
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2011

AUTOMATED DISCOVERY AND INSTALLATION OF NETWORK-AUTOMATED DISCOVERY AND INSTALLATION OF NETWORK-

ATTACHED PERIPHERAL DEVICES ATTACHED PERIPHERAL DEVICES

Lawrence Alan Mandel

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Mandel, Lawrence Alan, "AUTOMATED DISCOVERY AND INSTALLATION OF NETWORK-ATTACHED
PERIPHERAL DEVICES" (2011). Digitized Theses. 3252.
https://ir.lib.uwo.ca/digitizedtheses/3252

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3252&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3252?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3252&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

AUTOMATED DISCOVERY AND INSTALLATION OF NETWORK-ATTACHED
PERIPHERAL DEVICES

(Spine title: Automated Discovery and Installation of Peripheral Devices)
(Thesis format: Monograph)

by

Lawrence Alan Mandel

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Lawrence A. Mandel 2011

THE UNIVERSITY OF WESTERN ONTARIO
SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Supervisor Examiners

Dr. Michael Bauer Dr. Lu Xiao

Dr. Mike Katchabaw

Dr. Hanan Lutfiyya

The thesis by

Lawrence Alan Mandel

entitled:

Automated Discovery and Installation of
Network-Attached Peripheral Devices

is accepted in partial fulfillment of the
requirements for the degree of

Master of Science

Date
Chair of the Thesis Examination Board
Dr. Olga Veksler

Abstract
Networks today are pervasive and numerous. They are accessed using a variety of client

devices such as traditional laptop and desktop computers, phones, tablets, music players,

and video game consoles. Networks may contain many categories of services, of which
an increasingly common one is the network attached peripheral device. Network attached

peripheral devices, such as printers, fax machines, and video projectors, are available to

client devices that have installed and configured the associated device driver software.

Practically, this means that network attached peripheral devices are hidden from or

unavailable to client devices until a user performs the manual discovery of the network

attached peripheral device and the installation of the requisite device driver software.

This paper presents a system architecture that allows for the automatic discovery and

installation of network attached peripheral devices with no user intervention.

Keywords
Network attached peripheral device, Location-based services, Automatic configuration,

Automatic installation, Service discovery, Sandbox environment, Printer

Simplicity is the ultimate sophistication.

~Leonardo DaVinci

IV

For my wife, Elana, and my children, Erica and Benjamin.

Acknowledgments

My thesis would not have taken form without the help of some great mentors, friends,

and family.

To my thesis supervisor, Professor Michael Bauer, thank you for providing me with the

opportunity to do this work, for your patience and guidance in selecting a topic, and more

generally for all that you have done to help me see this work through to its conclusion.

To my friend and colleague at IBM, Dr. Arthur Ryman, thank you for your support in my

endeavor to further my education through a Masters of Science degree.

To my parents, Marie and Fred Mandel and my in-laws, Rena and Richard Levy,

thank you for building homes that cultivate the spirit of exploration and fun and for

teaching me the reward of creating something new.

To my wife, Elana, and children, Erica and Benjamin, thank you for all your love and

support, and for making play time really, really fun.

I also want to acknowledge and thank my employer, IBM, for funding my research and

supporting my pursuit of higher education.

VI

Table of Contents

CERTIFICATE OF EXAMINATION.. ii

Abstract... iii

Acknowledgments..vi

Table of Contents... vii

List of Figures... xi

List of Listings... xii

Preface... xiii

Chapter 1..TTT.........................1

1 Introduction.. 1

Chapter 2 ...4

2 Literature Review...4

2.1 Related projects in research and production...4

2.1.1 Cooltown.. 4

2.1.2 JetSend..5

2.1.3 Universal Plug and Play (UPnP)...5

2.1.4 Jini...6

2.1.5 Calypso Concept and Odessa Architecture... 7

2.1.6 Aura...7

2.1.7 Satchel...8

2.2 Network service discovery technologies..9

2.2.1 Service Location Protocol.. 9

2.2.2 DNS-based Service Discovery.. 10

vii

2.2.3 Zeroconf. 10

2.2.4 Universal Plug and Play (UPnP).. 11

2.3 Printing protocols... 11

2.3.1 Line Printer Daemon Protocol (RFC 1179).. 11

2.3.2 Socket API.. 11

2.3.3 AppSocket... 12

2.3.4 Internet Printing Protocol.. 12

Chapter 3 ... 13

3 Design Considerations for the System... 13

3.1 Discover the NAP... 13

3.2 Register the NAP and install the device driver software...... 17

3.2.1 Register the NAP.. 17

3.2.2 Locate and download the device driver software..................................... 17

3.2.3 Perform a silent installation.. 18

3.3 Execute the device driver software... 19

3.4 Summary...20

Chapter 4 ... 21

4 System Architecture.. 21

4.1 Quality attributes and tactics...21

4.1.1 Flexibility... 21

4.1.2 Extensibility.. 22

4.1.3 Security...22

4.1.4 Usability..23

4.1.5 Performance.. 23

4.2 System design and architecture overview...24

viii

4.2.1 Network Attached Peripheral..24

4.2.2 System Peripheral Register...25

4.2.3 Driver Sandbox...26

4.2.4 Network Attached Peripheral Monitor..26

4.3 System communication sequences..27

4.3.1 Discover and register a peripheral device with the system.......................27

4.3.2 Use a peripheral device...28

4.3.3 Deregister a peripheral device with the system..29

4.4 Summary...29

Chapter 5...30

5 Implementation Details.. 30

5.1 NAP Monitor.. 31

5.1.1 NAPrinterManager..31

5.1.2 NAPrinterLocator...32

5.1.3 NAPrinterDetailsRetriever..35

5.1.4 NAPrinterRegistry..36

5.1.5 NAPrinter... 37

5.1.6 CUPSRegistrar..37

5.2 Network Attached Printer.. 39

5.2.1 Home network...39

5.2.2 Office network... 40

5.3 Using the prototype system.. 41

5.3.1 Connecting to the home network..41

5.3.2 Connecting to the office network..42

5.4 Summary...44

ix

Chapter 6 ...45

6 Discussion and Results...45

6.1 Realizing the system quality attributes...45

6.1.1 Flexibility..45

6.1.2 Extensibility.. 47

6.1.3 Security...48

6.1.4 Usability..49

6.1.5 Performance..49

6.2 Issues while prototyping...50

6.2.1 Inconsistent device driver software.. 51

6.2.2 Printer refresh frequency.. 51

6.2.3 Unexpected errors...52

6.3 Other considerations...52

6.3.1 Clean up of device driver software..52

6.3.2 Viability in a network with many NAPs..53

Chapter 7 ...54

7 Conclusions..54

Bibliography...56

Curriculum Vitae..60

X

List of Figures

Figure 3-1 Discovery of a network attached printer in Windows XP..............................14

Figure 3-2 Discovery of a network attached printer in Ubuntu Linux............................ 15

Figure 4-1 System architecture... 24

Figure 4-2 Component communication to register a peripheral device...........................27

Figure 4-3 Component communication to use a peripheral device.................................28

Figure 4-4 Component communication to deregister a peripheral device.......................29

Figure 5-1 NAP Monitor class diagram.. 31

Figure 5-2 Home network configuration.. 39

Figure 5-3 Office network configuration.. 40

Figure 5-4 Print dialog box while connected to the home network.................................42

Figure 5-5 Print dialog box while connected to the office network................................43

List of Listings

Listing 5-1 NAP Monitor main application loop...32

Listing 5-2 networksimulator.sh..34

Listing 5-3 Sample printer.xml description for the Brother MFC-440CN printer..........36

Listing 5-4 Proxy driver for Brother MFC 440CN printer..38

xii

Preface
The problem of enabling a client device to use a network attached peripheral device, such

as a printer or video projector, is one that I experience almost daily. As an IBM employee

with colleagues and customers travelling to the IBM Toronto Lab on a regular basis, I

regularly experience the difficulties that these people encounter using our local network

attached peripheral devices. The people whom I work with are the technical elite who

should be expected to be able to operate these devices quickly and easily. Yet day after

day I see time wasted configuring these devices and various workarounds being

employed simply to make use of the devices, such as borrowing a machine in order to

print.

It is my frustration of witnessing the unsuccessful discovery and installation of these

network-attached peripheral devices that I want to alleviate through the work that I have

put into this thesis.

document becomes a significant burden for a client device that may only make use of the

NAP a single time.

There are two high-level requirements to enable a client device to make use of a NAP:

1. Discover the location of the NAP on the network.

2. Register the NAP with the system and install the device driver software.

Much effort has been spent researching methods to perform service discovery [3-5] as

necessary for requirement 1. For requirement 2, each operating system may have a

method of registering common types of NAPs. There is also an opportunity to reduce the

burden of installing device driver software using de facto and industry standard TCP/IP

based communications protocols, such as Socket API, AppSocket, and Internet Printing

Protocol [6,7] for printing. However, not all NAPs have the benefit of haying standard

communications protocols defined. Standard communication protocols are also static and

slow to evolve.

The problem in this scenario is not the lack of a method to discover a NAP, register it, or

communicate with it, but how to remove from the user the burden of manually

performing these steps. This thesis proposes an architecture with unique aspects of

service description and a new model of device driver software installation and execution.

This architecture supports the automated discovery of NAPs and installation of the

required device driver software. This thesis does not investigate new methods of

discovery or look to implement a new driver protocol.

Chapter 2 reviews the existing literature for some of the related pervasive computing and

location-based services projects in order to extract some basic lessons. Next key existing

network service discovery technologies are highlighted. Because the implementation of

the architecture is specific for printers, a review of existing printer communications

protocols is also conducted.

