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While the pathological mechanisms in COVID-19 illness are still poorly
understood, it is increasingly clear that high levels of pro-inflammatory
mediators play a major role in clinical deterioration in patients with severe
disease. Current evidence points to a hyperinflammatory state as the
driver of respiratory compromise in severe COVID-19 disease, with a clinical
trajectory resembling acute respiratory distress syndrome, but how this ‘run-
away train’ inflammatory response emerges and is maintained is not known.
Here, we present the first mathematical model of lung hyperinflammation
due to SARS-CoV-2 infection. This model is based on a network of pur-
ported mechanistic and physiological pathways linking together five
distinct biochemical species involved in the inflammatory response. Simu-
lations of our model give rise to distinct qualitative classes of COVID-19
patients: (i) individuals who naturally clear the virus, (ii) asymptomatic car-
riers and (iii–v) individuals who develop a case of mild, moderate, or severe
illness. These findings, supported by a comprehensive sensitivity analysis,
point to potential therapeutic interventions to prevent the emergence of
hyperinflammation. Specifically, we suggest that early intervention with a
locally acting anti-inflammatory agent (such as inhaled corticosteroids)
may effectively blockade the pathological hyperinflammatory reaction as it
emerges.

provided by Repository@N
1. Introduction
SARS-CoV-2, the causative viral agent for COVID-19 illness, has infected tens of
millions of people and caused many deaths worldwide. As SARS-CoV-2 is a
novel coronavirus, with ensuing COVID-19 a new illness, knowledge transfer
has been piecemeal and only preliminary data exist for SARS-CoV-2 [1]. Treat-
ment thus far has focused on severe COVID-19 [2] or the production of vaccines
to prevent transmission [3,4]. However, as it has been recognized that COVID-
19 produces a ‘runaway’ train pattern of hyperinflammation [5,6], it can be pos-
tulated that early intervention with an anti-inflammatory, such as inhaled
corticosteroids (ICS), could contain the illness [7]. This hypothesis is supported
further by the clinical finding that chronic respiratory diseases (such as asthma
and chronic obstructive pulmonary disease, COPD) are not the most common
co-morbidities seen in COVID-19 [8], indicating that ICS, a common treatment
for asthma and COPD, could provide a protective response.

The majority of COVID-19 patients develop a respiratory illness [9], with the
primary site of infection being the airway epithelium where the ACE2 receptors,
necessary for SARS-CoV-2 infection [10], are in abundance. Furthermore, the
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Figure 1. A simplified model of the potential inflammatory process in COVID-19 and potential therapeutic intervention. A rising viral load causes rising inflam-
mation, which causes damage but is normally kept in check by a feedback mechanism. In COVID-19 and other respiratory infections, this mechanism appears to fail,
leading, in a minority of patients, to a ‘runaway train’ pattern of hyperinflammation. Separately, viral entry into the vasculature leads to direct damage in the lung
and in distal organs. Potential intervention early on with an anti-inflammatory agent targeted at lung epithelial cells may help to re-establish this check on
hyperinflammation.
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emerging literature now contains evidence [7] that supports a
conceptual model (figure 1) in which a viral infection triggers
an immune response, which, in a minority of patients, is an
immune-driven hyperinflammatory process [5], leading to
an acute respiratory distress-like syndrome, as well as
causing direct damage by other (e.g. vascular) means [11].

As we gain further understanding of SARS-CoV-2, it is
clear that mechanistic investigations alone may not be suffi-
cient and that mathematical models of a complex biological
system are needed [12]. Specifically, mathematical models
describing lung epithelial inflammation in COVID-19 may
provide insight not accessible by experimental work alone
[12]. Such approaches have previously been used to investi-
gate the onset and resolution of inflammation [13,14],
identify key parameters in the inflammatory process and
better understand the interplay between inflammation and
cell migration in epithelial tissue [15]. The urgent need
better to understand COVID-19 pathology, combined with
the necessarily partial and piecemeal experimental evidence
emerging from clinics and laboratories, makes mathematical
modelling a natural approach for hypothesis generation and
testing, as well as designing treatment strategies.

