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1. Introduction  
1.1 Prolog 
The etiology of Parkinson’s disease (PD), the second most frequent neurodegen-

erative disease, is not sufficiently explained up to the present time [1-4]. Remark-

ably, even approximately 30 years ago, PD was assumed to represent a classic 

sporadic disease without providing relevant hereditary components [5, 6]. Nowa-

days, it corresponds to common knowledge that genetic determinants contribute 

to the development of PD in a substantial proportion of 27% up to 41% [7-11].  

Interestingly, patients with homozygous or compound heterozygous mutations in 

the glucocerebrosidase gene (GBA) are suffering from the most common lysoso-

mal storage disorder (LSD), Gaucher’s disease (GD), and have been reported to 

develop Parkinsonian symptoms in the course of their disease [3, 6, 12, 13]. In-

dependently, a striking number of PD patients were objectified in the closer famil-

iar environment of GD subjects. Furthermore, studies revealed PD patients to 

present with a 5-fold increased frequency of being a GBA-carrier with monoallelic 

mutational status compared to healthy individuals [14]. Meanwhile, more than 

100 years have passed since the first independent reports of both PD and GD 

cases [15]. Only due to precise clinical characterization of patients – suffering 

from a rare genetic disorder such as GD – and their familiar environment, it was 

possible to gain insight into the disease course and pathophysiology of a very 

common disease such as PD [16]. 

This intriguing link between GBA mutations and the risk for developing PD was 

further supported by the finding, that GBA mutations also influence the heteroge-

neous clinical landscape of PD [12]. Specifically, PD with GBA mutations (PDGBA) 

present with a younger age at PD-onset (AAO), and more pronounced neuropsy-

chiatric impairments such as PD-associated dementia [17-19]. PDGBA reaches 

major clinical PD-milestones such as postural instability, dementia and death 

much earlier in the course of disease than PD cases with GBA wildtype (wt) allele 

[19, 20]. Therefore, an early, accurate and thorough clinical work-up is of highest 

importance.  
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These clinical findings may be due to PD’s pathological hallmark, the Lewy body 

pathology, which commences at a younger age in PDGBA and seems to be more 

widespread in the brain as Neumann et al reported [19, 21].  

Knowledge of the underlying pathophysiology is of utmost importance in order to 

design disease-modifying, targeted therapies for PDGBA – which are currently 

tested in phase-II-trials. 
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1.2 Parkinson’s disease  
1.2.1 PD – epidemiology 
After Alzheimer's disease (AD), PD presents as the second most neurodegener-

ative disease with a prevalence of about one percent of individuals over the age 

of 60 years [12, 22]. After all, four percent of people get affected with PD during 

their lifetime [12]. However, data on PD frequency varies, depending on the ap-

plied statistical method and the cohort that was examined. The Global Burden of 

Disease Study, a systematic analysis, showed that the worldwide burden of PD 

doubled between 1990 and 2016 and it is hypothesized that numbers will double 

every 20 years reaching 14 million PD patients in 2024 [23]. Presumably, the 

reason is our ageing society as age itself represents the major risk factor [23]. 

Males are more often affected than females in a ratio up to 2:1 [24, 25]. However, 

there also exist protective factors which are summarized in TABLE 1 below. 

Table 1: Features associated with Parkinson's disease.  

rather protective factors risk factors 
smoking nicotine positive family history 
caffeine herbicides & pesticides exposure 
exercising older age 
treatment with NSAID (metals like manganese or lead) 
urate (history of CTE) 

Left: risk-decreasing factors whereas nicotine consumption is discussed controversially. Right: risk-increasing factors 
with some aspects put in brackets due to their insufficient evidence. NSAID: Non-steroidal anti-inflammatory drugs. 
CTE: chronic traumatic encephalopathy. Data taken from [26-33]. 

Regarding the underlying mechanisms of PD, various etiologies can be differen-

tiated. Heaped, severe occasions of craniocerebral trauma, e.g. contact sports 

such as boxing, can lead to the development of chronic traumatic encephalopathy 

(CTE) and late Parkinsonian symptoms [26]. Furthermore, neurotoxins such as 

the herbicides paraquat and rotenone as well as the fungicide maneb are re-

ported to favor the development of PD [27, 28]. Metals as manganese and lead 

are suspected to trigger PD [29, 30, 33]. However, the most graving risk factors 

for PD are age and a positive family history [31, 32]. Genes associated with PD 

and PD susceptibility loci are discussed separately because 1) of their relevance 

to the disease and 2) they play an important role in this dissertation. 
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On the other side, moderate physical activity was associated reciprocally with a 

lower PD risk [34]. Smoking, urate and caffeine (relative to men consuming up to 

four cups of coffee per day) appear to be rather protective as well as the treatment 

with ibuprofen [35-37].  

1.2.2 PD – clinical manifestations 
PD presents with heterogeneous clinical features. The course is slowly progres-

sive and characterized by motor and non-motor symptoms (NMS).  

Further, PD can be divided into several subtypes, with three of them comprising 

the majority of PD patients: tremor dominant subtype, akinetic-rigid subtype and 

postural instability subtype [38].  

Motor symptoms 

The three classic signs of motor impairment in PD are referred to as cardinal 

symptoms and include bradykinesia, rigidity and resting tremor [39]. Furthermore, 

postural instability is another important sign which is more of a late symptom [39]. 

All motor impairments can occur in varying manifestations [39]. When affected by 

an overall slowing of movements – or bradykinesia – patients often struggle 

when tying shoes, buttoning a shirt or getting up from a chair [39]. Over the 

course, bradykinesia can intensify to freezing phenomena or festination [39]. A 

physician may further detect reduced amplitude and speed of movement during 

finger tapping and alternating supination-pronation may be limited as well [39]. 

An abnormally increased resistance to passive movement of a joint is called ri-

gidity, which – as all motor symptoms - usually begins on one side, which keeps 

being the dominant (more affected) side during the disease [39, 40]. Rigidity can 

contribute to pain and reduced swinging of the arms while walking [39]. Associ-

ated with rigidity may be a cogwheel phenomenon in which the examined joint 

moves jerkily and stops intermittently [39, 41]. Alternatively, a lead pipe effect 

may occur – presenting with rather sustained tonic resistance during the enduring 

flexing movement [39, 41]. In contrast to spastic dysfunctions, rigidity is inde-

pendent of the applied speed of passive movement and is best tested in passive 

slow movements. 
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The term tremor describes a rhythmic and involuntary movement of a body part, 

which leads to oscillating motion [42]. It is caused by synchronous or asynchro-

nous muscular actions [42]. Most PD patients present with a resting tremor but 

some may show an additional action tremor, the latter occurring mainly as a pos-

tural tremor [43]. The typical PD-tremor is an asymmetrical rest tremor, which 

predominantly manifests when the corresponding body part is not performing any 

action at all and it is also referred to as a pill-rolling tremor (frequency 4-5 Hz) 

[39, 44].  

A patient with postural instability tends to have a misperception of his position in 

the room – resulting in balance disturbances which may lead to falls which occur 

more frequently than in a healthy person [39]. As already mentioned, this symp-

tom is more likely to be associated with later stages in PD [39]. In patients who 

show this aspect very early and report frequent fall events, atypical Parkinsonian 

disorders, such as progressive supranuclear palsy (PSP), should be considered 

[39]. Remarkably, an axial deficit such as postural instability is linked to disability 

and is associated with limited quality of life [39, 45].  

In addition, there are other motor symptoms that can occur at varying degrees 

and times in the course of the disease [39]. Many of these aspects, mentioned in 

FIGURE 1 below, are associated with one of the cardinal symptoms stated above. 

Figure 1: Relevant motor impairments in PD 
Classified into groups according to their localization and symptomatology: craniofacial, visual and muscu-
loskeletal impairment or gait disturbance. According and adapted to [39]. 
 
 
Non-motor symptoms (NMS) 

• dysphagia, dysarthria, sialorrhea, 
hypomimia, reduced blink ratecraniofacial

• impaired upward gaze, eyelid opening 
apraxiavisual

• kyphotic posture, scoliosis, dystonia, 
micrographia musculoskeletal

• freezing, small step gait, increased number 
of turning stepsgait
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In the past, PD was considered primarily as a movement disorder with pure motor 

features due to a disturbed dopamine transmitter system, but there is evidence 

that it rather corresponds to a multisystemic disorder – affecting also other circuits 

of cholinergic, noradrenergic and serotonergic neurotransmitters [46]. This leads 

to a huge variety of NMS, which – at least in part -   occur very often well before 

the onset of motor impairment and include autonomic dysfunctions, impaired 

mood such as depression or apathy, cognitive decline as one of the most im-

portant ones encompassing all stages from mild cognitive impairment (MCI) to 

mild, moderate and severe forms of Parkinson's disease dementia (PDD), further 

sleep impairments and fatigue, visual impairment such as disturbed contrast sen-

sitivity and also olfactory impairment may occur [17, 46-49]. In the following sec-

tion, the most important NMS are explained in detail. 

Autonomic Dysfunction 

Autonomic dysfunctions include constipation, orthostatic hypotension, as well 

as urinary and sexual dysfunction and also somnolence [50]. In particular, orthos-

tatic hypotension may be worsened by PD drug regimens [39]. 

Mood disturbance 

Among the most serious NMS are mood disorders: such as depression, apathy 

and anxiety. Depressive dysfunctions in PD affect the quality of life and are often 

not adequately treated, especially in later disease stages [39, 51, 52]. The fact, 

that depression can lead to psychomotor slowdown and flattening of emotions on 

the one hand, and that PD, on the other hand, is characterized by  bradykinesia, 

hypomimia and sleep disorders, can enhance the difficulty in diagnostic attribu-

tion.  

In addition, anxiety disorders occur in up to 31% of PD patients, with generalized 

anxiety disorders being one of the most common disturbances [53]. Apathy as a 

symptom can occur with and without depression and is characterized by de-

creased motivation with a pooled frequency of about 40% due to a meta-analysis 

of den Brok et al [39, 54, 55]. 
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Cognit ive decline and dementia in PD 

If patients themselves or their relatives notice cognitive deficits while professional 

cognitive testing is inconspicuous, the term subjective cognitive deficit (SCD) is 

used [56]. Although there is a higher risk for further cognitive decline in SCD sub-

jects in the general population, there are still no established criteria for confirming 

the diagnosis [46]. About 10-20% of PD patients show symptoms of PD-MCI, a 

more pronounced form of cognitive impairment compared to SCD, at time of PD 

diagnosis, while PD-MCI is associated with shortened but variable time to the 

onset of PDD [57]. After 10 years of illness between 75% and 90% of PD patients 

present with this subcortical dementia as a complication [58-60]. Due to growing 

life expectancy in western countries, this proportion can be expected to continue 

to increase [59].  

Clinically, PDD presents with executive dysfunction, impaired working memory 

and reduced attention and visuo-spatial performance [47, 61].  

The separation between the categories SCD, MCI and PDD is not strict [47]. 

However, only in PDD an impairment of activities of daily life in terms of social 

and professional interaction is defined – independent of motor and autonomic 

aspects [47]. Risk factors for a rapid cognitive decline are increasing age and 

severe, especially non-tremor-associated PD-symptoms [46, 57]. 

Furthermore, the clear separation between PDD and dementia with Lewy bodies 

(DLB) is often challenging in everyday clinical practice and poses a phenotypical 

and biological continuum with Lewy-body pathology in both disease entities [39]. 

The diagnosis of DLB may be given if the dementia aspect coincides with the 

onset parkinsonism or occurs even before. In contrast, PDD should be diagnosed 

if dementia arises in the context of established PD [62]. For research studies, it 

was formerly recommended to consider the so-called 1-year rule, (motor impair-

ment exists already 12 months or longer before dementia occurs) [62]. However, 

many authors consider this rule to be rather arbitrary and not the most sensible 

way to differentiate between the two entities PDD and DLB [63].  
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Sleep disorders 

Another subgroup of NMS in PD comprises various sleep disorders, namely in-

somnia, daytime sleepiness and rapid eye movement (REM)-sleep behavior dis-

order (RBD) [39, 64-67]. Most commonly, patients report to wake up at night sev-

eral times and to wake up very early in the morning as well [39]. Possible reasons 

for frequent awakening during night sleep may include nocturia, pain, depression 

and nightmares as well as immobility and thus less turning movements [39, 67-

69].  

RBD is a specific sleep disorder in PD, in which patients perform movements 

such as kicking or pounding during their sleep - due to the fact physiological loss 

of muscle tone is not present in RBD patients, so the dreams can be lived out 

[39, 70]. A study by Sixel-Döring et al revealed the frequency of RBD in PD to 

affect up to 46% of patients [70].  

Furthermore, up to three quarters of PD patients are affected by excessive day-

time somnolence [71]. The reasons for this are manifold and are considered to 

be both disease-inherent and also induced by dopaminergic therapy or nocturnal 

sleep dysfunctions [39, 67, 72, 73]. 

Visual performance 

PD patients may show visual acuity and color discrimination limitations as well as 

contrast sensitivity deficiencies [39, 74]. In addition, disturbances of saccades are 

possible [39, 74]. 

Olfactory disturbance 

Dysfunctions of the olfactory performance can affect the odor detection, the odor 

discrimination or the odor sensitivity [75]. However, PD patients often do not re-

alize the reduced olfactory performance [39]. Since olfactory impairments do not 

only occur in early PD clinical stages but can precede motor symptoms of PD for 

a long time, patients with idiopathic olfactory dysfunctions are associated with an 

increased risk for PD [76, 77]. This is why trials often focus on these subjects in 

prodromal PD studies in order to develop screening tools for evaluating their risk 

of developing PD later. 



Introduction Parkinson’s disease 9 
 

 
9 

1.2.3 PD – from preclinical to prodromal and clinical PD stages 

Currently, PD is subdivided into several disease stages that follow one another: 

the preclinical period is followed by the prodromal phase which in turn is followed 

by the clinical PD-stages [50]. This delineation expresses that the beginning of 

PD is not to be equated with the occurrence of motor deficits but that neurodegen-

erative changes already arise years to decades before [50]. It is assumed that in 

prodromal PD stage, a disease-modifying neuroprotective therapy – preventing 

the transfer to clinical stages – could be possible and it is therefore relevant to 

reliably recognize these early PD stages [50]. According to the classification given 

by the Movement Disorder Society(MDS) task force,  

Figure 2 illustrates the 3-phase model of PD on the next page. 
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Figure 2: The Parkinson’s disease stages over timeBeginning from potential people at risk to preclinical 
stage without any clinical signs and further to prodromal phase with varying temporal extent. The clinical 
PD stage is reached when bradykinesia with rest tremor or rigidity or both are present. The pointed triangle 
on the right marks the progressive loss of dopaminergic neurons in the substantia nigra. Notably, about 
40-60% of nigral neurons might be already lost at the prodromal PD stage – although motor deficits are not 
obligatory at this time. PD: Parkinson’s disease. SN: substantia nigra. According to the MDS task force [50, 
78]. 
According to this terminology, people at risk for the development of PD 

show no signs of neurodegeneration [50]. Though, these individuals may present 

with a genetic composition or may be exposed to a certain environment, associ-

ated with increased risk for PD [50]. The challenge of diagnosing precl inical 

PD requires the positive detection of appropriate bio- or imaging markers, that 

have still not been validated up to the present time – according to the author’s 

knowledge [50].  
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The prodromal PD stage is characterized by progressive neurodegeneration, 

which may affect the substantia nigra (SN) but does not necessarily result in mo-

tor impairment [50].  

It is estimated that up to 60% of dopaminergic neurons are destroyed before PD 

becomes clinically significant [50, 79]. Although, distinct motor deficits are possi-

ble, they may be that subtle that they cannot be distinguished from signs of the 

normal aging processes [50]. Moreover, most of the NMS, which frequently dom-

inate the early PD stages, are fairly unspecific and making it difficult in general to 

meet PD criteria for diagnosis [50]. 

1.2.4 PD – prodromal stage and associated markers 

Prodromal PD can be described by evidence-based markers, which, however, 

have to fulfill certain criteria [50]. Therefore, in 2015 Postuma et al defined four 

criteria for a suitable use of these prodromal markers which are listed in TABLE 2 

below: 

Table 2: Overview of the four criteria for prodromal PD markers 

1. The strength of evidential value of the marker must be known and suffi-
ciently large [50] 

2. The specificity or positive predictive value of the marker should be captured 
as it varies between the individual markers currently used [50] 

3. The time between the detectability of a marker and the onset of clinical PD 
– the marker’s lead time - is of great importance [50] 

4. Collecting the marker for a sufficiently large sample must be feasible without 
going beyond the technical and financial opportunities [50] 

As suggested by Postuma et al in 2015 [50]. 

In order to investigate prodromal PD-markers, prospective studies such as stud-

ies in PD-high-risk groups (due to their statistical power) and population-based 

studies (according to their unselected, large sample sizes) are assumed to be 

most appropriate [50]. Examples for population-based examinations include the 

Japanese Honolulu-Asia Aging Study (HAAS) and the German Prospective Eval-

uation of Risk Factors for Parkinson's Idiopathic Syndrome (PRIPS) study [80, 

81]. One disadvantage of population-based studies comes about due to the low 

frequency of PD which in turn requires the screening of relatively large samples 

over many years to filter out a relatively small number of PD cases – which makes 
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it time- and cost-intensive [50, 80]. Many conclusions drawn from high-risk stud-

ies, which can be generalized only to a limited extent to the overall population, 

are derived from patients with idiopathic RBD [50, 82].  

Multiple times, RBD has been reported to occur in more than 45% of PD-cases 

and further it seems to be a prodromal marker for synucleinopathy – a neuro-

degenerative disorder like PD or multiple system atrophy (MSA) – characterized 

by aberrant accumulation of the phosphoprotein α-synuclein (α-syn) in neuronal 

or glial cells in general: over 80% of RBD patients developed a synucleinopathy 

within 10 years since being diagnosed with RBD [83-85]. 

Findings, such as RBD not representing an exclusive marker for PD, and reports 

about olfactory disturbance, that can also occur in prodromal AD, require further 

research in the field of prodromal PD [84, 86]. Today, according to Postuma et 

al, a combination of several proven clinical markers can be ascertained as Figure 

3 illustrates on the next page [50]. 
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Figure 3: Overview of the essential markers of prodromal Parkinson’s disease.  
RBD = Rapid eye movement sleep behavior disorder. PD: Parkinson’s disease. RBD has the highest 
specifity of current proven markers for prodromal PD. Subtle motor dysfunction presents with high specifity 
as well and can be measured with the semi-quantitative Unified Parkinson’s disease rating scale. Olfactory 
impairment affects about 80% of all Parkinson patients, which is why this marker is assumed to be high-
sensitive. Autonomy dysfunctions comprise many subfields with rather high prevalence and accordingly 
rather low specifity. Mood disorders are supposed to correlate with a rather low positive predictive value 
for PD. 

These proven prodromal markers are further elucidated in the next section. 

Proven prodromal markers (clinical investigation) 

Rapid Eye Movement behavior disorder (RBD) 

RBD, which leads to enacted dreaming and can be diagnosed by polysomnog-

raphy, has the highest specificity of all prodromal PD markers with a rather mod-

erate sensitivity (see also FIGURE 4 below) [50, 87].  

This marker can be clinically evaluated by RBD screening questionnaire, 

whereas a single-question (“Have you ever been told, or suspected yourself, that 

you seem to act out your dreams while asleep (for example, punching, flailing 

your arms in the air, making running movements, etc.)?”) ascertained RBD with 

a specifity higher that 87% [50, 88]. 
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Subtle motor disturbances 

Individuals of the general population with subtle motor disturbances were 

investigated by using the Unified Parkinson’s Disease Rating Scale (UPDRS), 

and it could be shown that  a score higher than 0 points already correlated with a 

slight PD-risk and a UPDRS score higher than 4 points was associated with an 

almost tripled relative risk [50, 89, 90]. 

Olfactory disorders 

Several studies have shown the relevance of olfactory dysfunct ion as prodro-

mal PD marker [76, 91], with a specificity lower than that of both RBD and subtle 

motor dysfunctions but greater than that of various other clinical indicators and 

therefore of moderate degree [50]. As already mentioned, olfactory disturbances 

also occur in advance of other neurodegenerative diseases (such as AD and 

DLB) [78]. Since hyposmia characterizes a non-motor deficit in 80% of PD pa-

tients, it is to be assumed that the sensitivity of olfactory dysfunction as a prodro-

mal marker is greater than that of many other markers [50]. 

Autonomic dysfunct ions 

Constipation as an autonomic dysfunction was associated with increased 

PD risk – although the positive value is low due to a prevalence of up to 20% in 

the general population and the time to PD onset may take more than 20 years 

[89, 92, 93]. α-syn – a presynaptic phosphoprotein that can abnormally accumu-

late in e.g. neuronal cells, glia cells and nerve fibers – will be further elucidated 

due to its outstanding importance for pathogenesis in PD (see 1.2.6) [94]. At this 

point, it should only be mentioned, that α-syn can also be detected in the enteric 

system with increased levels (especially in the vermiform appendix) and studies 

further suggested α-syn’s ability to spread: there is a hypothesis that α-syn-

spreading may be favored by a prolonged transit time in the gut – which could 

eventually contribute to PD-development, therefore [95, 96].  

In addition, orthostatic hypotension has also been associated with an in-

creased PD-risk, although the sensitivity is probably rather low, as only 10% to 

one third of patients with early PD stages are suffering from this autonomic dys-

function subtype [97, 98]. Increased PD risk is also associated with urinary 
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impairment but the specificity is low, as there are other common diseases asso-

ciated with it – e.g. prostate hypertrophy [50, 97].  

Severe erectile dysfunction was associated with PD risk in a study without 

providing information regarding sexual dysfunction in women [99]. Due to the 

low number of conducted studies and the high prevalence in the population, Pos-

tuma et al evaluated this marker as low specific as well [50].  

Somnolence can also be grouped into autonomic dysfunctions [50]. It  is 

mainly observed in late PD clinical stages and in PDD, with two studies, including 

the Honolulu-Asia Aging Study, confirming an increased risk of PD associated 

with daytime sleepiness [50, 100, 101]. 

Mood disorders 

Mood disorders, such as depression and anxiety disorders have been reported 

to correlate with a relative PD risk of 1.5 with an assumed low positive predictive 

value [102, 103].  

Recently, a first update of the research criteria for prodromal PD showed, that in 

addition to the just mentioned criteria, 4 other prodromal and risk markers are 

also relevant: (1) type 2 diabetes mell itus, (2) cognit ive impairment, (3) 

low plasma urate levels (<5 mil l igram/dL) in male individuals and also 

(4) physical act ivity (less than one hour weekly of activity causing increased 

heart and breathing frequency) [104-111]. Especially regarding the last aspect, a 

meta-analysis of prospective studies showed that physical activity is associated 

with a lower PD risk and, vice versa, that inactivity can be interpreted as a PD 

risk [104]. Concerning the prodromal marker cognit ive impairment, discrete 

changes in cognition were already found at time of PD diagnosis – suggesting, 

that pathological processes may already occur during the prodromal phase [112, 

113] and that DLB without Parkinsonian symptoms might be a prodromal PD as-

pect, according to the altered MDS criteria [1, 50, 78]. FIGURE 4 on the next page 

gives an overview of the markers mentioned: 
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Figure 4: Proven and potential prodromal markers.  
The presumed progenitor time of PD risk of prodromal markers is demonstrated in years (x-axis) combined 
with the corresponding diagnostic value as positive likelihood ratio LR+ (y-axis). The blue crayons symbol-
ize the estimated lead time of the marker, with the dashed arrows representing a particularly large inaccu-
racy of lead time - due to lack of study data. RBD = rapid eye movement behavior disorder, PET = posi-
tron-emission tomography, SPECT = single-photon emission computed tomography. LR+: likelihood ratio 
provides information about the diagnostic power of the applied marker. Adapted with permission from 
Springer Nature Customer Service Centre GmbH: Springer Nature, nature reviews neurology [50],© 2016. 
Additional Data taken from [104]. 

Potential prodromal markers (clinical investigation) 

In addition to the established prodromal markers described above, further poten-

tial clinical aspects are being investigated, regarding their predictive value for PD. 

Promising, but not in use yet, however, is color vision loss [50]. Limited color 

perception, especially yellow / blue differentiation, has been demonstrated in 

many PD studies using the Farnsworth-Munsell 100 Hue Test instrument [50, 

114].  

