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a b s t r a c t

Process manufacturing industries constantly strive to make their processes increasingly sustainable from
an environmental and economic perspective. A manufacturing system model is a powerful tool to ho-
listically evaluate various manufacturing configurations to determine the most sustainable one. Previ-
ously models of process manufacturing systems are typically single target models, trained to fit and/or
predict data for a single output variable. However, process manufacturing systems produce a variety of
outputs with multiple, sometimes contradictory, sustainability implications. These systems require
multiple target models to find the most sustainable manufacturing configuration which considers all
outputs. A novel bioprocess that treats process wastewaters to reduce pollutant load for reuse, while
simultaneously generating energy in the form of biogas was studied. Multiple target models were
developed to predict the percentage removal of chemical oxygen demand and total suspended solids, in
addition to the biogas (as volume of methane) produced. Predictions from the models were able to
reduce wastewater treatment costs by 17.0%. Eight models were developed and statistically evaluated by
the coefficient of determination (R2), normalised root mean square error (nRMSE) and mean absolute
percentage error (MAPE). An artificial neural network model built following the ensemble of regressor
chains demonstrated the best multi target model performance, averaged across all the bioprocess’s
outputs (R2 of 0.99, nRMSE of 0.02, MAPE of 1.74). The model is able to react to new regulations and
legislation and/or variations in company, sector, world circumstances to provide the most up to date
sustainable manufacturing configuration.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1 Artificial neural network: ANN; Chemical oxygen demand: COD; Coefficient of
1. Introduction

Enhancing the sustainability of process manufacturing systems
has gained growing attention over the last few decades (Te Liew
et al., 2014; Al-Sharrah et al., 2010; Bakshi and Fiksel, 2003). For a
manufacturing system to be considered truly sustainable it needs to
maximise environmental and social benefits, in addition to eco-
nomic benefits (Stock and Seliger, 2016). This is particularly
important for process manufacturing, which havemultiple outputs,
each with several and sometimes contradictory, sustainability im-
plications. Process manufacturing is the thermal and/or bio/
chemical conversion of resources to products, co-products, by-
R.L. Gomes).
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products and wastes streams (Fisher et al., 2018). Process
manufacturing covers a range of industries, including chemicals,
food and drink, paint, polymer, pharmaceutical, steel, and fast-
moving consumer goods (FMCG). All the process outputs (co-/
products, by-products and wastestream composition/volume)
require consideration to achieve sustainable manufacturing. This
paper investigates how multiple target modelling of a process
manufacturing systemwill provide manufacturers with the tools to
holistically evaluate the sustainability of a manufacturing system.1
determination: R2; Data-driven model: DDM; Dissovled Oxygen: DO; Ensemble of
regressor chains: ERC; Maximum correlation chain: MCC; Mean absolute percent-
age error: MAPE; Methane: CH4; Normalised root mean square error: nRMSE;
Radom forest: RF; Regression chain: RC; Support vector regression: SVR; Total
suspended solids: TSS.
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Modelling a manufacturing system can aid decision making to
identify the most sustainable manufacturing configuration (e.g.
feedstock type and source, process conditions’ set point, product
specification) that may have previously been unknown (Fisher
et al., 2018). Furthermore, the model may react to new regula-
tions and legislation and/or variations in company, sector, world
circumstances that alter what is termed sustainable, be that
economically or environmentally, to provide the most up to date
sustainable manufacturing configuration. A powerful tool to ach-
ieve this are data-driven models (DDMs). Data-driven models are
developed using algorithms to fit and analyse the data andmay also
be used to make predictions (Fisher et al., 2020). Data-driven
models are able to model complex nonlinear relationships within
multivariate data (Wang et al., 2018). However, the accuracy of an
DDM’s predictions relies on the modelling data being representa-
tive of the manufacturing system (Coley et al., 2018).

The majority of published research utilising DDMs within pro-
cess manufacturing systems are single target models. A single
target model is trained to fit or both fit and predict data with a
single, categorical or numerical target variable of a manufacturing
system (Kim, 2017). Recent uses of single target models in process
manufacturing show their capability to model: adsorption (Hamid
et al., 2016), clean-in-place systems (Escrig et al., 2019), fluid me-
chanics (Ling et al., 2016), heat transfer (Baghban et al., 2019), mass
transport (Kolouri et al., 2017), reaction networks (Ulissi et al.,
2017) and synthesise design (Coley et al., 2018). These models
may be utilised to discover the most sustainable configuration of
the various manufacturing processes. For example, using DDMs to
increase removal rates of heavy metals from industrial wastewaters
(Halder et al., 2015). Conventional metal removal techniques have
negative sustainability implications (high operational cost,
incomplete removal, and generation of toxic residuals) (Shahin
et al., 2019). By using response surface methodology and artificial
neural networks, Halder et al. were able to predict the process
conditions that would maximise the chromium (VI) removal effi-
ciency by superheated steam activated granular carbon prepared
from non-useable coconut shell, a sustainable alternative to con-
ventional metal removal techniques (Halder et al., 2015). However,
this work did not consider that industrial wastewaters often
contain a variety of pollutants including heavy metals (e.g. cad-
mium, chromium, cobalt, copper, nickel and mercury) (Shahin
et al., 2019). If instead a multiple target model was developed, it
would enable process conditions to be determined that would
maximise the removal of multiple heavy metals and/or incorporate
economic outputs into the model, increasing the potential of the
Halder et al. process as a sustainable alternative for the treatment of
heavy metals in industrial wastewaters.

Examples exist of multiple independent single target models,
which are combined to fit and/or predict multiple outputs of a
process manufacturing system. For example, Lesnik and Liu
modelled the power density, chemical oxygen demand (COD)
removal, and Columbia efficiency of a microbial fuel cell used to
treat wastewater (Larson Lesnik and Liu, 2017). The authors ach-
ieved this by developing three single target models (Larson Lesnik
and Liu, 2017). However, the authors did not explore developing a
single model capable of predicting all three outputs. If they had, the
authors could have evaluated how the microbial fuel cells process
variables could have been manipulated to maximise power density,
COD removal and Columbia efficiency simultaneously. Further-
more, building multiple single target models of a system assumes
each output is independent of the other(s) and thus fails to capture
any relationship between the multiple outputs and require more
computational power (Melki et al., 2017). An alternative approach
is to build a model that integrates the multiple outputs into one
multiple target model that captures the relationships between the
2

output variables and requires less computational power (Borchani
et al., 2015). The development of multiple target models has
proven successful when applied to a wide range of practices: bio-
informatics (Liu et al., 2010), chemometrics (Burnham et al., 1999),
ecology (Kocev et al., 2009), gene function prediction (Kocev and
Ceci, 2015), natural language processing (Jeong and Lee, 2009),
stock price forecasting (Xiong et al., 2014). There are a limited
number of examples of multiple target models built for process
manufacturing systems (Curteanu et al., 2011; Liu et al., 2017). For
example, Curteanu et al. developed a multiple target artificial
neural network to predict the removal of chlorophyll, COD and total
suspended solids (TSS) by electrolysis process in wastewater
treatment (Curteanu et al., 2011). Although, the authors did not
demonstrate how the multiple target model may be used to gain
insight or improve the manufacturing system. It is important to not
only demonstrate how a multiple target model may be successfully
developed but also the methods by which these models may
evaluate changes to the manufacturing system (e.g., changes in
feedstock characteristics, supply chain, process set points, product
quality) in order to find the most sustainable manufacturing con-
figurations. There is a growing body of work (Zarte et al., 2019; Saad
et al., 2019; Min et al., 2019) that aims to provide process manu-
facturers with the decision support systems necessary to increase
their sustainability. Multiple target models may act as a tool to
improve decision making by enabling these systems to consider all
outputs concurrently in one model.

