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ABSTRACT

Ocular biometrics uses physical traits from eye regions such as iris, conjunctival

vasculature, and periocular for recognizing the person. Ocular biometrics has gained pop-

ularity amongst research and industry alike for its identification capabilities, security, and

simplicity in the acquisition, even using a mobile phone’s selfie camera. With the rapid

advancement in hardware and deep learning technologies, better performances have been

obtained using Convolutional Neural Networks(CNN) for feature extraction and person

recognition. Most of the early works proposed using large CNNs for ocular recognition

in subject-dependent evaluation, where the subjects overlap between the training and test-

ing set. This is difficult to scale for the large population as the CNN model needs to be

re-trained every time a new subject is enrolled in the database. Also, many of the pro-

posed CNN models are large, which renders them memory intensive and computationally
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costly to deploy on a mobile device. In this work, we propose CNN based robust subject-

independent feature extraction for ocular biometric recognition, which is memory and

computation efficient. We evaluated our proposed method on various ocular biometric

datasets in the subject-independent, cross-dataset, and cross-illumination protocols.
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CHAPTER 1

INTRODUCTION

With the increasing popularity of mobile devices, biometrics plays a vital role

in protecting personal information and data. Several efforts have been made in devel-

oping biometric authentication systems using physical traits such as the face, ocular(eye

regions), and fingerprint for mobile devices [6, 7]. In specific, ocular biometrics in the

visible spectrum has gained attraction in mobile devices as it can be easily acquired by

using front-facing RGB ”selfie” cameras. Ocular patterns in visible light include vascular

arcades seen on the white of the eye, eyebrows, and the periocular region (mostly skin

texture and wrinkles) encompassing the eye, as shown in Figure 1.

Figure 1: An ocular image labeled with vasculature pattern, eyebrow, eyelids, eyelashes,
and periocular skin texture.
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1.1 Mobile Biometrics System

A biometric system, in general, uses physiological or behavioral characteristics to

recognize an individual. Physiological biometrics systems use the shape or structure of

the individual body, such as the face, fingerprint, iris, palm veins, periocular, palm print,

and ear shape. When it comes to behavioral biometric systems, an individual is recognized

based on the behavior patterns such as gain, keystrokes, signature, facial expressions, and

voice.

The first stage of any biometric system is data acquisition. In the mobile ocular

biometrics system, the data - which in this work are eye images - are acquired using the

front-facing ”selfie” camera. Then, in the preprocessing stage, the region of interest

(ROI) extraction and (or) illumination correction is applied to the acquired eye image

samples. Then the preprocessed sample is used to features extraction for matching.

Matching in the biometric system is a two-step process: Enrollment and recogni-

tion. In the Enrollment process, the extracted features of an individual are stored in the

database as templates. These databases can be local to the device or in a secure cloud

service. When it comes to mobile biometric systems, for security and protecting an in-

dividual’s biometric data, the templates are store locally with encryption. Recognition

process takes place when an individual needs to gain access or claim one’s identity. In

this step, the features extracted from the eye sample are matched with templates in the

database to verify the individual’s identity.

A biometric system operates in either identification mode or verification mode in

the recognition process. In Identification mode, given individual’s biometric features is
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with templates of many users in the database to identify if the individual is in the system.

This type of model is useful in large group operations such as multi-user access systems or

office buildings. Whereas in the verification mode, extracted features of an individual are

matched with their own templates in the database to verify their identity. For security and

authentication efficiency reasons, the templates are stored locally in mobile biometrics.

So, the matching process operated in verification mode.

Figure 2 shows the overall outline of the mobile biometric system pipeline. An

individual can gain access or verify identity by matching extracted features from their eye

samples with the stored templates in the local database.

Figure 2: Mobile biometrics system pipeline.
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1.2 Problem Statement

Detailed surveys of ocular and periocular biometrics in the visible spectrum have

been provided by Alonso-Fernandez, and Bigun [8], Rattani and Derakhshani [9] and Ku-

mar and Seeja [10]. Earlier studies have mostly proposed the use of handcrafted features

such as histograms of oriented gradients (HOG) and local binary patterns (LBP), along

with simple distance metrics for matching such as Euclidean distance or learning-based

methods such as Support Vector Machines (SVM) [11].

With the recent advances deep-learning focused advances in software and hard-

ware, Convolutional Neural Networks (CNN) and alike are now capable of real-time bio-

metric feature extraction and matching, even on mobile and embedded hardware [12].

Most of the earlier ocular recognition work used CNNs under subject-dependent evalua-

tion protocols, where the subjects overlap between the training and test sets, which may

over-estimate performance and generalizability. However, recently, researchers have been

focusing on CNN-based methods for ocular recognition in the unconstrained environment

and under the subject-independent protocol [13, 14].

Subject-dependent vs Subject-independent: Many studies proposed [15–18]

using multi-class classifiers for recognition and obtained state of the are performance.

However, multi-class classifiers can operate in the only subject-dependent protocol, which

creates a problem when a new subject’s identity needs to be added, making the model

to re-train. Therefore, a model needs to train in a subject-independent protocol, where

subject identities do not overlap between the training and test set.

Unconstrained Environments: The challenges of unconstrained environments
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may lead to substantial variations in the samples due to factors such as lighting con-

ditions, distance, motion blur, glasses and hair occlusions, front-facing imaging sensor

and optic aberrations (including smudged lenses), and other imaging issues such as in-

accurate white balance and exposure metering. Many recent techniques proposed data

augmentation [18], and enhanced region of interest (ROI) detection methods [4] for better

performance in an unconstrained environment, but proposed methods are large and (or)

require large computational requirement to be able to implement in mobile devices.

Computational Efficiency: For a better user experience in a mobile device, a

biometric system, along with being secure, it must be fast. For a deep learning-based

system to be fast, it must be efficient computationally and lower memory size. Many of

the deep learning based purposed methods used architectures such as VGG [19], ResNet

[20], and Inception-net [21], which are large [22] and also computationally slower [23] to

implement in the mobile biometric system.

This work proposes a robust deep learning-based model that works in a subject-

independent unconstrained environment and computationally efficient for mobile devices.

1.3 Contributions

Contributions made in this work are as follows:

1. Conducted, a large scale evaluation of different CNN based architectures to evaluate

the performance in terms of accuracy vs. size vs. speed. Based on the finding, we

propose two incrementally updated models.

2. OcularNet: First proposed model is a collection of small CNN models using local
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patches from the eye images. As the proposed method is a patch-based technique,

one can extract features based on the region’s availability in the eye image.

3. OcularNet-v2: To extract eye region patches, OcularNet depends on the shelf eye

region of interest(ROI) detector and localization models. If these fail to localize

the eye region accurately, OcularNet fails. To overcome this, in OcularNet-v2, we

proposed to use a built-in ROI detector that is trained along with an efficient single

CNN model for better feature extraction.

4. Finally, we propose a new large ocular dataset in the visible spectrum (LOD-V)

for training robust deep learning models and showing significant improvements in

performance for the OcularNet-v2 model.

1.4 Thesis Outline

Chapter 2 provides a literature review on the existing works in ocular biometrics

methods from early handcrafted features based methods to current deep learning based

methods in subject-dependent and subject-independent evaluation protocols.

In Chapter 3, a brief explanation of how we calculate computation complexity

and size of the model to better understand and design efficient CNN models for mobile

ocular biometrics.

In Chapter 4, analyzed popular CNN architectures to evaluate their efficient subject-

independent performance in mobile ocular biometrics. We evaluate how well models per-

form when trained from scratch and after fine-tuning. Based on the theoretical and prac-

tical knowledge gained from comparing different architectures, we proposed our custom
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model designed to be computationally efficient while achieving comparable performance.

Chapter 5 propose our first version of the OcularNet model, a patch-based CNN

architecture for mobile ocular biometrics. We showed that the proposed OcularNet model,

which was smaller than the popular ResNet architecture model, outperforms on multiple

datasets in subject-independent and cross-dataset evaluations.

In Chapter 6, based on the fail cases from the OcularNet, we propose multiple

improvements for our model, OcularNet-v2. This method consists of a much efficient

feature extraction model, which is trained along with an ocular ROI detector. While

being very computationally efficient, the proposed method can easily generalize to other

datasets, including those captured in near-infrared illumination.

In Chapter 7 proposes a new large ocular dataset in visible lighting (LOD-V),

which consists of more than 772 unique subjects with over 200K eye samples. We show

that by training OcularNet-v2 on the LOD-V dataset, which has 3.8× more unique sub-

jects, can improve performance significantly.

In Chapter 8, a conclusion is provided, then we identify challenges remaining

and provide a future path.
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CHAPTER 2

PREVIOUS WORK

Before the the rise of today’s popular CNN based methods, studies proposed using

feature extraction techniques such as histograms of oriented gradients (HOG) [24], color

histograms [25], local binary patterns (LBP) [26], local phase quantization (LPQ) [27],

binarized statistical image features (BSIF) [28], phase-only correlation (POC) [29] and

maximum response sparse filter [30], along with simple distance based match metrics

such as Euclidean distance or cosine similarity for ocular recognition. Others proposed

traditional learning based methods such as Support Vector Machines (SVM) [11], and

shallow neural networks [16, 30]) for ocular recognition.

Below we review notable CNN-based ocular recognition methods under subject-

dependent and subject-independent protocols.

2.1 Subject-dependent Evaluation

Raghavendra et al. in [30] combined texture features extracted by Maximum Re-

sponse (MR) filters with deeply coupled autoencoders for deriving features from ocular

images along with a softmax based classifier trained on VISOB [3] dataset. The pro-

posed method outperformed others submitted to the ICIP-2016 mobile ocular biomet-

rics competition [3]. Ahuja et al. in [31] proposed a CNN model, VisobNet, with a
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reported error rate of less than a 1% when trained and tested on the VISOB and MICHE-

II [32] datasets, significantly outperforming their own method based on Scale Invariant

Feature Transform(SIFT) [33] keypoint descriptor. Using the VISOB dataset, Rattani et

al. in [15] evaluated the transfer learning technique where the CNN models pre-trained on

ImageNet [12] were fine-tuned for ocular recognition. Alahmadi et al. [17] used a CNN

model pre-trained on ImageNet for feature extraction, followed by a sparse classifier (SA-

SRC) for classification, trained and tested on VISOB dataset. Table-1 summarises deep

learning techniques proposed in only close-set protocols.

Table 1: Existing deep learning based techniques proposed for ocular recognition in an
only subject-dependent protocol.

Method Summary Datasets

MR Filter [30] Autoencoder with Softmax for feature size reduction. VISOB [3]

VisobNet [31] Supervised learning with softmax classifier. VISOB, MICHE-II [32]

Fine-tuned VGG [15] Transfer Leanring on pre-trained CNN mdoels. VISOB

ConvSRC [17] Pre-trained CNN model with sparse classifier VISOB

2.2 Subject-independent Evaluation

Nie et al. [11] proposed an unsupervised convolutional radial basis function (C-

RBF) network for efficient feature extraction from ocular images. The authors also pro-

posed a supervised metric learning technique to achieve better matching accuracy on the

UBIPR [34] dataset when compared to conventional methods such as cosine similarity and

Euclidean distance. Zhao et al. [13] used explicit semantic information such as gender and

left/right eye in addition to the ocular image and trained a CNN model for feature extrac-

tion. The matching was performed using subject-independent and cross dataset scenarios
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using a Bayesian scheme [35]. In the visible spectrum, the model was trained on UBIPR

and tested on UBIRIS-V2 [?] and FRGC [36]. For evaluation in the infrared spectrum, the

model was trained on a subset of FOCS [37] and tested on CASIA.v4-distance [38] and

the remaining FOCS dataset. Garg et al. [39] proposed a modified triplet loss for training

CNN models to learn heterogeneity aware robust features for an unconstrained environ-

ment. They reported significant improvement in subject-independent and cross dataset

analysis using VISOB, CSIP [40], and IITD IMP [41] datasets. Tiong et al. [14] proposed

a dual-stream CNN model with shared weights to extract features from the original RGB

eye image along with local binary-coded patterns (OC-LBCP) image. OC-LBCP com-

bines local binary patterns (LBP) and local ternary patterns (LTP), which increases the

invariance to confounding factors such as noise and illumination variations. They per-

formed the subject-independent evaluation on their new ethnic-ocular dataset and cross

dataset evaluation on the UBIPR dataset [34].

Reddy et al. [42] proposed a fully unsupervised autoencoder-based CNN model

for feature extraction and evaluated using a cross-dataset protocol. To learn robust fea-

tures in an unsupervised manner during training, the authors proposed a loss function

that reduces the difference between the encoded features of two randomly augmented

images from a single original image, along with auto-encoders for input image recon-

struction loss. The model was then trained on all the images from UBIRIS-V2, UBIPR,

and MICHE-II datasets and tested on the VISOB dataset.

Proenca et al. [18] proposed a custom data augmentation pipeline where the ocular

ROI confined within the eyelids is replaced with a different subject randomly. So the CNN
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model focuses only on the periocular region for feature extraction and avoids features

inside the eye. In this study, experiments conducted on the UBIRIS-v2 dataset show

significant performance improvement.

Zhao et al. [4] proposed a supervised learning method to produce a mask for ex-

tracting ocular features from eyebrows and eye regions. A semantic segmentation model

with only 0.1M parameters learned from 100 images is used to generate the ROI mask.

All the experiments were carried out using a subject-independent evaluation on UBIRIS-

V2, UBIPR, FRGC, FOCS, and CASIA.v4-distance datasets.

Table 2 summarizes the above mentioned deep learning techniques for ocular

recognition in an unconstrained environment evaluated using subject-independent and

cross-dataset analyses.
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Table 2: Existing deep learning based techniques proposed for ocular recognition using
subject-independent, subject-dependent, and cross-dataset analyses. CD stands for cross
dataset analysis.

Method Summary Datasets Data
Protocol

Metric
Learn-
ing [11]

Unsupervised convolutional
RBF for feature extraction
with supervised metric
learning.

UBIPR [34] subject-
independent

Semantics-
Assisted
CNN [13]

Training feature extraction
model with additional
semantic information.

UBIPR [34],
UBIRIS-V2 [?],

FRGC [36],
FOCS [37], and

CASIA.v4-
distance [38]

subject-
independent
(also CD)

Heterogene-
ity Aware
Deep
Embed-
ding [39]

Custom triplet loss for robust
feature extraction.

VISOB [3], CSIP [40],
and IITD IMP [41]

subject-
independent
and subject-
dependent

Explicit
Critical
Regions At-
tention [4]

Feature extraction from
eyebrow and eye region using
semantic segmentation mask.

UBIRIS-V2 [?],
UBIPR [34],
FRGC [36],

FOCS [37], and
CASIA.v4-

distance [38]

subject-
independent
and subject-
dependent

Dual
Stream
CNN [14]

Shared weights CNN model
for feature extraction and
OC-LBP image.

UBIPR [34] and
ethnic-ocular dataset

subject-
independent
(also CD)

Deep-
PRWIS [18]

Proposed a data augmentation
pipeline by interchanging
ocular region of a sample with
a different subject’s.

UBIRIS-v2 [?] subject-
independent
and subject-
dependent

Encoded
Feature
Loss [42]

Custom autoencoder for
robust feature extraction using
unsupervised learning.

VISOB [3],
UBIRIS-V2 [?],
UBIPR [34] and
MICHE-II [32]

subject-
independent
(also CD)
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CHAPTER 3

CALCULATING CNN MODELS COMPUTATIONAL EFFICIENCY

As the input data is image-based in ocular biometrics, CNN-based models are the

most commonly used deep learning techniques for feature extraction and matching. This

chapter provides a brief explanation of different layers in the CNN model, followed by

how we calculate the size and computational cost of a CNN model.

