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Abstract

How to control the access and usage of digital resources is one of the most important issues 
in computer security nowadays. Among them, how to control the resources when they have 
been passed to the client-side is a research hot spot. The Usage Control Model (UCON) has 
been proposed to solve this problem. In this research, we focus on one core component of 
the UCON model, the obligation. We propose a new obligation model to solve the problems 
the current ones can not deal with, especially for post-obligation. We also offer two testing 
scenarios, propose an architecture for a prototype based on the proposed model and apply the 
scenarios to the prototype architecture for proof-of-concept.

Keywords: Usage Control Model, UCON, Obligation Model
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Chapter 1

Introduction

1.1 Motivation

How to control the access and usage of digital resources is one of the most important issues in 

computer security. In the past decades, different models for access control have been widely 

studied. Access control is a system which enables an authority to control access to areas and 

resources in a given physical facility or computer-based information system. In computer se

curity, access control includes authentication, authorization and audit. Some models that have 

been widely used for access control include discretionary access control (DAC) [1], mandatory 

access control (MAC) [1] and role-based access control (RBAC) [2].

All those mechanisms for access control only focus on the control of access on server-side 

objects. Once an access request is granted and one copy of object is downloaded to the client- 

side, traditional access control will have no control over it. In order to tackle this kind of 

problem, a new model has been proposed, the usage control (UCON) model [3]. The term 

usage means usage of rights on digital objects.

1
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The UCON model has three core components and three additional components. The core 

components are Subjects, Rights and Objects while Authorizations, Obligations and Conditions 

compose the additional components. This thesis will mainly focus on the obligation part of the 

UCON model.

1.2 Problem Definition

A general requirement of obligations includes actions that must be performed by a subject or 

the system so that the fulfillment can be checked after the access. In the initial work by Sandhu 

and Park for the UCON model, the authors mainly focus on the core components of the model 

rather than the obligation part. In that paper the main drawback of the UCON model is the 

inability to handle actions after the resources has been used. An example is the requirement 

that the user must delete a file within 30 days after he/she obtained it. Then in later work, 

post-obligations were added to the UCON model to deal with this problem.

The purpose of a post-obligation is twofold:

1. It can be used to execute obligation actions that are related to the current usage despite 

the fact that it has no affect on the decision making of the current usage.

2. It can affect future usage sessions.

Although introducing the idea of post-obligation made the UCON model much more flexible, 

there are several aspects which were not considered:

1. They only gave a theoretical model without any real world application scenario for
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demonstration purposes or any experiments to show the model could correctly solve 

the problem.

2. For the enforcement mechanism, the model proposed integrating the PEP (Policy En

forcement Point) into the application. That approach is not flexible. In order to use the 

object, the user must use the specified application. On the other hand, this could also 

bring security issues, since the PEP is in the application, so if an alternative application 

could be provided by a third party, this new application may choose simply to ignore the 

obligation requirements.

3. The proposed UCON model is only suitable in a closed system. Nowadays, more and 

more open systems are widely used. Unlike closed systems, in this kind of system the 

users who require resources are not pre-defined. In order to cover this new application 

scenario, modifications have to be made to the obligation model.

In later work, some changes have been made to the UCON model, but the problems discussed 

above are still not addressed. These will be the topics that this thesis focuses on.

1.3 Aim of the Thesis

The research objectives of this thesis can be stated as follows:

1. Propose an obligation model, especially a post-obligation model, to achieve the goals as 

follows:

• The system should work both in open systems and closed systems.
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• The system should have a more secure enforcement mechanism. For example, the 

PEP may be embedded in a lower level like the operating system rather than the 

application level.

•  If the assigning of an obligation involves a human, the delegation and revocation of 

duty must be considered.

2. Offer several application scenarios for testing the model.

3. Add a history-based policy engine to the model. History-based policy engine has been 

used in traditional access control models. In this part, additional components are added 

to the model for storing related session’s information for later evaluation.

4. Add negotiation to the obligation model. Negotiation is a technique developed to allow 

peers to conduct bilateral and iterative exchanges of digital credentials to bootstrap trust 

relationships in open systems. For now, the study of negotiation is mainly focused on 

trust. Even though there are already some models for negotiation, applying those models 

to obligation has not studied. The model could be applied to an obligation model after 

some modifications. By adding negotiation to obligations, the enforcement of fulfillment 

of obligations will be much more flexible.

1.4 Organization of Thesis

The rest of this thesis is organized as follows:

Chapter 2 is related work; in this chapter some basic definitions and notations related to the
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work in the thesis are given so the readers can better understand the rest of the thesis. Also 

it consists of the literature review part. We first give the definition of control domain and 

reference monitor; the UCON model components are then introduced in detail. Next we talk 

about the UCON enforcement mechanisms and real world implementations of UCON. At last 

the delegation and revocation of obligation and negotiation are discussed.

In Chapter 3 two application scenarios are introduced: an eHealth system as the scenario for 

a closed system and a cloud service system as the scenario for an open system. Firstly the 

definition of closed and open system will be given, next the detailed application scenarios are 

introduced along with summarizations of the obligations in the two scenarios.

The core part of this thesis, the obligation model, is proposed in Chapter 4. Before actually 

proposing the new model, the very original obligation model in UCON^c and an enhanced 

model given later are introduced. Then a new obligation model for usage control is described 

in detail.

In the fifth chapter the prototype architecture of a system is presented based on the obliga

tion model proposed in Chapter 4 and the prototype architecture is applied to the scenarios 

discussed in the third chapter for proof of concept.

Finally the conclusion of this thesis and possible future research directions are discussed in 

Chapter 7.



Chapter 2

Related Work

In this chapter, we will introduce some related work done previously by other researchers. Top

ics include traditional access control model, the usage control model, delegation and revocation 

of obligation and negotiation.

Access control mechanisms only focus on the control of access to server-side objects. But 

nowadays there has been a great need for the control of objects on the client-side. In order to 

tackle this kind of problem, a new model is proposed, the usage control model (UCON) [3].

2.1 Traditional Access Control

Access control is a system which enables an authority to control access to areas and resources 

in a given physical facility or computer-based information system. In computer security, access 

control includes authentication, authorization and audit.

6
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2.1.1 DAC

Discretionary Access Control (DAC) is an access policy that is determined by the owner of an 

object. The owner of the object decides who is allowed to access it and what privileges they 

have on it.

In DAC, every object has an owner that controls the permissions to access it. In most DAC 

systems, each object’s initial owner is the subject that caused it to be created. The access 

policy for an object is determined by its owner. The owner of one object can assign access to 

it to other subjects for specific resources.

2.1.2 MAC

Compared to DAC, one could say that Mandatory Access Control (MAC) is an access policy 

determined by the system rather than the owner. MAC is used in multilevel systems that pro

cess highly sensitive data, such as classified government or military information. A multilevel 

system is a single computer system that handles multiple classification levels between subjects 

and objects.

In a MAC system, all subjects and objects must have labels assigned to them. A subject’s 

sensitivity label specifies its level of trust. An object’s sensitivity label specifies the level of 

trust required for access. In order to access a given object, the subject must have a sensitivity 

level equal to or higher than the requested object.
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2.1.3 RBAC

In recent years, more and more people started to realize that traditional discretionary and 

mandatory access controls (DAC and MAC respectively) are inappropriate for the informa

tion security needs of many commercial organizations. DAC is too weak for effective control 

of information assets while at the same time, MAC is too strict and restrictive. It is commonly 

used for military classified information.

Based on the discussion above, role-based access control (RBAC) has been proposed as an 

alternative to traditional DAC and MAC. It represents a major advancement in flexibility and 

detail of control from the existing standards of DAC and MAC.

RBAC has three main components namely users, roles and privileges. In RBAC, privileges are 

not granted to users directly but assigned to roles. Each user is associated with one or more 

roles in order to get the privileges. Currently there are two mainstream categories of RBAC 

models-The ANSI standard model [4] and the Role Graph Model [5].

Role Graph Model

In 1994, Nyanchama and Osborn proposed the role graph model for RBAC. Based on their 

definition, a role graph is an acyclic, directed graph in which the nodes represent the roles in a 

system, and the edges represent the is-junior relationship. Every role graph has a MaxRole and 

a MinRole. MaxRole represents the union of all the privileges of the roles in the role graph. 

It does not need to have any users authorized to it while MinRole represents the minimum set 

of privileges available to all roles. The components of the role graph model are represented in 

Figure 2.1.
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ANSI Standard Model

Another mainstream model in RBAC is the ANSI standard model proposed by Sandhu. Fig

ure 2.2 shows the core components of this model.

