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Abstract: Amyloid A (AA) amyloidosis is a condition in which amyloid fibrils characterized by a
linear morphology and a cross-β structure accumulate and are deposited extracellularly in organs,
resulting in chronic inflammatory diseases and infections. The incidence of AA amyloidosis is high in
humans and several animal species. Serum amyloid A (SAA) is one of the most important precursor
amyloid proteins and plays a vital step in AA amyloidosis. Amyloid enhancing factor (AEF) serves
as a seed for fibril formation and shortens the onset of AA amyloidosis sharply. In this study, we
examined whether AEFs extracted and purified from five animal species (camel, cat, cattle, goat, and
mouse) could promote mouse SAA (mSAA) protein aggregation in vitro using quantum-dot (QD)
nanoprobes to visualize the aggregation. The results showed that AEFs shortened and promoted
mSAA aggregation. In addition, mouse and cat AEFs showed higher mSAA aggregation-promoting
activity than the camel, cattle, and goat AEFs. Interestingly, homology analysis of SAA in these
five animal species revealed a more similar amino acid sequence homology between mouse and cat
than between other animal species. Furthermore, a detailed comparison of amino acid sequences
suggested that it was important to mSAA aggregation-promoting activity that the 48th amino acid
was a basic residue (Lys) and the 125th amino acid was an acidic residue (Asp or Glu). These data
imply that AA amyloidosis exhibits higher transmission activity among animals carrying genetically
homologous SAA gene, and may provide a new understanding of the pathogenesis of amyloidosis.

Keywords: amyloid A amyloidosis; amyloid enhancing factor; homology; serum amyloid A;
quantum-dot

1. Introduction

Amyloidosis is characterized by the accumulation of an insoluble β-sheet-rich struc-
ture of amyloid fibrils into plaques in extracellular spaces of different organs and tissues,
causing organ dysfunction [1,2]. As of now, more than 50 different peptides or proteins
have been found that are associated with amyloidosis in humans and livestock, and their
fibrils lead to the pathogenesis of many disorders such as rheumatoid arthritis, tuberculosis,
and others [3–5]. Amyloid A (AA) amyloidosis, one of the most common forms of clinically
important amyloidosis, is related to chronic inflammatory diseases and chronic infections.
The structure of these amyloid fibrils may affect their ability to spread to different sites
in a cell and between organisms in a prion-like mechanism, but the mechanism by which
amyloid fibrils form in vivo and in vitro remains largely unclear although the structure of
many precursors has been elucidated [5–8].

Serum amyloid A (SAA), an evolutionarily highly conserved acute phase protein in
vertebrates and invertebrates, is predominantly secreted by hepatocytes in the liver and is
also produced by a variety of cells and tissues [9–11]. In fields of regulating inflammation
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and immunity and lipid metabolism, SAA protein plays an important role that benefits the
body [6,11,12]. SAA is an important amyloid precursor and plays a key role in AA amyloi-
dosis which impacts ∼1% of patients with chronic inflammation [13,14]. Furthermore, SAA
is a clinically important biomarker for inflammatory diseases [15,16]. The additional admin-
istration of an amyloid enhancing factor (AEF) which can be the nucleate of fibril formation
in vitro, has been shown to shorten the onset of AA amyloidosis markedly from months to
days, while amyloid fibrils themselves act as an AEF (Figure 1) [17–21]. Oral administration
and subcutaneous injection of AEF from different animal species with silver nitrate can
induce AA amyloidosis in mice, indicating a prion-like transmission [17,22,23]. In addition,
AA amyloidosis has been found to spread through feces in cheetah [24]. Perhaps these
substances are involved in the transmission of AA amyloidosis and play an important role
in the spread of this disease. Despite this knowledge, the molecular mechanism of AEF
activity in AA amyloidosis remains unclear.
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Figure 1. Mechanism of amyloid A (AA) amyloidosis development and enhancement by amyloid enhancing factor (AEF).
Serum amyloid A (SAA) protein is synthesized in the liver in normal conditions, but in AA amyloidosis, under the stimulus
of AEF, SAA protein aggregates into fibrils and is deposited in the liver. Scale bar indicates 100 µm.

Previously, we reported a real-time imaging method of various amyloid proteins
such as amyloid β (Aβ42), tau, α-synuclein, and SAA aggregation with quantum-dot (QD)
nanoprobes, which was using fluorescence probes in imaging by confocal and fluorescent
microscopy, and developed a microliter-scale high-throughput screening system (MSHTS)
to search for substances that exhibit aggregation inhibitory activity by applying this imag-
ing method [6,25–27]. Moreover, QDs are useful for long-term, single-molecule imaging
in vitro. In the MSHTS system, a sample of 5 µL in volume is needed for analysis in a
1536-well plate, and the inhibitory activity is estimated by half-maximal effective concen-
tration (EC50) [6,26,28]. These imaging techniques that employ QDs serve as quick, easy,
and powerful tools to apply to in vitro screening and monitoring.