3.1 Basic Building Blocks Of CNN Model

Essentially a CNN model consists of Convolutional and fully connected (FC) lay-

ers, along with non-linear activation and pooling layers. In this section, a brief explanation

of for each layer in the CNN model,

Fully connected layer connects every input feature to every output feature in

a given layer by performing matrix multiplication between input features and learnable

weight matrix as shown in Figure 3. Let, x be the input feature vector of 1× Fin size and

y be the output feature vector of size 1 × Fout. Wi be the weight matrix of ith layer with

Fin × Fout size. Then, fully connected (FC) layer is implemented as follows,

y = Wi ∗ x (3.1)

In Convolutional Layer output features are generated by convolving multiple

learnable filter (or kernels) onto input features as shown in Figure 4. Let x be Cin input
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Figure 3: Simple fully connected layer with one learnable layer.

features with 2D spatial size of m × n and y be the generated Cout out put features with

2D spatial size of m′ × n′. Here convolution operation is given as,

yij = wij ~ xi (3.2)

Where yij is jth output feature generated when ith input feature, xi, is convolved

with kernel wij of size k × k.

Then to generate one out of Cout output feature of size m′ × n′, we need Cin

number of kernels of size k × k. So, total of kernels requires to generate Cout number of

features is given as Cin×Cout. The convolution output spatial size, m′ n′, depend on the

stride s, the kernel size k, and any padding p applied to the input features as follows,

m′ = (m− k + 2p)/s+ 1, n′ = (n− k + 2p)/s+ 1 (3.3)
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Figure 4: Convolutional Layer [1]

In neural networks, Activation layers are used to introduce non-linearity into the

model to execute non-trivial operations. The most commonly used activation functions in

neural networks are hyperbolic tangent (TanH) and Sigmoid. However, when it comes to

CNN models, ReLU - Rectified Linear Unit - is the most popular activation function used

for its simplicity in implementation, as shown in equation 3.4. Unlike TanH and Sigmoid,

ReLU avoids the vanishing gradient problem, making it easier to building deeper models.

y = max (0, x) (3.4)

Pooling layer reduces the spatial size of the input features to reduce the number

of parameters and computational cost of the CNN model, which in turn helps reduce

the model overfitting to the input data. The most commonly used pooling layer in CNN

models is max pooling, which outputs maximum values from the input features in spatial

window k. Along with max pooling, average pooling is also used in CNN models mainly

to perform global pooling on the final convolutional layer to reduce the feature size in
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models such as ResNet and MobileNet.

3.2 How To Calculate Models Computational Cost And Size

It is essential to understand how we calculate the evaluated models’ size and com-

putational complexity to build efficient deep learning models for mobile ocular biomet-

rics. This is because a large model with high computational cost requires more memory

and increases execution latency. In contrast, user experience requires fast and battery-

friendly biometric authentication, which could be triggered frequently, such as unlocking

the phone.

As the input data is image-based, CNN-based models are most commonly used

in ocular biometrics. Essentially a CNN model consists of Convolutional and fully con-

nected layers, along with non-linear activation, pooling, and normalization layers. The

size of the models is calculated by taking the number of learnable parameters in the

CNN models. The computational cost is calculated as the number of multiply-addition

(MAdd) operations present in all learnable layers such as convolutional and fully con-

nected layers [43, 44].

For a normal convolutional layer with k × k convolution with cin input feature

channels and cout output feature channels, the total number of parameters is calculated as:

k × k × cin × cout (3.5)

MAdd operation with input features spatial size of m × n, assuming stride s = 1, is

calculated as:

k × k × cin × cout ×m× n (3.6)
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In a fully connected layer with Fin number of input features and Fout number of

output features, the total number of parameters is calculated as:

Fin × Fout (3.7)

the the number of MAdd operations are given as

Fin × Fout (3.8)

To reduce the size and computational cost of models, methods such as parameter

pruning [44], lower bit quantization [45], squeezed convolutional networks, and the use

of separable convolutions [43, 46, 47] are proposed.

From the above equation 6.4 and equation 6.5, in a standard conventional layer, to

extract one new feature k×k convolution is applied on all the input features. In the case of

separable convolutions, only one k×k convolution is performed for each input, generating

the same number of channels as the input (i.e., cout = cin), then is generally followed by

1× 1 standard convolutional layer for feature extraction. For separable convolutions, the

number of parameters and MAdd operations is calculated as:

k × k × cin × 1 + 1× 1× cin × cout (3.9)

m× n× k × k × cin × 1 +m× n× 1× 1× cin × cout

= m× n× (k × k × cin × 1 + 1× 1× cin × cout)
(3.10)

To understand how computationally efficient are separable convolutional, let con-

sider a concrete example. Let 64 × 64 be the input size with 32 features and using 3 × 3

convolutional layer to generate 128 feature channels, then for standard convolutional
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layer, by substituting these number in equation-3.5 and equation-3.6, gives 36, 864(=

32 × 128 × 3 × 3) number of parameters with 151M (= 64 × 64 × 32 × 128 × 3 × 3)

of MAdd operations. In the case of separable convolutions by substituting above values

in equation-3.9 and equation-3.10, we obtain 2, 336(= [3× 3× 32] + [32× 128]) num-

ber of parameters with 9.5M (= [64× 64]× [3× 3× 32 + 32× 128]) MAdd operations.

From the above example, we can see a considerable reduction in the number of param-

eters and MAdd operations making CNN models designed with separable convolutions

more computationally efficient.
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CHAPTER 4

CASE STUDY OF DEEP LEARNING MODELS IN OCULAR BIOMETRICS

4.1 Introduction

Deep learning has provided significant improvements in many applications, such

as image classification, object detection, and segmentation [48]. With the mobile tech-

nology revolution and wide-scale integration of biometric technologies for user authenti-

cation, deep learning solutions have successfully ported into mobile phones for accurate

user authentication [49].

This chapter provides a comparative analysis of different deep learning models

in terms of their efficacy in biometric user authentication on mobile devices. To this

aim, we evaluate existing deep learning architectures such as VGG [19], ResNet [20],

DenseNet [50] and mobile device centric architectures such as MobileNet-v1 [43], MobileNet-

v2 [47] and NasNet-mobile [2] in terms of their matching performance and computational

cost on mobile ocular biometrics dataset. In addition, we present and benchmark our cus-

tom compact deep learning model and show it has comparable performance to existing

deep learning models while being competitive in model size and computational cost.

In summary, the contribution of this chapter are as follows:

1. Comparative evaluation of deep learning architectures such as VGG [19], ResNet [20],

DenseNet [50] and mobile device based architectures such as MobileNet-v1 [43],

MobileNet-v2 [47] and NasNet-mobile [2] in terms of their performance and cost
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for operation on mobile devices.

2. Also proposes a custom deep learning architecture that is better suited for mobile

biometrics due to its compact size, lower computational cost, and competitive ac-

curacy compared to existing models.

The rest of this chapter is organized as follows: Section 2 provides details on

different deep learning CNN models used in this study. Dataset and experimental protocol

are discussed in section 3. Experimental results on ocular biometrics case studies are

presented in section 4. Conclusions are drawn in section 5.

4.2 Convolutional Neural Network Models

The deep learning models evaluated in this study are mostly CNNs pre-trained on

a large scale ImageNet [12] dataset comprising 1.2 million training images, a standard

when it comes to large-scale image classification. Following, we discuss the selected pre-

trained models and our proposed custom model in terms of their architecture, parameters,

and the number of MAdd operations, which are compiled into a Table-3.

1. VGG: The VGG [19] architecture was introduced by the Visual Graphics Group

research team at Oxford University. The architecture consists of sequentially stacked 3×3

convolutional layers with intermediate max-pooling layers followed by a couple of fully

connected layers for feature extraction. Usually, VGG models have 13 to 19 layers. Our

experiments used VGG-19 as our test model, which has a 140M number of parameters

with 19.5G MAdd operations.

2. ResNet: ResNet [20] is a short form of residual networks based on the idea of
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Figure 5: Building blocks of ResNet architecture

”identity shortcut connection” where input features may skip certain layers as shown in

the Figure 5. This study uses ResNet-50, which has 23.5M parameters with 4G MAdd

operations.

3. DenseNet: DenseNets [50] are inspired by residual networks, where all the

previous layers’ features are transferred to the current layer, as shown in Figure 6. Apart

from tackling the vanishing gradients problem, this architecture also strengthens feature

propagation and feature reuse while reducing the required parameters. This study uses

densenet-121, which has 3.2M parameters with 2.8G MAdd operations.

4. MobileNet-V1: As can be seen from the Table 3, the architectures such as VGG

and ResNet, although achieved very high accuracies in the Imagenet dataset, are either

large in size or require a lot of MAdd operations. Therefore, these architectures may not

be efficient for implementation on mobile devices. MobileNet-v1 [43] is one of the most
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Figure 6: Building blocks of DenseNet architecture

popular mobile-centric deep learning architectures, which is small in size and computa-

tionally efficient while achieving high performance. The main idea of MobileNet is that

instead of using regular 3× 3 convolution filters, depth-wise separable 3× 3 convolution

filters are followed by 1 × 1 convolutions. While achieving the same filtering and com-

bination process as a regular convolution, the new architecture requires fewer operations

and parameters. This study uses MobileNet-v1 with 0.5x and 1x channels multiplier with

input size of 224× 224 for testing. These models are denoted as MobileNet V 1 0.5 224

and MobileNet V 1 1.0 224, respectively, in Table 3.

5. MobileNet-V2: The newer version of MobileNet architecture combines depth-

wise separable 3 × 3 convolution with inverted ResNet architecture. In ResNet architec-

ture, as shown in Figure 5, the 3× 3 convolution is performed on the reduced number of
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Table 3: Comparison of extracted feature size, number of parameters and number of
MAdd operations for each CNN model evaluated in this study. The number of parameters
and MAdd operations are the dominant factors in evaluating a model’s size and computa-
tional cost.

Model Feature Size Parameters No. of MAdd
VGG - 19 4096 140M 19.6G
ResNet - 50 2048 23.5M 4G
DenseNet - 121 1024 7M 2.8G
MobileNet v1 1.0 224 1024 3.2M 568M
MobileNet v1 0.5 224 512 819K 149M
MobileNet v2 1.0 224 1280 2.2M 300M
MobileNet v2 0.5 224 1280 688K 96M
NasNet-mobile 1056 4.2M 567M
Proposed Model 256 672K 256M

channels whereas in MobileNet-v2 [47] architecture the 3×3 convolution layer is replaced

with depth-wise separable 3 × 3 convolution layer and increased number of channels, as

shown in Figure 7. if chin are the number of feature channels provided as an input to

the residual layer, resnet architecture extracts features at 3× 3 convolution on half of the

input feature channels i.e., chin/2. Whereas in the case of MobileNet-V2, the feature

channels are increased by an expansion factor t i.e., chin ∗ t. Experiments are conducted

on MobileNet-v2 with 0.5x and 1x channels multiplier with input size of 224 × 224 for

testing. These models are denoted as MobileNet V2 0.5 224 and MobileNet V2 1.0 224,

respectively, in Table 3.

6. NasNet-Mobile: Unlike other models presented in this paper, this model is not

hand-designed. Instead, a reinforcement learning technique known as AutoML [51] was

used to generate this model and specifically designed to perform well over Imagenet [12]

23



Figure 7: Building blocks of MobileNet-V2 architecture.

dataset. AutoML searches for the best convolutional layer (or âcellâ) on a small dataset

and then transfers the block to a larger dataset. By changing the number of the convo-

lutional cells and the number of filters in the convolutional cells, different versions of

NASNet [2] were developed. In this paper, we considered the smallest of all the NasNets,

called NASNet-mobile, targeted for mobile devices.

7. Proposed Model: Our custom model is based on MobileNet-v2 architecture,

as shown in Figure 7, where we keep expansion factor t = 1. Table 4 show the complete

architecture of the proposed model. As it can be seen from Table 4, the spatial resolution

is dropped 4X with-in the first two layers to reduce the computational complexity. The

convolution layers conv2, conv3 and conv4 use the residual module shown in Figure 9.

At conv2b and conv3b same module is used but without the skip connection to reduce the

spatial resolution by half and to increase the number of feature channels. The proposed
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Figure 8: Building blocks of NasNet architecture. Normal Cell: For feature new features
extraction, and Reduction Cell: For feature extraction and spatial size reductions. *Figure
reference [2]

model has only 672K parameters and 256M MAdd operations. The feature size and

number of parameters in our proposed model are the least among all the models (see

Table 3).

4.3 Experimental Setup

Dataset: VISOB [3] dataset consists of ocular images [9] from over 550 healthy

subjects. This publicly available dataset was collected using front-facing cameras of dif-

ferent mobile devices (iPhone 5s, Samsung Note 4 and Oppo N1) under varying lighting

conditions (office, daylight, and dim indoors). Participants’ data were collected in two

visits, visit 1, and visit 2, 2 to 4 weeks apart. During each visit, participants took a selfie
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Table 4: The proposed custom deep learning models are based on MobileNet-V2 archi-
tecture with expansion factor t = 1. The input and output shapes are described in height
x width x channels.
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Figure 9: Custom layer module is similar to MobileNet-V2 architecture with expansion
factor t = 1 and normalization and activation before each convolutional layer.

like captures in two different sessions (session 1 and session 2) about 10 to 15 minutes

apart, under all lighting conditions and using all the three devices. From the collected

data, eye crops were generated using Viola-Jones based eye detector, and the cropped eye

images were resized to 160 × 240 pixel resolution. Variations such as motion blur, spec-

ular reflections, and different lighting conditions are captured in this dataset. Figure 10

shows example ocular images from VISOB dataset.

In our experiments, we divided VISOB dataset into three sets as follows:

1. DATA-A: This set consists of ocular images from 200 participants from Visit 1 for

all the devices, all lighting conditions, and sessions. This subset is used for training

all deep learning models (discussed in 4.2), and it consists of 39, 732 images from

the left and the right ocular regions. The models trained using this subset are used
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Figure 10: Example of ocular images from VISOB dataset [3]

for ocular feature extraction.

2. DATA-B: This subset consists of remaining 350 participants with 55, 314 images

from the left and right ocular regions from Visit 1, which were not used in training

or fine-tuning the deep learning models. This subset is used to evaluate the subject

independent, subject-independent verification.

3. DATA-C: This subset consists of all the 295 participants from visit 2 with 63, 089

images. This subset consists of 92, overlapping participants with DATA-A. This

subset is used to test the subject-independent verification with few overlaps in train-

ing and validation.

For the purpose of this study, We flipped the right ocular images horizontally and
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considered these images as belonging to unique subject identities. This way number of

unique subjects are doubled in all the dataset, and all the results were computed for the

left ocular images.

Training Protocol: We trained our proposed model using Adam optimizer [52]

with the learning rate of lr = 0.001 for 150 epochs with early stopping and with the batch

size of 32 on DATA-A using softmax with categorical cross-entropy as a loss function.

The pre-trained models (introduced in section 4.2) were fine-tuned for ocular recognition

using transfer learning. For transfer learning of the pre-trained models, the classification

layer is changed from 1000 outputs to 400 outputs associated with the number of DATA-A

subjects. The transfer learning process is divided into two stages, as follows:

1. Stage 1: All the layers except the final classification layer (consisting of 400 out-

puts) are set as non-trainable, and the whole network was trained for 10 epochs. We

used Adam optimizer with lr = 0.001 and with batch size of 32.

2. Stage 2: In this stage, all the layers were trained for another 20 epochs with a

reduced learning rate of lr = 0.0001.

