partial 0.238 0.348 0.680 0.496
Marker Type 1.518 1.570 0.970 0.335
sMLH partial* Marker Type 
interaction -0.419 0.410 -1.020 0.309
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Table 3.4: Comparison between EST and anonymous marker type’s effectiveness in 
predicting syllable repertoire for 87 male song sparrows (Melospiza melodia). A
GRM with sMLH split by marker type (anonymous vs. EST) did not reveal a significant 
difference in the relationship between heterozygosity and syllable repertoire between
marker types in 87 male song sparrows (Melospiza melodia), although the overall model 
was significant due to year differences in observed syllable repertoire sizes. Overall 
model: F4,i69 = 4.99, p < 0.005, r^i = 0.084. __________ ______________________

Predictor P SE t P
Year -3.983 0.984 -4.05 <0.005
sMLH partial 0.764 1.387 0.55 0.583
Marker Type 1.106 6.261 0.18 0.860
sMLH partial* Marker Type 
interaction -0.129 1.635 -0.08 0.937
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Discussion

Individual genetic diversity was not related to song complexity as measured by 

song or syllable repertoire size, in this large, free-living population of song sparrows. 

Because song complexity has previously been linked to inbreeding coefficient in song 

sparrows (Reid et al. 2005) this result may appear inconsistent with previous work. 

However, as described below, there are several reasons why the apparent discrepancy is 

not unexpected. I also observed differences in one measure of song complexity (syllable 

repertoire size) between years; this finding was unexpected, but appears to reflect an 

artefact of different years being scored by different researchers. Consistent with previous 

observations by Kewin (2010) that less heterozygous males were more likely to return the 

following year, I found a significant decrease in individual genetic diversity between 

2008 and 2010. In addition to the lack of support for a relationship between MLH and 

song complexity, I found no evidence for local chromosomal effects, either when 

comparing models with effects for individual loci to models based on MLH, or when 

comparing models using anonymous vs. gene-linked markers. Overall this work 

highlights the importance of population structure to HFC as well as the context-dependent 

nature of such correlations.

Year Differences in Syllable Repertoire Size and Heterozygosity

Syllable repertoire size varied significantly between years (Figure 3.1), but this is 

likely an artefact. This is supported by the analysis of birds scored in multiple years, 

which showed that individuals which should have had the same syllable repertoire size in 

both years, due to the closed ended learning program of song sparrows (Nordby et al.



2002), had repertoires consistently scored lower when scored by the 2010 group of 

researchers compared to the 2008 group (Figure 3.3).

sMLH also decreased between 2008 and 2010 (Figure 3.4) and I believe this 

represents an actual drop in mean population heterozygosity rather than an artefact of 

different years being scored by different researchers. Unlike syllable repertoire size, 

heterozygosity was scored to a greater extent by the same researchers; for example, I 

scored all EST-SSR loci for both 2008 and 2010. Moreover, there is a much lower degree 

of subjectivity in the scoring of heterozygosity than in sorting syllables. Additionally, 

there is a previously established trend in the population of decreased heterozygosity 

between years, possibly due to low return rates of highly heterozygous males (Kewin 

2010). However, the effect was much weaker in relation to female return rates and Potvin 

and MacDougall-Shackleton (2009) showed apparent advantages of heterozygosity to 

nestlings so it remains to be determined whether the entire population is becoming less 

genetically diverse or whether variation in strength and direction of HFCs across sexes 

and age classes tends to balance out over time. If neutral locus diversity reflects adaptive 

genetic diversity in this population then such a balancing effect may preserve the 

population’s ability to adapt to changing environmental conditions by preserving some 

level of population genetic diversity.

Heterozygosity-Fitness Correlations with Song Complexity

Previous work with song sparrows has reported a correlation between song 

complexity and inbreeding coefficient (Reid et al. 2005) so it seemed reasonable to expect 

a correlation between sMLH and song complexity in this case; however, the lack of 

correlation was not completely unexpected. The null result found is consistent with the
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idea that HFCs will be rare and often weak, especially in populations with low variance in 

inbreeding (Szulkin et al. 2010). Because of the female-biased dispersal and low return 

rates for adult females in this population there is little opportunity for daughters to mate 

with fathers or brothers, or for mothers to mate with sons, and so it seems likely that 

variance in inbreeding is low. This result is consistent with numerous studies that have 

reported a lack of correlation between marker heterozygosity and fitness traits in a wide 

variety of taxa. Examples include a range of life history, morphological and fitness traits 

in a similarly large and non-inbred population of great tits (Parus major, Chapman and 

Sheldon 2011) and morphological traits in Coopworth sheep (Ovis aries, Slate et al.

2004).