Although the etiology for this is not fully understood, it is currently considered to 

be more likely a consequence of cognitive impairment, implying that the 100 Hue 

test may stronger reproduce cognitive deficits than isolated reduced color dis-

crimination [115]. This may be strengthened by the fact, that the Farnsworth-

Munsell 100 Hue test demonstrated a higher predictive value for DLB than for PD 

patients without an impaired cognition [84, 116].  
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Neuroimaging markers  

The methods of imaging of the dopaminergic system using positron-emission to-

mography (PET) or single-photon emission computed tomography (SPECT), as 

well as transcranial sonography (TCS) of the SN and specific measurements us-

ing magnetic resonance imaging (MRI) - are promising to detect adequate pro-

dromal PD-markers of the brain [50]. Moreover, scintigraphy-based investigations 

of the heart may also be promising [50].  

At time of diagnosis of PD, PET and SPECT imaging techniques show an ad-

vanced dopaminergic denervation of more than 50% in the dorsal striatum, sug-

gesting that a reduced innervation might already be detectable before [50, 79]. 

Subjects with reduced dopaminergic innervation were more frequently reported 

to develop other prodromal markers such as constipation and olfactory dysfunc-

tions [117] and about 40% of RBD individuals showed conspicuous dopaminergic 

neuroimaging findings in further investigations [50, 118]. 

In PD, the SN is in about 90% of the affected patients hyperechogenic on tran-

scranial ultrasound even in early stages and revealed a 20-fold enhanced PD risk 

in healthy individuals older than 50 years relative to the general population [90, 

119]. Nevertheless, no convincing reports are present whether nigral hyperecho-

genicity is more likely a marker for high-risk patients or for prodromal PD [50]. In 

any case, it is an inexpensive and fast method but also requires an experienced 

examiner and appropriate examination conditions, which means a proper bone 

window [50]. 

Furthermore, in studies with RBD subjects, the methods (1) diffusion tensor im-

aging, (2) MRI functional connectivity, (3) 123I-meta-iodobenzylguanidine (MIBG) 

cardiac scintigraphy, and also (4) MRI volumetric analysis with measurement of 

cortical thickness were confirmed to possibly supply prodromal markers for synu-

cleinopathies as PD [120-123]. Statements about the extent of their positive pre-

dictive values, the respective lead times and also specificity and sensitivity are 

not reliable yet [50].  
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Biomarkers for preclinical and prodromal PD 

In addition to the elucidated clinical markers above, biomarkers can be obtained 

through different sources such as tissue specimens as well as blood and cere-

brospinal fluid (CSF) samples [50]. The assignment preclinical is also included, 

as the following markers cannot always clearly be classified into preclinical or 

prodromal [50]. 

Peripheral t issue samples  

Although only postmortem studies allow a definitive PD diagnosis, histopatholog-

ical methods objectify neuronal loss and α-syn deposits already in the premotor 

phase [89, 124]. A Danish pathology study showed that gastrointestinal biopsies 

with α-syn deposits were more common in subjects with prodromal and clinical 

PD than in healthy individuals [125]. Besides that, it was previously described 

that phosphorylated α-syn (p-syn) within nerve fibers in the skin may be a poten-

tial biomarker even in early PD stages [126].  

However, α-syn staining of enteric tissues is not yet sufficiently documented to 

be used routinely [50].  

The updated MDS Research Criteria for prodromal PD also criticize the wide 

range of factors such as the number of tissue samples taken, the location of the 

sampling and different biopsy techniques – influencing sensitivity as well as 

specifity [104]. 

Peripheral blood samples: insul in-like growth factor 1-level 

A cross-sectional clinical study compared patients with Idiopathic Parkinson’s dis-

ease (PDIdiopathic) (n=15) without previous pharmacological treatment with healthy 

elderly controls including a control-subgroup with PD-at-risk subjects (n = 11 ) 

[127]. The latter presented with conspicuous results in Unified Parkinson’s Dis-

ease Rating Scale Part III (UPDRS-III) as well as nigral hyperechogenic findings 

in TCS [127]. Significantly higher levels of insulin-like growth factor 1 (IGF-1) were 

found in the PDIdiopathic group compared to controls in general but no significant 

differences could be objectified between PDIdiopathic subjects and PD-at-risk par-

ticipants [127]. The authors concluded that serum IGF-1 levels may help to iden-

tify potential PD risk patients [127].  
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Nevertheless, prodromal markers from peripheral blood are not well documented 

in terms of specificity and sensitivity at the present time, even not for clinical PD 

[50]. 

Cerebrospinal f luid samples: Increased fructose, mannose and 

threonic-acid-levels 

Results of a recently published biomarker study, examining CSF from therapy-

naive PDIdiopathic subjects in early disease stages, demonstrated PD-specific met-

abolic alterations after comparing the PD-CSF profile with matched controls 

[128]. The detected molecular profile (comprising increased levels of fructose, 

mannose and threonic acid) was associated with (1) inflammation, (2) antiox-

idant stress response and (3) glycat ion (non-enzymatic attachment of a 

sugar molecule to a lipid or protein molecule) [128]. Trezzi et al recommended to 

add these CSF-markers to increase the accuracy of clinical diagnosis [128]. 

In conclusion, since there are still no preventive therapies for PD, the knowledge 

of the extent of prodromal symptoms is of enormous importance. Only via thor-

ough clinical detection of prodromal PD, potentially at-risk individuals can be rec-

ognized and included in clinical studies which hopefully lead to a better under-

standing of the underlying pathology and deliver insight into how PD progression 

is characterized [82, 129]. The clinical PD-stages with the corresponding diag-

nostic criteria will be elucidated in the following section. 

 

1.2.5 PD – clinical diagnostic criteria 
The PD criteria according to MDS portrayed here are primarily suitable for clinical 

research but can also be used in clinical routine for the diagnosis [1]. The step-

by-step approach to PD diagnosis, according to the MDS Clinical Diagnostic Cri-

teria for PD, starts with examining whether Parkinsonism is present or not [1].  

Parkinsonism by definition is bradykinesia with (1) rigor or (2) resting tremor or 

(3) both [1]. FIGURE 5 below further elaborates the required criteria for Parkinsonism 

which can be objectified by the UPDRS-III. 
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These Parkinsonism-criteria should support the distinction between nonspecific 

parkinsonism, presented by up to a quarter of all elderly individuals without PD 

diagnosis, and PD-induced parkinsonism [1]. Bradykinesia in PD-induced parkin-

sonism, for instance, comprises slowness but also partial decrease in motion am-

plitude or in velocity when movements are continued – which is objectified less 

common in other etiologies [1].  

Figure 5: Criteria for Parkinsonism.  
Bradykinesia is obligatory and may be accompanied by either rigidity and/ or rest tremor. Below these 
three major criteria, several clinical aspects are listed in order to support detection of PD-related Parkin-
sonism on the one hand and rather non-specific Parkinsonism on the other hand. According to Postuma et 
al [1]. 

Another goal aimed at by these criteria is to clearly differentiate between PD and 

Parkinsonism due to other reasons (other forms of neurodegeneration or second-

ary Parkinsonism) [1]. So, the next step is to determine, if PD is present or if other 

causes for Parkinsonism are much more likely: such as PSP, subcortical arterio-

sclerotic encephalopathy, MSA or essential tremor [1]. Postuma et al defined 

these supportive criteria, listed in TABLE 3 on the next page, in 2015 in addition to 

absolute exclusion criteria and red flags – which are listed in the manuscript [1]. 

Conferring to that, a patient meets the MDS-PD criteria for clinically established 

PD if  

 at least 2 out of 4 supportive criteria are given,  

 there are no absolute exclusion criteria and  

 there are no red flag features [1].  

The patient fulfills the diagnostic criteria for merely clinical ly probable PD if 

(1) there are no absolute exclusion criteria and if (2) a maximum of 2 red flags 

persists with a minimum of 2 supportive criteria balancing them [1]. The presence 

of more than 2 red flags excludes a clinically probable PD [1].  
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Table 3: MDS-Criteria for Parkinson's Diseaseaccording to Postuma et al [1].MDS: Move-
ment Disorders Society. L-dopa: Levodopa. Min: minimum. PD: Parkinson’s disease. DBS: deep brain 
stimulation. NMS: nonmotor symptoms. RBD: rapid eye movement behavior disorder. Mg: milligram. DLB: 
dementia with Lewy bodies. 

 
 
 
Supportive Criteria 

MDS-Criteria for PD 
Supportive criteria Absolute exclusion criteria Red flags 

1. Unambiguous benefit of huge 
amplitude to dopaminergic 
therapy 

1. Clear cerebellar 
abnormalities in the 
investigation 

1. Rapid development of gait 
disorder, use of wheelchair 
within 5 years since onset 

2. Detection of dyskinesias induced 
by L-dopa 

2. selective slowing of 
downward vertical 
saccades or vertical 
supranuclear gaze palsy 
downwards 

2. no increase in motor 
impairment in a minimum 
5-year period unless 
therapy prevents this 

3. former or current evidence of 
resting tremor of an extremity in 
clinical investigation 

3. diagnosis of primary 
progressive aphasia or 
frontotemporal type of 
dementia within first 5 
years of disease 

3. early onset severe bulbar 
syndrome within 5 years 
since onset 

4. Pathological findings in min. 1 
auxiliary diagnostic tests as: 

a. Impaired smelling ability  
b. cardiac sympathetic 

denervation in 
metaiodobenzylguanidine 
scintigraphy 

4. parkinsonian symptoms 
only in lower limbs for ≥ 
3 years 

4. inspiratory respiratory 
disorder (a and/ or b) 

a. frequent 
inspiratory sighs 

b. diurnal or 
nocturnal 
inspiratory stridor 

 5. therapy with dopamine 
receptor blocker or a 
dopamine-depleting 
agent consistent with 
drug-induced 
parkinsonism 

5. severe autonomic 
impairment within 5 years 
since onset 

a. hypotension 
b. urinary 

incontinence/ 
retention 

 6. no response to high 
dose 
Levodopa ≥ 600mg /day 
despite moderate 
disease severity 

6. Falls due to balance 
disturbance within 3 years 
since onset 

 7. clear cortical sensory 
loss 

7. Anterocollis or 
contractures of hand/ feet 
within 10 years since onset 

 8. inconspicuous 
neurometabolic imaging 
of presynaptic 
dopaminergic system 

8. no typical NMS within 5-
year period since onset 
(i.e. hyposmia, depression, 
RBD) 

 9. alternative syndrome is 
more likely than PD 
(DLB is no alternative 
syndrome) 

9. unexplained pyramidal 
tract signs 

  10. bilateral symmetric 
symptoms 
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In order to meet the supportive criterion of profoundly benefiting from dopamin-

ergic therapy (first column), patients should have reached or almost completely 

regained their baseline status which may be objectified by an UPDRS-III score 

improvement by more than 30% [1]. Only moderate response to therapy is not 

sufficient [1]. Rest tremor of a limb is a supportive criterion, because it is less 

frequently found in other Parkinsonian syndromes and thus more likely to propose 

PD [1]. At the same time it is often less responsive to dopaminergic therapy, 

which makes it challenging for especially the tremor-dominant subtype to fulfill 

the first supportive criterion for PD [1]. Furthermore, for the auxiliary tests men-

tioned in the 4th supportive criterion, three or more studies from different centers 

could confirm a specificity of more than 80% for the applied method [1]. 

Exclusion Criteria 

If one of the 9 absolute exclusion criteria is present, the diagnosis PD should be 

rejected, unless another independent disease clearly causes the corresponding 

symptom [1]. For exclusion criteria with a time frame, such as tauopathy-associ-

ated dementia within 5 years since onset of the disease (third criterion) for exam-

ple, there is no need to wait and see if the symptom will still occur within that time 

period – especially if all other PD-criteria are fulfilled [1]. The 7th exclusion crite-

rion, clear cortical sensory loss, implies an existing progressive aphasia or an 

unambiguous ideomotor apraxia of a limb [1]. The task force, which developed 

the MDS criteria for PD, also points out that functional neuroimaging is not a 

compelling diagnostic tool for PD and that diagnosis can be given without it [1]. 

Finally, regarding 9th exclusion criterion, MSA or PSP do represent alternative 

Parkinsonian syndromes but DLB does not [1]. 

Red Flags 

A severe bulbar syndrome according to the third red flag criterion may be deter-

mined by severe dysarthria or dysphagia [1]. It requires a nasogastric or gas-

trostomic feeding tube and corresponds to an UPDRS score of 4 for dysarthria 

and 3 or more for dysphagia [1]. Although autonomic dysfunctions are a typical 

PD aspect, however, severe autonomic dysfunction with massive hypotension 

and urinary impairment – not explained by medication, volume depletion or pros-

tate disease – are rather typical for MSA and therefore named as a red flag [1]. 
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Frequent falls more than once a year are considered as a red flag as well, unless 

they have been caused by loss of consciousness or healthy people would have 

fallen as well – due to situational circumstances [1]. Lastly, pyramidal signs are 

red flags unless they present with a slight reflex asymmetry in favor of the affected 

side – common in PD – or an isolated extensor plantar response which can be 

found according to a striatal toe in PD as well [1]. Postuma et al validated these 

MDS clinical diagnostic criteria for PD from 2015 and reported higher levels of 

specificity and sensitivity than the United Kingdom Brain Bank criteria of 1988 

[130]. The diagnostic criteria for clinically probable PD showed a sensitivity of 

over 94% and specificity of over 88% [130].  

In order to be able to provide patients with potentially disease-modifying thera-

pies, the diagnosis must be made as early and as correctly as possible. There-

fore, Berg et al developed clinical criteria for this early PD phase, also called 

“Clinically Established Early PD”, which can be used in clinical trials with high 

specifity (> 95%) and moderate sensitivity (about 70%) [131]. Concluding, the 

diagnosis of PD is based on core criteria representing clear motor symptoms [82]. 

These may be preceded by NMS with an architecture varying in scope and inten-

sity but the following impairments are common: neuropsychiatric aspects such as 

depression, constipation, hyposmia and sleep disorders such as RBD [82].  

 

1.2.6 PD – pathophysiology: nigral and extra-nigral characteristics 

Motor loop of the basal ganglia 

The basal ganglia (BG) are located in the basal telencephalon and consist of the 

striatum (putamen and caudate nucleus) and the globus pallidus externus (GPe) 

and internus (GPi) – with some authors adding the SN (mesencephalon) with pars 

compacta (SNc) and reticularis (SNr), the thalamus (diencephalon) and the sub-

thalamic nucleus (diencephalon) (STN) as well  [132].  

 

The BG process motor information from cortical regions, such as the premotor 

and supplementary motor cortex, and are crucially involved in voluntary motor 
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function –  especially in fine motor skills [132]. FIGURE 6 attempts to present a sim-

plified model of the BG function: 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Simplified model of basal ganglia circuits.The basal ganglia affect fine motor skills by processing 
cortical impulses, which mainly arise in the striatum. Summarized, it is shown in here that the direct route 
via D1 leads to a lesser inhibition of the thalamus, which consequently sends more movement-promoting, 
exciting impulses to the cerebral cortex. The indirect pathway via D2, on the other hand, leads to a disinhi-
bition of STN via an inhibition of GPe, which ultimately results in an increased inhibition of the thalamus 
and thus a rather movement-inhibiting information to the cortex. D1: dopamine-1-receptor. D2: dopamine-
2-receptor. GPi: globus pallidus internus. SNr: substantia nigra pars reticularis. SNc: substantia nigra pars 
compacta. GPe: globus pallidus externus. STN: subthalamic nucleus. Orange arrows: excitatory effect. 
Blue arrows: inhibitory effects.  

 

The striatum is reached via excitatory afferents from cortical areas and is also 

influenced by dopaminergic excitatory (via D1 receptor) and inhibitory (via D2 

receptor) stimuli from SNc [132]. In striatum, the direct pathway begins which is 

triggered by dopamine: it inhibits GPi and SNr, which consequently inhibit the 

thalamus to a lesser degree and enable thalamocortical excitatory stimuli – this 

promotes enacting of movements [132].  

Furthermore, the indirect pathway starts from striatum as well, which is inhibited 

by dopamine, however: via the indirect pathway, striatal D2-associated neurons 

inhibit GPe [132]. 

 As a consequence, this diminishes STN-inhibition. Through this disinhibition, the 

STN stimulates both GPi and SNr more intensely: these inhibit the thalamus in 

Cortical regions 
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turn, which is why the indirect pathway has a rather movement-inhibiting effect 

[132]. It is important that dopamine promotes the direct pathway via striatal D1 

receptors and inhibits the indirect pathway via striatal D2 receptors, thus acting 

as a whole as inducing movement [132]. 

In PD, there is a progressive decline of dopaminergic neurons in SNc and there-

fore, the direct pathway, promoting movement, is impaired, while at the same 

time the indirect, movement-inhibiting pathway is intensified [132]. Thus, thala-

mus increasingly receives inhibitory impulses from GPi and SNr and stimulates 

cortical motor areas to a smaller degree – causing movement inhibition with 

symptoms like hypomimia or bradykinesia [132]. This model is supported by the 

fact that motor symptoms usually respond well to the dopamine precursor L-3,4-

dihydroxyphenylalanine (L-dopa)-therapy [48].  

At the time when the disease defining PD motor symptoms occur, 60% of nigral 

neurons are already degenerated [133]. Nevertheless, as the major part of NMS 

and also some motor symptoms, such as postural instability or tremor, are less 

responsive to L-dopa, it seems likely that there could be additional extra-nigral 

neuropathological involvement [48].  

And in fact, the locus coeruleus in the pons as well as the dorsal vagal nucleus 

in the medulla oblongata show signs of neurodegeneration already at early 

stages in PD subjects, too [134]. Finally, brain atrophy of PD patients witnesses 

the involvement of the whole brain.  

Lewy Body pathology 

Cross-sectional postmortem studies performed with brain samples of PD-patients 

suggested, that PDIdiopathic is associated with the formation of inclusion bodies in 

certain types of neurons that appear to be specifically susceptible to it [124]. 

These small intraneuronal inclusion bodies mainly consist of the protein α-syn 

[124] but over 500 other proteins are possible components of these so-called 

Lewy formations as well [135-137]. α-syn is physiologically located in the cyto-

plasm of axons and their presynaptic contacts [124].  
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The protein plays a role in formation of vesicles, it affects the curvature of their 

membrane and α-syn mediates the presynaptic release of neurotransmitters into 

the synaptic cleft by binding to the soluble N-ethylmaleimide-sensitive-factor at-

tachment receptor-complex (SNARE-complex) [138, 139]. For reasons that re-

main still unclear, α-syn can alter its tertiary structure, thereby losing its physio-

logical binding to the cell membrane and consequently lying freely in the cytosol 

[140, 141]. There, α-syn can form different subtypes of intracellular aggregates 

which may contribute to formation of elongated structures, Lewy neurites, and the 

roundish Lewy bodies [124, 141].  

In conclusion, the term synucleinopathy describes abnormal accumulation of α-

syn in fibrillated configuration, located in the brainstem or in cortical regions [142]. 

Lewy body pathology is considered to be the pathological hallmark of PD, how-

ever, it should be noted that Lewy bodies may also be detected in other neuro-

degenerative disorders including even tauopathies as AD and PSP –  here, a 

neuropathological co-morbidity is likely [134, 143]. 

Interestingly, PD subjects exhibit Lewy pathology not only in the SN but, in fact, 

in the whole nervous system including the nucleus basalis of Meynert in basal 

frontal lobe, in the pontine locus coeruleus, in cerebral-cortical areas as well as 

in intestinal and cardiac plexus [134]. This raises the question of where exactly 

PD pathology begins. Since a loss of nigral dopaminergic nerve cells could be 

detected early in PD, it was assumed that this might be the origin of PD pathology 

[133]. However, the German neuroanatomist H. Braak questioned this theory by 

presenting a 6-step model of PD-spreading, which is explained in the following 

section. 
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Braak staging 

The pathological progress, according to Braak et al, is assumed to spread via 

synaptic contacts and may start in the anterior olfactory nucleus, or in the dorsal 

motor nucleus of the cranial nerves IX and X (glossopharyngeal nerve and vagus 

nerve) as pictured in FIGURE 7 – or eventually in the enteric nervous system  [50, 

124, 144]. Based on these apparently very susceptible neuronal structures, the 

pathological development proceeds, up to subcortical and cortical grey matter 

until finally the primary sensory and motor fields are involved [124].  

 

Figure 7: Spreading of pathological Lewy body pattern in PD.With the beginning in the olfactory bulb and in 
the brainstem. The deposits spread from brainstem to thalamic structures, to mesocortical areas and finally 
to primary motor and sensory cortical regions. The spreading goes along with specific clinical stages, ac-
cording to Braak et al. Image reproduced and minimally modified from [124], with kind permission from 
Elsevier. Copyright © 2002 Published by Elsevier Inc.
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Braak et al suggested that this process shows only few fluctuations between af-

fected individuals and could therefore be classified in six stages according to 

the morphological expression of pathological patterns as TABLE 4 demonstrates 

below [21, 124, 145]. 

Table 4: Braak stages according to affected anatomical structures. adapted from [124, 
146].  

  
Brainstem 

Basal forebrain 
& limbic system 

Cortical 
regions 

 Olfac-
tory  

pedun-
cle 

Medulla 
oblon-
gata 

Pons 
Mid-
brain 

    
 

Tem-
poral 

Fronto-
parietal  

Braak 
stage AON dmV LC RN SN nbM 

CA
2 A 

C
g 

1    

2      

3     X     

4          

5            

6            

The level of involvement of anatomical regions increases with escalating Braak stages - as indicated by 
the gradually saturated hues of red. The X marks the involvement of the SN in Braak stage 3. AON: ante-
rior olfactory nucleus, dmV: dorsal motor nucleus of vagal nerve, LC = locus coeruleus, RN = nuclei 
raphes, SN = substantia nigra, nbM = nucleus basalis of Meynert, CA2 = cornu ammonis. A: amygdala. 
Cg: cingulum.  

As displayed in TABLE 4 above, changes in the olfactory bulb and in the medulla 

are present in stage 1, conferring to a clinical premotor stage [134, 146]. Clini-

cally, NMS, such as early olfactory impairment and autonomic dysfunction, cor-

relate with these neuroanatomically affected areas. In stage 2, clinical manifes-

tations include mood disturbances, such as anxiety and depression, according to 

neuropathologically affected serotonergic neurons in the brainstem [147]. Addi-

tionally, sleep disorders such as RBD may occur [147]. In the third stage, the SN 

gets involved and motor disturbances may occur, when about 50% of the dopa-

minergic neurons are lost due to the increasing dopaminergic neuronal decline, 

while in stage 4 neurodegeneration intensifies [134]. 
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In the final stages 5 and 6, cortical regions of the temporal and frontoparietal lobe 

of the telencephalon get affected [134]. The impairment of the SN in stage 3 

marks a milestone in this model, dividing PD into a premotor or prodromal phase 

and the motor or manifest phase [147].  However, as mentioned in the chapter 

on prodromal PD, subtle motor disturbances at this early state are possible and 

can be objectified by carrying out UPDRS, according to Berg et al [90]. 

Braak's staging hypothesis has been controversially discussed, as the common 

asymmetric presentation of PD cannot be well explained by the model [134]. In 

addition, older control subjects without PD showed a similar chronological in-

volvement of the mentioned prodromal symptoms [134, 147]. So, it may be chal-

lenging to clearly separate PD-associated neurodegeneration from normal aging 

processes. 

 

1.2.7  PD – etiology: complex environmental and genetic interactions 

As already mentioned, traumatic events and neurotoxic substances can contrib-

ute to the development of PD [27-29]. Moreover, today genetic factors are known 

to play an important role in PD. Although PD usually occurs in the sporadic form, 

it has been shown that up to a quarter of PDIdiopathic cases have a first-degree 

relative, who suffers from PD [148].  

Importantly, a risk for PD more than twice as high (odds ratio (OR) = 2.3) could 

be detected for these first-degree relatives compared to first-degree relatives 

from healthy controls – especially in case they are male [148].  

The discovery of PD-associated mutations in the alpha-synuclein (SCNA) gene 

represented a milestone in PD-research in 1997 [149] and, over the years, further 

causative genes were detected to be associated with familial PD, showing auto-

somal dominant and autosomal recessive or X-linked inheritance [150, 151]. TABLE 

5 on the next page shows the PD forms according to their inheritance, their as-

sociated genes and their corresponding clinical hallmarks. 
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Table 5: Overview of the established and the not yet proven (*) PD forms, their inher-
itance, their associated gene or gene product and relevant clinical aspects. 

