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Characterization of proteins binding the 3’ regulatory region of the IL-3 gene in IL-3-
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Previously we documented the prolongation of the IL-3 mRNA
half-life in an autocrine-transformed cell line. This cell line has
an intracisternal type A particle transposition in the IL-3 mRNA
3’ untranslated region which displaced four out of six AUUUA
motifs involved in IL-3 mMRNA destabilization. In this study, the
proteins binding to the IL-3 mRNA AU-rich elements (ARE) were
examined. Specific protein binding was detected to the wild-
type IL-3 ARE region which contained 6 AUUUA motifs (AUg).
In contrast, no binding was detected to the mutated IL-3 ARE
region which contained only two AUUUA motifs (AU,). Proteins
with apparent molecular weights of 36, 40, 43, 46, 55, 57, 68
and 95 kDa were bound to AU; motif. The hnRNP C and AUF-
1 (hnRNP D) proteins were determined to be two of the IL-3 ARE
binding proteins. Incubation of protein extracts with antibodies
to hnRNP C and AUF-1 significantly decreased the protein bind-
ing to the IL-3 ARE. Treatment of IL-3 dependent cells with cal-
cium ionophores eliminated the proteins binding to the ARE in
wild-type IL-3-dependent FL5.12 cells and also resulted in the
accumulation of IL-3 mRNA transcripts with a long half-life.
These results indicated that there was a specific complex
which bound the IL-3 mRNA 3’ ARE. Mutations which truncate
the IL-3 ARE eliminate the ability of proteins to bind this regu-
latory region and can result in autocrine transformation due to
the presence of IL-3 mRNA transcripts with a long half-life.
Keywords: IL-3; cytokines; mRNA stability; autocrine transform-
ation; post-transcriptional regulation

Introduction

The proliferation of many hematopoietic precursor cells is
promoted by interleukin-3 (IL-3), granulocyte/macrophage-
colony stimulating factor (GM-CSF), stem cell factor (SCF) and
other growth factors.'=> Removal or depletion of these growth
factors from cytokine-dependent cells results in apoptosis,
programmed cell death. Hence some of these cytokines, eg
IL-3 and GM-CSF are also referred to as survival factors. Once
‘normal’ hematopoietic cells lose their growth factor depen-
dency, they often become leukemic.'~

IL-3 and GM-CSF exert their biological activity by binding
to the IL-3 and GM-CSF receptors, respectively (IL-3R and
GM-CSFR®"). These receptors are comprised of a ligand-spe-
cific a-subunit and a common B-subunit (8.), which is essen-
tial for signal transduction.®® Abnormal expression of these
receptors can contribute to leukemogenesis.”~'* These recep-
tors induce multiple signaling pathways which include onco-
proteins, protein kinases and transcription factors."'='? If cer-
tain of these proteins are aberrantly regulated, a leukemia may
arise.!’13

IL-3 expression is regulated by both transcriptional and
post-transcriptional mechanisms. The 3” flanking region of IL-
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3 gene contains an AU-rich element (ARE) including six
ATTTA motifs, which confer instability to the IL-3 mRNA.™'>
Calcium ionophores have been reported to stabilize IL-3
mRNA in some mast cells, indicating that calcium mobiliz-
ation can lead to elongated IL-3 mRNA half-lives.’® In con-
trast, immunosuppressive drugs such as cyclosporin A'” and
rapamycin'® will destabilize IL-3 mRNA in certain autocrine-
transformed tumors. These drugs may, in the future, be useful
in the treatment of certain types of leukemia.

AREs are found in many short-lived proto-oncogene and
cytokine mRNAs. These mRNAs contain an AU-rich motif of
30-80 bases within their 3" untranslated region (UTR).'?2°
Based on sequence consensus and functional studies, Chen
and Shyu?'"** divided AREs into non-AUUUA and AUUUA-
containing AREs. The non-AUUUA AREs have a long continu-
ous U-rich region, eg c-jun ARE. Chen and Shyu further sub-
divided AUUUA-containing AREs into two classes: class |
contains one to three copies of AUUUA motifs coupled with
a long continuous U-rich sequence, eg c-fos ARE and AREs
from some other transcription factors; class Il contains mul-
tiple reiterations of an AUUU tetranucleotide, eg AREs from
cytokine  mRNAs, including IL-3 mRNA.™ Site-directed
mutagenesis studies performed with the granulocyte/
macrophage colony-stimulating factor ARE indicated that
three AUUUA motifs was the minimum for destabilizing
mRNA.?* Later investigations performed on IL-3 mRNA indi-
cated that a cluster of three adjacent AUUUA motifs, either
the 5 three or the 3’ three, was able to destabilize IL-3
mRNA."> Recent experiments performed with c-fos and syn-
thetic AREs have shown that the functional motif within the
AREs was a UUAUUUA(U/A)(U/A) nonamer.2>2¢