In Chapter 3, we begin to tackle the problem by discussing the high-level requirements

and identifying other software systems from different domains that can contribute ideas

for the system architecture.

3

In Chapter 4, we present a system architecture for the automated discovery of a NAP and

installation of any required device driver software. This chapter focuses on quality

attributes of the system, the components in the system, and the system communication

sequences.

In Chapter 5, we construct a printer-specific implementation of the system architecture

presented in Chapter 4 to prove the architecture’s viability and demonstrate single-click

printing. We review the implementation details including the system requirements and

class structure. We then take a look at the prototype system in action.

In Chapter 6, we discuss the results of implementing the prototype. Wereview issues

encountered while developing the prototype and identify other considerations when

implementing this type of system.

Chapter 7 concludes this thesis with a summary of the work presented and identifies

future work related to this subject.

4

Chapter 2

2 Literature Review
To start our exploration for a solution that allows NAPs to be automatically discovered

and installed, we review related projects in research and production. We then review

technologies specific to network service discovery. Finally, we review common network

printer protocols to set the stage for the printer implementation that will be constructed in

Chapter 5.

2.1 Related projects in research and production
A number of projects in the pervasive computing and location-based services fields have

relevance to this thesis. In this section, we review some of the related projects and

highlight the lessons that can be applied from them.

2.1.1 Cooltown
Cooltown, a project by Hewlett-Packard that has been around since the late 1990s, is a

technology focused on connecting people, places, and things. The architecture of this

system is based on web standards including hypertext transfer protocol (HTTP),
hypertext markup language (HTML), and extensible markup language (XML). The use of

standards is key for this system because there are many different operating systems and

platforms that may host services that will interact with the system. The high-level vision

for this system is one in which the people, places, and things that are connected

communicate with one another in order to provide simplified access to the information

that is currently relevant to the user.

5

This project shares the goal of simplifying user interaction with devices connected to the

system, such as NAPs, but does not address the immediate need of eliminating the

manual discovery and installation of these devices. Instead it focuses on ensuring that

each device is addressable and can communicate using the specific document types

described by the Cooltown project [3].

This project demonstrates that web standards such as HTTP and XML or HTML are a

viable mechanism for communicating information about NAPs.

2.1.2 JetSend
JetSend is a “media-independent communications protocol” [8]. Developed by Hewlett-

Packard, the goal of this protocol is to remove the requirement to install device drivers by

having a flexible communications protocol that not only transfers data-but also includes a

description of the data. JetSend achieves interoperability by describing the data using

surfaces, whereby each surface represents a component of the data. The components are

assembled in a tree structure.

At its core, JetSend solves the problem of installing device drivers by having a single

communications protocol and building a single driver into each operating system. This

solution has the drawback of requiring a single communications protocol, thus limiting

user options when it comes to data transfer. The use of JetSend may preclude the use of

different or more efficient data transfer technologies that may be required for higher

quality video, audio, pictures, and ever larger documents. The work on JetSend provides

an alternative approach to the work presented in this paper but, as a communications

protocol, it can also work alongside the solution presented herein [8].

2.1.3 Universal Plug and Play (UPnP)
Universal Plug and Play (UPnP) is a system developed by Microsoft that connects

devices together using common protocols instead of device drivers to facilitate

communication. UPnP aims to require zero configuration, which includes automatic

discovery of devices and services. This technology is built on web standards including

transmission control protocol over internet protocol (TCP/IP), user datagram protocol

over internet protocol (UDP/IP), HTTP, and XML. The use of web standards allows for

the flexibility to implement UPnP in any language on any operating system [9].

In a UPnP system, each device is described by an XML document that is exposed via an
HTTP server present in each device. This means that each device both describes and

advertises its existence on the network.

UPnP provides good lessons for the elimination of device drivers including the use of

standard web technologies, such as HTTP, TCP/IP, and XML, and having a service

describe and advertise itself on the network. In its use of common protocols UPnP is

limited in that in order to be UPnP-compliant a device must use the defined protocols. If

defined protocols do not exist, the device cannot participate in the UPnP system.

2.1.4 Jini
“The primary goal of Jini is to enable any service to interact with one another without

worrying about drivers, protocols, and operating system compatibility.” [10] Jini tolerates

unreliable network connectivity and services that may come and go at any time. It

provides a mechanism for a service to define itself and advertise its existence, and

provides a mechanism for consuming services to locate the service. Jini is an extension of

the Java system but can also support non-Java artifacts. Jini’s infrastructure is built on

remote method invocation (RMI), a method for moving objects between systems in a

distributed environment. Trusted classes, as determined by the Java class loader, can be

loaded on the client machine, thus providing a way to execute code, such as that needed

to interact with a service, on a client machine. In the Jini universe, everything is a service.

It eliminates the need for device drivers because the code that is required to interact with

the services is downloaded automatically at runtime [10].

Jini requires considerable computing resources and has defined minimum requirements

for storage, processing power, and networking capabilities in order for a device to

6

7

interact with the system. Jini requires the Java runtime environment (JRE), which in turn

requires substantial memory.

With respect to this thesis, the lessons from Jini are the ability of a service to describe

itself and advertise its existence and the ability of a system to download and execute

trusted code. In Jini’s case, this means that there is no need for device drivers. For the

system presented in this thesis, downloading and executing device drivers will likely be

necessary.

2.1.5 Calypso Concept and Odessa Architecture
The Calypso Concept and Odessa Architecture is a system to enable the use of third-party

applications on multi-function peripherals. To solve the installation issue, this system

takes an approach where the client device installs the applications locaHy-and the local

code can then execute on any NAP [11].

This system requires that the user select and install the applications that they want to use

when interacting with a NAP; thus it is subject to the same limitations of the traditional

manual discovery and device driver software installation process that this thesis aims to

solve. This concept of this system is noteworthy because it is the antithesis of the work

presented in this paper; it deploys code from the client to the NAP in an attempt to

improve the process of enhancing NAPs.

2.1.6 Aura
Project Aura introduces the concept of a personal Aura, which is system that acts as a

proxy for the user. This system interacts with and establishes communications with the

appropriate resources when the user enters a new physical location. The system shields

the user from the complexity of configuration and gives them a single point of access, via

their Aura, to local resources connected to the system.

I
1

la
n

8

The Aura system operates at a higher level of abstraction than the work presented in this

thesis; therefore, despite having a similar overall goal of reducing complexity for the

user, it takes a much different approach to its implementation. The Aura system tracks

people’s movements as opposed to device movements to and from locations. The system

saves the user’s working state when in one location and has the ability to migrate that

working state to a new location. The migration is hardware-independent, so a user is not

required to carry hardware with them but rather can have their work follow them virtually

from location to location. The user can then pick up their work on a different terminal in

a different location without actively transferring their work [12]. The Aura system

provides a higher level view of what is possible. The concept can be enriched by the

work presented in this thesis because this work will assist client devices in discovering

and installing NAPS as they move from one location to another.

2.1.7 Satchel
The Satchel system, developed in the mid 1990s, provides the facility to access

documents and perform document-related services, such as printing, faxing, scanning,

and e-mailing. This system is based on web standard protocols and requires the use of a

web browser. A user can interact with the system via a variety of devices. This system

was demonstrated running with a PARC Minder (a device with only two lines of display),

a Nokia 9000 Communicator personal digital assistant, and a traditional computer. In a

Satchel system, all documents are part of the system itself and need not be transferred to
the controlling device.

Satchel contains ten services: fetch, enquiry, print, view, scan and squirrel, conversion,

beam, do-it, e-mail, and fax. These services can be used together to perform more

complex operations. For example, the print service can act on any document to print,

regardless of the document type. In order to handle various document types, the print

service may invoke the conversion service to translate between a submitted document

type and a printer-supported document type [13].

9

The architecture of the Satchel system focuses on document management. The discovery

and installation of NAPs is not addressed by this system This is clearly a different focus

than the work presented in this thesis, but there are two lessons that can be taken from

this work. First, the system operates using web standard technologies. It is important for a

new system to use existing successful standards where possible because the infrastructure

to support these standards is already in place. Second, we can also deduce a lesson in

combining services since doing so may be useful in breaking down device driver

software for reuse.

2.2 Network service discovery technologies
One of the two keys to the system presented in this thesis is the ability to discover a NAP.

A NAP provides a service on the network. Service discovery technologies can be used to

discover the available NAPs.

A number of service discovery technologies exist in production today. This section

contains a list of service discovery technologies that, while not exhaustive, identifies

many of the available options to locate a network device that are in use today. A system

need not be limited by the selection of a single service discovery technology but rather

can make use of multiple technologies to achieve the goal of NAP discovery.

2.2.1 Service Location Protocol
Service Location Protocol (SLP) is an Internet Engineering Task Force (IETF) standard

that allows for the discovery of network-based services according to the service type and

characteristics. Currently at version 2, this protocol uses multicast Dynamic Host

Configuration Protocol (DHCP) in support of service discovery.

An SLP system contains three types of agents: user, service, and directory. User agents

assist in service discovery for client software. Service agents advertise the location and

characteristics of a network service. Optional directory agents contain a repository of

service information. Furthermore, discovery can be active or passive. Active discovery is

10

when a client initiates a search for a network service. Passive discovery is when a service

broadcasts its availability on the network [14].

SLP supports both small and enterprise networks through its design, which aims to

minimize the impact of service discovery on the network.

