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Abstract
We examine travelling wave solutions of the reaction–diffusion equation,
∂tu = R(u) + ∂x [D(u)∂xu], with a Stefan-like condition at the edge of the mov-
ing front. With only a few assumptions on R(u) and D(u), a variety of new
semi-infinite travelling waves arise in this reaction–diffusion Stefan model.
While other reaction–diffusion models can admit semi-infinite travelling waves
for a unique wavespeed, we show that semi-infinite travelling waves in the reac-
tion–diffusion Stefan model exist over a range of wavespeeds. Furthermore, we
determine the necessary conditions on R(u) and D(u) for which semi-infinite
travelling waves exist for all wavespeeds. Using asymptotic analysis in various
distinguished limits of the wavespeed, we obtain approximate solutions of these
travelling waves, agreeing with numerical simulations with high accuracy.

Keywords: Fisher’s equation, nonlinear diffusion, Stefan condition, moving
boundary problem
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(Some figures may appear in colour only in the online journal)

1. Introduction

Travelling waves arise in a wide range of reaction–diffusion models [1–4], including in ecol-
ogy [5–9], cell biology [10–13], and industrial applications involving heat and mass transfer
[14–17]. These reaction–diffusion models are useful for describing the concentration of a par-
ticular species, u(x, t), in which the travelling wave moves at a constant wavespeed, c, over
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the one-dimensional domain x ∈ R at time t > 0. Notably, there has been particular interest
in semi-infinite travelling waves, in which u(x, t) is a monotone decreasing function that ter-
minates at u = 0 when at some finite spatial position x(t). These travelling waves are useful
in applications where a well-defined ‘edge’ of a travelling wave is an essential component of
the modelling framework [10–12]. While many existing reaction–diffusion models have been
shown to produce a semi-infinite travelling wave for a single wavespeed, c∗ [2–4, 18–23], there
are only a handful of modelling frameworks giving rise to semi-infinite travelling waves for
range of wavespeeds.

One particular reaction–diffusion modelling framework giving rise to semi-infinite trav-
elling waves over a range of wavespeeds is via the incorporation of a moving boundary
[8–11, 24], whereby x ∈ (−∞, L(t)] and L(t) evolves based on a Stefan-like condition at the
edge of travelling wave. For particular choices of linear [8–10, 24] and degenerate diffusiv-
ities [11], D(u), semi-infinite travelling waves exist for all wavespeeds c ∈ [0, c∗], where the
value of the critical wavespeed c∗ depends on D(u). However, generalisations of the models
presented in [10, 11] for a broader class of reaction functions, R(u) and nonlinear diffusivities,
D(u), has yet to be considered.

In this work, we consider a general reaction–diffusion model with a moving boundary,
which we refer to as the reaction–diffusion Stefan (RDS) model. Specifically, we determine the
necessary conditions for R(u) and D(u) so that semi-infinite travelling waves exist over a range
of wavespeeds. Using asymptotic analysis in the limit where c � 1, we obtain approximate
solutions of these travelling waves, agreeing with numerical simulations with high accuracy.
Additionally, we determine the approximate relationship between c and the Stefan parameter,
κ, which relates the concentration flux,−D(u)∂xu(x, t), with the speed of the moving boundary.
Along with the asymptotic analysis performed when c � 1, corresponding to when κ � 1, we
also consider approximate solutions of travelling waves for κ � 1. Depending on the kinetics
of R(u)D(u) near u = 0, we show that having κ � 1 is equivalent to c approaching a finite
wavespeed, or that c � 1. In particular, we outline the necessary conditions for R(u) and D(u)
so that semi-infinite travelling waves exist for all wavespeeds (i.e., c∗ = ∞). For both c∗ finite
and infinite, we determine asymptotic approximations for both the travelling wave and the κ(c)
relationship in the limit where κ � 1.

2. Travelling waves in the reaction–diffusion Stefan model

We consider the following non-dimensional reaction–diffusion model, describing the concen-
tration u ∈ [0, 1], on the spatial domain x ∈ (−∞, L(t)] with a Stefan-like condition at the
moving boundary x = L(t):

∂tu(x, t) = R(u) + ∂x [D(u)∂xu(x, t)] , (1)

lim
x→−∞

u(x, t) = 1, u(L(t), t) = 0, (2)

dL
dt

= −κD(u)∂xu(x, t)|x→L(t)− , L(0) = L0. (3)

The Stefan condition relates the speed of the moving front, dL/dt, to the concentration flux,
−D(u)∂xu(x, t) via the Stefan parameter, κ. We will also impose that

0 < D(u) < ∞, 0 � R(u) < ∞, u ∈ (0, 1],

R(u)D(u) = o(u−1), u → 0+.
(4)
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These bounds indicate that degenerate diffusion, i.e. D = 0 or D = ∞, can only occur if u = 0,
and that the reaction R(u) can only be a source term.