This two-stage transfer learning process ensures that the newly initialized classifi-

cation layer will not distort model weights too quickly and drastically as they are consid-

ered to be at desirable ranges.

Evaluation Protocol: All the deep learning models trained or fine-tuned on DATA-

A were evaluated on DATA-B and DATA-C for verification in the subject-independent

scenario. For datasets DATA-B and DATA-C, images belonging to the session 1 were
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used as enrollment, and those belonging to the session 2 were used for verification. Fea-

tures from enrollment-verification image pairs were computed using the corresponding

CNN models. The verification performance of all models was computed for one-vs-all

lighting condition matching and reported via equal error rate (EER%) and genuine match

rate at 0.0001 false match rate (GMR@10−4FMR). This means that for each device and

for each lighting condition at enrollment, we calculate EER and GMR@10−4FMR for all

the lighting conditions in the verification set. Cosine similarity metrics (cos), as shown in

equation 4.1, was used to generate the match scores in the [0,1] range. The final match

score for a claimant was calculated as the maximum of all the scores between enrollment

and test image pairs.

cos(xxx,yyy) =
xxx · yyy

||xxx|| · ||yyy||
(4.1)

4.4 Experimental Results

Tables 5 - 7 and Tables 8 - 10 show the equal error rate (EER%) and genuine

match rate at 0.0001 false match rate (GMR(%)@10−4FMR) for both datasets DATA-B

and DATA-C, respectively. Enrollment is from office lighting, daylight, and dim lighting

conditions in session 1. Verification samples come from all lighting conditions across

all mobile devices (iPhone 5s, Samsung Note 4, and Oppo N1) in session 2. The results

are shown for all the pre-trained models and our proposed model trained from scratch on

DATA-A. Note that VGG-19 was not fine-tuned due to memory issues.

It can be seen from Tables 5 - 7 that overall our proposed model outperformed
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Table 5: EER(%) and GMR@10−4FMR of all the models were evaluated on DATA-B
dataset for enrollment images under specific lighting conditions and verification images
under all lighting conditions, for iPhone-5s device.

Models Transfer Learning
iPhone 5s

Office Light Day Light Dim Light

DenseNet-121
8.90/66.91 8.99/65.76 9.76/65.52

Yes 5.72/63.87 5.29/65.46 5.69/62.03

MobileNet V1 0.5 224
7.67/68.21 7.67/67.42 8.14/66.68

Yes 6.55/64.64 6.67/64.56 7.28/62.38

MobileNet V1 1.0 224
8.44/68.07 7.82/67.17 9.18/66.68

Yes 6.22/65.16 6.36/65.61 7.33/62.73

MobileNet V2 0.5 224
7.59/66.53 7.65/65.66 8.54/63.46

Yes 7.21/62.75 7.10/61.75 7.89/60.09

MobileNet V2 1.0 224
7.75/67.61 7.67/68.27 8.69/66.21

Yes 7.04/61.34 6.86/60.25 7.67/59.51

NasNet-mobile
12.39/59.24 13.39/57.39 12.90/57.61

Yes 9.81/53.22 10.07/51.93 10.82/52.31

ResNet-50
10.07/63.76 10.10/63.41 11.05/62.69

Yes 5.96/68.73 5.26/69.97 6.35/65.98
VGG-19 No 11.97/62.04 12.11/61.55 13.04/60.98

Proposed model NA 5.28/73.28 4.71/71.33 4.87/70.09
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Table 6: EER(%) and GMR@10−4FMR of all the models were evaluated on DATA-B
dataset for enrollment images under specific lighting conditions and verification images
under all lighting conditions, for Samsung Note-4 device.

Models Transfer Learning
Note-4

Office Light Day Light Dim Light

DenseNet-121
9.80/62.53 9.00/65.00 9.32/63.66

Yes 5.68/58.60 4.95/62.45 5.91/61.23

MobileNet V1 0.5 224
8.60/64.38 7.54/66.56 8.32/65.06

Yes 6.70/59.55 6.09/62.77 6.82/61.59

MobileNet V1 1.0 224
8.57/64.14 8.06/66.00 8.88/65.12

Yes 6.32/60.62 6.19/63.53 6.63/63.97

MobileNet V2 0.5 224
7.43/62.71 7.06/64.84 7.66/62.14

Yes 7.44/56.54 6.82/59.54 7.12/60.13

MobileNet V2 1.0 224
7.90/63.80 7.13/67.64 8.09/65.00

Yes 7.60/55.38 6.78/58.22 7.79/57.52

NasNet-mobile
13.23/54.08 12.52/55.87 14.07/55.08

Yes 10.40/48.25 10.03/50.96 11.11/49.67

ResNet-50
10.33/59.52 10.09/61.45 10.82/59.04

Yes 5.82/66.47 5.28/66.96 5.54/67.92
VGG-19 No 12.84/58.63 11.85/59.74 12.83/59.34

Proposed model NA 5.37/68.80 4.67/71.07 4.90/69.57
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Table 7: EER(%) and GMR@10−4FMR of all the models were evaluated on DATA-B
dataset for enrollment images under specific lighting conditions and verification images
under all lighting conditions, for Oppo device.

Models Transfer Learning
Oppo

Office Light Day Light Dim Light

DenseNet-121
12.28/62.07 11.88/63.48 9.78/65.43

Yes 7.60/62.07 7.43/62.55 5.18/61.52

MobileNet V1 0.5 224
11.63/64.36 10.73/65.91 7.56/68.45

Yes 9.11/62.62 8.50/64.01 5.78/64.02

MobileNet V1 1.0 224
12.34/64.31 11.54/64.74 8.69/68.62

Yes 9.89/63.19 8.87/63.50 6.01/66.13

MobileNet V2 0.5 224
10.37/63.27 10.09/64.63 7.49/66.56

Yes 10.02/60.04 9.19/60.82 6.62/60.08

MobileNet V2 1.0 224
10.87/63.56 10.63/65.86 7.55/68.49

Yes 10.38/58.97 9.42/58.90 6.64/60.12

NasNet-mobile
16.49/56.85 15.50/56.86 14.50/56.66

Yes 12.47/51.48 11.40/51.09 9.68/49.87

ResNet-50
13.83/60.67 12.94/61.62 10.40/61.83

Yes 7.79/66.17 7.95/67.83 5.30/69.54
VGG-19 No 15.88/57.89 14.66/58.68 12.35/59.90

Proposed model NA 6.57/67.00 6.24/68.47 4.65/72.74
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all the rest by about 0.88% lower EER. This performance was followed by fine-tuned

ResNet-50 and DenseNet-121 models on DATA-B. Whereas in the case of DATA-C, as it

can be seen from the Tables 8 - 10, the fine-tuned ResNet-50 is the best performing model

followed closely by DenseNet-121 and our proposed model.

Table 8: EER(%) and GMR@10−4FMR of all the models were evaluated on DATA-C
dataset for enrollment images under specific lighting conditions and verification images
under all lighting conditions, for iPhone-5s device.

Models Transfer Learning
iPhone 5s

Office Light Day Light Dim Light

DenseNet-121
10.35/56.13 8.61/61.84 8.38/61.89

Yes 5.97/61.67 4.38/65.14 4.04/67.05

MobileNet V1 0.5 224
9.45/63.64 7.56/67.92 6.48/69.33

Yes 6.88/63.18 4.92/67.27 4.22/67.99

MobileNet V1 1.0 224
9.57/62.22 7.57/66.96 7.07/67.49

Yes 7.08/63.50 4.97/67.48 4.47/68.24

MobileNet V2 0.5 224
8.63/61.92 7.55/66.17 6.72/67.99

Yes 7.77/57.57 5.88/62.21 5.55/62.43

MobileNet V2 1.0 224
9.29/62.16 7.64/67.08 7.16/68.03

Yes 7.96/58.31 5.83/62.38 5.55/64.34

NasNet-mobile
14.59/52.18 13.54/57.91 12.69/56.79

Yes 10.64/46.63 9.15/52.22 8.39/50.58

ResNet-50
11.82/55.19 10.05/60.90 9.87/60.40

Yes 5.56/65.28 3.83/70.22 3.43/71.64
VGG-19 No 14.34/54.05 12.85/59.10 12.41/60.04

Proposed model NA 6.89/58.91 5.98/64.86 5.61/64.99

However, taking the model size and number of operations (MAdd) into consider-

ation, ResNet-50 is 35X larger in size and requires 15.6X more MAdd operations than

our proposed model. Similarly, compared to DenseNet-121, the proposed model is 10X

smaller in size and requires 11X fewer number of MAdd operations. The proposed model
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Table 9: EER(%) and GMR@10−4FMR of all the models were evaluated on DATA-C
dataset for enrollment images under specific lighting conditions and verification images
under all lighting conditions, for Samsung Note-4 device.

Models Transfer Learning
Note-4

Office Light Day Light Dim Light

DenseNet-121
10.74/56.67 9.29/58.66 9.71/58.38

Yes 6.01/60.47 4.40/64.26 4.55/63.79

MobileNet V1 0.5 224
9.67/62.56 7.79/63.74 7.84/64.64

Yes 6.82/62.20 5.28/66.84 5.44/65.50

MobileNet V1 1.0 224
9.88/61.02 7.78/63.58 8.48/63.12

Yes 6.80/63.31 5.06/68.82 5.26/65.65

MobileNet V2 0.5 224
8.99/60.69 7.38/62.93 7.42/63.19

Yes 7.68/55.99 5.72/59.43 6.20/59.68

MobileNet V2 1.0 224
9.71/61.32 7.66/64.42 7.96/62.90

Yes 7.68/57.52 5.92/62.93 6.26/61.89

NasNet-mobile
15.27/52.62 14.47/53.71 14.65/54.33

Yes 10.70/46.20 9.34/48.15 9.39/49.08

ResNet-50
12.17/55.46 11.04/56.33 11.10/57.81

Yes 5.13/65.60 4.03/67.61 4.11/67.11
VGG-19 No 15.02/53.77 14.38/56.61 13.75/56.36

Proposed model NA 6.02/61.90 5.55/62.21 5.63/63.12
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Table 10: EER(%) and GMR@10−4FMR of all the models were evaluated on DATA-C
dataset for enrollment images under specific lighting conditions and verification images
under all lighting conditions, for Oppo device.

Models Transfer Learning
Oppo

Office Light Day Light Dim Light

DenseNet-121
10.49/60.70 8.09/62.69 10.47/61.75

Yes 6.00/62.48 3.62/67.66 6.29/65.53

MobileNet V1 0.5 224
9.36/65.49 6.42/69.00 8.92/67.35

Yes 6.82/64.13 4.51/69.16 7.37/68.28

MobileNet V1 1.0 224
9.46/65.38 6.46/67.66 8.74/67.49

Yes 6.68/64.49 4.23/68.51 7.14/66.09

MobileNet V2 0.5 224
8.88/62.90 5.98/66.68 8.27/65.39

Yes 7.51/60.15 5.61/62.16 7.77/59.56

MobileNet V2 1.0 224
9.39/64.68 6.51/67.49 8.86/66.84

Yes 7.24/60.17 5.12/63.14 7.46/62.45

NasNet-mobile
15.17/56.42 12.99/57.20 14.26/56.20

Yes 10.37/51.48 9.03/52.52 10.35/50.05

ResNet-50
12.11/58.77 9.39/60.90 11.81/60.07

Yes 5.55/66.84 3.29/70.34 6.07/69.22
VGG-19 No 14.50/57.86 12.59/61.47 13.94/58.40

Proposed model NA 6.57/62.05 5.01/65.46 7.00/64.60

36



with 672K parameters is the smallest model in size than all other models tested, as shown

in Table 3. However, compared to the MAdd operations, the proposed model is 2.7X

larger than the smallest model(MobileNet V2 0.5 224).

While comparing the performance of the proposed model to the mobile-centric

deep learning architectures (MobileNet-v1, MobileNet-v2, and MobileNet-v3), the pro-

posed model outperformed other models on DATA-B dataset as shown in Tables 5 - 7.

On dataset DATA-C, the proposed model performed better than both MobileNet-V1 and

MobileNet-V2 architectures. However, in daylight and dim lighting conditions (for en-

rollment templates), MobileNet-V1 and MobileNet-V2 architectures outperformed the

proposed model.

4.5 Conclusion

In this chapter, we evaluated popular deep learning architectures relevant to camera-

based mobile biometrics, as well as our custom proposed model, in terms of their accu-

racy, size, and computational cost measured for mobile ocular biometrics. To this aim, we

performed subject-independent verification on VISOB ocular biometrics dataset using the

fine-tuned and compact custom-designed model for mobile device-centric applications.

Experimental results show that ResNet-50, DenseNet-50, and our custom models per-

formed consistently better across all experiments. However, the proposed custom model

is 35X smaller in size and has 15.6X fewer MAdd operations than the ResNet-50 model.

Thus, it offers the best trade-off between performance and computational cost within the
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bounds of our test use case. Further, the proposed model outperformed most of the com-

pact mobile-centric architectures such as MobileNet-V1 and MobileNet-V2 in most of

the experiments.

One main limitation considering the proposed custom models would the amount of

time taken to train, 150 epochs with early stopping, is very high compared to performing

fine-tuning on pre-trained models, which is only 30 epochs.
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CHAPTER 5

OCULARNET MODEL

5.1 Introduction

In the previous chapter, from large scale analysis on different deep learning models

conducted on mobile ocular biometrics, we can have the following findings:

1. Fine-tuning a pre-trained model will increases performance by a large margin on

the ocular biometrics dataset.

2. It is possible to achieve better performance even with smaller CNN models. This

can be seen from the matching performance of MobileNet architectures and pro-

posed models being at least 10× smaller than architectures such as ResNet.

3. Custom models trained from scratch can perform similar to that of popular models,

such as MobileNet-V2 and ResNet-50, but with increased training time.

Based on these findings, we can build an efficient CNN model for mobile biomet-

rics without losing any significant matching performance. However, there are also a few

additional variables that need to be considered in mobile biometrics:

1. How does a change in the region of interest (ROI) of the eye affect the CNN models’

performance? How can it be avoided? That is the variation in how eye image is

generated. Depending on different eye detectors, the ROI of the eye will change

and can affect the final matching performance.
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2. How does a model perform not only in subject-independent evaluation but also in

cross-dataset experiments? All the experiments conducted in the previous chapter

are in subject-independent evaluation but with-in the same dataset collection.

3. How well does the model perform in cross-spectrum evaluations? That is a model

trained on the visible spectrum and tested on cross-spectrum or completely different

spectrum, like the near-infrared spectrum.

Taking these new variables into consideration, in this chapter, we propose a deep

learning method to perform patch-based ocular biometric recognition. These patches are

extracted from six overlapping windows of ocular and periocular regions. To ensure that

the extracted patches are well defined for any input eye image, we incorporate an ROI

detector for landmark localization. For each patch, a computationally small deep learning

model named PatchCNN is trained to generate feature descriptors. Feature matching is

performed by calculating the euclidean distance between each patch of enrollment and

verification image pair. The final score for this is calculated using different score fusion

techniques such as minimum, mean, and median of all patch scores. Finally, to get the

score for the input verification image for a given enrollment subject, a minimum of all

the scores are considered. We evaluate the proposed OcularNet models’ performance

compared to the popular CNN model, ResNet-50 [20], on large scale mobile VISOB [3]

dataset in an open-world subject independent verification process where the model is

trained on a subset of data that is not used in verification. We also evaluated the perfor-

mance of the model on datasets with data acquisition methods such as UBIRIS-I [53],

UBIRIS-II [54], and CROSS-EYED [55].
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The rest of this chapter is organized as follows: Section 2 provides details on the

proposed OcularNet model. Datasets, experimental protocol, and experimental results are

presented in section 3. Conclusions are drawn in section 4.