PD form Inheritance Gene/ protein Clinical aspects 
PARK1 
PARK4 

AD 
SCNA/ α-synu-
clein 

EOPD /DLB 

PARK2 
AR Parkin 

Dystonia/ Dyski-
nesia 

PARK3* 
AD ? 

Onset juvenile to 
elderly adults 

PARK5* 
AD? UCHL1 

Insufficient infor-
mation 

PARK6 AR PINK1 EOPD 
PARK7 AR DJ-1 EOPD 
PARK8 

AD LRRK2/ Dardarin 
Similar to  
PDIdiopatihic 

PARK9 
AR ATP13A2 

Dementia/ pyram-
idal signs/ atypical 
parkinsonism 

PARK10* AD? ? LOPD 
PARK11* 

? GIGYF2 
Insufficient infor-
mation 

PARK12* X-linked ? LOPD 
PARK13* 

AD? HTRA2 
Insufficient infor-
mation 

PARK14 
AR PLA2G6 

Dystonia and  
parkinsonism in 
adults 

PARK15* 
AR FBXO7 

Parkinsonism/ in-
creasing pyrami-
dal signs 

PARK16* ? PARK16 LOPD 
PARK17* AD VPS35 LOPD 
PARK18* 

AD EIF4G1 
Similar to  
PDIdiopatihic 

PARK19 A/B* 
AR DNAJC6 

A: EOPD, 
B: like LOPD 

PARK20* 
AR SYNJ1 

EOPD/ seizures/ 
dystonia 

PARK21* AD TMEM239 LOPD 
PARK22* 

AD CHCHD2 
Similar to  
PDIdiopatihic 

PARK23* 
AR VPS13C 

EOPD/ dementia/ 
autonomy  
dysfunct ions 

AD: autosomal-dominant. AR: autosomal-recessive. ?: inheritance unknown. X-linked: X-chromosomal inheritance. 
SCNA: α-synuclein gene. UCHL1: Ubiquitin C-Terminal Hydrolase L1. PINK1: PTEN-induced kinase 1. DJ-1: Protein de-
glycase Daisuke-Junko-1. LRRK2: Leucine-rich repeat kinase 2. ATP13A2: ATPase cation transporting 13A2. GIGYF2: 
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GRB10 interacting GYF protein 2. HTRA2: High Temperature Requirement Protein A2. PLA2G6: phospholipase A2 
group VI. FBXO7: F-Box Protein 7. VPS35: Vacuolar protein sorting-associated protein 35. EIF4G1: Eukaryotic Transla-
tion Initiation Factor 4 Gamma 1. DNAJC6: DnaJ Heat Shock Protein Family (Hsp40) Member C6. SYNJ1: Synaptojanin 
1. TMEM239: Transmembrane Protein 239. CHCHD2: Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 2. 
VPS13C: Vacuolar Protein Sorting 13C. EOPD: early onset Parkinson’s disease. LOPD: late onset Parkinson’s disease. 
PD: Parkinson’s disease. DLB: dementia with Lewy bodies. Adapted from: [134]. Content taken from: [150-152]. 

Studies estimated, that only up to 10% of PDIdiopathic show Mendelian inheritance 

and up to 30% of familial PD are monogenic – which reveals, that the vast major-

ity of PD cases does not arise due to known autosomal dominantly or recessively 

inherited gene mutations [36, 149, 153-160]. Instead, it is hypothesized that gene-

to-gene interactions on the one hand and interactions between genes and envi-

ronmental components on the other hand must be considered as causative as 

well [36, 161]. 

The complexity of PD’s genetic background is further exposed by genetic variants 

that appear to act more as susceptibility factors for PD.  

Validated PD-susceptibility factors include polymorphisms (allele frequency 

above 1 percent in observed populations) in Leucine-rich repeat kinase 2 

(LRRK2) gene, in SCNA gene as well as heterozygous mutations in GBA gene 

[36, 158, 162-168]. GBA mutations currently are the most important genetic risk 

factor for developing PD [16, 129, 169]. However, a study, aiming to capture the 

penetrance of PD among carriers of GBA mutations, objectified a penetrance of 

about 14% for 60-year-old, about 21% for 70-year-old and about 30% for 80-year-

old subjects [170]. Therefore, the authors raised the question whether GBA 

should be considered as a causative gene with reduced penetrance and autoso-

mal dominant inheritance due to this background [170]. 

The genetic background of PD and similar complex diseases is tentatively 

mapped by two different theories. The common disease-rare variant 

(CD/RV) hypothesis postulates that rare genetic variants, defined by allele 

frequencies of 1% or less, are common in populations [149]. The CD/RV hypoth-

esis implies, that these pathogenic rare variants exist because they are barely 

removed by natural selection, however, the identification of these rare variants in 

sufficiently large samples is quite expensive and therefore challenging [149]. By 

using the methods of next generation sequencing (NGS) and as NGS has 
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become better affordable, it became more feasible to test CD/RV hypothesis 

[149]. Additionally to its expansiveness, the highly homologous Beta-glucosylcer-

amidase pseudogene (GBAP) close to GBA is another pitfall for NGS because of 

gene-pseudogene rearrangements that can lead to the detection of false positive 

GBA recombinant variants [171]. 

The common disease-common variant (CD/CV) hypothesis states, that 

frequently occurring diseases, such as PD, are caused by frequently occurring 

(allele frequency greater than 1% in population) interacting genetic variants [172, 

173]. According to the CD/CV hypothesis, particularly detrimental alleles are ra-

ther sorted out by natural selection due to their abundance [149]. Consequently, 

many alleles remain which are barely harmful when taken alone – but in their 

entirety, they can be quite deleterious [149]. 

The CD/CV hypothesis was the basis for genome-wide associat ion studies 

(GWAS), aiming to capture alleles associated with a specific characteristic and 

seeking to identify an association between a haplotype and a phenotype [149]. 

So, numerous common risk loci and susceptibility genes for PD could be discov-

ered [149]. Technically, genotyping is performed by using common, defined sin-

gle nucleotide polymorphisms (SNPs), to detect possible susceptibility genes for 

diseases as PD within very large sample sizes [173]. Interestingly, the detected 

genetic variants are usually localized within noncoding gene regions, they are 

linked with little effects and they independently influence the PD-phenotype only 

to a limited extent [172, 174]. 

A meta-analysis of a GWAS, carried out for PD until 2014, evaluated nearly 

14,000 cases and over 95,000 controls [175]. 28 independent PD risk variants 

were identified at 24 genetic loci [175].  

Another exome-wide study, exploring the association between genes that cause 

lysosomal storage disorders and the risk of developing PD, could identify a com-

pound for 54 LSD-causing genes [176]. Interestingly, this association was still 

evident, when GBA as an established lysosomal susceptibility factor was not con-

sidered in the analysis [176]. More than 50% of the PD cases studied (n=1156) 

had at minimum one potentially harmful LSD gene variant and more than a fifth 
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presented with a variety of LSD-alleles [176]. Therefore, the sum of interactions 

between genetic variants was assumed to possibly contribute to the reduction of 

lysosomal capacity and thus increases PD-susceptibility [176]. 

 

1.2.8 PD – therapeutic pathways 

Background of previous therapeutic approaches 

After J. Parkinson published his clinical findings in the early 19th century and after 

J.M. Charcot renamed Parkinson’s Paralysis Agitans into "Parkinson's dis-

ease" a little later, patients were treated with muscarinic alkaloids for 50 years – 

without any evidence for underlying pathomechanisms which could be specifi-

cally addressed (see FIGURE 8 on the next page) [177]. 75 years later, anticholiner-

gics such as Artane and Akineton were applied [177] and 140 years later, A. 

Carlsson recognized the link between nigral cell death and dopamine [177, 178].  

G. Cotzias optimized motor deficits in PD patients for the first time with oral do-

pamine administration in 1969 [177, 179]. Additives such the decarboxylase in-

hibitors carbidopa and benserazide increased dopamine activity 6 years later and 

already in 1989, sustained-release preparations accomplished persistent L-dopa 

plasma-levels [177, 178]. The NMDA receptor antagonist amantadine was ap-

proved in 1976 in the US as another PD-therapeutic option [180]. Although sub-

cutaneous administration of the dopamine agonist apomorphine has been possi-

ble since 1951, pump-based injections for the continuous stimulation of dopamin-

ergic receptors and thus a clear and sufficient reduction of the off-phases were 

only available in the early 1990s [178, 181-183].  

Orally administered L-dopa leads to fluctuating plasma levels peripherally due to 

its short half-life, which, after crossing the blood-brain barrier and being converted 

to dopamine, leads to fluctuating dopamine levels at the synapse [184]. Clinically, 

subsequent motor phenomena such as dyskinesias and wearing-off phases are 

observed [184]. 

Prolongation of the short effect duration of L-dopa was achieved with catechol-

O-methyltransferase (COMT) inhibitors (tolcapone, entacapone) in the late 
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1990s, which stabilized L-dopa plasma levels via blocking methylation of the do-

pamine precursor, thus preventing its degradation and facilitating increased 

transfer across the blood-brain-barrier [181, 184]. 

Further, monoamine oxidase (MAO) inhibitors increased the levels of neurotrans-

mitters, including dopamine, by reversible or irreversible inhibition of degrading 

monoamine oxidase-A or B or both enzyme variants) [185].  

In PD, selective MAO-B inhibitors such as selegiline and rasagiline improved mo-

tor functions by reducing the off-phase of L-dopa – they were approved in 1974 

and in 2005 [186].  

Figure 8: Overview of drug therapies for PD.The years below the drug agents correspond to the year or 
period of first documented use. L-dopa: Levodopa. COMT: catechol-O-methyltransferase inhibitors. MAO-
B: monoamine oxidase B inhibitors. 

Opicapone (Ongentys) followed in 2016, reducing off-phase and prolonging the 

on-phase without bothersome dyskinesias [187]. Safinamide, a relatively new se-

lective reversible MAO-B inhibitor with glutamatergic effects was launched on the 

European market in 2015 (Xadago) and was approved in addition to L-dopa and 
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other PD drugs in the mid-to-late PD stage with corresponding effect fluctuations 

[188]. The recognition, that agonists, which are acting on dopamine receptors of 

the D1-like and D2-like group, cause significantly less dyskinesias, represented 

another milestone in PD therapy in the 1990s [181]. Ergoline agents such as bro-

mocriptine, cabergoline, pergolide and lisuride as well as non-ergoline agonists 

such as pramipexole (1997), ropinirole (1996), rotigotine (2006) and piribedil can 

be differentiated (2006) [181].  

However, due to several reports of increased risk of heart failure and fibrotic re-

modeling of e.g. vessels, pericardium and pleura under the treatment with ergo-

line derivatives, there are mainly non-ergoline dopamine agonists used nowa-

days [181, 189, 190]. 

Individualized, stage and symptom specific therapy 

Drug therapy today mainly depends on the stage of PD (early or more advanced 

PD), the prevalence of type of symptoms (motor or non-motor), and on severity 

of symptoms. Patients with mild motor symptoms at an early PD stage may be 

mono-treated either with MAO-B inhibitors selegiline and rasagiline (with the lat-

ter improving total UPDRS score I-III) or primarily with L-dopa or primarily with 

dopamine agonists (DA) [181, 191, 192].  

For a long time, it was assumed that it would be helpful to start as late as possible 

with L-dopa in order to minimize motor complications induced by long-term ther-

apy, such as dyskinesias [181]. In 2014, reports of a long-term trial (PD-MED) 

revealed, however, that initial L-dopa therapy is slightly superior to an L-dopa-

sparing regime regarding mobility scores, and that dopamine agonists and rasa-

giline, used as L-dopa-saving-therapy, are similarly effective [193]. Furthermore, 

the risk of developing dyskinesia after 7 years of therapy was 33% for levodopa-

sparing therapies and 36% for L-dopa regimes, without significant differences 

between the two study arms in terms of motor fluctuations [193]. 
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Table 6: Overview of drug-based PD-therapy and the advantages (+) and disad-
vantages (-). 

MAO-B: monoamine oxidase B inhibitor. L-dopa: Levodopa. COMT inhibitors: catechol-O-methyltransfer-
ase inhibitors. SG: selegiline. TD-PD: tremor-dominant Parkinson’s disease. UPDRS: Unified Parkinson’s 
disease rating scale. TC: Tolcapone. e.g.: exempli gratia. Data taken from [181, 193, 194]. 

 

As it can be seen in TABLE 6, the drugs mainly target motor deficiencies in PD. 

Although there are also both dopaminergic and non-dopaminergic approaches 

for frequent NMS, reaching sufficient NMS improvement may be cumbersome 

[181, 195]. If fluctuating NMS are detected, switching to a sustained-release 

dopaminergic drug or continuous drug supply may be helpful [181]. Sex-

ual dysfunction in men could benefit from sildenafil administration, in hyperhi-

drosis one should primarily ensure to establish continuous drug administration, 

constipation could be treated with macrogol and a reduction in the daily amount 

of dopamine may be reflected [181, 196].  

Regarding neuropsychiatric symptoms, depressive symptoms respond well to 

pramipexole and rivastigmine amended dementia in PD patients [197]. 

Zeuner et al also reported that psychotic and hallucinatory aspects are less com-

mon in L-dopa-therapy than in DA- or amantadine-regimes and should therefore 

be seen as a side effect of therapy rather than as a stand-alone symptom [181, 
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197]. In any case, dopamine dose should be reduced due to these symptoms and 

an atypical neuroleptic, such as clozapine, may be supplemented [181, 197].  

Further, there is only limited evidence for the efficacy of modafinil, a psychostim-

ulant, and methylphenidate, a norepinephrine-dopamine reuptake inhibitor, re-

garding fatigue [197]. Regarding common sleep disorders such as RBD in PD, 

care should be taken to ensure a safe sleep environment first and, if possible, to 

reduce or discontinue existing treatment with MAO inhibitors, beta-blockers and 

antidepressants [198]. In case cognitive deficits, daytime fatigue, fall-down or 

sleep apnea syndrome are present, melatonin may be given - if not, clonazepam 

should be given at night [199-204]. 
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1.3 Gaucher’s disease  

GD is named after the French dermatologist Philippe Gaucher, who observed 

splenomegaly in a young woman in 1882 and attributed it to a form of spleen 

neoplasia [205]. The correct detection of the underlying pathology and, addition-

ally, the establishment of the world's first enzyme replacement therapy (ERT) 

goes back to the American biochemist Roscoe O. Brady in 1965 [206, 207].  

Although GD is the most common lysosomal storage disorder, the sphingolipido-

sis GD is still a rare pathology based on a deficiency of beta-glucocerebrosidase 

enzyme (GCase) and presents with a huge variety of clinical symptoms [208-

211]. Due to autosomal-recessive inherited mutations in GBA gene, the enzyme 

substrates glucosylceramide and glucosylsphingosine (GlcSph) accumulate and 

cause mainly visceral, hematological and skeletal disorders [212].  

However – drawing conclusions from GBA-genotype to GD-phenotype is only 

practicable to a limited extent [212]. The patient’s whole genetic makeup, in ad-

dition to environmental factors, plays an important role, as modifier genes can 

have a variety of effects on the clinical phenotype of the formal monogenic Gau-

cher’s disease [212]. 

1.3.1 GD – epidemiology 

GD occurs in all races, regions and continents with approximately 1 in 40.000 up 

to 60.000 people worldwide being affected and it is therefore pan-ethnic [211]. 

However, a subgroup of Ashkenazi-Jewish people demonstrates a much larger 

disease frequency with 1 out of 855 people affected by GD and in northern Swe-

den, in the Norrbotten region, the Norrbottnian subtype of GD was found espe-

cially frequently as well [211, 213].  

1.3.2 GD – pathophysiology 

Under physiological conditions, the lysosomal wt GCase is synthesized in the 

endoplasmic reticulum (ER), then it gets folded and undergoes ER quality control 

[214]. When properly folded, transportation to the Golgi complex follows for fur-

ther modification and afterwards, it reaches its site of action, the lysosome [214-

216].  
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Due to genetic homozygous or compound heterozygous alterations in the GBA 

gene, located on chromosome 1, several consequences follow:  

 accumulation of glucosylceramides (GlcCer) 

 impaired intracellular transport of the mutated GCase from the ER to the 

lysosome and 

 possible early degradation of the misfolded GCase in the proteasome 

[217-219].  

The accumulative aspect occurs due to reduced hydrolysis of GlcCer into the 

products ceramides and glucose (FIGURE 9) [208, 220]. Successively, GlcCer accu-

mulates in the lysosomes which leads to a heterogeneous disease with multisys-

temic clinical aspects [21, 162]. This buildup occurs mainly in macrophages, 

which are part of the mononuclear phagocyte system, causing them to become 

Gaucher cells: these cells are huge and show condensed cytoplasm and chro-

matin if investigated by light microscopy (FIGURE 10) [211]. Gaucher cells can be 

objectified in internal organs, mainly in spleen and liver as well as in bone marrow 

and generate symptoms like hepatosplenomegaly but also inflammatory signals 

[135, 211]. 

 

 

 

 

  

 

 

Figure 9: GCase dysfunction. 
Lysosomal enzyme glucocerebrosidase, encoded 
by GBA, degrades the glycolipid glucosylceramide 
to glucose (sugar) and ceramide (lipid). GBA-gene 
mutations, reduced or failed enzymatic function 
lead to substrate accumulation in lysosomes, which 
are located in macrophages. Large cells are cre-
ated: the so-called Gaucher cells. GD: Gaucher’s 
disease. GBA: Beta-glucocerebrosidase enzyme  
[211].  

Figure 10: Light microscopic image of bone marrow 
preparation. 
Giemsa stain or variation. Original magnification 
not available. Gaucher cells with eccentric nuclei 
and plenty blue-gray cytoplasm. Taken from a case 
report of the Department of Pathology, University of 
Pittsburgh School of Medicine [221]. With the cour-
tesy of Mohamed A. Virji. 

9 10 
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Another but much rarer etiology is given by PSAP gene mutations, encoding for 

the activator protein saposin C, which in turn leads to reduced or absent activation 

of GCase through saposin C [222]. GCase presents itself without functional defi-

cits in case of PSAP mutations [211, 222]. However, this case will not be further 

deepened in here. 

The entity of GD is subdivided into three different clinical phenotypes with special 

characteristics, which will be further elucidated in the next section [213]. 

1.3.3 GD – classification 

GD-classification is based on a 3-armed system according to clinical history as 

TABLE 7 demonstrates on the next page: the postulated non-neuronopathic 

type 1 with highly variable penetrance, although in recent years it has been as-

sociated with neurological aspects such as increased PD risk and mild peripheral 

neuropathy, the acute neuropathic infant i le type 2 with onset within the first 

6 months of life and the chronic neuronopathic type 3, involving both juvenile 

and adult forms [135, 211, 223-227]. However, categorization into these three 

subtypes seems to be less and less suitable, given the fact that intermediate phe-

notypes between the three forms are frequently found [21, 210, 228].  

Table 7: Characteristics of the three subtypes of Gaucher’s disease. 

Aspect Type 1 GD Type 2 GD Type 3 GD 

Neuronopathic affection 
Non- 

neuronopathic 
Acute 

neuronopathic 
Chronic 

neuronopathic 

Inheritance 
Autosomal 

recessive 

Autosomal 

recessive 

Autosomal 

recessive 

Occurrence 

Pan-ethnic,  
increased fre-
quency in Ash-
kenazi-Jewish 

Pan-ethnic Pan-ethnic,        
Increased fre-

quency in  
Norrbotten,    

Sweden 
 

Clinical aspects Hepatomegaly Hepatomegaly Hepatomegaly 

 

Splenomegaly Splenomegaly Splenomegaly 

Anemia Strabismus 
Eye movement 

disorder 

 
Thrombocyto-

penia 
Opisthotonus 

Myoclonic epi-
lepsy 
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Growth delay-

ing 
Brainstem      

involvement 
Cognitive          

impairment 

 
Skeletal 

lesions 

Regression                 
of milestones 

Psychiatric       
disorders 

 Fatigue Seizures 
Aortal calcifica-

tions 

 

PD,                         
polyneuropa-

thy 
Aspiration Hydrocephalus 

Proportion ~90-95%1 < 5% up to 
~20%2 

~5-35%3 

GD: Gaucher’s disease. PD: Parkinson’s disease. Type 1 GD was assumed to be non-neuronopathic, 
however, there is now evidence for neurological affection regarding e.g. Parkinson’ disease or polyneurop-
athy. 1 in Europe and North America. 2 <5% of cases in most populations, but up to 20% in some cohorts. 3 
commonly 5% of cases, but up to 33% in certain cohorts. Data from [211, 213, 221, 229].  

1.3.4 GD – distribution of GBA mutations 

GBA is located on chromosome 1 on arm q at position 22 (1q22) and consists of 

10 introns and 11 exons [211]. Meanwhile, a variety of GBA mutations are known 

– with N370S (GBA mutation with serine at position 370 instead of asparagine), 

L444P (GBA mutation with proline at position 4444 instead of leucine) and 

RecNciI being the most common in general, but there are population-related in-

dividual clusters [230]. In Ashkenazi Jewish populations, 90% of all mutations are 

represented by the following four mutations: N730S, L444P, c.84dup, and 

IVS2+1G> A, whereas in non-Ashkenazi Jewish subjects, these mutations only  

represent 60% [211]. Most frequently, Ashkenazi Jewish subjects carry N370S 

mutations (up to 80%) [211]. N370S causes much milder GD forms in the homo-

zygous mode than the less common but significantly more severe L444P muta-

tions, which frequently set off neurological impairment according to type 2 and 3 

[211]. In general, about 300 GBA mutations were detected, which correspond to 

stop-, frame shift-, missense- and splice-site-mutations or recombinant alleles – 

with the two common mutational variants, N370S and L444P encompassing for 

more than 60% of GD cases in European-derived populations [220, 231]. 



Introduction Gaucher’s disease 42 
 

 
42 

Table 8: Overview of the three subtypes of Gaucher’s disease and further subtypes with 
their associated most frequent genotypes in relation to different populational clusters and 
corresponding life expectancy. 

Aspect 
Type 1 

GD 

Type 2 GD Type 3 GD 
Neo- 
natal 

Infan-
tile 

3a 3b 3c 

common 
 Geno-

type 
N370S* 

2 null  
Muta-
tions 

 

- - L444P D409H 

clusters 
Ashke-
nazi- 

Jewish 
- - - 

Norrbot-
ten,  

Sweden 

Japa-
nese, 

Palestin-
ian, 
Arab 

 

prognosis Normal 
Neona-

tal 
death 

Death 
within  

2 years 
 

Death 
in child-

hood 
Variable Variable 

GD: Gaucher’s disease. N370S*: homozygous for GBA mutation N370S or compound heterozygous for 
N370S/other mutant GBA allele [232]. 

Remarkably, the pseudogene GBAP, located close to GBA, is not transcribed but 

represents a 96% identical exon sequence to the coding GBA gene [233]. The 

large gene density in this region on the one hand and the pronounced homology 

of the non-processed pseudogene GBAP on the other hand, contribute to the 

event of chromosomal rearrangements, such as duplications, inversions or dele-

tions [21, 220]. Due to a heterogeneous clinical portray and a varying life expec-

tancy depending on GD subtype (see TABLE 8 above) and due to common geno-

types in distinct, the question arises as to how far genotype and phenotype cor-

relate in GD. 

Genotype-phenotype correlations  

Diverse GD genotypes have been detected in similar phenotypes and conversely, 

patients with identical mutational alleles displayed very heterogeneous pheno-

types – which was even reported for twins and siblings [210, 234, 235]. This 

makes a clear correlation rather unlikely [210, 234, 235]. Nevertheless, rather 

mild GBA mutations (e.g. N370S, G377S) seemed to be associated with type 1 

GD, whereas more severe gene alterations (e.g. L444P, RecNciI, R463C) appear 
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to be linked with in GD type 2 or 3 [236-238]. Accordingly, genotype impact on 

GD-phenotype is supported by the fact that homozygous L444P-mutations are 

linked with an increased frequency of neuronopathic involvement in type 3 GD 

[21, 239]. Furthermore, patients diagnosed with “non-neuronopathic” type 1 GD 

intermittently showed symptoms of Parkinsonism in the early course of their dis-

ease, such as motor impairments like tremor and gait disturbances but also cog-

nitive deficits [240-242]. These findings suggest, that not every GD patient with 

his phenotypic character is unambiguously assigned to one of the 3 GD subtypes 

but there may be intermediate states [243, 244]. So, GD phenotype does not 

appear to be exclusively influenced by genotype and its Mendelian heredity [235]. 

Rather, the environment, diverse penetrance of mutations, specific regulated 

gene expression and other gene loci with modifying functions seem to play a ma-

jor role [235, 245, 246]. 