The main solutions of the system (1)–(3) that we will examine are travelling wave solutions.
Therefore, we transform the PDE system into travelling wave coordinates via z = x − L0 − ct,
where z ∈ (−∞, 0] and c � 0. Noting that when x = L(t), we have that L(t) = L0 + ct, and
hence, dL/dt = c. By denoting the concentration flux as

Q(z) = D(u)
du
dz

, (5)

we obtain, by transforming (1) into travelling wave coordinates and multiplying by D(u),

D(u)
dQ
dz

= −cQ(z) − R(u)D(u). (6)

Provided that D(u)du/dz → 0 as u → 1−, the system of first-order nonlinear differential
equations (5) and (6) is coupled to a set of boundary conditions arising from (3):

lim
z→−∞

u(z) = 1, lim
z→−∞

Q(z) = 0, u(0) = 0, Q(0) = − c
κ
. (7)

We will focus on the heteroclinic trajectory in the (u, Q) phase plane beginning at (1, 0) and
terminating at (0,−c/κ) to agree with the boundary conditions listed above. In doing so, we
determine not only the relationship between Q and u, but also the relationship between c and
κ. Therefore, by dividing (6) by (5), we have that

− dQ(u)
du

= c +
R(u)D(u)

Q(u)
,

Q(1) = 0, lim
u→0+

Q(u) = − c
κ
.

(8)

2.1. Some explicit solutions of the heteroclinic trajectory Q(u)

While by no means an exhaustive list, there are some straightforward solutions of (8) for par-
ticular choices of R(u)D(u). In doing so, we are also able to obtain the explicit relationship
between c and κ. The simplest case to consider is when R(u)D(u) = A, where A > 0. In this
case, (8) becomes a separable differential equation whose solution is

R(u)D(u) ≡ A =⇒ Q(u) = −A
c

{
1 + W

[
− exp

(
−1 − c2(1 − u)

A

)]}
, (9)

where W(·) is the Lambert-W function [25]. Therefore, by evaluating this expression at u = 0,
we retrieve the relationship between c and κ:

R(u)D(u) ≡ A =⇒ κ =
c2

A
{

1 + W
[
− exp

(
−1 − c2

A

)]} . (10)

However, since A > 0, we have, from (8), that dQ(u)/du →−∞ as u → 1−. Furthermore, since
D(1) is positive and finite, the travelling wave u(z) will evolve on some finite interval [Z0, 0] and
u(z) ≡ 1 for z � Z0. Should a travelling wave be required to evolve on the semi-infinite interval
(−∞, 0], we must further impose that R(1) = 0. However, as we will show, having R(1) = 0
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is a necessary but not sufficient condition in obtaining travelling waves on the semi-infinite
interval (−∞, 0].

A simple reaction–diffusion model that exhibits travelling waves on a semi-infinite domain
is R(u)D(u) = A(1 − u), where A > 0. Solving (8) for this choice of R(u)D(u) yields

R(u)D(u) ≡ A(1 − u) =⇒ Q(u) =

(√
c2 + 4A − c

)
(u − 1)

2
,

κ =
c
(√

c2 + 4A + c
)

2A
. (11)

Therefore, as u → 1−, du/dz ∝ u − 1, confirming that travelling waves in this reac-
tion–diffusion model decay exponentially to u = 1 as z →−∞.

3. Approximating reaction–diffusion Stefan travelling waves with small
wavespeed

3.1. Approximating the heteroclinic trajectory Q(u) for c � 1

For more general R(u)D(u) function forms, an explicit solution of (8) is not always possible.
Instead, we consider the solution of (8) first in the limit where 0 < c � 1 by expanding Q(u)
as a regular perturbation expansion in c, i.e. Q(u) = q0(u) + cq1(u) +O(c2). Substituting this
expansion into (8) provides the following two-term equations:

Os(1) : −q0(u)
dq0(u)

du
= R(u)D(u), q0(1) = 0; (12)

Os(c) : − d
du

[q0(u)q1(u)] = q0(u), q1(1) = 0. (13)

Solving (12) and (13) yields

Q(u) = D(u)
du
dz

∼ −ξ(u) +
c

ξ(u)

∫ 1

u
ξ(v)dv, where

ξ(u) =

√∫ 1

u
2R(s)D(s)ds. (14)

From (4), we have that ξ(u) is non-negative, bounded, and monotone decreasing for u ∈ [0, 1].
Furthermore, evaluating (14) at u = 0 provides a two-term approximation for the wave speed
c as a function of the Stefan parameter κ when c � 1:

κ ∼ cξ(0)

ξ(0)2 − c
∫ 1

0 ξ(s)ds
. (15)

Therefore, we can obtain two approximate relationships in the limit where the wavespeed is
small: the relationship between the travelling wave and its flux, as well as the relationship
between the wavespeed and the Stefan parameter.

3.2. Approximating the travelling wave u(z) for c � 1 and u → 0+

From (14), we have an approximate solution for the heteroclinic trajectory describing the trav-
elling wave in the (u, Q) phase plane. It remains to show how to construct an approximate
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solution for u(z) from this trajectory. We first examine the behaviour of the travelling wave
near its leading edge, i.e. for u → 0+. By approximating R(u)D(u) ∼ Buq for u → 0+, where
q > −1, we have that

ξ(u) ∼ ξ(0) − Buq+1

ξ(0)(q + 1)
and

∫ 1

u
ξ(v)dv ∼

∫ 1

0
ξ(v)dv − ξ(0)u. (16)

By substituting (16) into (14), we obtain

−D(u)
ξ(0)

du
dz

∼ 1 − Buq+1

(q + 1)ξ(0)2
− cω

(
1 − u

ξ(0)ω
+

Buq+1

(q + 1)ξ(0)2

)
, (17)

where

ω =
1

ξ(0)2

∫ 1

0
ξ(v)dv. (18)

Therefore, in the limit where u → 0+ and c � 1, we have, by employing the initial condition
u(0) = 0, that

−ξ(0)z ∼
∫ u

0
D(s)

[
1 +

Bsq+1

(q + 1)ξ(0)2
+ cω

(
1 − s

ξ(0)ω
+

Bsq+1

(q + 1)ξ(0)2

)]
ds. (19)

Crucially, we note that D(u) must be o(u−1) for the right-hand side of (19) to converge, thereby
allowing z → 0 as u → 0+. By approximating D(u) ∼ Aup for u → 0+, where p > −1, we have
that the leading edge of the travelling wave can be determined implicitly as

z ∼ − Aup+1

(p+ 1)ξ(0)

[
1 +

B(p+ 1)uq+1

(q + 1)(p+ q + 2)ξ(0)2

+ cω

(
1 − (p+ 1)u

(p+ 2)ξ(0)ω
+

B(p+ 1)uq+1

(q + 1)(p+ q + 2)ξ(0)2

)]
.

