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Mixing indistinguishable systems leads to a
quantum Gibbs paradox
Benjamin Yadin 1,2✉, Benjamin Morris 1✉ & Gerardo Adesso 1✉

The classical Gibbs paradox concerns the entropy change upon mixing two gases. Whether

an observer assigns an entropy increase to the process depends on their ability to distinguish

the gases. A resolution is that an “ignorant” observer, who cannot distinguish the gases, has

no way of extracting work by mixing them. Moving the thought experiment into the quantum

realm, we reveal new and surprising behaviour: the ignorant observer can extract work from

mixing different gases, even if the gases cannot be directly distinguished. Moreover, in the

macroscopic limit, the quantum case diverges from the classical ideal gas: as much work can

be extracted as if the gases were fully distinguishable. We show that the ignorant observer

assigns more microstates to the system than found by naive counting in semiclassical sta-

tistical mechanics. This demonstrates the importance of accounting for the level of knowl-

edge of an observer, and its implications for genuinely quantum modifications to

thermodynamics.
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Despite its phenomenological beginnings, thermodynamics
has been inextricably linked throughout the past century
with the abstract concept of information. Such connec-

tions have proven essential for solving paradoxes in a variety of
thought experiments, notably including Maxwell’s demon1 and
Loschmidt’s paradox2. This integration between classical ther-
modynamics and information is also one of the main motivating
factors in extending the theory to the quantum realm,
where information held by the observer plays a similarly funda-
mental role3.

This work is concerned with the transition from classical to
quantum thermodynamics in the context of the Gibbs paradox4–6.
This thought experiment considers two gases on either side of a
box, separated by a partition and with equal volume and pressure
on each side. If the gases are identical, then the box is already in
thermal equilibrium, and nothing changes after removal of the
partition. If the gases are distinct, then they mix and expand to fill
the volume independently, approaching thermal equilibrium with
a corresponding entropy increase. The (supposed) paradox can be
summarised as follows: what if the gases differ in some unobser-
vable or negligible way—should we ascribe an entropy increase to
the mixing process or not? This question sits uncomfortably with
the view that thermodynamical entropy is an objective physical
quantity.

Various resolutions have been described, from phenomen-
ological thermodynamics to statistical mechanics perspectives,
and continue to be analysed6–8. A crucial insight by Jaynes9

assuages our discomfort at the observer-dependent nature of the
entropy change. For an informed observer, who sees the differ-
ence between the gases, the entropy increase has physical sig-
nificance in terms of the work extractable through the mixing
process—in principle, they can build a device that couples to the
two gases separately (for example, through a semi-permeable
membrane) and thus let each gas do work on an external weight
independently. An ignorant observer, who has no access to the
distinguishing degree of freedom, has no device in their labora-
tory that can exploit the difference between the gases, and so
cannot extract work. For Jaynes, there is no paradox as long as
one considers the abilities of the experimenter—a viewpoint
central to the present work.

A study of Gibbs mixing for identical quantum bosons or
fermions is motivated by recognising that the laws of thermo-
dynamics must be modified to account for quantum effects such
as coherence10, which can lead to enhanced performance of
thermal machines11–13. The thermodynamical implications of
identical quantum particles have received renewed interest for
applications such as Szilard engines14,15, thermodynamical
cycles16,17 and energy transfer from boson bunching18. Moreover,
the particular quantum properties of identical particles, including
entanglement, can be valuable resources in quantum information
processing tasks19–21.

In this work, we consider a toy model of an ideal gas with non-
interacting quantum particles, distinguishing the two gases by a
spin-like degree of freedom. We describe the mixing processes
that can be performed by both informed and ignorant observers,
taking into account their different levels of control, from which
we can calculate the corresponding entropy changes and thus
work extractable by each observer. For the informed observer, we
recover the same results as obtained by classical statistical
mechanics arguments. However, for the ignorant observer, there
is a marked divergence from the classical case. Counter-intui-
tively, the ignorant observer can typically extract more work from
distinguishable gases—even though they appear indistinguishable
—than from truly identical gases. In the continuum and large
particle number limit which classically recovers the ideal gas, this
divergence is maximal: the ignorant observer can extract as much

work from apparently indistinguishable gases as the informed
observer. Our analysis hinges on the symmetry properties of
quantum states under permutations of particles. For the ignorant
observer, these properties lead to non-trivial restrictions on the
possible work extraction processes. Viewed another way, the
microstates of the system described by the ignorant observer are
highly non-classical entangled states. This implies a fundamen-
tally different way of counting microstates, and therefore com-
puting entropies, from what is done classically or even in semi-
classical treatments of quantum gases. Therefore we uncover a
genuinely quantum thermodynamical effect in the Gibbs mixing
scenario.

Results
Set-up. We consider a gas of N particles inside a box, such that
each particle has a position degree of freedom, denoted x, and a
second degree of freedom which distinguishes the gases. Since we
only consider the case of two types of gases, this is a two-
dimensional degree of freedom and we refer to this as the ‘spin’ s
(although it need not be an actual angular momentum). Classi-
cally, the two spin labels are ↑, ↓, and their quantum analogues
are orthogonal states "

�� �
; #
�� �

.
Following the traditional presentation of the Gibbs paradox,

the protocol starts with two independent gases on different sides
of a box: n on the left and m=N− n on the right (see Fig. 1).
Each side is initially thermalised with an external heat bath B at
temperature T.