2.2.2 DNS-based Service Discovery
DNS Service Discovery (DNS-SD), currently an IETF Internet draft, allows clients to

discover network services using standard DNS queries. Service names are already

supported by DNS. DNS-SD adds the capability to make a query to a service pointer. The

service pointer query returns a list of all the available services of a specified type. This

list can then be used to select a specific service.

DNS-SD is compatible with Multicast DNS, which supports zero-configuration

networking, and standard unicast DNS. The primary benefit of using DNS-SD is that it is

based on the existing DNS technology, which is widely deployed and well understood

[15].

2.2.3 Zeroconf
There are three solutions in the Zeroconf system: address auto-configuration, name-to-

address translation, and service discovery. For service discovery, Zeroconf stores service

information in DNS resource records using Multicast DNS. Zeroconf service discovery

allows for the discovery of network services based on type. For example, a client can

query for the available printing services on the network [16].

Bonjour is an implementation of Zeroconf developed by Apple and used in its OS X

operating system. Bonjour already supports the discovery of printers.

A
J

iy
A

A

2.2.4 Universal Plug and Play (UPnP)
UPnP, which was presented earlier in this chapter, has a service discovery component

and is therefore mentioned again in this section.

UPnP service discovery functions using two methods: service advertisement and service

discovery. Service advertisement is performed by devices to advertise their available

network services using multicast messages. Service discovery is performed by client

devices that wish to consume network services also via multicast messages. An XML

document contains the service description details and is available to clients via HTTP [9].

2.3 Printing protocols
Since the implementation will focus on printers as a specific type of NAP, this section

reviews three common network-based printing protocols. "

2.3.1 Line Printer Daemon Protocol (RFC 1179)
I

The Line Printer Daemon Protocol, also known as RFC 1179 and LPR, is the original

network print specification [17]. This protocol makes use of TCP/IP for line printing with
¡1

a spool daemon running on the print server. This protocol has a number of limitations: the

source port is limited to the range 721-731 inclusive; the print server must run on port
4

500; few print file types are supported; the protocols lacks extensibility; there is no I
i

method to obtain status information; and print options are limited to basic functions [18],

The Line Printer Daemon Protocol is a memo, not a specification, and has been

superseded by other network print technologies.

2.3.2 Socket API
Socket API is a flexible job transfer protocol. Hewlett Packard JetDirect is the de facto

standard implementation. This extremely simple protocol allows printing over TCP/IP

using any port. Socket API supports client status updates as long as the connection

11

12

between the client and the server is open. Once the connection is closed, there is no built-

in method to obtain status. The Socket API protocol has no built-in print queue.

Responsibility for managing the print queue is left to the user. The user must ensure that

a previous print job has completed before sending a new job to the printer. This has

obvious implications in any environment with multiple users because coordination can

become cumbersome. The Common UNIX Printing System (CUPS) includes an
implementation of Socket API [6].

2.3.3 AppSocket
AppSocket is similar to Socket API with two notable differences: 1) the printer has both

TCP and UDP ports for communication, and 2) a client device can terminate its

connection with the printer by sending an end-of-job sequence in the data stream [6].

2.3.4 Internet Printing Protocol
The Internet Printing Protocol (IPP) is an IETF standard, with version 2 currently in

approved candidate status as of February 2011. This standard includes many features that

address issues of peripheral devices as network services including URI-addressable

resources, a document model with extensible attribute support, built-in status

communication, and security [7], The original IPP standard work started in November

1996 by Novell and Xerox, with IBM, Lexmark, and Sun joining in shortly after the

formation of the working group to collaborate on the specification [19]. This standard has

a reference implementation in the CUPS [20], This standard falls short of the goal of this

thesis to have a zero-installation solution for NAPs because it does not address the issue
of installing printer driver software.

The IPP Everywhere work being conducted by the IPP working group is currently

investigating the zero-installation problem. The focus of IPP Everywhere is an adoption

of standard document formats, discovery protocols, and schemas specific for printing [21]

to eliminate the requirement of printer-specific device driver software.

13

Chapter 3

3 Design Considerations for the System
As discussed in Chapter 1, there are two high-level requirements to enable a client device

to make use of a NAP:

1. Discover the location of the NAP on the network.

2. Register the NAP with the system and install the device driver software.

A third requirement was implicitly mentioned earlier, which we will explicitly list here:

3. Execute the device driver software.

With these three requirements in hand, we need to analyze the operations that support the

automation of these requirements in order to understand the ramifications of changing the

existing discovery, installation, and execution models. In this chapter, we tackle these

problems.

3.1 Discover the NAP
A typical method to discover a NAP such as a printer is for a user to manually invoke a

dialog box or a setup wizard and select a method to query the network. As shown in

Figures 1 and 2, both the Microsoft Windows XP and Ubuntu Linux 10.10 operating

systems use this approach. In both cases, the user selects a menu item to add a new

printer and makes a selection in the dialog box to add a network printer, after which the

network is queried and the results of the query are displayed.

Specify a Printer
i you don t know the name o r address o f the printer, you can search fo r a printer
th k meets your needs.

W hat printer do you want to connect to?

0 Browse fo r a printer

O Qprinect to th is printer lo r to browse fo r a fainter, select th is option and d ic k Next):

Figure 3-1 Discovery of a network attached printer in Windows XP

Name:

Example: WserverNprider

0 CQmect to a printer on the Internet o r on a home or office network:

URL

Example: http ://server/print ers/niypràî er/.pnn!tef

<gack If....jad> j | Caned

15

Figure 3-2 Discovery of a network attached printer in Ubuntu Linux

In order to discover a network attached printer, these dialog boxes may make use of a

variety of service discovery protocols, some of which are detailed in Section 2.2. Service

discovery is itself a topic of much research. The list of discovery protocols identifies

many options, each with their own benefits and drawbacks and each with their own

applicable scenarios and implementing technologies.

Beyond the method of discovering a NAP is the question of when to query for a NAP.

Some of the service discovery protocols, such as SLP, detail when to query for new

services. Others do not provide this guidance, leaving the decision up to the client

application.

16

We will discuss two approaches to the timing of when to query for the available NAP

services:

1. Query when the use of a specific type of NAP is requested by the user. For

example, the system can query for available printers when a user makes a request

to print.

2. Query periodically in the background to keep the list of available NAPs up-to-

date.

The question of whether to use the timing of approach 1 or 2 comes down to a

performance trade-off.

Approach 1 has the minimum disruption to the network because a query is only executed

when a NAP is actually used. However, if a NAP is to be used frequently, for example

when printing many documents, this approach may also be inefficient if the results are

not cached. This approach also has a performance impact that is visible to the user

because the user must wait for the results of the query operation to be returned before

proceeding to use a NAP.

Approach 2 requires increased network traffic because the discovery query is executed

more frequently. This may or may not have a noticeable affect on the network’s

performance. This approach should result in improved performance for the user because

the list of available NAPs is populated as soon as a selection is made in order to make use

of a specific type of NAP.

The solution in approach 2 contains a further complication in the timing of the

background discovery queries. Two cases in which the network may be queried for the

list of available NAPs are:

• When a network state change occurs, such as establishing a new network

connection or terminating an existing network connection. In this case, the state of

NAPs on the network should be considered to be unknown.

• At some refresh rate interval while a network connection exists, such as every 5

minutes. The refresh rate may depend on the type of NAP or the network itself.

This problem is not trivial to solve and furthermore may not have one correct answer.

3.2 Register the NAP and install the device driver software
In the current NAP installation scenario, the user manually registers a NAP with the

system and also installs the device driver software manually. To register the NAP and

install the software automatically, the system needs to obtain enough detailed information

about the NAP to register it, locate and download the device driver software, and perform

a silent installation, that is, an installation with no user interaction.

3.2.1 Register the NAP
In order to register the NAP, the system needs access to a description of the NAP that

includes the information required by the registration process. As we have learned through

our literature review of related projects, a good method for providing a description of a

NAP that has already been employed in systems such as UPnP is to use web standards

such as HTTP and XML. Following the UPnP model, each NAP can provide a

description of itself in an XML document exposed via a web server. The advantages of

XML are that it is in widespread use, it is platform agnostic, and it can be flexible for

describing different types of NAPs. The system can use the information available in the

NAP description to register the nap with the operating system.

3.2.2 Locate and download the device driver software
In order to provide a location from which to download the device driver software, the

description document should include a reference to a location from which to retrieve the

device driver software required for the NAP. In keeping with web standards, the location

should be a uniform resource locator (URL). This method will provide a means to locate

the device driver software.

With the device driver software available via a URL, the download method can also use a

web standard technology such as HTTP or FTP in order to make the device driver

software download as available as possible. It should also be possible to make the

software download available via multiple methods and have the client pick the most

suitable method for download.

A follow-up question related to how to download a device driver is when to download a

device driver. While a NAP needs to be registered with the operating system in order to

be available to the user, the device driver software may not need to be downloaded or

installed until a request is made to use a specific NAP. There are performance

implications to downloading and installing the device driver software for a NAP when it

is located, in terms of bandwidth, disk space, memory, and processor usage. These

implications add up to a desire to defer the download and installation of the device driver

software until it is required. -——

Some print systems, such as CUPS, require that the device driver software be installed

before a printer can be registered with the system. To support the requirement to have the

device driver software installed before a NAP is registered, a device driver proxy can be

used. The proxy acts as the device driver software and, when a request is made to use a

specific NAP, the proxy automatically downloads and installs the device driver software

at that time and passes the request to the real device driver software.

3.2.3 Perform a silent installation
Silent installation is a common option for software installers. This option is typically used

for centrally managed software deployment in enterprises and scripted installation. The

key to performing a silent installation is to require no user interaction. All information

should be provided to the installation script or program when it is launched.