Many investigators have demonstrated that there are pro-
teins binding to ARE region that are involved in mRNA destab-
ilization.?**” Brewer®' and Zhang et aP*? purified and molecu-
larly cloned an AUF1 factor that binds to the ARE region of
c-myc and GM-CSF mRNA. An antibody specific for AUF1
cross-reacts with 37 and 40 kDa polypeptides which both
bind to the ARE sequence. Furthermore, the «aAUF1 antibody
also recognizes a 45 kDa protein which is immunologically
related to the two AUF1 proteins.>> These AUF1 proteins are
phosphorylated, localized in both the nucleus and the cyto-
plasm, and can be found in a complex.?? The affinity of this
protein for its substrates was negatively correlated with mRNA
stability.’® The involvement of AUF1 in the regulation of a
specific mMRNA's stability was also demonstrated.>® Recently
it was shown that AUF1 is the same as heterogenous nuclear
ribonucleoprotein D (hnRNP D) and is also a component of
the a-globin mRNA stability complex.*©

Our previous work analyzed IL-3 mRNA stabilization in an
autocrine-transformed  IL-3-independent cell line, FL-IL3-
R.>1441.42 There is a rearranged IL-3 gene in this cell line. This
rearrangement was due to the transposition of an intracisternal
type A particle (IAP) into the 3 UTR of the IL-3 gene.' The
transposed IAP element displaced four out of six ATTTA motifs



in the 3" UTR of the IL-3 gene.' The IL-3 mRNA half-life was
elongated (t, =16 = 4h) compared to wild-type IL-3 mRNA
(ty=0.5-1 h).>'43940 The combination of transcriptional
induction of IL-3 expression by the IAP long terminal repeat
and mRNA stabilization due to disruption of the destabilizing
sequence, resulted in abnormal IL-3 expression and autocrine
transformation.*'#? In the present study, the proteins which
bind to IL-3 3” UTR region and are involved in mRNA degra-
dation control were characterized in IL-3-dependent and
autocrine-transformed cells. The identification and partial
characterization of proteins which bind the IL-3 mRNA region
in IL-3-dependent and autocrine-transformed cells has not
been described previously. Moreover, this work also docu-
ments that calcium ionophores can eliminate the binding of
proteins to the IL-3 ARE and prolong IL-3 mRNA stability in
IL-3-dependent cells. Thus, these studies further our under-
standing of how the deletion of the IL-3 ARE can result in
autocrine transformation of hematopoietic cells.

Materials and methods
Cell lines and cytoplasmic protein extraction

The IL-3 dependent FL5.12** cells were maintained in a
humidified 5% CO, incubator with Dulbecco’s modified Eag-
le’s medium (DMEM), containing 50 um 2-mercaptoethanol
(Sigma, St Louis, MO, USA) and 5% heat-inactivated iron-sup-
plemented defined bovine calf serum ((CS), Hyclone, Logan,
UT, USA) and supplemented with 20% clarified WEHI-3B (D")
conditioned medium as a source of IL-3. The human cytokine-
dependent TF-1 cells** were grown in DMEM + 10% FBS
(Hyclone)  containing 1 ng/ml  recombinant  human
granulocyte/macrophage colony-stimulating factor (GM-CSF,
R&D Systems, Minneapolis, MN, USA). Factor-independent
lines FL-IL3-R1,* EL-4%¢ and K562% cells were cultured in
DMEM + CS in the absence of exogenous IL-3. In some experi-
ments, the cells were treated with 50 nm phorbol 12-myristate
13-acetate (PMA; Sigma), 10 um calcium ionophore (A23187;
Boehringer Mannheim, Indianapolis, IN, USA), 5 ug/ml
actinomycin D (Sigma) or 20 ug/ml cycloheximide (Sigma).

Cytosolic proteins were extracted according to the pre-
viously described procedure*® with minor modifications.
5 x 107 cells were washed twice in cold PBS, which were then
lysed in 1% Triton X-100 (Sigma), 10 mm PIPES (pH 6.8;
Sigma), 100 mm KCl, 2.5 mM MgCl,, 300 mm sucrose, 2 mm
dithiothreitol (DTT; Sigma) and 1 mm phenylmethylsulfonyl
fluoride (PMSF; Sigma) by resuspension and incubation on ice
for 10 min. The crude cell lysates were then centrifuged at
12 000 g for 10 min to pellet the nuclei and the supernatant
was collected. Cytoplasmic extracts were stored at —80°C. The
protein quantification was performed by using the Bradford
reagent (Bio-Rad, Richmond, CA, USA).