In this study, we attempted to clarify whether AEFs extracted from different animal
species (camel, cattle, cat, goat, and mouse) with AA amyloidosis act as seed to promote
mouse SAA (mSAA) protein aggregation and their function in transmission between
different animals in vitro. Therefore, we adopted a QD nanoprobe to visualize, in 2D and
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3D, mSAA aggregation promoted by AEFs from different animal species. Furthermore,
we analyzed the homology of SAA sequences from these five animal species and humans
then established a homologous evolutionary tree by DNAMAN software to assess the
relationship between gene homology and the degree of SAA aggregation. QD imaging
data in vitro suggested the possibility of transmission of AA amyloidosis between different
animal species.

2. Results
2.1. Real-Time Imaging of mSAA Aggregation Using QDs

In previous studies, we demonstrated that QDs can be used to observe recombi-
nant mouse SAA (mSAA.1) aggregation under fluorescence microscopy and quantify the
amount of aggregates from microscopic images [6]. In this study, 10 µM mSAA protein
mixed with QDs in PBS was incubated at 37 ◦C in 1536-well plate for one week to induce
aggregation, and 2D images were captured every 24 h by fluorescence microscopy from
0 h to 168 h, respectively (Figure 2A). The fluorescent micrographs showed that mSAA
protein did not aggregate at this concentration. Figure 2B plots the amount of aggregates
estimated from the standard deviation (SD) of the brightness of each pixel of a fluorescence
microscope image according to our previous reports [25,26]. The SD values correlate with
the amount of mSAA protein aggregates. However, the SD value did not increase after
168 h of incubation in this condition (Figure 2B). Our previous report [6] showed that SAA
spontaneously aggregates with increasing concentration, reaching a maximum SD value
when the concentration is 50 µM. These results suggest that mSAA cannot spontaneously
aggregate at a low concentration of about 10 µM.
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Figure 2. Fluorescence images of mouse serum amyloid A (mSAA) aggregation using quantum-dot
(QD) nanoprobes. (A) 2D images of mSAA aggregations at 0 h, 24 h, 48 h, 72 h, 96 h, 120 h, 144 h,
and 168 h, respectively. Scale bar in 168 h fluorescent micrograph indicates 100 µm. (B) SD value of
each image by time-dependent mSAA protein aggregation. mSAA protein could not spontaneously
aggregate at a low concentration. Each plot represents the mean ± SEM. n = 3 separate experiments.
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2.2. Imaging of mSAA Aggregation Promoted by AEFs from Various Animals

AEF as a seed can promote SAA protein aggregation and accelerate pathology in AA
amyloidosis. In this study, we used different concentrations of AEFs (20%, 40%, 60%, 80%,
and 100%) that were extracted and purified from five animal species (camel, cat, cattle, goat,
and mouse). These AEFs were added to 10 µM mSAA and aggregates in those samples were
visualized using QDs. After incubation for 168 h, the images at different concentrations and
in different animal species were compared (Figure 3A). The results show that the AEFs of the
five animals all have different degrees of promoting aggregation on mSAA protein. Control
group samples (AEFs only) seldom had aggregates after 168 h of incubation. Both mouse and
cat AEFs promoted mSAA aggregation with 100% AEF, but many aggregates were observed
even at low concentrations of AEF, such as 20% or 40%, in the presence of mouse AEFs. AEFs
from other animal species (camels, goats, and cattle) also increased aggregates as the amount
of AEF added was increased, but the increase was significantly less than that of mouse and
cat AEFs. We also confirmed these aggregates were β-sheet-rich amyloid fibrils by staining
with thioflavin T (ThT) (Supplementary Figure S1).
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Figure 3. (A) Imaging of mouse serum amyloid A (mSAA) aggregates in the presence of 20%, 40%,
60%, 80%, and 100% amyloid enhancing factor (AEFs) after 168 h of incubation. Among the AEFs
from five animals, mouse and cat AEFs showed high mSAA aggregation-promoting activity. Scale bar
in fluorescent micrograph indicates 100 µm. (B) The temporal increase of SD values in the presence of
100% AEFs from five animal species within 168 h. The SD values increased over time in all samples to
which AEFs were added. Each plotted value represents the mean ± SEM. n = 3 separate experiments.