This work develops a multiple target model of an industrial
bioprocess that treats manufacturer’s wastewaters to improve
water quality and reuse, whilst simultaneously generating bio-
energy. A multiple target model was necessary to investigate how
the different process conditions affect both the pollutant removal
rates from the wastewater, and the volume of biogas generated.
This model is then utilised to find the most sustainable process
conditions for multiple manufacturing environments (various
feedstock compositions and effluent disposal costs). More infor-
mation about the case study is given in Section 1.1. Due to the
tendency to model process manufacturing systems using only
single target modelling techniques, an overview of the multiple
target modelling techniques used in this article has been included
in Section 2.

1.1. Bioprocess (H2AD) case study for waste valorisation

Manufacturers are under pressure to ensure and increase sus-
tainability throughout their systems and an intelligent resource use
strategy is paramount to achieving this. Two key resources that
process manufacturers consume are water and energy. Water de-
mand in the manufacturing sector is expected to rise by 400% be-
tween 2012 and 2050 (OECD, 2012), while energy consumption is
projected to increase by 1.2% per year until 2040 (U.S. Energy
Information Administration, 2016). Process manufacturers are in
an advantageous position to reduce demand for water and energy
because their systems offer an opportunity to recover both from
waste streams via waste valorisation technologies (Fisher et al.,
2018). Waste valorisation or the circular economy refers to indus-
trial processing activities aimed at reusing, recycling, or recovering
resources from waste (Kabongo et al., 2013). In the UK, Lindhurst
Engineering Ltd. in partnership with the University of Nottingham
has developed a technology called “H2AD” (H2AD, 2020). The H2AD
process combines bioelectrochemical systems (BES) and anaerobic
digestion technologies. Bioelectrochemical systems are capable of
converting chemical energy into electrical energy (and vice-versa)
by employing microbes as catalysts (Bajracharya et al., 2016). The
H2AD is also capable of treating a variety of wastewaters, from
sources including agriculture, brewing, soft drinks, foods and bio-
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manufacture residues, to reduce the pollutant load and improve the
water quality for reuse, whilst simultaneously generating bio-
energy. The H2AD is targeted at treating the wastewaters from SME
manufacturing processes due to its modular, low-cost design.

The H2AD system was selected to demonstrate the techniques
developed in this paper because the bioprocess has multiple ob-
jectives to optimise (multi-pollutant remediation from water and
biogas generation). These two objectives come into conflict with
one another when deciding on which process conditions to use
when operating the H2AD. For example, increasing the hydraulic
residence time (HRT) of the bioprocess increases the time available
for the system to reduce pollutants in the wastewater. However,
this reduces the rate of addition of wastewater to the system,
reducing the fuel available for biogas generation. This is a simplistic
example, the actual relation between HRT and the objectives are
more complex (due to the fact the bioprocess is a complex non-
linear living system), hence the need for a DDM of the system.

The H2AD system has two objectives: 1) improve the waste-
water quality for reuse and 2) energy generation from waste
streams. This was represented in the model by 3 outputs: per-
centage of COD removal (%COD removal), percentage of total sus-
pended solids (TSS) removal (%TSS removal) and daily volume of
methane produced by the H2AD bioprocess. The pollutants COD
and TSS were chosen because UK wastewater management com-
panies use COD and TSS concentrations in thewastewater, as part of
the Mogden formula, when calculating wastewater disposal cost
(Tools, 2019). The rate that wastewater companies charge for
wastewater disposal differs between companies, see Fig. 1. This will
have implications when determining whether it is more sustain-
able to maximise pollutant removal or energy generation. The en-
ergy generation potential of the H2AD bioprocess is represented by
the volume of methane produced. The H2AD bioprocess produces
biogas, made up of methane, carbon dioxide, oxygen and hydrogen
sulphide. Of these, only methane has significant calorific value and
can be used to estimate the energy potential from the biogas pro-
duced (Bauer et al., 2010).

This research aims to investigate the best techniques to develop
a multiple target model of a process manufacturing system and
demonstrate how that multiple target model may be utilised to
increase sustainability within the system. The main contributions
presented in this paper include:

� Evaluating the performance of two multiple target modelling
techniques (1: problem transformation and 2: algorithm adap-
tation, detailed in Section 2) when modelling a process
manufacturing system.

� Proposing a novel multiple targetmodel bymodifying algorithm
adaptation models to use an artificial neural network (ANN) as a
base model for the first time. The new model is then evaluated
against existing multiple target modelling techniques.

� Utilising the final multiple target model to investigate the most
sustainable manufacturing configuration of a novel industrial
bioprocess for different manufacturing environments (e.g.
feedstock characteristics and composition, regulations/legisla-
tion, waste management bodies).

2. Overview of multiple target modelling techniques

There are two main approaches for using DDMs as a base
method for multiple target learning: problem transformation and
algorithm adaptation (Borchani et al., 2015). Problem trans-
formation is the transformation of a multiple target model into
multiple single models, each solved independently in parallel using
traditional DDM procedures (Borchani et al., 2015). Whereas, al-
gorithm adaptation methods adapt the DDM algorithm to fit and/or
3

predict all outputs simultaneously in one DDM (Borchani et al.,
2015). Algorithm adaption methods have been shown to perform
better than problem transformation methods (Melki et al., 2017;
Kocev and Ceci, 2015). This is accredited to their ability to capture
not only the relationships between a model’s inputs and outputs
but also between the different outputs (Melki et al., 2017). A feature
not possible in problem transformation models, because a single
independent model is trained for each output (Borchani et al.,
2015).

There are several approaches to use when building algorithm
adaptation multiple target models, including linear target combi-
nations for multiple target regression (Tsoumakas et al., 2014),
multi-objective random forests (Kocev et al., 2007), multiple output
artificial neural networks (Curteanu et al., 2011), boosted-neural
network ensemble (Hadavandi et al., 2015) and multi-task deep
learning (Ranjan et al., 2019). Recently explored was the possibility
of stacking or chaining regression models together, with regression
chains (RCs) proving the most effective of the two (Spyromitros-
Xioufis et al., 2016). In building a RC model a random chain, or
sequence, of the output variables is selected and for each output in
the chain, single target models are built sequentially by using the
output of the previous model as input for the next. The RC is an
example of an algorithm adaptation multiple target modelling
technique, because a RC uses selected model outputs to predict the
additional model outputs (Fig. 2-A). Problem transformation
methods create multiple independent models for each output and
fail to capture the relationships between model outputs (Fig. 2-B)
(Borchani et al., 2015).

Despite the previously discussed advantages of using an algo-
rithm adaption model over a problem transformation model, there
are two main problems with using a RC as an algorithm adaption
model:

1. The relationships between the output variables at the start of
the chain and the end of the chain are not exploited (Melki et al.,
2017).

2. Prediction error at the start of the chain will propagate through
the rest of the chain (Spyromitros-Xioufis et al., 2016).

To overcome these problems, an ensemble of regressor chains
(ERC) was proposed (Spyromitros-Xioufis et al., 2016). The ECR
works by creating multiple RCs for every possible permutation of
the output sequence order. For example, the RC displayed in Fig. 2
(A) is ordered Y1eY2eY3, an ERC model would include multiple RC
for orders Y1eY3eY2, Y2eY1eY3, Y2eY3eY1, Y3eY1eY2 and
Y3eY2eY1. The final prediction values are obtained by taking the
mean of the predicted values. Because of the computational time
for building models with outputs that exceed 10 permutations, the
sequence order is randomised, and 10 RCs are selected for con-
structing the ERC. As the number of output variables increases, the
number of possible chains increases by a factorial function.
Therefore, there is no guarantee that the 10 random chains
generated will truly capture the relationships among the outputs.
Additionally, building an ERC requires exponentially greater
computational power as the number of outputs increases. Melki
et al. proposed an adaption to the ERC, which instead used a single
chain based on the maximisation of the correlations among the
output variables (Melki et al., 2017). Melki et al. referred to their
technique as a support vector regressor correlation chain, as it was
built using a support vector regressor (SVR) algorithm as a base
model. A SVR solves a non-linear problem by transforming the non-
linearity between features and target using linear mapping (ker-
nels) (Yildiz et al., 2017). They are highly effective algorithms, even
when presented with small quantities of data (Yildiz et al., 2017).
For this work, it is referred to as the maximum correlation chain



Fig. 1. Annual wastewater charge for different UK water and sewerage companies, based on 4 m3/d of wastewater with a chemical oxygen demand of 85,000 mg/L and total
suspended solids of 984 mg/L using WRAP Mogden calculator (Tools, 2019).
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(MCC) when applying the technique to other base models. To
construct a MCC the first step is to calculate the outputs’ correlation
coefficient matrix, which will describe the linear relationship
among the output variables. This can then be sorted into
descending order, creating the MCC. The MCC then follows the
same training procedure as a standard RC.

