provided by Nagoya Gakuin University Repository

(Article)

Sufficient conditions for log-concave conjecture

on all-terminal reliability polynomial of a network

Peng CHENG

Faculty of Commerce
Nagoya Gakuin University

Abstract

Consider a graph G that is simple, undirected, and connected, and has n vertices and m
edges, and let N;(G) denote the number of connected spanning #-edge-subgraphs in a graph G for
an integer i (n —1 < i <m). For a graph G and all integers i’s (n < i< m —1), it is well-
known that the problem of computing all N;(G)’s is #P-complete (see e.g., [3, 7, 14, 31]), and
that log-concave conjecture (see e.g., [3, 14, 37]), that is, N;(G)? > N;_1(G)N;+1(G) holds, is
still open. In this paper, by introducing new methods of partitioning NV; into a sequence of part
integers, and by investigating properties of the sequence, we propose sufficient conditions to
ensure the validity of log-concavity of sequence N,,_1(G), Np(G), -+, Np(G).

Keyword: Network Reliability, Reliability Polynomial, Log-Concave Conjecture, Graph Theory,
Connected Spanning Subgraph
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1 Introduction

In daily life, there are many systems utilized such as computer networks (Internet), biological
networks, utility infrastructure (for transport of energy, water, gas, waste, etc.), social networks,
and so on. Such complex systems can be modeled as various kinds of graphs, and the problems
that exit in complex systems can be also considered as problems of graph theory (see. e.g., [1, 3,
6, 13, 15, 17, 18, 19, 26, 29, 38]). As one of the well-known problems in network analysis, the
problem of network reliability analysis has been vigorously studied, and a lots of research results
(see e.g. [3, 4, 7, 13, 20, 21, 23, 24, 25, 27, 28, 32]) have been reported.

In this paper we use graph terminologies in [19] unless otherwise declaration. A graph G = (V,
E) is considered to be simple, connected, and undirected, and consisting of |[V|= n vertices and |E|=
m edges. Let N;(G) for an integer i (n — 1 < i < m) denote the number of all possible connected
spanning subgraphs with ¢ edges in G.

In all-terminal reliability analysis of a network, N,_1(G), Ny(G), -+, Npn(G) are usually
employed as the coefficients of reliability polynomial Rely; (G, p), defined as follows:

m
Relai(G,p) = Y Ni(G)p'(1—p)" ", (D
i=n—1
where a network(, namely, probabilistic graph) (G, p) is consisting of the vertices that have no
failure, and the edges that operate statistically independent probability p (0 < p < 1). Namely,
Relai(G, p) is the probability that, if some edges fail with probability o independently, the
remaining graph is connected.

It has been shown in [31] that the problem of computing all N;(G)’s is #P-complete, even if G
is a bipartite planar graph as well (see e.g., [10, 30, 36]). In particular, it is still unsolved whether
there is a polynomial time algorithm to compute N, (G) for a graph G (see e.g., [7]), even if
N,,_1(Q) is efficiently computed by the well-known Matrix-Tree theorem (see e.g., [19]).

In addition, explicit formulas in terms of n to count N,,(G) and N,,;1(G) have been obtained
for some special cases: G = K, in [9]; G = K, —e, K,-e, K/ KP' —e KPr.ein [10];
G = K, 4 in [11]. Moreover, the known results with respect to computational complexity on
various kinds of network reliability measurement can be found in e.g., [2, 3, 4, 7, 13, 14, 27, 35].

