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Sufficient conditions for log-concave conjecture 
on all-terminal reliability polynomial of a network

Abstract

　 Consider a graph G that is simple, undirected, and connected, and has n vertices and m 
edges, and let  denote the number of connected spanning i-edge-subgraphs in a graph G for 
an integer .  For a graph G and all integers i ’s , it is well-
known that the problem of computing all  is #P-complete (see e.g., [3, 7, 14, 31]), and 
that log-concave conjecture (see e.g., [3, 14, 37]), that is,  holds, is 
still open.  In this paper, by introducing new methods of partitioning  into a sequence of part 
integers, and by investigating properties of the sequence, we propose sufficient conditions to 
ensure the validity of log-concavity of sequence .
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ネットワークの全節点間信頼性多項式における

対数的凹形予想の十分条件
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要　　旨

　n個の節点とm本の辺を持つ単純な連結無向グラフGを考える。Ni(G)はGの i本の辺からなる

連結全域部分グラフの個数を表す。Nn－1(G)，Nn(G)，…，Nm(G)が全節点間のネットワーク信頼

性評価において信頼性多項式の係数として使われている。また，Nn－1(G)，Nn(G)，…，Nm(G)を
計算する問題は#P-完全な問題であると知られている一方，Nn－1(G)，Nn(G)，…，Nm(G)におけ

る対数的凹形予想（log-concave conjecture），つまり，Ni2≥Ni－1Ni＋1(n≤i≤m－1)が成り立つことも

予想されている。本稿では，Ni(G)をより小さい整数からなる系列に分割し，そして分割した整

数系列の性質を用いて対数的凹形予想が成り立つための十分条件を示す。
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1　Introduction

In daily life, there are many systems utilized such as computer networks (Internet), biological 
networks, utility infrastructure (for transport of energy, water, gas, waste, etc.), social networks, 
and so on.  Such complex systems can be modeled as various kinds of graphs, and the problems 
that exit in complex systems can be also considered as problems of graph theory (see. e.g., [1, 3, 
6, 13, 15, 17, 18, 19, 26, 29, 38]).  As one of the well-known problems in network analysis, the 
problem of network reliability analysis has been vigorously studied, and a lots of research results 
(see e.g. [3, 4, 7, 13, 20, 21, 23, 24, 25, 27, 28, 32]) have been reported.
　 In this paper we use graph terminologies in [19] unless otherwise declaration.  A graph G＝(V, 

E) is considered to be simple, connected, and undirected, and consisting of ＝n vertices and ＝

m edges.  Let  for an integer  denote the number of all possible connected 
spanning subgraphs with i edges in G.

　 In all-terminal reliability analysis of a network,  are usually 
employed as the coefficients of reliability polynomial , defined as follows:

  （1）

where a network(, namely, probabilistic graph)  is consisting of the vertices that have no 
failure, and the edges that operate statistically independent probability .  Namely, 

 is the probability that, if some edges fail with probability ρ independently, the 
remaining graph is connected.

　 It has been shown in [31] that the problem of computing all  is #P-complete, even if G 
is a bipartite planar graph as well (see e.g., [10, 30, 36]).  In particular, it is still unsolved whether 

there is a polynomial time algorithm to compute  for a graph G (see e.g., [7]), even if 
 is efficiently computed by the well-known Matrix-Tree theorem (see e.g., [19]).

　 In addition, explicit formulas in terms of n to count  and  have been obtained 

for some special cases:  [9];  [10]; 
 [11].  Moreover, the known results with respect to computational complexity on 

various kinds of network reliability measurement can be found in e.g., [2, 3, 4, 7, 13, 14, 27, 35].