RNA probes

The templates for the wild-type IL-3 3" UTR probe containing
six AUUUA motifs (AU,) and the rearranged IL-3 3" UTR
probe containing two AUUUA motifs (AU,) were constructed
as described previously.*? After being linearized by Smal and
Hincll digestion and transcription driven by T7 RNA poly-
merase (Ambion, Austin, TX, USA), a 172-nucleotide and a
167-nucleotide riboprobe were obtained for wild-type and
rearranged IL-3 3" UTR, respectively. The sequence for AU,
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probe is: GGGCGAAUUU GCAACUCUCC UUUGGCUUUA
CCUAAUUAUG UUCCUAUUUU AUUCCAUUAA
GGCUAUUUAU UUAUGUAUUU AUGUAUUUAU UUAU-
UUAUUG CCUUCUGUGA UGUGAGUAUA UCUGU-
UUUAG CUGAGGAGGA GUUUCUCCAA AGAAAAUUCG
AGCUCGGUAC CC. The sequence for AU, probe is:
GGGCGAAUUC GAGCUCGCUU UACCUAAUUA UGUUC-
CUAUU UUAUUCCAUU AAGGCUAUUU AUUUAUGUGU
GGGAAGCCGC CCCCACAUUC GCCGUCACAA
GAUGGCGCUG ACAUCCUGUG UUCUAAGUUG
GUAAACAAAU AAUCUGCGCA UGAGCCAAGC UAGA-
GUC. The AUUUA motifs are underlined. The sequence from
the IAP is italicized in the AU, probe. A 180 nucleotide long,
non-specific, non-AUUUA containing probe (AU, was
obtained by cleavage of a 280 base pair long fragment from
pGEM3Zf(-) by Pwull, followed by an in vitro transcription
reaction driven by SP6 RNA polymerase (Ambion). The in
vitro transcription reactions were performed by incubating
1 ug of linearized DNA template in a 20 ul mixture contain-
ing transcription buffer, 0.5 mm of ATP, GTP, CTP, 50 uCi a-
32P UTP (3000 Ci/mmol, 10 mCi/ml; NEN, Boston, MA, USA),
and 10 units of T7 RNA polymerase at 25°C for 1 h. Sub-
sequently the template DNAs were removed by the addition
of 2 units of RNase-free DNase | (Life Technologies, Gaithers-
burg, MD, USA), and incubated at 37°C for 30 min. The yield
of the probe was approximately 1x 10% c.p.m./ug. Poly(A),
poly(G), poly(C), poly(U) and poly(l) oligonucleotides were in
some cases used to compete the protein binding to the radio-
labeled RNA probes and were purchased from Sigma and
25 ng of each oligonucleotide was added.

RNA electrophoretic mobility shift assay (EMSA)

Cytosolic proteins 2.5-30 ug were mixed with 5x10* to
1x10° c.p.m. gel purified RNA probe and incubated in a
RNA protein binding buffer® (10 mm HEPES, pH 7.8, 5 mm
MgCl,, 50 mm KCl, 10% glycerol, 1 ug/ml yeast tRNA, T mm
DTT; in a 25 ul total volume. The binding reactions were car-
ried out at 30°C for 20 min. Then, 10 ug RNase A and 10 units
of RNase T1 (Ambion) were added and incubated at 37°C for
10 min to digest the unbound RNAs. The samples were loaded
on 8% non-denaturing polyacrylamide gels
(acrylamide/bisacrylamide ratio 60:1), which were pre-elec-
trophoresed for 30-60 min at 13 v/cm in 0.5 x TBE (1 X TBE =
0.089M Tris, 0.089 M Borate and 0.002m EDTA, final
pH = 8).*° The gels were electrophoresed at the same current
until the xylene cyanol band of the tracking dye was approxi-
mately two inches from the end of the plates. The gels were
subsequently dried and subjected to autoradiography. Protein-
ase K (Life Technologies) was added to some binding reactions
at a final concentration of 2 mg/ml and incubated for 30 min
at 37°C. In some experiments, either the «AUF1 antibody or
preimmune serum was preincubated with cytoplasmic pro-
teins for 15 min prior to the addition of radiolabeled ribop-
robes. The «AUF1 antibody was generously provided by Dr G
Brewer (Wake Forest University, Winston-Salem, NC, USA).??
Some binding reaction mixtures were placed on ice and
UV-crosslinked by using a Stratalinker 1800 (Stratagene, La
Jolla, CA, USA) for 5 min at 3000 mW/cm?.?>49 Subsequently,
the reactions were subjected to RNase A/TT digestion and
analyzed on 12% SDS-PAGE, followed by autoradiography.
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Reverse transcriptase polymerase chain reaction (RT-
PCR)

RNA isolation and RT-PCR were performed as described*'
with  specific  primers for IL-3  (upstream: 5-AAT-
CAGTGGCCGGGATACCC-3” and downstream: 5-CGAAAT-
CATCCAGATCTCG-3"), and B,-microglobulin (upstream: 5’
TTCTCTCACTGACCGGCCTG-3"  and  downstream:  5'-
CGAAATCATCCAGATCTCG-3"), defining a 200bp and a
308 bp fragment cDNA fragment, respectively. Total RNA of
2 ug was used in the RT-PCR reactions. Cells were treated
with actinomycin D as described."

Western blot analysis

Cytoplasmic extracts of 40-80 ug were separated by SDS-
PAGE (4% stacking phase and 12% resolution phase). Proteins
were then electroblotted onto 0.2 um polyvinylidene difluor-
ide membranes (PVDF; Bio-Rad) with a Bio-Rad semi-dry
transfer apparatus as described.”® After blotting, the mem-
brane was blocked in TBS-T buffer (20 mm Tris, 137 mm NaCl,
0.1% Tween-20, pH 7.6) with 5% non-fat dried milk, for 1 h
at room temperature, with shaking. Then the diluted primary
antibody (1:5000-fold dilution for «AUF1, 1:1000-fold
dilution for hnRNP A1 and C) was added and incubation
was carried out overnight at 4°C, with shaking. On the follow-
ing day, the filter was washed three times for 5 min with TBS-T
buffer, and incubated with the appropriate diluted secondary
antibody (1:5000-fold dilutions, anti-rabbit IgG/horse radish
peroxidase (HRP) for «AUF1 and amouse IgG/HRP for
ahnRNP AT and C (Amersham, Arlington Heights, IL, USA))
for 1 h at room temperature, with shaking. The filter was then
washed five additional times. The signals were detected by
ECL Western blotting kit according to the manufacturer’s pro-
tocol (Amersham) and visualized after exposure to Kodak film
(Rochester, NY, USA).