Problem transformation and algorithm adaptation multiple
target models use DDM algorithms as a base model for each model
developed in the stack or chain. Previous examples of ERC and MCC
models have used random forest (RF) and SVR based models (Melki
et al., 2017; Spyromitros-Xioufis et al., 2016). Random forests are an
ensemble technique that uses multiple decision trees and a sta-
tistical technique called ‘bagging’ (Ahmad et al., 2017). Rather than
just averaging predictions from multiple trees, an RF instead
randomly samples from the training data for each tree and
randomly subsets the input variables at splitting nodes until the
minimumnode size is reached (Ahmad et al., 2017). Artificial neural
networks (ANNs) are a DDM algorithm that has yet to be utilised as
a base model for ERC or MCC (Yildiz et al., 2017). Artificial neural
networks are mathematical models that have been inspired by the
connections made between neurons in a biological brain (Kim,
2017). The neural network is composed of nodes (which repre-
sent the neurons) and the connection between these nodes are
given weight values to mimic how the brain alters the association
between neurons (Kim, 2017). An ANN consists of an input layer, a
single or multiple hidden layers, and an output layer. Artificial
neural networks have excellent capabilities when modelling non-
linear systems and are the most extensively utilised DDM in pro-
cess manufacturing (Himmelblau, 2000).
4

The final multiple target modelling technique evaluated as part
of this work is a multiple target artificial neural network (MT-ANN).
An ANN model is highly suited to multiple target modelling as its
architecture can be quickly adapted for multiple outputs
(Spyromitros-Xioufis et al., 2016), as shown in Fig. 3. Because of
this, MT-ANNs are among some of the earliest examples of multiple
target modelling (Baxter, 1995; Caruana et al., 1995). An example is
presented by Curteanu et al. who modelled the electrolysis process
in wastewater treatment and found that an MT-ANN outperformed
multiple individual ANN models (Curteanu et al., 2011). To the
authors best knowledge, there has yet to be a comparison of the
abilities of a MT-ANN with either the ERC or MCC modelling
techniques and this article is the first to do so.

Recent work has shown the superiority of ERCs when compared
to alternative multiple target methodologies, such as regressor
stacking and deep structure stacking (Melki et al., 2017; Masmoudi
et al., 2020; Barbon Junior et al., 2020). For example, Junior et al.
developed an ECR model to predicting wheat flour quality param-
eters from near-infrared (NIR) spectroscopy data (Barbon Junior
et al., 2020) and Masmoundi et al. developed an ECR model fore-
cast multiple air pollutants simultaneously over two cities
(Masmoudi et al., 2020). Both studies recommend the use of ECR as
a tool to improve predictive performance. However, neither study
demonstrates the application of multiple target models to investi-
gate the relationship between the outputs or to evaluate different
system configurations to optimise the one or more outputs. This is
an omission this work aim resolve, by demonstrating a method by
which process manufacturers can use multiple target models to
improve their systems economic and environmental sustainability.



Fig. 2. Two examples of multiple target modelling: (A) algorithm adaptation and (B) problem transformation. Where the model input data (X) is represented by the orange box and
the model output prediction (bY i) by the green box.

Fig. 3. Architecture of a multiple target artificial neural network (MT-ANN), with 8
inputs, 2 outputs and 1 hidden layer containing 6 neurons.
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3. Material and methods

3.1. The H2AD process

The H2AD process used in this work is an industrial bioprocess
plant developed by Lindhurst Engineering Ltd targeted at treating
wastewaters from SMEs manufacturers spanning food and drink to
industrial processing, due to its modular, low-cost design. Further
5

detail about the H2AD technology is available in Section 1.1.
The H2AD plant treats wastewater generated by a dairy farm

located in the East Midlands, UK. The farm waste contains cattle
slurry, bedding waste, waste milk, footbath, parlour washings, and
rainfall, which is separated by a screen press and the resulting
liquid wastewater stored in a 3,000 m3 slurry tank. The wastewater
from the slurry tank is fed into the H2AD system that generates
bioenergy for the farm and improves the quality of that wastewater
to support reuse (Fig. 4).
3.2. Model data

The model is developed from input and output data, illustrated
in Fig. 5. The model input data originates from two sources, the
H2AD feedstock data and the H2AD process data. To characterise the
H2AD feedstock, a total of 18 water quality parameters were
measured. In addition to this, the H2AD unit automatically-
collected data on four H2AD process conditions via sensors wire-
lessly connected to a database hosted on a cloud platform. These
were hydraulic retention time (HRT), pump speed, system tem-
perature and system pressure. The H2AD outputs were charac-
terised by three variables, %COD removal, %TSS removal and
methane generation.

From previous work, there are 30 data-points available of water
quality analysis performed on the farm waste samples, taken from
the slurry tank feeding the H2AD system. In addition, there is one
year’s worth of historical H2AD process data automatically collected
by the unit. This informed the decision to generate an additional
synthetic 22 WQA data points bringing the total to 52 data points,
representing one year’s worth of weekly sampling. Synthetic data is
used within modelling research to demonstrate and evaluate new
modelling techniques (Bishop, 2006). Due to limited data available



Fig. 4. The H2AD manufacturing system (figured adapted from (H2AD, 2020)).

Fig. 5. The H2AD bioprocess model [chemical oxygen demand: COD; total suspended
solids: TSS; dissolved oxygen: DO; hydraulic retention time: HRT; percentage of COD
removal: %COD removal, percentage of TSS removal: %TSS removal, daily volume of
methane generated: CH4 generation].
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from the H2AD bioprocess using the farm wastewater as a feed-
stock, synthetic data was also developed to aid in demonstrating
the application of multiple target models to increase the sustain-
ability of process manufacturing systems. The farm wastewater
data available providing information about the variability observed
in the pollutant composition over time. While this is a validated
methodology for evaluating newmodelling techniques, it should be
remembered that the conclusions drawn from the models are not
always an accurate description of the H2AD bioprocess.

When generating synthetic data the standard method is to
randomly sample from a probability density function (PDF) fitted to
existing data (Albuquerque et al., 2011). Pair-copula constructions
(PCCs) are a popular tool for modelling multivariate data and
creating synthetic data, due to their simple structure and high
flexibility (Hobæk Haff et al., 2010). Comparisons of the mean
values for the original and synthetic datasets are given in Table 1.

Due to insufficient data relating the model’s input and output
variables, it was not possible to follow the same PDF method. The
approach utilised for generating synthetic output data followed the
method of Brissette et al., whereby trends identified from historical
H2AD data governed the development of non-linear equations to
generate synthetic output data from the input data (Brissette et al.,
6

2007). The features of the new dataset were compared against the
original to assess how successfully the synthetic data captured the
relationships in the original.
3.3. Data preparation, pre-processing and partitioning

For this study, the dataset was normalised to ensure variables of
higher magnitudes are not given greater weight by the DDM. The
COD and TSS data have magnitudes within the order of 10,000,
while for DO the magnitude is much lower and in the order of 0.1.
To normalise the data the minimax function was applied, as this
normalises the variables without any loss of information (Al-Fattah
et al., 2009). The equation to normalise the data is given below:

xnorm ¼ x� xmin

xmax � xmin
(1)

Where x is the variable, xnorm is the normalised variable and xmin

and xmax is theminimum andmaximumvalues of the variable being
normalised respectively.