We then compared the time-dependent manner of mSAA aggregation in the presence
of 100% AEFs using SD values (Figure 3B). The results show that the SD values increased
over time in all samples to which AEFs were added, but the amount of change differed.
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Similar to Figure 3A, aggregation of the camel, cattle, and goat group was slower than that
of the mouse and cat group. Interestingly, the SD value of the cat AEF sample was higher
than that of the mouse as was its speed of increase.

2.3. D observation of mSAA Aggregates with Various Animal AEFs

The 3D aggregates with five animal AEF (100%) samples after incubation for 168 h
in the 1536-well plate with QDs were observed and captured by the confocal microscopy
directly (Figure 4A). The aggregation speed of each sample in the 3D imaging (Figure 4A)
was consistent with the 2D imaging and, over time (Figure 3B), the thickness of each
protein increased due to aggregates [27]. The thickness of mouse and cat samples was
much greater than that of camel, cattle, and goat. The XY view images showed that the
size and density of cattle, cat, camel, and goat aggregation were more similar, showing a
dotted-like aggregation whereas the mouse sample aggregation showed a mesh-like form
(Figure 4B).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 13 
 

 

 

 

Figure 4. (A) 3D reconstruction images of the mouse serum amyloid A (mSAA) aggregates in the presence of camel, cattle, 

goat, cat, and mouse amyloid enhancing factor (AEFs) (final concentration = 100%) after 168 h of incubation. The thickness 

of aggregates in the presence of mouse and cat AEFs was much greater than that of camel, cattle, and goat AEFs. Three-

dimensional white lines with the letters x, y, and z each indicates a scale of 50 μm. (B) Slice images of aggregates of each 

sample in panel (A). The morphology of each aggregate was different depending on the added AEF. Scale bar in the goat 

fluorescent micrograph indicates 100 μm. 

2.4. Homology Analysis 

Owing to SAA protein being encoded by a family of closely-related genes, it is a 

highly evolutionarily conserved protein in vertebrate [9]. In this study, a total of 27 SAA 

protein sequences had high homology (at least 77.75%) across the six vertebrate species 

studied. A phylogenetic tree showed that the group with mouse and cat (red box) had 

higher homology than the other animals and humans (Figure 5). In our previous report, 

we showed that the sequences of different SAA subtypes had high homology among dif-

ferent samples from the same individual animal but almost no differences between differ-

ent subtypes within a given animal species [4]. Moreover, when these SAA sequences 

were compared (Figure 6), we found that in mouse and cat sequences, the 48th amino acid 

Figure 4. (A) 3D reconstruction images of the mouse serum amyloid A (mSAA) aggregates in the presence of camel, cattle,
goat, cat, and mouse amyloid enhancing factor (AEFs) (final concentration = 100%) after 168 h of incubation. The thickness of
aggregates in the presence of mouse and cat AEFs was much greater than that of camel, cattle, and goat AEFs. Three-dimensional
white lines with the letters x, y, and z each indicates a scale of 50 µm. (B) Slice images of aggregates of each sample in panel (A).
The morphology of each aggregate was different depending on the added AEF. Scale bar in the goat fluorescent micrograph
indicates 100 µm.



Int. J. Mol. Sci. 2021, 22, 1036 6 of 12

2.4. Homology Analysis

Owing to SAA protein being encoded by a family of closely-related genes, it is a
highly evolutionarily conserved protein in vertebrate [9]. In this study, a total of 27 SAA
protein sequences had high homology (at least 77.75%) across the six vertebrate species
studied. A phylogenetic tree showed that the group with mouse and cat (red box) had
higher homology than the other animals and humans (Figure 5). In our previous report, we
showed that the sequences of different SAA subtypes had high homology among different
samples from the same individual animal but almost no differences between different
subtypes within a given animal species [4]. Moreover, when these SAA sequences were
compared (Figure 6), we found that in mouse and cat sequences, the 48th amino acid was
Gln and Ile, whereas in cattle, goat, and camel, it was Lys with a basic side chain (red
arrow). The 125th amino acid of mouse and cat was Glu with an acidic side chain, but it
was Ala in the other animals (blue arrow). The differences in these amino acids may affect
SAA protein aggregation because the charge on the amino acid side chains significantly
affects protein-protein interactions.
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The numbers following the species’ names indicate the National Center for Biotechnology Information
(NCBI) accession numbers. The red box indicates clustering of sequences from mouse, human, and
cat isoforms with similar homology.