While it is preferable that the device driver installation should require no information,

this may not be reasonable in all cases. Any additional information that is required can be

provided in the NAP description document.

3.3 Execute the device driver software
There is a key difference with the device driver software in the new automated scenario:

the software cannot be trusted. Software that is manually downloaded and installed can,

to a certain degree, be trusted because the user is actively performing the installation task.

In the manual scenario, the user should have the opportunity to verify the software

signature, and can choose whether they trust the organization that has developed the

software. In the automated scenario, the user does not manually locate or download the

device driver software. It may be possible to automatically verify the software signature

if a signature is provided and, as is done when downloading third-party code in Mozilla

Firefox, the user can potentially be prompted to accept the download. Even in these

cases, the system should follow the best practice exercised by web browsers such as

Mozilla Firefox and Google Chrome for third-party code such as Flash, Java, and

JavaScript applications: run the third-party code in a sandbox environment.

3.3.1.1 Sandbox requirements
The primary goal of a sandbox is to protect the system, or as Goldberg, Wagner, Thomas,

and Brewer put it,

An application can do little harm if its access to the underlying operating

system is appropriately restricted. [22]

A sandbox is an environment for executing untrusted code that has limited access to the

operating system and system resources such as memory, file storage, and network

connections. A simple implementation of a sandbox environment is to create a user

account on the system that has read-only file permissions and execute untrusted code

using this user account. In this sandbox implementation, the untrusted code cannot write

to the file system or execute programs and so should not be able to make changes to the
file system.

Sandbox techniques are employed in production systems such as Java, which includes a

sandbox environment in the Java virtual machine (JVM) [23]. There are also good

examples of sandboxes in modem web browsers such as Mozilla Firefox and Google

Chrome, which apply this technique to protect the system from automatically

downloaded third-party code such as Flash, Java, and JavaScript applications. Sandbox

environments are still an active area of research as well with projects like Vx32 [24] and

Native Client [25]. Although the goal of this thesis is not to design a method of restricting

resources via a sandbox, we will identify one key requirement of the sandbox. The

sandbox must allow the device driver software to communicate a result to the print

system. In the case of CUPS, the result is the processed document that is ready to be

transferred to the printer.

3.4 Summary
In this chapter, we covered some of the design considerations for the system and flushed

out our scenarios to allow for further requirements and design decisions to be gleaned. In

the next chapter, we will use this information to help create the system architecture.

Chapter 4

4 System Architecture
The architecture of this system introduces a new take on service description and

introduces a new model of device driver installation and execution. It takes lessons from

systems including Cooltown, Satchel, UPnP, Java, and web browsers such as Mozilla

Firefox and applies them to help solve the problem of automatically discovering a NAP

and installing the associated device driver software. The primary stengths from these

other systems that are applicable to this system are the use of the XML and HTTP web

standards for communication, the remote distribution of software, and the execution of

untrusted code in a runtime sandbox. The architecture of this system bolts onto the

existing operating system infrastructure for a specific type of peripheral device.

4.1 Quality attributes and tactics
The design of the system needs to incorporate the following quality attributes: flexibility,

extensibility, security, useability, and performance.

4.1.1 Flexibility
The system must have the ability to support multiple operating systems and

communications protocols.

Operating systems in common use today include Microsoft Windows, Linux variants

(RedHat, SUSE, Ubuntu), UNIX, BSD, and MacOS. Mobile operating platforms in

common use today include Symbian OS, iOS, Android, Blackberry OS, and Windows

Mobile. The architecture should not employ any design that is specific to an operating

system.

2 2

Communications protocols are important for a system that is to support many different

NAP devices. Some peripheral devices may require a document protocol, where the

entire content of the information required to perform an action are sent before the action

is performed. For example, it is typical to transfer the entire content of a document to a

printer before printing begins. Other peripherals may require a streaming protocol, where

the action to be performed is initiated before the entire content of the information has

completed transferring. For example, it is typical to stream a live or large prerecorded

video in order to start displaying the video quickly. Both of these communication

mechanisms must be supported. The system should support the use of multiple

communications protocols via device driver software.

Furthermore, the retrieval of the NAP description document and device driver software

should be accessible to as wide an audience as possible. The system should use existing

web standards for the retrieval and format of these artifacts.

4.1.2 Extensibility
The system must support the use of hitherto undefined protocols, platforms, and

communication mechanisms so as to support innovative new communication techniques

and peripheral devices. This quality is vital so that the system does not quickly become

out of date, as was the fate of RFC 1179.

4.1.3 Security
Security is important from both a client and a server perspective.

The client concern is to prevent the system from being compromised by the automated

installation of untrusted code and by establishing a secure communication channel with

the NAP.

The server concern is to restrict access to the NAP to those with the appropriate

authorization and avoid compromising the integrity of the NAP.

23

4.1.4 Usability
The driving factor behind this system is to improve ease of use as it relates to the

discovery and installation of a NAP. The system must improve the use case of the initial

use of a NAP that has not been previously installed and configured on a system. The

system should also, where possible, integrate with the existing operating system’s

subsystem for each specific type of NAP as opposed to defining a new method of

interaction with each type of NAP, such as requiring a user to print from a web browser.

4.1.5 Performance
The performance of the system is very important because it correlates to the usability

quality attribute. Users may be connected for a limited time and may only be at a given

location for a limited period of time. For example, a user may be at a location for an

hour-long presentation and need access to the system only for the one hour that they are

on site. While no specific time measurements have been recorded for how long a user is

willing to wait for the system to be configured, the perceived performance must be that

the system is configured quickly. The system should run background queries for the

available NAPs in order to have an up-to-date list when the user requests the use of a

specific type of NAP.

The system should only download and install the required device driver software when it

is required to make use of a NAP. The system should employ a proxy driver to allow for

the NAP to be registered without downloading and installing the device driver software.

24

4.2 System design and architecture overview

Figure 4-1 System architecture

The architecture of the system consists of four components: network attached peripheral,

system peripheral register, driver sandbox, and network attached peripheral monitor.

4.2.1 Network Attached Peripheral
The network attached peripheral is the peripheral device that is to be used in conjunction

with the system. For example, this may be a printer, a video projector, or an audio device.

This device must have a mechanism for communicating as part of the network. Although

existing service discovery protocols contain information such as the type of NAP and an

identifier, they fall short of the required information that a NAP must provide for this

system. In this system, the NAP uses a novel approach of providing all of the information

required to register itself with an operating system. (The specific requirements for

Ubuntu Linux are outlined in Section 5.1.3.) The description also includes the download

location for any required device driver software. Providing the device driver software

location is a change from the current model of providing the software on an installation

disk bundled with the device. In this architecture, the device driver software can be

bundled on the NAP itself or made available on the Internet for automatic download. In

this system, the NAP provides all of this information in an XML description document

25

that is accessible via HTTP. The description document supports the flexibility and

extensibility quality attributes by providing a mechanism for the system to obtain all of

the required information about a NAP without tying the implementation to a specific

service discovery protocol.

Note that the network attached peripheral may be a standalone device with built-in

communication, for example, a printer with built-in network support, or it may be a

peripheral device tied to another system that handles communication, for example, a USB

printer tethered to an Ubuntu Linux system running CUPS.

4.2.2 System Peripheral Register
The System Peripheral Register is the standard platform registrar for a specific type of

peripheral device. For example, on Ubuntu Linux, CUPS acts as the printer registrar. This

component supports the flexibility and extensibility quality attributes through the ability

to function with different platform registrars.

The Network Attached Peripheral Monitor will register each NAP and a proxy driver that

it creates with the System Peripheral Register. The proxy driver partially supports the

performance quality attribute through the deferred installation of the actual device driver

software. It also partially supports the usability quality attribute by automatically

downloading and installing the device driver software. After the device driver software

has been downloaded, the System Peripheral Register communicates directly with the

Driver Sandbox to execute the device driver software and with the NAP to execute an

action.

This system interacts with the existing operating system’s subsystem for a specific type

of NAP. It does not require the replacement or modification of the existing subsystem. In

this way, this system can work alongside the existing model of manually discovering and

installing a NAP. This is an important feature because it supports a transition period

between the two discovery and installation models.

26

4.2.3 Driver Sandbox
This system may automatically deploy new executable files in the form of device driver

software to a user’s machine, so the deployed device driver software is executed in a

Driver Sandbox environment. This protects the user’s machine from untrusted code,

thereby supporting the security quality attribute. The proxy driver installed in the System

Peripheral Register invokes the device driver software in the Driver Sandbox. The results

of the device driver software are returned to the System Peripheral Register.

The use of a restricted execution environment is new in the context of device driver

software. This software typically has access to a much larger portion of the file system

and system resources. In some cases, such as when it is installed on Ubuntu Linux, the

device driver software may even be executed as the root user. The Driver Sandbox

changes this model and should significantly restrict the ability of device driver software

to interact with the operating system.

4.2.4 Network Attached Peripheral Monitor
The components previously listed interact with one another directly. The Network

Attached Peripheral Monitor is the central component required to manage the state of the

system. The Network Attached Peripheral Monitor is responsible for querying for NAPs,

retrieving their description document, generating the proxy driver, and registering the

NAP with the System Peripheral Register. This component also identifies when a NAP is

no longer available and consequently deregisters it with the System Peripheral Register.

The Network Attached Peripheral Monitor supports the usability quality attribute by

automatically registering and deregistering NAPs with the operating system.