We hypothesize that in at-risk patients, clinical deterio-
ration is a combination of direct damage from the virus and
a resulting uncontrolled pulmonary inflammatory process;
we develop a mathematical model to explore these phenom-
ena. In particular, we present a five-component mathematical
model that describes inflammation kinetics, viral infection,
and novel mechanisms that couple their dynamics. Using
this model, we (i) investigate which qualitative differences
in inflammation levels can be observed in patients infected
by SARS-CoV-2, and (ii) determine how ICS treatment can
be employed to reduce inflammation in the lung epithelium,
thereby preventing the onset of hyperinflammation and
other severe damage associated with high levels of
pro-inflammatory mediators.
2. Results
Using the current understanding of COVID-19 [5,6], we con-
sider a mathematical modelling framework that describes the
temporal evolution of five species at early timescales of
SARS-CoV-2 viral infection: pro-inflammatory mediators
(e.g. cytokines, interferons, C), recruited immune system
cells (e.g. lymphocytes, T-cells and macrophages, M), freely-
moving SARS-CoV-2 virus (V), cells susceptible to viral infec-
tion (e.g. epithelial lung cells, S), and infected cells (I). We
refer to this five-species mathematical model as the MVSIC
model. These species interact via a network of physiological
responses relating to the localized infection and inflammation
of epithelial lung cells (see figure 2 for a model schematic).
Unlike previous models describing inflammation or viral
infection (c.f. [13,16–18]), the MVSIC model incorporates the
novel additional feature of coupling inflammation kinetics
to viral infection.

We assume that each species will have a natural death/
clearance rate (process A in figure 2) and their dynamics
are coupled via the following mechanisms. Firstly, we
assume that susceptible epithelial lung cells follow logistic
growth in the absence of infection (process B in figure 2)
and become infected when free virus enters and reproduces
inside it (process D in figure 2). Secondly, we assume that
infected cells produce several copies of free virus; these
new viruses leave the infected cell without destroying it (pro-
cess E in figure 2). Thirdly, we assume that susceptible and
infected cells can both ‘signal’ for cytokine recruitment [5,6]
after detecting free virus (process F in figure 2); the infected
cell signal may be smaller or even repress the susceptible
cell’s signals. This cell signalling mechanism is represented
by rate-limited kinetics [19], which assumes a sigmoidal
Hill-like reaction term [20], multiplied by the amount of sig-
nalling cells present (see §2.1 for further details). Fourthly, we
assume that susceptible cells can also directly recruit (local)
immune cells, bypassing the cytokine pathway, via rate-
limited kinetics (process G in figure 2). While this direct
pathway allows faster recruitment of immune cells, there
are fewer immune cells locally available. Therefore, we also
assume that cytokines are recruited via immune system
cells (process H in figure 2) and vice versa (process J in
figure 2), creating a positive feedback loop. Finally, we
assume that immune cells can consume infected epithelial
cells via phagocytosis and remove SARS-CoV-2 virus
(process K in figure 2).



susceptible 
cells (S)

infected
cells (I)

SARS-CoV-2
virus (V)

immune cells 
(M)

pro-inflammatory 
mediators (C)

A

A

A

B

A

D
E

F

F

G

H

J

K

L

N

A: death/clearance rate (d2,d3,d4,d5)
B: logistic growth (d1, S0)
D: viral infection (k0)
E: viral production (k2)
F: signalling to pro-inflammatory 
 mediators (k6,k7,b,n)
G: signalling to immune cells (k5,a)

H: recruitment of pro-inflammatory
 mediators (k8,w,m)
J:  recruitment of immune cells (k4)
K: removal of infected cells/virus (k1,k3)
L: reduction in viral infection (intervention;  )
N: increase in clearance of pro-inflammatory
     mediators (intervention; f)

