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Machine learning time-local generators of open quantum dynamics
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In the study of closed many-body quantum systems, one is often interested in the evolution of a subset of
degrees of freedom. On many occasions it is possible to approach the problem by performing an appropriate
decomposition into a bath and a system. In the simplest case the evolution of the reduced state of the system is
governed by a quantum master equation with a time-independent, i.e., Markovian, generator. Such evolution
is typically emerging under the assumption of a weak coupling between the system and an infinitely large
bath. Here we are interested in understanding to which extent a neural network function approximator can
predict open quantum dynamics—described by time-local generators—from an underlying unitary dynamics.
We investigate this question using a class of spin models, which is inspired by recent experimental setups. We
find that indeed time-local generators can be learned. In certain situations they are even time independent and
allow to extrapolate the dynamics to unseen times. This might be useful for situations in which experiments or
numerical simulations do not allow to capture long-time dynamics and for exploring thermalization occurring in
closed quantum systems.
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I. INTRODUCTION

The investigation of isolated quantum systems out of equi-
librium is a central problem in physics [1,2]. Often, partial
information that concerns a spatially localized subsystem S is
sufficient to study dynamical effects related to relaxation or
thermalization. This information is encoded in the so-called
reduced quantum state ρS , [c.f. Figs. 1(a) and 1(b)], whose
time dependence is obtained by “integrating out” the remain-
der of the evolving many-body system, which is often referred
to as bath B [see Fig. 1(c)]. In certain settings, e.g., for systems
that are weakly interacting with a large environment [3,4], the
dynamics of the reduced state is effectively described by a
quantum master equation [5–7]. In the simplest manifestation,
the dynamics of the reduced quantum state ρS is then governed
by a time-independent generator L acting only on S:

ρS (t ) := TrB(Ut (ρS ⊗ ρB)U †
t ) ≈ et L[ρS]. (1)

Here, Ut is the unitary evolution operator of the full many-
body system, the state ρS ⊗ ρB is the initial state of the many-
body system in product form, and TrB indicates the average
over the bath B. However, the generator does not need to be
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time-independent and, in most generic instances [8], it may
depend locally on time, Lt , as illustrated in Fig. 1(c).

In this paper, we show how simple neural network archi-
tectures can learn time-local generators that govern the local
dynamics of a closed quantum spin system. The input of
the networks consists of the time-dependent average values
of the reduced system observables from which the dynami-
cal generator is estimated. First, we consider an architecture
which provides a time-averaged generator L corresponding
to an effectively Markovian description of the system dy-
namics. Our findings indicate that this can yield indeed a
valid approximation for the generator even beyond typical
scenarios justifying a Markovian weak-coupling assumption
[3,4]. Once the generator is known, the network can further
be exploited to make predictions for times which go beyond
the previously analyzed time frame, as is illustrated in Fig. 2.
To study settings with a time-dependent generator, Lt , we use
a different neural network architecture which is based on so-
called hypermodels and allows to assess the time dependence
of the generator of the reduced dynamics. Our work links
to recent efforts aiming at understanding quantum dynam-
ics with neural networks [9–24]. Our approach, which uses
machine learning tools and provides a directly interpretable
object such as the physical generator of the dynamics, high-
lights a possible route for the application of neural networks
in the study of the long-time dynamics of local observables in
closed quantum systems. Moreover, it may find applications
in the context of quantifying the degree of non-Markovianity
in reduced quantum dynamics [8].
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FIG. 1. Reduced local dynamics of a many-body quantum
system. The reduced state ρS describes local degrees of freedom
of a quantum spin system. The remainder of the system, B, takes
the role of a “bath” with initial state ρB. We consider two scenarios:
(a) Model I, spin chain with open boundary conditions, where the in-
teraction strength V and range α are varied [see Eq. (2)]; (b) Model II,
spin chain with closed boundaries and nearest-neighbor interaction,
where the system-bath coupling V ′ and the initial temperature β of
the bath are modified. (c) The dynamics of the reduced state, ρS (t ), is
obtained by tracing out the degrees of freedom of B and to be learned
by a neural network. The learned generator may be either Markovian
(time independent) or time dependent.