The process flow introduced above introduces a change in behaviour of existing NAP

dialog boxes. In the current model, all installed NAPs will always be listed regardless of

availability. In the new model, only those NAPs that are available will be listed. For

example, in the current model, all installed printers are listed whenever the print dialog

box is displayed, regardless of whether all of the printers are currently available on the

network. (Your printer at home will be listed in the print dialog box when you are at the

office, for example.) In the new model only those printers that are currently available will

be listed in the print dialog box, resulting in a list that contains only the printers of which

a user can currently make use.

4.3 System communication sequences
There are three key use cases for this system:

• Discover and register a peripheral device with the system

• Use a peripheral device

• Deregister a peripheral device with the system when it is no longer available

This section covers the communication between the components in the-system for these

three key use cases.

4.3.1 Discover and register a peripheral device with the system

Figure 4-2 Component communication to register a peripheral device

The NAP Monitor system polls the network at a regular interval for the available NAP

devices. Once a NAP is identified, the system requests the details from the NAP and then

requests that the System Peripheral Service register the NAP.

28

4.3.2 Use a peripheral device

i

Figure 4-3 Component communication to use a peripheral device

When a NAP is to be used, a request is initiated from outside the system to the System

Peripheral Service for the specific peripheral device type. For examples request to print

on Ubuntu Linux is made to the CUPS system. The System Peripheral Service invokes

the proxy driver installed with the System Peripheral Service, which in turn downloads

and installs the device driver software and invokes the device driver software in the

Driver Sandbox. The device driver software then performs an operation and returns the

results. In the CUPS system, the device driver software transforms the document and

returns it to the CUPS system. The System Peripheral Service then requests an action of

the NAP.

4.3.3 Deregister a peripheral device with the system

NAP Monitor NAP System Peripheral Service Driver Sandbox

I

Figure 4-4 Component communication to deregister a peripheral device

The NAP Monitor polls the network for available NAPs at a regularly scheduled interval.

When it identifies a NAP as unavailable, the NAP Monitor then sends a request to

deregister the NAP with the System Peripheral Service. This action removes the NAP

from the system.

4.4 Summary
In this chapter, we reviewed the system architecture. We covered quality attributes and

tactics, the system architecture diagram, and the component communication sequences

for the three key sequences. In the next chapter, we will look at a prototype

implementation of this system.

30

Chapter 5

5 Implementation Details
As proof that the architecture outlined in Chapter 4 is viable, a prototype implementation

of the architecture was constructed. The scope of the implementation was limited to that

required to demonstrate the architecture without implementing proven technology. The

high-level details of the scope are as follows:

• The implementation is restricted to print devices.

• The implementation uses a file-based locator.

• The implementation is restricted to Ubuntu Linux 10.10. The implementation

therefore integrates with CUPS, the print system in use in Ubuntu Linux.

• No security is employed in terms of authentication and authorization. All printers

are available to all users.

This system is implemented in Java and has a requirement on Java 1.5. The locator

portion of the system makes use of a shell script that is specific to Linux.

In this chapter, we start with an overview of the NAP Monitor system and provide details

about the network attached printers. We then conclude with a demonstration of the use of

the system.

31

5.1 NAP Monitor

I i
I I
I i

v____
NAPrinterLocator

♦ fin d P crtpheraXs()

FileBasedLocator

Figure 5-1 NAP Monitor class diagram

The NAP Monitor application is run on the client device. In this implementation, a client

device is an Ubuntu Linux 10.10 system. Because the NAP Monitor is a Java application,

a Java runtime environment (JRE) 1.5 or later must also be installed.

As shown in Figure 5-1, the implementation of the NAP Monitor centres around the

NAPrinterManager. The NAPrinterManager contains the application’s main method or

entry point and controls the other objects in the NAP Monitor application, namely the

NAPrinterLocator, NAPrinterDetailsRetriever, and NAPrinterRegistry.

CUPSRegistrar

11

♦register {)
♦deregister 0

— NAPrinterRegistry |-<-

♦addPrinter Ö
♦hasPrlacer ()
♦osaovtPrinter ()
♦getPrlc ter ()-------i-n-------

I

NAPrinter
JL

•description
-fid
♦devicetJPI
• lo ca t io n s acription
■•driver

NAPrinterManager- > •NAPrinterDetailsRetriever

•rsalnO------------1------------ ♦get PritterDet A ils ()

5.1.1 NAPrinterManager
The NAPrinterManager contains the main method of the application and controls the

application’s execution. This class initiates a loop, shown in Listing 5-1, to handle the

primary tasks of the system. The steps in the loop make a request to locate network

attached printers from the NAPrinterLocator, deregister any printers that are no longer

available with the NAPrinterRegistry, retrieve the details of the newly located printers

using the NAPrinterDetailsRetriever, and register the newly located printers with the

NAPrinterRegistry.

32

While application has not received a quit request
Locate network attached printers
Get the set of all printers currently registered
Deregister any printers that were not located
For any newly located printers

Retrieve printer details from the description document
Register printer

Listing 5-1 NAP Monitor main application loop

As discussed in Section 3.1, the timing of when to query the network for the available

printers depends on the service discovery technology in use and the type of peripheral

that is being queried. This implementation uses a file-based locator (discussed in more

detail in the next section) and as such has no disruption to the network. For this prototype

the network is therefore queried for changes frequently—every 10 seconds.

5.1.2 NAPrinterLocator
The NAPrinterLocator is an abstract class for performing service discovery to locate

devices on the network. A concrete FileBasedLocator class has been provided that

identifies printers based on the list of network attached printer URLs in a text file on the

system.

33

#!/bin/sh

PRINT_DIR="/usr/local/nap/print"
PRINTERS_FILE="$PRINT_DIR/printers.txt"

HOME=0
0FFICE=1

echo "Initializing directories and files"
if [! -d $PRINT_DIR]; then

echo "Creating print directory"
mkdir -p $PRINT_DIR

fi

if [! -e $PRINTERS_FILE]; then
echo "Creating printers file"
touch $PRINTERS_FILE
chmod 766 $PRINTERS__FILE

fi

network=-l
while [true]
do

if [""ifconfig | grep 10.10""]; then
if [$network -ne $0FFICE]; then

network=$OFFICE
echo "Changing to office network"
echo "Office network has the following printers:"
echo "1. Brother MFC-440CN"
echo "http ://IO.10.1.111/brothermfc44 0cn/" > $PRINTERS_FILE

fi
fi

34

if ["'ifconfig | grep 192.168'"]; then
if [$network -ne $HOME]; then

network=$HOME
echo "Changing to home network"
echo "Home network has the following printers:"
echo "1. Samsung ML-1710"
echo "http://l92.168.1.140/samsungmll710/" > $PRINTERS_FILE

fi
fi

sleep 5
done

exit 0

Listing 5-2 networksimulator.sh

The FileBasedLocator works in conjunction with a network simulator shell script,

shown in Listing 5-2. networksimuiator. sh changes the printer URLs listed in the text

file on the system based on the network portion of the system’s IP address. The shell

script runs in a loop and updates the text file when a network change is detected. For the

prototype, the script is hard-coded with two network locations, as described in Section

5.2, each with one network attached printer.

The n e tw o r k s im u ia to r . sh script was created outside of the NAP Monitor application in

order to simulate printer device changes on the network outside of the NAP Monitor

application. This more closely simulates the control of NAP information since the NAP

Monitor application will not have access to the NAP list when using a different service

discovery mechanism.

This simple file-based locator scheme effectively demonstrates the changing devices on a

network without spending too much time implementing an existing service discovery

technology, which is not the focus of this thesis.

http://l92.168.1.140/samsungmll710/

5.1.3 NAPrinterDetailsRetriever
The details of each network attached printer are contained in an XML description file

named p r i n t e r . xm l. The contents of the description file are as follows:

35

• id - An ID for the printer. This should be a unique ID on the network.

• description - A textual description of the printer. This can be used by user facing

tooling such as the print dialog box.

• location - The location of the printer on the network. The location includes both a

URI and a textual description of the location.

• PPD file - A PostScript Printer Description (PPD) file contains further CUPS-

specific information about the printer such as device capabilities and printing

options.

• driver - The relative or absolute location of the printer device driver software

file. This file will be downloaded, extracted, and installed.

• filter - The name of the filter file. This file name is used in the generation of the

proxy driver and to identify the filter or main device driver entry point for the

CUPS system.

A sample p r in te r .x m l file for the Brother M FC-440 CN printer is shown in Listing

5-3.

36

<?xml version="l.0" encoding="UTF-8"?>
<printer id="Brother-MFC-44OCN" xmlns="http://print.nap.org">

<description>Brother MFC-440CN</description>
<location>

<description>BROMFC</description>
<deviceuri>lpd://BROMFC/BINARY_Pl</deviceuri>

</location>
<ppdfile>Brother-MFC-440CN.ppd</ppdfile>
<driver>BrotherMFC44OCN.tar</driver>
<filter>brlpdwrappermfc440cn</filters

</printer>

Listing 5-3 Sample printer.xml description for the Brother MFC-440CN printer

The printer.xml file is retrieved by the NAPrinterDetailsRetriever. This object

downloads the file and parses it for the information in order to create a NAPrinter object

that represents a specific printer.

This NAPrinterDetailsRetriever communicates with a web server deployed with the

network attached printer in order to retrieve the printer. xml file using HTTP. No

security is currently supported in this communication channel.

5.1.4 NAPrinterRegistry
The NAPrinterRegistry functions as a typical registry in that it maintains a set of the

discovered network attached printers. Each printer is modeled with a NAPrinter object.

The registry stores NAPrinter objects using the printer URL as the key to identify and

retrieve objects as required. The NAPrinterRegistry communicates with the

cupsRegistrar, sending it requests to register and deregister each printer.

http://print.nap.org

37

5.1.5 NAPrinter
A NAPrinter object represents a specific network attached printer. The object contains

all of the information found in the printer description document as needed to register a

printer with the system and create the device driver proxy.