5.2 Proposed Method

The block diagram of the proposed OcularNet model is shown in Figure - 11.

First, we extract six overlapping patches from the ocular and periocular region for the

given eye image. Second, for each patch, we trained a small CNN model to extract and

generate feature descriptors. We explain our patch extraction process in section 5.2.1, the

proposed PatchCNN architecture in section 5.2.2 and feature matching in section 5.2.3.

5.2.1 Eye Patches Extraction

In our experiments, to obtain robust ROI for eye images, we Incorporated Dr-

ishti’s [56] eye landmark localization techniques. Figure - 12 depicts the eye landmark

annotations generated using Drishti eye. Firstly we align the eye image horizontally us-

ing the left and right eye corner (landmarks 0 and 8). Now, patches 1-4 are extracted by

scaling the image such that the width of the eye is 100 pixels. Then the patches of 64×64

pixel are cropped as shown in Figure - 11. Similarly, we scale the image such that the

iris’s diameter is 50 pixels to extract the patch numbers 5 and 6. This is done so that all

the patches are approximately registered with the same scale for all the subjects. The fea-

ture extraction model is trained on these patches to extract features that are differentiable

between the subjects.
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1

Figure 11: Block Diagram of the Proposed OcularNet Model.
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Figure 12: Annotations generated using Drishti Eye landmark localization.

5.2.2 PatchCNN

We used a ResNet [20] architecture, short for a residual network, based deep learn-

ing architecture for PatchCNN as shown in Figure - 13. In ResNet architecture, the input

features skipped a certain number of layers and were shorted with the output layer. Using

this idea of identity shortcut connection, we can build deeper CNN models without van-

ishing gradient problem. In our model, batch normalization followed by a rectified linear

unit (ReLU) non-linearity is applied before each convolution layer, as shown in the figure.

Also, when the stride is applied on a 3x3 convolutional layer or (and) increase the number

of feature channels in the ResNet block, the skip connection is removed.

Table - 11 depicts the architecture of the proposed PatchCNN model with a total

of only 253K parameters. Our model’s input is a 2D image with a single color channel
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(grayscale image). Considering we train six PatchCNN for each eye patch, the proposed

OcularNet has 1.5M total parameters. The proposed model has 31 convolutions layers,

followed by a multi-layer perception for embedded feature extraction.

Each PatchCNN is trained as a multi-class classifier by an additional classification

layer at the end of the model in Table - 11. As a loss function, we considered center loss

[57] with softmax loss to extract discriminative features. Each PatchCNN is trained for

50 epochs using Stochastic Gradient Descent(SGD) optimizer with momentum (= 0.9).

The training starts with an initial learning rate of 0.1, and then every 20 epochs learning

rate is reduced by a factor of 10. A subset of a dataset from VISOB Visit - I, which

will be explained in detail in the section - 5.3.1 is used as training data. After training,

the classification layer is removed, and 128 embedded features are used as the feature

descriptor.

5.2.3 Feature Matching

For a given enrollment and verification image pair, after extracting embedded fea-

tures for each patch using respective PatchCNN, we use the Euclidean distance between

each patch’s embedded feature. As there are multiple patches, the final score will be the

score level fusion of all the patches’ distances from enrollment and verification image

pair. We evaluated the mean, median, and minimum of patches scores as the final score

for given enrollment and verification image pairs in our experiments.
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Table 11: Structure of the Proposed PatchCNN for Feature Extraction and comparing
a total number of parameters for OcularNet with ResNet-50 model with a single input
channel.
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Figure 13: Block Diagram of ResNet architecture variant used in our model.

5.3 Experimental Evaluation

5.3.1 Datasets

We evaluated the performance of the OcularNet multiple datasets. We used VI-

SOB [3] for training the models and subject independent verification evaluation. Also,

to evaluate the performance of the model in different data acquired methods, we per-

formed dataset independent experiments on UBIRIS-I [53], UBIRIS-II [54] and CROSS-

EYED [55] datasets where we evaluate the feature extraction and matching performance

of the proposed method trained on a subset of VISOB dataset on different datasets without
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Figure 14: The sample of eye images from the VISOB dataset depicting variations such
as motion blur, specular reflections, and different lighting conditions that are captured in
this dataset.

any retraining.

VISOB [3]: VISOB is a publicly available dataset that was collected using front-

facing cameras of different mobile devices (iPhone 5s, Samsung Note 4 and Oppo N1) un-

der varying lighting conditions (office, daylight, and dim indoors) from over 550 healthy

subjects. The data is collected from the subject in two visits (Visit - I and Visit - II) at 2

to 4 weeks apart, and in each visit, selfie like captures are taken from subjects under all

lighting conditions and using all the three devices in two different sessions (Session - I

and Session - II) that were about 10 to 15 minutes apart. Eye crops were generated using

Viola-Jones based eye detector and resized to 160× 240 pixel resolution. Variations such

as motion blur, specular reflections, and different lighting conditions are captured in this

dataset. Figure 14 shows example ocular images from VISOB dataset.

We used Visit - I of the dataset for our experiments. We divided the dataset into
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Figure 15: The sample of eye images from UBIRIS-I dataset.

two subject-independent sets. The first set of the data consists of 200 subjects with 39, 732

images from the left and the right eye regions from all the mobile devices, lighting con-

ditions, and sessions to train the OcularNet model. The remaining dataset of 350 subjects

with 55, 314 images is used to perform subject independent verification testing, where

session - I images are used in enrollments and session - II are used in verification.

UBIRIS-I [53]: Dataset consists of 1, 877 images collected from 241 subjects

in two sessions using a DSLR camera. Figure 15 shows samples from UBIRIS-I. The

dataset is mainly used in iris segmentation and matching evaluation in the visible spec-

trum. However, it is also used in other ocular biometric applications [58]. As we can see

in figure - X, the UBIRIS-I dataset consists of the only ocular region with less to none

periocular region. So, in our experiments, we evaluated the performance of the OcularNet

for only 1, 3, & 5 patch ids.
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Figure 16: The sample of eye images from UBIRIS-II dataset depicting variation in cap-
tured distance and poses.

UBIRIS-II [54]: In this version of UBIRIS, the data is collected from 261 sub-

jects at multiple distances from 4 to 8 meters with varying poses from a DSLR camera

in two sessions. As not all eye images at all distances have a periocular region, in this

work, we performed experiments on samples collected at only 6, 7, & 8 meters. For this

dataset, we will be evaluating OcularNet for all patch ids. Figure 16 shows samples with

variation in captured distance and pose.

CROSS-EYED [55]: Unlike other datasets tested in this work, the CROSS-EYED

dataset consists of samples captured in a visible spectrum and near-infrared spectrum

from 120 subjects, as shown in Figure 17. As the evaluation for CROSS-EYED is across

the spectrum, we considered visible spectrum images as enrollment set and near-infrared

spectrum images as verification set. As the proposed model uses 2D single color chan-

nel images, we converted the RGB images to gray-scale in other datasets. However, in
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Figure 17: The sample of eye images from CROSS-EYED dataset depicting samples from
visible spectrum on top row and near-infrared spectrum images in the bottom.

the CROSS-EYED dataset, as it is across the spectrum, we choose the red color chan-

nel from visible spectrum images as the red color channel is closest in wavelength to the

near-infrared spectrum. The CROSS-EYE dataset consists of two types of eye regions.

One is only an ocular region image with the significantly less periocular region, and the

other is periocular images with the ocular region masked. Because of the masked ocular

region in periocular images, it is challenging to extract registered patches. We performed

experiments only on ocular region images, as shown in Figure 17, and evaluated the per-

formance of the OcularNet for only 1, 3, & 5 patch ids.

In our experiments, we flipped all the right eye images horizontally and considered

these images belonging to the new unique user. For the purpose of this study, We flipped

the right ocular images horizontally and considered these images as belonging to unique

subject identities. This way number of unique subjects were doubled in all the dataset,
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and all the results were computed for the left ocular images.

5.3.2 Evaluation Protocol:

To compare the performance of the OcularNet, which is a patch-based deep learn-

ing model, we considered training a single channel input ResNet-50 [20] model for com-

parison. The ResNet-50 model takes the input size of 224x224 and has 23.5M parameters,

excluding the final classification layer. We trained the Resnet-50 model with the same

dataset and training procedure used for OcularNet for better comparison. Compared to

OcularNet with 1.5M parameters, ResNet-50 has 15.6X more parameters as shown in

table - 11.

The verification performance of both models is evaluated via an equal error rate (EER%)

and genuine match rate at 0.0001 false match rate (GMR@1−4FMR). For OcularNet, as

we have multiple patches scores, we showed the final performance of minimum, mean,

and median based score fusion techniques.

In the VISOB dataset, enrollments are considered in office lighting of the session

- I, and verification are performed in all three lighting conditions from the session - II. For

the rest of the dataset, UBIRIS-I, UBIRIS-II, and CROSS-EYE, the verification perfor-

mance is shown for all the samples with enrollments from the session - I and verification

images from the session - II.

5.3.3 Results:

Table - 12 show the verification performance of OcularNet model in comparison

with ResNet-50 for VISOB dataset with enrollments in office lighting from the session
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- I and verification from all three lighting conditions, office, daylight, and dim indoors,

from the session - II. In all three devices, OcularNet achieved around 1% improvement in

EER(%) compared to ResNet-50 and at least 10% improvement in GMR@1−4FMR.

Table - 12 show the verification performance for UBIRIS-I, UBIRIS-II, and CROSS-

EYE using the OcularNet model in comparison with ResNet-50. Just like in VISOB, Oc-

ularNet with mean based score fusion technique outperformed by at least 8% in EER(%)

and 11% in GMR@1−4FMR compared to ResNet-50.

Table 12: EER(%) AND GMR(%)@10−4FMR for OcularNet and ResNet-50 evaluated
on VISOB Visit - I dataset with enrollment set contains office light images from the
session - I and verification set contains all the lighting conditions from the session - II.

Device
Ocular Net (score fusion type)

ResNet-50
min mean median

iPhone 5s 2.42/74.72 1.89/76.12 1.93/75.42 2.59/57.32

Oppo N1 1.97/65.62 1.17/67.22 1.23/66.63 2.62/56.51

Samsung Note 4 1.75/70.79 1.23/72.53 1.30/72.33 2.31/57.29

In the case of UBIRIS-I, UBIRIS-II, and CROSS-EYE datasets, there is a large

difference in performance compared to OcularNet to ResNet-50. This is mainly because

of registered patches extracted from the given eye image, which is explained in section

5.2.1.

From the above results, it can be seen that overall, the OcularNet model with

the mean of all patch scores is outperforming other score fusion schemes and also the

ResNet-50 model.
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Figure 18: (a) and (b) show examples of accurately generated eye landmarks and when
the ROI detector failed, respectively.

While conducting visual analysis on the results, we noticed that the matching per-

formance of OcularNet is dependent on how well the ROI detector performs. Figure 18(a)

shows eye images where the Drishti eye landmark system correctly detected the ROI, and

Figure 18(b) shows where it failed to do so and generates miss-aligned eye patches.

Table 13: EER(%) AND GMR(%)@10−4FMR for OcularNet and ResNet-50 evaluated
on CrossEyed, UBIRIS - V1, and UBIRIS - V2 datasets.

Dataset
Ocular Net (score fusion type)

ResNet-50
min mean median

CrossEyed 15.98/6.67 14.95/11.82 16.04/12.14 21.52/0.73

UBIRIS - V1 12.62/16.56 9.86/26.03 10.22/17.67 23.96/0.82

UBIRIS - V2 12.49/4.86 9.77/14.18 10.41/11.91 17.91/3.31
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5.4 Conclusion

In this chapter, we proposed OcularNet, a patch-based CNN architecture for mo-

bile ocular biometrics. We trained a small CNN, named patchCNN, on six overlapping

patches extracted from ocular and periocular regions of the eye images for feature descrip-

tor extraction. We showed that the proposed OcularNet model, which is 15.6X smaller

than the popular ResNet-50 model, outperforms by at least 11% GMR at 1−4 FMR in sub-

ject independent verification setting in mobile VISOB dataset. We also showed that the

proposed model achieved at least 8% lower EER compared to ResNet-50 on UBIRIS-I,

UBIRIS-II, and CROSS-EYE datasets, which have different acquisition protocols com-

pared to the VISOB dataset on which models are trained.

One of the main limitations of OcularNet is that it depends on the off-the-shelf

ROI detector for eye images. If the ROI detector failed, then the extracted eye patches

are miss-aligned, which leads to lower matching performance. Secondly, even though the

OcularNet performed better than ResNet-50 in cross-spectrum evaluation on the CROSS-

EYED dataset, the error rate reductions are not the same as in UBIRIS-I and UBIRIS-II

datasets, which are in the visible spectrum same as the training dataset.
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CHAPTER 6

OCULARNET-V2: SELF-LEARNED ROI DETECTION WITH DEEP FEATURES

6.1 Introduction

In Chapter 5, we proposed our first mobile ocular biometrics model, OcularNet.

Small CNN models, named patchCNN, trained on six overlapping patches extracted from

detected ROI from eye images. Even though we show significant performance improve-

ment in terms of the cross dataset and cross-spectrum evaluation, we ran into the following

limitations:

1. In OcularNet, depending on off-the-shelf ROI detectors for eye region detection,

matching performance is affected if the ROI detector fails.

2. As OcularNet is a patch-based method; it is required to train multiple patchCNN’s

for each patch. Even though they are tiny, they are very much specialized in working

on only the patch region. If the ROI detector fails, patchCNN fails to match.

3. As the models are not illumination normalization technique incorporated, Ocular-

Net model had higher error rates in the CROSS-EYED dataset, which is a cross-

spectrum (NIR vs. Visible) matching dataset. Whereas OcularNet is only trained

using visible spectrum data.

This chapter proposes an OcularNet-v2 with an ocular region of interest (ROI)
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detection model trained along with the feature extraction model in a self-supervised man-

ner. That is, the proposed ROI is learned in conjunction with the feature extraction such

that the learned features maximize identifiability in the unconstrained environment. This

contrasts with the existing methods where the ROI model is learned separately and in a

supervised manner. We also used a custom data augmentation pipeline to simulate the

unconstrained environment of the acquired eye images for model training.

The contributions of this chapter are as follows:

1. We introduce an ocular ROI detection model based on spatial transformer networks

(STN), which is trained along with the feature extraction model without any super-

vised learning to obtain robust and generalizable features.

2. A customized version of the MobileNet-v2 architecture is proposed with the in-

put layer changed from a 3-channel input to a single-channel input for adaptability

across different sensors and spectra. Further, we show that the last convolutional

layers could be removed from the original implementation without affecting the ac-

curacy while reducing the model size by 3.4× compared to the original MobileNet-

v2 and 36× compared to the popular ResNet-50.

3. We introduce a data augmentation pipeline with variations such as random illumi-

nation, blur, zoom, and rotation to simulate the unconstrained mobile environment

further. The data augmentation pipeline facilitates the extraction of robust features

from the predicted ROI in non-ideal imaging scenarios.

4. We conduct a thorough, large scale cross-dataset evaluation. The proposed model
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was trained only on 200 subjects from the VISOB dataset (in visible light) and

tested on UBIRIS-V2, UBIPR, and FERET for cross dataset evaluation in the vis-

ible spectrum. Finally, the CASIA-TWINS dataset is used for near-infrared (NIR)

evaluation, and CROSS-EYED for the cross dataset and cross-spectral evaluations.

The rest of the Chapter is organized as follows: The proposed method is discussed

in section 6.2. Section 6.3 provides the details on the datasets used and the experimental

protocol followed. In section 6.4, experimental results are discussed. Finally, the conclu-

sion is drawn in section 6.5.