Northwestern blot analysis

After electrophoresis of the proteins prepared from the appro-
priate cell lysates and transfer onto the PVDF membranes, the
membrane-bound proteins were renatured in 10 mm HEPES
(pH 7.8), 3 mm MgCl,, 40 mm KCI, 0.1 mm EDTA, T mm DTT,
0.2% Nonidet-P40, 5% glycerol and 5 mg/ml BSA overnight
at room temperature. The next day, the membranes were
transferred to RNA—protein binding buffer and incubated with
specific radio-labeled probes at 1 x 10> c.p.m./ml for 2 h at
room temperature, followed by three washes in RNA—protein
binding buffer. The first two washes were carried out at room
temperature and the last wash was at 37°C and included
25 mg/ml RNase A (Sigma). The signals were visualized after
exposing the dried membranes to Phosphorlmager screens fol-
lowed by analysis with a Phosphorlmager (Molecular Dynam-
ics, Sunnyvale, CA, USA).

Immunoprecipitation of ARE-binding proteins

After the cytoplasmic lysates were incubated with the radiola-
beled AU, probe, UV-crosslinked, and digested with RNase
A/TT, a 1:500-fold dilution of respective monoclonal anti-
bodies, (mouse 4F4 (specific for hnRNP C), 9H10 (specific for
hnRNP A1)), a polyclonal rabbit «AUF1 antiserum, or a pre-

immune antiserum were added to the RNA-protein mixture.
The mixtures were incubated at 4°C overnight with 40 ul of
protein A-sepharose beads (Pharmacia) for polyclonal anti-
bodies, or 10 ul protein G-agarose beads (Life Technologies)
for monoclonal antibodies in a buffer consisting of 10 mm
Tris-HCI, pH 7.4, 100 mm NaCl, 2.5 mm MgCl,, 0.5% Triton
X-100 and 1T mm PMSF. The protein G-agarose beads were
pre-incubated with 10 ul rabbit amouse 1gG Fc (Accurate
Chemical & Scientific Corporation, Westbury, NY, USA) for
1 h before use. The next day, the beads were pelleted after a
brief centrifugation at 12 000 g, washed five times in PBS,
boiled in Laemmli sample buffer,**** analyzed by 12% SDS-
PAGE, and followed by autoradiography. The mouse 4F4 and
9H10 ascites derived monoclonal antibodies were provided
by Dr GS Dreyfuss (University of Pennsylvania, Philadelphia,
PA, USA).5->3

Results

Proteins bind specifically to the AU, probe, but not
the AU, or AU, probes

Since there was a 20-fold difference in IL-3 mRNA stability
observed between cells containing the wild-type (AU,) or the
mutated (AU,) 3" UTRs,>#"*2 we proposed that there might be
a difference in protein binding to the wild-type and mutated
IL-3 mRNA 3" UTRs. RNA protein binding experiments indi-
cated that there was protein binding detected to the wild-type
IL-3 mRNA 3" UTR probe (Figure 1a); whereas no protein
binding was observed to either the rearranged AU, probe, or
a non-specific, non-ARE containing AU, probe (Figure 1a).
Proteinase K was included in some binding reactions, which
abrogated the binding to the wild-type AU, probe (Figure 1b).
This indicated that the observed bands were the result of the
interaction of proteins with the labeled RNA. A concentration
effect of cytoplasmic protein on riboprobe binding was
determined by incubating different amounts of cytoplasmic
extracts in the binding assay. These results indicated that the
binding of proteins to the wild-type probe was proportional to
the amount of protein added (Figure 1c). Similar results were
observed with cytoplasmic extracts prepared from both FL5.12
(Figure 1) and autocrine-transformed FL-IL3-R cells (data not
presented).

To further analyze the proteins in the binding complex, the
UV-crosslinking and label transfer technique was applied.34?
After the binding reactions, the protein-RNA mixtures were
exposed to UV light, and the proteins were separated by 12%
SDS-PAGE. Proteins with apparent molecular weights of 36,
40, 43, 46, 55, 57, 68 and 95 kDa were bound to the AU,
probe, whereas barely any protein binding was observed with
the AU, probe. Similar protein:RNA binding patterns were
observed in both FL5.12 and FL-IL3-R cell lines (Figure 2a).
The proteins binding to AU, probe were competed away by
poly(U), but not by poly(A), poly(G), poly(C) or poly(l)
(Figure 2b), which indicated that the proteins binding to IL-3
3" UTR ARE region had high affinity to a U-rich sequence.
Furthermore, the proteins binding to wild-type probe were
competed away by excess amounts of non-radiolabeled-spe-
cific probes, but not by excess amounts of non-radiolabeled
non-specifc probes (Figure 2c).