(20)

Thus, by knowing the approximate expansions of D(u) and R(u)D(u) near u = 0, we are able
to approximate u(z) for u → 0+.

3.3. Approximating the travelling wave u(z) for c � 1 and u → 1−

Having approximated the travelling wave u(z) near its leading edge, i.e. when u � 1, we
now examine the far-field behaviour of u(z) by considering the limit where u → 1−. From
the conditions imposed in (4), we have that D(1) is strictly positive and finite, as well as
R(u)D(u) ∼ β(1 − u)γ , γ � 0, for u → 1−. With these approximations, (14) becomes

D(1)
du
dz

∼ −
√

2β
γ + 1

(1 − u)
γ+1

2 +
2c(1 − u)
γ + 3

. (21)

We note that in the special case where γ = 1, du/dz ∝ 1 − u at leading order, implying that

γ = 1 ⇒ u ∼ 1 − exp

[(√
β − c

2

)(
z − Z0

D(1)

)]
, (22)
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where Z0 is an arbitrary constant. Next, when 0 � γ < 1, we rearrange (21) and obtain

∫
du

(1 − u)
1+γ

2

[
1 − 2c

γ+3

√
γ+1
2β (1 − u)

1−γ
2

] ∼ −
√

2β
γ + 1

(
z − Z0

D(1)

)
. (23)

Since γ < 1, the bracketed term in the integrand in (23) is strictly positive for u ∈ [0, 1] and is
close to 1 for c � 1 and u → 1−. Therefore, we obtain the implicit far-field approximation

z ∼ Z0 +

(
2D(1)
1 − γ

)[√
γ + 1

2β
(1 − u)

1−γ
2 +

c(1 − u)1−γ

γ + 3

]
, 0 � γ < 1. (24)

Furthermore, we note that when u = 1, z = Z0, indicating that when 0 � γ < 1, travelling
waves will evolve over a finite interval. Finally, we examine the case where γ > 1. From (23),
we identify that the integrand will now have two singularities in [0, 1]:

u = 1 and u = 1 −
[

2c
γ + 3

√
γ + 1

2β

]2/(γ−1)

. (25)

Therefore, for the travelling wave to deviate significantly away from u = 1, we must have c ≡ 0
when γ > 1. This key result indicates that in order for travelling waves in the RDS model to
have a semi-infinite domain with non-zero wavespeed, then R(u) = Os(u − 1) as u → 1−.

3.4. Comparison between asymptotic approximations and numerical solutions

Now knowing the approximate forms of the travelling wave, u(z), near its leading edge and
near u = 1 for small wavespeeds, we compare the numerically-determined travelling waves
with these approximations for various reaction–diffusion models. To compute the numerical
solution of (5)–(7) for various R(u)D(u) and c inputs, we use ode15s in MATLAB. The
numerically-determined travelling waves are computed over a sufficiently large range of z, with
initial conditions very close to the far-field boundary condition (7). For numerical solutions
shown here, z ∈ [−104, 0], u(−104) = 1–10−9, and Q(−104) = 10−9. The resulting numerical
travelling wave is then translated in z to ensure that u(0) = 0.

As a first example of common reaction–diffusion combinations examined in the context of
travelling waves, we consider the generalised Porous–Fisher (GPF) model [1, 3, 4, 12, 21–23],
which generalises the common Fisher–Kolmogorov reaction–diffusion model [5, 6] to include
nonlinear diffusion:

D(u) = ur, R(u) = u(1 − u), r > −1. (26)

From (14), we obtain

ξ(u) =

√
2[1 − (r + 3)ur+2 + (r + 2)ur+3]

(r + 2)(r + 3)
. (27)
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While an explicit solution for
∫ 1

u ξ(s)ds is not possible for general r, employing (20) implies
that for u → 0+,

z ∼ −
√

(r + 2)(r + 3)
2(r + 1)2

ur+1

[
1 +

(r + 1)(r + 3)ur+2

2(2r + 3)

+ cJ(r)

√
(r + 2)(r + 3)

2

(
1 − (r + 1)u

(r + 2)J(r)
+

(r + 1)(r + 3)ur+2

2(2r + 3)

)]
,

(28)

where

J(r) =
∫ 1

0

√
1 − (r + 3)ur+2 + (r + 2)ur+3 du (29)

and can be easily computed numerically. Additionally, as u → 1−, the GPF model has, from
(22), the far-field approximation

u ∼ 1 − exp
[(

1 − c
2

)
(z − Z0)

]
for all r. (30)

Using both of these asymptotic approximations, we see in figure 1 good agreement with the
numerically-determined travelling wave solution. While the two-term approximation of Q(u)
via (14) must be numerically integrated, we also see good agreement between the two-term
approximation and the numerically-determined heteroclinic trajectory for small values of c.