Figure 2. Network diagram describing the MVSIC model. Dimensional parameters are listed alongside each relevant process; processes resulting from intervention
strategies are shown in dashed green.
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We are not only interested in the underlying physiological
mechanisms driving inflammation in epithelial lung cells, but
also the effect of various intervention strategies that can reduce
viral infection and/or severe cases of inflammation. Therefore,
we also consider two additional pathways associated with
therapeutic intervention (green dashed lines in figure 2). One
intervention pathway is the reduction of viral infection of sus-
ceptible cells (process L in figure 2), as might appear in
retroviral therapies or vaccines; this therapy is represented
by a reduction in the viral infection rate. The other intervention
pathway that we will consider is the accelerated clearance of
pro-inflammatory cytokines by anti-inflammatories (process
N in figure 2), such as ICS [21].
2.1. The MVSIC model
We now propose a mathematical formulation of the network
diagram shown in figure 2 associated with our five-species
model, while incorporating the various physiological mech-
anisms outlined in the previous section. The temporal
evolution of the five species outlined in the MVSIC model
is described using the following system of ordinary
differential equations (ODEs):

dS
dt

¼ d1S 1� S
S0

� �
� k0(1� e)VS, (2:1)

dI
dt

¼ k0(1� e)VS� d2I � k1MI, (2:2)

dV
dt

¼ k2I � k3MV � d3V � k0(1� e)VS, (2:3)

dM
dt

¼ k4C� d4Mþ k5S
V

aþ V

� �
, (2:4)

dC
dt

¼ �d5(1þ f)Cþ (k6Sþ k7I)
Vn

bn þ Vn

� �
þ k8M

Vm

wm þ Vm

� �
:

(2:5)
The aforementioned rate-limited mechanisms, associated
with signalling and recruitment, are represented by the
rational functions in V appearing in equations (2.4) and
(2.5). All model variables and parameters appearing in this
dimensional version of the MVSIC model are described in
table 1. In particular, we note that our intervention par-
ameters associated with reducing the viral infection rate
and increasing the pro-inflammatory cytokine clearance rate
are denoted as ϵ and ϕ, respectively.

While there are a large number of (dimensional) par-
ameters present in the MVSIC model, certain combinations
of these parameters can exhibit the same qualitative features
to one another if particular non-dimensional parameter group-
ings remain unchanged. As a result, we now examine a non-
dimensionalized version of the MVSIC model to better
understand how the qualitative features of the model vary
with respect to these non-dimensional parameter groupings.
By rescaling the dimensional variables as

S ¼ S0Ŝ, I ¼ S0 Î, V ¼ S0V̂,

C ¼ S0k6
d1

Ĉ, M ¼ S0k4k6
d1d4

M̂, t ¼ t̂
d1

,
(2:6)

we obtain, after dropping hats, the non-dimensional system

dS
dt

¼ S[1� S� k(1� e)V] (2:7)

dI
dt

¼ k(1� e)SV � g1I(l1Mþ 1) (2:8)

dV
dt

¼ zI � k(1� e)SV � g2V(l2Mþ 1), (2:9)

dM
dt

¼ g3(C�M)þ rS
V

aþ V

� �
, (2:10)

dC
dt

¼ (SþsI)
Vn

bn þ Vn

� �
þmM

Vm

vm þ Vm

� �
�g4(1þf)C, (2:11)



Table 1. Summary of variables and dimensional parameters used in the MVSIC model. All parameters have units of species population, unless otherwise stated.

variable/
parameter biological interpretation parameter biological interpretation

S(t) susceptible cell population δ1 low-density reproduction rate of susceptible cells (s−1)

I(t) infected cell population δ2 infected cell clearance rate (s−1)

V(t) viral load δ3 viral clearance rate (s−1)

M(t) recruited immune cell population δ4 immune cell clearance rate (s−1)

C(t) cytokine population δ5 cytokine clearance rate (s−1)

k0 viral infection rate (s−1) S0 healthy equilibrium population of susceptible cells

k1 phagocytosis rate (s−1) a rate-limited viral concentration (direct signalling)

k2 viral production rate (s−1) n Hill power coefficient (indirect signalling;

dimensionless)

k3 viral clearance rate from immune response (s−1) b rate-limited viral concentration (indirect signalling)

k4 immune cell recruitment rate from cytokines (s−1) m Hill power coefficient (immune cell signalling;

dimensionless)

k5 immune cell recruitment rate from direct cell

signalling (s−1)

w rate-limited viral concentration (immune cell

signalling)

k6 cytokine recruitment rate from indirect cell

signalling (s−1)