To further characterize the binding activity, Northwestern
blot analysis was performed with AU, AU, and AU, probes.
Cytoplasmic proteins were electrophoresed on SDS polyacryl-
amide gels, transferred and immobilized onto nitrocellulose
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Figure 1 Proteins bind to the AU, ARE probe but not to either the
AU, or AU, ARE probes. Cytoplasmic extracts from FL5.12 cells were
incubated with the radiolabeled wild-type IL-3 ARE probe (AU, 172 nt
long), the mutated IL-3 ARE probe (AU,, 167 nt long), or a non-spe-
cific probe (AU, 182 nt long) which did not contain any AUUUA
motif. These mixtures were digested with RNase A/T1 and resolved
by electrophoresis on a native polyacrylamide gel. (a) Protein:RNA
binding was detected with the wild-type IL-3 ARE probe (AU,), but
not with the mutated probe (AU,), or the non-specific probe (AU,).
(b) Treatment with proteinase K abolished the protein binding to wild-
type IL-3 ARE probe (AUj). (c) Concentration effect of protein binding
to the wild-type IL-3 ARE Probe (AU,). 0-30 ug of cytoplasmic pro-
teins were used in the binding reactions. The protein:RNA binding
was proportional to the amount of the protein added in the binding
reactions.

filters and subsequently incubated with radiolabeled probes.
Consistent with previous observations, protein:RNA binding
was detected with the AU, probe, while no binding was
observed with the AU, or AU,, probes (Figure 3). With the AU,
probe, a band of 36 kDa was detected in two murine cell lines
(FL5.12 and the T cell thymoma EL-4), and a 95 kDa protein
was detected in FL5.12 cells (Figure 3). In the human hemato-
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Figure 2 Distinct protein binding to the AU, ARE probe. After the

binding reactions, the protein:RNA mixtures were exposed to UV light
as described in Materials and methods. They were then subjected to
RNase A/T1 digestion and resolved by electrophoresis on 12% SDS
polyacrylamide gels. (a) The binding reactions were performed with
either the wild-type IL-3 ARE probe (AU,), or the mutated IL-3 ARE
probe (AU,) with cytoplasmic extracts isolated from either the
autocrine-transformed FL-/L3-R or the IL-3-dependent FL5.12 cells. (b)
The ability of the protein-binding to AU, probe to be competed away
with non-radiolabeled poly(A), poly(G), poly(C), poly(U) or poly(l).
25 ng of each polynucleotide was added. Only the poly(U) competed
away the binding. (c) The ability of protein-binding to the AU, probe
to be competed away with an excess amount of non-radiolabeled AUg
or AU, probes was examined. Only the AU, probe competed away
the binding.

poietic cell lines examined (TF-1 and K562), proteins with
molecular weight 43, 68, 95 and 105 kDa were detected by
Northwestern blot analysis to bind the murine IL-3 mRNA ARE
probe (AUy) (Figure 3). As with murine cells, there was no
protein:RNA binding observed with the AU, or AU, probe in
cell extracts prepared from human cells. This indicated that
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RNA-protein binding detected by Northwestern blot analysis. Cytolplasmic proteins were separated by 12% SDS-PAGE before being

transferred to nitrocellulose membranes. The membranes were then incubated with radiolabeled AU, AU, or AU, probes at a concentration of
1x10° c.p.m./ml. The cytoplasmic extracts were isolated from two mouse cell lines, FL5.12 and EL-4 (a T cell thymoma, which was grown
either normally or exposed to PMA for 4 h), and two human erythroid lines, TF-1 and K562. Arrows indicate the radio-labeled protein bands.

some proteins which bound the murine IL-3 ARE might be
similar in murine and human hematopoietic cells (95 kDa),
while others appeared to have different molecular weights. In
summary, Northwestern analysis indicated that murine
proteins of 36 and 95 kDa bound the murine RNA under the
conditions of these experiments.

AUF1 (hnRNP D) and hnRNP C are included in the
IL-3 mRNA 3" ARE protein binding complex

AUF1 (hnRNP D) proteins and certain other hnRNPs have
been shown to bind to specific MRNA ARE regions and may
be involved in mRNA stability control.>'** Whether they are
also involved in IL-3 mRNA ARE binding is unknown. The
expression of the AUF1 protein in the cell lines used in this
study was examined by Western blot analysis. The human
aAUF1  antibody cross-reacted with murine proteins
(Figure 4a). Three bands were detected with the aAUF1 anti-
body with molecular weights of 40, 43 and 46 kDa. These
are the three immunologically related isoforms of the AUF1
protein.>? There were nearly equal levels of AUF1 proteins
detected in K562, TF-1 and FL5.12 cells. Slightly lower levels
of AUF1 proteins were detected in EL-4 and EL-4 cells treated
with PMA (Figure 4a). The AUF1 protein was also detected in
the autocrine-transformed FL-IL3-R cells and similar levels
were observed as in the FL5.12 cells (data not presented).
To determine whether the AUF1 protein was included in
the IL-3 mRNA 3" UTR binding complex, the «AUF1 antibody

was pre-incubated with cytoplasmic proteins in some binding
reactions. Pre-treatment of cytoplasmic proteins with the
aAUF1T antibody decreased the protein binding to the AU,
probe by two- to three-fold, while the preimmune serum did
not affect the binding (Figure 4b and c). This result demon-
strated that the AUF1 protein was likely contained in the bind-
ing complex. Moreover, since the «AUFT antibody decreased
the two bands on a native gel, it is conceivable that these
bands included AUF1 proteins.