To contrast with the GPF model, we now consider a new reaction–diffusion model that
exhibits travelling waves over a finite interval:

D(u) = u−s, R(u) = us, 0 < s < 1 =⇒ ξ(u) =
√

2(1 − u). (31)

We refer to this reaction–diffusion model as the fast diffusion, slow reaction (FDSR) model,
based on the kinetics near u = 0. While we do not attempt to provide a physical justification for
the FDSR, the topics of fast degenerate diffusion are often studied in the context of travelling
wave solutions [1, 3, 12]. The exact solution for Q(u) is shown in (9) with A = 1; however,
obtaining u(z) for the FDSR model cannot be explicitly obtained. Using (20) and (24), we
have that for c � 1,

z ∼ − u1−s

√
2(1 − s)

[
1 +

(1 − s)u
2(2 − s)

+
c
√

2
3

(
1 − (1 − s)u

2 − s

)]
, u → 0+,

z ∼ Z0 +
√

2(1 − u) +
2c(1 − u)

3
, u → 1−,

(32)

indicating that the FDSR travelling waves do indeed evolve over a finite interval. As shown in
figure 1, these asymptotic approximations agree well with the numerically-determined travel-
ling wave solution. Furthermore, the approximation of Q(u) via (14) agrees very well with the
exact solution shown in (9).

For both the GPF and FDSR models, we can also determine the approximate relationship
between c and κ when c � 1 via (15):

GPF:κ ∼ c
√

(r + 2)(r + 3)√
2 − cJ(r)

√
(r + 2)(r + 3)

; FDSR:κ ∼ 3c

3
√

2 − 2c
. (33)

As seen in figure 1, these approximations for κ(c) agree well with the numerically computed
values of κ.
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Figure 1. Travelling waves arising in two models of the RDS model and asymp-
totic approximations valid for c � 1. Left: GPF model (26) with r = 2; right: FDSR
model (31) with s = 1/2. (a) and (b) Numerically-computed travelling waves (black
curve) compared with approximations for u → 0+ (20) (red dashed curve) and u → 1−

(28), (32) (cyan dot-dashed curve), with c = 0.25. (c) and (d) Comparisons of the
numerically-computed heteroclinic trajectory Q(u) (solid curves) with the asymptotic
approximation in (14) (dashed curves) for c = 0 (black/grey), c = 0.1 (red), c = 0.2
(green), c = 0.3 (blue), and c = 0.4 (pink). (e) and (f) Comparison of the numerically-
computed c(κ) relationship (black curve) with its asymptotic approximation in (33) (red
dashed curve).

732



Nonlinearity 34 (2021) 725 N T Fadai

4. Approximating reaction–diffusion Stefan travelling waves for κ � 1

Now knowing the the approximations of u(z) and Q(u) in the limit where c � 1, i.e. κ � 1,
a natural extension is to examine travelling waves of the RDS model when the Stefan-like
parameter κ is large. It is well-reported that beyond a critical wavespeed, c = c∗, travel-
ling waves of reaction–diffusion models are no longer semi-infinite, implying that κ→∞ as
c → c∗− [10, 11, 21–23]. In the context of the heteroclinic trajectory Q(u), which solves (8),
we have that Q(0) = 0 for c � c∗. While this critical wavespeed is normally referred to in the
literature as the minimum wavespeed for which smooth travelling waves exist [1–4, 18–23], we
will interpret c = c∗ as the maximum wavespeed which produce semi-infinite travelling waves.
Additionally, the heteroclinic trajectory Q(u) will ‘flatten’ and decrease in absolute magnitude
as c increases, due to the key result that travelling waves become more diffuse and spread-out
as the wavespeed increases [1]. We will first show what conditions on R(u)D(u) are required
for c∗ = ∞, as well as the approximations of Q(u) for c � 1. Following this analysis, we will
examine instances of R(u)D(u) in which c∗ is finite, as well as approximations of Q(u) and u(z)
for c → c∗−.

To determine necessary conditions for c∗ = ∞, we first examine a desingularised version
of equations (5) and (6) via the change of variables

du
dζ

:=D(u)
du
dz

= Q(ζ), (34)

dQ
dζ

= −cQ(ζ) − R(u)D(u). (35)

This change of variables allows us to examine the equilibrium (u, Q) = (0, 0) without the issue
of having degenerate D(u) as u → 0+, while leaving Q(u) unchanged [1, 20]. Furthermore, it
immediately follows that in order for (u, Q) = (0, 0) to be an equilibrium of the desingularised
system, we must have R(0)D(0) = 0. Thus, for R(0)D(0) = 0, no finite value of c produces a
heteroclinic trajectory with Q(0) = 0.

However, having R(0)D(0) = 0 is a necessary but not sufficient condition for c∗ to be finite.
By examining the Jacobian J of the desingularised system at (u, Q) = (0, 0), we find that

J(0,0) =

[
0 1
−α −c

]
, where α =

d
du

[D(u)R(u)]

∣∣∣∣
u=0

. (36)

However, this local analysis fails when |α| = ∞, implying that Q(0) = 0 and providing a sec-
ond case for when c∗ = ∞. To summarise, the critical wavespeed c∗ = ∞ when at least one
of the two following conditions hold:

c∗ = ∞ ⇐⇒ R(0)D(0) = 0 or
d

du
[D(u)R(u)]

∣∣∣∣
u→0+

= ±∞. (37)

4.1. Approximating the heteroclinic trajectory Q(u) for c � 1

We first examine the heteroclinic trajectory Q(u) for c � 1, assuming that the conditions shown
in (37) hold. By rescaling Q(u) = cφ(u), (8) becomes