ϵ relative factor of infection inhibition from ICS

(dimensionless)

k7 cytokine recruitment rate from indirect infected

cell signalling (s−1)

ϕ relative factor of additional cytokine clearance from

ICS (dimensionless)

k8 cytokine recruitment rate from immune cells (s−1)
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where

g1 ¼
d2
d1

, g2 ¼
d3
d1

, g3 ¼
d4
d1

, g4 ¼
d5
d1

, l1 ¼ S0k1k4k6
d1d2d4

,

l2 ¼ S0k3k4k6
d1d3d4

, k ¼ S0k0
d1

, z ¼ k2
d1

, m ¼ k4k8
d1d4

, r ¼ k5d4
k4k6

,

s ¼ k7
k6

, a ¼ a
S0

, b ¼ b
S0

, v ¼ w
S0

:

(2:12)

Since δ1, the growth rate of epithelial lung cells, typically
evolves on the timescale of days [22], which is a similar time-
scale to early stages of SARS-CoV-2 infection, this is an
appropriate choice of timescale to non-dimensionalize the
MVSIC model. Finally, the non-dimensional MVSIC model
(2.7)–(2.11) also includes initial conditions for the five species
to reflect that initially, there is a small amount of virus pre-
sent, no susceptible cells have been infected yet, and no
inflammatory mediators or immune cells are present at the
site of infection:

S(0) ¼ 1, I(0) ¼ 0, V(0) ¼V0, M(0) ¼ 0,

C(0) ¼ 0:
(2:13)

For simplicity, and minimal loss of generality, we will assume
from here onwards that both Hill power coefficients, n and m,
are equal to 2. These power coefficients represent a slower
uptake of recruitment at low concentrations, but a larger
response at moderate and high concentrations [19,20]. Fur-
thermore, this choice of n, m > 1 agrees with the model
description of having a faster local recruitment for small
viral loads, but is surpassed at moderate viral loads by
cytokine-related signalling pathways for immune cell
recruitment.
2.2. Qualitative features of the MVSIC model
One of the objectives for developing the MVSIC model is to
create a mechanistic model capable of describing five main
clinical features observed in patients infected with SARS-
CoV-2: (i) healthy patients that clear the virus without experi-
encing symptoms, (ii) asymptomatic patients that do not clear
the virus but do not experience symptoms, (iii–v) patients
experiencing mild, moderate, or severe levels of inflam-
mation, the latter of which are also incapable of clearing the
virus on their own, resulting in a hyperinflammatory state.
These traits are not only based on the percentage of suscep-
tible cells present, but also on the levels of pro-
inflammatory mediators in the system. In other words, the
virus-free and mild inflammatory states may look similar in
terms of percentage of healthy epithelial cells, but are distin-
guished by the differing levels of pro-inflammatory
mediators present. As such, we will define three main cat-
egories of qualitative features of the MVSIC model, based
on percentage of healthy susceptible cells: (a) virus-free/
mild inflammatory state, (b) asymptomatic/moderate inflam-
matory state, and (c) severe inflammatory state. Categories (a)
and (b) are further subdivided between virus-free or mild
inflammation (asymptomatic or moderate inflammation)
based on the absolute magnitude of the cytokine levels. How-
ever, it is important to note that the dimensional quantity of
pro-inflammatory mediators and immune cells present
could indeed be large or small, depending on the parameters
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Figure 3. Qualitative states observed in the MVSIC model (2.7)–(2.13). The three different states (mild inflammation/virus-free state, asymptomatic/moderate
inflammation, and severe inflammation) are characterized based on the levels of pro-inflammatory cytokines (red) present in the system, recruited by immune
cells (cyan), as well as the quantity of susceptible cells (black) being infected (green) by virus (blue). Changing certain parameters causes the virus-free/mild
state to transition to the asymptomatic/moderate state, or be further driven to the severe inflammation state. Parameter values used in the MVSIC model simulations
are listed in table 2.