5.1.6 CUPSRegistrar
Once a newly available network attached printer has been located, it must be registered

with the operating system’s print subsystem. The CUPSRegistrar handles

communication between the NAP Monitor system and CUPS, the print subsystem

employed by Ubuntu Linux 10.10. The CUPSRegistrar provides the facility to register

and deregistered a printer with the CUPS system. Registration is performed using the

CUPS command line lpadmin command. For example, the following command will

register the Brother MFC-440CN printer:

lpadmin -p Brother-MFC-440CN -L BROMFC -D "Brother MFC-440CN" -P
Brother-MFC-440CN.ppd -v lpd://BROMFC/BINARY_Pl

The information used to register a printer with the lpadmin command is provided in the

printer description document.

Deregistration is also performed using the CUPS command line lpadmin command. For

example, the following command will deregister the same Brother MFC-440CN printer:

lpadmin -x Brother-MFC-440CN

38

#!/bin/sh

if [! -e /usr/local/nap/print/filter/brlpdwrappermfc440cn] ; then
wget 'http://10.10.1.lll/brothermfc440cn/brlpdwrappermfc440cn' -O \

/usr/local/nap/print/filter/brlpdwrappermfc440cn
chmod 755 /usr/local/nap/print/filter/brlpdwrappermfc440cn

fi

if [! -e /usr/local/nap/print/driver/Brother.tar] ; then
wget 'http://10.10.1.lll/brothermfc440cn/Brother.tar' -O \

/usr/local/nap/print/driver/Brother.tar
tar -xpC/usr/local/nap/print/driver/ -f \

/usr/local/nap/print/driver/Brother.tar
fi

sudo -u napsandbox -c /usr/local/nap/print/filter/brlpdwrappermfc440cn\

exit

Listing 5-4 Proxy driver for Brother MFC 440CN printer

The cupsRegistrar is also responsible for the creation of a proxy driver in the CUPS

system. The proxy driver will download the printer device driver software and marshal all

use of the device driver to the sandbox area.

The device driver software is downloaded to the /usr/iocai/nap/print/driver
directory on the system. This is the home of the sandboxed user account. A local user

account napsandbox is created with limited permission to access the file system. This

user account can read the file system but not write to it outside of its home directory

shown above. This is especially important when working with the CUPS system because

CUPS runs as the root user.

Note that many current device driver software packages expect to be able to install to any

location on the system. This is the case with the out-of-the-box Brother MFC-440CN

software. The software may need to be modified, as was the case with the Brother printer,

to support running in this location.

http://10.10.1.lll/brothermfc440cn/brlpdwrappermfc440cn'
http://10.10.1.lll/brothermfc440cn/Brother.tar'

39

An example proxy driver for the Brother MFC-440CN printer is shown in Listing 5-4. In

this example, the proxy driver checks for the existence of the filter and driver. If either

file does not exist, it will be downloaded. The system then changes to the napsandbox

user, a user with restricted privileges, and executes the device driver via the filter.

Note that not all printers require specific device driver software. In the case that a printer
makes use of a generic device driver included in the CUPS system, as is the case with the

Samsung ML-1710 laser printer, the generic device driver will be used. Using the generic

driver removes the need to install a specific device driver or execute the device driver in

the sandbox area.

5.2 Network Attached Printer
Each network attached printer must provide the information about itself that is required

by the NAP Monitor system. No printer includes the required information as part of their

standard interface, so a supplementary method must be used to provide this information.

Each printer exposes this information in an XML description document, printer. xml,
which the NAP exposes via HTTP. A sample printer .xml file can be seen in Listing

5-3. An Apache HTTP server is configured for each printer to serve the XML document

via HTTP and exposes the printer information on the network.

To demonstrate the effectiveness of the system, two networks were configured. For

differentiation, the networks are named home and office.

5.2.1 Home network

Wireless Access Point
Apadie HTTP Server

CUPS Samsung ML-1710

Figure 5-2 Home network configuration

40

The home network includes a wireless access point, Samsung ML-1710 printer, and

Ubuntu Linux 10.10 server. The Samsung printer does not include any network support

but rather is a USB printer. This printer is coupled with an Ubuntu Linux system and

exposed on the network via the CUPS built-in ability to share a printer. A tandem Apache

HTTP server is installed on the Ubuntu Linux system to serve the printer. xml
description document.

The Samsung ML-1710 printer makes use of a generic device driver software package

bundled with CUPS and so does not provide a device driver software package for

download.

5.2.2 Office network

Figure 5-3 Office network configuration

The office network includes a wireless access point, Brother MFC-440CN printer, and

Ubuntu Linux 10.10 server. The Brother printer provides built-in support for TCP/IP and

LPD allowing it to print over the network. A tandem Apache HTTP server was installed

on the Ubuntu Linux server to serve the printer .xml description document and the

device driver software.

The Brother MFC-440CN printer requires specific device driver software. Out of the box,

this software does not support the sandbox employed by this system. Because the

software is open source, having been released under the GNU Public License (GPL), the

41

software package was modified to support relative and variable paths in order to install

and execute it in the sandbox environment.

5.3 Using the prototype system
The NAP Monitor system is now set up. The NAP Monitor is running on the client

Ubuntu Linux 10.10 system, which has no printers installed. Two networks, home and

office, have each been configured with one network attached printer.

5.3.1 Connecting to the home network
When connected to the home network via the wireless access point, the client device is

assigned the IP address 192.168.1.100. Opening the Firefox web browser to a page of our

choice and selecting the File- >Print menu command displays the print dialog box

shown in Figure 5-4.

42

Figure 5-4 Print dialog box while connected to the home network

The Samsung ML-1710 printer is automatically discovered by the NAP Monitor

application and registered with the system. On clicking the Print button, the web page

open in Firefox is printed by the Samsung printer. The click of the Print button is

notable as this system has introduced single-click printing. With one click, a print job has

successfully executed on a printer that was not previously installed on the system.

As a reminder, the Samsung ML-1710 printer is exposed on the network via CUPS

shared printing and uses generic device driver software that is bundled with CUPS. No

device driver software had to be downloaded or installed for this printer.

5.3.2 Connecting to the office network
Next the network connection is changed from the home network to the office network.

This change results in the assignment of IP address 10.10.1.100 to the client device.

43

Opening the Firefox web browser to a page of our choice and selecting the File - >Print
menu command displays the print dialog box shown in Figure 5-5.

Figure 5-5 Print dialog box while connected to the office network

The Brother MFC-440CN printer has now been discovered by the NAP Monitor

application and is displayed in the print dialog. Note that the Samsung ML-1710 printer

is no longer displayed on the list of available printers. The NAP Monitor application has

detected that this network attached printer is no longer available and has deregistered it

with the system. When the user clicks the Print button, the web page open in Firefox is

printed by the Brother printer. As a reminder, the Brother MFC-440CN printer has an

Ethernet port and is connected directly to the network.

44

In this case, the Brother printer does require specific device driver software in order to

function. After the print button is clicked, the proxy driver automatically downloads and

installs the printer’s device driver software and then marshals the request to the device

driver software in the sandbox area. The results are returned to CUPS and the document

is printed by the printer.

5.4 Summary
This chapter reviewed the prototype system implementation details for the NAP Monitor

system and the network attached printers. It demonstrated single-click printing with the

prototype system using two different printers. In the next chapter, we will discuss the

results of the prototype effort.

45

Chapter 6

6 Discussion and Results
Our discussion starts on a positive note. The prototype implementation worked. It

successfully demonstrated that the architecture of the system allows for the use of

network attached printers with no previous discovery or installation of the printer on the

system. The NAP Monitor system was able to automatically discover network attached

printers, download and install the device driver software, and register and deregister the

printer with the operating system’s print subsystem. The use of the print subsystem

allows the prototype to populate the existing print dialog on Ubuntu Linux 10.10 making

the use of the network attached printers intuitive for the system’s users.

6.1 Realizing the system quality attributes
In Section 4.1, we discussed system quality attributes and tactics for implementing them.

In this section, we revisit these attributes and review our success in realizing them.

6.1.1 Flexibility
The system must have the ability to support multiple operating systems

and communications protocols.

There are two components to this quality attribute: support multiple operating systems

and support multiple communications protocols. The system and implementation were

partially successful at realizing this quality attribute.

46

The architecture of the system is designed in a way that is platform- and NAP-agnostic.

In this way, the architecture supports this quality attribute. However, the implementation

of the prototype system does not attempt to prove this part of the architecture.

First, the prototype implementation is specific to Ubuntu Linux and interacts only with

CUPS. It will be beneficial to expose the system to a wider variety of operating systems.

Mac OS X also uses CUPS as its print subsystem, so it is reasonable to expect that the

system can function on this operating system as well. However, OS X may require

different device driver software. More investigation is required to understand how the

system can be integrated on other operating systems such as Microsoft Windows and

UNIX variants such as Solaris and AIX. A secondary group of operating systems that has

not been addressed are mobile operating systems, which typically do not have print

subsystems that expose a print option to the user and will therefore likely require a

different integration mechanism. ——

A further complicating factor in the integration with the mobile operating systems is that

there are significantly fewer device driver software packages available for these

platforms. Generic device driver software, as used by CUPS with the Samsung ML-1710

printer, can help in many cases. Generic drivers that expose all or a portion of a NAP’s

functionality can make a NAP more generally available. There is active research on this

front being conducted by the IEEE Printer Working Group via IPP Everywhere and the

Linux Foundation Open printer workgroups.