The specificity of this antibody interaction was further
examined by dose-response experiments with this and
additional antibodies (Figure 5). Increasing the concentration
of the «AUF1 antibody decreased the amount of RNA:protein
complex observed (Figure 5). Certain other hnRNPs have been
demonstrated to bind to ARE regions.?*34>1>2 Moreover,
some of these hnRNPs have similar molecular weights as cer-
tain of the IL-3 ARE-binding proteins, such as hnRNP A1
(which has a molecular weight of 36 kDa) and hnRNP C
(which has molecular weights of 41 and 43 kDa).?*34>1->2 The
same dose—reponse experiments were performed with the
9H10 antibody which recognizes the «hnRNP A1 protein and
it did not decrease the RNA:protein binding (Figure 5) indicat-
ing the specificity of these experiments. Finally, these experi-
ments were also performed with the 4F4 antibody which
recognizes the hnRNP C protein. The antibody to this protein
also decreased the level of RNA:protein complex observed at
the higher concentrations. Thus the ability of the «AUF1 and
hnRNP C antibodies to decrease the RNA:protein complex
was specific.
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Figure 4 Presence of AUF-1 (hnRNP D) in the IL-3-ARE binding complex. (a) Detection of AUF1 expression by Western blot analysis. Cyto-
plasmic proteins were isolated from two human cell lines, K562, TF-1, and two mouse cell lines, EL-4 (with or without PMA treatment) and
FL5.12 cells. The proteins were resolved by 12% SDS-PAGE before being transferred to a nitocellulose membrane. The membrane was then
immunoblotted with an «AUF1 antibody. (b) Cytoplasmic proteins from FL5.12 cells were pre-incubated with either an «AUF1 antibody or a
preimmune serum before adding the radiolabeled AU, probe. The radiolabeled probe was then added, and the reaction mixtures were digested
with RNAse A/TT and resolved by native polyacrylamide gel electrophoresis. (c) Quantification of the protein-RNA binding inhibited by an
aAUFT antibody. This experiment was repeated three times with similar results.
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Figure 5 Protein binding to the wild-type IL-3 ARE probe was blocked in a dose-dependent fashion by antibodies to AUF-1 and hnRNP C.
Cytoplasmic proteins from FL5.12 cells were pre-incubated with different doses of the following antibodies, «AUF-1, 9H10 («¢hnRNP AT) and
4F4 (ahnRNP C) or a preimmune serum before adding the radiolabeled AU, probe. The radiolabeled probe was then added, and the reaction
mixtures were digested with RNase A/T1 and resolved by native polyacrylamide gel electrophoresis. 1 x=10 pug/ml, 2 x=20 ug/ml.
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To further confirm that AUF1 and hnRNP C were involved
in the binding to the IL-3 ARE region, immunoprecipitation
experiments were performed on UV-crosslinked protein:RNA
complexes. After UV-crosslinking the protein:RNA complex,
the reaction mixture was immunoprecipitated with the differ-
ent antibodies. The precipitated proteins were resolved on
SDS polyacrylamide gel and visualized by autoradiography.
Only the RNA binding proteins which were recognized by the
specific antibodies were visible on the autoradiograph. The
aAUF1 antibody immunoprecipitated three proteins which
bound the IL-3 ARE probe (Figure 6, lane 3), and displayed
similar molecular weight as detected by Western blot analysis
using an «AUF1 specific antibody (Figure 4a). In contrast, the
pre-immune antisera did not recognize the proteins which
bound the IL-3 ARE probe (Figure 6a, lanes 2 and 7).

To determine if hnRNP A1 and C were among the proteins
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Figure 6 Immunoprecipitation of IL-3 ARE-binding proteins with
antibodies specific for AUFT, hnRNP C and AT proteins. (a) Cytoplas-
mic proteins were incubated with radiolabeled AU, probe, UV-
crosslinked, and digested with RNase A/T1. The binding mixtures
were subsequently immunoprecipitated with preimmune antiserum
(Lanes 2 and 7); an aAUFT specific antibody (lane 3); ahnRNP A1
monoclonal antibody (9H10, lanes 4 and 5), or an a-hnRNP C mono-
clonal antibody (4F4, lane 6). The precipitated proteins were resolved
on 12% SDS polyacrylamide gel. Lane 1, protein:RNA binding follow-
ing UV-crosslinking was resolved on SDS polyacrylamide gel. All the
cytoplasmic proteins were isolated from untreated FL5.12 cells,
except for lane 4, where the cytoplasmic proteins were extracted from
FL5.12 cells that had been pre-treated with actinomycin D for 30 min.
(b) The expression of hnRNP A1 and hnRNP C proteins was determ-
ined by Western blot analysis.

that bound to IL-3 ARE region, monoclonal antibodies specific
for hnRNP A1 (9H10) and hnRNP C (4F4) were used to immu-
noprecipitate the cytoplasmic proteins which bound to the
radiolabeled IL-3 ARE probe. As shown in Figure 6a, immuno-
precipitation with a monoclonal antibody against hnRNP C
(4F4), gave rise to two radiolabeled bands which were 41 and
39 kDa (lane 6). This result indicated that hnRNP C proteins
were included in the binding complex.

To determine whether hnRNP A1 was included in the pro-
tein:RNA binding complex, the UV-crosslinked complex was
immunoprecipitated with the monoclonal «hnRNP A1 anti-
body, 9H10. This specific antibody did not precipitate the
36 kDa binding protein (Figure 6, lanes 4 and 5), even when
the cells were pre-treated with actinomycin D, which induces
the binding of a 36 kDa protein to IL-3 ARE region (data not
presented). This result indicated hnRNP AT was not involved
in the binding to IL-3 ARE region. Western blot analysis was
performed to detect the expression of hnRNP A1 and C pro-
teins as well as to determine the effectiveness of these anti-
bodies to recognize these proteins. The results in Figure 6b
indicated these proteins were expressed in both FL5.12 and
FL-IL3-R cells.