In our toy model, each side of the box consists of d/2 ‘cells’ (d is
even) representing different states that can be occupied by each
particle. These states are degenerate in energy, such that the
Hamiltonian of the particles vanishes. This might seem like an

Fig. 1 The Gibbs paradox. Two distinct gases of n particles at the same
temperature and pressure are separated by a partition. This partition is
removed and the gases are allowed to mix and reach equilibrium. Two
observers calculating the entropy increase during the process disagree
depending on their ability to distinguish the particles. An informed
observer, who can measure the difference between the gases, calculates
2n ln 2, while an observer ignorant of the difference records no entropy
change. In this work, we ask how the situation changes when classical
particles are replaced by identical quantum particles.
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unrealistic assumption; however, this model contains the purely
combinatorial (or ‘state-counting’) statistical effects, first analysed
by Boltzmann22, that are known to recover the entropy changes
for a classical ideal gas8,23,24 using the principle of equal a priori
probabilities. One could instead think of this setting as
approximating a non-zero Hamiltonian in the high-temperature
limit, such that each cell is equally likely to be occupied in a
thermal state. Since the particle number is strictly fixed, we are
working in the canonical ensemble (rather than the grand
canonical ensemble).

Work extraction can be modelled in various ways in quantum
thermodynamics. In the resource-theoretic approach based on
thermal operations25,26, one keeps track of all resources by
treating the system (here, the particles), heat bath and work
reservoir (or battery) as interacting quantum systems. The work
reservoir is an additional system with non-degenerate Hamilto-
nian whose energy changes are associated with work done by or
on the system (generalising the classical idea of a weight being
lifted and lowered).

The gases on either side of the box start in a state of local
equilibrium and via mixing approach global equilibrium. We
therefore consider the extractable work to be given by the
difference in non-equilibrium free energy F27 between initial and
final states, where F(ρ)= 〈E〉ρ− kBTS(ρ), hEiρ ¼ trðρHÞ being
the mean energy (zero in our case) and SðρÞ ¼ �trðρ ln ρÞ the
von Neumann entropy in natural units. The extractable work in a
process that takes ρ to ρ0 is then

W ≤ FðρÞ � Fðρ0Þ ¼ kBT Sðρ0Þ � SðρÞ½ �: ð1Þ
In a classical reversible process, the extractable work is equal to

the change in free energies. This is generally an over-
simplification for small systems, in which work can be defined
in various ways28—e.g. required to be deterministic in the
resource theory context25 or as a fluctuating random variable29,30,
requiring consideration of other varieties of free energy. However,
Eq. (1) will turn out to be sufficient for our purposes in the sense
of mean extractable work. We find the inequality to be saturable
using thermal operations and characterise fluctuations around the
mean in the latter part of our results section.

Our analysis compares the work extracted by two observers
with different levels of knowledge: the informed observer, who
can tell the difference between the two gases, and the ignorant
observer, who cannot. The difference between these observers is
that the former has access to the spin degree of freedom s,
whereas the latter does not (summarised in Table 1).

It is important to point out that, for the informed observer, the
spin acts as a ‘passive’ degree of freedom, meaning that it can be
measured but not actively changed. In other words, the two types
of gases cannot be converted into each other. This assumption is
always implicitly present in discussions of the Gibbs paradox—
without it, the distinguishing degree of freedom would constitute
another subsystem with its own entropy changes. One could also
describe the spin as an information-bearing degree of freedom31.
The question is whether the information encoded within the spin
state has an impact upon the thermodynamics of mixing.

Classical case. Classically, the microstates described by the
informed observer are specified by counting how many particles

exist with each position x and spin s—since the particles are
indistinguishable32. The ignorant observer has a different state
space given by coarse-graining these states—the classical
equivalent of ‘tracing out’ the spin degree of freedom. Thus the
ignorant observer can extract only as much work from two dif-
ferent gases as from a single gas, recovering Jaynes’ original
statement9. These intuitively obvious facts are shown by a formal
construction of the state spaces in Supplementary Note 1. Par-
alleling our later quantum treatment, this establishes that the
classical and quantum cases can be compared fairly.

The amount of extractable work in the classical case can be
straightforwardly argued by state counting. Consider the gas
initially on the left side—the number of ways of distributing n

particles among d/2 cells is
n þ d=2 � 1

n

� �
. In the thermal

state, each configuration occurs with equal probability. Therefore
the initial entropy, also including the gas on the right, is

ln
n þ d=2 � 1

n

� �
þ ln

m þ d=2 � 1
m

� �
. For distinguish-

able gases, each gas can deliver work independently, with an

equal distribution over
n þ d � 1

n

� �
m þ d � 1

m

� �
config-

urations. For indistinguishable gases, the final thermal state is
described as an equal distribution over all ways of putting N= n

+m particles into d cells, of which there are
N þ d � 1

N

� �
.