However, it remains open whether there is an algorithm for efficiently computing N,,(G) for a
graph G except for the above special cases. This means that the problem of efficiently computing
N;(G)’s is very hard in a point of view of computational complexity theory (see e.g., [16]) as
complexity grows exponentially with the size n of G. Thus, it is important for network reliability
analysis to find some algorithms of approximately computing N, (G)’s. In addition, the known

results in studying approximation algorithms can be also found in e.g., [21, 23].
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Sufficient conditions for log-concave conjecture on all-terminal reliability polynomial of a network

A sequence of real numbers ag, a1, -+, an, is said to be log-concave if a? > a;—1a;41 for all
indices i’s (1 <4 <m —1). Studies on log-concavity of coefficient sequences of various kinds of
polynomials can be found in e.g., [5, 22, 27, 33, 34, 37]. Note that log-concavity on a sequence
implies that all elements a;’s are approximately computed by starting at any two a;, a;41.

For all-terminal reliability polynomial, it was posed as log-concave conjecture (see e.g., [14, 37])
that sequence N,_1(G), Np(G), -+, Npu(G) is log-concave. We showed in [12] that Ni(G)? >
N;_1(G)N;11(G) holds for indices i’s satisfying ¢ = [#M —3n— %\/\5/{‘ However, when

3—3\/§nz 1

In— 7—2V2

4V2
No(G)? >N, _1(G)N,,11(G), except for several special cases: G has at most 7 vertices (namely,

index 7 is less than [ “, even if 7= n, little is known about results in proving

n < 7) in [8]; G is a multigraph with a pair of vertices having at least %(m - nﬂ+ 1 multiple edges
in[8;Gis K, in[9], K,—e, Kp,-e, Kl KPr —e, K. e in [10], and K, ; in [11].

This paper mainly focuses on the problem of finding some sufficient conditions with respect to
log-concavity of sequence N,_1(G), N,(G), -+, Np(G) for a graph G with n vertices and m
edges. In order to find it, we introduce notation N;(G;b) for an integer b (0 < b < n —1) to
denote the number of connected spanning edge b-bridge subgraphs in a graph G, and notation f3;
to denote the average value on these numbers of bridges in all connected spanning #-edge subgraphs.
Furthermore, we introduce notation 37, defined in Section 4, which is a value more than 3;, We
propose the sufficient conditions as follows. For a graph G and an integer i (n < i < m — 1),

e if BZ(G) +1> 5,+1(G) then N,LQ(G) > N,;l(G)NiJrl(G), and

<if Bi(G) +1 < Biy1(G) and i > (1 - ﬂiﬂl_ﬁi)m + 8 then N2(G) = Ni1(G)Nia (G).
In addition, the following inequality is obtained to express a relationship between f;, 5;+1, and
HIBY

ﬁiJrl

i1 < B+ —— (B —Bi— 1
B+1 ﬁ+2+1(1+1 /8 )

The remainder of this paper is organized as follows. In Section 2, we clarify the basic
terminologies used in this paper, and introduce notations B;(G;b) for 0 < b < n—1, and T;(G;t)
for 0 <t < n—1, respectively, such that N;(G) is respectively partitioned into both B;(G;b), and
T;(G;t). In addition, a fundamental relationship between B;(G;b) and T;(G;t) is also shown by
formulas. In Section 3, fundamental relationships between N;(G) and B;(G;b) is expressed by
formulas. In section 4, by introducing the average values S of these numbers of bridges in
connected spanning i-edge-subgraphs, we propose sufficient conditions to ensure that
N2(G) = N;_1(G)N;;1(G) holds. In Section 5, some remarks with respect to the results of this

paper will be given, and some interesting subjects as future research will be presented.
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2 Preliminaries

Throughout this paper, a graph G = (V, E) is considered to be consisting of vertez-set V and
edge-set E, and to be simple, undirected, and connected. Furthermore, we always assume that G
has n vertices and m edges, namely, |V| = n and |E| = m. Figure 1 depicts an example of the

graphs considered in this paper, where G is simple, undirected, and connected.

vq Vg %
O O
L3
vy
O
Us Uy

Figure 1 A graph G with 8 vertices and 16 edges,

namely, n= 8 and m = 16.