Table 2. Dimensionless parameter groupings used in simulations of the MVSIC model.

qualitative state parameters state features

all γ3 = 3, γ4 = 3, λ1 = 0.1, λ2 = 0.1, ζ = 8, ρ = 0.5, σ = 0.1, μ = 1,

n = 2, m = 2, α = 0.05, β = 0.1, ω = 0.2, V0 = 0.05, ϵ = 0, ϕ = 0

mild/virus-free γ1 = 3, γ2 = 3, κ = 8 stable virus-free steady state

moderate/asymptomatic γ1 = 4, γ2 = 4, κ = 6 stable infectious steady state

severe inflammation γ1 = 5, γ2 = 5, κ = 8 unstable infectious steady state
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chosen in the rescaling of M(t) and C(t). As such, our analysis
of the three infection scenarios is based on the qualitative
features of the immunological responses, so M(t) and C(t)
are rescaled in figure 3 by their maximal value without loss
of generality.

To demonstrate that the MVSIC model is capable of pro-
ducing all of these situations, we examine the solutions of the
MVSIC model (2.7)–(2.13) for various choices of parameter
values. Solutions are numerically computed in Matlab via
the function ode15s and illustrative example solutions are
shown in figure 3. Crucially, we are able to simulate all quali-
tative states of viral infection, characterized via the amount of
cytokines present C(t) and percentages of susceptible cells
S(t), using different parameter values in the MVSIC model.
Furthermore, by performing an extensive sensitivity analysis
of various dimensionless parameter groupings (electronic
supplementary material), we can identify which pathways
have the strongest connections to severe cases of inflam-
mation. We use the extended Fourier amplitude sensitivity
analysis (eFAST) [23,24], a variance decomposition technique,
which measures the relative contributions of each individual
parameter as well as the contributions of parameter inter-
actions on key model outputs that serve as proxies for
qualitative features observed in the hyperinflammatory
state. We consider three model outputs: the minimum
number of susceptible cells (electronic supplementary
material), the average fluctuations in cytokine levels (elec-
tronic supplementary material), and the difference in
maximum and minimum cytokine levels after a certain
amount of time has passed (e.g. t > 20; electronic supplemen-
tary material). This sensitivity analysis demonstrates that the
parameter groupings associated with viral infection and
cytokine clearance (i.e. γ1, γ2, γ4, κ and ζ) most significantly
affect moderate and severe cases of inflammation. In other
words, despite lacking precise parameter values appearing
in the MVSIC model, as might be obtained from experiments,
the salient features of the MVSIC model exist in large regions
of parameter space and are most significantly characterized
by a small number of parameter groupings.

Mathematically, there are two key features that dis-
tinguish these three qualitative states: the absence or
presence of an infectious steady state, and if this infectious
steady state is stable or unstable. When the infectious
steady state does not exist, the system settles to the healthy
steady state, whereby the virus is cleared by the immune
system and susceptible cells are replenished to their full
quantities (S = 1). We will now examine additional stability
features of these equilibria.

2.3. Equilibria and stability
A question that naturally arises from the MVSIC model is
what qualitative features do we expect to observe for a
given set of parameter values. To answer this question, we
examine the existence and stability of various steady states,
or equilibria, present in the MVSIC model. A steady state is
a combination of constant values (S*, I*, V*, M*, C*) for
which the right hand sides of (2.7)–(2.11) are all zero. From
(2.8) and (2.9), any equilibria of the MVSIC model must have

I� ¼ k(1� e)
z

S�V� þ g2
z
V�(l2M� þ 1) ¼ k(1� e)S�V�

g1(l1M� þ 1)
: (2:14)