　 However, it remains open whether there is an algorithm for efficiently computing  for a 
graph G except for the above special cases.  This means that the problem of efficiently computing 

 is very hard in a point of view of computational complexity theory (see e.g., [16]) as 
complexity grows exponentially with the size n of G.  Thus, it is important for network reliability 

analysis to find some algorithms of approximately computing .  In addition, the known 
results in studying approximation algorithms can be also found in e.g., [21, 23].
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　 A sequence of real numbers  is said to be log-concave if  for all 
indices  .  Studies on log-concavity of coefficient sequences of various kinds of 
polynomials can be found in e.g., [5, 22, 27, 33, 34, 37].  Note that log-concavity on a sequence 
implies that all elements  are approximately computed by starting at any two .
　 For all-terminal reliability polynomial, it was posed as log-concave conjecture (see e.g., [14, 37]) 

that sequence  is log-concave.  We showed in [12] that  

 holds for indices  satisfying .  However, when 

index i is less than , even if i＝n, little is known about results in proving 

, except for several special cases: G has at most 7 vertices (namely, 

) in [8]; G is a multigraph with a pair of vertices having at least ＋1 multiple edges 
in [8];  in [9],  [10], and  in [11].
　 This paper mainly focuses on the problem of finding some sufficient conditions with respect to 

log-concavity of sequence  for a graph G with n vertices and m 
edges.  In order to find it, we introduce notation  for an integer  to 
denote the number of connected spanning i-edge b-bridge subgraphs in a graph G, and notation  
to denote the average value on these numbers of bridges in all connected spanning i-edge subgraphs.  
Furthermore, we introduce notation , defined in Section 4, which is a value more than .  We 

propose the sufficient conditions as follows.  For a graph G and an integer ,

・

・

　 In addition, the following inequality is obtained to express a relationship between , and 

.

  

　 The remainder of this paper is organized as follows.  In Section 2, we clarify the basic 

terminologies used in this paper, and introduce notations  for , and  
for , respectively, such that  is respectively partitioned into both , and 

.  In addition, a fundamental relationship between  and  is also shown by 
formulas.  In Section 3, fundamental relationships between  and  is expressed by 
formulas.  In section 4, by introducing the average values β of these numbers of bridges in 
connected spanning i-edge-subgraphs, we propose sufficient conditions to ensure that 

 holds.  In Section 5, some remarks with respect to the results of this 
paper will be given, and some interesting subjects as future research will be presented.
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2　Preliminaries

Throughout this paper, a graph  is considered to be consisting of vertex-set V and 
edge-set E, and to be simple, undirected, and connected.  Furthermore, we always assume that G 

has n vertices and m edges, namely, ＝n and ＝m.  Figure 1 depicts an example of the 
graphs considered in this paper, where G is simple, undirected, and connected.

Figure 1　 A graph G with 8 vertices and 16 edges, 
namely, n＝8 and m＝16.

　 For two sets X and Y, let X－Y denote the set obtained from X by removing all elements of Y.  

For an edge-subset , let  denote the spanning subgraph obtained by removing all edges 

of U from G, namely, .  A graph having i edges is also called i-edge-graph.  
Figure 2 depicts four spanning 10―edge-subgraphs of G shown in Figure 1.
　 Each of the spanning subgraphs in Figure 2 is obtained by removing exactly 6 edges from G of 
Figure 1, namely, each of the subgraphs has exactly 10 edges.  Clearly, the spanning subgraphs 

are either disconnected (see Figure 2(a)) nor connected (see Figure 2 (b), (c), (d)).  In fact, ＝

8008 spanning subgraphs can be obtained by respectively removing exactly 6 edges from G of 
Figure 1.

　 For a graph , an edge-subset  is called edge-cut of G, if  becomes a 
disconnected spanning subgraph.  For example, for  shown in Figure 1,

  

is an edge-cut of G, as  (see Figure 2(a)) is disconnected.  However,

  

is not an edge-cut of G, as  (see Figure 2(b)) is connected as well.
　 Furthermore, if an edge-subset  consisting of only one e∈E is an edge-cut, then the 
edge e is said to be bridge of G.  For example, edge  is a bridge of the graph of Figure 
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2(b).  However, edge  of the graph of Figure 1 is not a bridge.  This means that an edge 
not being a bridge in G may be contained as a bridge in some connected spanning subgraphs of G.