For two sets X and Y, let X — Y denote the set obtained from X by removing all elements of Y.
For an edge-subset U(C E), let G\p denote the spanning subgraph obtained by removing all edges
of U from G, namely, G\y = (V,E —U). A graph having i edges is also called i-edge-graph.
Figure 2 depicts four spanning 10-edge-subgraphs of G shown in Figure 1.

Each of the spanning subgraphs in Figure 2 is obtained by removing exactly 6 edges from G of
Figure 1, namely, each of the subgraphs has exactly 10 edges. Clearly, the spanning subgraphs
are either disconnected (see Figure 2(a)) nor connected (see Figure 2 (b), (¢), (d)). In fact, (166):
8008 spanning subgraphs can be obtained by respectively removing exactly 6 edges from G of
Figure 1.

For a graph G = (V, E), an edge-subset U(C E) is called edge-cut of G, if G\ becomes a

disconnected spanning subgraph. For example, for G = (V, E) shown in Figure 1,
U = {(v1,v2), (v2,v5), (v7,v8), (v4,v7), (v5,08), (Va,v5} C E

is an edge-cut of G, as G\ (see Figure 2(a)) is disconnected. However,
U’ = {(v1,v2), (v2,v6), (v1,v6), (v4,v6), (v5,08), (va,v5} C E

is not an edge-cut of G, as G\y (see Figure 2(b)) is connected as well.
Furthermore, if an edge-subset U = {e} consisting of only one eE E is an edge-cut, then the

edge e is said to be bridge of G. For example, edge e = (v7, vs) is a bridge of the graph of Figure
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Figure 2 Four spanning 10-edge-subgraphs of G of Figure 1.

2(b). However, edge e = (v7, vs) of the graph of Figure 1 is not a bridge. This means that an edge
not being a bridge in G may be contained as a bridge in some connected spanning subgraphs of G.

Let brg(G) denote the number of bridges in a graph G. Clearly, brg(G) = n — 1iff G is a tree,
and brg(G) = 0 for some graphs (see e.g. Figure 1, Figure 2(d)). Thus, 0 < brg(G) < n—1
holds for a graph G. Furthermore, it is not hard to verify that, in general, brg(G) = brg(G’) may
not hold for two graphs G, G' with n vertices and m edges. Note that, for given two integers n,
m (> n—1), the maximum number of bridges for all connected graphs consisting of n vertices and
m edges is invariant.

Let max g (n, m) denote the number of bridges in the graph that has the maximum number of
bridges among all connected graphs consisting of n vertices and m edges. Both two graphs in
Figure 3 have the maximum number of bridges for all connected graphs consisting of 8 vertices
and 11 edges.

Given two integers n and m (= n), we can show the following formula to find maxz(n, m),

where [2] denotes the least integer more than or equal to z.

3+ \/9+8(m—n)" @
2

maxg(n,m) =n — {
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Figure 3 Two graphs with 8 vertices and 11 edges.

By formula (2), for the graphs of Figure 3 with n=8 and m=11, maXﬁ(&ll):S*{w—‘

= 3, which implies that the graph with the maximum number of bridges is not unique.

For an integer i (n — 1 <i < m), let N;(G) denote the set of all possible connected spanning
i-edge-subgraphs in G. In addition, let N;(G) = |N;(G)].

Note that |V|=n and |E|= m for a graph G= (V, E). We introduce a new notation B;(G;b)
for an integer b (0 < b < maxg(n,i)), which is defined as follows.
Definition 1. For a graph G and two integers i,b (n—1 < i < m,0 < b < maxg(n, 1)), let B;(G;b)
denote the set of all possible connected spanning é-edge-subgraphs of G, each of which has exactly
b bridges. In addition, let B;(G;b) = |B;(G;b)|.

Note that we have B;(G;b)=0 for an integer b satisfying b > maxg(n,i)+ 1. Consequently,
Ni(G) is partitioned into B;(G;0), B;(G;1), - -+, B;(G;maxg(n, 1)), namely,

maxg(n,i)

Ni(G)= > Bi(G;b). 3)
b=0

Formula (3) implies that N;(G) is obtained by computing B;(G;0), Bi(G; 1), - - -, Bi(G; maxg(n, 7)).
Consequently, the problem of computing all B;(G;b)’s for 0 < b < maxg(n, i) is #P-complete.