6.2 Proposed Method

Figure 19 illustrates the training and testing pipeline of our proposed model, which

consists of an ROI detector based on a spatial transformer network aligned with the CNN-

based feature extraction model. The modules of the proposed pipeline are discussed next.

6.2.1 Data Augmentation

To obtain a robust ROI detection and feature representation in an unconstrained

environment, we first apply random photometric augmentations. Then, we resize all the

images to 180 × 180 pixels and convert them into single-channel grayscale images to

perform geometric data augmentation methods as follows:

• For photometric augmentation, we augmented illumination by randomly varying

the brightness, saturation, and contrast of the image. We limited maximum and

minimum values of brightness, saturation, and contrast to 50% of the original value
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Figure 19: The proposed deep feature learning pipeline consisting of ROI detection and
feature extraction modules.
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to avoid unnatural distortions. We also applied a small amount of random Gaussian

blur to the image to simulate the effect of de-focus. For Gaussian blur augmenta-

tion, we limited the blur kernel value to a maximum of σ = 1.0.

• For geometric augmentation, we randomly scaled the image from 0.8× to 1.5× of

the original scale. Then, we rotated the image randomly between ±20 angles and

translated each randomly up to 40 pixels. Further, we extracted a center crop of the

eye with a 160 × 160 pixel crop window, which is then fed to the proposed model

for training and testing.

Our proposed data augmentation is applied on-the-fly to every image in a batch

before being fed to the network, which is more memory-efficient during training. Fig-

ure 20 shows an example of the input ocular image along with the augmented image pairs

generated using a combination of the above photometric and geometric augmentation.

6.2.2 Region of Interest (ROI) Detection

Padole et al. [34] showed that substantial improvement in matching accuracy could

be had by aligning the eye images. Well-registered and normalized eye images are shown

to match more efficiently and accurately in general. Other studies proposed ROI-based

object detectors [59], supervised semantic mask generators [4], and much deeper models

with more parameters to better counter spatial misalignment into feature extraction mod-

ule [18]. However, these techniques either require large labeled datasets for robust ROI

detection or have a sizeable computational footprint.

To overcome these problems, here we propose using a simple spatial transformer
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Figure 20: Random augmentations for sample eye images (leftmost) obtained using our
proposed augmentation pipeline consisting of photometric and geometric augmentation.

network (STN) [60], which is trained in conjunction with the feature extraction model to

produce ocular ROIs for robust feature extraction. STN’s main application is to reduce

the spatial variance of the input images to achieve better recognition. Such a model can

be trained without the need for labeled ROI data [60].

The spatial transformer network can be divided into three parts, explained be-

low, along with our customizations for our proposed ROI detection model:

1. First, a localization network is used to predict the transformation matrix Θ. For a

localization network, one can use an MLP or CNN model to predict Θ. Table 14

shows our proposed small localization network using a CNN with less than 110K

parameters were, ConvBNReLU, convolution layer is used for feature extraction,
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followed by batch normalization and ReLU, to normalize and add non-linearity to

the features. In general, localization networks can be used to predict any transfor-

mation matrix. However, in our application, we use a 6 degrees-of-freedom affine

transformation matrix (ΘA), shown in equation 6.1.

ΘA =

[
θ11 θ12 θ13

θ21 θ22 θ23

]
(6.1)

2. Second, we generate coordinate grid samples by transforming the location of each

pixel (xti, y
t
i) in the input image I with H ×W spatial dimensions to the detected

ROI pixel coordinates (xsi , y
s
i ) in the output image I ′ per equation 6.2.

[
xsi

ysi

]
= ΘA.


xti

yti

1

 =

[
θ11 θ12 θ13

θ21 θ22 θ23

]
.


xti

yti

1

 (6.2)

3. Finally, bi-linear interpolation is used to map the input image pixels Imn to the new

detected ROI pixel coordinates (xsi , y
s
i ) in the output image I ′

i using equation 6.3.

I
′

i =
H∑
m

W∑
n

Imn.max(0, 1− |xsi −m|).

max(0, 1− |ysi − n|)

(6.3)

6.2.3 Feature Extraction

We used MobileNet-V2 like architecture [61] due to it is lower computational

cost and memory size. An inverted residual block is proposed to reduce the size and
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Table 14: Structure of the CNN-based localization network used for predicting affine
transformation matrix AΘ with 6 parameters. ConvBNReLU represents the convolution
layer followed by batch normalization and ReLU. MAXPOOL represent max pooling
layer.

Input Layer Parameters
[40×40×1] ConvBNReLU (3×3×16, stride = 2) 192

[20×20×16] MAXPOOL 2,2 -

[10×10×16] ConvBNReLU (3×3×32, stride = 2) 4,704

[5×5×32] Linear 128 102,528

128 Linear 6 774

Total Parameters 108,198

computational cost of the feature extraction model in MobileNet-V2 architecture, with

separable 3× 3 convolutional kernels, as shown in Figure 21.

The memory size and computational cost of a model can be calculated as the

total number of parameters and the total number of MAdd (multiply-add) operations in

all learnable layers, such as convolutional and fully connected layers. For a standard

convolutional layer with k convolution with cin input feature channels and cout output

feature channels, the total number of parameters is calculated as:

k × k × cin × cout (6.4)

MAdd operation with input features spatial size of H × W , assuming stride s = 1, is

calculated as:

k × k × cin × cout ×H ×W (6.5)

From the above equation 6.4 and equation 6.5, it can be seen that in a standard conven-

tional layer, to extract one new feature, k convolution is applied on all the input features.

62



Table 15: The proposed feature extraction model based on MobileNet-V2 architecture,
with the input layer changed from 3 to 1 channel. The input and output shapes are de-
scribed in height × width × channels.
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In the case of separable convolutions proposed in MobileNet-V2, only one k convolution

is performed for each input, generating the same number of channels as the input (i.e.,

cout = cin). For separable convolutions, the number of parameters and MAdd operations

is calculated as:

k × k × cin × 1 (6.6)

k × k × cin × 1×H ×W (6.7)

MobileNet-V2 proposed an inverted residual block shown in Figure 21, where

larger kernel operations with k = 3 are performed on separable convolutions, which

helps reduce the computational cost and size of the model.

We made two major modifications to MobileNet-V2:

1. We modified the input channel of the model to use only a single-channel illumina-

tion normalized image rather than an RGB image. Accordingly, the first convolu-

tional layer is changed from 3 input channels to 1.

2. We removed the last three layers to reduce the size and number of computations.

This was achieved without suffering any significant drop in matching performance.

Table 15 shows the complete architecture of our proposed CNN model. We used

self quotient image (SQI) [62] followed by a simple contrast stretching for illumination

normalization. Let σ be the Gaussian blur kernel that is applied to the input image I , then

the SQI image, IQ, is given as:

IQ =
I

σ(I) + ε
(6.8)
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Figure 21: Inverted Residual block for MobileNet-V2 architecture. t is the channel ex-
pansion factor.

Where ε is a small constant to avoid division by zero. Afterward, contrast stretched

image IQC is computed from SQI image as follows:

IQC =
max(0,min(IQ + φ, φ))

φ
(6.9)

φ is the constant stretch parameter for the SQI image. We set φ = 1.5 experi-

mentally and based on visual analysis for our study. Figure 22 shows a sample ocular

image obtained using the proposed SQI illumination normalization followed by contrast

stretching.

Table 15 shows the proposed feature extraction model with modified input along
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Figure 22: From left to right: 1) input RGB ocular image, 2) illumination normalization
using self quotient image (SQI), and 3) the image after applying contrast stretch from
equation 6.9

with input feature size, number of parameters, and the number of MAdd operations at

each layer. With computational efficiency as one of our primary goals, we evaluated

our MobileNet-V2 architecture with 4 different modifications denoted as MOD − 0 to

MOD − 3 in Table 15. MOD − 0 to MOD − 3 indicate the number of removed ending

layers (ranging from 0 to 3) in the architecture. The final embedded feature vector is

obtained by simply performing global average pooling on the output features obtained

from the feature extraction model.

6.3 Dataset And The Protocol

In this section, we discuss our study datasets and the training parameters of the

proposed model.

6.3.1 Datasets

VISOB [3]: This dataset was collected using the front-facing camera of three

mobile devices: iPhone 5s, Samsung Note 4, and Oppo N1 under three different lighting
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Table 16: Summary of the datasets and their data division splits for the training and
testing. Except for VISOB, the rest of the datasets were used for testing.

Dataset Spectrum
Subjects

(Train/Test)

Samples

(Train/Test)

VISOB [3] Visible 200/350 39,732/55,314

UBIRIS-V2 [54] Visible -/261 -/11,101

UBIPR [34] Visible -/344 -/10,257

CROSS-EYED (Iris) [5] Visible and NIR -/120 -/3,840

CROSS-EYED (Periocular) [5] Visible and NIR -/120 -/3,840

CASIA-TWINS [38] NIR -/100 pairs of twins -/3,183

FERET [64] Visible -/994 -/7,196

conditions: office, daylight, and dim indoors. The data was collected in two visits, 2 to 4

weeks apart, with two capture sessions per visit from over 550 healthy adult volunteers.

We used the Dlib library [63] for facial landmark detection. For eye localization, Dlib’s

5-point face landmarks detection model was used. Eye crops were generated such that the

eye is in the center of the crop, and the width of the eye (from eye corner to eye corner) is

60% of the aforesaid crop as shown in Figure 20 (leftmost images).

We used a subject-independent protocol and divided the dataset randomly into

training and testing sets. This random division of dataset is once before starting the ex-

periments. In the training set, we used 39, 732 images of the left and right eyes from only

200 subjects captured using all devices, lighting conditions, and sessions in VISIT-I. The

remaining 350 subjects from VISIT-I, totaling 55, 314 left and right eye images were used

for testing. Session-I samples were used for enrollment, and session II samples were used

for verification.

UBIRIS-V2 [54]: This dataset was collected from 261 individuals using a DSLR
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camera from 4 to 8 meters in two different sessions. The dataset contains 7, 731 samples

for session 1 and 3, 370 for session 2, focusing on iris and ocular biometric recognition in

visible light. We used all the samples for our evaluation in our experiments, with session-I

samples set as enrollment and session-II samples used for verification.

UBIPR [34]: This dataset contains RGB periocular images acquired at multiple

distances with varying poses. The dataset has 344 subjects with a total of 10, 257 samples

acquired at 5 different distances (D1 - D5), which we used for cross distance matching.

For example, if the samples in the distance D1 were in the enrollment set, then the remain-

ing samples of each subject from D2-D5 were used for the corresponding verification set.

CROSS-EYED [5]: This is a cross-spectral dataset for periocular and ocular bio-

metric evaluation. The dataset consists of eye samples from 120 subjects collected in vis-

ible and near-infrared (NIR) spectrum. Our experiments evaluated the dataset for cross-

spectral matching with samples from the visible spectrum used as enrollment and those

from the NIR spectrum for verification. This dataset consists of two types of eye crops.

One is a close up of the eye with no periocular region focusing on iris recognition. The

other crop focuses on the periocular region with the within the eyelids ROI masked out.

We evaluated our model on both of these eye crops.

CASIA-TWINS [38]: This dataset contains NIR ocular images from 100 pairs of

identical twins collected during the annual twins festival in Beijing. The dataset comprises

of 3, 183 left and right ocular images in total. We performed our evaluation using all the

samples.

FERET [64]: FERET is mainly a face recognition dataset. However, it has also
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been used for ocular biometrics [10]. The dataset was collected from 994 subjects with

different poses and facial expressions. In our evaluation, we used ocular images belonging

to frontal (fa and fb) and slightly tilted faces (rb and rc). 2, 670 ocular images from the

frontal fa pose were used for our enrollment set and all the remaining samples, totaling

4, 526 from frontal fb pose, and all samples with slight tilting face poses i.e., rb, and rc,

were used for the verification set. The ocular region was localized and segmented using

Dlib facial landmark detection library [63].

Table 16 shows a summary of datasets used, along with the samples in training

and testing splits. All the models proposed in this work were trained on the training

subset of the VISOB dataset. The remaining datasets, including the testing subset of

VISOB, were utilized for subject-independent analysis and cross dataset analysis across

different spectra. To further increase the level of matching difficulty, all the right-eye

images were flipped horizontally and considered as new subjects, similar to identical

twins case. This doubles the total number of subjects in both training dataset and testing

datasets given in Table 16, resulting in 400 subjects for training the models.

6.3.2 Network Training

In our experiments, MobileNet-V2 model pre-trained on ImageNet dataset [12]

was fine-tuned on our training dataset using transfer learning. Adam [52] optimizer was

used for training our models. As mentioned in section 6.2.3, we modified MobileNet-V2

with a new input layer with channel 1, and the remaining layers were used with pre-trained

weights from ImageNet dataset [12]. For this reason, we used two different learning rates.
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For the new initial layer-1 in Table 15 and ROI detection model from Table 14, we chose

an initial learning of 0.001. For layers 2 to 9 with pre-trained weights in Table 15, we

chose an initial learning rate of 0.0001 since they already have useful common informa-

tion reflected in their values. The learning rate was reduced by a factor of 10 after the

first 5 epochs and then after every 50 epoch. Models were trained using L2-normalized

categorical cross-entropy loss [57] for a total of 150 epochs with early stopping. The loss

is calculated as:

loss = − 1

M

M∑
i=1

log
α · eŴT

yi
· ˆf(xi)∑C

j=1 e
ŴT

yj
· ˆf(xi)

(6.10)

In equation 6.10, f(xi) denotes the L2-normalized deep features extracted from

the model for given input image xi in batch M belonging to class yi with target weights

Wyi . C denotes the total number of classes and α is the relaxation constant used for speed-

ing up the training process. Here (ˆ) denotes L2-normalization as shown in equation 6.11.

In our experiments, we set C = 400 which is the number of subjects in training dataset

(see section 6.3.1).

x̂ =
x

‖x‖
(6.11)

6.3.3 Matching Metric

Since this is a subject-independent, user-independent evaluation, we used cosine

similarity to generate the matching score between enrollment and verification feature vec-

tors, which has been very successful and widely used in popular deep learning based

70



biometric systems like face recognition systems [65, 66]. Cosine similarity between two

inputs xi and xj is given as follows:

scos = x̂i · x̂j =
xi
‖xi‖

· xj
‖xj‖

(6.12)

In equation 6.12, we can see that cosine similarity is the dot product between two

L2-normalized inputs and is bound between −1 and 1. We considered cosine similarity

because, during training, the loss from equation 6.10 is minimized when the cosine sim-

ilarity between deep features f(xi) and corresponding class weights wyi is maximized.

Similarly, during the evaluation, we obtain the max bound of the cosine similarity, 1,

when enrollment and verification images belong to the same subject, and vice versa.

During all our verification experiments, the match score was computed as the

maximum cosine similarity between the given verification sample and all the enrollment

samples for a given subject (multi-template matching), which is a common practice in

many biometric systems to improve accuracy and robustness.

6.3.4 Model Architecture Evaluation

To design an efficient feature extraction model, we evaluated feature matching

performance of all 4 reduced versions (MOD − 0 to MOD − 3) of the MobileNet-

V2 architecture as mentioned in Table 15. Using the proposed augmentation pipeline

in section 6.2.1 and the training subset of VISOB dataset (section 6.3.1), we evaluated

subject-independent performance of all the four modifications fromMOD−0 toMOD−

3. The architecture was evaluated on the samples from the testing subset of VISOB.
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Session I and II samples were used for enrollment and validation, respectively. Since this

experiment was to find an efficient feature extraction model, the region of interest detector

mentioned in section 6.2.2 was not used.