This work utilised a principal component analysis (PCA) to
reduce the number of dimensions in the data to mitigate the risk of
overfitting. Overfitting is the generation of a model that corre-
sponds too closely or exactly to the noise (error) within the dataset,
which negatively impacts future predictions (Srivastava et al.,
2014). Principal component analysis is a mathematical procedure
that transforms potentially correlated data into an orthogonal
system of linearly uncorrelated principal components (PCs) (Abbas
et al., 2018). All the PCs are orthogonal to each other and ordered so
that the maximum variance is captured in PC1 and the variance
decreases as one moves down the PCs. The standard practice is to
reduce the number of variables so that 95% of the variance within
the dataset is captured by the PCs (Abbas et al., 2018). This was the
method followed in this work. By applying PCA to the H2AD dataset,
the input variables were reduced from 21 to 9 PCs.



Table 1
Summary of the model input data, including a comparison between the original farm wastewater quality dataset and the expanded synthetic dataset [dissolved oxygen: DO;
conductivity: Cond.; chemical oxygen demand: COD; total suspended solids: TSS; total carbon: TC; total inorganic carbon: TIC; total organic carbon: TOC; total nitrogen: tN;
nitrite: NO2

�; nitrate: NO3
�; chloride: Cl�; phosphate: PO4

3–; sulphate: SO4
2�; zinc: Zn; hydraulic retention time: HRT; standard deviation: SD].

Mean (SD) of original dataset Mean (SD) of synthetic dataset Range

pH 7.49 (0.134) 7.51 (0.185) 7.22e7.90
DO (mg/L) 0.187 (0.0376) 0.192 (0.0502) 0.110e2.80
Cond. (mS/mc) 11.8 (0.600) 11.7 (0.693) 10.3e12.8
TSS (mg/L) 17800 (5350) 19000 (5140) 11100e29200
COD (mg/L) 25400 (5590) 26600 (5500) 17400e38200
TC (mg/L) 8740 (2470) 9090 (2770) 4560e14100
TIC (mg/L) 1370 (367) 1440 (362) 828e2160
TOC (mg/L) 7350 (2160) 7650 (2500) 3540e12200
tN (mg/L) 1620 (477) 1800 (788) 770e3240
NH4þ (mg/L) 873 (178) 965 (267) 604e1490
NO2- (mg/L) 10.8 (2.22) 11.7 (2.44) 8.40e16.9
NO3- (mg/L) 77.0 (23.5) 84.7 (22.5) 51.0e131
Cl- (mg/L) 1540 (365) 1800 (494) 1190e3020
Water hardness (mg/L) 199 (35.6) 209 (35.1) 160e281
PO43- (mg/L) 295 (96.0) 326 (91.5) 179e529
SO4-2 (mg/L) 4890 (1310) 5330 (1350) 3480e8170
Zn (mg/L) 25.6 (7.17) 24.1 (7.90) 10.3e35.8
HRT (mg/L) 3.63 (0.877) N/A 2.25e6.09
Pump speed (L/min) 9.68 (0.415) N/A 8.84e9.94
System temp. (oC) 33.10 (1.99) N/A 29.6e39.2
System pressure (bar) 0.00331 (0.00514) N/A 0.00300e0.00500
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The data used to develop the DDMs was then partitioned at
several levels, as independent data is required to train, validate, test
and evaluate the model. The data is first partitioned into model
development data and unseen data. Themodel development data is
further partitioned into training, validation and testing data
(Bishop, 2006). Unseen data-points are kept apart until the models
are completed to evaluate the prediction capabilities of the model
on data not used during the model’s development. To avoid sample
representativeness issues, the semi-random partitioning frame-
work developed by Liu et Cocea 2017 was employed to partition the
unseen data points within and outside the model boundaries (Liu
and Cocea, 2017). Ten points were taken from within the model
development boundaries and six points outside the model
boundaries.

The model development data was then portioned into training,
validation and testing data. When developing a DDM, each algo-
rithm has model parameters and hyperparameters that require
tuning to find the optimal configuration. Hyperparameters are
parameters that are set before being trained on a model, compared
tomodel parameters that are learnt during training (Kim, 2017). For
example, the number of neurons in an ANN’s hidden layer is a
hyperparameter; whereas, theweights between neurons is a model
parameter. Validation data is used to tune the hyperparameters and
training data is used to tune the model parameters. Testing data is
utilised to evaluate the final model’s ability to fit new data. The
model development data points were randomised and 85% were
partitioned for the training and validation of the model and the
remaining 15% of data were partitioned for testing the final model.
A Bayesian optimisation was performed to optimise the hyper-
parameters, using k-fold cross-validation to evaluate each config-
uration’s ability to fit the validation data. For the k-fold cross-
validation, a k value of 10 was chosen because of the limited
(<100) number of data points (Charte et al., 2017). Themodel ability
to fit new datawas then evaluated using the testing data points. The
model was also evaluated on unseen data to evaluate the model’s
capabilities to extrapolate beyond the model development data.
3.4. Multiple target models

With respect to modelling the capability of the H2AD bioprocess
7

to reduce the pollutants (COD and TSS) from the wastewater and
generate methane gas, 8 multiple target DDMs were built to fit the
manufacturing data (Table 2). Three of the models were problem
transformation models and five were algorithm adaption models.
The DDM algorithms used RF, SVR and ANN as base models. Five
algorithm adaption MT models were built to describe the H2AD
system. Twomodels were built following ERC techniques using SVR
and ANN as base models, these are referred to as ERC-SVR and ERC-
ANN respectively. The ECR models were built following the pro-
cedure outlined by Spyromitros-Xioufis et al. (2016). Two models
were built followingMelki et al. MCC procedure using SVR and ANN
as base models, these are referred to as MCC-SVR and MCC-ANN
respectively (Melki et al., 2017). The final MT model built was a
MT-ANN. All the base models built were tuned by Bayesian opti-
misation and cross-validation procedures.
3.5. Model evaluation

The prediction capabilities of the various models were statisti-
cally evaluated in terms of the coefficient of determination (R2), the
normalised root of mean squared error (nRMSE) and the mean
absolute percentage error (MAPE). The R2 is the square of the
sample correlation coefficient between observed values and pre-
dicted values, and is a measure of the explained variance of the
model (Abbas et al., 2018). The nRMSE measures the normalised
mean square magnitude of the error (Dalmau et al., 2015), while
MAPE measures the absolute percentage of the errors (Hyndman
and Koehler, 2006). The statistically best model is the one that
has an R2 closest to 1 while minimising nRMSE and MAPE. The R2,
nRMSE and MAPE are defined as follows:

R2 ¼

�Pn
i¼1

�bY i � bY i

��
Yi � Yi

��2

Pn
i¼1

�bY i � bY i

�2�
Yi � Yi

�2 (2)



Table 2
Multiple target models developed and their abbreviations.

Data-driven model Abbreviation Modelling approach

Random forest model RF Problem transformation
Support vector regressor SVR Problem transformation
Artificial neural network ANN Problem transformation
Ensemble regressor chain e support vector regressor ERC-SVR Algorithm adaption
Ensemble regressor chain e artificial neural network ERC-ANN Algorithm adaption
Maximum correlation chain - support vector regressor MCC-SVR Algorithm adaption
Maximum correlation chain e artificial neural network MCC-ANN Algorithm adaption
Multiple target artificial neural network MT-ANN Algorithm adaption

Table 3
Comparison of the random forest (RF), support vector regression (SVR) and artificial
neural network (ANN) models ability to fit the model development data [Coefficient
of determination, R2; normalised root of mean squared error, nRMSE; mean absolute
percentage error, MAPE; chemical oxygen demand: COD; total suspended solids:
TSS; methane: CH4].