Group graph RoW graph rriVI I •9 * 1

Figure 2.1: Components of the Role Graph Model (From [6])

BpI® NwHwdhy

Figure 2.2: Components of ANSI RBAC (From [6])
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2.2 Control Domain and Reference Monitor

Control domain [7] is an area of coverage where rights and usage of rights on digital objects 

are under control of a reference monitor. A reference monitor associates decision policies and 

rules for control of access to digital objects. Subjects can only access digital objects through 

the reference monitor. Based on where the reference monitor is located, there are two types of 

control domains, one is the control domain with a server-side reference monitor (SRM) and the 

other is a control domain with a client-side monitor (CRM). In real world applications, most of 

the time even with CRM in the system, there are still some control functions in the server side 

for better control. UCON could support this kind of hybrid control domain.

2.3 UCON Model Components

The UCON model has three core components and three additional components as shown in 

Figure 2.3. Among which the core components are subjects, rights and objects while autho

rizations, obligations and conditions compose the additional components.

2.3.1 Subjects

In UCON, the subjects can be classified as consumer subjects, provider subjects and identifier 

subjects. Consumer subjects are entities that receive rights and objects and use the rights to 

access the objects, for example, an e-book reader or MP3 music player. Provider subjects 

represent entities that provide an object and hold certain rights on it. Examples of provider 

subjects include an author of an e-book, a distributor of the book, a primary care physician. The
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Figure 2.3: UCON model components (From [7])

identifier subjects are entities which are identified in objects that include their privacy-sensitive 

information. A patient in a health care system is an example of an identifier subject.

2.3.2 Objects

Objects are entities which subjects hold rights on; the subjects can access or use objects. In 

UCON, objects can be either privacy sensitive or privacy non-sensitive [7]. A privacy-sensitive 

object includes information which could be used to identify an individual. This kind of object 

can cause privacy problems if not used properly. A UCON object can also be either original 

or derivative. The derivative object is an object that is created as a result of obtaining or 

exercising rights on an original object. For example, opening of a document can create usage 

log information. This log data file is called a derivative object in UCON. Like the original 

object, this derivative object is also considered as an object and also holds UCON properties
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and relations with other components.

2.3.3 Rights

Rights are privileges that a subject holds on an object; actually they are a set of usage functions 

that enable a subject to access objects. Rights could have a hierarchy, but it is not required in 

UCON. The authorizations of rights require the association of subjects and objects. Similar to 

subjects and objects, rights can also be categorized into consumer rights, provider rights and 

identifier rights.

2.3.4 Authorizations

Authorizations are a set of requirements that should be satisfied before allowing subjects’ ac

cess to or use of objects. There are two kinds of authorization rules, the Rights-related Autho

rization Rules (RAR) and Obligation-related Authorization Rules (OAR). The RAR is used to 

check if a subject has enough privilege to exercise certain rights on an object. The OAR is used 

to check whether a subject has agreed on the fulfillment of an obligation that has to be done 

after obtaining or exercising rights on an object.

2.3.5 Conditions

Conditions are a set of decision factors that the system needs to verify at authorization phase 

before allowing usage of rights on a digital object. There are two types of conditions: dynamic 

conditions and static conditions. Dynamic conditions include information that may have to
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be checked for updates at each time of usage. Some examples of dynamic conditions are the 

number of usage times (e.g., can read 5 times, can print 2 times), and usage log (e.g., already 

read portion cannot be accessed again). Static conditions include information that does not 

have to be checked for updates. Some examples of static conditions are accessible time period 

(e.g., business hours), accessible location (e.g., workplace), and allowed printer name.

2.3.6 Obligations

Obligations are mandatory requirements that a subject has to perform after obtaining or ex

ercising rights on an object. In a real world implementation, this may have to be done by 

agreeing on the fulfillment of obligations before getting the rights and at the time obligation- 

related authorization rules are checked. For example, a consumer subject may have to accept 

some payment agreements before obtaining the rights for the usage of certain digital informa

tion, or one may need to agree on providing usage log information to a provider subject before 

reading an e-book or listening to a music file. Traditional access control does not recognize the 

obligation concept. Recent Digital rights management (DRM) solutions are likely to include 

obligation functions though many of them implement the obligation functions only partially 

and implicitly.

2.4 UCON Enforcement Mechanisms

The UCON model and its core components have been introduced above. In this section an

other issue will be discussed: how the UCON model is mapped into real world computer sys

tems. There are some security mechanisms [8] implemented within a computer system used to 

achieve the UCON security goals.
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2.4.1 Digital Container

A digital container is a cryptographic carrier of digital information that uses encryption, a 

digital signature or digital certificates to ensure data confidentiality and integrity [9] [10]. A 

UCON system uses this kind of technology as the key element to prevent unauthorized accesses 

to the protected digital content. It could be implemented in almost any kind of computer 

system.

2.4.2 Digital Watermarking

A watermark is a small amount of data inserted into a digital object for a variety of purposes. 

In UCON, it is usually used to enable the tracking of the redistribution of digital objects. 

Watermarking is sensitive to the type and size of the digital object. Different types of content 

need different watermarking technologies; also the size of the contents should be large enough 

to hold the watermark.

2.4.3 Tamper Resistance

A digital object embedded in a digital container is only accessible on the client side using 

specialized software, e.g. a virtual machine. The virtual machine enforces the usage control 

policy and is executed in the subject’s environment (which is possibly hostile and untrusted). 

Tamper resistance systems protect the trusted software (e.g., the virtual machine) running on 

the malicious host. Both software based and hardware based tamper resistant approaches exist 

in real world applications.
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2.5 Implementation

In this section, some examples of real world usage control implementation will be intro

duced.

2.5.1 Operating System

Nowadays, more and more so-called kernel level attacks happen. So the protection of the kernel 

integrity becomes one of the most essential security objectives in building a trustworthy OS. 

Several papers have proposed simple and effective approaches based on the UCON model for 

the Linux kernel [11][12][13]. In one model called the UCON*,, test results show it is capable 

to detect intrusions and prevent malicious activities by intercepting events in realtime. The 

model was successfully tested with 18 real-world kernel-level rootkits compromising the OS 

kernel integrity.

2.5.2 Collaborative Computing System

A collaborative computing system is the most promising area of applicability of the usage 

control model. Several attempts have been made to apply the UCON model to collaborative 

computing systems. In [14] the authors describe a formal model for usage control in GRID 

systems based on a process-based policy language. In their initial work, the framework is very 

generic although the implementation is for the Globus toolkit [15].
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2.5.3 Others

Besides the systems described above, the UCON model can be adapted and implemented in 

various computer systems and environments, like in service-oriented platforms [16] [17], cloud 

computing platforms and mobile computing environments [18].

2.6 Delegation and Revocation of Obligation

Previous policy could only support the delegation and revocation of authorizations but not obli

gations. Schaad proposed policies for delegation [19] and revocation [20] for obligations.

The motivations for the delegation of obligation can be summarized as the lack of resources, 

competence, specialization and organizational policies. When an obligation is delegated be

tween two subjects, the general intent of the delegating subject is to make the receiving subject 

perform a set of actions. In general, an obligation must be held by a single subject in order to 

ensure that tasks are only carried out once. This implies that after the delegation took place the 

delegating subject will no longer hold the obligation object. Similar to the delegation of au

thority, obligations are usually delegated downwards along a management chain but in certain 

cases (e.g. illness of an employee) an obligation might be delegated from a subordinate to his 

superior. Likewise, a horizontal delegation of an obligation can occur.

Revocation of an object is based on its previous delegation, so the following information is 

needed:

1. The principals involved in previous delegation.
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2. The time of the previous delegation.

3. The object and subject of previous delegation.

One thing that needs to be pointed out is that propagation may apply as a principal is able 

to delegate a delegated obligation. In this case, the principal should only be able to revoke a 

delegated obligation from the principal he/she delegated it to.

2.7 Negotiation

When making a decision on authorization, traditional authorization systems require some ex

plicit notion of the users accessing the resources provided by the system, like a password or 

some other digital credential. However as the Internet develops, many resources or services 

are provided through open systems such as the World Wide Web or peer to peer networks. In 

these systems, it is not possible that entities will have explicit knowledge of the peers that they 

are communicating with. So in the context of large scale open systems, authorization decisions 

are best made based on the attributes of the users in the systems.

Trust negotiation [21] is a technique developed to allow peers to conduct bilateral and iterative 

exchanges of digital credentials to bootstrap trust relationships in open systems. Figure 2.4 

shows an example of trust negotiation.