1.3.5 GD – diagnosis 

GD-diagnosis is given via testing for reduced GCase activity in leukocytes or fi-

broblasts, which is usually reduced by 75-80% [247]. In rare cases, if a clinical 

GD-syndrome (see TABLE 7 above) comes with a normal GCase function, PSAP 

gene should be sequenced in order to not miss a deficiency of GCase activator 

saposin C, encoded by PSAP [211, 222]. Even prenatal diagnosis is possible 

[248]. Bone marrow biopsy is not routinely recommended but can confirm the 

diagnosis if Gaucher cells are detected [211]. In addition, biomarkers are availa-

ble: chitotriosidase levels for intraindividual monitor treatment efficacy, chemo-

kine CCL-18 for estimating prognosis, further the promising marker GlcSph and 

also ferritin levels – for the prediction of bone involvement [249-252]. 

1.3.6 GD – therapeutic pathways 

In GD, a periodic monitoring is required to initiate any drug therapy prior to the 

onset of irreversible complications [211]. In principle, there are two different ther-

apeutic options: ERT and substrate reduction therapy (SRT) [253, 254].  

Enzyme replacement therapy (ERT) 

Alglucerase, a modified human GCase, was the first intravenous therapy in type 

1 GD in the 1990's, improving symptoms such as anemia, thrombocytopenia and 
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hepatosplenomegaly with good tolerability [255]. However, alglucerase was de-

rived from human placenta, requiring over 10 tons of placental tissue to treat a 

single patient for 1 year [256]. Therefore, imiglucerase (Cerezyme), a recombi-

nant GCase from ovarian hamster cells, was introduced as an intravenous, 

weight-adapted therapy for type 1 GD in 1994 and alglucerase was withdrawn 

from the market a few years later [256]. Unfortunately, due to viral contamination 

of the imiglucerase production site in 2009, global supply bottlenecks occurred 

for one year [257]. In 2010, velaglucerase alfa (Vpriv) was established, based on 

human sarcoma cell lines [258], and in 2012, taliglucerase alfa (Elelyso) followed 

– produced from plant cells [256]. Each ERT is given intravenously, administra-

tion frequency is variable and may comprise several weeks and further, ERT-

dose is adapted to patient’s clinical outcome [211]. Type 1 GD patients should 

only be treated with ERT in case they are symptomatic regarding clinical and 

biological aspects, whereas type 2 GD is unfortunately not responsive to ERT 

[229, 259].  

In type 3 GD, ERT should be started in any case [211, 259]. A Russian study 

analyzed plasma levels of oligomerized α-syn in GD patients and healthy controls 

and detected significantly higher levels in GD subjects [260]. Interestingly, no 

plasma level differences were found comparing GD patients with ERT for more 

than 5 years with healthy controls [260]. The authors therefore concluded that 

ERT may contribute to the reduction of the plasma α-syn concentration [260]. 

Further studies revealed, that ERT improves bone impairment, hematological dis-

orders and abdominal involvement of GD patients – without optimizing the neu-

rological symptoms, however [242, 261, 262]. 

Substrate Reduction Therapy (SRT) 

Due the fact, that ERT is expensive, there is only intravenous application and 

also its immunogenicity, the property of triggering immune response by means of 

antibody synthesis, is assessed as disadvantageous, SRT also plays a relevant 

role in GD therapy [256]. The principle of SRT is based on the inhibition of an 

enzyme, involved in glucosylceramide synthesis: the UDP-glucose ceramide glu-

cosyltransferase [256]. Orally available drugs are the glucose-analogue 

miglustat (Zavesca) for GD-subtypes 2 and 3 and the ceramide-analogue 
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eliglustat (Cerdelga) for type 1 GD [211]. Although miglustat crosses the blood-

brain barrier, however, it was not superior regarding neurological symptoms in 

comparison with the "no miglustat therapy" study arm superior in clinical studies 

with type 3 GD subjects [263].  

As far as the author is aware, patients with type 2 and 3 GD are currently receiv-

ing miglustat as SRT, who for other reasons are not eligible for ERT [256]. 

Eliglustat is, like ERT, first choice for type 1 GD, because studies demonstrated 

comparable efficacy levels as for imiglucerase and adequate safety as well [211]. 

1.3.7 GD – conclusion 

GD is a rare disease that, except of type 2 and 3a GD, is of slow onset and it is 

often detected rather late [211]. In cases of splenomegaly with or without con-

comitant thrombocytopenia, this LSD should be considered as a differential diag-

nosis [211]. In addition, regular monitoring is required – including asymptomatic 

GD patients as well [211]. 
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1.4 The link between GBA and PD 
This section seeks to summarize the key milestones of the discovery of the intri-

guing link between mutations in GBA gene and increased risk of developing PD, 

to describe the relationship of GBA mutations with other neurodegenerative dis-

eases, to outline the clinical qualities and neuroimaging findings that characterize 

PDGBA, to delineate prodromal aspects that are emphasized in PDGBA and to pro-

vide insight into how GBA mutations contribute to pathogenesis of PD [264]. Fi-

nally, current therapeutic approaches in PDGBA are introduced with focus on tar-

geted therapies. 

1.4.1 Overview of key milestones of research 

Already in 1996, Neudorfer et al reported on 6 cases of type 1 GD, showing signs 

of Parkinsonism already in their middle adult age, with a more severe course and 

poor response to drug treatment (see also Figure 11) [241]. Parkinsonism, as a 

neuronopathic involvement, thus contradicted the original GD classification ac-

cording to which only type 2 and 3 exhibit such manifestations [240, 241, 262]. 

Especially, Parkinsonism in GD linked with the N370S mutation disclosed defi-

cient response or was even refractory to common therapy regimes [240, 241, 

262].  

Due to close observation of GD patients and their environment, a clustering of 

PD cases in the familiar background of GD patients was objectified and genetic 

analyses of these PD cases followed regarding GBA mutations [18, 265]. A ped-

igree analysis of GD patients revealed their first-degree family members to be 

concurrently heterozygous Gaucher carriers and also to suffer from PD with in-

creased frequency [18, 158].  

Since 2004, this was followed by a variety of studies in different populations, such 

as North American [18, 166], Chinese / Taiwanese [158], Ashkenazi-Jewish [162, 

165, 266] or Caucasian-based samples [21, 167] – using either direct whole-ge-

nome-sequencing or screening techniques for the most common GBA mutations 

to objectify the carrier frequencies in PD patients and controls. 
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Figure 11: Chronological overview.Major milestones of the association between GBA mutations and PD 
between 1996 and 2013. GD: Gaucher’s disease. PD: Parkinson’s disease. e.g.: exempli gratia. GBA: glu-
cocerebrosidase gene. PDD: Parkinson’s disease dementia. DLB: dementia with Lewy bodies. Reused 
and adapted to[15]. With the courtesy of John Wiley and Sons. 

It became remarkably clear due to an extensive multicenter analysis [14], that not 

only a minor part of GD patients with homozygous mutational status in GBA gene 

could develop PD over the years but also that heterozygous mutation carriers, 

thus GD-healthy individuals, had a significant risk of developing PD in their life-

time [14]. Patients with established PDIdiopathic do also bear GBA mutations with 

an OR of 5.43 – rendering GBA mutations the most common risk factor for PD 

[14, 267]. 

Further studies confirmed these increased GBA carrier-frequencies among pa-

tients with familial PD [268] on the one hand and a link between GBA mutations 

and early-onset PD (EOPD) on the other hand [168, 269]. In 2013, a British study 

revealed that heterozygous GBA mutations are risk factors for the Lewy body 

disorders (LBD) PDD and DLB as well [270]. 

1996-2003: finding: type 1 GD patients 
present with parkinsonism

2004: increased frequency of PD familiar 
environment of GD patients  

since 2004: confirmed for different 
ethnicities, e.g. North America, Israel, 
China, Taiwan, Europe 

2009: heterozygous GBA-mutations: the 
most important genetic risk factor for 
developing PD due to multicenter analysis

2013: monoallelic GBA-mutations:  risk 
factor for developing PDD and DLB
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In addition, GBA mutations increase PD-risk in distinctive ethnicities in varying 

degrees (FIGURE 12). For N370S, an increased PD risk was shown in Ashkenazi- 

and non-Ashkenazi-Jewish populations [271].  

Further, in Ashkenazi Jewish populations, an elevated risk was observed for the 

variants 84insGG and R496H, while in non-Ashkenazi Jewish populations the 

GBA polymorphism E326K as well as the variants L444P, T369M, RecNcil, 

R120W, D409H, H255Q and IVS2+1G>A increased PD-risk [271]. 

Figure 12: Different GBA variants/ polymorphisms related to the respective PD-risk.  
Dark blue: Ashkenazi-Jewish subjects. Light blue: Non-Ashkenazi-Jewish subjects. Presented in logarith-
mic scale. In Ashkenazi-Jewish samples, N370S mutation was associated with the highest risk for PD, 
while non-Ashkenazi-Jewish with the GBA polymorphism E326K present with the highest risk for PD, com-
pared to the rest of the portrayed mutations. Data taken from [271].  

Besides, L444P increased PD risk in all populations of non-Ashkenazi-Jewish 

offspring [271]. In Europe and West Asia, E326K, N370S, H255Q, and D409H 

were the major risk alleles, while in Eastern Asia the GBA variant R120W was 

significantly associated with a higher PD-risk [271]. A computational analysis of 

the published literature vis-à-vis GBA-associated PD revealed, that L444P seems 

to be the most severe of the three most common variants (L444P, N370S, E326K) 

[272]. A structural analysis of the enzyme’s molecular architecture localized the 

milder variants N370S and E326K in the area of the alpha helix of GCase, 

whereas the L444P mutation was located in the start area of the beta sheet [272].  
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1.4.2 GBA mutations related to further neurodegenerative diseases 

Neuropathological studies of cerebral tissue, derived from GD patients of all 3 

subtypes, revealed the evidence of Lewy body pathology localized in the cerebral 

calcarine cortex (layer 4b) of the occipital lobe and in hippocampal subfields 

(Cornu ammonis area 2-4) of the medial temporal lobe [21, 273]. In type 1GD-

cases with Parkinsonian symptoms, synuclein deposits were primary localized in 

the brainstem and in hippocampal regions – comparable to the synucleinopathic 

pattern in PD [21, 242, 273]. Further, GBA mutations increase the risk of devel-

oping DLB even more – with an OR of 8.28 [270, 274, 275].  

No association was identified for GBA variants and tauopathies such as cortico-

basal degeneration (CBD) and PSP [270, 274]. Especially, a strong association 

was objectified for E326K with LBD such as PD, PDD and DLB by a Spanish 

clinicopathologic study [276]. Interestingly, for E236K and the GBA variant 

T369M, no association was confirmed for GD [277-279]. 

1.4.3 PDGBA – clinical phenotype 

PDGBA patients share numerous clinical similarities with PDIdiopathic patients but 

they also exhibit a partly different phenotypical NMS-syndrome [7]. So, PDGBA 

cases may present with a decreased age at onset, more non-motor impairment 

– specifically regarding cognitive decline – , a better response to dopaminergic 

treatment than GD subjects with PD and additionally, they may be affected in 

different matters by rather mild or rather severe genotypes [13, 14, 17, 165].  

Age at onset:  

Neumann et al stated a significant difference between mean age of PD-onset in 

PDIdiopathic and PDGBA – with the latter being affected earlier [21]. This finding of a 

premature disease onset was strengthened by further studies [15, 162, 280]. 

Conversely, Lesage et al could not confirm a significant difference between 

PDGBA and PDIdiopathic with respect to early onset in their case-control study with 

European-descent PD subjects [238]. 
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Response to therapy: 

Further, PDGBA subjects respond well to L-dopa therapy – in contrast to GD pa-

tients, showing poor or no response to L-dopa treatment, as mentioned above 

[21, 158, 163].  

Mild and severe mutations: 

A case-control study of Ashkenazi-derived Jewish subjects demonstrated that ra-

ther crucial GBA mutations, known to cause more severe GD, were associated 

with 13-fold increased risk for PD, while milder GBA variants only doubled the 

risk of developing PD [165]. Though, PDGBA carriers of predominantly severe re-

combinant or null GBA mutations were reported to be affected earlier than carri-

ers of rather moderate GBA gene alterations (mean AAO=39 years vs. mean 

AAO= 51 years, p = 0.008) [238]. This finding was further confirmed by a large 

meta-analysis [281]. According to Cilia et al, the risk of dementia in PDGBA was 

increased almost 3-fold by more deleterious mutations (IVS10+1G>T, G377S, 

L444P) compared with mild variants (e.g. N370S) [3]. Notably, risk of dementia 

for PD patients was amplified almost 6 times by severe GBA mutations compared 

to PDIdiopathic with wt GBA [3]. 

PDGBA – non-motor symptoms 

Since NMS, rather than motor impairments, characterize the early phase of both 

PDIdiopathic and PDGBA and they often occur already in prodromal stage, a brief 

overview of the relevant categories such as autonomic impairments, cognitive 

deficits, mood and neuropsychiatric disturbances, visual deficits, olfactory perfor-

mance and the extent of therapy response is given below [12, 17]. 

Autonomic dysfunct ions: 

Brockmann et al revealed an increased frequency of autonomic involvement in 

PDGBA, especially regarding orthostatic impairment and bowel dysfunctions (p = 

0.001, p= 0.02), compared to PDIdiopathic [17]. Also, fatigue and sexual dysfunction 

were more commonly observed in PDGBA than in PD with wt GCase [17, 282, 

283]. Nevertheless, conflicting results were obtained by other studies with respect 

to the frequency of orthostatic dysregulation [3, 14] and cardiac 123I-MIBG uptake 

abnormalities in PDGBA [12, 284, 285]. The method of 123I MIBG-uptake revealed 
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a high sensitivity level in order to assess autonomic dysfunctions in PDIdiopathic 

patients [286]. 

Cognit ive def iciency: 

Global cognition was impaired more frequently and to a greater extent in PDGBA 

compared with PDIdiopathic [17]. The CORE-PD study confirmed this durable asso-

ciation between GBA mutations and cognitive impairment: PDGBA subjects 

achieved poorer results in the Mini-Mental State Examination (MMSE), as well as 

in fields of non-verbal memory and visual-spatial performance than PDIdiopathic pa-

tients [13]. Neumann et al reported cognitive impairment for 48% of the investi-

gated PDGBA subjects [21], while Zhang et al described PDGBA to be linked with a 

threefold increased risk regarding dementia [287]. Tsuang et al performed a com-

plete postmortem genetic assessment of GBA in subjects with and without de-

mentia and concluded that GBA mutations present to be a major risk factor for 

DLB and PD [288]. Although GBA-mutations occurred with an increased fre-

quency in the mixed subgroup of subjects with neuropathological changes related 

to AD and to LBD, GBA did not appear to act as a susceptibility factor for AD 

[288].  

Mood and neuropsychiatric disturbances: 

Further, hallucinations occurred significantly more often in PDGBA than in PDIdio-

pathic [289]. A clinical-neuroimaging study revealed accumulated neuropsychiatric 

disturbances (depression, anxiety, apathy, indifference) as well as increased 

events of dementia in PDGBA carriers of N370S and L444P – compared to PDIdio-

pathic [17]. Later, an increased incidence of hallucinations and delirium has been 

confirmed for PDGBA subjects [284]. However, not all studies found significant dif-

ferences for hallucinations in PD between mutant and wt GBA and some authors 

even discussed hallucinations to be mainly drug-induced, reflecting side-effects 

[162, 181, 197]. Besides that, an association between the subject’s gender and 

the extent of neuropsychiatric morbidity was suggested, as only male PDGBA sub-

jects presented an elevated risk for anxiety and depression compared to PDidio-

pathic individuals [290]. Based on literature-analysis, the frequency of depressive 

impairment in PDGBA is inconclusive, as differing results were obtained or in some 

studies, the effects were not significant [13, 268, 283].  
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Visual disorders: 

According to several studies, visual working memory and, in particular, visual 

short-term memory is more severely impaired in PDGBA than in PDIdiopathic [13, 

291]. According to Goker-Alpan et al, patients with both PD and GD presented 

with reduced blood flow in the cerebral regions “lateral parieto-occipital as-

sociat ion cortex” and in the “cortical-parietal precuneus area” [7]. Inter-

estingly, the precuneus area proved to be a central structure for acquiring more 

accurate visuospatial information [292] and fittingly, visual stimuli are processed 

in the parieto-occipital-association cortex as well [293]. 

Olfactory performance: 

Group comparisons showed impaired olfactory ability to be more common in GD 

patients and in GBA-carriers without PD diagnosis than in GBA wt controls [294]. 

The early onset of impaired olfactory ability is supported by Braak's hypothesis 

that PD begins in peripheral neuronal structures with retrograde spreading of the 

synucleinopathy, which includes the olfactory tract, the brainstem and finally cor-

tical structures [12, 124]. 

 

PDGBA – motor symptoms 

Bradykinesia as an initial symptom was more common in PDGBA than in PDIdiopathic 

[12, 238, 287, 295], whereas controversial results were obtained regarding dys-

kinesias [238, 287]. Motor impairment in general appears to progress more rap-

idly if linked with a mutational GBA status and additionally, E326K has been re-

ported to be specifically related with postural instability and gait dysfunction [8, 

19, 285]. For a GBA-related emphasis of tremor and rigidity, no sufficient evi-

dence has been objectified so far [12].  

A cross-sectional clinical study investigated motor characteristics of early onset 

PD by using the UPDRS and revealed PDGBA L444P carriers to achieve signifi-

cantly higher rates in UPDRS-III compared to non-L444P carriers. The authors 

concluded that the affected GBA allele might influence the motor phenotype in 

PD patients [296]. Additionally, a Thai case-control study discovered that PDGBA 

was associated with higher Modified Hoehn & Yahr scale (H&Y) stages during 
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disease progression compared to PDIdiopathic [297]. Angeli et al reported that 

PDGBA subjects attained the indication for deep brain stimulation (DBS) earlier 

than PD cases with another genetic background [298].  

Unfortunately, these patients developed more rapid cognitive deficiency after es-

tablishment of DBS [298]. However, it is challenging to clearly delineate the im-

pact on cognitive deterioration of DBS on the one hand and GBA mutations on 

the other hand. 

 

1.4.4 PDGBA – neuroimaging findings 

Transcranial sonography (TCS) f indings: 

TCS findings revealed a significant majority of PDIdiopathic subjects to present with 

nigral hyperechogenicity in previous studies – which is why this was considered 

to be a pathognomonic aspect in PDIdiopathic [299]. However, even a small propor-

tion of healthy adults showed increased nigral hyperechogenicity as well [300]. 

Iron deposits and loss of neuromelanin were considered as histopathological 

markers for the hyperechogenic degenerative processes in the SN [300]. In a 

postmortem study, Zecca et al observed a negative correlation between SN echo-

genicity (increased) and nigral neuromelanin concentration (decreased), while 

the association between SN echogenicity and iron metabolites (iron, H-/ L-ferritin) 

correlated positively [300]. A comparison of the sonographic findings of PDIdiopathic 

and PDGBA mutations revealed no differences in nigral hyperechogenicity [301]. 

However, TCS exposed a reduced echogenicity of the midline raphe structure 

in the brainstem of PDGBA patients [17], which is known to be associated with 

depression . 

PET and SPECT findings: 

Neurons, projecting from the rather small SN into the much larger striatum, are 

perishing in PDIdiopathic [302]. For this reason, this phenomenon is also called ni-

grostriatal degeneration [302]. The ends of these projecting neurons correspond 

to axon endings and can be detected by SPECT imaging, with the dopamine 

transporter (DAT) being absolutely relevant: DAT is located in the nigrostriatal 

axon terminals and responsible for dopaminergic reuptake from the synaptic cleft 
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into neurons [302]. In case of nigrostriatal degeneration and dopamine deficiency 

in the synaptic cleft, intact axon terminations aim to regulate DAT down for com-

pensation of the synaptic dopamine deficiency [302]. In turn, this increases the 

DAT deficit, representing a marker of nigrostriatal degeneracy in SPECT [303]. 

McNeill et al reported an asymmetric striatal loss of dopaminergic neurons in 

PDGBA, while PDIdiopathic demonstrated relatively symmetric abnormalities [304]. 

Additionally, positron emission tomography studies, using 18F-fluorodopa (F-

dopa) respectively fluorodeoxyglucose (FDG), revealed an altered metabolic ac-

tivity [305]. Metabolism was modified either striatal and also in the lentiform nu-

cleus in PD cases of Ashkenazi-Jewish descent with homozygous mutations 

(N370S) or compound heterozygous mutations (N370S/R496H) [305]. Though, 

the small sample size of n = 2 and the related possible distortion must be consid-

ered here. Further, Goker-Alpan et al investigated possibly altered neurobiologi-

cal conditions by using 18-F-dopa-PET and they objectified a similar diminished 

striatal dopamine synthesis in patients with PD and GD as well as for PDIdiopathic 

[7]. The regional cerebral blood flow, expressing synaptic turnover, in the parietal-

precuneus region was reduced in patients with PD and GD, but not in PDIdiopathic 

subjects [7]. Further, reduced biparietal resting activity as a typical pattern of PDId-

iopathic was found in all subjects with PD, however, GBA-carrier demonstrated the 

most significant reduction in this analysis [7]. 

Magnetic resonance spectroscopic imaging (MRSI): 

As another modality, magnetic resonance spectroscopic imaging (MRSI) is suit-

able for the detailed analysis of tissues and their metabolic components [306]. 

Brockmann et al used the non-invasive method to compare PD-relevant cerebral 

regions of PDGBA cases with healthy controls [307]. The scientists observed sig-

nificantly lower concentrations of N-acetyl-aspartate (NAA), a marker for neuronal 

integrity, in the putamen as well as in the midbrain of PDGBA individuals [307, 308]. 

Nevertheless, the levels of energy-rich phosphates were normal, which contra-

dicted any pronounced disruption of mitochondrial integrity at time of examination 

[135, 307]. 



Introduction The link between GBA and PD 55 
 

 
55 

1.4.5 PDGBA – prodromal symptoms 

Symptoms and features, that precede PDIdiopathic, were also found in PDGBA sam-

ples [12]. A prospective clinical study by Beavan et al, analyzing potential prodro-

mal PD features (type 1 GD subjects, healthy GBA carriers and healthy controls) 

detected that GBA-mutation-positive subjects achieved significantly worse levels 

of depression, deteriorated RBD findings and also worse outcomes in UPDRS-III 

[309]. Remarkably, in patients with isolated RBD, GBA variants were more com-

mon than in healthy controls [310]. Another study revealed GD subjects, suffering 

simultaneously from PD, to be associated with a higher risk for poor olfactory 

performance, with an increased prevalence of RBD and with an enhanced fre-

quency of hallucinations – compared with PDIdiopathic subjects  [311]. 

Increased frequency of prodromal features in a relat ively shorter pro-

dromal stage 

A retrospective study used a validated interview on prodromal PD symptoms, 

carried out by PDGBA and PDIdiopathic patients as well as healthy elderly subjects 

[312]. The results comprised three key findings: first, it was shown that PDGBA 

and particularly L444P-associated PDGBA presents with prodromal symptoms 

more frequently [312]. Second, PDGBA showed nearly concurrently non-motor and 

early motor deficits immediately prior to diagnosis and finally, PDIdiopathic demon-

strated a relatively longer prodromal phase – which begins with NMS and pre-

sents much later with motor impairments [312]. 

1.4.6 PDGBA – findings from peripheral blood sample and cerebrospinal fluid 

analysis 

Chahine et al objectified elevated levels of inflammatory mediators in plasma 

samples of PDGBA carriers compared to PDIdiopathic [313]. Further, a whole genome 

expression analysis with peripheral blood samples from PDGBA subjects of Ash-

kenazi-Jewish descent and healthy controls showed 26 genes to be significantly 

altered regarding their expression, mainly corresponding to a downregulation 

[314]. The extended subanalysis of 5 of these genes, which were all related to B 

cell function or immune system associated meanings, unveiled downregulation 

for PDGBA and PDIdiopathic subjects but not for healthy GBA carriers and non-carri-

ers [314]. 
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Further, a case-control study analyzed CSF by gas chromatography and reported 

different levels of fatty acids in PDGBA compared with PDIdiopathic and healthy con-

trols: significantly lower levels of palmitoleic acid, arachidonic acid and eicosa-

pentaenoic acid were found in PDGBA [315]. 