Model Output R2 nRMSE MAPE

RF COD 0.63 0.06 8.56
TSS 0.90 0.07 5.54
CH4 0.95 0.07 2.53

SVR COD 0.97 0.04 2.26
TSS 0.90 0.08 4.14
CH4 0.96 0.05 3.00

ANN COD 0.96 0.05 1.80
TSS 0.96 0.05 3.22
CH4 0.96 0.06 2.36

Fig. 6. Evaluation metrics of the problem transformation modes. Where the black line
is the average performance of all three outputs, the blue line is percentage chemical
oxygen demand removal output, the red line is percentage total suspended solids
removal output and the yellow line is methane generation output. [Coefficient of
determination, R2; normalised root of mean squared error, nRMSE; mean absolute
percentage error, MAPE; random forest, RF; support vector regression, SVR; artificial
neural network, ANN].
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Where n is the number of data points, bY is the predicted value, Yi is
the actual observed value, and the symbol is the average of the
related values.

A ranking system was employed to determine the best overall
model at predicting the H2AD bioprocess outputs. The average
statistical error metrics R2, nRMSE and MAPE for each model were
determined. Then for each average statistical error metrics, the
models were ordered from best to worst and scored (top of the list
scored one and the bottom scored three). The model’s rank was
then determined by summing together each model’s scores for
each error metrics and ordering themodel’s from lowest to highest.

4. Results and discussion

4.1. Modelling the H2AD bioprocess

4.1.1. Problem transformation multiple target models
The capability of the base models (RF, SVR and ANN) to predict

the %COD removal, %TSS removal and methane generation were
statistically evaluated using R2, nRMSE and MAPE (Table 3). The RF
model is inferior at predicting all of the H2AD outputs especially the
%COD removal (R2 of 0.63, nRMSE of 0.06 and MAPE of 8.56). The
SVR and ANN show similar capabilities when predicting the %COD
removal, though the ANN model has a slightly poorer nRMSE score
(nRMSE of 0.05-ANN compared to 0.04-SVR). This indicates that the
ANN model is subject to a greater number of outliers within the
predictions. This trend between the SVR and ANN model is
repeated when predicting methane generation (Table 3). However,
when predicting %TSS removal the SVR model performs consis-
tently worse than the ANN model (R2 of 0.90, nRMSE of 0.08 and
MAPE of 4.14, compared to R2 0.96, nRMSE of 0.05 and MAPE of
3.22).

The results from averaging each model’s R2, nRMSE and MAPE
and model ranking are displayed in Fig. 6. The average R2, nRMSe
and MAPE scores indicate that the ANN model is superior at pre-
dicting the H2AD bioprocess outputs compared to the RF and SVR
model (Fig. 6).

Problem transformation models have been shown to be less
accurate when predicting multiple outputs, as they are unable to
capture the relationship between model outputs (Borchani et al.,
2015). However, they can be effective at determining the suit-
ability of DDM algorithms as a base model for algorithm adaption
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models (Melki et al., 2017). After statistical analysis of the predic-
tive capabilities of the RF, SVR and ANN models, the decision was
taken to use only SVR and ANN algorithms as base models for the
algorithm adaption multiple target models.

4.1.2. Algorithm adaption multiple target models
The ERC-SVR, ERC-ANN, MCC-SVR, MCC-ANN and MT-ANN

models’ capabilities to predict the %COD removal, %TSS removal
and methane generation were also statistically evaluated using R2,
nRMSE and MAPE; the results are reported in Table 4. The results
from ranking the models, displayed in Fig. 7, indicate that ERC-ANN
is the superior model. The MCC-ANN and ERC-ANN have a similar
MAPE score, indicating that on average they have similar prediction
errors. However, the MCC-ANN has a higher average nRMSE error
(0.046), which is a result of the model containing a greater number



Fig. 7. Evaluation metrics of algorithm adaption modes. Where the black line is the
average performance of all three outputs, the blue line is %COD removal output, the red
line is %TSS removal output and the yellow line is CH4 output. [Coefficient of deter-
mination, R2; normalised root of mean squared error, nRMSE; mean absolute per-
centage error, MAPE; support vector regression, SVR; artificial neural network, ANN;
ensemble of regressor chains, ECR; maximum correlation chain, MCC].
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of outlier predictions. The ERC-ANN is an example of an ensemble
model, which is able tomitigate the influence of outlier predictions.
This is because the outputs from an ensemble model are an average
of multiple predictions; an outlier may raise the value of the pre-
diction, but by averaging the prediction an ensemble model is
capable of reducing the outliers’ impact on model performance
(Levati�c et al., 2017).

The RC models built using an ANN as a base model were ranked
first and second, while the RC models using a SVR as a base model
were ranked third and fifth. Similarly, the ERC modelling ranked
higher than the MCC model when built with the same base model
(ECR-ANN ranked first >MCC-ANN ranked second, ECR-SVR ranked
third > MCC-SVR ranked fifth). This suggests that the ANN is a
superior base model and that the ERC multiple target modelling
technique was superior to the MCC technique. Of particular interest
was comparing the ANN RC models to the MT-ANN model, as these
techniques have never been compared before. The MT-ANN model
was outperformed by both the ECR-ANN and MCC-ANN models,
shown in Fig. 7. The reason for this may be that the models were
constructed on only 36 data-points. Multiple target ANN models
are known to be less capable when modelling systems where data
is limited (Panerati et al., 2019). This is because, as an ANN archi-
tecture increases its requirement for data points to avoid overfitting
(Al-Fattah et al., 2009). The RC ANN models built have smaller ar-
chitectures (only one neuron in the outer layer), which may explain
their better performance. Before drawing any conclusions on the
multiple target models, it is important to evaluate the models’
performance when making predictions for unseen data. Testing the
models on unseen data was performed to evaluate a models’
extrapolation capabilities beyond the data they were developed
from which is important to determine the capability of the model
for real-world application (Panerati et al., 2019).

Comparing the average statistical error scores of the SVR and
ANN based single target models and the multiple target models
show little difference in performance (averages for single target
models: R2 of 0.95, nRMSE of 0.06 and MAPE of 2.80; averages for
multiple target models: R2 of 0.94, nRMSE of 0.05 and MAPE of
2.78). These results are not consistent with previous work that has
shown multiple target models to outperform single target models
(Melki et al., 2017; Kocev and Ceci, 2015). To understand why this
might have occurred, the analysis is broken down to compare the
single and multiple target models for each algorithm. The ANN
Table 4
Comparison of the ensemble of regressor chains (ERC) and maximum correlation
chain (MCC) models using support vector regression (SVR) and artificial neural
network (ANN) based models with a multiple target ANN (MT-ANN) ability to fit the
model development data. [Coefficient of determination, R2; normalised root of mean
squared error, nRMSE; mean absolute percentage error, MAPE; chemical oxygen
demand: COD; total suspended solids: TSS; methane: CH4].