In [23], the authors proposed Traust, a general purpose authorization service based on trust 

negotiation. It could provide a uniform interface for clients to get the credentials necessary 

to access resources provided by systems in a different security domain and acts as a viable 

migration path for the adoption of trust negotiation research into existing open systems.
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Alice Bob
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Step 5: Alice discloses lier Broker ID credential 
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w N
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Figure 2.4: Example of trust negotiation (From [22])

The design of Traust embodies five major design goals. These goals help Traust act as a 

scalable and flexible authorization service for large-scale open systems:

1. Bilateral trust establishment

2. Run time access policy discovery

3. Privacy preservation

4. Support for legacy and trust-aware applications
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Alice Bob

Step 1 : Alke requests a scry tee ftom  Bob

Siepi* Bob discloses hi» policy for the service___

Step f t Altec discloses her poltey for her Broker ID 

^  Step 4: Bob discloses his SBC registration

Step 5: Alice discloses l*er Broker ID credential 

...Step 6s Bob grants accesa tothc jcryioe...... ..........

m
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mm

Figure 2.4: Example of trust negotiation (From [22])

The design of Traust embodies five major design goals. These goals help Traust act as a 

scalable and flexible authorization service for large-scale open systems:

1. Bilateral trust establishment

2. Run time access policy discovery

3. Privacy preservation

4. Support for legacy and trust-aware applications
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5. Light-weight, yet robust

Traust is designed to provide a mechanism through which trust negotiation can bridge the se

curity gap that exists between security domains in large-scale open systems without requiring 

widespread protocol or application software updates. It relies on SSL to protect the confiden

tiality and integrity of connections between clients and the service. Once connected to the 

Traust service, clients have the opportunity to conduct a content-triggered trust negotiation 

with the service to gain some level of trust before disclosing a potentially sensitive resource 

request. If the negotiation succeeds, the client then discloses its resource request to the Traust 

server.

The authors implemented one Traust service using Java and the leverages of the TrustBuilder 

framework and protocol for trust negotiation [24]. They also have both a stand-alone client 

application that can be used to obtain credentials to access legacy services and a client API that 

can be incorporated into the design of trust-aware applications.

2.8 Summary

In this chapter, some related work to this thesis has been reviewed. After givings the definition 

of control domain and reference monitor, the UCON model components were introduced in 

detail. Then we talked about the UCON enforcement mechanisms and real world implementa

tion of UCON. Finally the delegation and revocation of obligations and negotiation have been 

discussed.
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Scenarios

In this chapter, two scenarios used for proof of concept of the model are introduced, one for 

an open system and the other for a closed system. A system is commonly defined as a group 

of interacting units or elements that have a common purpose. The units or elements of a 

system can be people, computers and so on. Firstly the definition of these systems is given; 

following that is a detailed description of the two scenarios used in our Proof-of-Concept of 

the model.

3.1 Closed System

A closed system is a system which cannot exchange matter with its surroundings. A schematic 

representation of a closed system is shown in Figure 3.1. A closed system is the one in which 

the users or devices which can get access to the resources of the system are pre-defined. So in 

a closed system, the service or resource provider has a list of users who may access the service 

or resource. Any access attempt from a user not in the list will be denied immediately.

20
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Figure 3.1: A schematic representation of a closed system and its boundary (From [25])

This is the kind of system which has been widely used and studied before. Traditionally, most 

computer systems are closed ones. Several examples of closed systems are:

Computer System: In a traditional computing environment, if a user wants to access the com

puting resource, he/she has to have a valid account or username on the system. The sys

tem maintains a list of users and corresponding privileges the user has on the system. 

Before accessing resources, a user must provide his/her account information to the sys

tem for authorization. After the user successfully logs into the system, he/she may send 

access requests to the server side, then the system will check to see if the user has the 

privilege to access the particular resource or service. Taking a Unix/Linux system as an 

example, all the usernames are stored in file /bin/passwd, and by using a DAC model, 

each file in the system has a property indicating the rights each user has on the file.

eGovernment Workflow System: Workflow automates the management and coordination of 

organizational or business processes. Electronic government (eGovernment) is the civil 

and political conduct of government, including services provision, using information 

and communication technologies [26]. Because of the privacy requirement of this kind
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of system, it is usually a closed system, which means it doesn’t need to interact with the 

outside environment and the system users are also pre-defined. Recently there has been 

a need for sharing of information among different organizations, so in some work, eGov- 

emment systems have been treated as open systems. An example of an eGovemment 

system is the R4eGov project [27], which consists of inter-organizational collaboration 

between European administrations.

eHealth System: eHealth is a relatively new term for healthcare practice supported by elec

tronic processes and communication [28]. The main idea of eHealth is to use the power 

of information technology to improve patient care. It may include a range of systems or 

services like electronic health records, telemedicine, consumer health informatics, health 

knowledge management, etc.. Here I mostly focus on the electronic health records part. 

Only a small range of certain people (like doctors, nurses, pharmacists, etc.) have access 

to patients’ health records and most of the time this access right is not unlimited. Thus 

this is also a closed system.

Closed system is one kind of typical system. When testing our model, it has to be covered. In

the proof of concept later, we will use an eHealth system scenario to demonstrate the model.

A detailed description of the eHealth scenario will be given in a later section.

3.2 Open System

Besides closed systems, there is another kind of mainstream system, the open system. Unlike 

closed systems, open systems refer to systems that interact with other systems or the outside 

environment. The schematic representations of open systems are shown in Figure 3.2 and 3.3. 

In our work, open system mainly refers to a system in which the users or devices that can
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access the system are not pre-defined.

Figure 3.2: A schematic representation of a open system (Interacting with other systems)

Figure 3.3: A schematic representation of a open system (Interacting with outside environment)

Open systems is a relatively new idea. Due to the rapid increase of applications, it has drawn 

a lot of research attention. Some examples of an open system might be a cloud computing 

system (like Amazon EC2 [29]), collaborative computing systems, etc.. In these systems, there 

are no pre-defined, fixed number of users. Anyone can get a valid account for the system 

simply by registering or paying for the service. The server of the system doesn’t have a list of
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valid users; in fact, the list of users doesn’t exist at all. Due to this, the control of the system is 

more difficult than in a closed system.

We will use a typical cloud computing system as a scenario for proof-of-concept purposes; the 

scenario will be given later.

3.3 Closed System Scenario

3.3.1 Scenario

Here we consider an eHealth system as the scenario for a closed system. More specifically, we 

will focus on electronic health records, which is the confidential information for patients and 

needs to be strictly controlled for access.

The patients’ health records are stored in the server in a hospital. A person (like doctor, pharma

cist or nurse) may have the right to access the records using a desktop computer or a hand-held 

device. The users who can access the system and the devices which can be used for accessing 

are pre-defined and a list indicating all the users and/or devices is stored in the server.

Only authorized actors with recognized certificates are allowed to access patient records. Ac

cess rights are based on the roles of the actors. Even for a valid user, he/she cannot access all 

the records without limitation. For example, pharmacists are allowed only to access the part 

of the healthcare record containing prescriptions. Doctors can only access the records of their 

own patients.

In case of emergency, the Break-Glass Policy [30] has to be considered. Access control models
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are usually static, for example permissions are granted based on a policy that seldom changes. 

Especially for scenarios in health care and disaster management, a more flexible support of 

access control is needed. Break-glass is one approach for such a flexible support of policies 

which helps to prevent system stagnation that could harm lives or otherwise result in losses. 

Here in my scenario, a Break-Glass Policy is defined as an authorization scheme to allow 

access to patients’ medical records in case of emergency. An attending physician may need to 

bypass routine access control restrictions to guarantee timely treatment without any delay due 

to administrative or technical complexities. However, this policy must be controlled correctly 

to prevent someone from misusing it to get patients’ private information.

A user can delegate his/her rights to other user(s) in specified situations with defined limita

tions. For example, in case of a patient referral, the primary physician can delegate his rights 

to the specialist or the patient can grant access to the specialist using the delegated rights of the 

primary physician. Delegation of rights is also needed when the physician is not available and 

delegates his rights (for some duration, or for some specific purpose) to another physician/nurse 

to continue the the patient’s treatment.

The 4-Eyes-Principle [31] has to be followed. The 4-Eyes-Principle is a form of Multiple 

Authorization, which requires two users with a common interest to enter the system simulta

neously. One of the users accesses the data while the other user monitors the access in order 

to ensure data confidentiality and integrity during access. In healthcare scenarios, the 4-Eyes- 

Principle requires the patient to be present, when a physician accesses the patient’s medical 

record.