II. MANY-BODY SPIN MODELS

For illustrating our ideas, we consider two one-dimensional
systems (in the following referred to as Models I and II)
consisting of N interacting spins, which are inspired by recent
state-of-the-art quantum simulator experiments with Rydberg
atoms [25–29] or trapped ions [30–32]. Model I has open
boundary conditions [see Fig. 1(a)]. It features power-law
interactions and is described by the Hamiltonian

HI = �

N∑
i=1

σ x
i + V

N∑
i< j

nin j

|i − j|α . (2)

FIG. 2. Effective time-independent generator: Training and
extrapolation. To obtain a time-independent generator, we use a
MLP. The inputs are the time-dependent expectation values of the
reduced system observables—for a single spin contained in the Bloch
vector vb— in a given training time window (blue-shaded region)
and for several initial Bloch vectors (top to bottom). The MLP learns
the “propagator” M[θ∗], which depends on the optimized network
parameters θ∗ but not on the actual time. Considering a Euler inte-
gration step of length dt , this provides a matrix L̄ representing the
action of an “averaged” generator on the Bloch vector. When the
reduced dynamics is Markovian, this learned generator allows for
the network to make predictions for unseen future times (red-shaded
region).

Here, ni = (1 + σ z
i )/2 is a projector on the “up”-state of the

i-th spin and σ
x,y,z
i are Pauli matrices. The parameter α ac-

counts for the interaction range, i.e., the power-law decay of
the interaction potential, and V controls the overall interaction
strength with respect to the strength � of a transverse field
term. The reduced system S, for this model, is the middle
spin of the chain, as shown in Fig. 1(a). Model II is a closed
spin chain [illustrated in Fig. 1(b)], with nearest-neighbor
interactions and Hamiltonian

HII = �

N∑
i=2

σ x
i + V

N−1∑
j=2

n jn j+1 + �′σ x
1 + V ′n1(n2 + nN ).

(3)
Here, the spin with label 1 is singled out as reference spin
(forming the system S) and the interaction strength with its
neighbors is given by V ′, while the interaction strength among
all other spins is V . Moreover, we assume that the strength
�′ of the transverse field acting on the reference spin can
be controlled. Both models capture a whole variety of dif-
ferent scenarios, including short- and long-range interactions,
absence and presence of translational invariance, as well as
weak and strong coupling between local and bath degrees of
freedom. They moreover encompass a number of standard
scenarios often explored in quantum many-body physics, such
as the so-called PXP-model [33–35], the Ising model in the
presence of longitudinal and transverse fields, and all-to-all
connected spin systems with resemblance to the Dicke model
[36] or the Lipkin-Meshkov-Glick model [37].

Our aim is to investigate the reduced dynamics of local
degrees of freedom, as for instance a single spin S, as depicted
in Figs. 1(a) and 1(b). To this end, we assume that the system
is initialized at time t = 0 in the state ρ = ρS ⊗ ρB. In our
studies concerning Model I, we assume the bath to be in the
infinite temperature state, ρB ∝ 1B. When considering Model
II, instead, we assume a finite temperature situation with ρB ∝
e−βH̃II , where the Hamiltonian H̃II is the one of Eq. (3) with
�′ = V ′ = 0, and β is the inverse temperature. We let the state
ρ evolve according to the unitary dynamics ρ(t ) = UtρU †

t ,
with Ut = e−iHt from which we obtain the full dynamical
information about the subsystem S. Throughout we will make
use of the Bloch vector representation of the subsystem’s den-
sity matrix: ρS (t ) = [vb(t ) · σ ]/2 with σ = (1, σ x, σ y, σ z ).
Here the Bloch vector vb(t ) = (1, 〈σ x

k 〉t , 〈σ y
k 〉t , 〈σ z

k 〉t ) is given
in terms of the expectation 〈·〉t with respect to the full quantum
state at time t , and k labels the system spin [see Figs. 1(a) and
1(b)].