Hence the entropy change in each case is

ΔS ¼ ln
n þ d � 1

n

� �
þ ln

m þ d � 1

m

� �
� ln

n þ d=2 � 1

n

� �

� ln
m þ d=2 � 1

m

� �
ð distinguishable Þ;

ð2Þ

ΔS ¼ ln
N þ d � 1

N

� �
� ln

n þ d=2 � 1

n

� �

� ln
m þ d=2 � 1

m

� �
ð indistinguishable Þ:

ð3Þ

Note that ΔS ≠ 0 even in the indistinguishable case, which may
seem at odds intuitively with the result for an ideal gas. However,
one can check that ΔS ¼ OðlnNÞ in the limit of large d (whereby
the box becomes a continuum) and large N. This is negligible
compared with the ideal gas expression of N ln 2 for distinguish-
able gases33 (See ref. 8, p. 43 for a more detailed discussion of this
approximation). (Due to a subtle technicality with classical
identical particles, formulas (2), (3) might be regarded as upper
bounds to the true values—see Supplementary Note 1.) Note that
a classical analogue of fermions can be made by importing the
Pauli exclusion principle, so that two or more particles can never
occupy the same cell. This has the effect of replacing the binomial

coefficients of the form
N þ d � 1

N

� �
in (2) and (3) by

d
N

� �
.

Quantum case. Compared with the classical case, we must be
more explicit about the role of the spin s as a ‘passive’ degree of
freedom for the informed observer. This observer may obtain
information about the numbers of spin—↑ and spin—↓ particles.

Table 1 Summary of the observers’ abilities.

Observer Can Cannot

Informed Access the spin and spatial degrees of freedom Change the number of up or down spins
Ignorant Access the spatial degree of freedom Access the spin degree of freedom
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Thus they can engineer spin-dependent operations conditional on
these numbers, but cannot change the number of each spin.

For identical gases, the result is of course the same as for the
ignorant observer, and the classical case (3). For distinguishable
gases, each gas behaves as an independent subsystem; thus,
the entropy changes are the same as for classical distinguishable
gases (2).

The remainder of this section is devoted to the ignorant
observer, for which we find a departure from the classical case.

The peculiarities of the quantum case stem from a careful look
at the Hilbert space structure. The Hilbert space of a single
particle is a product H1 ¼ Hx � Hs of a part for the spatial
degree of freedom x and a part for the spin s. Since there are d cell
modes and two spin states, these parts have dimensions dim
Hx ¼ d, dim Hs ¼ 2. For N distinguishable particles, the state
space would be H�N

1 . However, for bosons and fermions, which
are quantum indistinguishable particles, states lie in the
symmetric and antisymmetric subspaces, respectively (in first
quantisation). This symmetry refers to the wavefunction under
permutations of particles: for bosons, there is no change, whereas
for fermions, each swap of a pair incurs a minus sign in the global
phase. The physical Hilbert space of N particles can then be
written as

HN ¼ P ± H�N
x � H�N

s

� �
; ð4Þ

where P+(−) is the projector onto the (anti-)symmetric subspace.
Since each particle carries a position and spin state, a

permutation Π of particles is applied simultaneously to these
two parts: Π acts on the above Hilbert space in the form Πx⊗Πs.
The requirement of an overall (anti-)symmetric wavefunction
effectively couples these two degrees of freedom via their
symmetries. For a familiar example, consider two particles. The
spin state space can be broken down into the symmetric ‘triplet’
subspace spanned by ""j i ; ##j i and "#j i þ #"j i, and the
antisymmetric ‘singlet’ subspace consisting of "#j i � #"j i. For
bosons, overall symmetry requires that a triplet spin state be
paired with a symmetric spatial wavefunction, and a singlet spin
state with an antisymmetric spatial function. For fermions,
opposite symmetries are paired.

With more particles, the description is more complex, but the
main idea of paired symmetries remains the same. Follow-
ing ref. 34, our main tool is Schur-Weyl duality35, which
decomposes

H�N
x ¼

M
λ

Hλ
x � Kλ

x; ð5Þ

where λ runs over all Young diagrams of N boxes and no more
than d rows (A Young diagram can be described simply by a non-
increasing set of (≤d) positive integers summing up to N). In
technical terms, Hλ

x and Kλ
x carry irreducible representations of

the unitary group U(d) and the permutation group SN of N
particles, respectively. More concretely, a non-interacting unitary
operation on the positions of all the particles, u�N

x , is represented
in the decomposition (5) as an independent rotation within each
of theHλ

x spaces. The term ‘irreducible’ refers to the fact that each
of these spaces may be fully explored by varying the unitary ux.
Similarly, a permutation of the particles in the spatial part of the
wavefunction is represented by an action on each Kλ

x space. Thus
each block labelled by λ in the decomposition (5) has a specific
type of permutation symmetry.

The same decomposition works for the spin part H�N
s .

However, since this degree of freedom is two-dimensional, each
λ is constrained to have no more than two rows. We can think of
s as describing a total angular momentum formed of N spin-1/2

particles, and in fact λ can be replaced by a total angular
momentum eigenvalue J varying over the range N/2, N/2− 1,….