The degree of a vertex ve V, denoted by deg(v), is the number of edges incident on v. Clearly,
0 < deg(v) <m —1holds for any v€ V by |V]=mn. A vertex v with deg(v) =1 is called terminal
of G. Let trm(G) denote the number of terminals in G.

Clearly, the only one edge incident on a terminal v (namely, deg(v) = 1) must be a bridge.

This means that for a graph G we have
trm(G) < brg(G). @
For example, three subgraphs in Figure 2(b), (c), (d) respectively have one terminal v;, two
terminals v;, vy, and no terminal. A complete bipartite graph Ki ,—1 is the unique graph with

n— 1 terminals. In general, 0 < trm(G) < n — 1.

Let max,(n,m) denote the number of terminals in a graph that has the maximum number of

_6_
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terminals among all connected graphs consisting of n vertices and m edges. Note that, for the
graph G in Figure 3(b), trm(G) = brg(G). In fact, we can also verify that the maximum number

of terminals is equal to the maximum number of bridges, namely,
max,(n,m) = maxg(n, m). (5)

Definition 2. For a graph G and two integers i,¢ (n—1 < < m,0 < ¢t < max,(n, 1)), let T;(G;t)
denote the set of all possible connected spanning ¢-edge-subgraphs of G, each of which has exactly
t terminals. In addition, let T;(G;t) = |T:(G; t)|

By definitions, we have T;(G;t) =0 for ¢ > max,(n,i) + 1. Consequently, N;(G) is justly
partitioned into 7;(G;0), T;(G;1), - -, T;(G; max,(n,)), namely,

max,(n,i)

Ni(G)= > T(G:t). (6)
t=0

Formula (6) implies that we can obtain N;(G) by computing T;(G;0), T;(G; 1), - -+,
T;(G;max,(n,i)). Consequently, the problem of computing all T;(G;b)’s is #P-complete. Next,

we introduce new notations 77" (G) and B (G), respectively, defined as follows:

max,(n,i)

T7°(G) = Z T:(G;t) <

t=x

maxg(n,i)

> Bi(G;b) ®

b=x

o
V
s
)

i

It is not difficult to see that wa(G) and fo(G) respectively represent the number of connected
spanning #-edge-subgraphs of G, each of which has at least x terminals, and bridges, respectively.

Now, we give the following theorems to reveal a fundamental relationship between B;(G}b)
and T;(G; t).

Theorem 1. For a graph G and two integers i,x (n —1 < i < m,0 <z < max,(n,i)), we have
T7"(G) < BZ*(G). (9)

Proof. By formula (4), a graph with ¢ terminals has at least ¢ bridges, as one terminal justly
corresponds to one bridge. On the other hand, it is not hard to see that a graph with b bridges
has at most b terminals by definitions.

For every subgraph H € N;(G), it is easy to see that if H is counted one time by sz(G) then
it is also counted one time by B?I(G). Thus, we obtain the validity of inequality (9). L]

Similarly, we also introduce notations TfI(G) and BfZ(G), respectively, defined as follows:



8

10

G8D)

Clearly, sz(G) and BfI(G) respectively represent the number of connected spanning #edge-

subgraphs of G, each of which has at most z terminals, and bridges, respectively.

Theorem 2. For a graph G and two integers i,z (n — 1 < i <m,0 < x < maz,(n,i)), we have

Proof. By definitions, for a given z (0 < 2 < max,(n, 1)), we have

x max,(n,i)
t=0

t=x+1

and

T maxg(n,i)

Ni(G) =Y Bi(G;b)+ > Bi(G;b) = BS*(G) + BZ*T(G).

b=0 b=x+1

Note that maxg(n,i) = max,(n,?). Immediately, formula (12) follows formula (9).