Model Output R2 nRMSE MAPE

ERC-SVR COD 0.92 0.04 3.92
TSS 0.92 0.07 3.97
CH4 0.97 0.03 2.46

ERC-ANN COD 0.98 0.02 1.53
TSS 0.99 0.03 2.20
CH4 0.99 0.02 1.50

MCC-SVR COD 0.91 0.05 3.13
TSS 0.91 0.08 4.43
CH4 0.92 0.06 2.85

MCC-ANN COD 0.94 0.05 1.83
TSS 0.96 0.05 1.79
CH4 0.95 0.04 1.89

MT-ANN COD 0.92 0.05 3.03
TSS 0.91 0.08 3.93
CH4 0.94 0.05 3.19
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based multiple target models outperformed the single target ANN
model (single target ANN model: R2 of 0.96, nRMSE of 0.05 and
MAPE of 2.46; averages for ANN basedmultiple target models: R2 of
0.97, nRMSE of 0.04 andMAPE of 1.79). These results agree with the
previous work that capturing the relationship between outputs
increases amodel’s performance (Melki et al., 2017; Kocev and Ceci,
2015). However, the same is not true for the SVR based multiple
target models. The SVR based multiple target models were out-
performed by the single target SVR model (single target ANN
model: R2 of 0.94, nRMSE of 0.06 and MAPE of 3.13; averages for
SVR based multiple target models: R2 of 0.93, nRMSE of 0.06 and
MAPE of 3.46). This may be due to the SVR reduced capability to
predict the %TSS removal (R2 of 0.90) compared to %COD removal
(R2 of 0.97) and methane generation (R2 of 0.96). It appears that for
the SVR-based multiple target model, the benefit of capturing the
relationship between outputs is outweighed by %TSS removal
prediction error that is propagated throughout the model.
4.1.3. Comparison of the models’ performance on unseen data
A common error when developing a DDM, is to only optimise

the model’s capability to fit the data used in the model develop-
ment (Panerati et al., 2019). The best DDMs are able to extrapolate
beyond the data they were developed from, to make accurate
predictions on unseen data. This is important if a process manu-
facturer wants to utilise the model for predictions on future data,
forecasting how the systemmay react to change, and to assess how
much of the process manufacturing system’s variability is captured
in the model. The 16 unseen data points were partitioned from the
manufacturing data to represent the parameter space both inside
and outside the system. The prediction capabilities of the multiple
target models for unseen data were statistically measured in terms
of R2, nRMSE and MAPE. Table 5 reports the statistical comparison
of all models for each of the H2AD bioprocess’s outputs.

When evaluating the models’ abilities to make predictions on
unseen data within the system, it is of interest to note that the ECR
is no longer clearly superior to the MCC technique; for example,
both ERC-SVR and MCC-SVR have a R2 of 0.75 for inside TSS pre-
dictions. The ERC-ANN model is no longer a superior model, due to
its relatively poor performance when predicting the %COD removal
(R2 of 0.33, nRMSE of 0.17 and MAPE of 10.17). The ERC-SVR, ERC-
ANN and MCC-ANN average performance are all relatively equal
when making predictions for unseen data inside the system, each



Table 5
Comparison on unseen data of the ensemble of regressor chains (ERC) and
maximum correlation chain (MCC) models using support vector regression (SVR)
and artificial neural network (ANN) based models with a multiple target ANN (MT-
ANN) [Coefficient of determination, R2; normalised root of mean squared error,
nRMSE; mean absolute percentage error, MAPE; chemical oxygen demand: COD;
total suspended solids: TSS; methane: CH4].

Model Output R2 nRMSE MAPE

Inside Outside Inside Outside Inside Outside

ERC-SVR COD 0.47 0.50 0.06 0.11 9.21 22.75
TSS 0.75 0.88 0.12 0.11 6.26 12.72
CH4 0.63 0.15 0.10 0.17 7.34 18.27

ERC-ANN COD 0.33 0.82 0.17 0.10 10.17 16.23
TSS 0.80 0.91 0.09 0.09 5.02 10.78
CH4 0.75 0.36 0.08 0.14 6.58 16.10

MCC-SVR COD 0.35 0.55 0.08 0.12 8.72 22.31
TSS 0.75 0.90 0.12 0.11 7.34 11.71
CH4 0.43 0.11 0.13 0.19 11.53 18.28

MCC-ANN COD 0.62 0.55 0.13 0.16 8.23 21.40
TSS 0.63 0.93 0.11 0.11 7.65 7.02
CH4 0.82 0.49 0.06 0.14 7.25 14.43

MT-ANN COD 0.00 0.85 0.16 0.14 16.01 11.51
TSS 0.40 0.50 0.21 0.33 10.89 17.69
CH4 0.46 0.41 0.13 0.18 7.97 17.53

Fig. 8. Statistical analysis of algorithm adaption MT modes performance on unseen
data. Where the black line is the average performance of all three outputs, the blue line
is %COD removal output, the red line is %TSS removal output and the yellow line is CH4
output. [Coefficient of determination, R2; normalised root of mean squared error,
nRMSE; mean absolute percentage error, MAPE; support vector regression, SVR; arti-
ficial neural network, ANN; ensemble of regressor chains, ECR; maximum correlation
chain, MCC].
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performing slightly better for a different statistical metric (ERC-
SVR, nRMSE of 0.9; ERC-ANN, MAPE of 7.5; MCC-ANN, R2 of 0.64).
Although, the MT-ANN model remains significantly worse than all
RCmodels (average R2 of 0.29), emphasising the point raised earlier
about the tendencies or larger ANN architectures to overfit. This
highlights the advantages of the algorithm adaptions techniques
developed by Spyromitros-Xioufis et al. and Melki et al. when
building a multiple target model (Melki et al., 2017; Spyromitros-
Xioufis et al., 2016).

The ranking system described in Section 3.2.1 was again used to
systematically determine which model was superior when making
predictions on unseen data both inside and outside of the system
boundaries. The results in Fig. 8 show that the ECR-ANNmodel was
the superior model. As the ECR-ANN has proved to be the statisti-
cally best model both when making predictions for the model
development data and new unseen data, it was determined to be
the best model to describe the three outputs of the H2AD bio-
process. The ECR-ANN model was then used to increase the sus-
tainability of the H2AD bioprocess.
4.2. Utilising the final data-driven model to optimise H2AD
bioprocess sustainability

The H2AD bioprocess can be manipulated to promote improved
performance for one output over the other by changing the set
point of the H2AD process conditions (HRT, pump speed, system
temperature and system pressure). To better understand the effect
of the H2AD process conditions on the bioprocess, the ECR-ANN
model was employed to generate three-dimensional surface plots.
Fig. 9 and Figs. A1-5, show the effect of the four investigated H2AD
process conditions on the H2AD bioprocess outputs (%COD removal,
%TSS removal and methane generation). The plots were produced
by using the ECR-ANN to predict the effect of two H2AD process
conditions on the H2AD bioprocess outputs, while holding water
quality parameters and the remaining two process conditions
constant at intermediate values. The knowledge gained from the
surface plots can inform the manufacturer how to optimise the
bioprocess, dependant on the manufacturing environment’s re-
quirements, to find the most sustainable solution.
10
4.2.1. Understanding the relationship between process conditions
and pollutant remediation and energy generation

The effect of HRT, pump speed, system temperature and system
pressure on %COD removal by the H2AD bioprocess are shown in
Fig. 9 and Fig. A1. The contour plot, in Fig. 9 (A), shows that at lower
pump speeds the removal of COD is driven by the HRT. However,
when the pump speed is increased beyond 9.2 L/min the effect of
pump speed on %COD removal increases. The contour plots in
Fig. A1 (A) and (B) also show that at pump speeds of less than 9.2 L/
min the pump speed has less effect on the %COD removal than the
system temperature and system pressure respectively. If this was
real data, rather than synthetic, it may be possible to hypothesise
justifications for this observed phenomenon. For example, that
pump speeds above 9.2 L/min cross a critical recirculation rate,
within the reactor, that enables sufficient mixing of the fluid to
reduce dead space within the reactor, increasing the reactor’s ef-
ficiency. The effect of recirculation rates on the volume of dead
space within reactors is a well-studied field (Fogler, 2017). The
advantage of the ECR-ANN based data analysis is that it is able to
identify the critical recirculation rate and is able to determine the
benefits of increasing recirculation rate in comparison to the other
H2AD process conditions. This can help to inform manufacturers
which process conditions have a more significant effect on a
system.

Within the ranges investigated, HRT is the driving factor on %
COD removal compared to both pump speed and system pressure.
Therefore, HRT rates should be prioritised if aiming to control the %
COD removal (Fig. 9 (A) and (C)). Whilst Fig. 9 (B) indicates that HRT
and system temperature have a similar effect and that both should
be given consideration when attempting to manipulate %COD
removal. Generally, ECR-ANN based data analyses indicate that
shorter HRT, higher pump speeds, system temperatures and lower
system pressure increased the %COD removal by the H2AD bio-
process from the wastewater feedstock. By repeating this analysis
for other H2AD outputs (%TSS removal and methane generation) it
was possible to identify the value of each process condition that
will maximise each output.