　 Let brg (G) denote the number of bridges in a graph G.  Clearly,  iff G is a tree, 
and brg (G) ＝ 0 for some graphs (see e.g. Figure 1, Figure 2(d)).  Thus,  

holds for a graph G.  Furthermore, it is not hard to verify that, in general,  may 
not hold for two graphs G, G' with n vertices and m edges.  Note that, for given two integers n, 

m , the maximum number of bridges for all connected graphs consisting of n vertices and 
m edges is invariant.
　 Let maxβ(n, m) denote the number of bridges in the graph that has the maximum number of 
bridges among all connected graphs consisting of n vertices and m edges.  Both two graphs in 
Figure 3 have the maximum number of bridges for all connected graphs consisting of 8 vertices 
and 11 edges.

　 Given two integers n and  , we can show the following formula to find maxβ(n, m), 
where  denotes the least integer more than or equal to x.

  （2）

Figure 2　Four spanning 10-edge-subgraphs of G of Figure 1.
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By formula (2), for the graphs of Figure 3 with n＝8 and m＝11, 

, which implies that the graph with the maximum number of bridges is not unique.
　 For an integer , let  denote the set of all possible connected spanning 
i-edge-subgraphs in G.  In addition, let .
　 Note that ＝n and ＝m for a graph G＝ (V, E).  We introduce a new notation  

for an integer , which is defined as follows.
Definition 1. For a graph G and two integers , let  
denote the set of all possible connected spanning i-edge-subgraphs of G, each of which has exactly 

b bridges.  In addition, let .

　 Note that we have ＝0 for an integer b satisfying b .  Consequently, 
 is partitioned into , namely,

  （3）

　 Formula (3) implies that  is obtained by computing .  
Consequently, the problem of computing all  for  is #P-complete.
　 The degree of a vertex v V, denoted by deg (v), is the number of edges incident on v.  Clearly, 

 holds for any v V by |V|＝n.  A vertex v with deg(v)＝1 is called terminal 
of G.  Let trm(G) denote the number of terminals in G.
　 Clearly, the only one edge incident on a terminal v (namely, deg(v) ＝ 1) must be a bridge.  
This means that for a graph G we have

  （4）

　 For example, three subgraphs in Figure 2(b), (c), (d) respectively have one terminal v1, two 
terminals v1, v3, and no terminal.  A complete bipartite graph  is the unique graph with 

n－1 terminals.  In general, .
　 Let  denote the number of terminals in a graph that has the maximum number of 

Figure 3　Two graphs with 8 vertices and 11 edges.
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terminals among all connected graphs consisting of n vertices and m edges.  Note that, for the 

graph G in Figure .  In fact, we can also verify that the maximum number 
of terminals is equal to the maximum number of bridges, namely,

  （5）

Definition 2. For a graph G and two integers , let  
denote the set of all possible connected spanning i-edge-subgraphs of G, each of which has exactly 

t terminals.  In addition, let .

　 By definitions, we have   is justly 
partitioned into , namely,

  （6）

　 Formula (6) implies that we can obtain  by computing 
.  Consequently, the problem of computing all  is #P-complete.  Next, 

we introduce new notations  and , respectively, defined as follows:

  （7）

  （8）

It is not difficult to see that  and  respectively represent the number of connected 
spanning i-edge-subgraphs of G, each of which has at least x terminals, and bridges, respectively.

　 Now, we give the following theorems to reveal a fundamental relationship between  
and .
Theorem 1. For a graph G and two integers , we have

  （9）

Proof. By formula (4), a graph with t terminals has at least t bridges, as one terminal justly 
corresponds to one bridge.  On the other hand, it is not hard to see that a graph with b bridges 
has at most b terminals by definitions.

　 For every subgraph , it is easy to see that if H is counted one time by  then 
it is also counted one time by .  Thus, we obtain the validity of inequality (9). □

　 Similarly, we also introduce notations  and , respectively, defined as follows:
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  （10）

  （11）

Clearly,  and  respectively represent the number of connected spanning i-edge-
subgraphs of G, each of which has at most x terminals, and bridges, respectively.

Theorem 2. For a graph G and two integers , we have

  （12）

Proof. By definitions, for a given , we have

 

and

 

Note that .  Immediately, formula (12) follows formula (9). □

　 By definitions, it is obvious that

  （13）

and

  （14）

　 In the following discussions, for shorting notations, when the graph G is clearly specified, 

, , ,  are always abbreviated to respectively.