1.4.7 PDGBA – underlying pathology 

At present, the underlying mechanisms how GBA mutations contribute to PD-

pathology, are still not entirely understood – although there are several causative 

hypotheses. These considerations are mainly focused on interaction of GCase 

and α-syn [316], reduced cerebral GCase activity [317], dysfunctional autophagy-

lysosomal pathways [6], mitochondrial impairment [318], impaired calcium home-

ostastis [319], endoplasmic-reticulum-associated protein degradation (ERAD) 

[142] and dysfunctional lipid metabolism [320]. These hypotheses are deepened 

and reflected in the discussion section. Therefore, these hypotheses will not be 

further elaborated here. 

1.4.8 PDGBA – therapeutic approaches 

To date, PDGBA subjects receive similar treatment as PDIdiopathic patients – as ERT, 

utilized in GD, does unfortunately not optimize patient’s neurological impairment 

[261]. However, the small molecule venglustat, an inhibitor of the enzyme glu-

cosylceramide synthase (GCS), is currently being studied in a clinical trial 

(MOVES-PD), that targets PDGBA in early stages [321]. MOVES-PD is based on 

the background, that an increase of glucosylceramides has been demonstrated 

in both PDGBA and PDIdiopathic and a once-daily administration of venglustat might 

counteract this increase. The study is expected to continue until 2022 [212, 321].  

Another approach investigates the small molecule ambroxol, which pushes the 

exocytosis of lysosomes out of the cell (possibly optimizing cellular clearance) 

and further leads to increased GCase concentrations in a murine model [322]. 

Ambroxol is currently, like venglustat, subject of clinical research (AiM-PD) [323].  

Furthermore, Sardi et al reported fascinating effects by using a mouse model, 

representing type 1 GD case associated with PD: the implementation of normal 

GBA genes via viral vectors into murine brain tissue and thus cerebral expression 

of wt GCase, reduced the toxic accumulation of GlcSph, of α-syn aggregates, 



Introduction Aims and objectives of the study 57 
 

 
57 

protein tau and ubiquitin [324]. Cognitive performance of the type1 GD-PD mice 

was evaluated by using an object recognition test [324]. After expression of wt 

hippocampal GCase, the murine cognitive decline had improved [324]. 

 

1.5 Aims and objectives of the study 

Only a precise knowledge of the clinical phenotype and its trajectories of GBA-

associated PD allows an early diagnosis which in turn provides the basis for es-

tablishing an early, disease-modifying therapy. Moreover, knowledge on the 

course of the disease, estimates on the timeframe until reaching milestones such 

as PDD are needed when planning clinical trials and defining readouts [129]. 

Centered on these considerations, this study aimed: 

 to evaluate the progression of motor and non-motor symptoms in PD pa-

tients with heterozygous GBA mutations (N370S, L444P) compared to PD 

patients with GBA-wt [129] and 

 to report on survival rates in PDGBA and PDIdiopathic [129].  

Therefore, it was intended to address the following issues: 

 

I. Are there significant differences in disease progression regarding:  

a. motor symptoms in PDGBA patients compared with PD patients with 

GBA-wt mutational status? 

b. non-motor symptoms in PDGBA patients compared with PD patients with 

GBA-wt mutational status? 

 

II. Do the survival rates differ between the investigated subgroups? 
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2. Material and Methods 

2.1 Study design 

This clinical prospective cohort study was performed to analyze disease progres-

sion and to set up a phenotyping of patients with PDGBA compared with PDIdiopathic 

patients without GBA-mutations. The examination was carried out longitudinally 

over a three-year-period with special regard to non-motor und motor symptoms 

[129].  

This submitted thesis refers to the second follow-up examination in 2013, 

following a baseline examination in 2010 and a first follow-up in 2011. Clinical 

assessments were performed from the 24th of June 2013 to the 11th of November 

2013 in the Center of Neurology, Department of Neurodegeneration of the Uni-

versity Hospital of Tübingen [129]. 

2.2 Preparation  

Prior to the start of baseline study in 2010, a mutational analysis was performed 

via deoxyribonucleic acid (DNA) screening of 1000 individuals. Formerly, these 

subjects had been diagnosed with PDIdiopathic according to the criteria of the United 

Kingdom Brain Bank Society (UKBBS) [129]. Therefore, these two preparatory 

steps are briefly outlined below. It should be noted that these introductory steps 

as well as the clinical investigations in 2010 and in 2011 were not performed by 

the author of this dissertation. 

2.2.1 UK Brain Bank Criteria 

All patients included in this study were formerly diagnosed as PDIdiopathic by a phy-

sician before they were incorporated in the baseline study in 2010. Diagnosis was 

based on the criteria of the UKBBS according to Hughes et al(see appendix I) 

[325]. However, new clinical diagnostic criteria for PD have been published in the 

meantime by the MDS – aiming to be operated for both clinical research and 

clinical routine practice and also stressing the relevance of non-motor symptoms 

[1, 326]. 
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2.2.2 Mutational screening, subjects and recruitment 

It was aimed to include appropriate patients with the required mutational status 

corresponding to one of the two most frequently found mutations in the GBA 

gene: N370S and L444P [129, 226]. Therefore, a total of n=1000 PDSporadic 

patients of Caucasian descent, who agreed to genetic analyses, were used as 

population – compiled through the Department of Neurodegenerative Diseases 

and the Hertie Institute for Clinical Brain Research, University of Tübingen, Ger-

many until 2009 [17, 129]. Subjects donated blood samples for a DNA screening 

test, which analyzed genome with regard to an altered mutational status in sev-

eral genes associated with monogenic PD: LRRK2, DJ-1, Parkin, PINK1 (PTEN-

induced putative kinase protein 1) [129]. If mutations were objectified in these 

genes, the subjects were not included in the PDGBA subgroup [129]. The muta-

tional screening detected n=33 out of 1000 PD-subjects to be heterozygous for 

the GBA-mutations N370S or L444P [129]. Out of this sample, a number of n=20 

(n=14 L444P, n=6 N370S) submitted informed consent and were incorporated in 

the baseline study 2010 [129]. 

2.3 Drop out and exclusion of data analysis 

As FIGURE 13 portrays, there has been gradual drop-out (n=5) over the 3-year-pe-

riod of observation between 2010 and the second follow-up in 2013 due to differ-

ent reasons [129].  

Therefore, only n=15 PDGBA subjects were informed by phone, mail or in writing 

about the objectives and procedure of the planned examinations in 2013 [129]. 

However, two more subjects did not attend the second follow-up due to different 

reasons: reduced general condition (n=1), no feedback due to unknown reasons 

(n=1) [129]. 
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Figure 13: Overview on stepwise sequence of phases Study preparationsin 2009, start of baseline in 2010, 
first follow-up investigation in 2011, reasons leading to the exclusion of subjects as well as the second fol-
low-up examination in 2013 with emphasis on survival and progression analysis of patients with PDGBA. 
n=sample size. PDIdiopathic: patients with idiopathic Parkinson’s disease  PDGBA: patients with Parkinson’s 
disease and heterozygous GBA mutation N370S or L444P [129].  

progression analysis 

n = 13 

out n=967 
no muta-

out n= 13    

 No consent (13) 

2010: n=20 PDGBA gave informed consent 

included in baseline examination  

2013: Second follow-up examination: 
" Parkinson’s disease patients with heterozygous GBA-mutation:  

longitudinal phenotyping of motor and non-motor symptoms – more rapid  
progression compared to Parkinson’s disease patients without GBA-mutation” 

ethical vote 497/2009BO1 

  out n= 7 

 Death in meantime (5) 
 Severely reduced general 

condition (1) 
 no feedback due to un-

known reasons (1) 

2009: mutational screening n = 1000 PDIdiopathic 

n=33 PDGBA heterozygous for either N730S or L444P 

survival analysis 

n = 20 

2011: first follow-up 

examination 
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In conclusion, n=13 PDGBA patients could be included in the second follow-up 

study for progression analysis whereas data of n=20 PDGBA patients was inte-

grated for survival analysis [129]. 27 PDIdiopathic patients, living in the surroundings 

of Tübingen, had been matched at baseline for disease duration and sex – after 

ensuring they had no positive mutational status regarding GBA N370S or L444P 

– and included as cohort PDIdiopathic for comparison [129]. 

For progression analysis, questionnaires, assessments and quantitative 

measures were carried out in the three examinations in 2010, 2011 and 2013. 

However, not every method was performed completely by all subjects in all three 

examinations [129]. Consequently, not all subjects delivered data over the whole 

3-year-period in all subtasks. The underlying reasons for this matter were:  

 the subject participated in the examination but was unable to complete 

the subtask due to severe disease-related general condition,  

 the subject missed one or more of the three examinations due to reported 

reasons in FIGURE 13 or  

 the subtask was not scheduled at the time the subject participated. 

 

2.4 Ethics 

Both subgroups submitted written informed consent in accordance with the Hel-

sinki Declaration [129]. The study was approved by the Ethics Committee of the 

University of Tübingen (Test number 497/2009BO1) [129]. 

 

2.5 Performance and clinical examinations 

Initially, for each subject a concise medical history was obtained. This was fol-

lowed by selective examinations of non-motor aspects such as autonomy, cogni-

tion, mood, vision and olfactory performance as well as aspects of axial and distal 

motor performance. Questionnaires, assessments and quantitative analyzes 

were applied to every participant in the same order.  
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The investigations were carried out in dopaminergic ON state and are summa-

rized in TABLE 9 below. Furthermore, some subjects delivered blood samples and 

agreed to spinal tap for the extraction of CSF and/ or dermal punch biopsy. 

Table 9: Brief overview of the applied questionnaires, assessments and quantitative 
measures , content sorted according to thematic focus. 

 Question-
naires 

Assessments 
Quantitative  

Analyses 

Autonomy 

1) UMSARS 
2) NMS- 

Quest* 
3) NMSS* 

1) Schellong Test 
1) SUEmpathy  

(HRV, SSR) 

Mood/ 
Cognition 

1) BDI-II 
2) NPI 
3) GDS 
4) NMS- 

Quest* 
5) NMSS* 

1) MoCA 

2) Trail Making Test 

A and B 

- 

Daily living 
1) FAQ 
2) PDQ-39 

- - 

Sleep 
behavior 

1) ESS 
2) RBDSQ 
3) PDSS 

- - 

Visual 
performance 

- 

1) Pelli-Robson Test 
2) Visual acuity Test 
3) Farnsworth Mun-

sell 100 Hue test 

- 

Olfactory 
performance 

- 
1) Sniffin‘ Stick® 

Test 
- 

Motor 
performance 

- 

1) UPDRS-III, H&Y 
stage 

2) Perdue Pegboard 
Test 

3) LED 

1) Accelerometer-
based TUG, FR, 
Balance  

2) measurement  
and gait analysis 

3) Q-motor 

* NMSQuest and NMSS are listed in multiple categories because they assess information about aspects 
related to autonomy as well as mood and cognition. UMSARS: Unified Multiple System Atrophy Rating 
Scale. NMS-Quest: Non-motor Symptoms Questionnaire. NMSS: Non-motor Symptoms Scale. BDI-II: Beck 
Depression Inventory-II. NPI: Neuropsychiatric Inventory. GDS: Geriatric Depression Scale. FAQ: Functional 
Activities Questionnaire. PDQ-39: Parkinson’s Disease Questionnaire. ESS: Epworth Sleepiness Scale. 
RBDSQ: Rapid eye movement sleep Behavior Disorder Screening Questionnaire. PDSS: Parkinson’s Dis-
ease Sleep Scale. MoCA: Montreal Cognitive Assessment. UPDRS-III: Unified Parkinson’s Disease Rating 
Scale Part 3. H&Y: Hoehn and Yahr Scale. LED: levodopa equivalent dose. HRV: heart rate variability. SRV: 
sympathetic skin response. TUG: Timed-up-and-Go Test. FR: functional reach. Q-motor: quantitative motor 
test [129]. 
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2.5.1 History 

A thorough medical history was collected including sex, age at onset, age at in-

clusion, PD disease duration and antiparkinsonian medication. Furthermore, a 

pedigree, sketching the subject’s family history with regard to PD, GD and de-

mentia, was created. Nicotine and alcohol consumption were ascertained as well. 

2.5.2 Questionnaires and scales related to autonomic performance 

Unified Multiple System Atrophy Rating Scale (UMSARS) 

The Unified Multiple System Atrophy Rating Scale (UMSARS), primarily devel-

oped to objectify disease progression in multiple system atrophy, consists of parts 

I-IV whereby in this study only Part III was used. This part evaluates autonomic 

subfields, such as orthostatic, urinary and bowel functions as well as sexual 

symptoms [327, 328]. 

The Non-motor Symptoms Questionnaire (NMSQuest) 

The Non-motor Symptoms Questionnaire (NMSQuest) was used in the translated 

German version in order to assess severity and frequency of non-motor affec-

tions. Therefore, subjects answered a self-administered 30-item-questionnaire 

with yes or no, depending on whether the symptoms occurred within the previous 

month or not [329].  

Non-motor Symptoms Scale (NMSS) 

The Non-motor Symptoms Scale (NMSS) was utilized to ascertain both intensity 

and frequency of NMS in PD and was applied in the German version [329, 330]. 

In contrast to the original English form with 9 subscales, the German version 

comprises 5 NMS-dimensions: 1 – cardiovascular, 2 – sleep/fatigue, 3 – 

mood/cognition, 4 – perceptual problems/hallucinations and 5 – attention/ 

memory [329]. 

2.5.3 Questionnaires and scales related to mood disturbances 

Beck Depression Inventory-Second Edition (BDI-II) 

In order to measure the intensity of depressive mood disorders, the revised ver-

sion of BDI-II (see appendix IV) was carried out [129]. Patients received the Ger-

man version of BDI-II, they were instructed to read the 21 items and to choose 

the most appropriate option out of four given multiple-choice answers. The 
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subjects were told to select the option that matched most likely with their mood in 

the last 14 days – including the day of examination. For evaluation, all single item 

scores were summarized to total score from 0 to 63 points [331, 332]. The cutoffs 

were implemented as follows: 0-8 points indicate no depression, 9-13 points: min-

imal depression, 14-19 points: mild depression, 20-28 points moderate and 29-

63 severe depressive symptoms [129]. 

Neuropsychiatric Inventory (NPI) 

To discriminate between elderly people and PD patients with dementia, the Neu-

ropsychiatric Inventory (NPI) was performed as an interview with corresponding 

caregivers, e.g. spouses [333]. NPI contains different domains, such as delu-

sions, arousal, apathy or disinhibition. Each domain is associated with a key 

question and includes additional issues, which were only worked out in case the 

corresponding key question was answered appropriately. Symptom frequency 

was assessed as follows: rarely – one point, sometimes – two points, common – 

three points, very common – four points, whereas symptom severity was esti-

mated as mild, moderate or severe [333].  

Finally, the caregivers feelings, how strong they were bothered about the sub-

ject’s behavior, were scored as caregiver distress from: null (not at all) – five (very 

severely or extremely) [333]. 

Geriatric Depression Scale (GDS) 

The Geriatric Depression Scale (GDS) was obtained in German edition to evalu-

ate depressive mood disturbances [334]. The examiner interviewed the patients 

due to the 15-item scale, while cut-offs were set as follows: null – five points = 

normal, five – ten points = mild to moderate depression, eleven – 15 points: se-

vere depression [334].  

2.5.4 Questionnaires related to activities of daily living (ADL) 

Functional Activities Questionnaire (FAQ) 

The Functional Activities Questionnaire (FAQ) was raised to assess the level of 

independence with regard to the activities of daily living (ADL) [335]. FAQ targets 

elderly people with all forms of dementia, MCI as well as regular cognitive skills 

and aims to discriminate between patients with dementia and healthy elderly 
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subjects. It includes ten categories, rated by the patient, relatives or friends over 

the past 4 weeks. The items were valued as follows: null – normal or has never 

done the activity, could do it now, one – has difficulty, but does it self-administered 

or has never done the activity and would now have difficulty with it, two – needs 

assistance and three – dependent on others. FAQ was reviewed in studies deal-

ing with AD for validity and reliability [336].  

Parkinson’s Disease Questionnaire (PDQ-39) 

The Parkinson’s Disease Questionnaire (PDQ-39) was raised to assess the im-

pact of PD on 8 different aspects of daily living. Validity and reliability were inves-

tigated by previous studies [337, 338]. These eight dimensions are: mobility, ac-

tivities of daily living, emotional well-being, social support, cognition, communica-

tion, stigma and bodily discomfort. The German validated version of PDQ-39 was 

applied as a self-administered questionnaire [339]. All single scores were added 

to a total without transforming the subscale raw values. 

2.5.5 Questionnaires and scales related to sleep disorders 

Epworth Sleepiness Scale (ESS) 

The Epworth Sleepiness Scale (ESS) offers information about daytime fatigue by 

assessing the chance to nod or fall asleep in different described situations and 

was worked out independently by the subjects [340]. Probability to doze was lev-

eled from null (would never doze) to three (high chance of dozing), a total score 

of 24 points was reachable. The German version of ESS was applied in this study 

[341]. According to a multicenter study, which intended to work out normative 

rates for the German ESS, a total score lower than eleven points was taken as 

cut-off between healthy individuals and subjects with an increased sleepiness 

[342]. 

Rapid eye movement sleep Behavior Disorder Screening Questionnaire 

(RBDSQ) 

The Rapid eye movement sleep Behavior Disorder Screening Questionnaire 

(RBDSQ), as a ten-item measurement, was assessed to provide information 

about the intensity of lively dreams, moving arms or legs while sleeping or knock-

ing over items near the patient’s sleeping site [343]. Patients answered the 
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questionnaire with yes or no and could reach a total of 13 points. A score of at 

least six points or more in RBDSQ was reported to be a usable cut-off to detect 

RBD [344].  

Parkinson’s Disease Sleep Scale (PDSS) 

Sleep disturbances in patients with PD were evaluated with the modified Parkin-

son’s Disease Sleep Scale (PDSS), a screening tool for nocturnal impairments in 

PD [345]. Patients answered 15 questions by rating the symptomatic frequency 

over the last 7-day-period (0 – very often, 1 – often, 2 – sometimes, 3 – occasion-

ally, 4 – never). Score-range was from 0 – 60 points with higher scores corre-

sponding to more intense sleep disturbances [345]. 

2.5.6 Assessments related to autonomic performance 

Schellong Test 

The Schellong Test (ST) was assessed to evaluate orthostatic reactions, caused 

by a dosed load due to sympatho-adrenergic response. First, systolic and dias-

tolic blood pressure as well as the heartrate were measured after subjects lay 

down for a 10-minute-period. The measurement of all 3 parameters was repeated 

immediately after rising (0 min) and after 2, 4 and 6 minutes while standing. 

2.5.7 Assessments related to cognitive functions 

Montreal Cognitive Assessment (MoCA) 

Cognitive impairment of PD patients was investigated with the Montreal Cognitive 

Assessment (MoCA, see appendix V), a widely used screening test for diverse 

mental functions, such as temporally and spatially orientation, attention, memory, 

executive and visuospatial utilities, concentration, language facilities, calculation 

als well as conceptual skills [346].  

The subjects received the German version of MoCA, which starts with the item 

“Alternating Trail Making”. One point was given when the subject drew the correct 

line from one to E in ascending order, null points were given when there was an 

error. The next task was to duplicate a displayed cube, whereas one point was 

only allocated when the copied cube had parallel lines of matching length, not 

more or less lines regarding the original cube and if the three-dimensional aspect 

was given. The cube-task was followed by the instruction to depict a clock.  
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Three points were achieved when the clock shape was a closed circuit (one 

point), when all numbers were displayed in correct order and square (one point) 

and if both hands were present, showing the correct time (11:10 am/pm) and 

placed in the middle of the dial (one point).  

Afterwards, subjects had to name exactly three displayed animals, up to three 

points were possible. This naming test was followed by a memory assessment. 

Five words in five seconds were read out to the patient with the instruction to 

repeat them. This procedure was replicated immediately, and the patient was told 

to keep the words in mind. Furthermore, subjects listened to two short sequences 

of numbers and had to recall them both forward and backward. Two points were 

given for two correct answers.  

The calculation item expected patients to subtract seven from 100 and keep on 

calculating until they were asked to stop. Three points were allocated for four or 

five correct subtractions, two points for two or three correct answers, one point 

for one exact subtraction and null points if there was no right subtraction. 

The following subtask required the correct repetition of two sentences. The sub-

jects got one point for each sentence – with special regard to possible substitu-

tions or omissions. Afterwards, a verbal facility investigation followed, whereas 

as many words as possible had to be listed beginning with the letter “F” within 

one minute. One point was achieved, if the patient mentioned eleven words or 

more. 

Abstractional thinking was investigated by asking the subjects, which aspect two 

single words may have in common and why it is reasonable that they form a pair. 

Two points were given for each correct item pair. At this time, patients were asked 

to recall the five words they were told before in the memory assessment. The 

subjects got one point for every word, which was recalled spontaneously. In the 

end, the patients had to answer questions concerning their temporal and spatial 

orientation. A total score of 30 points was obtainable, the cut-off of less than 26 

points postulated a cognitive impairment [129, 347]. 
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Trail Making Test (TMT) -A and -B 

Psychomotor functions, such as working memory, visual scanning and inhibition 

control, were explored by the Trail Making Test (TMT) [348, 349].  

The TMT is a paper-based examination with two different subtasks A and B: for 

the first part (A) patients had to link numbers, distributed over the sheet, from 1 

to 25 in rising order. The second part (B) required to draw a line between letters 

(A to L) and numbers (1 to 13) in an ascending but alternating sequence (from 1 

to A to 2 to B to 3 et cetera) [350]. Time was taken for TMT A and B and ΔTMT 

was calculated as “time B minus time A” under specific conditions (300 seconds 

were allowed, mistakes were counted separately for both parts, subjects were 

made aware of possible errors by the examiner) [351]. 

2.5.8 Assessments related to visual disturbances 

The Pelli-Robson contrast sensitivity test 

Visual dysfunction may be impaired in PD regarding visual acuity, color discrimi-

nation or contrast sensitivity [352]. The Pelli-Robson contrast sensitivity chart (FIG-

URE 14) was used to evaluate patient’s contrast sensitivity vision. 

It shows horizontally arranged triplets of capital letters with 2 triplets per row. 

Contrast decreases from each triplet to the next, both vertically from row to row 

and horizontally within a row as well.  

The subjects were keeping a 1-meter-distance from the board, without removing 

their glasses or contact lenses. The chart was placed with its center at the sub-

ject’s eye level. The eyes were examined monocularly, beginning in the first row 

with the first triplet. Afterwards, binocular vision was tested. The last triple was 

marked if a minimum of 2 of 3 letters were named right [353]. 
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Figure 14: Pelli-Robson contrast sensitivity chart.Horizontally arranged triplets of capital letters, whereas 
the contrast decreases from each triplet to the next one horizontally and vertically. Image courtesy of Pre-

cision Vision [354].Visual acuity test 

The subjects were standing four meters away from a number chart in order to 

capture their visual acuity. The examiner asked the patients to monocularly read 

out the first digit of the penultimate line – beginning with the right eye. 

Farnsworth Munsell 100 Hue Test 

Color discrimination was investigated by utilizing the Farnsworth Munsell 100 

Hue test. For this purpose, the subjects were given four different sets, represent-

ing the visible spectrum of colors. The subjects had to sort a total of 85 different 

colored caps in sequence [355]. By mapping the full color spectrum in 4 divided 

sets, it is assumed to minimize global color confusion and to achieve limited error 

clusters instead, which further allows a more sensitive detection of the exact sub-

type of color vision disorder [356]. 

 

2.5.9 Assessments related to olfactory disorders 

Sniffin Sticks 
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Once there were no limiting factors, such as infections of the respiratory system 

or further restrictive aspects at time of investigation, the twelve items test-battery 

of Sniffin’ Sticks (Burghart Medizintechnik) was used as an olfactory screening 

test for odor identification [357]. The subjects performed the screening test in a 

relaxed sitting position and received twelve pens in succession, each filled with a 

special odor (such as shoe leather, peppermint, liquorice, pineapple, cinnamon, 

lemon, fish, orange, rose, coffee, banana and cloves). Therefore the cap of each 

odor-pen was disconnected for 3 seconds and was hold with a distance of two 

centimeters (cm) to patient’s nose [358]. After each pen, the subject used a mul-

tiple-choice sheet with possible answers where he had to choose one out of four 

given options. The summarized results laid between null and twelve correct an-

swers. The absolute score was transformed to a percentage value, whereas val-

ues under 75% indicated hyposmia. 