Table 6 reports the values of each process condition that will
maximise each output. By comparing these values it becomes
apparent that the outputs %COD removal and methane generation



Fig. 9. Surface plots (left) and corresponding contour plots (right) showing the effects of the H2AD process conditions on the chemical oxygen demand (COD) removal as predicted
by the ECR-ANN model with set temperature (ST) and system pressure (SP) held constant (A), with pump speed and SP held constant (B) and with pump speed and ST held constant
(C). [Hydraulic retention time, HRT].
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have a similar configuration of process conditions tomaximise each
output. The only difference is that a high system temperature
(39.2 �C) increases the percentage of COD removed, but decreases
the volume of methane generated. Fig. 9 (B) and Fig. A4 (B) in-
dicates that system temperature has a stronger effect on %COD
removal than it does on methane generation. Therefore, a manu-
facturer aiming to maximise both should consider setting a higher
11
system temperature as this will have less of a negative effect on
methane generation than a low system temperature will have on %
COD removal. Manufacturers aiming to maximise all three H2AD
outputs are likely to face difficulty arising from conflicting optimal
configuration of the HRT set point between %TSS removal and the
other two outputs. The ECR-ANN based data analyses indicate that
HRT is a driving force for controlling all three of the H2AD outputs.



Table 6
Optimal process conditions values for each of the H2AD bioprocess outputs. [Hy-
draulic retention time, HRT; set temperature, ST; system pressure, SP; percentage
chemical oxygen demand removal, %COD removal; percentage total suspend solids,
%TSS removal; volume of methane generated, CH4 generation].

Process condition %COD removal %TSS removal CH4 generation

HRT (days) 2.95 6.10 2.95
Pump speed (l/min) 9.94 9.94 9.94
System temperature (oC) 39.20 39.20 29.6
System pressure (bar) 0.003 0.005 0.003
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The %TSS removal output favours a longer HRT, while the other two
outputs favour a shorter HRT. Selecting which HRT to operate will
depend on the manufacturer’s goal, the incoming wastewater COD
and TSS composition and the manufacturing environment oper-
ating within, as illustrated in Section 3.4.2.
4.2.2. Determining the most sustainable configuration of the H2AD
bioprocess

After analysing the impacts of the process conditions on the
H2AD bioprocess, it became apparent that when optimising for %
COD removal and methane generation, %TSS removal would
decrease. Finding the ’best’ solutionwill depend onmaximising the
economic and environmental benefits when treating a manufac-
turer’s wastewater stream. The environmental objective of the
system is to minimise the pollutants leaving the system (with
removal from the waste/water feedstock via degradation/sorption)
and maximise the energy in the form of biogas recovered from the
waste/water. This closely matches the economic objective of the
H2AD system to (A) reduce waste disposal costs associated with
manufacturing process by reducing the pollutant load in waste-
water and (B) reduce the cost of energy by recovering energy from
the waste stream. However, there are also economic costs associ-
ated with operating the H2AD. These are largely from the required
energy to heat the incoming wastewater to the required system
temperature and maintaining system temperature. These may
come into conflict with each other, as operating the H2AD system
on higher temperatures was found to increase both pollutant
removal and energy generation. The extra cost associated with
operating at higher temperatures may be greater than the eco-
nomic benefits from the savings generated from the reduced
pollutant load and onsite energy generation.

The most sustainable solution will differ between
manufacturing environments (e.g. feedstock characteristics and
composition, regulations/legislation, waste management bodies)
and the feedstock (wastewater) characteristics. When the H2AD
effluent is being emitted to a waste management body that charges
for pollutant load and is the driving economic force of the system,
the goal would be to maximise pollutant removal regardless of
bioenergy generation. As the results from Section 3.4.1 indicate that
%COD removal and %TSS removal have different optimal conditions,
the configuration of process conditions would depend on the
characteristics of thewastewater being treated by the H2AD system.
However, if pollutant load charges in the effluent are lower the
optimal economic solution may be to maximise energy recovery
from the waste stream.

The ECR-ANN model was used to determine the economic
benefit of optimising the H2AD configuration dependant on
wastewater composition and further treatment costs. Four different
wastewater composition scenarios were proposed using different
maximum and minimum values of COD and TSS concentrations
observed in the model data, the values are presented in Table 7. The
remaining wastewater feedstock characteristics were held constant
at an intermediate value. The two H2AD configurations were (1)
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optimising for %COD removal and methane generation (configura-
tion 1) and (2) optimising for %TSS removal. The H2AD process
conditions were taken for each configuration from the results of the
surface plot modelling in Table 6.

The ECR-ANN model predicted the COD and TSS removal rates
and the volume of biogas generated for each configuration for the
four scenarios. The MAPE error metric was used to estimate error
boundaries for the model’s predictions. The removal rates were
then used to calculate the pollutant concentration in the treated
wastewater, using Equation (5). The maximum and minimum
pollutant concentrations were calculated using the MAPE metric in
Equation (6). The results for each scenario and H2AD configuration
are presented in Table 7.

xp ¼x � x � rp (5)

xp ¼x� x � rp � ð1 ±MAPEÞ (6)

Where xp is the predicted pollutant concentration in the treated
wastewater, x is the pollutant concentration in the untreated
wastewater, rp is the predicted pollutant removal rate by the H2AD
bioprocess and MAPE is the mean absolute percentage error asso-
ciated with the prediction.

was conducted to identify which H2AD configuration was the
most sustainable for each scenario depending on whether the
wastewater was being sent to a Water Company that charge a high
amount (United Utilities) or a low amount (Wessex Water). The
disposal charges were then calculated for each scenario using the
Mogden formula, assuming 4m3/day of wastewater was being
treated (Tools, 2019). The energy value from the methane gas was
calculated by using equation (5) from Bauer et al. (2010) and then
converted to kilowatt hours (KWH). A biogas generator is not
capable of converting all this energy to electricity, as approximately
65% of the energy is lost as heat and other mechanical losses (Bauer
et al., 2010). Therefore, the predicted energy generated by the H2AD
was reduced by 65% to account for inefficiencies. The average UK
price of £0.124 per KWH at time of writing was used to determine
the economic benefit from the biogas (UK Power, 2019).

1 m3 of CH4 ¼39:79MJ (7)

The economic analysis of the ECR-ANN model results are re-
ported in Table 8. The analysis indicates that for manufacturing
environments that have a low disposal charge for H2AD effluent,
the optimal H2AD configuration is the removal of COD and gener-
ation of CH4. This is true for all the wastewater composition sce-
narios, though the largest economic benefit (£30.00 per day) from
optimising the H2AD configuration was for low COD and high TSS
concentrations in the wastewater. Optimising the H2AD configu-
ration would save the process manufacturer £10,950 per annum,
which reduces the wastewater treatment costs by 17.0%. When
operating in a manufacturing environment with a high disposal
charge, the H2AD configuration also favoured COD removal and
methane generation. There was one exceptionwhich was when the
wastewater contained low COD and high TSS concentrations. In this
instance by configuring the H2AD to remove TSS would result in a
£5.00 per day or £1,825 per annum economic benefit. Overall, this
manufacturing environment saw the biggest economic benefit
when the H2AD was correctly configured to treat for high COD and
high TSS concentration wastewater. By using a H2AD configuration
to optimise COD removal would benefit the process manufacturer
by £5,475 per annum, which reduces the wastewater treatment
costs by 4.5%.



Table 7
Chemical oxygen demand (COD) and total dissolved solids (TSS) concentration in the H2AD input and output streams for each wastewater composition scenario for both H2AD
setups.