Overall, these results indicated that the AUF1 (hnRNP D)
and hnRNP C proteins bind to the IL-3 mRNA ARE region and
may play a role in IL-3 mRNA stability regulation. Moreover,
these proteins are present in both IL-3-dependent and
autocrine-transformed cells. This indicates that it is not their
absence that results in the deregulation of mRNA stability in
the autocrine-transformed FL-IL3-R cells, but rather their
ability to bind the rearranged IL-3 ARE region.

Effects of calcium ionophores on protein binding to
the ARE and IL-3 mRNA stability

Certain reagents have been documented to affect IL-3 mRNA
accumulation.’®'® Calcium ionophores stabilize IL-3 mRNA
in some mast cells.'®>* Phorbol esters can stimulate IL-3
mRNA expression in certain T lymphoma lines, such as EL-4
cells.>°¢ The effects of these drugs on the protein binding to
the IL-3 ARE were determined. Treatment of FL5.12 cells with
PMA did not considerably change the binding pattern
(Figure 7a). In contrast, treatment of the cells with the calcium
ionophore A23187 with or without PMA abolished the
protein:RNA binding (Figure 7a).

RNAs were also isolated from these cells and the presence
of IL-3 mRNA transcripts was examined by RT-PCR analyses.
No IL-3 cDNAs were detected in either unstimulated or phor-
bol ester-treated FL5.12 cells. However, treatment of FL5.12
cells with the calcium ionophore A23187 induced IL-3
expression and the combined treatment with PMA and cal-
cium ionophore resulted in a slightly higher level of IL-3
expression (Figure 7b). In both of these conditions, no proteins
binding to the AU, ARE probe were detected. Thus, calcium
ionophores altered protein binding to the IL-3 ARE and
resulted in the accumulation of I1L-3 mRNA transcripts.

To determine whether the calcium ionophore and PMA
treatment prolonged the stability of IL-3 mRNA transcripts in
FL5.12 cells, the half-life of IL.-3 mRNA was determined. Cul-
ture of FL5.12 cells with PMA did not result in the detection
of 1L-3 mRNA transcripts (Figure 8). This dose of PMA was
sufficient to induce the accumulation of IL-3 mRNA transcripts
in the EL-4 T cell thymoma line.>>>¢ Calcium ionophore treat-
ment resulted in the detection of a low level of IL-3 transcripts
with a prolonged (>4 h) half-life (Figure 7). The bands enco-
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Figure 8 Calcium mobilization prolongs IL-3 mRNA stability in FL5.12 cells. FL5.12 cells were treated with calcium inophore (10 um) or
PMA (50 nm) for 4 h. Actinomycin D (5 ug/ml) was then added for increasing time periods. RT-PCR was then performed with 2 ug of FL5.12
RNA per sample. Lower amounts of FL5.12 mRNA did not result in the detection of IL-3 cDNAs. Lane 1, no stimulation; lane 2, treatment with

either PMA, calcium ionophore or both for 4 h; lanes 3-6, the induced cells were subsequently treated with actinomycin D for: (3) 30 min (4)
Th, (5) 2h and (6) 4 h.
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ding IL-3 cDNAs are more visible on the original photograph.
The addition of both calcium ionophore and PMA resulted in
a higher level of IL-3 cDNAs detected. As a control for the
effects of actinomycin D on IL-3 mRNA accumulation,
untreated cells were also cultured with actinomycin D. Acti-
nomycin D by itself did not induce the accumulation of IL-3
mRNA transcripts in FL5.12 cells. In summary, the calcium
ionophore treatment resulted in the accumulation of IL-3
mRNA transcripts with a prolonged half-life.

To determine whether the calcium ionophore treatment alt-
ered the levels of the AUF1 and hnRNP C proteins, protein
extracts were prepared from these cells and Western blot
analysis was performed. Calcium ionophore treatment did not
reduce the levels of the AUFT and hnRNP C proteins suggest-
ing that the mechanism by which calcium ionophores pro-
longed the stability of IL-3 mRNA occurred independently of
the level of these proteins (data not presented).

Discussion

Our previous work documented that the interruption of the
six ATTTA motifs of the IL-3 gene by an IAP transposition stab-
ilized 1L-3 mRNA. Moreover, the IAP long terminal repeat
stimulated IL-3 transcription. Together, these two events led
to sufficient IL-3 synthesis to allow the cells to become trans-
formed by an autocrine mechanism and form tumors in
immunocompromised mice.*'** In this communication, we
have further characterized the mechanism by which this
mutation conferred IL-3 mRNA stabilization. Specific protein
binding to the wild-type IL-3 mRNA ARE region was detected
by native gel, UV-crosslinking and Northwestern blot analysis.
All these approaches demonstrated that there was consider-
able protein binding to wild-type IL-3 ARE probe which con-
tained six AUUUA motifs, whereas no binding was detected
to the rearranged IL-3 ARE probe, which possessed two
AUUUA motifs, or a non-specific probe which did not contain
any AUUUA motifs.