Figure 23: Rank-1 identification accuracy (%) of all modifications to the MobileNet-V2
architecture with respect to the number of parameters.

As this is a subject-independent user-independent evaluation, we used cosine sim-

ilarity to generate the matching score between enrollment and verification feature vectors.

Rank-1 identification rate was used as our performance metric. Figure 23 shows the rank-

1 performance of each modification with respect to the number of parameters. Rank-1

performance evaluation in an identification setting was conducted to analyze the potential

of different architectures more rigorously. This is because identification (one to many

matching) is a more difficult task than verification (one-to-one matching) with a higher

chance of false matches, especially when probing a large gallery pertaining to all enrolled

samples from all the users in the dataset.
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Examining Figure 23, it is interesting to note that the rank-1 accuracy of the full

MobileNet-V2 (MOD − 0) is 5% lower than MOD − 1 (with its layer-9 removed) .

From MOD − 1 to MOD − 3, there is only 1% increase in rank-1 accuracy. Even after

removing the last 3 layers inMOD−3, the performance is only dropping by around 0.5%

compared to MOD − 1. Further, compared to MOD − 1, MOD − 3 has 3.3× fewer

parameters and 3.3× smaller embedded feature size as shown in Table 15 and Table 22,

respectively.

Therefore, for the rest of our experiments, we chose and used MOD−3 modified

architecture of MobileNet-v2 model (referred to as OcularNet-v2) (Figure 19) along with

ROI detector (section 6.2.2). In total, the proposed pipeline (OcularNet-v2) has only

650K parameters, which is 3.4× smaller than the full MobileNet-V2 (MOD − 0) and

around 36× smaller than the popular ResNet-50 model.

For the localization network in our proposed STN model in section 6.2.2, we

resized the input image from 160×160 pixels to 1
4
× of its original size, i.e., 40×40 pixels,

before feeding it to the localization network. This was done to reduce the computational

cost and to facilitate using a smaller ROI prediction model.

6.4 Experimental Results

In our experiments, training was performed using only the VISOB’s training sub-

set, while testing was carried out on all the datasets using the subject-independent pro-

tocol discussed in section 6.3.1. This challenging data division was designed to evaluate

the generalizability of the proposed method in a subject-independent, cross dataset, and
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Table 17: VISOB test set verification results with the genuine match rate at 0.001 false
match rate (GMR (%) @ 0.1% FMR) for each lighting condition: office, daylight, and
dim indoors; for all three mobile devices: iPhone, Note-4 and Oppo N1.

iPhone

Model Office Day light Dim

MOD-1 93.00 96.12 95.96

MOD-3 93.94 96.52 96.00

OcularNet-v2 94.53 95.97 96.13

Note-4

Office Day light Dim

MOD-1 93.79 96.30 94.58

MOD-3 94.26 94.59 94.31

OcularNet-v2 91.94 95.22 95.40

Oppo N1

Office Day light Dim

MOD-1 91.57 96.20 96.19

MOD-3 91.27 96.20 95.91

OcularNet-v2 90.93 95.85 95.74
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cross-spectral matching scenarios.

For all the experiments, results are evaluated using the Equal Error Rate (EER%) [67].

Also, Genuine Match Rate (GMR%) at fixed False Match Rates (FMR%) [67] are reported

following the published measurement practices over the utilized datasets.

We compared the performance of the proposed model, OcularNet-v2, withMOD−

1 andMOD−3 models which are discussed in section 6.2.3. All the models were trained

on the same subset of the VISOB for fair performance comparison.

We evaluated the VISOB’s test set using a verification protocol where the genuine

match rate at 0.001 false match rate (GMR% @ 0.1% FMR) is set as the performance

metric, with the enrollment samples coming from session-I and verification samples from

session-II subsets. As shown in Table 17, all the models’ evaluated genuine match rates

are within a ±1% of each other. This could be due to models being trained on the same

VISOB subset, with samples drawn from all the lighting conditions and devices. Thus

these models generalized well even though the VISOB test set excludes the identities that

appear in the training data (subject-independent evaluation).

6.4.1 Cross Dataset Results

Table 18 shows equal error rate (EER%) and GMR at 1% FMR for UBIRIS-V2

dataset. We evaluated the trained models using two data splits, D1, and D2. D1 − set,

with samples drawn from distances within 6 to 8 meters, where periocular regions had

consistent quality. D2− set, where samples from all distances are considered, including

closer distance samples with large variation in the acquired periocular region. From the
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Table 18: EER(%) and GMR(%) at 1% FMR for the Ubiris-V2 dataset, comparing the
proposed method with reported methods in the literature on two different datasets. Note:
Results for PRIWIS are from [4]

Model EER (%)
GMR (%) @

1% FMR

Distance : 6 to 8 meters (D1-set)

ResNet-50 [59] 17.91 -

OcularNet [59] 9.77 68.58

MOD-1 7.78 73.74

MOD-3 8.69 70.76

OcularNet-v2 7.65 72.3

Distance : all distances (D2-set)

PRWIS by Proenca et al. [18] 22.95 -

Model by Zhao et al. [4] 10.05 -

MOD-1 10.00 65.06

MOD-3 10.33 65.36

OcularNet-v2 9.1 69.82

Table 19: EER(%) for multi-distance evaluation on the UBIPR dataset, with enrollment
samples from one distance and verification samples from the other four distances.

Enrollments at

Distance
MOD - 1 MOD - 3 OcularNet-v2

D1 4.16 5.54 4.43

D2 3.49 4.57 3.87

D3 3.73 5.24 4.18

D4 4.18 5.87 4.35

D5 3.97 5.21 4.18
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Table 18, in D1 − set evaluations, it can be seen that all trained models outperformed

our earlier OcularNet [59]. In the case of our proposed model, we obtained 2% lower

EER and close to 4% improvement in GMR(%) at 1% FMR. Also, it can be seen that

in D1 − set, the match rate of the proposed model OcularNet-v2 was comparable to the

much larger MOD − 1 model. However, as large variations in the periocular region are

introduced in D2− set, the proposed model outperformed the MOD− 1 model showing

1% lower EER% and 4% increase in GMR(%) at 1% FMR. It can also be seen that the

proposed model outperformed the PRWIS model proposed by Proenca et al. [18] by more

than 13% in terms of EER, and the model proposed by Zhao et al. [4] by 1% reduction in

EER using subject-independent evaluation.

For the UBIPR dataset, we evaluated the performance in terms of EER(%) with

enrollment (but not necessarily verification) samples acquired from a certain distance.

For example, enrollments coming from a distance of D1 meters and verification samples

from all the remaining distances. It can be seen from Table 19 that the proposed model

STN + MOD − 3 is better than MOD − 3 with 1% lower EER, and lagging only by

0.3% in EER compared to 3.3× larger model MOD − 1.

Cross spectral testing was performed on the CROSS-EYED dataset for both peri-

ocular and iris samples. We compared our trained models with the top three methods from

the CROSS-EYED 2017 competition using EER and GMR @ 1% FMR as performance

metrics. From Table 20, we see that the performance of our proposed methods (MOD-1,

MOD-3, and OcularNet-v2) is only second to the best models from the competition using

iris and periocular competition data. When it comes to our trained models, the proposed
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Table 20: EER(%), and GMR(%) at 1% FMR for CrossEyed dataset. The first three
methods for the iris and periocular dataset are the top 3 performing from CROSS-EYED
2017 competition [5]

Model EER (%)
GMR (%) @

1% FMR

Iris Dataset

NTNU4 0.05 0.00

NTNU3 5.58 8.43

NTNU1 6.19 8.81

ResNet-50 [59] 21.52 -

OcularNet [59] 14.95 -

MOD-1 3.80 13.91

MOD - 3 3.75 14.74

OcularNet-v2 2.71 7.86

Periocular Dataset

HH1 0.82 0.74

NTNU1 1.59 1.86

IDIAP2 1.65 2.03

MOD-1 2.40 5.21

MOD - 3 2.19 4.38

OcularNet-v2 0.94 0.83
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Table 21: EER(%), and GMR at 0.1% FMR, for FERET dataset and CASIA-TWINS
dataset using (a) all data and (b) twins only data.

- FERET dataset
CASIA-TWINS

(All data)

CASIA-TWINS

(Only Twins)

Model EER
GMR @

0.1% FMR
EER

GMR @

0.1% FMR
EER

GMR @

0.1% FMR

MOD-1 6.79 72.43 12.02 56.73 11.75 60.07

MOD-3 7.43 69.85 12.83 58.70 13.07 55.70

OcularNet-v2 6.06 72.96 11.29 65.18 9.41 69.18

model (OcularNet-v2) achieved a 6% lower GMR compared to a much larger MOD − 1

model over the iris dataset. Similarly, using the periocular dataset, the OcularNet-v2

model achieved 4.38% lower GMR compared to MOD − 1.

For the FERET dataset, the proposed method, STN + MOD − 3, performed

slightly better than other evaluated models, with approximately 0.5% improvement in

EER and GMR (at 0.1% FMR), as shown in Table 21. For NIR spectrum CASIA-TWINS,

the proposed model’s one-to-one matching performance was calculated over (a) all the

datasets and (b) between twin pairs only. From Table 21, it can be seen that the proposed

model outperforms by 8.45% higher GMR at 0.1% FMR for all data comparison (a), and

by 9.11% higher GMR at 0.1% FMR in case of twins only comparison (b).

6.4.2 Visual Analysis of the ROI Model

Our proposed ROI model is based on STN architecture and trained using self-

supervision along with the feature extraction model MOD − 3. Thus the ROIs detected

by the model are entirely dependent on the training dataset. After training the model for
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Figure 24: (a) Shows eye samples where the STN model extracted good ocular ROIs in
the different wavelengths. (b) It shows eye samples, with bad ocular crops or eyeglasses
frames showing, where the STM model failed to crop the input correctly. Note: for each
image pair, the left image is STN model input, and the right one is the output.

40 − 60 epochs, the STN model starts to learn to detect the proper ROI from the input

eye images. These ROIs are expected to have better classifiability, as shown in Figure 25.

It can be seen from Figure 25 that the feature extraction model learned to obtain better

classifiable features from the crop with the eye at the center, horizontally aligned, and the

width of the eye covering about 90% of the crop.

As for the test set, Figure 24 (a) shows samples where the STN model successfully

obtained ROIs with the eye properly centered. However, as shown in Figure 24 (b), in the

case of eye images with little to no periocular region, the model failed to align. The model

also failed in samples with prescription eyeglasses. However, this is due to the fact that

VISOB visit I, used for training, did not contain subjects with glasses.
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Figure 25: STN model output with the learned ocular ROI using the augmented samples
from training.

6.4.3 Execution Time On Embedded Device

To evaluate the computation cost of the proposed model on mobile and Embedded

systems, we choose Nvidia Jetson Nano [68] for standardized testing and used execution

time (in milliseconds) as the performance metric. The experiments are conducted on the

deep learning framework Pytorch-1.6 at 32bit floating-point precision with just-in-time

(JIT) compilation to achieve consistency and the best performance. To compare the per-

formance of the proposed model, we chose ResNet-50, MobileNet-v2 and modification

which are proposed for MobileNet-v2 in section-6.2.3, MOD− 0 to MOD− 3. Table-x

shows the execution time (ms) and the size of the all the evaluated models. It can be seen

that the proposed model requires only 37.6ms with model size being 36× smaller com-

pared to ResNet-50. Also, compared to full MobileNet-v2, the proposed model is 3.4×
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Table 22: Comparison of execution times and parameter sizes using the proposed model
OcularNet-v2 with proposed feature extraction modelsMOD−{1, 3}, OcularNet-v1 (6×
PatchCNN), and popular CNN architectures such as MobileNet-v2 and ResNet-50.

Model # Parameters Execution time (ms)

ResNet-50 23.50M 92.1

OcularNet 1.52M 6× 27.72 = 166.33

MobileNet-V2 2.22M 37.1

MOD-0 2.22M 36.7

MOD-1 1.81M 35.5

MOD-2 1.34M 33.5

MOD-3 542K 30.2

OcularNet-v2 650K 37.6

smaller with the same execution time. OcularNet-v2 usesMOD−3 as a feature extractor

with an STN model for ROI detection. AsMOD−3’s execution time is 30.2ms, it should

be noted that the STN model in OcularNet-v2 requires around 7ms for ROI detection.

6.4.4 Key Findings of the Study

1. For VISOB, UBIPR, FERET, and farther distance subset of UBIRIS-V2 (D1−set),

the eye samples are already well aligned and centered; thus, little needs to be done

in terms of image alignment or ROI detection. Therefore applying STN along with

MOD − 3 did not provide significant improvements. Overall, the equal error rate

and genuine match rates stay within ±1% of non-ROI-detecting models.

2. However, with the introduction of data with more considerable variations, as seen in

CASIA-TWINS or UBIRIS-V2(D2− set), the proposed method shows significant
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improvements in accuracy compared to 3× larger (and also deeper) CNN model,

MOD − 1. Overall, we see a 9% improvement in GMR at 0.1% FMR using the

proposed ROI detection model.

3. From visual inspection of ROIs in the section - 6.4.2, we can see that the self-

supervised STN model is capable of centering and aligning the eye as well as proper

rotation to level the eye image.

4. With a further visual inspection, one can see that large pose variations, over-cropped

inputs, and samples with visible glass frames cause the proposed ROI model to fail.

This issue may be mitigated by improving the augmentation pipeline and introduc-

ing samples with large pose variations and eyeglasses into the training set.

6.5 Conclusion

This chapter introduced OcularNet-v2: an efficient feature extraction model for

ocular biometrics in unconstrained environments. OcularNet-v2 consists of an ocular

ROI detector trained in a self-supervising manner and the feature extraction model. The

feature extraction model is a modified version of MobileNet-V2 architecture, which is

36× smaller than the popular ResNet-50. We also proposed a custom data augmenta-

tion pipeline and illumination normalization technique to learn robust features even in the

presence of an adverse imaging environment and in cross-spectral matching, not to men-

tion mirrored eyes that simulate subjects akin to identical twins. Our experimental results

show that our model, which was trained using only 200 subjects from the visible light VI-

SOB dataset, can easily generalize to other datasets, including those captured in NIR. We
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evaluated our model on UBIRIS-V2, UBIPR, FERET, CROSS-EYED, and CASIA-IRIS-

TWINS datasets and could obtain error rates up to 7× lower than the existing models’ as

reported in the literature.
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CHAPTER 7

LOD-V: LARGE OCULAR BIOMETRICS DATASET IN VISIBLE SPECTRUM

7.1 Introduction

In the previous chapter, we proposed OcularNet-v2, an efficient feature extraction

model for ocular biometrics in unconstrained environments, and shown significant im-

provements in verification performance in subject-independent, cross dataset evaluation

datasets with samples captured in different lighting spectrum(NIR).

In OcularNet-v2 and in the literature, evaluations for subject-independent mobile

verification protocol are conducted by creating a training and testing set by dividing the

dataset subject-wise. In our experiments, we choose 200 subjects from the VISOB dataset

as the training set and reaming samples for subject-independent evaluation.

However, there two limitations to this approach:

1. In the real world, the number of subjects (N) using the biometric system is large.

By dividing the evaluation, dataset purpose will make it challenging to evaluate

real-world performance.

2. The proposed biometrics model needs to work on many mobile devices from dif-

ferent manufactures with a wide variety of selfie camera parameters. Training and

testing on the same dataset will make it difficult to evaluate the model’s real-world

performance.
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To ensure the evaluation is conducted in a subject-independent environment with-

out the limitation mentioned above, models are trained on our new proposed dataset LOD-

V (Large Ocular dataset in Visible Spectrum), which consists of more than 750 subjects

with around 200K samples. LOD-V collects existing high-quality face datasets for face

recognition and anti-spoofing purposes, from which periocular images are extracted for

this evaluation. Testing is conducted on datasets from Chaprter 6, UBIRIS-V2 [54],

UBIPR [34], CROSS-EYED [5], FERET [64], and CASIA-TWINS [38] datasets and

show significant performance improvements in cross-dataset and cross spectrum evalua-

tion.