Scenario Economic analysi Configuration 1 Configuration 2

Pollutant Pollutant concentration (mg/
L)

Pollutant concentration (mg/
L)

Methane generation (L/
day)

Pollutant concentration (mg/
L)

Methane generation (L/
day)

1 COD 40,000 11900 (þ/-19.5%) 5270 (þ/-7.3%) 20500 (þ/-7.9%) 4040 (þ/-7.3%)
TSS 30,000 24100 (þ/-1.9%) 21000 (þ/-3.3%)

2 COD 40,000 12300 (þ/-18.6%) 5250 (þ/-7.3%) 20500 (þ/-8.2%) 4130 (þ/-7.3%)
TSS 13,000 10600 (þ/-1.8%) 9060 (þ/-3.3%)

3 COD 17,000 5070 (þ/-19.3%) 5240 (þ/-7.3%) 8740 (þ/-7.8%) 4010 (þ/-7.3%)
TSS 30,000 24100 (þ/-1.9%) 21000 (þ/-3.3%)

4 COD 17,000 5070 (þ/-19.4%) 5120 (þ/-7.3%) 8740 (þ/-8.1%) 4000 (þ/-7.3%)
TSS 13,000 10600 (þ1.8%, �1.7%) 9060 (þ/-3.3%)
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5. Conclusion

When searching for the most sustainable manufacturing solu-
tion, multiple economic and environmental objectives must be
considered. The objectives often come into conflict with one
another. By developing a multiple target model of the
manufacturing system, one can investigate the impact of various
manufacturing factors on the objectives and understand how the
objectives relate to one another. This will enable manufacturers to
determine the most sustainable configuration of their process
manufacturing systems. Despite recent advances in multiple target
modelling, there are limited examples of multiple target models
being developed for process manufacturing systems. The multiple
target models that have been developed frequently use a problem
transformation approach, where multiple independent single
target models are developed for each output. This fails to capture
the relationship between the model’s outputs, resulting in models
with inferior predictive capabilities.

In this study, two state-of-the-art multiple target modelling
approaches were applied to a manufacturing system for the first
time. These were regressor chain (RC) based techniques called
ensemble of regressor chains (ERC) and maximum correlation
chains (MCC). The RC technique treats the outputs of the system as
inputs for subsequent outputs, thus capturing the relationship
Table 8
Economic analysis of the wastewater disposal costs before and post H2AD treatment and

Wastewater company Scenario Disposal charge with no treatment Disposal charg

£/day £/day

Configuration 1
United Utilities 1 415 240 (þ/-5.8%)

2 285 140 (þ/-8.6%)
3 310 210 (þ/-3.8%)
4 180 105 (þ/-5.6%)

Wessex Water 1 160 85 (þ/-7.0%)
2 120 55 (þ/-9.8%)
3 110 70 (þ/-4.5%)
4 70 40 (þ/-6.5%)

Configuration 2
United Utilities 1 415 255 (þ/-4.9%)

2 285 165 (þ/-6.0%)
3 310 205 (þ/-4.2%)
4 180 110 (þ/-5.0%)

Wessex Water 1 160 95 (þ5.3%, �5
2 120 65 (þ/-6.3%)
3 110 70 (þ/-4.3%)
4 70 45 (þ5.2%, �5

13
between model outputs. Previous work has used only random
forest (RF) and support vector regressors (SVR) algorithms as base
models for RC models. This study was the first example of an arti-
ficial neural network (ANN) based model being used for either an
ERC or a MCC multiple target model. Previous work has shown the
versatility of ANNs when modelling process manufacturing sys-
tems. This was reflected in this study, as the ANN was able to
consistently outperform the ERC and MCC built from SVR base
models. After statistical analysis of the model predictions on un-
seen data and after comparing the models’ predictions distribu-
tions with that of the real data, the ECR-ANNmodel was found to be
the superior model.

Utilising the ECR-ANN model to develop surface plots of %COD
removal, %TSS removal and methane generation, it was found that
the %COD and methane generation favoured closely similar con-
figurations of the H2AD system’s process conditions. However, the %
TSS removal was found to have the opposite relationship with all
process conditions apart from the system temperature. This
demonstrated the complex task when identifying the most sus-
tainable solution, balancing both economic and environmental
considerations. What is sustainable for one manufacturing envi-
ronment may not be for another, as different environments have
different economic and environmental objectives. Predictions from
the ECR-ANN model were able to achieve economic benefits up of
the economic benefit from the methane generated.

e post H2AD Saving Value from methane Total economic benefit

£/day £/day £/day

175 (þ/-8.1%) 10 (þ/-7.3%) 185 (þ/-8.1%)
145 (þ/-8.2%) 10 (þ/-7.3%) 155 (þ/-8.1%)
100 (þ/-8.0%) 10 (þ/-7.3%) 110 (þ/-7.9%)
75 (þ8.1%, �8.0%) 10 (þ/-7.3%) 85 (þ8.0%, �7.9%)

75 (þ/-8.1%) 10 (þ/-7.3%) 85 (þ8.1%, �8.0%)
65 (þ/-8.2%) 10 (þ/-7.3%) 75 (þ/-8.1%)
40 (þ/-8.0%) 10 (þ/-7.3%) 50 (þ/-7.9%)
30 (þ8.1%, �8.0%) 10 (þ/-7.3%) 40 (þ8.0%, �7.9%)

160 (þ/-8.0%) 5 (þ/-7.3%) 165 (þ/-8.0%)
120 (þ/-8.1%) 5 (þ/-7.3%) 125 (þ8.0%, �8.1%)
110 (þ/-7.9%) 5 (þ/-7.3%) 115 (þ/-7.8%)
70 (þ/-8.0%) 5 (þ/-7.3%) 75 (þ/-7.9%)

.6%) 65 (þ8.6%, �8.0%) 5 (þ/-7.3%) 70 (þ8.5%, �8.0%)
50 (þ/-8.1%) 5 (þ/-7.3%) 55 (þ/-8.0%)
40 (þ/-7.9%) 5 (þ/-7.3%) 45 (þ/-7.8%)

.1%) 25 (þ8.0%, �8.1%) 5 (þ/-7.3%) 30 (þ/-7.9%)
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Appendix. (A): Surface plots



Fig. A.1. Surface plots (left) and corresponding contour plots (right) showing the effects of the H2AD process conditions on the chemical oxygen demand (COD) removal as predicted
by the ECR-ANN model with hydraulic retention time (HRT) and system pressure (SP) held constant (A), with HRT and set temperature (ST) held constant (B) and with HRT and
pump speed (C).
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Fig. A.2. Surface plots (left) and corresponding contour plots (right) showing the effects of the H2AD process conditions on the total suspended solids (TSS) removal as predicted by
the ECR-ANN model with set temperature (ST) and system pressure (SP) held constant (A), with pump speed and SP held constant (B) and with pump speed and ST held constant
(C). [Hydraulic retention time, HRT].
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Fig. A.3. Surface plots (left) and corresponding contour plots (right) showing the effects of the H2AD process conditions on the total suspended solids (TSS) removal as predicted by
the ECR-ANN model with hydraulic retention time (HRT) and system pressure (SP) held constant (A), with HRT and set temperature (ST) held constant (B) and with HRT and pump
speed (C).
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Fig. A.4. Surface plots (left) and corresponding contour plots (right) showing the effects of the H2AD process conditions on the methane (CH4) generated as predicted by the ECR-
ANN model with set temperature (ST) and system pressure (SP) held constant (A), with pump speed and SP held constant (B) and with pump speed and ST held constant (C).
[Hydraulic retention time, HRT].
18



Fig. A.5. Surface plots (left) and corresponding contour plots (right) showing the effects of the H2AD process conditions on the methane (CH4) generated as predicted by the ECR-
ANN model with hydraulic retention time (HRT) and system pressure (SP) held constant (A), with HRT and set temperature (ST) held constant (B) and with HRT and pump speed (C).
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jclepro.2021.126242.
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