By definitions, it is obvious that

NZ(G) = B>O(G) — Bfmaxﬁ(nﬂ;) (G)

3

and

Ni(G) = TZ(G) = T (@),

12)

(13)

(14)

In the following discussions, for shorting notations, when the graph G is clearly specified,

Ni(G), N;(G), B;(G;b), B;(G;b) are always abbreviated to N;, N;, B;(b), B;(b), respectively.

3 Formulas for Expressing Relationships between IN; and Bz(b)

This section aims to show some formulas for specifying relationships between N; and B;(b). In

order to do it, we need new notations.

In order to clarify affiliation without confusion, we also employ E to denote the edge-set of a

graph G. Note that brg(G) denotes the number of bridges in G. By definitions, |[Ey| = i and
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brg(H) = b for a subgraph H € B;(b).

For a subgraph H € B;(b) and an edge ¢ € Eq — Ep, let H+ e denote the graph obtained by
adding e into H. Namely, H + e = (V,Eg U{e}). Let H—e denote the graph obtained by
removing e from H. Namely, H — e = (V, Eg — {e}).

By definitions, the sum of the numbers brg(H)’s for all H € N; is expressed as follows:

maxg(n,i)

> brg(H)= > bBi(b). (15)
HeN; b=0
We introduce the average value on the numbers brg(H)’s for all H € N;, denoted by ;(G)
abbreviated to 3;, to be defined as follows.

maxg(n,i) maxg(n,i)
2D b B, (b) 1
g = 2= VB LS g (16)
EmaxB(n i) B b) N; Pt
Clearly, 8,1 =n — 1.

Lemma 1. For a graph G and an integer (also called index) i (n —1 < i < m),
Bi < mazg(n,1).

Proof. As b < maxg(n, 1) in formula (16), it is trivial. []

By setting m = i into formula (2), we have

3+\/9+8(i—n)" an
5 .

maxg(n, i) = n — [

The following lemma establishes a fundamental relationship between N; and N;;; by employing

Bi+1~

Lemma 2. For a graph G and an integer (also called an index) i (n —1 < i < m),
(m—1i)N; = (i +1— Bit1)Nit1. (18)

Proof. By definitions, H = (V, Ey) € N; is a connected spanning #-edge-subgraph of G. Thus, for
every ¢ € Eg — FEp, we can obtain H+ e that is a connected spanning (7 + 1)-edge-subgraph of G.
Namely, H + ¢ € Niy1. Note that |Eg| — |Ex| = m —ias |Eg| = m and |Ey| = i. Consequently,
from every H € N;, we can obtain the number m — i of connected spanning (i + 1)-edge-subgraphs
i+1 by adding every e € E; — Ey into H.

On the other hand, F' € N,y is a connected spanning (i+ 1)-edge-subgraph of G. Thus, by
removing an edge e € Er from F, where e is not a bridge of F, we can obtain one subgraph
F—e €N, This means that every F' € N;,; are obtained from the number i + 1 — brg(F) of

different connected spanning i-edge-subgraphs in ;.

_9_
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Combining with the above discussions, we obtain

maxg(n,i+1)
(m—i)N;= > (m—i)= > (i+1-brg(F))= > (i+1-bBiu(b),
HeNi FENHrl b=0
which has proven the validity of this lemma. ]
Lemma 2 implies that the following theorem is true.
Theorem 3. For a graph G and an indezi(n <i<m—1),
N2 —it+1lit+1—p
_moit it B (19)
Ni_1Nit1 m—1 i — B
Proof. 1t is straightforward from formula (18). L]

In Theorem 3 a very useful fact has been described, that is, it is possible to prove the validity

of Ni2 > N;_1 N4 by investigating the property on 8; and f3;, 1. In the next section, we will do it.