2.5.10 Assessments related to axial and distal motor performance 

Unified Parkinson’s Disease Rating Scale III (UPDRS-III) 

The UPDRS-III, (see appendix I) as a semi-quantitative/ semi-clinical measure. It 

was utilized in the German version to evaluate the severity of axial and distal 

motor symptoms, whereas both the original and the modified version of the MDS 

were carried out [129]. The modified version consists of 18 single items. The in-

structions for each exercise were read out clearly to the patient and demonstrated 

simultaneously. Other factors influencing the motor performance (such as stroke, 

arthrosis or contractures) and leading to an impaired examination, were taken 

into account and the task was noted as unable to rate. All subscales were evalu-

ated with integer scores as follows: null = normal, one = slight, two = mild, three 

= moderate, four = severe [359, 360].  

Perdue Pegboard Test 

Additionally, distal motor performance was assessed with the Perdue Pegboard 

test. Single- and double-handed dexterity was analyzed by removing and resort-

ing wooden pegs out of or into the board again – according to instructions given 

by the examiner. Time was taken during each subtask [361]. 

Modified Hoehn & Yahr Scale (H&Y) 
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The H&Y Scale(see appendix III) represents a widely used instrument to catego-

rize the stage of PD – in contrast to UPDRS, which targets at the severity of motor 

symptoms [129]. H&Y was used in the modified form with the stages: 1 – 1.5 – 2 

– 2.5 – 3 – 4 and 5 [362, 363]. 

Levodopa Equivalent Dose (LED) 

PD patients, participating in clinical examinations, are performing under the influ-

ence of varying drug regimens – corresponding to different daily doses of levo-

dopa. Therefore, a conversion tool was developed to assess the LED (see ap-

pendix VI) for each antiparkinsonian drug by using conversion factors [364]. LED 

is assumed to bring the identical control of symptoms as caused by 100 milligram 

(mg) of levodopa. For each subject, a medication-history was assessed and LED 

was calculated due to the guidelines of the German neurological society (DGN) 

[129, 365]. 

2.5.11 Quantitative measures related to autonomic performance 

Neurocardiac functions were investigated due to the computerized analysis-sys-

tem SUEmpathy (SUESS-Medizintechnik, Aue, Germany). An electrocardiogram 

(ECG) and a non-invasive blood-pressure (NIBP) measurement was carried out 

in a lying position. For obtaining NIBP, the CBM3000 tool (Nihon Colin Co, Ko-

maki, Japan) was attached. Heart rate, NIBP and respiratory rate were obtained 

for 30 seconds. Afterwards the investigation of heart rate variability (HRV) was 

raised, whereas patients were instructed via earphone to breath in and out for 

120 seconds (metronomic breathing). The examination of the sympathetic skin 

response (SSR) was obtained in laying horizontal position with auditory signals 

given by earphones as well [366]. 

2.5.12 Quantitative measures related to axial and distal motor performance 

Clinical investigations of motor impairment in PD are subjective and may not be 

sensitive enough to detect discrete, subtle deficits of motor performance [367]. 

Since the slightest disturbances of balance and gait can refer to prodromal motor 

symptoms in PD, instrument-based, objectifiable quantitative measurement 

methods can help to identify them and enable early PD diagnosis [368, 369]. 

Therefore, axial motor performance was additionally evaluated by accelerometer-
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based measurements – including the Timed-up-and-Go-Test (TUG), the func-

tional reach (FR) test, a balance measurement and a gait analysis without (single 

task) and with cognitive challenge (dual task).  

Distal motor performance was assessed by digitomotography, utilizing a quanti-

tative motor system (q-motor, see below 2.5.12.2) [370]. 

2.5.12.1 Axial motor performance 

Movement analyses were performed by using the computerized system DynaPort 

Hybrid (McRoberts, The Hague, The Netherlands). Patients were instructed to 

perform exercises while wearing a portable inertial sensor, an accelerometer – 

which was integrated in an adjustable belt.  

In advance of the examination, a MicroSD card was applied to an adapter, which 

was connected to the computer. Afterwards, the software MiRA2 (McRoberts, 

The Hague, The Netherlands), was used to initialize the MicroSD card for each 

patient. After initialization, the MicroSD card was attached to the DynaPort-

Adapter, which itself was placed into the elastic belt. The sensor inside the belt 

was positioned in the lower back, centered over the L3-4 spine area [371]. This 

region is assumed to represent the body center of mass (COM), which is sup-

posed to be the region where the desired motions could be detected at best [369].  

[369]The sequence of the following examinations was standardized, and it started 

with timed single tasks (1 and 2) for calibration: 

(1) get up from sitting, remain standing for 10 seconds and calculate (172 

minus 7 continuously)  

(2) get up from sitting as fast as possible, remain standing for 10 seconds 

and marking crosses on a sheet of paper while time was taken for cal-

ibration 

Timed-up-and-Go (TUG)-test : Time was taken for the TUG-Test, a fast and 

uncomplicated method for measuring mobility, performed in 4 subtasks [372]. 

The subjects had to:  

(3) get up from sitting, start walking a 3-meter-distance with right foot and 

regular speed, circling right, go back to the chair and sit down  
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(4) get up from sitting, start walking a 3-meter-distance with left foot and 

regular speed, circling left, go back to the chair and sit down  

(5) get up from sitting, start walking a 3-meter-distance with right foot and 

rapid speed, circling right, go back to the chair and sit down  

(6) get up from sitting, start walking a 3-meter-distance with left foot and 

rapid speed, circling left, go back to the chair and sit down  

Functional reach (FR) test: FR-test, discriminating between healthy subjects 

and patients with PD [373], required the subjects to stand straight next to a wall 

and to keep both feet in a parallel position. Then subjects were asked to raise 

their right upper extremity and keep it parallel to the ground. The position of the 

fingertip was marked as the starting position and the patients were told to reach 

out with their right arm as far as possible, without losing their balance or moving 

their feet. This position was marked as the maximum position. Subjects had to 

keep their individual position for 15 seconds. Afterwards patients remained stand-

ing still for additional 15 seconds, then this trial was stopped.  

Balance measurement: Balance analysis was performed by using a foam mat, 

AIREX Balance-pad (Airex AG, Sins, Schweiz). Subjects had to stand with both 

feet on the mat and take a slightly diagonal staggered position. This position was 

investigated with either open as well as closed eyes for a predetermined duration 

between 10 or 30 seconds. The last task started with eyes opened and the sub-

jects had to close and open their eyes every 10 seconds due to the examiner’s 

command. This final task was finished after a period of 80 seconds. 

In-Circuit exercise: Subjects were told to circumnavigate a circular blanket of 

120cm-diameter, which was placed on the floor. Patients had to move around 

that blanket in different directions while keeping a clipboard and a pen in their 

hands. They should avoid touching the blanket and had to absolve special sec-

ondary tasks (calculating, marking with crosses) while circling. Time was taken 

during both single and dual tasks. 

Gait analysis: subjects had to walk down a corridor with a defined distance of 20 

meters (m). The subjects performed these 20m several times under varying 
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conditions (starting with different feet, varying walking speed, additional tasks 

such as calculating or marking crosses to effect cognitive challenges). 

2.5.12.2 Distal motor performance 

Fine motor skills were additionally examined by digitomotography, utilizing a 

quantitative motor system (q-motor) [370]. A pre-calibrated sensor (Sensor 

Mini40 / ATI Industrial Automation / Apex, NC 27539 USA) registered the force 

applied over the time, the frequency of tapping and the time intervals. Subjects 

were guided by the examiner to perform six subtasks, which are further explained 

below. 

Lift light left and right (1/6) 

At the beginning, the subjects were asked to sit as straight as possible in front of 

the sensor. The investigation began with the subtask "lift light left and right". Start-

ing with the left hand, the right hand was placed in the lap because supporting 

the hand or the forearm was not allowed. The patient was asked to grasp the 

sensor-device with his left thumb and forefinger, only as light as a glass of water. 

After the first auditive signal from the computer the sensor should be raised and 

dropped off again after the second computer signal was given. Then, the pressure 

sensor was replaced and positioned on the patient’s right side in a way, that the 

lead-out cable did not disturb the subject’s movements and the performance was 

repeated with the right hand. 

Tapping right and left (TPD) (2/6) 

The sensor was positioned horizontally for the next subtask and the patient was 

asked to tap the sensor as quickly and as regularly as possible with his forefinger 

after an auditive computer signal. After 10 seconds, another sound marked the 

end of the exercise and the subject had to remove his finger from the sensor. 

Tapping met right and left (3/6) 

The patient was instructed to knock rhythmically with his forefinger, together with 

a computer signal. Although the signal stopped after 5 seconds, the subject 

should continue with tapping until a second signal told him to stop. 

Pronate and supinate left and right (4/6) 
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Subjects were asked to rotate the inside and outside surfaces of their hands on 

the sensor. In doing so, no great force should be applied. This pronation and 

supination movement should be performed as fast as regular, with the emphasis 

being on turning-movement – instead of speed. Any wristwatches were removed 

before starting the exercise. 

Foot tapping right and left (5/6) 

For tapping right and left, a foot block was placed on the floor and positioned in 

front of the seated patients, with the pressure-sensor plugged in. The patient was 

asked to put his ball of the foot on the sensor. The knee joint should be bent 

slightly more than 90 degrees. Further, the patient was instructed to tap the sen-

sor as quickly and as steady as possible, after the start signal was given by the 

examiner, and to keep tapping until a second signal terminated the exercise. 

Again, no excessive force was allowed. The patient was also instructed to 

properly lift the foot off the sensor during tapping.  

To prevent the foot block from tipping over, the patient should hold it with the 

other foot if possible. Thereafter, the exercise was performed with the other foot. 

Tremor measurement (6/6) 

For this last part, patients sat up a little, so that the legs could dangle freely. 

Afterwards, 4 tremor-sensors were applied. One sensor each was attached on 

the left and right forefoot and on the left and right index finger as well. The patient 

was asked to shore up the forearms on the thighs to hang his hands freely. The 

instruction was to sit calm and relaxed for 20 seconds after the first auditory sig-

nal. After the second auditory signal, the patient should perform calculations for 

distraction.  

With the third auditory signal, the arms and legs should be stretched out and the 

fingers should be spread. This position ought to be kept for 20 seconds. After the 

fourth auditory signal was given, patients had to calculate again over an episode 

of 20 seconds. Finally, the cables were removed, the software program Tremor 

TPD was selected and the patient was asked to relax again for 20 seconds. After 

that, the exercise was completed. 
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2.5.13 Biomarkers: blood, cerebrospinal fluid and fibroblast samples 

The implementation of this clinical prospective study described in here also coin-

cided with the baseline investigation of a further study called “Markers in GBA-

associated PD (MiGAP)”. However, the multicenter study MiGAP is independ-

ent from this presented study and was not part of this submitted dissertation. The 

subjects, included in this longitudinal study presented here, were informed about 

the background, the goals and course of MiGAP and included in MiGAP – as they 

all gave their informed consent for participation.  

Accordingly, from all subjects (n=13), additionally included in MiGAP, several bi-

omarkers were obtained: a peripheral blood sample, cerebrospinal fluid and a 

skin punch biopsy. Notably, the analysis of these samples was not part of this 

submitted thesis
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2.6 Devices 
TABLE 10 below summarizes all devices, utilized in this presented study. 

Table 10: Overview of the applied devices (left) and the corresponding manufacturer 
(right) [129] 

Device Producer 

Pelli Robson Contrast Sensitivity 
Test Chart 

Clement Clarke International 
Cartel Business Estate 
Edinburgh Way 
Harlow CM20 2TT 

Farnsworth Munsell 100 Hue Test 

Gretag Macbeth LLC 
617 Little Britain Road 
New Windsor, NY 12553-6148 
United States 

Sniffin’ Sticks Screening 12 Test 

Burghart Messtechnik GmbH  
Tinsdaler Weg 175 
22880 Wedel Deutschland 

Q-Motor F/T Sensor Mini40 

ATI Industrial Automation  
1031 Goodworth Dr.,  
Apex, NC 27539 USA 

WinSCP, Open Source Client Soft-
ware for q-motor  

M. Prikryl, Prague 
 

DynaPort Hybrid 
McRoberts,  
The Hague, The Netherlands 

SUEmpathy™  
SUESS-Medizintechnik,  
Aue, Germany 

AIREX Balance-Pad  
Airex AG,  
Sins, Schweiz 

 

2.7 Data analysis and statistics  

Statistical analysis was performed with the software SPSS 21.0 for Microsoft Win-

dows (IBM, Armonk, New York, US), whereby different statistical methods for the 

analysis of disease progression and survival were applied [129]. 

2.7.1 Disease progression analysis 

To assess PD-specific disease progression over the 3-year period, motor prop-

erties were measured by using UPDRS-III, H&Y, and LED, whereas non-motor 

characteristics were evaluated by using MoCA for cognition and BDI-II for mood 

disorders [129]. 
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Progression analysis was applied only to those subjects who could be observed 

over the entire 3-year period.  

This was applicable for n=13 out of 20 PDGBA subjects, initially included at base-

line [129]. Therefore, the examined sample included the cohort PDGBA (n = 13) 

and the control group PDIdiopathic (n = 26), the latter controlled to present with nei-

ther GBA L444P nor N370S. Both groups were matched for disease duration and 

sex [129].  

For the entire sample of n = 39 subjects (n=13 + n=26 = n=39), a regression 

model was applied to describe possible independent effects of age at examina-

tion, disease duration, age at disease onset and GBA-mutational status on the 

applied clinical measures [129]. Statistical analysis of disease progression within 

each subgroup was performed with the paired T-test, whereas comparisons 

between both subgroups were analyzed separately for each time point (0, 1- or 

3-year examination) parametrically by using the T-test or non-parametrically by 

using the Mann-Whitney U test.  

Whether or not data showed normal distribution, was verified by the Kolmogo-

rov-Smirnov test with p-value > 0.05. Normally distributed data is given as 

mean and standard deviation, while non-normal distributed variables are given 

as median with range [129].  

A mutation-specific analysis of the PDGBA group (n=13) comparing the N370S 

carrier  (n=3) with L444P carrier (n=10) was not carried out due to the small sam-

ple size [129]. 

2.7.2 Survival analysis 

Survival analysis, equivalent to the influence of GBA mutational status on natural 

history of PD, was performed by using chi-square test for group comparison 

PDGBA (n = 20) versus PDIdiopathic (n=27) [129].  

2.7.3 Variables 

Since significantly more investigations were carried out during this prospective 

study than were finally statistically analyzed, only the following variables listed 
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below (TABLE 11) were taken into account for statistical evaluation in this disser-

tation for reasons of clarity:  

Table 11: Applied variables for statistical analysis in this submitted thesis 

mood/ cognition (1) MoCA 
 (2) BDI-II 
motor performance (1) UPDRS-III 
 (2) H&Y 
 (3) LED 

Instead, the variables below (TABLE 13)  are available for further analyses: 

Table 12: Variables not taken into account for statistical analysis. 

autonomy (1) UMSARS 
 (2) NMS-Quest and NMSS 
 (3) Schellong Test 
 (4) HRV and SSR 
mood/ cognition (1) NPI 
 (2) GDS 
 (3) NMS-Quest and NMSS 
 (4) Trail Making Test A and B 
daily living (1) FAQ 
 (2) PDQ39 
sleep behavior (1) ESS 
 (2) RBDSQ 
 (3) PDSS 
visual Performance (1) Pelli-Robson Test 
 (2) Visual acuity Test 
 (3) Farnsworth Munsell 100 Hue 

test 
olfactory performance (1) Sniffin stick Test 
motor performance (1) Perdue Pegboard Test 
 (2) Accelerometer-based TUG, FR 

and Balance 
 (3) Gait Analysis 
 (4) Q-Motor 
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3. Results 

In this section, the outcomes of this prospective study are presented - structured 

into the sections according to the aims of the study. Further, the formation of the 

analyzed samples is described, and also which strategies were used to avoid 

data distortion. This is followed by the results of progression and survival analy-

sis. Finally, a short summary of all results will be given. 

 

3.1 Definition of samples 

A representative random sample was drawn from the population of patients living 

in Germany with delimited characteristics (diagnosed with PD, altered mutational 

status in GBA-Gene corresponding to L444P or N370S) defined as target popu-

lation PDGBA [129]. This PDGBA sample included n = 20 subjects for statistical 

analysis for survival and n = 13 for statistical analysis of disease progression. 

This subgroup was compared with a PDIdiopathic control sample – including n=27 

for survival analysis and n=26 for disease progression analysis [129]. Both 

groups were matched for sex and disease duration [129]. 

 

3.2 Strategies for avoiding distortion 

Individuals of the PDGBA sample were contacted in a manner appropriate to their 

health condition to avoid systematical favoring or excluding of certain patients 

with visual or auditory impairments. Since observational studies, such as this pre-

sented examination over a 3-year period, allow the occurrence of confounding 

variables that can influence the results obtained, the aim was to work with subject 

pairs that match in eminent variables (here, sex and disease duration). Further, 

measures were only applied in case their reliability, objectivity and validity were 

evaluated to a sufficient extent in previous studies.  
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3.3 Disease progression analysis 

According to the study design both groups, PDGBA with n = 13 and PDIdiopathic with 

n = 26, showed no significant differences in sex (PDGBA 69% male, PDIdiopathic 62% 

male, 𝑝 = 0.73) and disease duration (PDGBA 7.5 years, PDIdiopathic 6.7 years, 𝑝 =

0.65) as illustrated in TABLE 13 below [129]. However, PDGBA group showed a lower 

AAO compared with PDIdiopathic (PDGBA = 50.0 years, PDIdiopathic = 60.0 years; 𝑝 =

 0.006) [129]. Since disease duration was one of the two matching criteria, on 

average, PDGBA subjects were younger at time of baseline 2010 and in the first 

follow-up examination in 2011 and in the second follow-up in 2013 [129]. A gen-

eral demographic overview of the two subgroups investigated is shown in TABLE 

13 [129].  

Table 13: Overview of demographic characteristics and disease duration 

Variable 
PDGBA 
n=13 

PDIdiopathic 
n=26 

p-Value 

Demographic characteristics 
Age at onset (years) 50.0 (28-65) 60.0 (35-67) 0.006 
Age_0 (years) 57.0 (40-71) 66.0 (38-75) 0.004 
Age_1 (years) 58.0 (41-73) 67.0 (39-76) 0.004 
Age_3 (years) 60.0 (43-75) 69.0 (41-78) 0.003 
Sex (% male) 69 62 0.73 
Disease duration 
Disease Duration_0 (years) 7.5 (6.1) 6.7 (3.8) 0.65 
Disease Duration_1 (years) 8.5 (6.4) 7.7 (3.8) 0.66 
Disease Duration_3 (years) 10.2 (6.5) 9.7 (3.8) 0.80 

Normal-distributed data are given as mean with standard deviation in brackets. Non-normally distributed 
data are given as median with range in brackets[129]. n=sample size. PDGBA: patient with Parkinson’s dis-
ease and heterozygous GBA mutation. PDIdiopathic: patient with Parkinson’s disease with wildtype GBA 
gene. Age at onset: age in years when PD diagnosis was given to the patient. Age_0: age at time of base-
line investigation 2010. Age_1: age at first follow-up investigation 2011. Age_3: age at second follow-up 
investigation 2013. The same applies to disease duration_0 to _3 [129]. 

At baseline, there were no significant differences in motor symptoms and disease 

stage in both groups (𝑈𝑃𝐷𝑅𝑆 − 𝐼𝐼𝐼: 𝑝 =  0.92, 𝐻&𝑌: 𝑝 = 0.39) [129]. Non-motor 

impairment also did not differ significantly with respect to cognition (𝑀𝑜𝐶𝐴: 𝑝 =

 0.56) and mood (𝐵𝐷𝐼 − 𝐼𝐼: 𝑝 =  0.48) and LED was similar in both subgroups  

(𝐿𝐸𝐷 𝑝 =  0.62) [129]. 
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The distribution of PD subtypes was similar in both groups, as outlined in FIGURE 

15 below: 

Figure 15: Overview of the distribution of the three PD subtypesEquivalent, akinetic-rigid and tremor-domi-
nant – compared for both groups PDGBA and PDIdiopathic assessed in 2010 (baseline examination), 𝑝 = 0.75 

[129]. PD: Parkinson’s disease. GBA: glucocerebrosidase gene.The intra-group analysis of 

PDGBA showed a significantly faster progression over the whole 3-year observa-

tion period in terms of severity of motor symptoms (𝑈𝑃𝐷𝑅𝑆 − 𝐼𝐼𝐼 𝑝 =  0.03), dis-

ease staging (𝐻&𝑌 𝑝 ≤  0.001,) medication  (𝐿𝐸𝐷 𝑝 = 0.01), and cognition 

(𝑀𝑜𝐶𝐴: 𝑝 = 0.04) as outlined in FIGURE 16 up to  

FIGURE 19 below [129].  

Figure 16: Longitudinal intragroup analysis of disease progression UPDRS-III from 2010 up to 2013 of UP-
DRS-III, according to paired t-test. 
PD (GBA) in blue and PD (Idiopathic) in light grey. The P-value specifies the intragroup difference for 
PDGBA with * p ≤ 0.05 and for PDIdiopathic with p = 0.94. UPDRS-III: Unified Parkinson’s disease rating scale 
part 3. Permission granted by John Wiley and Sons [129].  
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Figure 17: Longitudinal intragroup analysis of disease progression H&Y from 2010 up to 2013 of Hoehn 
and Yahr Staging (H&Y), according to paired t-test. 
PD (GBA) in blue and PD (Idiopathic) in light grey. The P-value specifies the intragroup difference for 
PDGBA with *** p = ≤ 0.001 and for PDIdiopathic with p =0.08 [129]. Permission granted by John Wiley and 
Sons. 
 

 

Figure 18: Longitudinal intragroup analysis for disease progression LEDfrom 2010 up to 2013 of Levodopa 
equivalent dosage (LED) according to paired t-test. 
PD (GBA) in blue and PD (Idiopathic) in light grey. The P-value specifies the intragroup difference for 
PDGBA with ** p = ≤ 0.01 and for PDIdiopathic with *** p = 0.001 [129]. Permission granted by John Wiley and 
Sons. 
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Figure 19: Longitudinal intragroup analysis for disease progression MoCA from 2010 up to 2013 according 
to paired t-test. 
PD (GBA) in blue and PD (Idiopathic) in light grey. MoCA: Montreal Cognitive Assessment. The P-value 
specifies the intragroup difference for PDGBA with * p ≤ 0.05 and for PDIdiopathic with p = 0.95. [129]. Permis-
sion granted by John Wiley and Sons. 

The PDIdiopathic control group showed a comparable development with regard to 

medication only (𝐿𝐸𝐷: 𝑝 =  0.001) but not in terms of severity of motor symptoms 

(𝑈𝑃𝐷𝑅𝑆 − 𝐼𝐼𝐼 𝑝 =  0.94), disease staging (𝐻&𝑌 𝑝 ≤  0.08 and cognition 

(𝑀𝑜𝐶𝐴 𝑝 = 0.95). The non-motor characteristic mood was stable within both 

groups in the longitudinal evaluation (𝐵𝐷𝐼 − 𝐼𝐼: PDGBA 𝑝 =  0.22, PDIdiopathic 𝑝 =

0.94), being illustrated in FIGURE 20 below: 

Figure 20: Longitudinal intragroup analysis for disease progression BDI-II from 2010 up to 2013 of BDI-II 
according to paired t-test. PD (GBA) in blue and PD (Idiopathic) in light grey. The P-value specifies the in-
tragroup difference for PDGBA with p = 0.22 and for PDIdiopathic with p = 0.94. BDI-II: Beck’s depression in-
ventory II [129]. Permission granted by John Wiley and Sons. 
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Finally, TABLE 14 below gives a demographic overview of the intra- and inter-group re-

sults of progression analysis below: 

Table 14: Overview on intergroup (white) and intragroup (blue) differences between 
PDGBA and PDIdiopathic regarding motor and non-motor symptoms over the 3-years-obser-
vation period. 