3　Formulas for Expressing Relationships between  and 

This section aims to show some formulas for specifying relationships between  and .  In 
order to do it, we need new notations.
　 In order to clarify affiliation without confusion, we also employ EG to denote the edge-set of a 

graph G.  Note that brg(G) denotes the number of bridges in G.  By definitions, ＝ i and 
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brg(H)＝b for a subgraph .
　 For a subgraph  and an edge , let H＋e denote the graph obtained by 
adding e into H. Namely, .  Let H－e denote the graph obtained by 
removing e from H.  Namely, .
　 By definitions, the sum of the numbers  for all  is expressed as follows:

  （15）

We introduce the average value on the numbers  for all , denoted by  
abbreviated to , to be defined as follows.

  （16）

　 Clearly, .

Lemma 1. For a graph G and an integer 

 

Proof. As  in formula (16), it is trivial. □

　 By setting m＝ i into formula (2), we have

  （17）

　 The following lemma establishes a fundamental relationship between  and  by employing 
.

Lemma 2. For a graph G and an integer 

  （18）

Proof. By definitions,  is a connected spanning i-edge-subgraph of G.  Thus, for 
every , we can obtain H＋e that is a connected spanning (i＋1)-edge-subgraph of G.  

Namely, .  Note that .  Consequently, 
from every , we can obtain the number m－ i of connected spanning (i＋1)-edge-subgraphs 

in  by adding every  into H.
　 On the other hand,  is a connected spanning (i＋1)-edge-subgraph of G.  Thus, by 
removing an edge  from F, where e is not a bridge of F, we can obtain one subgraph 

.  This means that every  are obtained from the number i ＋ 1 － brg(F) of 
different connected spanning i-edge-subgraphs in .
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　 Combining with the above discussions, we obtain

 

which has proven the validity of this lemma. □

　 Lemma 2 implies that the following theorem is true.

Theorem 3. For a graph G and an index 

  （19）

Proof. It is straightforward from formula (18). □

　 In Theorem 3 a very useful fact has been described, that is, it is possible to prove the validity 

of  by investigating the property on  and . In the next section, we will do it.

4　Sufficient Conditions for Satisfying 

In this section, we will show sufficient conditions such that the validity of log-concavity of 
sequence  is true.

Theorem 4. For a graph G, the inequality  holds if an index  
satisfies one of the following conditions:

 

Proof. By Theorem 3, it is sufficient to find the condition satisfying the following inequality:

  

　 Furthermore, the above inequality is rewritten as follows:

  (20)

Note that , namely, .  When , 
inequality (20) holds immediately.  This means that (i) can be considered as a sufficient condition 

such that  holds.
　 Next, we assume , and show the condition on an index i such that inequality (20) 
holds.  We further write inequality (20) as follows:
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（21）

which implies that (ii) can be considered as a sufficient condition such that  
holds. □

　 Next, we further investigate some properties on a graph such that the sufficient conditions in 

Theorem 4 hold.  In order to do it, we need new notations.  For an integer , 

we recall  and , written as follows:

  

We introduce notations  and , respectively, defined as follows:

  （22）

  （23）

Lemma 3. For a graph G and an index , we have the following inequalities with 

respect to an integer .

  

Proof. It is trivial by definitions. □

　 Clearly,  by Lemma 3.  We further give the following lemma to present more strict 
inequalities.

Lemma 4. For a graph G and an index , we have the following inequalities with 

respect to an integer .

  

Proof. (i) By definitions, it is sufficient to show the validity of the following inequality.

  （24）

Note that
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Clearly, the validity of inequality (24) is true with equivalent iff .  Next, we 
assume , and show the validity of inequality (24).
　 By Lemma 3 and definitions, we have

  

Therefore,

  

which is rewritten as follows:

  

Thus, we can obtain inequality (24) by adding the term  into both hand-sides of 
the above inequality.