Regulation of gene expression occurs by both transcrip-
tional and post-transcriptional mechanisms. AREs are involved
in the post-transcriptional control of mRNA stability.>” How-
ever, the mechanisms by which they regulate mRNA destabil-
ization are not clear. No evidence has indicated that AREs
serve as endoribonucleolytic sites for enzymatic cleavage, yet
this possibility has not been excluded. However, there have
been studies which indicate that the presence of an ARE
coincides with the rapid shortening of the poly A tail.>>=
AREs may exert their effects by affecting mRNA deadenylation
which is the first step in mRNA degradation.>” There is grow-
ing evidence demonstrating that there are specific proteins
which bind to the ARE region.?”** An important question
which remains is how do these proteins function to regulate
mRNA stability? Also, do the cis and trans elements work
together to modulate mRNA stability? To answer these ques-
tions, an important first step is to characterize the proteins
which bind to these regulatory regions.

Our RNA UV-crosslinking of RNA-protein binding assays
indicated that there is more than one protein which binds to
the IL-3 ARE region. Proteins with molecular weights of 36,
40, 43, 46, 55, 57, 68 and 95 kDa were determined to bind
the wild-type IL-3 ARE. Thus, there can be quite a few proteins
which interact with cytokine AREs. These ARE binding pro-
teins are physiologically relevant since the prevention of this
binding to the ARE is associated with prolonged cytokine
mRNA half-life and tumorigenicity.>#4!42

The AUF1 (hnRNP D) protein was involved in the binding,
as it was detected by RNA gel shift assay as well as immuno-
precipitation of the binding proteins with a specific aAUF1
antibody. hnRNP C proteins were also determined to bind the
IL-3 mRNA ARE region. Initially it was thought that the 36 kDa
protein might be hnRNP AT. This was based on the properties
of hnRNP A1 to bind mRNA and the binding to be induced by
a transcriptional inhibitor, but not affected by a translational
inhibitor. However, immunoprecipitation experiments did not
support this hypothesis. Thus, while hnRNP A1 is expressed
in these cells, it does not appear to bind the IL-3 3" ARE.

Our results suggest that the formation of the protein com-
plex is required for the IL-3 mRNA destabilization. When the
AUUUA motifs were disrupted as occurred by the IAP trans-
position in the autocrine-transformed FI-/L3-R cells, no protein
binding to rlL3 ARE region was detected and the IL-3 mRNA
was stable. FL5.12 cells did not normally express sufficient IL-
3 mRNA transcripts to be detected by RT-PCR. When these
cells were treated with calcium ionophore the formation of
protein complex was abrogated. Calcium ionophores also sta-
bilized IL-3 mRNA in these cells. Thus, elimination of this ARE
binding complex was associated with increased IL-3 mRNA
stability in FL5.12 cells. In contrast, treatment of FL5.12 cells
with PMA did not appear to have any effects on protein bind-
ing or on IL-3 mRNA stabilization although it did synergize
with the calcium ionophore treatment and resulted in the
accumulation of higher levels of IL-3 mRNA transcripts.

IL-3 mRNA is also regulated by transcriptional mechanisms.
The transcription factor NF-AT binds to certain sequences in
the IL-3 promoter region.* Calcineurin is an important phos-
phatase which dephosphorylates certain proteins including
NF-AT.*¢* The dephosphorylated NF-AT enters the nucleus
and activates cytokine gene expression, including IL-2 and IL-
3.%63 Protein phosphorylation also plays a role in IL-3 mRNA
stability control.®*¢¢ Clearly, there are other mechanisms
besides the binding of proteins to the ARE which can control
mRNA stability. Recent studies by Moroni and col-
leagues'”18:6467.68 have indicated that there are trans-acting
factors which can regulate IL-3 mRNA stability in certain
autocrine-transformed cells.

Disruption of the IL-3 ARE in FL-IL3-R cells resulted in the
elimination of the protein binding to this regulatory region. A
summary of these observations is presented in Figure 9. The
IL-3 mRNA synthesized in FL-IL3-R cells did not bind the ARE
binding proteins and the IL-3 mRNA remained stable and the
cells were malignantly transformed. In contrast, the parental
FL5.12 cells were IL-3-dependent, did not synthesize IL-3
mRNA transcripts and were not tumorigenic upon injection
into nude mice.>**2*> Moreover, if any IL-3 mRNA was syn-
thesized by FL5.12 cells, it would not be stable as there would
not be any proteins which bound the IL-3 ARE. These and
previous studies*'*? document the importance of the regu-
lation of cytokine ARE regions and indicate how the disruption
of these sequences can result in malignant transformation.
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UUAAGGCUAUUUAUUUAUGUAUUUAUGUAUUUAUUUAUUUAUUGCCU

rIL-3 3’ ARE region

UUAAGGCUAUUUAUUUAUGUGUGGGAAGCCGCCCCCACAUUCGCCGUC

Diagram of protein binding to the IL-3 ARE in cells containing either the gIL-3 or the rIL-3 genes. Part of the sequences related to

IL-3 mRNA stability region are indicated. AUUUA motifs are in bold and underlined, the sequences from the transposed IAP are italicized. The
molecular weights of the RNA binding proteins are indicated. All of the proteins bind the gIL3 ARE, however, the two proteins detected by
Northwestern analysis (p36 and p95) are shown in this two-dimensional model to have the most binding to the gIL3 ARE.
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