In the following, we will characterize the generator of this
reduced dynamics; that is, we want to find a generator acting
solely on S that reproduces (or approximates) the dynamics
of vb(t ) for the two models under consideration [Figs. 1(a)
and 1(b)]. For Model I we explore for which parameter
combinations (V, α), the local generator, which is in princi-
ple time-dependent Lt , can be approximated by an effective
“averaged” time-independent one, Lt ≈ L̄. We remark that,
while B acts as a fictitious bath for subsystem S, the situation
described here is far from that of typical weak-coupling limits.
Indeed, B is a finite quantum system and its Hamiltonian has
a discrete spectrum. As such, B can hardly be thought of as
an infinite Markovian bath of bosonic oscillators, whose state
is unaffected by the interaction with S. The only aspect in
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common with a weak-coupling limit is that the interaction
strength can be made small. However, this is not sufficient
to argue that the local dynamics may be described by time-
independent generators.

For Model II we consider the case in which an “isolated”
spin (on site 1) interacts with B with an independently tunable
strength V ′. Experimentally such a situation can be realized,
e.g., by exploiting the distance dependence of dipolar interac-
tions of atoms in Rydberg states [28]. For Model II we also
investigate how well the generator of the reduced dynamics is
approximated by a time-independent model when the initial
state of B (parametrized by the inverse temperature β) and
the interaction strength V ′ are varied. In addition, for this
scenario, we use a hypermodel in order to analyze regimes
that necessitate a time-dependent generator Lt .

III. NETWORK ARCHITECTURES,
TRAINING, AND RESULTS

In order to learn dynamical generators for the reduced
dynamics of subsystem S, we employ machine learning al-
gorithms. Our approach is completely data-driven, i.e., the
network has no prior information about the physical system.
For learning time-independent generators, we use a linear
multilayer perceptron (MLP) architecture (see Fig. 2) which
turns out to be the simplest possible one. Every data point of
our data-set D contains the triple (vb, v′

b, t ), where vb := vb(t )
is the value of the Bloch vector at a given time-point t , and v′

b
is the value of the Bloch vector after a further discrete time
step dt , i.e., v′

b := vb(t + dt ).
The input of our model is vb, and the output is the vector

o(t ) = M[θ ]vb, where M[θ ] is a 4 × 4 matrix (matching the
dimension of the Bloch vector) that depends on the parameters
θ of the network. To optimize the network, we introduce the
following loss function, which is given by the norm of the dif-
ference between the next time step v′

b and the output of the
network:

C(θ ) = E(vb,v′
b )∼D[‖M[θ ]vb − v′

b‖], (4)

where the expectation is taken over the training data D. Min-
imizing the above function thus provides a model M[θ∗] for
the propagation of the Bloch vector over an infinitesimal time
step dt . This model is related to the generator of the local
dynamics; indeed, we have M[θ∗] = 1 + Ldt , where L̄ is a
representation of the time-averaged generator L acting on
Bloch vectors. The training data set is constructed by evolving
the Bloch vector vb over a time interval [0, Ttrain]. The trajecto-
ries are generated evolving 100 randomly chosen initial states
of the form

ρ0 = 1

2

(
1 + z x − iy
x + iy 1 − z

)
⊗ ρB, (5)

with x2 + y2 + z2 < 1, i.e., we consider nonpure initial states.
We split our data set such that we consider the 80% of each
trajectory for training, i.e., finding the best parameters of our
model. The remaining 20% form the validation set to assess
the performance of the model built in the training phase. We
anticipate already here that, after having trained and validated
the model as discussed, we will then test its capability of pre-
dicting the time-evolution of the reduced system by choosing

initial states which are diagonal [see Eq. (7) below]. This
is not at all a limitation for assessing the performance of
the time-independent generator since even though we start
from a diagonal matrix, the dynamics will quickly generate
off-diagonal terms.