−c−2φ(u)
dφ(u)

du
= φ(u) + R(u)D(u), φ(1) = 0, lim

u→0+
φ(u) = −c2

κ
. (38)
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Since the left-hand side of (38) is o(1), we anticipate that the boundary conditions will not nec-
essarily be satisfied without additional rescaling of variables. Therefore, we first consider the
outer solution of (38) by expanding φ(u) = φ0(u) + c−2φ1(u) +O(c−4), where we determine
that

φ0(u) = −R(u)D(u) and φ1(u) = −R(u)D(u)
d
du

[D(u)R(u)]; (39)

hence, the outer solution for Q(u) is

Qouter(u) ∼ −R(u)D(u)
c

{
1 +

1
c2

d
du

[D(u)R(u)]

}
, c � 1. (40)

There are two problems that can arise in the outer solution. The first is if R = R(1)D(1) > 0,
implying that a boundary layer near u = 1 must exist to satisfy the boundary condition
φ(1) = 0. By rescaling u = 1 − c−2v and denoting φ = ψ(v) in the boundary layer, we obtain
the leading-order ODE

ψ(v)
dψ(v)

dv
= ψ(v) +R, ψ(0) = 0, lim

v→∞
ψ(v) = −R, (41)

which has the solution ψ(v) = −R
{

1 + W
[
− exp (−1 − v)

]}
and W(·) is the Lambert-W

function.
The second problem that can arise is due to the conditions that can hold in (37) as u → 0+.

As a result, the outer solution no longer remains a well-ordered asymptotic expansion, which
is resolved by rescaling (38) as u → 0+. By assuming R(u)D(u) ∼ Buq for u → 0+, where
q ∈ (−1, 1), a balance of all terms in (38) is achieved via the rescalings

u = c−
2

1−q χ, Q = c−
1+q
1−q Φ(χ), (42)

which yields the leading-order ODE in the boundary layer near u = 0:

−Φ(χ)
dΦ(χ)

dχ
= Φ(χ) + Bχq, Φ(χ) ∼ −Bχq as χ→∞. (43)

A special case of (43) is when q = 0, where the solution is Φ(χ) ≡ −B and Q(u) therefore
does not change in this boundary layer. While (43) does not have an explicit solution for gen-
eral q ∈ (−1, 1), we are still able to provide some insight about the composite leading-order
approximation of Q(u) for large c � 1:

Qcomp(u) ∼ −R(u)D(u)− Buq +RW
[
− exp

(
c2u − c2 − 1

)]
c

+ c−
1+q
1−q Φ

(
c

2
1−q u

)
. (44)

In particular, we have that

κ ∼ c
2

1−q

−Φ(0)
, c � 1, (45)

which provides a leader-order power law relationship between κ and c for large wavespeeds.

734



Nonlinearity 34 (2021) 725 N T Fadai

4.2. Approximating the heteroclinic trajectory Q(u) for c → c∗−

As shown in (37), travelling waves in the RDS model can only have a bounded range of
wavespeeds, i.e. c ∈ [0, c∗], if R(0)D(0) = 0 and [R(u)D(u)]′ is finite at u = 0. From (36), when
c = c∗, Q(0) = 0 and J(0,0) has eigenvalues

λ± =
−c∗ ±

√
c∗2 − 4α

2
, where α =

d
du

[D(u)R(u)]

∣∣∣∣
u=0

. (46)

It immediately follows that if α > 0, (u, Q) = (0, 0) changes from a stable spiral point to a
saddle point at c∗ = 2

√
α, thereby providing an explicit expression for the critical wavespeed

[1, 20, 21, 24]. As we impose that R(u)D(u) � 0, we do not consider the case where α < 0.
For α = 0, the eigenvalues of J(0,0) are (0,−c∗) for all positive wavespeeds, resulting in

a fixed point with degenerate stability. Therefore, we cannot use linear stability analysis to
determine c∗ and instead define the critical wavespeed as the minimum value of c that solves
(8) and has Q(0) = 0. Additionally, from the eigenvalues of J(0,0), we have that Q′(0) = −c∗

at the critical wavespeed. While neither Q(u) or c∗ can be explicitly determined for all choices
of R(u)D(u) with c∗ finite, we are nevertheless interested in examining both Q(u) and κ(c) as
c → c∗−. To do this, we set c = c∗ − ε, where ε � 1, whereby (8) becomes

−Q(u)
dQ(u)

du
= (c∗ − ε)Q(u) + R(u)D(u), Q(1) = 0. (47)

By expanding Q(u) as a regular perturbation expansion in ε, i.e. Q(u) = Ψ0(u) + εΨ1(u) +
O(ε2), we obtain, from (47), the following two-term equations:

Os(1) : −Ψ0(u)
dΨ0(u)

du
= c∗Ψ0(u) + R(u)D(u), Ψ0(1) = 0; (48)

Os(ε) : − d
du

[Ψ0(u)Ψ1(u)] = c∗Ψ1(u) −Ψ0(u), Ψ1(1) = 0. (49)

To determine how Ψ1(u) relates to Ψ0(u), we will assume that both c∗ and Ψ0(u) are known,
noting that by its construction, Ψ0(0) = 0 and Ψ′

0(0) = −c∗. Furthermore, from (49), we have
that

dΨ1(u)
du

+

(
1

Ψ0(u)
dΨ0(u)

du
+

c∗

Ψ0(u)