A patient record should be saved in the doctor’s machine for a maximum period of time. After 

this specified time, the record should be deleted from the doctor’s machine. This is called the

retention time.
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The doctor should only be able to use the patient’s record within the hospital, for example, if 

the record is in the doctor’s desktop computer, he must not be able to copy it out with a flash 

drive, or the copy cannot be viewed with another machine. If the record is in a hand-held device 

like PDA or iPhone, the access must be restricted when this device is not in the range of the 

hospital.

After the end of a treating session, the retrieved document could be stored in the local machine 

of the doctor in case the patient approves it, otherwise it should be deleted from the doctor’s 

system.

In case the patient is not present before the normal termination of a treatment session, the doc

ument must be deleted and an abnormal session notification should be reported to the service 

provider.

3.3.2 Obligations

Based on the scenario discussed above, all obligations appearing in the scenario are summa

rized below.

Pre-obligations

In order to get access to the patients’ records, the actor must provide enough information to 

the system to get authorized. This obligation is somehow overlapped with the authorization 

process.

Ongoing-obligations
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One person can only access the information he/she is allowed. In case of emergency, when 

the break-glass policy is applied, the actor still needs to provide information showing the situ

ation.

When delegating rights to others, it is the actor’s obligation to check the person’s privileges.

The 4-eyes-principle has to be met when accessing sensitive information.

The actor must not be able to take the records out of the control of the system. 

Post-obligations

After the treatment session, the patient’s record can be saved in the doctor’s machine for a 

period of time; after this time, the record must be deleted.

In case the patient is not present before the normal termination of a treatment session, the doc

ument must be deleted and an abnormal session notification should be reported to the service 

provider.

3.4 Open System Scenario

3.4.1 Scenario

For an open system scenario, we consider a cloud computing service.

A cloud computing system is an Internet-based computing system, where shared resources,
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software, and information are provided to computers and other devices on demand [32], The 

cloud is the network which is constructed through the cloud computing model, and a cloud 

service is the service provided in the cloud. Now, Cloud Computing has become the hottest 

technology in IT, and is also a research focus in academia. Figure 3.4 shows a conceptual 

diagram of a cloud computing environment.

Figure 3.4: Cloud computing conceptual diagram (From [33])

A cloud service is based on web services, and web services are based on the Internet. The 

Internet has many security flaws because of its openness. Therefore, cloud services will face 

a wide range of security issues. Cloud services have several features like large amounts of 

resources, highly dynamic and flexible construction, lots of dynamic users and so on. Because 

the users of the system are not pre-defined, it is an open system.

The cloud service system provides services to end users. When a user needs service from 

the system, first he/she needs to get authorization. Authorization is based on user attributes. 

Besides that, a user may have to agree to follow some obligations in order to get authorized to
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the system.

After getting authorization, when a user is using the services provided by the system, the system 

monitors the user’s behaviors to see if the obligation is met. Once the obligation is not met, the 

system could take action right away. Possible actions include restricting the access to some of 

the resources in the system or even logging the user out of the system. An event log may be 

another kind of action performed.

What’s more, some user attributes may change in the process of the service. For example, for 

a service that needs user to pay in advance, the balance of the user account will change along 

with the use of the service. Service providers have to keep monitoring these changes.

After the user session ends, there may be still post-obligations for the users such as he/she has 

to give some feedback to the system. Since now the user has finished using the services, the 

system can not take any action to punish the user for violating the obligation requirement.

Because a user may still need the service later on, when a post-obligation is not met, the system 

may still have to perform some actions to log this event in local system for later evaluation 

purposes.

Sometimes the user maybe not so familiar with the requirements of the system. He/she may 

not provide enough information for the service provider to grant the user proper rights. The 

attributes are insufficient or the condition parameters are inconsistent. When this happens, it is 

the service provider’s decision what to do with the request: either deny the request immediately 

or go to some kind of negotiation process.
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3.4.2 Obligations

Based on the scenario discussed above, all obligations appearing in the scenario are summa

rized below.

Pre-Obligations

In order to get access to the service from the system, the user needs to get authorization first. 

For authorization purposes, user needs to provide his/her attributes required.

User needs to accept some obligations or terms of services before being authorized.

Ongoing-Obligations

When using the service of the system, the system monitors the user’s behaviors to see if the 

obligations are met. Besides that, the system will also monitor the user for abnormal access 

requests.

For some user attributes which will change during the access session, the system tracks the 

changes and the users may need to adjust their accessing behaviors according to these changes.

Post-Obligations

Users may need to give feedback to the system.

If the service is not pre-paid, after the usage session ends the users need to pay for the ser

vice.
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3.5 Summary

In this chapter, the details about the scenarios which will be needed for the proof of concept 

of our model were explained. Those two kinds of system scenarios, namely the closed sys

tem and open system, together could represent almost all the systems deployed in real world 

applications. In a later chapter the model proposed will be applied to these two scenarios for 

demonstration purposes.
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Obligation Model

In this chapter, a new obligation model for usage control will be proposed. First the existing 

obligation model in UCON is reviewed. After that the new obligation model will be explained, 

which is an improvement of the original one.

4.1 Original Obligation Model

4.1.1 Obligation Model in UCONaæc Model

Sandhu and Park [34] proposed the initial work on usage control, the UCON^gc model. They 

gave the definition of obligation as the requirement that a subject must perform some action 

before or during access. Based on the definition, the obligation model has two parts, namely 

the Pre-obligations Model (UCON^ß) and Ongoing-obligations Model (UCON„„g).

32
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Pre-obligations Model

Pre-obligations stand for the obligations that have to be fulfilled before access permission is 

granted. Due to this, the pre-obligation sometimes overlaps with authorization. Some examples 

of pre-obligation include requiring a user to provide a valid E-Mail address before using the 

service or asking the user to choose to accept a term of service in order to get registered in the 

system.

Ongoing-obligation Model

Ongoing-obligations are the obligations to be fulfilled while rights are exercised. There are 

basically two kinds of ongoing obligations, namely the ones to be fulfilled periodically and 

the ones to be fulfilled continuously. One example of periodically-fulfilled ongoing-obligation 

is asking the user to update the file he/she is current accessing at least every 10 minutes. An 

example of a continuously-fulfilled ongoing-obligation is requiring the user to keep an internet 

connection alive while accessing a document.

UCON state transition

In [35] Zhang et al. gave a formal model and specification for UCONAfiC. Figure 4.1 shows the 

state transition diagram of the system. In a single usage process, six states have been defined, 

namely initial, requesting, accessing, denied, revoked and end. Initial is the state in which the 

access request has not been generated. Requesting is the state when the user is waiting for the 

system’s decision for his/her access request. Accessing means the request has been approved 

and the user is using the service/document. Denied indicates the state in which the access



Chapter 4. Obligation Model 34

request is not approved by the system. The end state is the one in which the user ends the 

access normally and revoked indicates the end of access by the system.

preupdata onupdata postupdat«

postupdate postupdate

Figure 4.1: Original UCON state transition diagram (From [36])

4.1.2 Enhanced Obligation Model

The main drawback of the original obligation model in the last section is the inability to handle 

obligations after the usage session ends. So later in [36] the authors tackled this problem by 

introducing post-obligations to the UCON model. The purpose of a post-obligation is twofold: 

1) It can be used to execute obligation actions that are related to the current usage despite 

the fact that it has no affect on the decision making of the current usage. 2) It can affect future 

usage sessions. Along with the model is the proposition of a new state transition scheme.
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Obligation Model

An obligation can be expressed as a tuple, OBL = (OBS,OBO,OBA,WHEN,DURATION). The

meaning of each element is described as follows:

OBS is the subject of obligation, which usually refers to the system. Here based on the sub

ject, the obligation could be classified into system-performed obligation and subject- 

performed obligation. Usually we have full control over the system but not the other 

subjects, so these two kinds of obligation should be treated separately when comes to the 

enforcement mechanism.

OBO is the object of obligation. Objects can be treated as the ones the system controls and the 

ones out of the control of the system, namely controllable objects and non-controllable 

objects.

OBA is the action which is going to be performed. For example to read a file, to use a service 

or to delete a document from the system.

WHEN refers the type of obligation (pre\on\post). It is very important to separate the obli

gations after the usage session ends (post-obligation) from the ones before the usage 

session ends. This is because after the usage session ends, whether the user fulfilled the 

obligation has no effect on the usage session any more while it does during or before the 

usage session.

DURATION is the period or time point to check the fulfillment of the obligation. That means 

the obligation should be fulfilled within a period of time.
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State Transition

The original UCON state transition diagram does not show the actions triggering the ongoing 

decision check during the usage session. The accessing state and the state in which ongoing de

cisions are checked are merged into one state, the accessing state. So in the enhanced obligation 

model the authors gave an extended UCON state transition scheme, shown in Figure 4.2.