　 By definition, it is not hard to see that .  Hence, the validity of (i) has been 
shown.
　 (ii) We can also show the validity of (ii) by employing the method similar to that of (i). □

　 By Lemma 4, we obtain

 

Lemma 5. For a graph G and an index , we have the following inequalities with 

respect to an integer .

  

Proof. Let  with at most x bridges, namely, .  It is easy to verify 
that, for every , H＋e has at most x bridges.  This means that H＋e is in , and 
has at most x bridges, namely, .  Note that 

.  Hence, the number m－ i of connected spanning (i＋1)-edge-subgraphs, each of which 
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has at most x bridges, are obtained by adding every  into H.

　 Conversely, for every  with  and an edge  where e is not a bridge 
of F, F－e has at least brg(F) bridges, namely, .  This means that there may be a 

subgraph F in , where , and an edge e in , where e is not bridge of F, such that 
.

　 Based on the above discussion, the validity of (i) has been shown.
　 By employing the method similar with that of (i), the validity of (ii) can be shown. □

　 By Lemma 5 and definitions, we immediately obtain the following inequalities.

  （25）

  （26）

　 The following formulas are driven by the definitions of , and .

 
 （27）

 
 （28）

　 We introduce notation  to be defined as follows:

 

 （29）

　 It is not hard to verify that  by definitions.  Namely,
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By the definition of , we also have

  （30）

　 Thus,

 
 （31）

　 By formula (2), it is easy to verify that

  

In particular, there are many integers  such that .
　 Now, we consider an integer i of the case: .  We take the sum on 
both hand-sides of inequality (25) over all , and obtain

  （32）

　 Note that .  By applying the above formulas, from the above 
inequality, we can obtain

  

　 By formula (18), the above inequality is written as follows:

  

which is further rewritten as follows:

  （33）

　 Concluding the above discussions, we have obtained the following theorem.

Theorem 5. For a graph G and an index  with , we 
have
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  （34）

Proof. Concluding the above discussions, it follows inequality (33). □

　 For integers  satisfying , we can also obtain the result 
similar to inequality (34) by the method above used.
　 In particular, by Theorem 4(i), if

  

equivalently,

  （35）

then

  

　 This means that  holds for the larger integers that are larger than 
.  Investigating properties on the graphs satisfying inequality (35) is also interesting as a 

future research subject.

5　Concluding Remarks

Based on the number of bridges in a graph, we propose a new method of partitioning the set  
of the all possible connected spanning i-edge-subgraphs of G into the subsets: , 

 represents the set of all possible connected spanning i-edge-
subgraphs of G having b bridges.  Similarly, by employing the number of terminals in a graph, we 

can also partition  into the subsets,  where  
represents the set of all possible connected spanning i-edge-subgraphs of G having t terminals.  In 
particular, inequalities have been shown in Theorems 1, 2 to express fundamental relationships 

between  and .
　 Furthermore, we introduce notation , defined in formula (16), to represent the average value 
of bridges with respect to all possible connected spanning i-edge-subgraphs.  By applying , we 

have obtained a formula (19) to express a fundamental relationship between  and , 
shown in Theorem 3.  Consequently, we have obtained sufficient conditions, shown in Theorem 4, 

to ensure that sequence  is log-concave, namely, 
 holds for all integers .  Note that both  are contained in the 

sufficient conditions.
　 In order to implicate some relationships between  and , we introduce notation  to 
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establish some inequalities for expressing some relationships between  and , e.g., see 

Theorems 5.  In particular, by Theorems 4, 5, we have obtained that sequence 
 for a graph G is log-concave if the following inequality holds for all integers 

.

  

　 This means that if we can prove inequality  then the validity of log-
concave conjecture on sequence  will be obtained.  However, it is 

open whither,  holds or not.
　 Then, it seems to be interesting to find properties of a graph G such that 

 holds by further investigating properties of .  In addition, little is known about 
results in investigating them.

　 On the other hand, by using the method similar to that of investigating  in this 
paper, we can also obtain formulas on  and may obtain some results desired for proving 
log-concavity of sequence  by using the formulas.  Then, it seems 
to be an interesting subject as future research.
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