One explanation for the lack of correlation between heterozygosity and song 

complexity in this population given the previously reported correlation between 

inbreeding coefficient and song complexity in another population of the same species, 

(Reid et al. 2005) is that, due to the context-dependent nature of HFCs, the two 

populations with distinct life history (e.g. migratory vs. sedentary), predators and local 

climactic conditions may not be expected to exhibit the same HFCs. In particular, the 

Mandarte Island population is highly philopatric, with only about one immigrant per 

generation (Keller et al. 2001), whereas natal philopatry is much lower for the Bracken 

population with most new recruits apparently immigrating from off the study area. Such a 

context-dependent nature of inbreeding effects has been well-demonstrated (Miller 1994; 

Neff 2004). Indeed, these results are consistent with the idea that the Mandarte 

population, with its philopatry and repeated population crashes, could be closer to the 

lower end of the heterozygosity spectrum where positive HFCs are expected (Neff 2004), 

while the Bracken population should be more outbred, closer to the middle of the
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spectrum where HFCs are weaker, and sometimes negative (as in the case of adult male 

return rate.

A second explanation for the apparent discrepancy between this result and the one 

reported by Reid et al. (2005) is that multilocus heterozygosity is often a poor predictor of 

inbreeding coefficient. Theoretical work showing that MLH will often be a poor predictor 

of inbreeding (Balloux et al. 2004; Dewoody and Dewoody 2005) has been corroborated 

by experiments that showed little or no correlation between pedigree-calculated 

inbreeding coefficients and MLH in a diverse set of taxa with various population 

structures (e.g. great tits Parus major, Chapman and Sheldon 2011; Coopworth sheep 

Ovis aries, Slate et al. 2004). If MLH is a poor predictor of f  or of genome-wide diversity 

then even if a relationship did exist between inbreeding and song complexity in our 

population, which is itself uncertain, then it may be difficult to detect using marker 

heterozygosity.

Finally, it is consistent with HFC theory that, given the population structure of the 

two populations, the reported result would be found. While the link between song 

complexity and inbreeding coefficient was reported in an isolated and inbred population, 

the current study was carried out in a large, migratory population. HFC theory predicts 

that correlations are likely to be found in populations with a high degree of variance in 

inbreeding level, while in large, open populations such correlations are much less likely 

to be uncovered (Szulkin et al. 2010). Although this explanation seems quite satisfying it 

should be noted that correlations between genetic diversity and measures of fitness 

including nestling growth (Potvin and MacDougall-Shackleton 2009) and adult return rate 

(Kewin 2010) have previously been uncovered in our population, indicating that marker



heterozygosity may indeed be an effective tool for assessing the relationship between 

genetic diversity and some, if not all, measures of fitness in this population.

Local Vs. Global Effects

Although no HFCs were found using MLH, it is still important to consider the 

possibility of local effects as the antagonistic effects of heterozygosity on fitness at 

several individual markers could mask each individual effect leading to no overall 

correlation. By comparing models with effects for individual loci with models with MLH 

as predictors as in Szulkin et al. (2010) I was able to rule out significant relationships 

between individual locus heterozygosity and either measure of song complexity.

In addition to the individual loci vs. MLH F-ratio test, I also investigated whether 

the correlation between MLH and song complexity differed depending on whether MLH 

was calculated at gene-linked or anonymous markers. The results showed that there was 

no observable difference in the predictive power of anonymous vs. EST SSRs. This is in 

contrast to a recent study by Olano-Marin et al. (2011; neutral microsatellites vs. gene- 

linked microsatellites), which uses evidence from Blue Tits to argue that neutral 

microsatellites may be a better predictor of the effects of inbreeding than those linked to 

functional genes and a study by Pujolar et al. (2005; neutral microsatellites vs. allozymes) 

that uses evidence from European eels {Anguilla anguilla) to argue that gene-linked 

markers should show stronger HFCs. At this point it is difficult to draw a final conclusion 

on whether gene-linked or neutral markers are generally better predictors of HFC given 

the variation in results found in such studies.
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Conclusions

I observed no relationship between song complexity, an important sexually 

selected trait in this species, and heterozygosity assessed at either anonymous or EST- 

linked microsatellite loci. While contrasting with many previous studies reporting 

positive relationships between heterozygosity and various components of fitness 

(Hansson et al. 2004; Lieutenant-Gosselin and Bematchez 2006; Da Silva et al. 2009), 

these findings do support the recent prediction that HFCs in nature, and especially in non- 

inbred populations, should be rare and generally weak (Chapman et al. 2009). Further 

work comparing gene-linked and putatively neutral markers is still advisable as such 

studies have the potential to shed substantial light on the local vs. global effects debate. If 

enough studies were produced using these methods it is probable that a meta-analysis 

could show conclusively whether gene-linked loci show significantly stronger 

correlations with fitness traits than neutral marker loci. Additionally, more studies using 

appropriate tests for local effects will lead to a much more robust understanding of the 

genetic mechanisms which lead to HFCs when they are observed.
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