Figure 4.2: Expanded UCON state transition diagram (From [36])

Compared with the original state transition scheme, the expanded one omits the update actions 

(preupdate, onupdate and postupdate) because the updates are considered as system obliga

tions. Also a new state, the ongoingCheck state and two new transitions, ongoingRequest 

and ongoingPermit are added in this expanded scheme. In this new scheme, any changes of 

attributes will trigger the ongoingRequest transition and the system will move to the ongo

ingCheck state. Any updates occurring in the ongoingCheck state will have no direct effect on 

the current evaluation but will be checked in accessing or revoked states later.
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Enforcement Model

The enforcement model of UCON has three core components: enforcement point (EP), de

cision point (DP) and session management point (SMP), as shown in Figure 4.3. When the 

system receives an access request, EP forwards it to SMP. Then the SMP sends pre-decision 

request to DP. Based on the usage policy and other needed information, DP returns the final 

decision back to SMP. Ultimately EP gives the decision to the end user.

Subpct

Access
Raquost

Figure 4.3: Usage Control Enforcement Model (From [36])

DP has two sub-models as follows:

ADF The Attribute Decision Function is responsible for all the attribute-based access decision 

during an access request. Attributes can be on subjects, objects or can be environmental.

ODF The Obligation Decision Function handles decisions related to obligations. It checks 

whether an obligation has been fulfilled or not.
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4.2 New UCON Model Focusing on Obligation

4.2.1 Motivation

In this section, a new model based on the ones described above will be proposed. Although 

in [36] the authors introduced the idea of post-obligation which made the UCON model much 

more flexible, there are several aspects which were not considered:

1. One of the basic assumptions in the model is that its decision-making process is transaction- 

based. That means decision predicates are evaluated upon each usage request and the 

decision influences usages of that request, whereas for the violation of post-obligation, 

no decisions can affect the current usage session.

2. For the enforcement mechanism, the model proposed integrated the PEP (Policy En

forcement Point) into the application. That approach is not flexible. In order to use the 

object, the user must use the specified application. On the other hand, this could also 

bring security issues, since the PEP is in the application, so if an alternative application 

could be provided by a third party, this new application may choose simply to ignore the 

obligation requirements.

3. The model proposed is only suitable in a closed system. Nowadays more and more 

open systems are widely used. Unlike closed systems, in an open system the users who 

require resources are not pre-defined. In order to cover this new application scenario, 

modification has to be made to the obligation model.
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4.2.2 Obligation Model

The meaning of having obligation in UCON is to check whether a certain activity has been 

fulfilled or not. The pre-obligation and ongoing-obligation have been discussed before. In 

general the purpose of having a post-obligation is twofold:

1. The post-obligation can be used to execute an obligation action relating to a current usage 

session although it can no longer affect the decision making of the usage session. How

ever sometimes the service provider needs to know whether these obligation activities 

are fulfilled.

2. With the introduction of mechanisms like the history-based policy ¿ngine which will be 

described later, the fulfillment of the post-obligation for one usage session can affect 

decision making processes in future usage sessions.

Similar to the previous model, an obligation could be expressed as a tuple shown before which 

included five elements, namely the obligation subject, obligation object, obligation action, the 

type of obligation (pre-obligation, ongoing-obligation or post-obligation) and the duration of 

the fulfillment of the obligation action. This tuple is the basic unit when defining an obliga

tion.

4.2.3 State Transition

The state transition scheme in the enhanced UCON model cannot deal with post-obligation 

very well. To be more specific, in that scheme the end and revoked states are final ones, that 

means when a usage session gets to any of the two states it simply ends. But in a real scenario,
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there are still post-obligations taking effect at that time. To enhance the ability of expressing 

post-obligations, We propose a new state transition scheme here by adding a new state, the 

Exit, and a Post check action.

Ongoing
permitInitial

request
Permit
access Ongoing

check
Request
check *4 Accessing

Ongoing
request Revoke

access

RevokedDenied Ended

Post check Post check

No post-obligation

Figure 4.4: Usage Control State Transition Scheme

Figure 4.4 shows our enhanced usage control state transition scheme model. Compared to the 

state transition shown in Figure 4.2, We add a new state Exit as the final state, also two Post 

check trigger actions are added to states Ended and Revoked respectively which made the two 

states non-final.

In this new state transition scheme, when access is ended by the user or revoked by the system, 

the whole access session is not terminated. To ensure the post-obligation will be fulfilled 

there will still be post checks taking place in these two states until all post-obligations are 

fulfilled.
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When post-obligations are fulfilled and there are no more of them, the system goes to the Exit 

state, which is the final state entered after the Ended and Revoked states. Coming to this means 

the whole current access session is ended. Denied is another final state which indicates the 

access request is not approved by the system at the initial request check process. Here because 

the access permission is never granted, no post-obligation should be assigned to the user. That 

is why there are no post check actions attached to the Denied state.

4.2.4 Enforcement Model

The enforcement model illustrates how the policy model can be achieved and it should not be 

restricted to a particular system. For the enforcement model, it should be treated based on dif

ferent obligation types since for pre-obligations and ongoing-obligations, when the obligation 

requirement is violated the system can take actions like revoking the access rights of the user 

while for post-obligation it can not. Since previous models are transition-based, they can not 

deal with this kind of problem. Here in this model, two enforcement models are proposed, 

one to deal with pre-obligations and ongoing-obligations and one aiming at the post-obligation 

problems.

Pre-obligation and Ongoing-obligation Enforcement Model

Figure 4.5 shows the enforcement model for pre-obligation and ongoing-obligation. The en

forcement model consists of four main components: Enforcement point, Session management 

point, Decision point and Attribute inquiry point.

The enforcement point is the element which directly interacts with the subject and resource.
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Figure 4.5: Usage Control Enforcement Model for Pre-obligation and Ongoing-obligation

When a subject/user sends a request, the request will be directly passed to the enforcement 

point shown as the arrow marked 1 in Figure 4.5. The enforcement point then passes the request 

to other parts of the enforcement model for decision making (Indicated as 2 in Figure 4.5). 

After the decision has been made, the enforcement point either grants the access permission 

of the resource (shown in 7) to the subject or informs the subject that its access request is 

denied.

The session management point acts as an interpreter here that translates the access request 

received from the enforcement point to a pre-decision which can be further processed by the 

decision point. After passing the pre-decision to the decision point (3), if a denied decision is 

made by the decision point, the session management point sends the decision to the enforce

ment point (in 6) and also requests the decision point to go to the process of logging the event to 

the history-based engine; otherwise it sends a permit response to the enforcement point.
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The decision point is the element which is responsible for making decisions concerning access 

requests during a usage session. Similar to the previous model, the decision point also has 

two sub-models, namely the Attribute decision function (ADF) and the Obligation decision 

function (ODF).

When making decisions, the decision point may need some information (4). The attribute 

inquiry point is the element to retrieve those information and pass them to the decision point 

(as in 5) as requested. Also it is responsible for logging access information into the history- 

based engine. The information can be retrieved from the usage policy, other decision needed 

information and a history-based engine.

As mentioned before, the previous model has one drawback, the PEP is implemented in the 

application. In this implementation the whole system is vulnerable because the control system 

is easily bypassed by a self-made application. In this improved model proposed, to tackle 

this problem, part of the PEP is in a rather low level of the system. To be more specific, the 

decision point is implemented in the operating system level so that it can not be accessed by 

normal application and can not be bypassed either. In order to interact with the subject and 

resources, other elements are at the application level.

Post-obligation Enforcement Model

For post-obligations, unlike pre-obligations and ongoing-obligations, the current usage session 

is ended when checking the fulfillment of it so no matter what decision is made based on the 

fulfillment check of the obligation, it can not affect the usage of the resource for the subject. 

One possible action is to log the violation in the system, so that the next time the subject sends 

another request, the system will check the history in the decision making process.
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Figure 4.6: Usage Control Enforcement Model for Post-obligation (1)

The post-obligation enforcement model is shown in Figure 4.6. The model consists of four 

parts, namely the Obligation checking point, the Enforcement point, the Decision point and the 

Event logging point.

The obligation checking point and enforcement point interact with the subject and resource 

respectively to get their information about the fulfillment of post-obligations and pass the in

formation to the decision point. After the decision is made by the decision point, it passes 

the decision to the obligation checking point and enforcement point, which further notify the 

subject and resource about the decision though it can not affect the usage session any more.
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The final decision is also passed to the event logging point which will log this decision to the 

history-based engine for later evaluation use. The event logging point will give a feedback to 

the decision point on the status of the logging action.