After putting the spatial and spin decompositions together,
projecting onto the overall (anti-)symmetric subspace causes the
symmetries of the two parts to be linked. For bosons, the λ label
for x and s must be the same; for fermions, they are transposes of
each other (i.e. related by interchanging rows and columns). This
results in the form

HN ¼
M
λ

Hλ
x � Hλ

s for bosons; ð6Þ

HN ¼
M
λ

HλT

x � Hλ
s for fermions: ð7Þ

Instead of the label λ, from now on we use the angular
momentum number J and generally write this decomposition asL

JHJ
x � HJ

s—bearing in mind that HJ
x is different for bosons

and fermions. In terms of the earlier N= 2 example, J= 1
corresponds to the spin triplet subspace, and J= 0 to the spin
singlet.

Another way of describing the decomposition (6) is that it
provides a convenient basis J; qj ix J;Mj is ϕJ

�� �
xs
, known as the

Schur basis36. Here, f J; qj ixgq is a basis for HJ
x and f J;Mj isgM a

basis for HJ
s . M=−J,−J+ 1,…, J can be interpreted as the total

angular momentum quantum number along the z-axis. ϕJ
�� �

xs
2

KJ
x � KJ

s is a state shared between the x and s degrees of freedom.
We now consider how the state thermalises for the ignorant

observer. Since the ignorant observer cannot interact with spin,
their effective state space is described by tracing out the factor Hs
for each particle. In terms of the decomposition (6) and
corresponding basis described above, this means that an initial
density matrix ρ, after tracing out s, is of the form

ρx :¼ trs ρ ¼
M
J

pJρ
J
x � trs ϕJ

�� �
ϕJ
� ��

xs
; ð8Þ

where ρJx is a density matrix on HJ
x , occurring with probability pJ.

Note that there is no coherence between different values of J, and
that the components ρJx are mutually perfectly distinguishable by
a measurement of their J.

Additionally, the allowed operations must preserve the bosonic
or fermionic exchange symmetry. Any global unitary UxBW,
coupling the spatial degree of freedom of the particles to the heat
bath and work reservoir, must therefore commute with
permutations on the spatial part: [UxBW,Πx]= 0 for all Π. By
Schur’s Lemma, such a unitary decomposes as U=⨁JUJ⊗ IJ,
where UJ operates on the HJ

x component, with an identity IJ on
KJ

x . Hence each J component is operated upon independently, the
spin eigenvalue J being conserved.

In summary, therefore, the ignorant observer may engineer any
thermal operation extracting work separately from each J
component (depicted in Fig. 2). We can think of their operations
being conditioned on the spatial symmetry type, and although J is
observed to fluctuate randomly, a certain amount of work is
extracted for each J (see the latter part of the results section for a
more detailed analysis of this fluctuation). For each J, there exists
a free operation within the thermal operations framework25 that
performs deterministic work extraction saturating inequality (1).
This is because the transformation is between (energy-degen-
erate) uniformly mixed states of differing dimension. Note that
the work extraction process does not involve a measurement by
the observer—only a coupling to the apparatus that depends on
the value of J. Therefore there is no need to consider an additional
entropic measurement cost, unlike the case of Maxwell’s
demon1,37.
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The question of optimal work extraction thus reduces to
calculating the entropy of the initial state (8) and finding the
maximum entropy final state. The fully thermalised final state
seen by the ignorant observer is maximally mixed within each J
block:

ρ0x ¼
M
J

pJ
IJx
dJ

� trs ϕJ
�� �

ϕJ
� ��

xs
; ð9Þ

where IJx is the identity on HJ
x and dJ is the corresponding

dimension.
The overall entropy change is the average over all J, found to be

(with details in Supplementary Note 2):

ΔSigno ¼
X
J

pJΔS
J
igno ð10Þ

¼
X
J

pJ ln d
B
J � ln

n þ d=2 � 1

n

� �
� ln

m þ d=2 � 1

m

� �

ð11Þ
for bosons, and

ΔSigno ¼
X
J

pJ ln d
F
J � ln

d=2

n

� �
� ln

d=2

m

� �
ð12Þ

for fermions. Expressions for the dimensions dB;FJ are found in
Supplementary Note 4:

dBJ ¼ ð2J þ 1Þ N
2 � J þ d � 2

� �
! N

2 þ J þ d � 1
� �

!
N
2 � J

� �
! N

2 þ J þ 1
� �

!ðd � 1Þ!ðd � 2Þ! ; ð13Þ

dFJ ¼ ð2J þ 1Þd!ðd þ 1Þ!
N
2 þ J þ 1

� �
! N

2 � J
� �

! d � N
2 þ J þ 1

� �
! d � N

2 � J
� �

!
:

ð14Þ
The probabilities pJ are found (see Supplementary Note 2)

from the Clebsch-Gordan coefficients C(j1, m1; j2, m2; J, M)
describing the coupling of two spins with angular momentum
quantum numbers (j1, m1), (j2, m2) into overall quantum
numbers (J, M). Here, the two spins are the groups of particles
on the left and right, respectively.