Second, the prototype system as implemented is printer-specific. This system can be

made into a generic framework for a variety of types of NAPs by creating generic

components, interfaces, and abstract classes and creating NAP-specific implementations.

For example, the registry can be modified to register NAPs by type, and specific system

registrars such as the CUPSRegistrar can be implemented to plug into other operating

system’s subsystems.

Shifting our attention to the type of NAP supported by the prototype implementation,

printers are a very mature category of peripheral devices. Others types of peripheral

devices are not as ubiquitous, have not been in existence as long, and have therefore not

47

seen the same level of research and development. It may be a challenge to support other

types of NAPs whose operating system’s subsystem in less than mature. For example,

there are existing configuration dialog boxes for video and audio devices on operating

systems such as Microsoft Windows and Ubuntu Linux, but the list of these devices is

fairly static today and users do not interact with them frequently. Other types of NAPs do

not currently have operating systems with subsystems at all. Many NAPs are currently

treated as file storage devices, for example, mobile phones, cameras, and music players,

but this treatment does not provide the facility to use the capability of these devices. For

example, I cannot make a phone call, take a picture, or play an audio file on the device. In

these cases, it may be required to provide other software to integrate the NAP with the

system.

Turning our attention to the second portion of the quality attribute, both the architecture

and the implementation were successful in supporting multiple communications

protocols. The system architecture includes a mechanism that supports the use of

different device driver software. This mechanism was demonstrated in the prototype

implementation through the use of two different printers, the Brother MFC-440CN and

Samsung ML-1710, each of which used a different form of communications protocol and

associated device driver software. Further testing with additional device driver software

may reveal additional complications. This topic is addressed further in Section 6.2.1.

6.1.2 Extensibility
The system must support the use o f hitherto undefined protocols,

platforms, and communication mechanisms so as to support innovative

new communication techniques and peripheral devices.

The system architecture and implementation were once again partially successful at

realizing the extensibility quality attribute.

The system architecture includes a mechanism that allows for the use of any device driver

software. New software can automatically be downloaded and installed on the client

device. The new software can implement support for new protocols, platforms, and

communication mechanisms.

48

The prototype implementation of the system demonstrated this quality attribute through

its use of two different printers that made use of different device driver software. The

implementation was limited in terms of platform support in that it only runs on Ubuntu
Linux and only interacts with CUPS. Further work should include a port of the system to

other platforms as discussed in Section 6.1.1.

6.1.3 Security
The client concern is to keep from compromising the system with the

automated installation o f untrusted code and by establishing a secure

communication channel with the NAP. -__

The server concern is to restrict access to the NAP to those with the

appropriate authorization and avoid compromising the integrity o f the

NAP.

In terms of security, only a small portion of the quality attribute was explicitly addressed

in the system architecture and prototype implementation.

The system architecture requires that the system include a sandbox environment for

executing untrusted device driver software. The architecture also spells out that web

standards should be used if possible. In this way, the architecture leaves the door open for

implementing standard solutions for secure communication via technologies such as

secure HTTP (HTTPS) and standard authentication and authorization schemes.

The prototype implementation also only addresses the untrusted code portion of the

quality attribute. The prototype implementation includes a sandbox for executing all

downloaded device driver software. The prototype system has no user-level security

outside of the driver sandbox. Security will need to be built into any production system.

The prototype does not make use of HTTPS or any other secure communication

49

technology or standard authentication and authorization techniques when a user requests

the use of a NAP. While there is a very large knowledge base in this area, the specifics of

authenticating a user will need to be investigated in terms of any change required to the

user interaction with the NAP operating system’s subsystems.

An additional concern discovered during the prototype stage is the security of the newly
available HTTP server packaged with each NAP. This concern relates to protecting the

NAP itself. The HTTP server will need to be appropriately secured so as not to

compromise the NAP.

6.1.4 Usability
The system must improve the use case o f the initial use o f a NAP that has

not been previously installed and configured on a system. The system

should also, where possible, integrate with the existing operating system’s

subsystem for each specific type o f NAP.

On the usability front, the system architecture and prototype implementation were very

successful. Both fully support automated discovery of a NAP and the ability to download

and install the NAP with no user intervention. This support, which was successfully

demonstrated with the prototype implementation, effectively removes all manual steps

from the user, requiring only a single click of the print button in order to print a document

to any network attached printer.

The system should be further tested with additional types of NAPs in order to

demonstrate its use with NAPs other than printers.

6.1.5 Performance
The perceived performance must be that the system is configured

quickly... The system should only download and install the required device

driver software when it is required to make use o f a NAP.

50

The system architecture and prototype implementation partially support the performance

quality attribute.

Aside from the proxy driver, the system architecture does not specifically build in

performance-related capabilities. The proxy driver does support the latter half of this

requirement.

The prototype implementation does address both performance-related quality attributes.

The prototype queries for available NAPs in the background, which results in an up-to-

date list as soon as the user selects to print. This provides the perception that the system is

always configured. (We will discuss this topic further in Section 6.2.2.)

The prototype also implements the driver proxy, which defers the download and

installation of device driver software until it is actually needed, as prescribed in the

system architecture. The proxy driver implementation does have a performance

implication on the first use of a printer since the device driver software download and

installation can take significant time. In the base of the Brother MFC-440CN printer, the

time to download and install the device driver software on a local wireless G (54 Mbps

max throughput) network with no other network traffic was measured at 15 seconds or

more. While the overall installation time is significantly reduced from the manual

installation model, 15 seconds or more is an unusually long time to print a small

document. Increased print time may or may not prove to be a stumbling block for users.

More measurement and user tests are required to determine the severity of this increase in

print time.

6.2 Issues while prototyping
A number of issues were encountered while prototyping this system. In this section, we

will identify the issues in order to understand the prototyping process and provide a base

of knowledge from which to conduct further experimentation.

51

6.2.1 Inconsistent device driver software
The network attached printers do not use device driver software in a consistent way. The

Brother MFC-440CN printer requires specific device driver software while the Samsung

ML-1710 printer makes use of a generic device driver software package included in

CUPS.

The Brother printer device driver software is installable simply by extracting an archive

file. It is foreseeable that other printer software may have different installation

requirements, such as requiring the use of an installer such as InstallShield. In addition,

not all device driver software packages may support silent installation in that they may

require user interaction. These device driver software packages will need to be modified

in order to function with this system.

Furthermore, the Brother software installs out-of-the-box into specific-directories on the

system and hard-codes absolute file paths in its internals. This installation and execution

model does not support the sandbox implemented in the NAP Monitor system, so the

Brother software had to be modified to support relative and variable directory paths.

6.2.2 Printer refresh frequency
The refresh frequency for the available list of network attached printers may impact the

system or network performance. It is therefore important to select a refresh frequency

carefully. In the prototype system, the refresh was conducted every 10 seconds. We

settled on the 10-second interval after attempting longer refresh periods. Unfortunately,

the longer refresh periods resulted in unexpected behaviour: in some cases, a printer was

not listed in the print dialog box when the print dialog box was invoked and only

appeared later, after it was discovered. Other refresh strategies that can be tested include

refreshing the list when the network connection changes, for example by detecting a

change in the access point media access control (MAC) address, and refreshing when the

user selects to print. In the latter strategy, it will likely be useful to communicate query

status information to the user, which will require a change to the print dialog.

e

52

The 10-second refresh period had no effect on network performance in the prototype

implementation; this was due to the file-based nature of the NAP discovery mechanism.

It may not be practical to refresh the system this frequently in all cases. A refresh

operation has performance consequences for the network due to increased traffic and for

the client due to increased processing demands.

6.2.3 Unexpected errors
This system introduces the potential for network communication in the way of device

driver software downloads during a print operation due to the addition of the device

driver proxy. This new source of network communication is also a new source of failure

in the system. Because of the limited user interaction in this download and installation of

the device driver software, the system may not fail gracefully. In our experiments, if the

download or installation of a device driver software package does fail,The user is alerted

that the print job has failed and must then look into the CUPS log files to determine why.

The device driver proxy also hides certain device driver software failures from CUPS. It

may not be immediately apparent why the print job failed and, consequently, it may be

difficult to diagnose the source of the failure for users who are not familiar with CUPS.

6.3 Other considerations
The prototype is limited in a number of ways, so there are opportunities for improvement.

Some of these opportunities are outlined in this section.

6.3.1 Clean up of device driver software
In the simple scenario used for the prototype, there is only a single network attached

printer available in each of two network locations. Deregistering a printer from the

system does not remove the associated device driver software. Once the device driver

software for a printer is downloaded and installed, it is never removed from the system.

In a larger scenario, this will lead to increased disk usage with software remaining on the

system after it has outlived its use. A solution for this is to employ some sort of clean-up

53

routine, such as a least recently used algorithm, to rid the system of device driver

software that is not in use.

6.3.2 Viability in a network with many NAPs
In a real deployment, there may be hundreds or thousands of peripheral devices of

different types available on a network. It may be crippling for a system to register a large

number of NAPs or continually query for the available NAPs on the network.

Another concern when a lot of NAPs are in use is how this affects the usability of the

system. For example, a user may find it difficult to identify which printer they want to

use if too many printers are listed in the print dialog box.

54

Chapter 7

7 Conclusions
The existing manual discovery and installation of device driver software for network

attached peripheral devices limits the ability of users to actually use the peripheral

devices. The goal of this thesis as stated was to eliminate these manual steps.