When considering the workflow of the enforcement model of post-obligation, we can divide it 

into two categories. The first category is shown in Figure 4.6. This happens when the subject 

or resource is updating the enforcement model. For example, in order to fulfill one obligation, 

the subject requests the system to update one resource the subject is accessing. Under this 

circumstance, the subject or resource sends a post-obligation update request to the obligation 

checking point or enforcement point respectively (shown as the arrows marked la and lb in 

Figure 4.6). Then they pass the request to the decision point (2a and 2b). After the final 

decision is made, the decision is passed back to the subject/resource (3a, 3b, 4a and 4b). In the 

meantime, the decision point calls the event logging point (5) to log the event into the history- 

based engine (6). The feedback of the logging action will be give back to the decision point 

(7).

The other case takes place when the decision point starts a query to the subject or resource to 

check its obligation fulfillment status as shown in Figure 4.7. For example the system checks 

whether a particular file has been deleted or not after a specific period of time. In this case the 

first step is the decision point sends a query to the subject or resource through the obligation 

checking point or enforcement point respectively (shown as the arrows marked la, 2a or lb, 2b 

in Figure 4.7). The response is sent to the enforcement point (3b) or obhgation checking point 

(3a) and further passes back to the decision point (4a or 4b). Based on the feedback received, 

the decision point calls the event logging point (5) to log the event into the history-based engine

(6). After the logging action a feedback from the event logging point is sent to the decision 

point (7).
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Figure 4.7: Usage Control Enforcement Model for Post-obligation (2)

For post-obligations, the main action when a violation occurs is to log the event in the history- 

based policy engine and this action is put into effect by the system rather than the subject. 

Because the system has full control over the action there is no need to put any component of 

the enforcement mechanism into a lower level for security reasons.
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4.2.5 History-based Engine

The traditional policy engine codes the policy rules into the engine itself. This approach is 

not flexible; if there is a need to change the policy, the engine will need to be changed. This 

reduces the portability of the application and also could bring vulnerabilities to the system. So 

in today’s application this engine is not acceptable and this brings the concept of history-based 

engine.

With the introduction of a history-based policy engine, the policy is defined in higher-level 

definition language in the engine and can be easily modified without interruption of the running 

of the entire system. As discussed above in the enforcement model, there is a unique element 

responsible for logging the access decision event into the history-based engine. When the 

engine receives an event passed from the enforcement model, based on the event the engine 

may change the current policy defined by the policy definition language and send a response 

back to the enforcement model.

Figure 4.8 shows the system components of the history-based engine, which mainly consists 

of three parts, the Event Bridge, Update Point and Event Database.

The Event Bridge is the component mainly responsible for directly communicating with the 

requests sent to the engine. Its job includes accepting the query or updating request from the 

enforcement point (shown as the arrow marked 1 in Figure 4.8) and passing along the request 

(2). After getting the response from other component (5), it returns the result to the enforcement 

point.

The Update Point is used as an interpreter. It translates the original request sent from the Event 

Bridge to a command of higher-level definition language and sends it to the Event Database
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Figure 4.8: History-based Engine

(3). Also after getting a response from the Event Database (4), the Update Point translates the 

original response to a format the Event Bridge could understand and passes it along.

The Event Database is the component which actually stores the policies. Those policies stored 

here are defined based on the past behaviors of user, or the history.
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4.3 Summary

The main idea of this chapter is to propose a new obligation model. After a brief introduction 

of current models the new model has been proposed. With an in-depth discussion on the state 

transition scheme and enforcement mechanisms of the obligation model, it can be seen that 

this new model can deal with the problems which current models are not capable of. The next 

chapter will be the proof of concept, applying the new model to the scenarios discussed in 

Chapter 3.



Chapter 5

Proof of Concept

In this chapter, a prototype architecture of the system is offered based on the model proposed 

and the prototype architecture will be applied to the scenarios discussed above for proof of 

concept.

5.1 Closed Scenario

5.1.1 System Prototype Architecture Overview

For a closed scenario, the system consists of two parts, namely the server side component and 

the client side component. The server side stores all the patients’ records, the list of devices, 

users who could access the system and their corresponding rights.

Besides that, each part contains an enforcement point performing access control. The enforce

ment point receives usage requests from the user and makes decisions.

50
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With the eHealth system scenario, when a patient pays a visit to the doctor, first the doctor 

needs to log into the eHealth system by providing a valid username and password. The system 

checks the rights the doctor has like what records the doctor can get access to. Also the history- 

based engine will be queried to see if the doctor has a history of violating the policy. After 

successfully authorizing the doctor based on his/her role, the doctor can send a request to the 

system to get access to the particular patient’s record. If the request gets approved, the system 

then releases a package including the record along with a UCON policy to the client side which 

the doctor is using.

The client side, once receiving the record, checks the integrity of the package and then extracts 

the patient’s record and the UCON policy. While the doctor is accessing the record, the client 

system monitors the doctor’s behavior and if a violation is found, for example, the doctor tries 

to copy the record using a flash drive when he/she is not supposed to do that, the system revokes 

the access rights and logs the event to the history-based engine. Also the system could report 

that violation to a third person. For hand-held devices like PDAs, the system also monitors the 

physical position of the device by using GPS or WIFI signal. If the device is out of the range 

of the hospital, the system will revoke the access rights to the record temporarily.

If the doctor needs to delegate his/her rights to another person, he/she sends the request to the 

server. Because it is the doctor’s responsibility to check whether to grant the permission to the 

person, the server only needs to check if that person is within the system. If so, the person will 

be given the rights.

When an emergency occurs and the doctor needs to access the record for which he/she normally 

does not have the permission, called the break-glass policy here, the doctor sends a special 

request to the system. The system will then grant him/her the permission temporarily and 

also will log and report this special access session using a pre-defined method for later re
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evaluation.

After the treatment session ends, the client side system will keep monitoring the record for a 

specific period of time. During that time if the record is deleted by the doctor then the whole 

access session ends. Otherwise when reaching the maximum waiting time and the record is 

still in the device, the system will revoke the doctor’s access rights and log this violation event 

to the history-based engine.

5.1.2 Obligation Policy Enforcement Point

Based on the previous discussion, the obligations here could be classified into two parts, 

namely the obligations that need a fulfillment check (here we call this kind of obligations non- 

trusted obligations) and obligations that do not need it (trusted obligations for short). These 

two kinds of obligations should be treated separately. Trust obligations are obligations taken 

by the system so this kind of obligations do not need the enforcement mechanism to make sure 

the fulfillment of it. As a result, the obligation policy enforcement point only focuses on the 

non-trusted obligations.

For non-trusted obligations, they could be divided into two kinds based on the time for fulfill

ment check. The first kind is the obligations that need to be checked instantly. For example 

asking the user to provide a valid username and password combination when trying to access 

the system. For this kind of obligation, the enforcement point needs to express the obligation 

using a sequence of actions. Taking the login example, what the enforcement point needs to do 

is:

1. Check if the username provided is in the right form, for example, the username meets
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the length requirement and contains only permitted characters.

2. Check whether the username is in the system’s valid username database.

3. Check the password input by the user is in the right form.

4. Check whether the username and password match.

Only if all the tests by the enforcement point pass, the system will treat the obligation as 

fulfilled.

On the other hand, the second kind of obligation is the one needing to be checked after a 

specific period of time. In our scenario the doctor has to delete the patient’s record within 30 

days after the treatment session ends. For this type of obligation, there is a timer embedded 

in the enforcement point. The timer will trigger an event requiring the enforcement point to 

check the fulfillment of the obligations.

The enforcement point is tied closely with the history-based engine. Any violation will trigger 

the enforcement point to log that event to the history based engine. The implementation of the 

enforcement point is based on an XACML enforcement engine. The policy specifications of 

the enforcement point using XACML schema will be introduced in the next section.

5.1.3 Policy Specifications

Based on the discussion above, a UCON policy specification is developed using the XACML [37] 

policy specification. XACML stands for extensible Access Control Markup Language, which
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is a declarative access control policy language based on XML to describe how to interpret the 

policies.