The rest of the chapter is as follows, In Section-7.2, we provide details of the new

LOD-V dataset. Experimental setup for training and testing OcularNet-v2 are provided

in Section-7.3. In Section-7.4, experimental results are discussed. Finally, the conclusion

is drawn in Section-7.5.

7.2 Creating LOD-V Dataset

LOD-V data is a collection of 8 datasets containing high-quality face data created

for anti-spoofing and facial expressions research. We extract eye images from the subjects

from each of these face datasets such that there are at least 4 samples per eye are available.

In total, the proposed LOD-V dataset has 772 subjects with a total of 217K samples. Table

23 shows the number of subjects and samples per face datasets present in the LOD-V

dataset.
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Figure 26: Eye samples generated from CASIA Face anti-spoofing dataset.

7.2.1 Face Databases

In the following section, we introduce all the 8 face datasets used in creating LOD-

V briefly.

Casia Face anti-spoofing [69] dataset consists of 50 unique subjects. The dataset

is video samples collected from live subjects at three different video qualities. In our

experiments, the video samples from only high-quality videos are used for extracting eye

images. The dataset also consists of the spoof video samples; however, we did not use

them for our biometric recognition experiments.

The Chicago Face Database [70] is a facial expressions dataset consisting of face

images from 597 volunteers with different ethnicities one of five other facial expressions

for fear, anger, and happiness close-mouthed, happy open-mouthed, and neutral. The
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Table 23: Number of samples and subjects for all the databases in LOD-V dataset.

Database
All samples 4 samples/subject

# Subjects # Samples # Subjects # Samples

Casia Face anti-spoofing 50 4242 50 4242

Chicago Face Database 597 2414 156 1524

FACES 171 4104 171 4104

KDEF 70 1960 70 1960

Oulu-NPU 55 50518 55 50518

RaFD 67 3216 67 3216

Replay-Mobile Database 39 30790 39 30790

SiW database 164 121496 164 121496

Total 1213 218740 772 217850

dataset consists of 2414 samples; however, as we only considered subjects with at least 4

samples available, we used 1524 samples from 156 subjects in our experiments.

FACES [71] dataset contains high-quality face images collected from 171 Cau-

casian volunteers for facial expressions recognition. The dataset is divided into three age

groups, young (n = 58), middle-aged (n = 56), and older (n = 57), all expressing

six facial expressions: neutral, sadness, disgust, fear, anger, and happiness. The dataset

comprises two samples per expression per person with a total of 2, 052 images.

The Karolinska Directed Emotional Faces (KDEF) [72] is a set of 4900 in pic-

tures from 70 representative across ethnicity, race, sex, and gender with 7 primary facial

expressions captured in five different facial poses. We only used samples from frontal

poses in our experiments and ended up with 1960 samples from all 70 individuals.

The Oulu-NPU [73] is face anti-spoofing detection database consists real and
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Figure 27: Eye samples generated from Chicago Face Database.

attack videos collected from 45 subjects. These video samples for each subject were

captured in different illumination conditions and different places using the front cameras

of six different mobile devices. In our experiments, we used only real video samples from

all the mobile devices and individuals.

The Radboud Faces Database (RaFD) [74] is a high-quality face database con-

taining pictures of eight emotional expressions from 67, primarily Caucasian individuals.

The dataset consists of x number of samples equally distributed among all the subjects

with 8 facial expressions: anger, disgust, fear, happiness, sadness, surprise, contempt, and

neutral.

The Replay-Mobile Database [75] for face anti-spoofing detection consists of

video clips from 40 subjects in different lighting conditions. The dataset consists of video
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Figure 28: Eye samples generated from FACES facial expressions recognition database.

samples collected using a selfie camera of iPad Mini2 and an LG-G4 smartphone under

five lighting conditions (controlled, adverse, direct, lateral, and diffuse). Our experiments

used high-quality samples from 39 subjects only under controlled illumination conditions

for our experiments.

Spoof in the Wild (SiW) [76] database provides live and spoof videos from 165

individual in a different distance, pose illumination, and expressions variations. For each

subject, 8 live videos and 20 spoof videos are collected with a total of 4478 videos in the

database. In our experiments, we considered eye samples from only live videos.

7.2.2 Generating Eye Crops

To generate the eye crops from the face images, we used the Dlib library [63]

for face localization and detection. For eye localization, Dlib’s 5-point face landmarks
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Figure 29: Eye samples generated from Karolinska Directed Emotional Faces (KDEF)
database.

detection model was used, and eye crops were generated such that the eye is in the center

of the crop, and the width of the eye (from eye corner to eye corner) is 50% of the crop as

shown in Figure 34.

In the case of face databases with video clips, we sampled 5 frames per second of

the data for extracting eye crops.

In our training dataset, we flipped all the right-eye images horizontally and con-

sidered them as the new subjects, resulting in double the number of subjects. Total of

1544(= 2× 772) subjects are used for training OcularNet-v2 model.
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Figure 30: Eye samples generated from Oulu-NPU database.

7.3 Experimental Setup

To train and evaluate the OcularNet-v2 model with the new LOD-V dataset, we

used the same experimental setup proposed in the previous chapter Section-6.3.

7.3.1 Training Protocol

The OcularNet-v2 model is trained with two different learning rates for layers

trained from scratch and pre-trained layers from MobileNet-v2 trained with a lower learn-

ing rate for fine-tuning. Adam [52] optimizer was used for training our models with initial

learning rates of 0.001 and 0.0001 for layers trained from scratch and for fine-tuning lay-

ers, respectively. The learning rate was reduced by 10 after the first 5 epochs and then

after every 50 epoch. Models were trained using L2-normalized categorical cross-entropy
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Figure 31: Eye samples generated from Radboud Faces Database (RaFD).

loss [57] for a total of 150 epochs with early stopping.

7.3.2 Test Datasets

Experiments are conducted on 6 datasets: VISOB, UBIRIS-V2, UBIPR, FERET,

CROSS-EYED, and CASIA Twins datasets. Details of all the datasets are provided in

Section-6.3.1. All the datasets follow similar testing protocol from Section-6.3.1 except

for VISOB dataset. In our previous chapter, to train OcularNet-v2, we divided the dataset

randomly for subject-independent evaluation into training and testing sets. However, as

we train the model with the new LOD-V dataset, we used the whole VISOB VISIT-

I dataset to test and compare the proposed model’s performance with different literary

techniques.

We evaluated the results using Equal Error Rate (EER%) [67], and Genuine Match
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Figure 32: Eye samples generated from Replay-Mobile Database.

Rate (GMR%) at fixed False Match Rates (FMR%) [67] following the published measure-

ment practices over the utilized datasets.

7.4 Results

We compared the performance of the OcularNet-v2 model trained on proposed

LOD-V dataset with OcularNet-v2 trained on VISOB datasets along with MOD− 1 and

MOD − 3 models which are discussed in section 6.2.3. To differentiate OcularNet-v2

trained on LOD-V with the one trained on VISOB, we use OcularNet-v2 + LOD-V for

the model trained on LOD-V dataset.

All the experimental results on the tests datasets discussed in section-7.3.2 are

divided into same spectrum cross-dataset evaluation and cross-spectrum evaluations.
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Figure 33: Eye samples generated from Spoof in the Wild (SiW).

7.4.1 Cross-dataset Results

First, we report the cross-dataset evaluation results on the VISOB dataset in the

same illumination and cross-illumination. In the same illumination evaluation, enrollment

samples and verification samples are from the same lighting conditions. In contrast, in

cross-illumination evaluation, enrollment samples are from office light, and verification

samples are from all three lighting conditions (Office, dim light, daylight).

Tables 24 - 26 shows the same illumination evaluation results in GMR at 0.1%

FMR. The table is divided into three categories, first, are results based on handcrafted

features [30], second is the results from models trained in the subject-dependent envi-

ronment, and finally, the results of the cross-dataset assessment. It can be seen that the
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Table 24: Verification performance (GMR% at FAR= 10−3) of existing models compared
to our proposed model OcularNet-v2 on iPhone samples from VISOB Visit-I dataset.

Models iPhone
Office light Day light Dim light

Hand Crafted Features [30]
Block BSIF 30.09 44.23 37.99
Block HoG 0.45 0.15 1.13

BSIF 43.30 60.82 46.18
HoG 0.31 0.04 0.47
LPQ 3.12 1.82 7.22

Closed-Set Protocol
MR Filters 89.46 91.69 92.54

Deep SparseFilters 87.62 89.65 89.55
VisobNet 99.67 99.71 99.82
ConvSRC 99.69 99.86 99.62

Open-Set Protocol
ResNet + TL 81.15 87.76 90.17

Best Model from [42] 85.68 82.06 80.26
OcularNet-v2 + LOD-V 94.26 94.82 96.96
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Table 25: Verification performance (GMR% at FAR= 10−3) of existing models compared
to our proposed model OcularNet-v2 on Samsung Note-4 samples from VISOB Visit-I
dataset.

Models Note 4
Office light Day light Dim light

Hand Crafted Features [30]
Block BSIF 27.36 48.10 46.50
Block HoG 0.31 0.13 0.19

BSIF 36.97 58.66 58.88
HoG 0.29 0.10 0.25
LPQ 1.85 5.65 9.29

Closed-Set Protocol
MR Filters 90.29 92.72 93.01

Deep SparseFilters 85.32 92.63 92.12
VisobNet 98.76 99.21 99.48
ConvSRC 98.85 99.39 99.61

Open-Set Protocol
ResNet + TL 62.83 79.16 73.10

Best Model from [42] 82.38 79.55 75.03
OcularNet-v2 + LOD-V 93.85 95.70 96.85
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Table 26: Verification performance (GMR% at FAR= 10−3) of existing models compared
to our proposed model OcularNet-v2 on Oppo N1 phone samples from VISOB Visit-I
dataset.

Models Oppo
Office light Day light Dim light

Hand Crafted Features [30]
Block BSIF 24.96 47.81 39.20
Block HoG 0.63 0.43 0.52

BSIF 29.34 53.93 42.38
HoG 0.35 0.19 0.31
LPQ 3.42 2.70 4.02

Closed-Set Protocol
MR Filters 93.03 92.63 93.92

Deep SparseFilters 83.79 97.10 87.29
VisobNet 99.23 99.65 99.85
ConvSRC 99.31 99.17 99.32

Open-Set Protocol
ResNet + TL 69.34 75.32 81.62

Best Model from [42] 85.35 83.98 76.35
OcularNet-v2 + LOD-V 95.73 95.75 97.05
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Figure 34: Generated eye crops for LOD-V dataset with width of eye of 50% of the eye
crop size.

proposed model outperformed all the handcrafted feature models and cross-dataset eval-

uation by a large margin. Compared to subject-dependent environment models, even

though they are trained and tested on the same dataset, the proposed model still achieves

substantial performance with an average GMR of 96.67% at 0.1% FMR across all devices

and illumination conditions. We calculated EER(%) for VISOB cross-illumination evalu-

ation, as shown in Table 27. It can be seen that the proposed model outperformed all the

cross-dataset evaluation models with a significant reduction in error rate. Compared to

the models trained in a subject-dependent environment, the proposed model achieves the

third-best error next to the MR filters [30] and deep sparse filters [16] methods.

Table 28 shows EER(%), and GMR at 1% FMR for the trained model on two data

splits in the UBIRIS-V2 dataset. D1 − set contains samples collected from the person

standing within 6 to 8 meters from the camera, capturing eye images with a consistent
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Table 27: Cross illumination performance (EER%) on VISOB dataset with enrollments
from Office lighting and verification samples from all the lighting conditions.

Models
iPhone Oppo Samsung

O-O O-DAY O-DIM O-O O-DAY O-DIM O-O O-DAY O-DIM

subject-dependent Protocol

MR Filters 0.06 0.13 0.20 0.04 0.10 0.09 0.05 0.13 0.10

Deep Sparse

Filtered
0.48 1.82 1.45 0.63 1.90 3.34 0.49 2.50 4.25

ANU 10.36 11.03 16.64 16.01 14.75 18.24 9.10 13.69 19.57

IIITG 19.29 32.93 45.34 19.79 38.24 42.59 18.65 34.29 40.21

subject-independent and Cross-dataset Protocol

ResNet + TL 3.72 12.50 14.72 7.29 21.64 19.36 7.75 17.18 25.94

Best Model

from [42]
5.46 10.38 14.76 8.33 14.82 16.69 7.35 12.99 19.33

OcularNet-v2 +

LOD-V
1.83 4.66 9.66 1.40 4.74 11.84 2.16 5.42 9.55

100



Table 28: EER(%) and GMR(%) at 1% FMR for the Ubiris-V2 dataset, comparing the
proposed method with reported methods in the literature on two different datasets. Note:
Results for PRIWIS are from [4]

Model EER (%)
GMR (%) @

1% FMR

Distance : 6 to 8 meters (D1-set)

ResNet-50 [59] 17.91 -

OcularNet [59] 9.77 68.58

MOD-1 7.78 73.74

MOD-3 8.69 70.76

OcularNet-v2 7.65 72.3

OcularNet-v2 + LOD-V 4.75 86.21

Distance : all distances (D2-set)

PRWIS by Proenca et al. [18] 22.95 -

Model by Zhao et al. [4] 10.05 -

MOD-1 10.00 65.06

MOD-3 10.33 65.36

OcularNet-v2 9.1 69.82

OcularNet-v2 + LOD-V 7.81 63.11
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Table 29: EER(%) for multi-distance evaluation on the UBIPR dataset, with enrollment
samples from one distance and verification samples from the other four distances.

Enrollments at

Distance
MOD - 1 MOD - 3 OcularNet-v2

OcularNet-v2 +

LOD-V

D1 4.16 5.54 4.43 2.63

D2 3.49 4.57 3.87 2.44

D3 3.73 5.24 4.18 2.94

D4 4.18 5.87 4.35 3.27

D5 3.97 5.21 4.18 2.64

quality periocular region. Whereas D2 − set contains all the samples from the UBIRIS-

V2 dataset. From Table 28, we can see that compared OcularNet-v2 trained on partial

VISOB dataset, in D1 − set, the same model trained on the LOD-V dataset achieved

close to 3% reduction in error rate with more than 14% improvement in GMR at 1%

FMR. In D2− Set, OcularNet-v2 trained on LOD-V reduced the error rate by 1.3%, and

however, GMR at 1% FMR is reduced by 6.71%.

UBIPR dataset contains samples collected at five distances. In our experiments,

we chose samples from a certain distance and verification samples from the remaining

distances. Table 29 shows the performance of all the trained models in EER(%). It can

be seen that the OcularNet-v2 trained with LOD-V reduces EER by 1.42% compared to

the model trained on a partial VISOB dataset. It can also be seen that the OcularNet-v2 +

LOD-V outperforms MOD − 1 model which is 3.3× larger in parameters.

As shown in the Table 30, in FERET dataset evaluation, the OcualrNet-V2 + LOD-

V reduces error rate by 2.3× compared to the same model trained on VISOB dataset,

while GMR at 0.1% FMR increase by 17.24%.
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Table 30: EER(%), and GMR at 0.1% FMR, for FERET dataset and CASIA-TWINS
dataset using (a) all data and (b) twins only data.