In this thesis, we have presented an architecture for a system with unique aspects of

service description and device driver execution that automates the discovery and

installation of device driver software for network attached peripheral devices. The

architecture integrates with the existing operating system peripheral device specific

subsystem to make it as seamless as possible for the end user. It also enables single-click

use of a network attached peripheral device. A prototype implementation of the

architecture specific to printers was developed and presented that demonstrated the
viability of the architecture.

Through the development of the system architecture and the prototype implementation, a

number of additional questions have been identified. Following are some of those

questions presented as future work that can be performed related to this subject.

• Demonstrate the applicability of this system architecture on additional operating

systems such as Microsoft Windows, Mac OS X, and UNIX variants, and mobile

operating systems such as iOS, Android, and Blackberry OS.

• Demonstrate the applicability of this system architecture with additional network

attached peripheral devices such as video projectors and audio devices.

55

• Perform user tests with different NAP query timing using different service

discovery protocols to determine a good balance between refresh frequency and

performance. Additional refresh strategies should also be explored.

• Explore the use of existing service discovery technologies for including additional

description information.

• Explore the use of multiple service discovery technologies in a single system.

• Identify the set of sandbox requirements for the driver sandbox.

• Explore new security concerns introduced by the system architecture.

• Identify ways in which to reduce the need to install device drivers. This work is

already being investigated for printers by the printer working group. Additional

work can be done for other types of NAPs.

56

Bibliography

[1] Janson P, Svobodova L, Maehle E. Filing and printing services on a local-area
network. In: Proceedings of the eighth symposium on Data communications.
SIGCOMM ’83. North Falmouth, Massachusetts, United States: ACM, 1983. pp.
211-220. doi: 10.1145/800034.800922

[2] Rabin J, McCathieNevile C. Mobile Web Best Practices 1.0. 2006. Available:
http://www.w3.org/TR/2006/WD-mobile-bp-20060113/. Accessed 14 Jul 2011.

[3] Kindberg T, Barton J, Morgan J, Becker G, Caswell D, Debaty P, et al. People,
Places, Things: Web Presence for the Real World. Mobile Networks and
Applications 2004;7:365-376. doi: 10.1023/A: 1016591616731

[4] Park DG, Kim JK, Sung JB, Hwang JH, Hyung CH, Kang SW. TAP: touch-and-
play. In: Proceedings of the SIGCHI conference on Human Factors in computing
systems. CHI ’06. Montreal, Quebec, Canada: ACM, 2006. pp. 677-680.
doi: 10.1145/1124772.1124873

[5] Oliveira da Silva A, de Souza Schneider PH, D’Avila Cabral F, Benso da Silva
AC, Batista de Oliveira J, Bezerra EA. Towards service and user discovery on
wireless networks. In: Proceedings of the second international workshop on
Mobility management & wireless access protocols. MobiWac ’04. Philadelphia,
PA, USA: ACM, 2004. pp. 79-82. doi: 10.1145/1023783.1023799

[6] Patrick A Powell. LPRng Reference Manual. 2010. Available:
http://www.lpmg.com/LPRng-HOWTO/LPRng-Reference.html. Accessed 24 Jul
2011.

[7] Bergman R, Lewis H, McDonald I eds. Internet Printing Protocol Version 2.0
Second Edition (IPP/2.0 SE). IETF. 2011 p. Available:
ftp://ftp.pwg.org/pub/pwg/candidates/cs-ipp20-20110214-5100.12.pdf. Accessed
24 Jul 2011.

http://www.w3.org/TR/2006/WD-mobile-bp-20060113/
http://www.lpmg.com/LPRng-HOWTO/LPRng-Reference.html
ftp://ftp.pwg.org/pub/pwg/candidates/cs-ipp20-20110214-5100.12.pdf

57

[8] Meadows J. An Introduction to the JetSend Protocol. EE Times India 2000.
Available:
http://www.eetindia.co.in/ARTICLES/2000JAN/PDF/EEIOL_2000JAN03_EMS
NETD TA.pdf? SOURCES=DOWNLOAD. Accessed 24 Jul 2011.

[9] Presser A, Farrell L, Kemp D, Lupton W, Tsuruyama S, Albright S, et al. UPnP
Device Architecture 1.1. UPnP Forum. 2008 p. Available:
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-vl. 1 .pdf. Accessed 15
Ju l2011.

[10] Harihar K, Kurkovsky S. Using Jini to enable pervasive computing environments.
In: Proceedings of the 43rd annual Southeast regional conference - Volume 1.
ACM-SE 43. Kennesaw, Georgia: ACM, 2005. pp. 188-193.
doi: 10.1145/1167350.1167407

[11] Rhodes BJ, Chemishkian S, Schwartz EL, Savitzky S, Yu H. Automatic discovery
and execution of personal applications from shared IO devices. In: Proceedings of
the 7th IEEE conference on Consumer communications and networking
conference. CCNC’10. Las Vegas, Nevada, USA: IEEE Press, 2010. pp. 1163—
1164. Available: http://portal.acm.org/citation.cfm?id=1834217.1834491.
Accessed 15 Jul 2011.

[12] Sousa JP, Garlan D. From Computers Everywhere to Tasks Anywhere: The Aura
Approach. 2001. Available: http://www.cs.cmu.edu/~aura/docdir/sg01.pdf
Accessed 24 Jul 2011.

[13] Flynn M, Pendlebury D, Jones C, Eldridge M, Lamming M. The Satchel system
architecture: mobile access to documents and services. Mob. Netw. Appl.
2000;5:243-25 8. doi : 10.1023/A: 1019172931873

[14] Guttman E. Service Location Protocol: Automatic Discovery of IP Network
Services. IEEE Internet Computing 1999;3:71-80. doi: 10.1109/4236.780963

[15] Cheshire S, Krochmal M. DNS-Based Service Discovery. 2011. Available:
http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt. Accessed 17 Jul 2011.

http://www.eetindia.co.in/ARTICLES/2000JAN/PDF/EEIOL_2000JAN03_EMS
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-vl
http://portal.acm.org/citation.cfm?id=1834217.1834491
http://www.cs.cmu.edu/~aura/docdir/sg01.pdf
http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt

58

[16] Stirling D, Al-Ali F. Zero configuration networking. Crossroads 2003;9:19-23.
doi: 10.1145/904080.904084

[17] Leo J. McLaughlin III. RFC1179: Line Printer Daemon Protocol. IETF. 1990 p.
Available: http://www.ietf.org/rfc/rfcll79.txt. Accessed 14 Jul 2011.

[18] System Administration Guide: Printing: IPP Compared to the RFC-1179 Protocol.
2010. Available: http://download.oracle.com/docs/cd/E19253-01/819-
7355/gezsg/index.html. Accessed 14 Jul 2011.

[19] Frequently Asked Questions - Internet Printing Protocol - Printer Working Group,
n.d. Available: http://www.pwg.org/ipp/faq.html. Accessed 16 Jul 2011.

[20] Internet Printing Protocol - Printer Working Group, n.d. Available:
http://www.pwg.org/ipp/. Accessed 16 Jul 2011.

[21] Sweet M, McDonald I. IPP Everywhere First Edition. IETF. 2011 p. Available:
ftp://ftp.pwg.org/pub/pwg/ipp/wd/wd-ippevel0-20110326.pdf Accessed 15 Jul
2011.

[22] Goldberg I, Wagner D, Thomas R, Brewer EA. A secure environment for untrusted
helper applications confining the Wily Hacker. In: Proceedings of the 6th
conference on USENIX Security Symposium, Focusing on Applications of
Cryptography - Volume 6. San Jose, California: USENIX Association, 1996. pp.
1-1. Available: http://portal.acm.org/citation.cfm?id=1267569.1267570. Accessed
17 Jul 2011.

[23] Gong L, Mueller M, Prafullchandra H, Schemers R. Going beyond the sandbox: an
overview of the new security architecture in the java development Kit 1.2. In:
Proceedings of the USENIX Symposium on Internet Technologies and Systems on
USENIX Symposium on Internet Technologies and Systems. Monterey,
California: USENIX Association, 1997. pp. 10-10. Available:
http://portal.acm.org/citation.cfm?id=1267279.1267289. Accessed 17 Jul 2011.

http://www.ietf.org/rfc/rfcll79.txt
http://download.oracle.com/docs/cd/E19253-01/819-7355/gezsg/index.html
http://download.oracle.com/docs/cd/E19253-01/819-7355/gezsg/index.html
http://www.pwg.org/ipp/faq.html
http://www.pwg.org/ipp/
ftp://ftp.pwg.org/pub/pwg/ipp/wd/wd-ippevel0-20110326.pdf
http://portal.acm.org/citation.cfm?id=1267569.1267570
http://portal.acm.org/citation.cfm?id=1267279.1267289

59

[24] Ford B, Cox R. Vx32: lightweight user-level sandboxing on the x86. In: USENIX
2008 Annual Technical Conference on Annual Technical Conference. Boston,
Massachusetts: USENIX Association, 2008. pp. 293-306. Available:
http://portal.acm.org/citation.cfm?id=T404014.1404039. Accessed 17 Jul 2011.

[25] Yee B, Sehr D, Dardyk G, Chen JB, Muth R, Ormandy T, et al. Native Client: A
Sandbox for Portable, Untrusted x86 Native Code. In: Proceedings of the 2009
30th IEEE Symposium on Security and Privacy. IEEE Computer Society, 2009.
pp. 79-93. doi: 10.1109/SP.2009.25

http://portal.acm.org/citation.cfm?id=T404014.1404039

	AUTOMATED DISCOVERY AND INSTALLATION OF NETWORK-ATTACHED PERIPHERAL DEVICES
	Recommended Citation

	tmp.1612217030.pdf.zUGAe