In the policy specifications, ADF related rules are represented by the policy set in XACML

while ODF related rules are represented by the StateAction element in XACML. The policy

schema is shown below: (Adapted from [36])

<?xml v e r s i o n = ” 1 .0 ” e n co d in g = ”UTF-8” ?>
<schem a>

<com plexType name=” S t a t e A c t i o n T y p e ”>
<sequence  minOccurs=”0 ”>

< e lement  r e f =” u c o n : S t a t e A c t i o n ”></  
e lement>

< / sequence>
</  complexType>
<e l e m en t  name=” D e n i e d P o l i c y ” t y p e = ” 

ucon:  S t a te  Ac t ion  Type  ”></ e lement>
< e l e m en t  name=” E x i t P o l i c y  ” t y p e = ” u c o n : S t a t e A c t i o n T y p e ” 

></  e l emen t>
ccomplexType  name=” S t a t e P o l i c y ”>

<sequ ence>
< e lement  r e f =” u c o n : S t a t e  A c t i o n  ”></ 

e lement>
<e l ement  r e f = ” x a c m l : P o l i c y S e t ”></ 

e lement>
< / sequence>

</  complexType>
< e l e m e n t  name=” R e q u e s t c h e c k P o l i c y ” t y p e = ” 

u c o n : S t a t e P o l i c y  ”></ e lement>
< e l e m e n t  name=” O n g o i n g c h e c k P o l i c y ” t y p e = ” 

u c o n : St  a te  P o l i c y  ”></ e lement>
< e l em en t  name=” E n d e d p o s t c h e c k P o l i c y ” t y p e = ” 

u c o n : S t a t e P o l i c y  ”></ e lement>
< e l e m e n t  name=” R e v o k e d p o s t c h e c k P o l i c y ” t y p e = ” 

u c o n :  S t a t e  P o l i c y  ”></ e lement>
<complexType name=”UCONPolicyType”>

<sequence>
<e l emen t  r e f =” u c o n : R e q u e s t c h e c k P o l i c y ” 

></  e lement>
<e l emen t  r e f = ” u c o n : O n g o i n g c h e c k P o l i c y ” 

> < /e l e m en t>
<e l emen t  r e f = ”



Chapter 5. Proof of Concept 55

u c o n : E n d e d p o s t c h e c k P o l i c y  ”></ 
e lement>

<e l ement  r e f = ”
u c o n : R e v o k e d p o s t c h e c k P o l i c y  ”></ 
e lement>

< e lement  r e f =” ucon:  Deni  ed Po l i c y  ”></ 
e lement>

<e l emen t  re f =” u c o n : Ex i t  P o l i c y  ”></ 
e lement>

< / sequence>
< a t t r i b u t e  name=” UCONPolicyId” t y p e = ” anyURI” 

u se =” r e q u i r e d ”></  a t t r i b u t e >
< / complexType>
<e l em en t  name=”UCONPolicy” t y p e = ” ucon:UCONPol icyType”> 

</  e l emen t>
<e l e m en t  name=” S t a t e  Ac t i on  ” t y p e = ” u c o n : S t a t e A c t i o n s ”>< 

/ e l emen t>
<complexType name=” St a te  A c t i o n  s ”>

<sequ ence>
<e l ement  r e f =” x a c m l :O b l i g a t i o n s ”></  

e lement>
< / sequence>

</  complexType>
</  schema>

The above schema shows all the elements of a UCON policy. In the schema, UCONPolicy 

represents the root element of the policy, which consists of all the rules. RequestcheckPol- 

icy, OngoingcheckPolicy, EndedpostcheckPolicy and RevokedpostcheckPolicy are the type of 

StatePolicy, which consists of the StateAction element and the PolicySet of XACML. These 

are the ADF related rules. On the other hand, the DeniedPolicy and ExitPolicy have only the 

StateAction element because they are the ODF related rules.

A UCON policy specification can be easily developed based on this schema to configure the 

enforcement engine.
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5.1.4 History-based Engine

As we discussed in last chapter, the history-based engine is used to store the past behaviors 

of the user and provide that information to the system when requested. An event in the event 

database is expressed using XML. For proof of concept use we have developed an XML schema 

for the event database as shown below:

<x s : s ch e m a  x m l n s : x s = ” h t t p :  / / www.w3 . o r g / 2 0 0  l/XMLSchema”> 
< x s : e l e m e n t  name=” H i s t o r y ”>
<xs :compexType>
< x s : s e q u e n c e >

< x s : e l e m e n t  name=” Record”>
<xs :compexType>
< x s :s e q u e n c e >

< x s : e l e m e n t  name=” User ID” t y p e = ” xs : s t r i n g  ”></ 
x s : e l e m e n t >  —-

< x s : e l e m e n t  name=” Res ou rce ID” t y p e = ” x s : s t r i n g  ” 
> < / x s : e l e m e n t >

< x s : e l e m e n t  name=” V i o l a t i o n ” t y p e = ” x s : s t r i n g  ”> 
</  x s : e l e m e n t >

< x s : e l e m e n t  name=” T i m e O f V i o l a t i o n ”> 
<xs : complexType>
< x s : s e q u e n c e >

< x s : e l e m e n t  name=” D a t e” t y p e = ” x s :d a t e  ” 
> < / x s : e l e m e n t >

< x s : e l e m e n t  name=”Time” t y p e = ” x s : t i m e ” 
></  x s : e l e m e n t >

</  x s : s e q u e n c e >
</  xs : complexType>
</  x s : e l e m e n t >

< /  x s : s e q u e n c e >
< / x s : c o m p l e x T y p e >
</  x s :e l e m e n t >

</  x s : s e q u e n c e >
< / x s : c o m p l e x T y p e >
</  x s : e l e m e n t >

In the event database, four elements are stored for later query use: the user ID which could 

be used to identify the user involved in the particular event (UserlD), the related resource

http://www.w3
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(ResourcelD), the type of violation (Violation) which is expressed as a pre-defined number and 

a time stamp indicating when the event is taken place (TimeOjViolation).

The query and insertion action is done using the XQuery, which is an XML query language. In 

Appendix A we give an example of querying and insertion for an event database.

5.2 Open Scenario

5.2.1 System Prototype Architecture Overview

Because of the unique character of the open system, which is that the user of the system is not 

pre-defined, it is not possible to control the user-side devices. The system for the open system, 

here in our example the cloud computing system, only has one part which deploys on the server 

side.

When a user tries to get service from the cloud, he/she first needs to register on the system. 

If the service is not free of charge, the user also may need to pay for the service. The system 

checks the information the user inputs; also based on the information, the system queries the 

history-based engine to see if there exists a record of that user for evaluation. Then the system 

will show the user a term-of-service to inform the user his/her rights and obligations. After the 

user accepts the term-of-service, the system will grant him/her the corresponding rights in the 

system.

During the usage session, the system keeps monitoring the user’s actions and updating any user 

attributes if needed. If abnormal access action is found, the system will notify the user, log the
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event in the system and even revoke the access rights of the user.

After the usage session ends, the system will inform the user about his/her obligations, which 

may include giving feedback to the system, or paying for the service the user used if this has 

not been done before the usage session. The system will track the fulfillment of the obligations 

for a period of time and for those obligations which are not fulfilled, the system will log the 

event to the history-based engine along with reporting that to a specific third party.

5.2.2 Obligation Policy Enforcement Point

Similar to the policy enforcement point in a closed system, the one for an open system will 

also mainly focus on non-trusted obligations.

Because of the unique characteristics of the users for an open system, the users may violate 

some of the obligations because they are not familiar with the detailed requirements of the 

system and once this happens the system should have some mechanisms to give the users a 

chance to defend themselves. So based on this thought, in order to enhance the flexibility and 

user experience, a negotiation module is embedded in the enforcement point. Similar work has 

been done in [38].

Usually the negotiation process could be divided into three levels as shown in Figure 5.1 

namely attributes query, attributes automatic negotiation and artificial negotiation. Attribute 

query will start querying user’s attribute when attributes are insufficient, and negotiation will 

end once the wanted attributes are obtained. Otherwise automatic attribute negotiation will 

take effect. This negotiation step will help getting the wanted attributes according to attribute 

privacy policies of both sides, and negotiation will end if the wanted attributes are obtained. If
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both of the above levels fail, then the final level, artificial negotiation, will take effect. At this 

level, the system will ask a human user to make the decisions.

5.3 Summary

In this chapter, by developing a system prototype architecture based on our proposed model 

and applying the architecture of the prototype to our two scenarios for proof-of-concepts use, 

we proved the model fits well in our scenarios and solves the obligations problem there. Then 

a obligation policy specification used in enforcement point is developed using the XACML 

policy specification language.

Two enforcement point architectures are proposed based on the two scenarios. In the enforce-
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ment point for open system, we have added a negotiation part to the enforcement point which 

enhances the flexibility of the system.



Chapter 6

Conclusions and Future Work

In this chapter, we present the conclusion of the thesis. We begin this chapter with the summary 

of our work and contributions in this thesis. Then we discuss some possible future research 

directions

6.1 Conclusions

This thesis is mainly focused on the obligation part of the usage control model. After a de

tailed review of previous literature, based on the previous model, a new one is proposed to 

handle the problem the current ones cannot. The main work and contributions of this thesis are 

summarized below:

1. We proposed a new obligation model for UCON. There are several improvements in this 

new model:

61
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• We added post-check process in the state transition scheme to fit the post-obligation 

requirement better.