For identical gases, all particles have spins in the same
direction, so the spin wavefunction is simply "j i�N . This state lies
fully in the subspace of maximal total spin eigenvalue, J=M=
N/2—which is also fully symmetric with respect to permutations.
Thus the spin part factorises out (i.e. there is no correlation
between spin and spatial degrees of freedom). It is then clear that
dimension counting reduces to the classical logic of counting
ways to distribute particles between cells. Indeed, the dimension

of the subspace HN=2
x is dBN=2 ¼ N þ d � 1

N

� �
for bosons and

dFN=2 ¼ d
N

� �
for fermions. It follows that we recover the

entropy as the classical case of indistinguishable particles (3).
For orthogonal spins, there are n spin—↑ and m spin—↓,

leading to M= (n−m)/2 and a distribution over different values
of J according to

pJ ¼ ð2J þ 1Þn!m!
N
2 þ J þ 1

� �
! N

2 � J
� �

!
: ð15Þ

The resulting entropies and significant limits are discussed
after an example.

Example. Taking n=m= 1 demonstrates the mechanism behind
the state space decomposition. For two particles, there are only
two values of J, corresponding to the familiar singlet and triplet
subspaces:

H0
s ¼ span "#

�� � � #"
�� �	 


;

H1
s ¼ span ""

�� �
; ##
�� �

; "#
�� � þ #"

�� �	 

:

ð16Þ

Consider a spatial configuration where a spin—↑ particle is on
the left in cell i, and a spin—↓ is on the right in cell j. For bosons,
the properly symmetrised wavefunction is

ψi;j

��� E
:¼ 1ffiffiffi

2
p iLjR

�� �
x "#
�� �

s þ jRiL
�� �

x #"
�� �

s

� 
ð17Þ

¼ 1ffiffiffi
2

p iLjR
�� � � jRiL

�� �
ffiffiffi
2

p � "#
�� � � #"

�� �
ffiffiffi
2

p
�

ðJ ¼ 0Þ

þ iLjR
�� � þ jRiL

�� �
ffiffiffi
2

p � "#
�� � þ #"

�� �
ffiffiffi
2

p ðJ ¼ 1Þ
�
:

ð18Þ

Fig. 2 Schematic of the quantum mixing process. Two diagrams representing the mixing of indistinguishable (bosonic) quantum gases from the
perspective of the informed (left) and ignorant (right) observers. Initially, n spin—↑ particles are found on the left and m spin—↓ on the right. The
particles are then allowed to mix while coupling to an external heat bath and work reservoir. The informed observer describes microstates via the number
of particles in each cell, and their respective spins. The ignorant observer cannot tell the spins’ states, but describes microstates (schematically depicted
here by different colours) as superpositions of cell configurations, determined by the decomposition (6).
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So p0= p1= 1/2, and the spatial component of this state is
conditionally pure for both J. The initial thermal state is a uni-
form mixture of all such jψi; ji, with (d/2)2 terms. Thus
Sðρ0xÞ ¼ Sðρ1xÞ ¼ 2ðln d � ln 2Þ. For the final thermal state, we
observe that

H0
x ¼ span ij

�� � � ji
�� �ji < j

	 

; ð19Þ

H1
x ¼ span ij

�� � þ ji
�� �ji ≤ j

	 

; ð20Þ

where i, j now label cells either on the left or right. The corre-
sponding dimensions are d0= d(d− 1)/2, d1= d(d+ 1)/2. Within
the J= 0 subspace, the entropy change is ln ½dðd � 1Þ=2� �
2ln d þ 2ln 2 ¼ ln ð1 � 1=dÞ þ ln 2, and for J= 1, it is
ln ½dðd þ 1Þ� � 2ln d þ 2ln 2 ¼ ln ð1 þ 1=dÞ þ ln 2. Overall,
therefore,

ΔSigno ¼ 1
2
ln 1 � 1

d

� �
þ 1

2
ln 1 þ 1

d

� �
þ ln 2 ð21Þ

¼ 1
2
ln 1 � 1

d2

� �
þ ln 2: ð22Þ

For the informed observer, we have ΔSinfo ¼ 2ln 2. For identical
gases, we find ΔSiden ¼ ln ð1 þ 1=dÞ þ ln 2, strictly greater
than ΔSigno, but the two become equal in the limit d→∞.

Repeating the same calculation with fermions, the
symmetric and antisymmetric states now pair up oppositely.
Then ΔSigno is the same as for bosons. However, we have

ΔSiden ¼ ln ð1 � 1=dÞ þ ln 2<ΔSigno. Unlike for bosons, two
distinguishable fermions permit more extractable work by the
ignorant observer than two identical fermions.

Entropy changes and limits. In Fig. 3 we plot both ΔSinfo and
ΔSigno as a function of dimension for bosons and fermions. Below
we analyse the special cases and limits which emerge from these
expressions, summarised in Table 2.

With bosons, there are two special cases in which it is
easily proven that distinguishable gases are less useful
than indistinguishable ones for the ignorant observer. The first
case is the example above, with n=m= 1. In addition, for d= 2,
we have dBJ ¼ 2J þ 1 —so the largest subspace is that with
maximal J=N/2. The largest entropy change is then
obtained when pN/2= 1, which is satisfied precisely for
indistinguishable gases.