- FERET dataset
CASIA-TWINS

(All data)

CASIA-TWINS

(Only Twins)

Model EER
GMR @

0.1% FMR
EER

GMR @

0.1% FMR
EER

GMR @

0.1% FMR

MOD-1 6.79 72.43 12.02 56.73 11.75 60.07

MOD-3 7.43 69.85 12.83 58.70 13.07 55.70

OcularNet-v2 6.06 72.96 11.29 65.18 9.41 69.18

OcularNet-v2 + LOD-V 2.46 90.20 9.53 67.12 9.95 61.49

7.4.2 Cross-Spectral Results

EER(%) and GMR at 1% FMR for the CROSS-EYED dataset in Iris only and

periocular only dataset are shown in Table 31. It can be seen that for Iris only dataset,

the OcularNet-v2 model trained on the LOD-V error rate increased by 4.11%, and while

GMR remained the same. However, in the periocular dataset, OcularNet-v2 trained on

LOD-V reduced EER(%) to 0.73% from 0.94% for the same model trained on VISOB

and GMR is reduced by more than 2.5×. From Table 31, it can also be seen that in

for periocular dataset, the proposed model outperformed the best model HH1 in both

EER(%) and GMR at 1% FMR.

In the NIR spectrum test dataset, CASIA-TWINS, we calculated EER(%) and

GMR at 0.1% FMR for (a) all the dataset and (b) between only twin pairs. The Table 30

shows that the EER reduced by 1.76% with a 1.94% increase in GMR. However, in the

case of twins, only dataset, model trained on the LOD-V dataset achieved slightly lower
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Table 31: EER(%), and GMR(%) at 1% FMR for CrossEyed dataset. The first three
methods for the iris and periocular dataset are the top 3 performing from CROSS-EYED
2017 competition [5]

Model EER (%)
GMR (%) @

1% FMR

Iris Dataset

NTNU4 0.05 0.00

NTNU3 5.58 8.43

NTNU1 6.19 8.81

ResNet-50 [59] 21.52 -

OcularNet [59] 14.95 -

MOD-1 3.80 13.91

MOD - 3 3.75 14.74

OcularNet-v2 2.71 7.86

OcularNet-v2 + LOD-V 6.82 8.86

Periocular Dataset

HH1 0.82 0.74

NTNU1 1.59 1.86

IDIAP2 1.65 2.03

MOD-1 2.40 5.21

MOD - 3 2.19 4.38

OcularNet-v2 0.94 0.83

OcularNet-v2 + LOD-V 0.73 0.31

104



Figure 35: (a) Shows ROI’s generated by OcularNet-v2 when trained on VISOB dataset.
(b) Shows ROI’s generated by OcularNet-v2 when trained on LOD-V dataset where the
model preferred larger periocular region. Note: for each image pair, the left image is STN
model input, and the right one is the output.

performance than the model trained on the VISOB dataset.

7.4.3 Visual Analysis of the ROI Model

From Figure 35, it can be seen that the proposed model, when trained with a

partial VISOB dataset with only 200 subjects generated ROI’s with the eye at the center,

horizontally aligned, and the width of the eye covering about 90% of the crop. However,

when we train the OcularNet-v2 model from scratch with a larger LOD-V dataset with

772 subjects, the model generated ROI’s with similarly eyes centered and with a larger

periocular region. This shows that the model needed a larger eye region to improve the

generalizability with a large number of subjects.
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7.4.4 Key Findings

1. OcularNet-v2 (MOD − 3 + STN ) model trained on VISOB did not show any

performance improvements compared to only MOD − 3 on UBIPR, FERET, and

D1 − set in UBIRIS-V2 datasets, where images are well aligned and centered.

However, with the introduction of a large training dataset, LOD-V, we can see con-

siderable performance improvements.

2. However, we saw a drop in performance in datasets such as CROSS-EYED iris only

and D2− set in UBIRIS-V2, where some sample’s eye crop have the only eye and

with the less-to-no periocular region is available. Training models on much tighter

crops can mitigate this issue.

7.5 Conclusion

This chapter proposed a new dataset LOD-V with 772 unique subjects and more

than 200K samples to avoid division of test databases for subject-independent evaluation

and provide access to Large scale verification evaluation to show real-world performance.

We show that the OcularNet-v2 model trained on the LOD-V dataset achieved signifi-

cant performance improvements compared to the same model trained on partial VISOB

dataset various datasets in the cross-dataset evaluation and the cross-illumination evalua-

tions showing up to 3% reduction in error rates.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Summary Of Contributions

With advancements of deep learning technology mobile devices, many proposed

improving matching accuracy of ocular biometrics. Many of these early works imple-

mented using deep learning techniques to achieve higher matching performance with re-

ally low error rates. However, the drawback of these implementations is that they operated

on a subject-dependent dataset where the model is trained and tested on the same subjects.

These models also tend to be large, making them difficult to deploy on a mobile device

efficiently.

Our work conducted an extensive evaluation to propose a deep learning-based

matching model achieving higher matching performance in subject in-depended eval-

uation while being efficient enough for operating on mobile phones in real-time. Our

proposed model shows comparative performance, even in cross-dataset evaluation.

Chapter 4 conducted a large scale evaluation on different deep learning models

in subject-independent evaluation to find a model that achieves better matching perfor-

mance while being computationally efficient. Experimental results on the VISOB dataset

show that it is possible to attain larger models such as ResNet-50 even with smaller mod-

els based on MobileNet architectures. From these findings, In Chapter-5, we proposed

OcularNet, a patch-based CNN architecture for mobile ocular biometric matching. The
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proposed model OcularNet consists of 6 small CNN models named PatchCNN, which ex-

tract features from overlapping patches extracted from the eye region. OcularNet, while

being 15.6× smaller in size compared to ResNet-50, is our performance with up to 8%

lower error rates in subject-independent, cross-dataset and also in cross-illumination eval-

uations.

However, the main limitation of OcularNet models is that it requires an ROI de-

tector to obtain accurate eye region localization to extract the overlapping regions for

feature extraction. As the model depends on an off-the-shelf ROI detector, the model fails

to match if the ROI detector fails. To overcome this problem, we propose OcularNet-

v2 in Chapter 6, where the feature extraction model is trained along a size ROI detection

model to achieve better performance while being computationally efficient. OcularNet-v2

is consists of STN based ROI detector trained in conjunction with a modified MobileNet-

V2 model while being 36× smaller than the ResNet-50 model and takes only 37.6ms

of execution on an embedded device. The proposed is evaluated on multiple subject-

independent, cross-dataset, and cross-illumination datasets showing up to 7× lower error

rates than the models presented in the literature.

Finally, we proposed a large ocular biometrics dataset in the visible spectrum

(LOD-V) for large-scale deep learning model training. LOD-V dataset is prepared by

combining high-quality face datasets used for facial expression and anti-spoofing analy-

sis. The proposed dataset consists of 217K image samples from 772 subjects. We shown

the OcularNet-v2 model trained using the LOD-V dataset achieves up to 2.5× reduction

in error rates.
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8.2 Limitations

As a larger dataset is introduced in training OcularNet-v2 model in Chapter-7

with LOD-V, it can be noticed that ROI’s detection in the model preferred to have more

periocular region than the model trained on 200 subject VISOB dataset, as shown in

Figure 35. Because of this, in the iris only CROSS-EYED dataset, with samples having

no periocular region, the error rate increased by 4%. This shows that the model has

difficulty generalizing well with the dataset iris only datasets with less to no periocular

region.

8.3 Future Works

In Chapter 6, the OcularNet-v2 model consists of a modified MobileNet-V2 model

where we were able to change an input and remove a significant amount of layers while

maintaining the performance. In our future work, we will be performing this model mod-

ification analysis on the different types of architectures to study the performance effect

of removing multiple layers and trying various input features. With advancements in Au-

toML for custom model search from scratch, we want to conduct a thorough evaluation

to see if it is possible to construct efficient models for ocular biometrics, which com-

petes with the existing architectures designed for general-purpose vision datasets such as

ImageNet.

In our work, experiments are conducted on subject independent, cross-dataset,

and cross-illumination. However, most of the datasets available have samples collected

on the same day, with few datasets collected in multiple sessions focusing on short-term
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verification evaluation. Even though the VISOB dataset is collected in multiple visits,

the dataset concentrates on same-day matching performance only. To overcome this, we

recently proposed VISOB 2.0 [77], mainly focusing on long-term verification evaluation

of biometric models. In future work, we will be conducting a large-scale assessment of

different methods and the performance change while going from short-term verification

to long-term verification.
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APPENDIX A

SUPPLEMENTARY MATERIALS FOR CHAPTER 4

Figure 36: ROC curves for various deep learning models for enrollments in office lighting

and verification samples from all the lighting conditions for samples in DATA-B set from

iPhone 5s device.
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Figure 37: ROC curves for various deep learning models for enrollments in dim office

lighting and verification samples from all the lighting conditions for samples in DATA-B

set from iPhone 5s device.

Figure 38: ROC curves for various deep learning models for enrollments in outdoor day

lighting and verification samples from all the lighting conditions for samples in DATA-B

set from iPhone 5s device.
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Figure 39: ROC curves for various deep learning models for enrollments in office lighting

and verification samples from all the lighting conditions for samples in DATA-B set from

iPhone 5s device.

Figure 40: ROC curves for various deep learning models for enrollments in dim office

lighting and verification samples from all the lighting conditions for samples in DATA-C

set from iPhone 5s device.
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Figure 41: ROC curves for various deep learning models for enrollments in outdoor day

lighting and verification samples from all the lighting conditions for samples in DATA-C

set from iPhone 5s device.

Figure 42: ROC curves for various deep learning models for enrollments in office lighting

and verification samples from all the lighting conditions for samples in DATA-B set from

Samsung Note 4 device.
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Figure 43: ROC curves for various deep learning models for enrollments in dim office

lighting and verification samples from all the lighting conditions for samples in DATA-B

set from Samsung Note 4 device.

Figure 44: ROC curves for various deep learning models for enrollments in outdoor day

lighting and verification samples from all the lighting conditions for samples in DATA-B

set from Samsung Note 4 device.
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Figure 45: ROC curves for various deep learning models for enrollments in office lighting

and verification samples from all the lighting conditions for samples in DATA-B set from

Samsung Note 4 device.

Figure 46: ROC curves for various deep learning models for enrollments in dim office

lighting and verification samples from all the lighting conditions for samples in DATA-C

set from Samsung Note 4 device.
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Figure 47: ROC curves for various deep learning models for enrollments in outdoor day

lighting and verification samples from all the lighting conditions for samples in DATA-C

set from Samsung Note 4 device.

Figure 48: ROC curves for various deep learning models for enrollments in office lighting

and verification samples from all the lighting conditions for samples in DATA-B set from

Oppo N1 device.
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Figure 49: ROC curves for various deep learning models for enrollments in dim office

lighting and verification samples from all the lighting conditions for samples in DATA-B

set from Oppo N1 device.

Figure 50: ROC curves for various deep learning models for enrollments in outdoor day

lighting and verification samples from all the lighting conditions for samples in DATA-B

set from Oppo N1 device.
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Figure 51: ROC curves for various deep learning models for enrollments in office lighting

and verification samples from all the lighting conditions for samples in DATA-B set from

Oppo N1 device.

Figure 52: ROC curves for various deep learning models for enrollments in dim office

lighting and verification samples from all the lighting conditions for samples in DATA-C

set from Oppo N1 device.
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Figure 53: ROC curves for various deep learning models for enrollments in outdoor day

lighting and verification samples from all the lighting conditions for samples in DATA-C

set from Oppo N1 device.
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Figure 54: Comparing EER(%) with number of parameters for proposed model with state

of the art deep learning models on DATA-B evaluation set. EER(%) is calculated by

taking average of the lighting and device results.
121



Figure 55: Comparing EER(%) with number of parameters for proposed model with state

of the art deep learning models on DATA-C evaluation set. EER(%) is calculated by

taking average of the lighting and device results.
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APPENDIX B

SUPPLEMENTARY MATERIALS FOR CHAPTER 5

Figure 56: ROC curves for OcularNet model along with all the patches and fusing them

using mean, median and max techniques. Enrollments in office lighting and verification

samples from all the lighting conditions from VISOB Visit-I dataset iPhone device sam-

ples.
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Figure 57: ROC curves for OcularNet model along with all the patches and fusing them

using mean, median and max techniques. Enrollments in office lighting and verification

samples from all the lighting conditions from VISOB Visit-I dataset Samsung Note-4

device samples.

Figure 58: ROC curves for OcularNet model along with all the patches and fusing them

using mean, median and max techniques. Enrollments in office lighting and verification

samples from all the lighting conditions from VISOB Visit-I dataset Oppo N1 device

samples.
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Figure 59: ROC curves for OcularNet model along with all the patches and fusing them

using mean, median and max techniques on UBIRIS-V1 dataset.

Figure 60: ROC curves for OcularNet model along with all the patches and fusing them

using mean, median and max techniques on UBIRIS-V2 dataset for samples collected at

6 to 8 meters away from camera.
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Figure 61: ROC curves for OcularNet model along with all the patches and fusing them

using mean, median and max techniques on cross-eyed iris dataset.
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APPENDIX C

SUPPLEMENTARY MATERIALS FOR CHAPTER 6

Figure 62: ROC curves for OcularNet-v2 model along with all the modifications of

MobileNet-V2 model (MOD-0 to MOD-3) for UBIRIS-V2 at 6-8 meters distance (D1-

set) dataset.
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Figure 63: ROC curves for OcularNet-v2 model along with all the modifications of

MobileNet-V2 model (MOD-0 to MOD-3) for UBIRIS-V2 at all distance (D2-set)

dataset.

Figure 64: ROC curves for OcularNet-v2 model along with all the modifications of

MobileNet-V2 model (MOD-0 to MOD-3) for FERET dataset.

128



Figure 65: ROC curves for OcularNet-v2 model along with all the modifications of

MobileNet-V2 model (MOD-0 to MOD-3) for UBIPR dataset with enrollments in a spe-

cific distance and verification samples in all remaining datasets.
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Figure 66: ROC curves for OcularNet-v2 model along with all the modifications of

MobileNet-V2 model (MOD-0 to MOD-3) for CASIA TWINS dataset.
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Figure 67: ROC curves for OcularNet-v2 model along with all the modifications of

MobileNet-V2 model (MOD-0 to MOD-3) for CrossEYED iris only dataset.

Figure 68: ROC curves for OcularNet-v2 model along with all the modifications of

MobileNet-V2 model (MOD-0 to MOD-3) for CrossEYED periocular only dataset.
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APPENDIX D

SUPPLEMENTARY MATERIALS FOR CHAPTER 7

Figure 69: ROC curve of OcularNet-v2 model compared to OcularNet-v2 trained with

LOD-V for UBIRIS-V2 at 6-8 meters distance (D1-set) dataset.
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Figure 70: ROC curve of OcularNet-v2 model compared to OcularNet-v2 trained with

LOD-V for UBIRIS-V2 at all distance (D2-set) dataset.

Figure 71: ROC curve of OcularNet-v2 model compared to OcularNet-v2 trained with

LOD-V for FERET dataset.
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Figure 72: ROC curve of OcularNet-v2 model compared to OcularNet-v2 trained with

LOD-V for UBIPR dataset with enrollments in a specific distance and verification samples

in all remaining datasets.
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Figure 73: ROC curve of OcularNet-v2 model compared to OcularNet-v2 trained with

LOD-V for CASIA TWINS dataset.
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Figure 74: ROC curve of OcularNet-v2 model compared to OcularNet-v2 trained with

LOD-V for CrossEYED iris only dataset.

Figure 75: ROC curve of OcularNet-v2 model compared to OcularNet-v2 trained with

LOD-V for CrossEYED periocular only dataset.
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