)
= 1; (50)

thus, by multiplying by the integrating factor

Λ(u) := −Ψ0(u) exp

(∫ u c∗

Ψ0(s)
ds

)
� 0, (51)

we obtain

Ψ1(u) = − 1
Λ(u)

∫ 1

u
Λ(s)ds. (52)

Noting that Λ(u) ∼ c∗ as u → 0+, we determine that as c → c∗−,

Q(u) ∼ Ψ0(u) −
(

c∗ − c
Λ(u)

)∫ 1

u
Λ(s)ds and κ ∼ c∗c

(c∗ − c)
∫ 1

0 Λ(s)ds
. (53)
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4.3. Comparison between asymptotic approximations and numerical solutions

With the asymptotic approximations of the heteroclinic orbit Q(u) determined when κ � 1, we
now compare numerically-obtained solutions of (8) for specific choices of reaction kinetics and
diffusivities. Another common generalisation of the Fisher–Kolmogorov model is the Newman
reaction–diffusion (NRD) model [4, 26], in which

D(u) = uσ , R(u) = u(1 − uσ), σ > 0. (54)

The NRD model has an explicitly solvable travelling wave front for a finite critical wavespeed
c∗, which can be written using the heteroclinic trajectory

Q(u) = −u(1 − uσ)√
σ + 1

c∗ =
1√
σ + 1

, u(z) =

[
1 − exp

(
σz√
σ + 1

)] 1
σ

. (55)

From (51), we have that

Λ(u) =
1√

σ + 1
(1 − uσ)

1+σ
σ , (56)

implying, from (53), that as c → c∗−,

Q(u) = uσ du
dz

∼ −u(1 − uσ)√
σ + 1

−
(
1 − c

√
σ + 1

) [
B
(
σ−1, σ−1 + 2

)
− Buσ

(
σ−1, σ−1 + 2

)]
σ
√
σ + 1(1 − uσ)

σ+1
σ

, (57)

where B(p, q) and Bx(p, q) are the complete and incomplete Beta functions, respectively [27].
By evaluating (54) at u = 0, we obtain the approximate relationship between κ and c as
c → c∗−:

κ ∼ cσ
√
σ + 1

(1 − c
√
σ + 1)B

(
σ−1, σ−1 + 2

) , c →
(

1√
σ + 1

)−
. (58)

While (57) cannot be explicitly solved for u(z) for all values of σ, we can expand (57) for
u → 0+ to determine the shape of the leading edge of the travelling wave:

u(z) ∼
[

(−z)
(

1 − c
√
σ + 1

)(√
σ + 1
σ

)
B
(
σ−1, σ−1 + 2

)] 1
σ+1

, u → 0+. (59)

This expansion confirms that u ∝ (−z)1/(σ+1) for all c < c∗. Furthermore, by expanding (57)
for u → 1−, we obtain the far-field behaviour of u(z):

u(z) ∼ 1 − exp

[
(z − Z0)

(
σ√
σ + 1

)(
1 +

1 − c
√
σ + 1

1 + 2σ

)]
, u → 1−. (60)

In figure 2, we see that these leading-order approximations for Q(u) and κ(c) are in good
agreement with the numerical solution of the NRD model for c → c∗−. While approximations
of u(z) are less accurate near u = 0, we note that (59) is only a leading-order approximation
and further agreement can be obtained with the incorporation of higher-order terms in (57).
Nevertheless, the far-field approximation as u → 1− agrees well with the numerical solution
of the NRD model.
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Figure 2. Travelling waves arising in two models of the RDS model and asymp-
totic approximations valid for κ � 1. Left: NRD model (54) with σ = 2; right:
LDOR model (61) with b = 0.5 and δ = 0.1. (a) and (b) Numerically-computed
travelling waves (black curve) compared with approximations for u → 0+ (59), (63)
(red dashed curve) and u → 1− (60), (64) (cyan dot-dashed curve), with (a) c = 0.5
(b) c = 20. (c) and (d) Comparisons of the numerically-computed heteroclinic trajectory
Q(u) (solid curves) with the asymptotic approximation in (57), (62) (dashed curves) for
(c) c = c∗ = 1/

√
3 (black/grey), c = 0.55 (red), c = 0.5 (green), c = 0.45 (blue), and

c = 0.4 (pink); (d) c = 80 (black/grey), c = 40 (red), c = 20 (green), c = 10 (blue),
and c = 5 (pink). (e) and (f) Comparison of the numerically-computed c(κ) relationship
(black curve) with its asymptotic approximation in (58), (65) (red dashed curve).
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Our final reaction–diffusion model we will consider is the linear diffusion, oscillatory
reaction (LDOR) model, in which

D(u) = 1, R(u) = 1 + b sin
(u
δ

)
, b < 1, δ > 0. (61)

Like the FDSR model in section 3.4, we do not attempt to provide a physical justification
for the LDOR model, but instead note that, since R(0)D(0) = 1, the critical wavespeed of the
LDOR model is c∗ = ∞. We can therefore use (44) to determine the approximate heteroclinic
trajectory when c � 1:

Q(u) ∼ −1
c

{
1 + b sin

(u
δ

)
+RW

[
− exp

(
c2u − c2 − 1

)]}
, R = 1 + b sin

(
1
δ

)
.