Variable PDGBA 
n=13 

PDIdiopathic 
n=26 

p-Value 

Severity of motor symptoms 
UPDRS-III_0 27.9 (11.4) 27.5 (11.1) 0.92 
UPDRS-III_1 29.3 (6.9) 29.7 (11.5) 0.91 
UPDRS-III_3 36.4 (8.0) 27.4 (9.2) 0.005 
UPDRS-III 0-3 Progression 

0.03 0.94 - 
Paired T-test / p-Value 
Disease staging 
H&Y_0 (years) 2.1 (0.5) 2.3 (0.6) 0.39 
H&Y_1 (years) 2.3 (0.5) 2.5 (0.6) 0.43 
H&Y_3 (years) 2.7 (0.7) 2.5 (0.7) 0.26 
H&Y 0-3 Progression 
Paired T-test / p-Value 

≤0.001 0.08 - 

Medication 
L-dopa-equivalent-dosage_0 484.6 

(358.5) 
537.5 
(291.0) 

0.62 

L-dopa-equivalent-dosage_0 620.8 
(407.6) 

639.5 
(296.7) 

0.88 

L-dopa-equivalent-dosage_0 950.0 
(714.1) 

687.3 
(338.2) 

0.13 

L-dopa-equivalent-dosage 0-3 Progression 
Paired T-test/ p-Value 

0.01 0.001 - 

NMS – cognition 
MoCA_0 26.6 (2.8) 27.1 (2.1) 0.56 
MoCA_1 25.0 (3.2) 26.5 (2.8) 0.18 
MoCA_3 24.9 (2.8) 26.9 (3.2) 0.07 
MoCA 0-3 Progression 
Paired T-test/ p-Value 

0.04 0.95 - 

NMS – mood 
BDI-II_0 10.5 (6.2) 8.7 (7.8) 0.48 
BDI-II_1 10.4 (7.2) 8.3 (7.3) 0.44 
BDI-II_3 12.5 (7.8) 8.8 (6.3) 0.13 
BDI-II 0-3 Progression 
Paired T-test/ p-Value 

0.22 0.94 - 

Normal-distributed data are given as mean with standard deviation in brackets, non-normally distributed 
data are given as median with range in brackets. UPDRS-III: Unified Parkinson’s disease rating scale part 
3. H&Y: Hoehn and Yahr scale. MoCA: Montreal Cognitive Assessment. BDI-II: Becks Depression Inven-
tory II. PDGBA: patients with Parkinson’s disease with heterozygous GBA mutation. PDIdiopathic: patients with 
Parkinson’s disease with wildtype GBA gene [129].  
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Regression analysis showed that L444P and N370S mutations in GBA gene in-

dependently affect motor performance (𝑈𝑃𝐷𝑅𝑆 − 𝐼𝐼𝐼: 𝑝 =  0.005) and cognition 

(𝑀𝑜𝐶𝐴: 𝑝 =  0.01) [129]. Notably, there was no significant association between 

the severity of clinical signs and the variables AAO, age at examination, and dis-

ease duration [129]. 

3.4 Survival analysis 

At time of baseline, both groups, PDGBA with n = 20 and PDIdiopathic with n = 27, 

showed no significant differences in sex (PDGBA 60% male, PDIdiopathic 63% male, 

𝑝 = 0.3), age (PDGBA 62.7 years, PDIdiopathic 65.3 years, p-value = 0.30) and dis-

ease duration (PDGBA 9.8 years, PDIdiopathic 7.3 years, 𝑝 = 0.15) [129].  

A total of 5 subjects of subgroup PDGBA (25%) died within the 3-years-investiga-

tion period between 2010 and 2013, whereas nobody died in subgroup PDIdiopathic 

(0%) with 𝑝 = 0.01( see also TABLE 15 below) [129]. 

Table 15: Mutational status by the endpoints death or no death within 3-year-period of 
observation in both subgroups with n=47 [129]. 

Subgroup  Death (n) No death (n) Total (n)  
Percent-

age 
Death (%) 

PDGBA 5 15 20 25 
PDIdiopathic 0 27 27 0 
Total 5 42 47 10.64 

 

The cause of death events of the deceased PDGBA subjects was due to PD-asso-

ciated secondary complications (3x pneumonia, 2x pulmonary embolism), since 

the subjects were confined to bed by severe and late stages of PD [129]. On 

average, the 5 individuals who died of PDGBA subgroup presented with 

𝑎𝑔𝑒 𝑎𝑡 𝑜𝑛𝑠𝑒𝑡 =  56.4 𝑦𝑒𝑎𝑟𝑠 and 𝑎𝑔𝑒 𝑎𝑡 𝑑𝑒𝑎𝑡ℎ =  72.6 𝑦𝑒𝑎𝑟𝑠, corresponding to an 

average disease duration of 𝑑𝑑 =  16.2 𝑦𝑒𝑎𝑟𝑠 [129]. The last objectified results 

of these patients, in terms of non-motor characteristics cognition and mood as 

well as of motor performance and disease stage, corresponded to 𝑀𝑜𝐶𝐴 =  15.0,

𝐵𝐷𝐼 − 𝐼𝐼 =  11.0, 𝑈𝑃𝐷𝑅𝑆 𝐼𝐼𝐼 =  49.4 and 𝐻&𝑌 𝑠𝑡𝑎𝑔𝑖𝑛𝑔 4 [129]. 

In order to consider a possible relation between the two categorical variables 

"mutational status" and the event "death", a contingency table was created to 
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demonstrate the proportion of the examined variables. In the following, Pearson's 

chi-square test was used with the intention of whether the association between 

the variables only exists in the random sample examined here or whether it is 

also present in the general population and, if so, up to which extent of probability. 

The hypotheses H0 and H1 regarding the variables “death” and “mutational GBA 

status” were defined as follows:  

 H0: [death] is not associated with [mutational GBA status]  

 H1: [death] is associated with [mutational GBA status]  

Chi-square statistic was applied, with, 𝑝 = 0.01. Therefore, it was concluded that 

it exists a significant correlation between the mutational GBA status and the end-

point death, so that H0 had to be rejected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results Summary of results 88 
 

 
88 

3.5 Summary of results 

In summary, progression analysis for n=20 PDGBA was based on motor and non-

motor symptoms, with 7 dropouts over the 3-years-observation period due to the 

endpoints "death"(n=5), "disease-related reduced general condition"(n=1) or "no 

feedback for reasons unknown"(n=1) [129]. Therefore, longitudinal analysis was 

carried out with n = 13 PDGBA subjects, compared to 26 PDIdiopathic – both groups 

were matched for the criteria sex and disease duration [129].  

Both groups were similarly distributed at the time of baseline examination for the 

variables sex, disease duration, UPDRS-III, H & Y, LED, and MoCA [129]. The 

distribution of PD subtypes was similar in both groups [129]. During the 3-year 

follow-up period, the paired t-test showed a faster progression of motor and non-

motor impairment compared to baseline and second follow-up 3 years later in 

intragroup analysis for PDGBA [129]. For PDIdiopathic, significant alterations were 

only found considering LED – whereas severity of motor impairment (UPDRS-III, 

p =0.94), disease stage (H & Y, p =0.08), and cognitive impairment (MoCA, p 

=0.95) did not significantly worsen in this control group [129]. Mood disorders, 

documented by the BDI-II, appeared to be stable in both groups with PDGBA p = 

0.22 and PDIdiopathic p =0.94 [129]. Regression analysis showed that L444P and 

N370S mutations in GBA gene independently affect motor performance 

(𝑈𝑃𝐷𝑅𝑆 − 𝐼𝐼𝐼: 𝑝 =  0.005) and cognition (𝑀𝑜𝐶𝐴: 𝑝 =  0.01) [129].  

There was no significant association between the severity of clinical signs and 

the variables AAO, age at examination, and disease duration [129]. 

Survival analysis revealed that 25% (n=5) of PDGBA subjects reached the end-

point “death” within the 3-year observation period and 0% of the PDIdiopathic control 

group, p = 0.01) [129]. The reasons for deceasing in PDGBA subgroup were due 

to complications resulting from the severity of the underlying disease PDGBA [129]. 

On average, the following clinical rates were found for the 5 PDGBA subjects at 

their last examination: UPDRS-III 49.4, H & Y staging 4.0, MoCA 15.0 and BDI-II 

11.0 [129]. Chi-square statistic showed that survival of patients with PD is signif-

icantly influenced by the examined GBA mutations N370S and L444P [129]. 
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In conclusion, this study led to the following findings: 

 

I Are there significant differences in disease progression re-

garding:  

a. motor symptoms in PDGBA patients compared with PD pa-

tients with GBA-wt mutational status? 

 – Statistical analysis revealed a more rapid disease progression in 

terms of motor impairment (severity and stage of disease). Significant 

changes regarding Levodopa equivalent dosage were evident for both 

PDGBA and PDIdiopathic. 

 

b. non-motor symptoms in PDGBA pat ients compared with PD  

patients with GBA-wt mutational status? 

 – Statistical analysis revealed a more rapid disease progression in 

terms of cognitive impairment (global cognition). No significant 

changes regarding mood disorders were evident for both PDGBA and 

PDIdiopathic. 

 

II Do the survival rates differ between the investigated sub-

groups? 

 – Statistical analysis showed that survival of patients with PD is sig-

nificantly influenced by the GBA mutations N370S and L444P. 
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4. Discussion 
4.1 Key findings of this study 

This study phenotyped PDGBA subjects in a longitudinal setting in direct compari-

son with PDIdiopathic subjects and yielded the following 2 key findings: First, PDGBA 

subjects show a faster progression of disease in terms of motor impairment and 

cognitive decline [129]. Second, PDGBA subjects have relatively decreased sur-

vival rates compared to PDIdiopathic [129].  

 

4.2 Accelerated disease progression in PDGBA 

4.2.1 PDGBA – associated with younger age at disease onset  

The PDGBA patients included in this study showed a younger AAO, compared to 

the PDIdiopathic group [129]. Since disease duration (in addition to gender) was 

used as a matching criteria at baseline, PDGBA subjects were consequently 

younger at time of follow-up examinations in 2011 and 2013 than PDIdiopathic indi-

viduals [129]. In order to not obscure the remarkable fact that younger age of 

PDGBA was also accompanied by a faster progression of disease and reduced 

survival, the two groups were not corrected for age [129]. These findings are in 

line with the results of a large GWA study, that revealed a difference of AAO 

between PDGBA and PDIdiopathic of 6 years – to the disadvantage of PDGBA [374] – 

suggesting that GBA mutations might be associated with a more aggressive 

pathological pathway – leading to an earlier disease manifestation.  

Given the fact that PDGBA and PDIdiopathic are barely distinguishable at the time of 

diagnosis, the important question arises as to when the process of rapid deterio-

ration in PDGBA begins [19, 129]. This 3-year-period study showed a greater ex-

tent of severity of motor symptoms, disease staging and cognitive impairment for 

PDGBA after 8-9 years of disease duration, proposing that the process of aggra-

vation in PDGBA may be associated with later disease stages [129]. This hypoth-

esis was recently confirmed by a Thai case-control study [297]. The underlying 

mechanisms for a rather late acceleration of progression may comprise compen-

satory processes that can be sustained at the young onset of PD but become 

overloaded and ultimately fail as PD progresses [129]. This theory is supported 
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by the finding of an age-dependent decreased GCase activity in SN and putamen 

in healthy individuals, suggesting that this may additionally lower PD threshold in 

GBA carriers [375, 376] and might be the reason for an accelerated disease pro-

gression in later PD stages on the one hand and for a clinical manifestation at a 

relatively younger age on the other hand. Controversial results of a retrospective 

study, indicating an acceleration much earlier in the course of the disease, will be 

further discussed below (see 4.5 Prodromal characteristics of PD and the role of 

PDGBA) [312]. 

Fascinating findings of Thomas et al strengthen the idea of a gradually over-

loaded concept: they studied the abundance and the metabolism of proteins, in-

volved in the formation of extracellular vesicles (EV) in an animal model with mu-

tant GCase [377]. According to the authors, EVs are assumed to represent a 

possible way for aggregated proteins to spread [377]. Spreading of protein-based 

molecules between cells is a physiological process but it is also discussed inten-

sively regarding neurodegenerative diseases [377]. Thomas et al reported a 

higher frequency of EV-proteins in mutant-GCase-flies, leading to an increased 

formation and finally to an amplified release of EVs [377]. 

What do these EVs contain and where do they go? According to Thomas et al, 

they include molecules such as α-syn, which rather support protein aggregation, 

as well as chaperones, which rather inhibit aggregation [377-380]. Neurons both 

sent and receive these loaded EVs [377]. If proteins increasingly tend to aggre-

gate, the corresponding cell becomes a kind of aggregate donor towards other 

recipient cells [377]. These cells receive this aggregatory package and are in 

need for adequate quality controls now, to keep the aggregation-promoting fac-

tors at bay [377]. If this fails, e.g. due to reduced GCase activity in the donor cell, 

accumulation of glucosylceramides and altered cell membrane configuration oc-

curs, thereby increasing EV transfer from donor cells to recipient cells [377]. 

These, in turn, are increasingly overwhelmed under the burden of intensified pro-

tein aggregation [377]. In conclusion, the authors suggested that mutant GCase 

contributes to an altered cellular lipid membrane, which might amplify the trans-

mission rate of EVs towards other neuronal cells [377]. These recipient cells in 
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turn might get along with this enlarged amount of aggregating factors only up to 

a certain point until the collapse due to neurotoxic effects [377].  

Are these developments natural consequences due to normal aging processes? 

This hypothesis is supported by the fact that older flies with wt GCase also tend 

to present protein aggregation [381, 382]. However, a comparison of protein turn-

over and protein abundances of elderly and younger flies with wt GCase revealed 

that only 4% of the EV-associated proteins reached accelerated or elevated lev-

els in older flies [377]. In the mutant GCase model, however, almost 60% of the 

EV-associated proteins presented with a more rapid turnover or increased fre-

quency [377]. Therefore, Thomas et al reported these effects to be related with 

GBA mutations but not to be an expression of regular aging process. Therefore, 

GCase-related increased EV-release with consecutive overload of recipient neu-

rons might explain the more rapid disease progression in PDGBA compared to 

PDIdiopathic – especially in later PD stages as reported in this submitted study [129, 

377]. 

4.2.2 PDGBA – associated with impaired olfactory performance  

Due to the fact that olfactory loss is an important marker in prodromal PD and 

often occurs in combination with impaired cognition in PDGBA (see below 4.2.3 ), 

this symptom is briefly discussed here [104, 383]. 

An impaired olfactory ability is more common in GD and in GBA-carriers com-

pared to GBA wt individuals [294, 311]. Further, olfaction is reduced in the early 

stages of PD and GD subjects, suffering simultaneously from PD as well, are 

associated with a higher risk for poor olfactory performance, compared with PDId-

iopathic subjects [294, 311]. The early onset of impaired olfactory ability is supported 

by Braak's hypothesis that PD begins in peripheral neuronal structures with ret-

rograde spreading – including the olfactory tract, the brainstem and finally cortical 

structures [12, 124]. The finding that olfaction may be generally limited in early 

PD stages but is more common in cases of altered GBA status, may be due to a 

mutation-specific neurodegenerative pattern [12]. This pattern may cause an 

early and more intense neuronal loss in the olfactory pathway in PDGBA subjects 

who consequently reach the symptomatic threshold faster than PDIdiopathic patients 
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[12]. Of course, it cannot be ruled out that the above-mentioned additionally re-

duced GCase function in GBA mutations may have extra accelerating effects re-

garding the decline of olfactory performance.  

 

4.2.3 PDGBA – associated with impaired cognition  

This present study revealed a significant and independent association between 

the altered GBA mutational status and global cognition [129]. A multicenter study 

with a cross-sectional design confirmed this result and found especially the sub-

fields visuospatial abil it ies ,working memory as well as executive func-

tions to be impaired in PDGBA [384]. These are represented in parieto-occipital 

as well as frontal cerebral regions [385, 386]. The functions of working memory 

and executive performance were assessed in particular by a large clinical study, 

investigating elderly but neurodegenerative healthy individuals between 50 and 

80 years: subjects with poorer skills in working memory and executive perfor-

mance prioritized in favor of cognitive challenge and to the disadvantage of motor 

power if they were exposed to cognitive and motor stress simultaneously [351]. 

The authors therefore assumed a possible correlation between the prioritization 

behavior on the one hand and cognitive flexibility and working memory on the 

other hand in elderly people [351]. Therefore, regarding cognitive impairment 

based on frontal and parieto-occipital dysfunction, PDGBA may present with an 

extra affection, in addition to normal aging processes, with the described cogni-

tive impairments.  

Regarding that PDGBA is also linked with a greater risk of dementia [13, 19, 285, 

313], it is thrilling to discuss this dual syndrome hypothesis for cognitive decline 

also against this background. According to this hypothesis, the posterior cortical 

syndrome is mainly linked with dementia whereas the frontostriatal dopamine-

mediated syndrome leads to executive dysfunctions [387]. Studies examined the 

influence of various PD-associated genes on both the frontostriatal dopamine-

mediated dysfunction and the posterior cortical syndrome: PDGBA has been 

shown to be associated with the development of dementia as well as with an 

altered frontostriatal metabolism (ascertained by using 123I-2-β-carbomethoxy-
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3β-(4-iodophenyl)-N-(3-fluoropropyl)-nortropane (123I-FP-CIT SPECT)  [388]. No 

other investigated gene, namely apolipoprotein E gene (APOE), microtubule as-

sociated protein tau (MAPT) gene, COMT gene and SCNA) presented this double 

role [388]. Is this particular role of GBA regarding cognitive decline possibly based 

on a GBA-specific neuropathological pattern? 

Indeed, it has been reported several times that clinical symptoms in PD seem to 

be related to the extent of the disease’s hallmark – Lewy body pathology [21]. 

Neuropathologically, Lewy body disorder is seen in both PDGBA and PDIdiopathic but 

PDGBA demonstrated a more diffuse neocortical distribution in comparison [21, 

129]: all brain samples out of 17 investigated PDGBA patients showed PD-typical 

changes in terms of α-syn-immunopositive Lewy bodies and Lewy neurites [21]. 

Each specimen examined corresponded to Braak Stage 5 or 6, indicating that 

there was neocortical involvement in all PDGBA cases – although the frequency of 

the single Braak stages did not differ significantly between PDIdiopathic and PDGBA 

[21, 145]. Alcalay et al confirmed a more pronounced cortical Lewy Body pathol-

ogy for PDGBA as well [13]. 

However, the results of a recent longitudinal clinical-pathological study rather 

weaken this assumption of a specific underlying neuropathological pattern [389]. 

It was reported that, although the enrolled PDGBA subjects died 5 years earlier on 

average than PDIdiopathic patients while presenting with the same disease duration, 

no neuropathological differences were obtained with respect to whole or region-

specific Lewy body pathology [389]. Furthermore, no differences were seen re-

garding senile plaques, leukoaraiosis and fibrillary tangles, even though it should 

be noted that only the limited sample size of n = 12 PDGBA could be included in 

the analysis [389]. Another study, raising the actual cortical densities of Lewy 

bodies, also revealed that PDGBA did not present with a more severe Lewy body 

pathology in sense of increased density of proteins [390]. It is therefore uncertain 

whether it is the existence of pathological Lewy substrates that verifiably leads to 

an impaired cognition in PD and if these substrates are actually of diverse distri-

bution in GBA carriers and non-carriers – which is why further studies, investigat-

ing this important issue, are urgently needed [384]. 
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4.2.4 PDGBA – heterogenous phenotype due to severe and mild GBA mutations  

Although it is now clear, that the presence of homozygous and heterozygous GBA 

mutations is associated with a significantly increased risk of PD, the gene dose 

effect is discussed controversially. Some studies reported that gene dose does 

not seem to have an overly effect on the extent of PD-risk [375], while others 

observed the severity of PD-phenotype to be related to the strain of GBA muta-

tions [311]. Further, some GBA mutations were stated to be associated with more 

severe types of GD (including L444P) and others with rather mild forms (such as 

N370S) [165]. Intriguingly, case-control studies with Ashkenazi-derived Jewish 

subjects demonstrated that severe GBA mutations increased the risk of develop-

ing PD nearly 14-fold whereas milder GBA mutations only doubled the risk of 

developing PD and GBA polymorphism E326K presented with the lowest PD-risk 

(OR = 1.7) [165, 391, 392]. Furthermore, PDGBA subjects with predominantly re-

combinant or null GBA mutations were reported to exhibit a decreased AAO com-

pared with PDGBA individuals with milder GBA variants: mean AAO=39 years vs. 

mean AAO= 51 years, p = 0.008 [36, 165, 238].  

Also, PDGBA cases associated with more severe mutations showed a stronger 

association with dementia, motor and olfactory symptoms as well as an acceler-

ated cognitive decline than patients with rather mild mutations [3, 393, 394]. Fit-

tingly, a Norwegian clinical study with a 7-year-observation period revealed the 

carriers of GBA variants T369M, L444P and E326K to progress more quickly to 

PDD than subjects with wt GBA status [395]. According to more detailed findings 

from Cilia et al, the risk of dementia was increased almost 3-fold, comparing more 

deleterious PDGBA mutations (e.g.IVS10+1G> T, G377S, L444P) with rather mild 

PDGBA variants (e.g.N370S), whereas PD-risk was amplified almost 6 times 

through severe GBA mutations compared to PDIdiopathic [3]. 

Hence, there is increasing evidence for parallels between GBA genotype and PD 

phenotype so that PDGBA intragroup analyzes would have been also desirable in 

this presented study. However, even though the majority (77%) of PDGBA subjects 

presented with the more severe GBA mutation L444P, a mutation-specific analy-

sis comparing the N370S-carrier (n=3) with L444P-carrier (n=10) was not per-

formed due to the small sample size and expected bias [129]. 
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Nevertheless, a review of previous GWAS revealed that single nucleotide poly-

morphisms in the GBA gene are very likely associated with the risk of developing 

PD [396]. Sequence analyzes of several susceptibility genes as well as of genes 

associated with autosomal dominant or recessive PD (SNCA, LRRK2, PARK2, 

PINK1, PARK7, MAPT) and GBA, discovered a total of 47 rare variants [374]. 

The authors of this GWAS concluded that: 

 genetic variants of GBA significantly increase PD-risk,  

 the presence of multiple GBA variants may be a greater risk compared to 

other PD-associated variants and  

 the influence of unexamined GBA variants on PD-risk is probably higher 

than previously estimated [374].  

Regarding the fact, that the greater part of GD patients does not present symp-

toms of PD in the course of their disease [135] and there are asymptomatic car-

riers of GBA-mutations as well, one could assume that asymptomatic subjects do 

either provide useful instruments against aggregation of glucocerebrosides or to 

use another suitable pathway for metabolizing the accumulating glycoproteins 

[162]. A further explanation might be related to the phenomenon of genetic vari-

ance referring to interactions of genes with each other and with environmental 

factors as well [162]. 

 

The special role of the polymorphism E326K 

While there is growing evidence for an association between genetic GBA-variants 

and synucleinopathies, no association was identified for tauopathy entities such 

as CBD or PSP [274]. A strong association for the GBA polymorphism E326K 

with both Lewy body disorders PDD and DLB was objectified by a Spanish clini-

copathological study [276]. Interestingly, for E326K and another GBA mutation 

T369M, no association with GD could be shown – even in homozygous individu-

als – but for PD subjects, although to varying degrees [277-279]. This might be 

due to either two independent pathological mechanisms of PD and GD or due to 

a common pathway of GD and PD, which alone is too weak to trigger GD, but 



Discussion Accelerated disease progression in PDGBA 97 
 

 
97 

may lead to PD along with other genetic or environmental aggravating factors 

[277]. This presumption is supported the CD/RV hypothesis as Mitsui et al sug-

gested:  

“[...] We should emphasize a paradigm shift from the common disease–common 

variants hypothesis to the common disease–multiple rare variants hypothesis in 

our search for disease susceptibility genes in sporadic PD, which may be appli-

cable to studies of other diseases [...]” [397]. 

4.2.5 PDGBA – associated with impaired motor performance 

Although both groups, PDGBA and PDIdiopathic, were similarly affected at the time 

of baseline investigation (regarding UPDRS, H&Y, LED), subjects with mutated 

GBA status progressed more rapidly to a higher severity of motor impairment 

after 3 years and reached also higher H&Y stages – which was also reflected in 

increased dopaminergic medication levels [129]. Similar to the results described 

here, further studies confirmed GBA mutations to be associated with an increased 

risk of motor impairment (UPDRS-III) [8, 384]. In addition, some GBA variants 

together with the polymorphism E326K were associated with postural instability 

and gait difficulty (PIGD) and presented with more rapid progression in PIGD 

scores in the longitudinal evaluation [8]. A pilot study by Srulijes et al, focused on 

gait analyzes during the simultaneous execution of single and dual task assess-

ments showed a worse motor performance under dual motor task conditions in 

PDGBA than in PDIdiopathic [398]. As mentioned above, cognitive impairment and 

also a higher chronological age may comprise possible reasons for poorer dual 

task motor performance. Therefore, it should be discussed if poorer gait perfor-

mance in PDGBA is rather due to more severe cognitive impairment instead of 

presenting an independent motor deficit due to the mutational GBA status. En-

suring posture and gait requires a complex interplay of cortical extrapyramidal 

impulses, visual stimuli and information from brain stem, cerebellum and spinal 

afferents. Considering, that PDGBA is associated in particular with frontostriatal 

and parieto-occipital dysfunction as mentioned above, corresponding lesions in 

these areas may explain an emphasized axial motor involvement. This reflection 

might be strengthened by results of a Chinese neuroimaging study showing a 

correlation between axial motor deficits on the one hand and particularly 
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pronounced deep white matter hyperintensities in frontal and occipital lobes of 

PD patients – possibly impairing the nerval pathways due to cerebral microangi-

opathic lesions [399]. However, it should be noted that this MRI study was de-

signed only cross-sectional and that PDGBA was not examined as a separate sub-

group – as PD patients were enrolled in general without carrying out a mutational 

screening in advance. 