Int. J. Mol. Sci. 2021, 22, 1036 7 of 12
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 13 
 

 

 

 

Figure 6. Monomeric structure of serum amyloid A (SAA) sequences from five animal species and human. Color descrip-

tion of SAA gene homology sequences: 100% similarity (blue); similarity > 75% and <100% (pink); similarity >5 0% and 

<75% (green); similarity < 50% has no color. Red and blue arrows indicate the position of the 48th and 125th amino acid. 

Red boxes indicate clustering of sequences from mouse, human, and cat isoforms with similar homology. 

  

Figure 6. Monomeric structure of serum amyloid A (SAA) sequences from five animal species and human. Color description
of SAA gene homology sequences: 100% similarity (blue); similarity > 75% and <100% (pink); similarity >5 0% and <75%
(green); similarity <50% has no color. Red and blue arrows indicate the position of the 48th and 125th amino acid. Red
boxes indicate clustering of sequences from mouse, human, and cat isoforms with similar homology.
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3. Discussion

AA amyloidosis (reactive, secondary), which is characterized by the accumulation and
deposition of β-sheet-rich and non-branching amyloid fibrils, associates with a number of
pathological conditions in which can be associated with a severe complication of chronic
inflammatory and other inflammatory-related diseases [29–32]. During the occurrence
and development of this disease, SAA protein plays an important role in AA amyloidosis.
In our previous research, we already showed that mouse AEF can induce and shorten
AA amyloidosis [6,19,23]. Moreover, AEF consisted almost exclusively of AA-related pro-
tein [17]. There are related reports in which AEF plays an important role in the cross-species
transmission of AA amyloidosis among different species [2,23,33,34]. Moreover, current
research reveals that AA amyloidosis could be transmitted by a prion-like mechanism [35].
As of now, there is no successful therapy that directly and clearly targets amyloid aggrega-
tion and deposition in organs or tissues, and there are no approved treatments to revert or
arrest the progression of amyloidosis [36,37]. In previous studies [6,25,27,38,39], we have
demonstrated that rosmarinic acid, which is one active compound of the Lamiaceae family,
shows high inhibitory activity for amyloid fibrils formation. Moreover, it has also been
reported that several small-molecule compounds such as natural polyphenols suppressed
amyloid fibril formation by generating small “off-pathway” oligomers that non-toxic to
cells [40–43]. These reports provide the molecular mechanisms involved in amyloidosis
and propose more efficient drugs for therapy amyloidosis.

In this study, in order to prove whether AEFs from different animal species can pro-
mote and accelerate mSAA protein aggregation in vitro, we used a QD imaging method [26].
We selected five animal species (camel, cat, cattle, goat, and mouse) with AA amyloidosis
and extract AEFs from the liver or kidney. Those AEFs at different concentrations were
mixed with mSAA protein and incubated in a 1536-well plate for 168 h. We found that all of
these AEFs promoted mSAA protein aggregation after incubation (Figure 3). A comparison
of 2D imaging data suggests that mouse and cat AEFs promote activity more than the
AEFs of other animals (camel, cattle, and goat). mSAA aggregation in the presence of
100% cat AEF was faster than in the presence of 100% mouse AEF and its SD value was
higher (Figure 3B). On the other hand, mouse AEFs promoted aggregation even at low
concentrations (Figure 3A). 3D imaging showed that some differences exist between these
aggregate forms. The aggregation induced by mouse AEFs had a mesh-like form but those
induced by cat, camel, cattle, and goat AEFs were a dotted-like form. Since the morphology
of the aggregates affects the SD value, the high SD value of the cat AEF sample (Figure 3B)
may reflect a difference in the morphology of the aggregate rather than the amount of the
aggregate [44]. In our previous research [4,19,23], we observed amyloid fibrils in AEFs,
which were extracted and purified from different animal organs, by transmission electron
microscopy). In that study [4], we showed that AEFs contain multiple peptides, including
SAA fragments, by SDS-PAGE and Western blot analysis. An interesting future study
would be to analyze the ultrastructure of mSAA co-aggregated with diverse AEFs.

SAA protein is an evolutionarily conserved protein in vertebrates with high homology
among different animal species. Since AA amyloid can be transmitted between different
animal species, the processes underlying amyloidosis in those species may be similar [4,34].
Species with similar homology are more likely to transmit AA amyloidosis to each other.
In this study, the SAA sequences in humans and five animal species (camel, cat, cattle,
goat, and mouse) showed 77.75% homology, with mouse and cat showing the most similar
homology. Some reports have shown that in α-synuclein the putative prion-like templating
and spreading ability of amyloid seeds greatly depend on their amyloid fibril size [45,46].
Our previous study also indicated that in different animal species the amyloid fibrils reveal
high genetic homology and morphological feature similarity in fibrils width and crossover
distance [4]. In this study, we found that species with similar homology have a higher
ability to enhance SAA aggregation. We speculate that fibrils with similar morphology are
more infectious in infectious amyloidosis.
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Most importantly, the 48th amino acid of mouse and cat was Gln and Ile, but that of
cattle, goat, and camel was a basic Lys residue (Figure 6, red arrow). The 125th amino acid
of mouse and cat was an acidic Glu residue, but that of other animals was Ala (Figure 6,
blue arrow) in the C-terminal. In mice in which amyloidosis had been induced, treatment
with the C-terminal peptide inhibited further extension of amyloid fibrils in AApoA2
amyloidosis [47]. We speculate that Glu125 may affect the aggregation and transmission of
SAA in different species.