Furthermore, from (2.7), we either have S* = 0 or S* = 1−
κ(1− ϵ)V*, the former corresponding to the case when sus-
ceptible cells are depleted. If S* = 0, then we have from (2.8)
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that I* =V* =M* =C* = 0; we will refer to this equilibrium as
the zero state, which can be shown to always be unstable.
Alternatively, if S* = 1− κ(1− ϵ)V*, then (V*, M*, C*) satisfy
the following nonlinear system of equations:

k(1� e)V�[1� k(1� e)V�][z� g1(l1M
� þ 1)]

¼ g1g2V
�(l1M� þ 1)(l2M� þ 1), (2:15)

C� ¼ M� � rV�[1� k(1� e)V�]
g3(aþ V�)

, (2:16)

g4(1þ f)C� � mM� V�m

vm þ V�m

� �

¼ [1� k(1� e)V�] 1þ sk(1� e)V�

g1(l1M� þ 1)

� �
V�n

bn þ V�n

� �
:

(2:17)

Notably, if V* = 0 in (2.15), this implies that M* =C* = I* = 0
and S* = 1; this equilibrium represents the healthy steady
state. Otherwise, we obtain a new equilibrium in which V*,
M*, C*, I*, S* are all strictly positive; we refer to this equili-
brium as the infectious steady state. Furthermore, it can be
shown (electronic supplementary material) that the infectious
steady state can only exist when

g1 ,
zk(1� e)

g2 þ k(1� e)
: (2:18)

In other words, when susceptible cells become infected faster
than infected cells being cleared from the system and the
amount of free virus is sustained above a threshold quantity,
the system settles to an infectious steady state. It can be
shown that this infectious steady state, when (2.18) holds, is
unique (electronic supplementary material). Additionally,
the healthy steady state is unstable only when (2.18) holds,
as this inequality corresponds to when all the eigenvalues
of the Jacobian of (2.7)–(2.11) at the healthy steady state no
longer have negative real parts. Therefore, the system can
only clear the virus and inflammation responses completely
if and only if the infectious steady state does not exist.

In addition to the existence of a unique infectious steady
state, we can also numerically compute where this infectious
steady state becomes unstable. As shown in figure 4, the
infectious steady state undergoes a Hopf bifurcation in par-
ameter space, whereby two of the eigenvalues of the Jacobian
of (2.7)–(2.11) at the infectious steady-state transition from
having a negative real part to having a positive real
part. This transition causes the infectious steady state to be
locally unstable and, as seen in the severe inflammation state
in figure 3, exhibit large oscillations in all species concentrations.

We also note that the ICS intervention parameter associ-
ated with pro-inflammatory cytokine clearance, ϕ, does not
appear in (2.18). While increasing cytokine clearance cannot
remove the infectious steady state, we will show in the next
section that this parameter is linked to a reduction in the
pro-inflammatory mediators, thereby eliminating a potential
hyperinflammatory response.

2.4. Intervention strategies
We now examine how two key pathways in the MVSIC
model, related to the viral infection rate and the pro-inflam-
matory cytokine clearance rate, are altered in the presence
of a medical intervention, such as ICS. One intervention strat-
egy is to reduce the rate at which susceptible cells become
infected, as might be achieved by a vaccine. In the MVSIC
model, this therapy corresponds to the parameter ϵ, which
does indeed drive severe cases of inflammation down to
the virus-free state as ϵ increases, as shown via the inequality
(2.18) . However, in the absence of a vaccine option for SARS-
CoV-2, we must also consider other treatment strategies that
reduce inflammation, even if it does not completely eliminate
the virus from a patient.