To encode and quantify the time dependence of dynamical
generators, Lt , we use a different architecture and consider
a so-called hypermodel, which computes network weights
based on a context input. In our case, the context input is
the time t and a MLP F with nonlinear activation functions
transforms this input to the 4 × 4 matrix of the generator
M[F (t ; θ )].

The data set is organized in the same way as for the time-
independent model. The only difference with respect to the
previous case is that we also pass the information about the
actual time step t . The network parameters θ are optimized by
minimizing the loss function

CH(θ ) = E(vb,v′
b,t )∼D[‖M[F (t ; θ )]vb − v′

b‖]. (6)

By training the model in this way we obtain a time-dependent
representation of the propagator of the local dynamics, i.e.,
M[F (t ; θ∗)] = 1 + Lt dt . For the training set, we choose
quantum states as in the previous case. Since in this case
the model approximates a time-dependent generator, we need
to pass to the network information about all the time points
of the different trajectories. Therefore, we cannot split the
time-series as we have done previously. To test our model,
instead, we use unseen trajectories that we obtain by starting
from initial conditions that are well outside of the training set.
For the test data set, we indeed consider trajectories generated
by starting from the initial state

ρ0 =
(

1 − c 0
0 c

)
⊗ ρB, (7)

with c being a random number, c ∈ (0.01, 0.7) (see Appendix
for details). This choice of the class of initial states is com-
pletely arbitrary. However, we do not expect such choice
to play a relevant role in the approximation of the time-
dependent generator.

A. Time-independent generators

With the above numerical approach, we can now investi-
gate under which circumstances the generator of the dynamics
of the subsystem S is time independent. We consider first the
open spin chain [see Fig. 1(a) and Eq. (2)] and explore differ-
ent values of V and α. To test the performance of the model
after the training, we study the time-averaged norm difference
between the exact Bloch vector vex

b —obtained by simulating
the full many-body spin chain dynamics—and the time-
evolution of the same quantity as predicted by our model vmod

b :

ε = 1

Ttot

∫ Ttot

0
dt

∥∥vmod
b (t ) − vex

b (t )
∥∥ , (8)

computed by numerical integration.
As shown in Fig. 3(a), the error ε is small for short-range

(large α) and weakly interacting (with small ratio V/�) spin
chains. This means that our time-independent model captures
the relevant features of the reduced dynamics, and suggests
that for finite systems with sufficiently weak interactions,
the dynamics of local degrees of freedom can indeed be
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FIG. 3. Time-independent generator. (a) Model I: Compari-
son between the exact dynamics of the Bloch vector and the one
obtained by learning an effective time-independent generator with
neural networks. The density plot shows the time-averaged norm
difference, ε [Eq. (8) averaged over 5 randomly selected values c
of the initial conditions; see Eq. (7)], for various parameter choices
(V, α). The data are calculated for N = 9 spins with a training time of
Ttrain = 10/�, dt = 0.01/�, and a total time Ttot = 20/� (see main
text for details). We also show two examples for the Bloch vector
evolution, where we choose c = 0 and Ttot = 20/� for illustration.
Here solid curves correspond to the components of the Bloch vector
propagated with the learned time-averaged generator. The dashed
lines correspond to the numerically exact solution. (b) Same as (a),
but for Model II and the parameter set (V ′, β ).

effectively described by a time-independent generator L̄. Fur-
thermore, for this Markovian regime of the dynamics, our
model allows to make predictions for times exceeding the
training time.

We now turn to the discussion of Model II [see Fig. 1(b)
and Eq. (3)]. Using the same procedure explained above, we
can learn the time-averaged dynamical generator for subsys-
tem S. In Fig. 3(b) we summarize the results of this analysis.
We display the time-averaged error, as defined in Eq. (8), for
different parameter choices, which in this case are the (in-
verse) temperature β of the initial state ρB and the interaction
strength V ′. We furthermore take �′ = �. As shown in the fig-
ure, the dynamics is well approximated by a time-independent
generator, L̄, for weak interactions V ′ and for small β. Here
also the extrapolation to times that exceed Ttrain is possible.
The data in Fig. 3 show that in certain parameter regimes the
approximation of the dynamics through a time-independent
generator does not work well. Here significant deviations are
even observable during the training period.