In summary, we successfully visualized the aggregation of mSAA mixed with AEFs
from five animal species using QD nanoprobes. Furthermore, we demonstrated that
AEFs from species with similar homology enhanced SAA aggregation. This information
may provide a better understanding of amyloid disease and lead to the development of
novel therapies.

4. Materials and Methods
4.1. Preparation of AEFs Extracts

AEFs from different animals were extracted according to Pras’ method [48]. Mouse
(Mus musculus), cattle (Bos taurus), goat (Capra aegagrus hircus), camel (Camelus bactrianus),
and cat (Felis catus) with AA amyloidosis, which was identified by section antibody stain-
ing [4,23], were used in the present study. Animal experiments were approved by the
Research Center of Global Agromedicine of Obihiro University of Agriculture and Veteri-
nary Medicine to Obihiro, Japan (Permission No. 19-179: 7 Oct 2019). The preparation
of mSAA protein (SAA1.1: accession No. NP_033143) was performed as previously de-
scribed [6]. The Lowry [49] method was used to determine mSAA protein concentration of
these five animal AEFs samples, which were stored at −80 ◦C until use.

4.2. Imaging of mSAA Protein

Ten µM mSAA protein sample was mixed with 30 nM QD605 (Q21501MP, Thermo
Fisher Scientific, Waltham, MA, USA) in PBS. Five µL of the sample was injected into
each well of a 1536-well plate and centrifuged at 3700 rpm for 5 min at room temperature
(PlateSpin, Kubota, Tokyo, Japan). The plate was incubated at 37 ◦C in an air incubator
(SIB-35, Sansyo, Tokyo, Japan), observed, and images were captured at 0 h, 24 h, 48 h, 72 h,
96 h, 120 h, 144 h, and 168 h using an inverted fluorescence microscope (TE2000, Nikon,
Tokyo, Japan).

4.3. Imaging of AEF Enhancing mSAA Protein Aggregation

Various concentrations (20%, 40%, 60%, 80%, and values represent the relative ratio
of mSAA protein) of AEFs (camel, cattle, goat, cat, and mouse) were mixed with 10 µM
mSAA and 30 nM QD605 in PBS, pH 7.4. 100% AEFs, which served as the control group,
were mixed with 30 nM QD605 in PBS. Then, 5 µL of the sample was transferred into
a 1536-well plate, the plate was centrifuged at 3700 rpm for 5 min, then incubated at
37 ◦C in an air incubator. Samples were observed and images were captured at 0 h, 24 h,
48 h, 72 h, 96 h, 120 h, 144 h, and 168 h using an inverted fluorescence microscope. The
amount of amyloid aggregates was estimated from fluorescent micrographs according to
our previous reports [6,25,27]. At 168 h, the 3D images of 100% concentration samples of
different animal samples were captured by a confocal laser microscope (Nikon C2 Plus,
Nikon, Tokyo, Japan). The same angle was adjusted to contrast these 3D images, then slice
images of aggregates of each animal’s 3D images were selected. Moreover, we performed
thioflavin T (ThT) fluorescence observe as control, briefly, 100% of AEFs (camel, cattle,
goat, cat, and mouse) were mixed with 10 µM mSAA and 50 µM ThT added in PBS and
transferred into a 1536-well plate, then incubated and observed by fluorescent microscopy
(TE2000, Nikon, Tokyo, Japan).
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4.4. Homology Analysis

On the NCBI website (http://www.ncbi.nlm.nih.gov), we searched a total of 27 se-
quences of SAA protein from five animal species (cattle, goat, mouse, cat, and camel) and
humans. Since there are many subtypes in SAA protein, we selected sequences with the same
length in this study and compared their homology. DANMAN software (Lynnon Biosoft, San
Ramon, CA, USA) was used to analyze the homology of these SAA protein sequences and to
establish a homology evolution tree by protein multiple sequence alignment.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/3/1036/s1.
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