For fermions, we see from Fig. 3 that the greatest work—for
both observers—is obtained for small d. An intuitive explanation
is that the Pauli exclusion principle causes the initial state to be
constrained and thus have low entropy. For example, with the
minimal dimension d= 2n= 2m, we have ΔSinfo ¼
2ln

2n
n

� �
� 4n ln 2 to leading order when n is large. The

ignorant observer can do almost as well: the state is entirely

Fig. 3 Entropy changes as a function of dimension. Series of plots showing ΔSinfo, ΔSigno against the total cell number d of the system. a, b Bosonic
systems of particle number n= 4 and n= 24 respectively. c, d The same for fermionic systems. Note that we have taken the initial number of particles on
either side of the box to be equal, n=m in all cases. For comparison, all four figures also display the classical changes in entropy for an informed/ignorant
observer. The behaviour of the deficit between ΔS for an informed/ignorant observer of quantum particles agrees with the low density limit in Eq. (23)
where we can see ΔSinfo tending to the classical limit 2n ln ð2Þ with ΔSigno trailing behind by a deficit of n2/2d2+ H(p). Additionally, by comparing the
different plots, we can see the low-dimensional fermionic advantage where the change in entropy is even greater than the classical 2n ln ð2Þ value.
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contained in the J= 0 subspace, with dF0 ¼ ð2nÞ!ð2nþ 1Þ!
ðn!Þ2ðnþ 1Þ!2 ¼

2nþ 1
ðnþ 1Þ2

2n
n

� �2

; giving ΔSigno � 4n ln 2 for large n. This is twice

as much as for the classical ideal gas.
The most interesting conclusion is reached in the limit of large

d≫ n, which we term the low density limit. For simplicity, we
take n=m. We find

ΔSigno � ΔSinfo � HðpÞ; ð23Þ
where HðpÞ ¼ �P

JpJ ln pJ is the Shannon entropy of the
distribution pJ, and the lowest order correction is −n2/2d2. Thus,
as d→∞, the ignorant observer can extract as much work as the
informed one, minus an amount H(p). This gap is evident from
the graphs in Fig. 3.

Now consider the limit d≫ n≫ 1, with both low density and
large particle number. Classically, this limit recovers ideal gas
behaviour—the large dimension limit can be thought of as letting
the box become a continuum. In Supplementary Note 6, we show
that H(p) (which depends only on n, not d), behaves as

HðpÞ � 1
2
ln n þ 0:595:::; ð24Þ

with a correction going to zero as n→∞. Recall that the entropy
change for the informed observer is approximately 2n ln 2 in this
limit. Therefore the deficit H(p), which is logarithmic, becomes
negligible compared with 2n ln 2. Thus the ignorant observer can
extract essentially as much work as the informed observer:
ΔSigno � ΔSinfo � 2n ln 2. This result is remarkable because it
shows a macroscopic departure from the classical case in
this limit.

How can we understand this low density limit? An important
feature of the low density limit is that the final entropy becomes
as large as it could possibly be: ρ0x becomes maximally mixed over
its whole state space. This is true for any N, not just large
numbers. We now give an explanation of this phenomenon,
which proceeds by counting the number of mutually orthogonal
states which can be accessed by the ignorant observer.

The important point about the low density limit is that
particles almost never sit on top of each other—that is, almost all
states are such that precisely N cells are occupied, each with a
single particle. More formally, the number of ways of putting N

bosonic particles into d cells is
N þ d � 1

N

� �
� d

N

� �
when

d is large, where the approximation means the ratio of the two

sides is close to unity. Let us refer to each of these
d
N

� �
choices

of (singly) occupied cells as a cell configuration. For each cell

configuration, there are
N
n

� �
spin configurations, i.e. ways of

distributing the n spin—↑ and m spin—↓ particles. In classical
physics, the ignorant observer cannot distinguish any of the spin
configurations corresponding to a single cell configuration. In

quantum mechanics, remarkably, there are precisely
N
n

� �
states

which can be fully distinguished by the ignorant observer, each
being a superposition of different spin configurations.

Let us choose a single cell configuration—without loss of
generality, let cells 1,…,N be occupied. The state of a spin
configuration is denoted as a permutation of

"j i1 ¼ "j in #j inþ 1 ¼ #j iN 2 ðC2Þ�N
; ð25Þ

where each cell is treated as a qubit with basis states "j i; #j i
according to which type of spin occupies it. (Note that the
subsystems being labelled are here are the occupied cells, not
particles.)

Again using Schur-Weyl duality, the state space of N qubits can
be decomposed as

ðC2Þ�N ¼
M
J

HJ � KJ : ð26Þ

Due to this decomposition, there is a natural basis J; M; pj i,
where SU(2) spin rotations u�N

s act on the M label (denoting the
eigenvalue of the total z-direction spin), and permutations Π of
the N cells act on the p label.

How do we represent the effective state seen by the ignorant
observer? In the representation used here, this corresponds to
twirling over the spin states, i.e. performing a Haar measure
average over all spin rotations u�N

s
38. In the basis J; M; pj i,

however, this is a straightforward matter of tracing out the HJ

subspaces, since only these are acted on by the twirling operation.
Thus the ignorant observer has access to states labelled as J; pj i.

How much information has been lost by tracing out HJ? In
fact, none—the label M= (n−m)/2 is fixed. Therefore the
experimenter can perfectly distinguish all the basis states J; pj i —
and there are just as many of these as there are spin

configurations, namely
N
n

� �
.