4 Sufficient Conditions for Satisfying Nf > N;_1N; 11

In this section, we will show sufficient conditions such that the validity of log-concavity of
sequence N, _1, Ny, ---, Ny, is true.
Theorem 4. For a graph G, the inequality N;> > N;_1N;y1 holds if an index i (n <i<m—1)

satisfies one of the following conditions:

(1) Bi+12=pBin

.. . ip1—1
(“) Pitl< 5i+1 and i > (1 B ﬁH»ll*;Bi)m—i_ /fi:l*ﬁi

Proof. By Theorem 3, it is sufficient to find the condition satisfying the following inequality:

m—i—|—1i—|—1—ﬁi+1
m—1i i—B;

> 1.

Furthermore, the above inequality is rewritten as follows:
(m—=9)(Bi +1=Piy1) + (i +1=Biy1) >0 (20)

Note that i +1 > n > maxg(n,i + 1) > B;41, namely, i +1 — B;41 > 0. When 8; +1 — ;41 = 0,
inequality (20) holds immediately. This means that (i) can be considered as a sufficient condition
such that N;2 > N;_1N,;11 holds.

Next, we assume f3; + 1 < ;41, and show the condition on an index ¢ such that inequality (20)

holds. We further write inequality (20) as follows:
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(Big1 —1—=pi)m+ fipz1 — 1
Biv1 — Bi

_ Bit1 —1

- (1 - 5z‘+11* ﬁi)m * Biy1 — Bi’ @D

which implies that (ii) can be considered as a sufficient condition such that N2> N;_1Ni41

holds. L]
Next, we further investigate some properties on a graph such that the sufficient conditions in

Theorem 4 hold. In order to do it, we need new notations. For an integer (0 <z <maxg(n,1)),

we recall BS" and BZ", written as follows:

BST =0 Bib),  BZ" =0 B(b).

=T

We introduce notations Bf“ and 5?“, respectively, defined as follows:

< _ S bBi(b) 1 <
S SEe T e P < (2
=0 i b=0
maxg(n,i) maxg(n,i)
bB;(b 1
BT = Zﬁj 0 > bBib) = (23)

Syt gy BYY

b=x
Lemma 3. For a graph G and an index i (n—1 < i < m), we have the following inequalities with
respect to an integer v (0 < & < mazg(n,i)).

(i) B <x (i) BT a

Proof. 1t is trivial by definitions. L]
Clearly, ﬁfz < ,6?“ by Lemma 3. We further give the following lemma to present more strict
inequalities.
Lemma 4. For a graph G and an index i (n—1 < i < m), we have the following inequalities with
respect to an integer x (0 < x < mazg(n,i) — 1).
0) BET<BETTISB (W) Bi<BIT<HT

Proof. (i) By definitions, it is sufficient to show the validity of the following inequality.

ge _ Lo bBih) Bl bBib) _ penn
K T = x -
> b0 Bi(b) v Bi(b)

(240)

Note that
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b0 bBi(b) _ 3o bBi(b) + (x + 1) Bi(w + 1)
+20 Bi(b) >0 Bib) + Bi(w +1)

Clearly, the validity of inequality (24) is true with equivalent iff B;(x + 1) = 0. Next, we
assume B;(x + 1) > 0, and show the validity of inequality (24).

By Lemma 3 and definitions, we have

SiobBi) _

T T
2o Bi(b)
Therefore,

YobBid) _ @+ )Bie+1)

>i_o Bi(b) Bi(x+1)

which is rewritten as follows:
(Z bBi(b))Bi(x +1) < (Z Bi(b)>(m +1)Bj(z + 1).
b=0

Thus, we can obtain inequality (24) by adding the term ( 4+ 1)B;(x 4 1) into both hand-sides of
the above inequality.

By definition, it is not hard to see that Bfmaxﬁ (nd) _ B;. Hence, the validity of (i) has been
shown.