B. Time-dependent time-local generators

We are now interested in analyzing how strongly the dy-
namical generator depends on time in those instances where
the model introduced in the previous section fails. To this end,
we adopt a hypermodel which can take as input the informa-

FIG. 4. Hypermodel and time-dependent generator. Hyper-
models allow to encode time-dependent generators Lt . The time
dependence is quantified through the derivative of Lt with respect to
time, expressed by the positive quantity ξ (t ) (see text for definition).
(a) Three example curves corresponding to Model II (N = 9). The
function ξ (t ) depends only on the parameters of the model and is in-
dependent from the initial condition chosen. Generally, the stronger
the interaction V ′, the more pronounced the time dependence. This
trend is clearly visible in (b), where we show the averaged value of
ξ (t ) in the interval 0 to T = 10/� (dt = 0.01/�), denoted as 
.

tion about the running time. In this way, the neural network is
able to learn an optimal parametrization of the “propagator”
M[F (t ; θ∗)] = 1 + Lt dt for the Bloch vector dynamics which
explicitly depends on time. Here, the matrix Lt encodes the
action of the generator on the Bloch vector and, essentially,
implements the differential equations obeyed by the entries
of the Bloch vector vb. This architecture allows the ability to
learn and accurately reproduce the dynamics of Model II for
all studied parameter regimes (see Appendix for examples).
This is not surprising, but gives us a handle for analyzing the
time dependence of the dynamical generator Lt . To this end we
consider the positive quantity ξ (t ) =

√
Tr(L̇†

t L̇t ), where the
dot denotes the derivative with respect to time. This can only
be zero when L̇t = 0, i.e., when the action of the generator
is not depending on the running time. To quantify an overall
time dependence within a time window [0, T ], we define the
time-averaged value 
 = 1

T

∫ T
0 dt ξ (t ). In Fig. 4 we show the

corresponding data. For strong interactions V ′, ξ (t ) is nonzero
throughout which indicates a strong explicit time dependence.
This is also reflected in a large 
. For weak interactions, on
the other hand, ξ (t ) remains small for all times considered.
The oscillation we attribute to the finite size of the system.
This confirms that, in such parameter regime, it is indeed
possible to approximate the dynamics of the Bloch vector
by means of a time-independent matrix, as considered in the
previous section.

IV. CONCLUSIONS

We have presented two simple examples of neural network
architectures that can learn the dynamical features of re-
duced quantum states. When such time evolution is effectively
Markovian, the network can find a suitable approximation
for the generator of the local dynamics. Here one can ex-
trapolate the dynamics of reduced degrees of freedom to
times that were unexplored during the training procedure.
This possibility is particularly promising for applications in
combination with tensor networks, which perform extremely
well for short times. A neural network could learn the time-
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independent generator during this time interval and then
possibly extrapolate to long times. In principle, this might
enable the exploration of the onset of stationary or thermal-
ization regimes. When the dynamics is not of Markovian type,
we have shown that hypermodels can recover the generator
of the reduced quantum dynamics. This allows to quantify
non-Markovian effects [38], which manifest in an explicit
time dependence of the dynamical generator Ref. [8]. Further-
more, being able to reconstruct the generator of the reduced
dynamics, as we have done here with hypermodels, makes it
possible to explore different measures of non-Markovianity
based on nondivisibility criteria for quantum dynamical time
evolutions [39–42].