For example, take n=m= 1: the two spin configurations are
"#j i ; #"j i, and for some pair of occupied cells, the two
distinguishable states are

J ¼ 1; M ¼ 0; p ¼ 0j i ¼ 1ffiffiffi
2

p "#j i þ #"j ið Þ; ð27Þ

J ¼ 0; M ¼ 0; p ¼ 0j i ¼ 1ffiffiffi
2

p "#j i � #"j ið Þ: ð28Þ

Since these are respectively in the triplet and singlet subspaces,
they remain orthogonal even after twirling. They can be
distinguished by mixing the cells at a balanced beam splitter: it
is easy to show that the symmetric state ends up with a

Table 2 Summary of results.

Quantum Classical Quantum Quantum Classical

Limit (no limit) (no limit) (d≫ n) (d≫ n≫ 1) (d≫ n≫ 1)

ΔSinfo 2ln
n þ d � 1

n

� �
� 2ln

n þ d=2 � 1
n

� �
2ln

n þ d � 1
n

� �
� 2ln

n þ d=2 � 1
n

� �
… �2n ln 2 �2n ln 2

ΔSigno P
JpJln d

B
J � 2ln

n þ d=2 � 1
n

� �
ln

2n þ d � 1
2n

� �
� 2ln

n þ d=2 � 1
n

� �
�ΔSinfo � HðpÞ �2n ln 2 ≈ 0

Entropy changes ΔSinfo, ΔSigno for the informed and ignorant observers and their limits are expressed for bosons with n=m. For fermions, replace the dimension of the symmetric subspace
n þ d � 1

n

� �
with that of the antisymmetric one

d
n

� �
and dBJ by dFJ (both of which are defined in Eq. (13)).
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superposition of both particles in cell 1 and both in cell 2, while
the antisymmetric state ends up with one particle on each side.
Therefore, after this beam splitter, the two states can be
distinguished by counting the total particle number in each cell.

A slightly more complex example is with n= 2,m= 1. Then
the distinguishable basis states for three occupied cells are

J ¼ 3
2
; M ¼ 1

2
; p ¼ 0

����
�

¼ 1ffiffiffi
3

p ""#j i þ "#"j i þ #""j ið Þ;

ð29Þ

J ¼ 1
2
; M ¼ 1

2
; p ¼ 0

����
�

¼ 1ffiffiffi
2

p #""j i þ "#"j ið Þ; ð30Þ

J ¼ 1
2
; M ¼ 1

2
; p ¼ 1

����
�

¼
ffiffiffi
2
3

r
""#j i � 1ffiffiffi

6
p "#"j i þ #""j ið Þ:

ð31Þ
Observe that the argument in this section does not depend in

anyway on the exchange statistics of the particles, explaining why
we see the same limit for bosons and fermions.

Quantumness of the protocol. The above discussion of the low
density limit clarifies the fundamental reason why the quantum
ignorant observer performs better than the classical one. The
distinguishable states comprising the final thermalised state are
superpositions of different spin configurations. We might
describe a classical observer within the quantum setting as one
who is limited to operations diagonal in the basis of cell config-
urations—that is, they are only able to count the number of
particles occupying each cell. For such an observer, these super-
position states are indistinguishable.

A crucial question is then: how difficult is it to engineer the
quantum protocol for the ignorant observer? We can imagine that
the heat bath and work reservoir might naturally couple to the
system in the cell occupation basis (if this is the basis that
emerges in the classical case). The required coupling is in the
Schur basis J; qj ix , which are generally highly entangled between
cells. A sense of their complexity is given by the unitary that
rotates the Schur basis to the computational basis, known as the
Schur transform. Efficient algorithms to implement this trans-
form have been found39, with a quantum circuit whose size is
polynomial in N; d; ln ð1=ϵÞ, allowing for error ϵ. This circuit is
related to the quantum Fourier transform, an important
subroutine in many quantum algorithms. Thus, while the Schur
transform can be implemented efficiently, it appears that
engineering the required work extraction protocol—in the
absence of fortuitous symmetries in the physical systems being
used—may be as complex as universal quantum computation.

Work fluctuations. The work extraction protocol we have pre-
sented is not deterministic: for each value of J, a different amount
of work is extracted with probability pJ. This is typically expected
of thermodynamics of small systems; however, in classical mac-
roscopic thermodynamics, such fluctuations are negligible. We
can ask whether the same is true of the work extracted by the
ignorant observer in the quantum case, especially in the low
density and large particle number limits.

One informative way of quantifying the fluctuations is via the
variance of entropy change. Let us denote the entropy change for
each J by ΔSigno(J). The mean is ΔSigno= ∑JpJΔSigno(J), and the
variance is VðΔSignoÞ ¼ P

J pJΔSignoðJÞ2 � ΔS2igno . This can be
computed straightforwardly from our expressions for pJ, dJ, and
approximated in various limits.

Consider first a high density BEC-limit case with d= 2 and
N= 2n≫ 1 bosons. We have dBJ ¼ 2J þ 1, and using the

techniques of Supplementary Note 6, pJ � 2J
n e

�J2=n. Then
ΔSigno ¼ P

J pJ ln ð2J þ 1Þ � 1
2 ln nþ ln 2 � γ

2 � 1
2 ln nþ 0:405:

Similarly, we compute VðΔSignoÞ ¼ P
JpJ ½ln ð2J þ 1Þ�2 �

π2

24 � 0:411. Therefore the mean work dominates its fluctuations
(logarithmic versus a constant).