(62)

Additionally, we determine that for c2(1 − u) � 1, i.e. for u far away from 1, the travelling
wave has the approximation

z ∼ −c
∫ u

0

ds
R(s)

= − 2δc
√

1 − b
2

{
tan−1

[
tan

(
u
2δ

)
+ b√

1 − b2

]
− sin−1(b) + kπ

}
, k ∈ Z,

(63)

where kπ is chosen so that u(z) is continuous on [0, 1]. For c2(1 − u) � 1, u(z) is described
predominantly by the boundary layer of the heteroclinic orbit, implying that

z ∼ Z0 −
∫ u

0

D(1)ds
R
√

2(1 − u)
= Z0 −

√
2(1 − u)
R . (64)

Finally, since Q(0) ∼ −c−1, we determine that

κ ∼ c2, c � 1. (65)

As seen in figure 2, these leading-order approximations for u(z), Q(u) and κ(c) are in good
agreement with the numerical solution of the LDOR model for c � 1. Specifically, we note
that (63) is valid for the majority of the u(z) travelling wave, since the boundary layer near
u = 1 is Os(c−2) in height (see inset of figure 2(b)). Therefore, we conclude that our leading-
order asymptotic approximations for large-κ travelling waves in the RDS model framework
are valid for both c∗ finite and infinite.

5. Stability of travelling waves

Now that we have determined various travelling wave solutions of the RDS model, as well
as approximate solutions for κ � 1 and κ � 1, it is natural to ask whether these travelling
wave solutions are stable. In general, formal stability analyses of travelling waves arising from
reaction–diffusion equations (e.g. [28, 29]) have only been considered for travelling waves
evolving over R. Furthermore, formal proofs concerning travelling waves in RDS models (e.g.
[8]) have been limited to existence and uniqueness of specific choices of reaction and diffusion
terms. Due to this gap in the theory of stability analysis, as well as being motivated by simula-
tions of real-life applications, we do not attempt to provide a formal stability analysis of these
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Figure 3. Comparison of numerical solutions of the RDS PDE model (1)–(3) and trav-
elling wave solutions (5)–(7). The numerical solutions of the RDS PDE (appendix A;
black solid curves) use the stated values of κ as inputs and compute the travelling wave
speed c when dL/dt is approximately constant and L(t) = 20. The associated travelling
wave profiles u(x − ct) are shown in coloured dashed curves. (a) GPF model (26) with
r = 2; (b) FDSR model (31) with s = 1/2; (c) NRD model (54) with σ = 2; (d) LDOR
model (61) with b = 0.5 and δ = 0.1.

travelling waves. Instead, we compare the numerical solutions of the RDS PDE model (1)–(3)
(appendix A) with the travelling wave solutions determined in previous sections, as a proxy
metric for stability of these travelling wave solutions.

As shown in figure 3, the GPF and NRD models both agree well with their associated travel-
ling wave solutions, suggesting that these travelling waves are stable. However, the FDSR and
LDOR models, whose travelling wave solutions evolve over a finite domain in z, do not agree
with numerical solutions of the RDS PDE model for all x. This is expected, since both reaction
terms in these models do not equal zero when u = 1 and therefore u continues to grow without
bound as t increases. However, we do observe that when κ is large, the section of the numerical
solution of the PDE where u ∈ [0, 1] agrees well with the travelling wave profile (figures 3(b)
and (d)). Therefore, these comparisons of numerical solutions suggest that RDS models with
R(1) = 0 produce unstable travelling wave fronts, while RDS models with R(1) = 0 have
stable travelling wave fronts. However, we leave a formal proof of these conjectures, and if
there are any additional conditions for stability, for future consideration.
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6. Conclusions

In this work, we consider semi-infinite travelling waves arising from a general reac-
tion–diffusion model coupled with a Stefan-like boundary condition at the leading edge of
the front. This RDS model employs a nonlinear diffusivity, D(u), as well as a nonlinear, non-
negative reaction term, R(u). Using travelling wave coordinates, we transform the model into
a single nonlinear differential equation, whose solution is the heteroclinic trajectory of the
travelling wave in the phase plane. Unlike other reaction–diffusion models, semi-infinite trav-
elling waves arise in the RDS model for a range of wavespeeds, as opposed to a single, critical
wavespeed. In the limiting regime where the wavespeed is small, i.e. c � 1, we obtain a good
approximation of the heteroclinic trajectory of the travelling wave, which can also be used to
relate the speed of the front to the Stefan-like parameter,κ. We also determine the approximate
form of the travelling wave near its leading edge (u → 0+), as well as when u → 1−. The key
result of this analysis is that in order for travelling waves in the RDS model to evolve over a
semi-infinite domain, both R(u)D(u) and D(u) must be o(u−1) for u → 0+. Furthermore, travel-
ling waves that evolve over a finite interval require that R(u) = O((1 − u)γ) as u → 1−, where
γ ∈ [0, 1). Finally, travelling waves in the RDS model evolving on a semi-infinite domain must
have R(u) = Os(1 − u) as u → 1−.

We also perform a similar asymptotic analysis of travelling wave solutions of the RDS
model for wavespeeds approaching a critical wavespeed, c∗. This threshold wavespeed pro-
vides a bound for when semi-infinite travelling waves cease to exist. Based on the behaviour
of R(u)D(u) as u → 0+, we provide the necessary conditions for which c∗ is finite. For both
c∗ = ∞ and c∗ finite, we obtain approximations of the heteroclinic trajectory and the relation-
ship between c and κ as c → c∗−. To validate these asymptotic approximations, we examine
various choices of R(u) and D(u) in the RDS model that are commonly employed in the litera-
ture. In all cases, we find that our asymptotic approximations for the heteroclinic trajectory, the
relationship between wavespeed and Stefan-like parameter, and the travelling wave itself all
agree well with their corresponding numerical solutions. Finally, a comparison between these
travelling wave solutions and numerical solutions of the RDS PDE model is made, as a proxy
metric for determining the stability of the aforementioned travelling wave solutions. We find
that when R(1) = 0, travelling wave solutions agree well with numerical solutions of the RDS
PDE model, suggesting stability. Conversely, if R(1) = 0, reaction terms cause u to increase
past u = 1 and do not establish stable travelling wave fronts. Nevertheless, for κ � 1, there is
agreement between the travelling wave solution and the section of the PDE numerical solutions
when u ∈ [0, 1].