A possible future development in this regard could be
the application of more advanced machine learning methods
for learning time correlations in time series. This can be
achieved with models borrowed from language studies {e.g.,
long short-term memory recurrent neural networks (LSTM)
[43] and transformers [44]} or with algorithms geared toward
more interpretable models by either learning analytical ex-
pressions of the differential equation [45] or modeling the
time-evolution dynamics directly [46].
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APPENDIX

In this Appendix, we report a more detailed analysis con-
cerning the effectiveness of the hypermodel in predicting the
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FIG. 5. Hypermodel accuracy: Comparison between the exact
dynamics and the dynamics predicted by the hypermodel for initial
state ρ0 reported in Eq. (5) and for N = 7. As it can be observed
the agreement between the model prediction (dotted line) and the
exact dynamics (full line) is excellent. This fact enables us to use the
local operator learned using the hypermodel for studying the time-
dependence of Lt .

dynamics of the Bloch vector within the training time window.
In Table I, we provide instead the hyperparameters of the used
models.

Hypermodel vs exact dynamics

In the main text we analyze the time-dependence
of time-local generators parametrizing the “propagator”
M[F (t ; θ∗)] = 1 + dtLt for the Bloch vector, using a hyper-
model architecture. The matrix Lt encodes all the information
concerning the dynamics of local (one-site) observables. As
stated in the main text, a suitable measure to quantify the de-
pendence on time of this matrix is given by 
 = 1

T

∫ T
0 dt ξ (t ),

where ξ (t ) =
√

Tr(L̇†
t L̇t ). However, this can be a faithful

measure of the time-dependence of the physical generator,
only if Lt correctly implements the dynamics of the Bloch
vector. It is thus important to check that the prediction of the
hypermodel matches the exact dynamics, in the time window
[0, T ] in which we want to analyze the generator Lt . To this
end, we report in Fig. 5 a detailed comparison between the

TABLE I. Network architectures. Overview over the architecture, optimizers, training, and system parameters for Model I and Model II
(top) and the hypermodel (bottom).

Setting Architecture Optimizer Dataset

Time-independent Linear perceptron Adam Trajectories (train/val): 100/20
(no hidden layers) Learning rate: 10−3 Total time (� T ): 10

Betas: 0.9, 0.999 Time step (� dt): 0.01
Epsilon: 10−8

Batch size: 256
Batches per epoch: 512
Epochs: 5

Time-dependent Hidden layers: 3 Adam Trajectories (train/val): 100/20
(hyper-model) Nonlinearity: tanh Learning rate: 10−3 Total time (� T ): 10

Output nonlinearity: none Betas: 0.9, 0.999 Time step (� dt): 0.01
Epsilon: 10−8

Batch size: 256
Batches per epoch: 256
Epochs: 500
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FIG. 6. Time-dependence: Behavior of the quantity ξ (t ) for the
same parameter regimes of Fig. 5. The quantity 
 grows with the
interaction, meaning that the generator of the local dynamics Lt

becomes more time-dependent.

predicted time evolution of the Bloch vector components and
the exact ones for six different parameter regimes. We start
from a generic initial state with form given in Eq. (5) with
x2 + y2 + z2 < 1, in particular we choose x = 0.6, y = 0.3
and z = 0.4, and we consider different interactions and initial
bath temperatures. In the training time-window [0, T ], we

observe an excellent agreement between the two curves for
T = 10/�. In Fig. 6 we report the time evolution of the
quantity ξ (t ) for the same parameter regimes. As it can
be observed for weakly interacting systems the generator Lt

is almost time-independent. In this regime, as discussed in
the main text, it is possible to predict the local dynamics
using simple time-independent architectures. Increasing the
interaction, the parameter 
 grows accordingly signaling that
the dependence on time of Lt becomes stronger.

The training procedure for the hyper-model is slightly
different with respect what we have done for the time-
independent case, in particular it is different the differentiation
between training and evaluation set. In this case, in fact, we
generate two different types of data-sets, the first data-set for
training consists in 100 trajectories with randomly chosen
initial state ρ0 of the the same form reported in Eq. (5). For
evaluation we select, instead, randomly data-points from tra-
jectories generated from initial states of type given in Eq. (7),
with 0.01 < c < 0.7. In this way we are performing a separa-
tion of the data-sets in the Hilbert space. This is contrary to
what we had for the time-independent case where the data-set
was given by separated time-intervals of the same trajectory.
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