(ii) We can also show the validity of (i) by employing the method similar to that of (i). [

By Lemma 4, we obtain
_ <0 <1 <maxg(n,i) _ =0 >1 >maxg(n,i) .
0=08 <B> < <B =Bi=87 <B7 < <P = maxg(n, 1).

Lemma 5. For a graph G and an index i (n—1 < i < m), we have the following inequalities with
respect to an integer x (0 < & < mazg(n,1)).

xT

(i) (m—1) ZBi(b) < Z(Z +1—10)Bit1(b)
b=0

b=0
mazg(n,i) mazg(n,i)
(i) (m—1i) > Bib) = > (i+1-b)Biu1(b)
b=x b=x

Proof. Let H = (V,Eg) € N; with at most = bridges, namely, brg(H) < z. It is easy to verify
that, for every ¢ € E — Ep, H+ e has at most z bridges. This means that H+ e is in A1, and
has at most x bridges, namely, brg(H+e)<z. Note that |[Eqg| — |Ex| =m —i as |[Eg| =m and

|Ep| =i. Hence, the number m — i of connected spanning (i + 1)-edge-subgraphs, each of which
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has at most z bridges, are obtained by adding every e € Eg¢ — Ep into H.

Conversely, for every F' € N1 with brg(F) < z and an edge e € Er where e is not a bridge
of F, F— e has at least brg(F) bridges, namely, brg(F — e) > x. This means that there may be a
subgraph F in N1, where brg(F') < z, and an edge e in Ej, where e is not bridge of F, such that
brg(F —e) > .

Based on the above discussion, the validity of (i) has been shown.

By employing the method similar with that of (i), the validity of (ii) can be shown. []

By Lemma 5 and definitions, we immediately obtain the following inequalities.
(m—i)BS" < (i+1-B55)BS, (25)
(m—i)B7* > (i+1— BZ4)B2Y (26)

The following formulas are driven by the definitions of BY*, BZ*, and f.

maxg(n,i) - maxg(n,i) g
SR

maxg(n,i)

— Z (maxB(n, 1) +1— b)Bz‘(b)

b=0

= (maxg(n,i) +1— B;)N; 27)

maxg(n,i) maxg(n,i) maxg(n,i)

;B?:Z(ZB)

maxg(n,i)

> (b+1)Bi(b)

b=0

= (14 5;)N; (28)

We introduce notation ;" to be defined as follows:

maxg(n,i) maxg(n,i)
S vBib) =8 Y. bBi(b)
b=0 b=0
= B BilN; (29)

It is not hard to verify that 8 < §; by definitions. Namely,

(B = Bi)Bi = % Z (b—a)?B;(a)Bi(b) > 0.

@ 0<a<b<maxg(n,i)
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By the definition of ﬁfz, we also have

BETBST = " bB;i(b) (30)
b=0
Thus,
maxg(n,i) maxg(n,i) g
> aTET =Y (L)
=0 =0  b=0

maxg(n,i)

— Z (maxg(n,i) + 1 —b)bB;(b)

=0
= (maxg(n,i) + 1 — ;) B:iN; €3D)
By formula (2), it is easy to verify that

maxg(n, i) > maxg(n,i+ 1) > maxg(n,i) + 1.

In particular, there are many integers i’s such that maxg(n, ) = maxg(n,i + 1).
Now, we consider an integer i of the case: maxg(n,i) = maxg(n,i + 1). We take the sum on

both hand-sides of inequality (25) over all 2’s (0 < z < maxg(n,)), and obtain

maxg(n,i) maxg(n,i+1)
(m—i) > BS< > (i+1-85)BY (32)
=0 =0

Note that maxg(n,i) = maxg(n,i+ 1). By applying the above formulas, from the above

inequality, we can obtain

(m —1i)(maxg(n,i) + 1 — B;)N;
< ((i+ 1) (maxg(n,i+ 1) +1— Big1) — (maxg(n, i+ 1) + 1 — B1)Bit1) Nisa