• For the enforcement mechanism, the decision function is put into the OS level to 

make the enforcement more secure while at the same time, other parts of the en

forcement model remain in the application level for flexibility and bridging the gap 

between the OS level and the application.

• We add a history-based policy engine to the enforcement model to log the history 

of access session information for later evaluation use.

2. We offered two application scenarios for proof-of-concepts purposes, one eHealth sce

nario as the one for closed system and one cloud computing scenario as the one for open 

system.

3. We proposed a prototype architecture of the system based on the proposed model, devel

oped the UCON policy specification using XACML schema, added a negotiation model 

to the enforcement point for the open system.

4. We proposed a Proof-of-Concept by applying the prototype architecture to the two sce

narios and showed the model proposed fits in the scenarios well.

6.2 Future Work

Usage control is a relatively new research area in the access control field so there remains 

lots of work to be done in the future. As for the work in this thesis, first we only proposed
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a prototype architecture for proof-of-concept here. For a more accurate proof, the next step 

maybe is to implement the prototype in order to test it in a real world application.

Second, the history-based engine could be studied further. For example, what kind of informa

tion should be passed to the engine. In our example, only the UserlD, ResourcelD, TimeOjVio- 

lation and ViolationType of one violation event is stored in the history-based engine. The next 

step we should consider is whether this is enough. Also, after the event database gives back 

results for a query, how this information should be used is another issue-should all the records 

be treated equally or is there a weight to each entry.
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Appendix A

Example Testing of Event Database

In this appendix, we give some examples using the XQuery language to query an example

event database and insert new data to the database. An example database based on the schema

provided in Chapter 5 is listed below and the examples are based on it. All examples here run

on the eXist-db [39], which is an open source native XML database.

<?xml v e r s i o n = ” 1 . 0 ” encod in g=”UTF-8” s ta n d a lo n e = ” y e s ” ?> 
c H i s t o r y  >

<Record>
<UserID>U001</UserID>
<ResourceID>R100</  ResourceID> 
< V i o l a t i o n > 0 1 < / V i o l a t i o n >
<Time OfVio l a t i o n>

<D ate>2011-01 - 1 1</Date>
<Time>09 : 00 :00< /T ime>

< / T im e O f V i o l a t i o n >
</  Record>
<Record>

<UserID>U002</  UserID>
<ResourceID>R355</  ResourceID> 
< V i o l a t i o n > 0 1 < / V i o l a t i o n >
<Time OfVio l a t i o n>

<Da te>2010-02 -04</  Date>
<Time>17: 15 :23</Time> 

< / T im e O f V i o l a t i o n >

70
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</  Record>
<Record>

<UserID>U001</UserID> 
<ResourceID>R367</  ResourceID>
< V i o l a t i o n > 0 4 < /  V i o l a t i o n >  
<T i me Of Vi o l a t i on >

<D a te >2010 -06 -15< /  D a t o  
<T ime>01:02 :23</Time> 

< / T i m e O f V i o l a t i o n >
</  Record>
<Record>

<UserID>U002</  UserID> 
<ResourceID>R276</  ResourceID>
< V i o l a t i  on >03</  V i o l a t i  on > 
<T ime OfV io l a t i o n>

<Da te>20 10 -12 -22 < /Da te>  
<Time>13 : 32 :16< /T ime>  

< / T im e O f V i o l a t i o n >
</  Record>
<Record>

<UserID>U005</  UserID> 
<ResourceID>R847</  ResourceID>
< V i o l a t i  on >02</  V i o l a t i o n >  
<T i me Of Vi o l a t i on >

<Date>2010-01 —22< / D a t o  
<Time>06: 2 8 : 0 4 < / T i m o  

< / T im e O f V i o l a t i o n >
</  Record>
<Record>

<UserID>U008</  UserID> 
<ResourceID>R639</  ResourceID> 
< V i o l a t i o n > 0 4 < /  V i o l a t i o n >  
<T i me Of Vi o l a t i on >

<Da te>2010- l  1 —03</  D a t o  
<Time>23 :1 3:1 1 </Time> 

< / T i m e O f V i o l a t i o n >
</  Record>

< /  H i s t o r y >

The most common action for query is to query by the user ID, for example if we want to query 

all information by userID=U002, the following command could be applied:

/ /  Record [ UserID= ’ U002 ’ ]
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When executed, the result given back is 

1
<Record>

<UserID>U002</UserID> 
<ResourceID>R355</  ResourceID> 
< V i o l a t i o n > 0 1 < /  V i o l a t i o n >  
<T i m e O f V i o l a t i o n >

<Da te>2010 -02 -04< /  Date> 
<Time>17:1 5 :23</Time> 

< / T i m e O f V i o l a t i o n >
</  Record>
2
<Record>

<UserID>U002</  UserID> 
<ResourceID>R276</  ResourceID>
< V i o l a t i o n > 0 3 < /  V i o l a t i o n >  
<T i m e O f V i o l a t i o n>

<D a te>2010 -12 -22< /  Date> 
<Time>13 : 3 2 : 1 6</Time> 

< / T i m e O f V i o l a t i o n >
< /  Record>

Next we will give an example of the command for insertion:

upda t e  i n s e r t  
<Record>

<UserID>U002</UserID> 
<Resou rce ID>Rl  11</ ResourceID>
< V i o l a t i o n > 0 2 < /  V i o l a t i o n >  
< T i m e O f V i o l a t i o n >

<Date>2011 -01 — 15</  Date> 
<Time>19 : 23 :08< /T ime> 

< / T i m e O f V i o l a t i o n >
</  Record> 
i n t o  / /  H i s t o r y

After executing, the contents of the event database is shown below:

c H i s t o r y  >
<Record>

<UserID>U001</  UserID> 
<ResourceID>R100</  ResourceID> 
< V i o l a t i o n > 0 1 < / V i o l a t i o n >



6

7

8
9

10

11

12
13

14

15

16

17

18

19

20

21
22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Chapter A. Example T esting of E vent Database 73

<Ti me Of Vi o l a t i on>
<Date>2011 - 0 1 - 1 1</Date> 
<Time>09 : 00 :00< /T ime>

< / T im eO fV io l a t i on >
</  Record>
<Record>

<UserID>U002</  UserID> 
<ResourceID>R355</  ResourceID> 
< V i o l a t i o n > 0 1 < / V i o l a t i o n >  
<T im eO fV io l a t i o n >

<Da te>2010 -02 -04< /  D a t o  
<Time>17 :1 5 :23</Time>

< / T ime OfV io l a t i on>
< / Record>
<Record>

<UserID>U001</  UserID> 
<ResourceID>R367</  ResourceID>
< V i o l a t i o n > 0 4 < /  V i o l a t i o n >  
<T ime OfV io l a t i o n>

< D a t e > 2 0 1 0 - 0 6 - 1 5 < / D a t o  
<Time>01 : 02 :23< /T ime>

< / T imeO fVi o l a t i o n>
</  Record>
<Record>

<UserID>U002</UserID> 
<ResourceID>R276</  ResourceID>
< V i o l a t i o n > 0 3 < /  V i o l a t i o n >  
<T ime OfV io l a t i o n>

<Da te>2010 -12 -22< /  D a t o  
<Time>13 : 32 :16< /T ime>

< / T imeO fVio l a t ion>
< /  Record>
<Record>

<UserID>U005</  UserID> 
<ResourceID>R847</  ResourceID> 
< V i o l a t i o n > 0 2 < /  V i o l a t i o n >  
<T i me Of Vi o l a t i on>

<Date>2010-01 - 2 2 < /  Date> 
<Time>06: 2 8 :04</Time>

< / TimeO fVio la t i on>
</  Record>
<Record>

<UserID>U008</UserID> 
<ResourceID>R639</  ResourceID>
< V i o l a t i o n > 0 4 < /  V i o l a t i o n >
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<T im eO fV io l a t i o n >
<Da te>2010 - l  1 - 0 3 < /  D a t o  
<Time>23 :13:11 </Time> 

< / T i m e O f V i o l a t i o n >
< /  Record>
<Record>

<UserID>U002</UserID> 
<ResourceID>Rl  11< / ResourceID>
< V i o l a t i  on >02</  V i o l a t i  on > 
<T ime OfVio l a t i o n>

<Date>2011 -01  —15< / D a t o  
<Time>19 : 23 :08< /T ime>  

< / T im e O f V i o l a t i o n >
</  Record>

</  H i s t o r y >
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