Next, consider the closest analogue for fermions: the case of
minimal dimension d= 2n= 2m. Recall that ΔSigno � ΔSinfo �
4n ln 2 for large n. Since p0= 1, work extraction is in fact
completely deterministic in this case.

Finally, take the low density limit. As found before, for both
bosons and fermions, ΔSigno � 2n ln 2 —linear in n—and yet we

still find a constant VðΔSignoÞ � π2

24.
In these macroscopic limits, therefore, work extraction is either

fully deterministic or effectively deterministic in that the
fluctuations are negligible compared with the mean.

Non-orthogonal spins. The results generalise to the case of
partially distinguishable spins—that is, initially with n in spin
state "

�� �
on the left and m in state %

�� �
on the right, where

%
�� � ¼ cosðθ=2Þ "

�� � þ sinðθ=2Þ #
�� �

: ð32Þ
For this, we must be more explicit about the operations per-

mitted by the informed observer. The most general global unitary
that does not affect the number of each type of spin is of the form
U ¼ L

MU
ðMÞ
xsBW , where the block structure refers to subspaces

with fixed M as defined by the Schur basis (recalling that the total
number of particles is fixed). We find (see Supplementary Note 3
for details) that ΔSinfo is an average of entropy changes for each
value of M. For ΔSigno, all that changes is the probability pJ, now
being obtained by an average over Clebsch-Gordan coefficients.
Importantly, for both observers, the result is a function of θ only
via the probability distribution qM for the spin value M. In Fig. 4,
one observes the smooth transition from identical to orthogonal
spin states as θ varies from 0 to π.

Discussion
In contrast to the classical Gibbs paradox setting, we have shown
that quantum mechanics permits the extraction of work from
apparently indistinguishable gases, without access to the degree of
freedom that distinguishes them. It is notable that the lack of
information about this ‘spin’ does not in principle impede an
experimenter at all in a suitable macroscopic limit with large
particle number and low density—the thermodynamical value of
the two gases is as great as if they had been fully distinguishable.

The underlying mechanism is a generalisation of the famous
Hong–Ou–Mandel (HOM) effect in quantum optics34,40,41. In
this effect, polarisation may play the role of the spin. Then a non-
polarising beam splitter plus photon detectors are able to detect
whether a pair of incoming photons are similarly polarised. The
whole apparatus is polarisation-independent and thus accessible
to the ignorant observer. Given this context, it is therefore not
necessarily surprising that quantum Gibbs mixing can give dif-
ferent results to the classical case. However, the result of the low
density limit is not readily apparent. This limit is reminiscent of
the result in quantum reference frame theory38 that the lack of a
shared reference frame presents no obstacle to communication
given sufficiently many transmitted copies42.

Two recent papers18,43 have studied Gibbs-type mixing in the
context of optomechanics. A massive oscillator playing the role
of a work reservoir interacts with the photons via their pressure.
This oscillator simultaneously acts as a beam splitter between
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the two sides of the cavity. In ref. 18, the beam splitter is non-
polarising and thus (together with the interaction with the
oscillator) accessible to the ignorant observer. The main
behaviour there is driven by the HOM effect, which enhances
the energy transfer to the oscillator, albeit in the form of fluc-
tuations. In ref. 43, which studies Gibbs mixing as a function of
the relative polarisation rotations between left and right,
bosonic statistics are therefore described as acting oppositely to
Gibbs mixing effects—which is different from our conclusions.
However, there is no contradiction: we have shown that an
advantage is gained by optimising over all allowed dynamics.
Moreover, the scheme in ref. 43 uses a polarisation-dependent
beam splitter, which is only accessible to the informed observer.
Therefore the effect described here cannot be seen in such a set-
up. It is an interesting question whether such proposals can be
modified to see an advantage of the type described here, even if
not optimal.

It is important to determine how the thermodynamic
enhancements predicted in this paper may have implications for
physical systems. Such an investigation should make use of more
practical proposals (such as refs. 16,18,43) to better understand
possible realisations of mixing. For example, systems of ultra-cold
atoms in optical lattices44 may provide a suitable platform to
experimentally realise the thermodynamic effects predicted in this
work. The question of the maximal enhancement in the macro-
scopic limit is particularly compelling given the rapid progress in
the manipulation of large quantum systems45.

Methods
The Supplementary Information contains detailed proofs. Supplementary Note 1
describes the treatment of classical particles, starting from a description akin to first
quantisation, and then coarse-graining the state space along with appropriate
restrictions on the allowed dynamics. Supplementary Note 2 fills out the derivation
for the quantum ignorant observer sketched in the main text. Supplementary
Note 3 provides details for the general case of non-orthogonal spins. Supple-
mentary Note 4 computes the dimensions of the spaces Hλ

x from representation
theory formulas. Supplementary Notes 5, 6 show how to take the low density and
large particle number limits, respectively.

Code availability
Source code for generating the plots is available from the authors upon request.
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