By formula (18), the above inequality is written as follows:
(i +1— Bip1)(maxg(n,i) +1—8;) < (1 + 1 — Big1)(maxg(n, i) +1) — (1 +2 — 87 1) Bitv1,
which is further rewritten as follows:
(i4+2 =B 1)Biv1 < (1 + 1= Bip1)bs. (33)

Concluding the above discussions, we have obtained the following theorem.
Theorem 5. For a graph G and an index i (n—1<i<m—1) with mazs(n,i)=mazsn,i+1), we

have
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Bit1

Bit1 < Bi + i1 (B — Bi —1). (34

Proof. Concluding the above discussions, it follows inequality (33). L]
For integers i’s satisfying maxg(n,i) = 1 + maxg(n,? + 1), we can also obtain the result
similar to inequality (34) by the method above used.
In particular, by Theorem 4(i), if

Bi+1 / oa
ZJrl( T —Bi—1) <1,

equivalently,
(B — Bi = 1)Bip1 < i+ 1, (35)
then
N? > N;_1Nij1.

This means that N2> N;_; N; 1 holds for the larger integers that are larger than (87, — 8 —1)
Bit1. Investigating properties on the graphs satisfying inequality (35) is also interesting as a

future research subject.

5 Concluding Remarks

Based on the number of bridges in a graph, we propose a new method of partitioning the set A;(G)
of the all possible connected spanning i-edge-subgraphs of G into the subsets: B;(G;0), B;(G; 1), - -+,
Bi(G;maxg(n,)), where B;(G;b) represents the set of all possible connected spanning i-edge-
subgraphs of G having b bridges. Similarly, by employing the number of terminals in a graph, we
can also partition N;(G) into the subsets, T;(G;0), T;(G;1), ---, T;(G;maxg(n,t)) where T;(G;t)
represents the set of all possible connected spanning é-edge-subgraphs of G' having ¢ terminals. In
particular, inequalities have been shown in Theorems 1, 2 to express fundamental relationships
between |B;(G; b)| and | T;(G; t)].

Furthermore, we introduce notation j3;, defined in formula (16), to represent the average value
of bridges with respect to all possible connected spanning #-edge-subgraphs. By applying 3;, we
have obtained a formula (19) to express a fundamental relationship between N;(G) and N;y1(G),
shown in Theorem 3. Consequently, we have obtained sufficient conditions, shown in Theorem 4,
to ensure that sequence N,,_1(G), Np(G), - - -, Nio(G) is log-concave, namely, N2(G)=N;_1(G)N;1q
(@) holds for all integers i’s (n <4 <m —1). Note that both f;, 8;41 are contained in the
sufficient conditions.

In order to implicate some relationships between 3; and [3;41, we introduce notation 5; to
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establish some inequalities for expressing some relationships between f3; and f§;+1, e.g., see
Theorems 5. In particular, by Theorems 4, 5, we have obtained that sequence N,,_1(G), N,(G),
-, N (G) for a graph G is log-concave if the following inequality holds for all integers

i's(n—1<i<m-—1)
(Big1 = Bi—D)fip1 <i+1

This means that if we can prove inequality (8;,; — 8i — 1)Bix1 < n then the validity of log-
concave conjecture on sequence N,,_1(G), N,,(G), -+, N, (G) will be obtained. However, it is
open whither, (8;.; — 8i — 1)Bi4+1 < n holds or not.

Then, it seems to be interesting to find properties of a graph G such that (8 ,—8i—1)

Bi+1 < n holds by further investigating properties of 3;, 3. In addition, little is known about

3

results in investigating them.

On the other hand, by using the method similar to that of investigating |B;(G;b)|’s in this
paper, we can also obtain formulas on |7;(G;t)|’s, and may obtain some results desired for proving
log-concavity of sequence N, _1(G), N,(G), --+, N,,,(G) by using the formulas. Then, it seems

to be an interesting subject as future research.
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