Another intervention strategy is to increase the clearance
rate of pro-inflammatory cytokines, thereby reducing the
amount of inflammation present near infected cells. Since
inhaled corticosteroids (ICS) act directly on epithelial lung
cells, this therapy corresponds to increasing the parameter ϕ
without any time delay. While ICS intervention cannot
remove the infectious steady state, it can reduce large fluctu-
ations of pro-inflammatory cytokines and the resulting
damage that occurs in cases of severe inflammation. In
figure 5a, we observe that the pro-inflammatory cytokine
levels in the severe inflammation parameter regime (table 2)
are reduced to about 25% when ϕ is increased from 0 to
3. Therefore, even in the case where ICS do not decrease
the viral infection rate, they are still able to significantly
reduce inflammation and augment the natural clearance
rate of pro-inflammatory mediators. Indeed, by varying ϕ in
magnitude, we see in figure 5b that the height of the pro-
inflammatory cytokine spike decreases as ϕ increases. Rela-
tive to no intervention, i.e. ϕ = 0, we note that the spike’s
height decreases approximately by the relative factor F(ϕ) =
1/(1 + ϕ), which agrees with the numerical solution of the
spike decrease factor with high accuracy (figure 5b). In
other words, if ICS augment the natural cytokine clearance
rate by a multiplicative factor of 1 + ϕ, then the height of cyto-
kine spikes are reduced by approximately 1/(1 + ϕ) (e.g.
doubling the effective clearance rate halves the spike height).
3. Discussion
We have developed the first mathematical model describing
the dynamics of inflammation arising in epithelial lung
cells infected with SARS-CoV-2. This model, named the
MVSIC model, incorporates a network of mechanistic and
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physiological pathways that link together five distinct
species, along with pathways associated with therapeutic
interventions. We determine that the MVSIC model gives
rise to distinct qualitative classes of COVID-19 patients: (i)
individuals who naturally clear the virus, (ii) asymptomatic
carriers and (iii–v) individuals who develop a case of mild,
moderate, or severe illness as characterized by levels of
inflammatory mediators.

The pathological mechanisms in COVID-19 illness are
still being elucidated and very much an active topic of
investigation. However, it is recognized that patients infected
with SARS-CoV-2 have high levels of pro-inflammatory
mediators [25], especially those that have severe illness.
In the lung itself, pro-inflammatory monocyte-derived
macrophages are abundant in the bronchoalveolar lavage
fluid from patients with severe COVID-19 [26]. These, and
other, findings point to a hyperinflammatory state in
severely ill patients, which is believed to be linked to poor
or fatal outcome, with a clinical trajectory that resembles
acute respiratory distress syndrome (ARDS). Therefore,
understanding, and preventing, dangerously high levels of
inflammatory mediators present in patients with COVID-19
would appear to be crucial. Our model is consistent with
these immunological findings; furthermore, this analysis
points to potential therapeutic interventions to prevent the
emergence of hyperinflammation (e.g. UK clinical trial
NCT04416399 [7]). Specifically, we suggest that an early
intervention with a locally acting (i.e. targeted at inflamed
epithelial lung cells) anti-inflammatory agent may effectively
lead to blockade in the ‘runaway train’ inflammatory reac-
tion. Inhaled corticosteroids or other cytokine-reducing
medications, as recently suggested [7], are candidates for
such agents.

Our model is based on a simplified picture of the inflam-
matory pathways involved and therefore has limitations. It
does not account comprehensively for every mechanism
and cell class involved in SARS-CoV-2 infections and
damage. We do not, for instance, distinguish between
T-cells, macrophages, lymphocytes, and other immune cell
types, instead focussing on the inflammatory mechanism as
a whole. Additionally, in severe cases of COVID-19, recent
evidence indicates that the virus permeates into the endo-
thelium tissue of the lungs, circulating through the blood
and causing distal organ damage by vascular and other
means [27], while here we do not consider this direct/
non-inflammatory avenue of viral damage. The timescale
associated with SARS-CoV-2 permeating into the endo-
thelium is far longer than local epithelial infection kinetics.
Thus, the MVSIC model dynamics are relevant chiefly
during the earlier stages of COVID-19 illness, when
inflammatory processes dominate the clinical picture.

Finally, while certain immune responses, such as phago-
cytosis, produce inflammatory mediators, other immune
responses, such as T-cells removing virus, do not. Thus,
more detailed mathematical models are likely to be needed
to account for the complex interplay between differing classes
of immune cells; however, the MVSIC model is a first attempt
to understand the biological complexity, which will require
prospective validation. Enhancing our knowledge using
these mathematical models is expected to be valuable in
designing more sophisticated and patient-specific intervention
strategies.
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