Further extensions of the RDS model can also be considered. For instance, one could relax
the assumption that R(u) � 0 for u ∈ [0, 1], as is done with the Allee-type reaction kinetics
[29, 30]. For this class of reaction kinetics, the asymptotic analysis described in this work is
no longer valid, as the heteroclinic trajectory in the phase plane is no longer strictly negative.
While other methods have been proposed to mitigate these issues in related reaction–diffusion
models [29], it is unclear how these techniques can be used in the RDS modelling framework. In
addition to negative reaction kinetics, other extensions can be incorporated into the RDS mod-
elling framework, including nonlocal reactions [31] and multiple-species reaction–diffusion
equations [32, 33]. Finally, it should be noted that a formal stability analysis of the travelling
wave solutions presented in this work (cf. [28, 29]) has yet to be performed. We leave these
extensions for future consideration.
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Appendix A. Numerical solution for the reaction–diffusion Stefan model

To numerically compute solutions of (1)–(3), we extend numerical methods stated in [11] and
first approximate the semi-infinite domain (−∞, L(t)] as the finite domain [0, L(t)], provided
that L0 is sufficiently large. Additionally, we transform (1)–(3) to a fixed-space domain by
setting ρ = x/L(t); to obtain a linear moving boundary condition in (3), we define

φ =

∫ u

0
D(u)du (A.1)

and numerically solve the PDE using φ. Consequently, multiplying (1)–(3) by D(u(φ)) and
using the transformations stated above yields

∂tφ(ρ, t) =
ρ

L(t)
dL(t)

dt
∂ρφ(ρ, t) + R(u(φ))D(u(φ))+

D(u(φ))
[L(t)]2

∂ρρφ(ρ, t), (A.2)

φ(0, t) =
∫ 1

0
D(u)du, φ(1, t) = 0, 0 < ρ < 1, (A.3)

L(t)
dL(t)

dt
= −κ∂ρφ(ρ, t)|ρ=1, L(0) = L0. (A.4)

As we assume that L0 is sufficiently large, we can replace the far-field boundary condition
in u with the Dirichlet boundary condition (A.3) that corresponds to u = 1 when ρ = 0.
To compute the numerical solution of (A.2)–(A.4), we must specify values for L0, κ and
φ(ρ, 0). We obtain numerical solutions of (A.2) on a uniformly-spaced mesh of ρ ∈ [0, 1], i.e.
ρi = iΔρ, i = 0, . . . , N, where Δρ = 1/N. We denote φ(ρi, t j) = φn

i and L(t j) = L j for conve-
nience, where n � 1 is the nth Picard iteration estimate at time t j. Therefore, to determine φi,
we use

φn
i − φp

i

Δt
=

ρi(L j − L j−1)(φn
i+1 − φn

i−1)
2L jΔtΔρ

+ φn
i

[
R(u(φn−1

i ))D(u(φn−1
i ))

φn−1
i

]

+
(φn

i+1 − 2φn
i + φn

i−1)D(u(φn−1
i ))

(L j)2(Δρ)2
, (A.5)

φn
0 =

∫ 1

0
D(u)du, φn

N = 0. (A.6)

Here, φp
i is the solution of φi at the previous timestep, t j−1, and Δt is the timestep. We identify

the system (A.5) and (A.6) as a tridiagonal matrix inφn
i at time t j, which we can solve efficiently

using the Thomas algorithm. This solution is stored as Φn; if max |Φn −Φn−1| < δ, where δ
is some user-specified tolerance, then the Picard loop terminates and we proceed to updating
the moving boundary for the next timestep. Otherwise, n = n + 1, the solution Φn is stored as
φn−1

i , and the Picard iteration loop is performed again.
From the fixed-boundary PDE, the Stefan-like condition at ρ = 1 is

L(t)
dL(t)

dt
= −κ∂ρφ(ρ, t)|ρ=1, t ∈ [t j, t j+1], L(t j) = L j. (A.7)
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We approximate φ(ρ, t) as φ(ρ, t j) during the small interval t ∈ [t j, t j+1], allowing us to
explicitly solve (A.7) to give a closed form approximation for L(t):

L(t) =
√

(L j)2 − 2κ∂ρφ(ρ, t j)|ρ=1(t − t j), t j � t � t j+1. (A.8)

Therefore, evaluating this expression at t = t j+1 and using a second-order finite difference
approximation of ∂ρφ(ρ, t j)|ρ=1, we obtain the approximation

L j+1 =

√
(L j)2 − 2κΔt(3φn

N − 4φn
N−1 + φn

N−2)
2Δρ

. (A.9)

With these updated values of L j+1 and Φn = φp
i , we update t = t +Δt and j = j + 1; we then

repeat the computation to integrate through the next time increment. The algorithm terminates
when t +Δt > t f , where t f is the user-specified final time. Once sufficient time has passed that
the solution settles towards a travelling wave, we expect that dL(t)/dt = c, so we fit a straight
line to our numerical estimate of L(t) and use the slope of that line to provide an estimate of c.
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