Although tremor analysis was carried out for both groups in this study, it was not 

statistically analyzed in order to not go beyond the scope. However, other reports 

showed that PDGBA did not achieve worse levels regarding progression in tremor 

scores compared with PDIdiopathic [8]. Rest tremor was even found less frequently 

in PDGBA compared to PDIdiopathic [129, 400]. According to a report by Helmich et 

al, the pacemaker for rest tremor in PD may be formed by thalamic neurons that 

get hyperpolarized due to reasons, that are not sufficiently understood until now 

and are oscillating at the typical PD-frequency of 5-6 Hz [43, 401]. Another hy-

pothesis suggests, that the PD-tremor pacemaker might rather be in the basal 

ganglia and perhaps related with the dopaminergic deficiency [43]. Contradictory 

to this thesis, however, are the findings that rest tremor usually responds less 

well to dopaminergic therapy and that the deep brain stimulation of the posterior 

region of the ventrolateral thalamus achieved beneficial results in terms of tremor 

reduction [43]. 

 

4.3 Reduced survival in PDGBA 

A prospective study, aiming to identify independent risk factors for mortality in 

PDIdiopathic, could identify psychotic symptoms, dementia, motor deficits, chrono-

logical age and AAO as possible predictors [402]. Further, PDIdiopathic patients 

were revealed to reach the PD-milestones: 

 postural instability corresponding to H&Y stage 3,  

 dementia and 

 death 
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within 10 years from diagnosis [403]. The finding of PDGBA, progressing more 

rapidly to the key mile stones dementia and H&Y stage 3 by Winder-Rhodes et 

al, is augmented by this presented study [19, 129]. Therefore, one might hypoth-

esize that GBA mutations are an important predictor for the rate of disease pro-

gression in PD [129]. Perchance, this genetic component may be even more rel-

evant than higher AAO or overall advanced age [129]. Nevertheless, the sample 

size of n=20 PDGBA matched with 27 controls might be too small to allow un-

distorted conclusions about the influence of GBA mutations on survival in PD 

[129]. However, in a PD-genotype-phenotype study, Cilia et al recently showed 

on the one hand that the GBA carriers (n=123) had a greater mortality risk than 

PD patients with wt status and on the other hand, that carriers of mild (n=67) and 

severe mutations (n=56) had a comparable mortality risk [3]. This strengthens the 

assumption of a significant influence of GBA status on survival, based on this 

study with a relatively small sample size – although even larger samples for the 

comparison of mild and severe GBA mutations in terms of associated mortality 

risk may be required [3, 129]. Furthermore, Cilia et al explored the exciting issue 

whether the increased risk of dementia-development in GBA carriers also influ-

ences PD-mortality risk [3]. Cox regression analysis for the endpoint death 

showed a significantly increased risk of mortality for GBA carriers, no matter if the 

time-dependent variable "dementia" was brought in or not [3]. Cilia et al con-

cluded that besides dementia, other components may contribute to the increased 

mortality rates in PDGBA. 

 

4.4 GBA and its contribution to the pathogenesis of PD 

At present, the underlying mechanisms, how GBA mutations contribute in partic-

ular to PD-pathology, are still not fully understood – although there are several 

causative hypotheses. These considerations are mainly focused on interaction of 

GCase and α-syn [316, 317], dysfunctional autophagy-lysosomal pathways[6], 

mitochondrial impairment [318], impaired calcium homeostastis [319], ERAD 

[142] and dysfunctional lipid metabolism [320]. In some cases, these hypotheses 
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may appear contradictory or overlap each other as they all describe different 

ways of accessing the same complex pathological architecture of PD. 

4.4.1 The spectrum between reduced cerebral GCase activity and alpha-synu-

clein 

The reasons for neurometabolic changes of α-syn turnover in PDGBA are not suf-

ficiently understood yet. A possible explanation is provided by experimental stud-

ies of Mazzuli et al, using both murine and human GD stem cell model and de-

scribing a bidirectional loop via α-syn [225]. Due to wt GBA allele, normal physi-

ological GCase binds α-syn and mediates its degradation. A reduced neocortical 

GCase activity due to genetic variants, however, had several consequences (see 

also FIGURE 21):  

 glucosylceramide deposits,  

 lower lysosomal degradation efficiency,  

 deposition of α-syn and 

 oligomerization and fibrillization of α-syn, which is considered to be neuro-

toxic [225, 404].  
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Figure 21: Complex interactions related to GBA mutations,reduced GCase activity, accumulation of GlcCer 
and increased alpha-synuclein levels with a bidirectional loop [225].  
Glucocerebrosidase gene (GBA) mutations impact enzymatic function of Glucocerebrosidase enzyme 
(GCase), which decreases the lysosomal capacity. Glucosylceramides (GlcCer) increase due to this dys-
function and support the accumulation of alpha-synuclein (α-syn). This decreases GCase activity even 
more and further, α-syn deposits oligomerize and fibrillize - which has neurotoxic effects to the cell. Also, 
reactive oxygen species, mutation in the alpha-synuclein gene (SCNA), mitochondrial dysfunction and ni-
tric oxides (NO) may contribute to α-syn accumulation as well. Further, this accumulation affects GCase 
trafficking from the endoplasmic reticulum (ER) to the lysosome, which decreases the lysosomal GCase 
capacity even more and leads to GCase retention in the ER. 

Westbroek et al suggested the latter effect to be a gain-of function – by proposing 

that the mutated GCase increases α-syn’s tendency to aggregate [135]. This hy-

pothesis was strengthened by a neuropathological study that indicated a varying 

proportion of α-syn in Lewy bodies, stratified by genotype: In GBA-homozygous 

subjects, 90% of the Lewy bodies were GCase-positive, in heterozygous PDGBA 

75% of the Lewy bodies were positive for the mutant enzyme, whereas only 4% 

of Lewy bodies were positive in PDIdiopathic with wt GCase [316].  

Further, α-syn accumulation in turn impaired the trafficking of GCase between 

the ER and the lysosome – even in PD-models with wt GBA as in-vitro studies 

revealed: The interaction of GCase with membrane-fixed α-syn in acidic 

[Wecke
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environment had inhibitory effects on GCase [225, 375, 405]. The authors hy-

pothesized that α-syn might alter or hinder conformational changes of GCase 

which are essential for unrestricted enzymatic capacity [405]. Consequently, the 

intralysosomal GCase activity decreases even more due to this bidirectional loop 

[225, 404, 406]. Further, other factors can lead to accumulation, oligomerization 

or fibrils of α-syn: mitochondrial diseases with formation of free radicals and nitric 

oxides or mutations in the SCNA gene, which encodes α-syn (FIGURE 21) [406].  

Dehay et al therefore concluded that a potential therapeutic approach in PD could 

exist in increasing or restoring GCase capacity and thus to prevent α-syn accu-

mulation [404]. Notably, a study based on neuroblastoma cell lines showed that 

a direct inhibition of GCase led to accumulation of α-syn, but decreased GBA 

gene expression did not result in a relevant α-syn gathering [407, 408]. Direct 

inhibition of GCase at the lysosomal level therefore appears to have a different 

effect than epigenetic influence, highlighting the complexity of the epigenetic ar-

chitecture of PDGBA and interaction of regulatory mechanisms between GBA, 

GCase and other proteins such as α-syn. 

Brain sample analyses revealed a clear reduction of cerebral GCase activity in 

PDGBA with a regional focus on putamen and SN, which emphasizes the rele-

vance of lysosomal metabolism in this dopaminergic brain region for PD [317]. 

Nevertheless, one could argue that this is just an expression of a nonspecific 

aging process. Still, two features contradict the assumption that these findings 

were simple an expression of general neurodegeneration: there was also, due to 

unknown reasons, a significant lower cerebellar enzyme activity, which is an atyp-

ical localization of neurodegenerative changes in PD [317]. Further, there was no 

decrease of GCase activity in those areas, that are affected by neurodegenera-

tive remodeling by other diseases such as AD [317].  

Repeatedly, a negative correlation was pronounced between GCase activity and 

α-syn levels [12]. GBA homozygous and compound heterozygous individuals 

showed lower enzymatic activity than GBA heterozygous subjects and these, in 

turn, had lower GCase activity than non-GBA carriers [409]. In an experimental 

study, a group of primary cortical murine neurons were analyzed for their rate of 
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α-syn-degradation [408]. Neuronal heterozygosity for L444P resulted in a re-

duced GCase activity of only 40% and led to enrichment of α-syn up to 77%, due 

to a half-life increase [408]. It was hypothesized, that even a moderate degree of 

reduced GBA activity and subsequently only a partial loss of lysosomal function 

may also be conducive to the onset of PD [408]. Interestingly, a heterozygous 

L444P status also exacerbated the motor and enteric impairments in a murine 

model, representing the point mutation A53T in SCNA [408]. The authors con-

cluded that GBA mutations may additionally worsen PD phenotypes, that are al-

ready associated with an impaired α-syn turnover [408].  

Intriguingly, the implementation of normal GBA genes via viral vectors into murine 

brain tissue and thus the cerebral expression of wt GCase reduced the toxic ac-

cumulation of GlcSph, the levels of α-syn aggregates and protein tau and ubiqui-

tin in type 1 GD-PD-mouse-model [324]. This demonstrates the biochemical im-

pact of reduced and normal GCase performance on α-syn metabolism and it fur-

ther suggests, that normalizing GCase function at an early stage of PD may pre-

vent further neuronal loss. In addition, even a partial reversal of neuronal dam-

age, that already occurred, seems to be possible – according to experimental 

findings of Sardi et al [324]. They evaluated the cognitive performance of type1 

GD-PD mice by using an object recognition test [324]. After expression of wt hip-

pocampal GBA the murine cognitive decline was found improved [324]. 

Nevertheless, in a postmortem study, Murphy et al studied the anterior cingulate 

and occipital cortex of PDIdiopathic subjects, assigned to earlier and to later Braak 

stages [396]. They found, especially in regions with elevated α-syn levels, lower 

GCase protein levels and lower also GBA activity [396]. As GCase activity was 

also diminished in brain samples from DLB subjects and there are GBA-carriers 

never developing PD, one could suggest that both synucleinopathies PD and DLB 

may be due to a common pathway – influenced by GBA mutations which are 

more likely to be understood as aggravating and accelerating factors in PD and 

less causally initiate the pathology of PD [317, 410]. 
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4.4.2 Interaction with the autophagy-lysosomal pathway (ALP) 

It was hypothesized, that neurodegenerative pathology in type 2 GD may be due 

to decreased autophagy performance and dysfunctional proteasome [318]. This 

might lead to more defective mitochondria, more ubiquitinated metabolites and to 

α-syn accumulation [318].  

In addition, increased rates of cortical, cerebellar, and hippocampal cell death 

were detected which lead to the assumption of a causal link between impaired 

GCase function, α-syn accumulation and neuronal survival [318, 411]. Autoph-

agy, as a cellular pathway for degradation, comprises the transport of metabolites 

into the lysosome as the site of degradation, whereas three distinct mechanisms 

are differentiated: (1) chaperone-mediated autophagy (CMA), (2) macroautoph-

agy, and (3) microautophagy [6, 412, 413].  

 Via CMA, metabolites such as abundant or dysfunctional α-syn, get bound 

and transported to the lysosomal membrane, where they are entered re-

ceptor-associated into the intralysosomal domain for degradation [413].  

 Macroautophagy is a multistep intracellular signaling cascade to de-

grade ubiquitin-labelled metabolites such as proteins and cell organelles 

[12, 135]. The protein complex mechanistic target of rapamycin (mTOR) 

controls the formation of autophagosomes, which are fused afterwards 

with lysosomes becoming autophagolysosome [135]. They contain acid 

hydrolases for decomposing their content [135].  

o Further, macroautophagy includes the mitophagy pathway, selec-

tively discarding dysfunctional mitochondria [6, 413]. 

 Microautophagy defines the direct internalization of cytoplasm-localized 

metabolites through the lysosomal membrane [6]. 

Neurons as post-mitotic cells are particularly susceptible to defective, impaired 

autophagy pathways, as they are not able to redistribute defective proteins or cell 

organelles to daughter cells [414]. Fascinatingly, lysosomal degradation path-

ways are increasingly associated with the development of neurodegenerative dis-

eases such as PD [413]: several PD-associated genes (such as GBA-, LRRK2, 

SCNA- and Scavenger receptor class B member 2 (SCARB2) gene) are involved 
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in the autophagy-lysosomal pathway (ALP) [6, 217, 404, 415, 416]. Their prod-

ucts play a role in different functional areas of the ALP such as in mitophagy, as 

lysosomal enzymes or as trafficking-components [6].  

Particularly, the SCARB2 gene encodes for the lysosomal membrane protein 2 

(LIMP-2), that targets GBA to lysosomes [217]. A deficiency of this trafficking re-

ceptor LIMP-2 can lead to reduced GBA activity in mouse models and thus to 

increased α-syn levels as well [417].  

Interestingly, mitophagy pathway is regulated by the ligase Parkin and the kinase 

PINK1, whereas mutations in these genes cause familial recessive PD [135]. In 

intact mitochondria, PINK1 passes from the outer to the inner membrane [135]. 

In defective mitochondria, PINK1 remains on the outer membrane – accumulating 

and recruiting cytosolic parkin to the outer mitochondrial membrane [135, 418]. 

In turn, this causes ubiquitination as well as unwanted aggregation of mitochon-

drial proteins [135, 419]. Thus, several studies suggested that mitochondrial dys-

function plays a crucial role in PD [420] and emphasized distinct similarities in 

mitochondrial dysfunction in GD and familial PD models [318]. 

4.4.3 Dysfunctional lipid metabolism 

If one refers to glucosylceramide, it is about a glycolipid that is also considered 

to be a structure or membrane lipid. Not surprisingly, limited GBA function leads 

to an altered lipid profile in the cell [142, 267, 421]. In a GD model characterized 

by limited degradation of glucosylceramide and its subsequent accumulation, an 

altered cellular lipid metabolism as well as a transformed membranous lipid com-

position was objectified [422]. Further, it was suggested that an altered lipid com-

position of the lysosomal membrane may possibly interfere with the formation of 

an CMA receptor, which internalizes α-syn into the lysosome for further degrada-

tion [6]. The altered lipid composition may subsequently favor intracellular α-syn 

enrichment [6]. The increased glucosylceramide accumulation due to a mutated 

GCase also affects the sphingolipid composition of the cellular membrane, which 

might impair α-syn’s binding to the membrane and additionally promotes its intra-

cellular accumulation [16, 231, 423]. Therefore, sphingolipid metabolism is as-

sumed to play a relevant role in neuronal integrity: it influences synaptic stability 
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and, in case of dysregulation due to GBA mutations, it may lead to the develop-

ment of fibrillar α-syn with neurotoxic effects, contributing to PD pathology [424]. 

4.4.4 ER-associated degradation aspects 

GBA mutations provide the blueprint for misfolded GCase, whereas misfolded 

proteins in general undergo protein quality control by the ER in order to prevent 

protein toxicity [425]. The ER, if necessary, restrains dysfunctional proteins and 

routes them to a specific degradation pathway, the ERAD [425].  

In case of an increased burden of misfolded GCase, due to GBA mutations, the 

dysfunctional enzyme can accumulate within the ER, resulting in a lack of lyso-

somal GCase as well as in triggering the unfolded protein response (UPR), which 

is part of ERAD [12, 218, 426]. Based on the findings with induced pluripotent 

stem cell lines of PDGBA subjects, Fernandes et al reported a dysfunctional pro-

cessing of mutant GCase in ER, ER-stress and general increase of lysosomal 

capacities in dopaminergic neurons compared with cell lines from healthy individ-

uals [427].  

The interaction of parkin and GCase 

In addition to an increased ER stress in PDGBA, another fascinating feature is 

represented by the connection of the ERAD-associated ligase parkin with mu-

tated GCase. The E3 ubiquitin ligase parkin is involved in misfolded protein deg-

radation as it is part of ERAD [428]. 

Wt parkin supports degradation of mutant forms of GCase dose-dependently in 

dopaminergic neurons – by labelling these misfolded enzymes with an ubiquitin 

appendage [428]. These ubiquitinated molecules are now able to get into lyso-

somes or proteasomes for degradation. GBA mutations may therefore challenge 

wt parkin function by reducing its capacity to mark and they disturb indirect the 

degradation of other misfolded proteins, which consequently accumulate and 

cause cytotoxic effects to dopaminergic cells [428]. 

Mutant parkin (due to PARK2 mutations, leading to autosomal recessive PD), 

however, interacts with mutated GCase by even stabilizing the defective GCase 

[428]. Normal GCase is not altered in its stability by either wt parkin or mutant 

parkin [428]. One could suggest that mutated parkin and GBA mutations may 
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additionally reinforce each other in a vicious circle – similar to the positive feed-

back mechanism between α-syn and GCase described above. This also supports 

the thesis of underlying genetic interactions, according to which PD as a sporadic 

disease is caused by the interference of several and sometimes rare mutations, 

respective their gene products and associated cellular pathways. 

4.4.5 PDGBA – associated with impaired calcium homeostasis and mitochondrial 

impairment 

Experimental studies with induced pluripotent stem cell (iPSC) models, repre-

sentative for mesencephalic dopaminergic neurons in GD and PDGBA, revealed a 

disturbed calcium metabolism and increased neuronal stress vulnerability in mu-

tant neurons [319]. Further, mitochondrial dysfunction has been reported for PD 

as well as for GD [208, 407]. Possible causes, why deficient GCase may lead to 

mitochondrial deficits, could be due to the described impaired calcium metabo-

lism, neuroinflammatory processes, changes in lipid metabolism or due to im-

paired ALP [208].  

Of course, combinations of the individual factors with a cumulative effect are con-

ceivable [208]. According to Larsen et al, mitochondrial quality control can be 

affected at 3 different levels: first at molecular level via chaperone-related UPR 

[429]. If this response is not sufficient, the next higher organellar level is involved, 

where dysfunctional mitochondria or defect mitochondrial components are de-

graded by mitophagy [429]. Thus, amongst others, the familial PD-associated ki-

nase PINK1 and the E3 ubiquitin ligase parkin recognize defective mitochondria, 

that must be degraded [154, 157]. However, if mitophagy also fails, more reactive 

oxygen species arise due to impaired electron transport chain (ETC) and the last, 

the cellular level with induction of apoptosis corresponding to oxidative stress is 

reached [208, 416, 429].  

Contrary to one’s expectation, an impaired mitophagy did not affect all 4 com-

plexes of the ETC as a significant decrease was observed only for the first 3 

complexes but not for the fourth – why one could suggest that a solitaire mito-

chondrial approach to PD might not be conclusive [208]. Experimental findings 

derived from murine models, characterized by the loss of neuronal GCase, 
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exhibited an accumulation of ceramides [208]. This accumulation seemed to ac-

tivate microglia and astrocytes [208]. Afterwards, these cells produced reactive 

species such as nitric oxide [208]. In turn, this might impair mitochondrial ETC 

and lead to cellular damage [208].  

In conclusion, there is more and more evidence that mitochondrial dysfunction 

plays a crucial role in neuronal survival and may therefore contribute to PD-de-

velopment. 

4.4.6 GBA and iPSC-technology based findings in twin-studies 

Since monozygotic twins often present with phenotypical similarities in many re-

spects due to their shared genotype, they are regularly examined in the context 

of studies with regard to environmental-genetic interactions [430]. Thus, PD twin 

studies reported a PD concordance-rate of 15.5% for monozygotic twins in the 

US [431] and 11% in Sweden [432]. In addition, there are twin pairs with one 

sibling suffering from PD while the other is not affected– with the underlying rea-

sons for this dysconcordance being likewise unclear as the mechanisms, why 

some GBA carriers develop PD and others do not [430]. 

Based on iPSC technology, Woodard et al gained skin fibroblasts from a monozy-

gotic twin pair that was PD-disconcordant and heterozygous for the GBA muta-

tion N370S [430]. iPSC-derived midbrain dopaminergic (mDA) neurons were 

generated from these fibroblast samples, corresponding to a model of human 

neurons with a heterozygous N370S-mutation [430].  

GCase activity of both twins was reduced to approximately 50% while α-syn lev-

els of both subjects were approximately tripled [430]. Additionally, the mDA neu-

rons of both twins produced lower levels of dopamine [430]. It is hypothesized, 

that the reduced dopamine release was a secondary effect due to the increased 

α-syn levels and that α-syn-overexpression inhibited dopamine release up to 80% 

due to impaired synaptic vesicle regulation – as previous findings from mouse 

models had revealed [430, 433]. However, both twins with the same GBA muta-

tional status showed different levels of dopamine, which supports the thesis of 

further, possibly epigenetic factors that affect dopamine metabolism [430]. 
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4.5 Prodromal characteristics of PD and the role of PDGBA 

Considering, that studies exposed a reduced GCase activity in cases of PDIdiopathic 

as well [317], it is relevant to explore the existence of a specific prodromal, clinical 

and biological fingerprint in PDGBA. An in-depth investigation of prodromal aspects 

in PDGBA might allow conclusions to be drawn on the further course of PDGBA, as 

well as conclusions about the development of PD in general [12]. A retrospective 

study, using a validated interview on prodromal PD symptoms carried out with 

PDGBA and PDIdiopathic patients as well as healthy elderly subjects, showed that 

PDGBA and particularly L444P-associated PDGBA presents with prodromal symp-

toms more frequently [312]. Further, it was exposed that PDGBA shows nearly 

concurrently non-motor and early motor deficits immediately prior to diagnosis 

[312]. PDIdiopathic, however, demonstrated a relatively longer prodromal phase 

which began with NMS and presented much later with early motor impairments 

[312]. Therefore, Zimmermann et al concluded that PDGBA may exhibit its own 

histopathological characteristics due to the faster and more severe course of the 

disease and the shorter prodromal phase as well [312]. This finding also ques-

tions the previously discussed thesis of a rather late acceleration of PD-progres-

sion (see 4.2 above). 

So, which conclusions can be drawn from the findings of potential biomarkers 

related to PDGBA? 

4.5.1 PD Biomarkers 

Although previous biomarker studies disclosed altered lysosomal enzymatic ac-

tivities in the CSF of PD subjects compared to healthy controls, these parameters 

as a singular feature were not able not distinguish between PD and controls [434]. 

An extended combination of several biomarkers, such as mitochondrial dysfunc-

tion or α-syn species, with CSF-markers may be helpful in the diagnosis of PD in 

future [434]. Furthermore, studies investigating blood plasma α-syn levels in PDId-

iopathic patients, described that plasma α-syn levels are rather not suitable as bi-

omarkers for PD and that they do not differ significantly between the both ana-

lyzed subtypes (1) tremor-dominant and (2) postural instability and gait disorder 

[435]. 
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PDGBA and the role of fatty acids as biomarkers in cerebrospinal 

f luid samples  

According to the fact that GBA mutations are a susceptibility factor for PD and 

both GBA and α-syn do interrelate with fatty acids [315], levels of 13 different fatty 

acids were analyzed by gas chromatography. A significant lower level of fatty 

acids in the PDGBA group was assessed, both in comparison with PDIdiopathic pa-

tients and healthy controls. Furthermore, in the PDGBA group, significantly lower 

levels of palmitoleic acid, arachidonic acid and eicosapentaenoic acid were 

found, suggesting an altered cerebral lipid metabolism [261, 315]. 

PDGBA and the role of neurodegenerat ive markers in cerebrospinal 

f luid samples  

Furthermore, a longitudinal study investigated the potential and intriguing link be-

tween the genetic composition of various subgroups (PDIdiopathic, PDGBA, PDLRRK2, 

healthy controls) and neurodegenerative markers in CSF [436]. While all 3 PD 

subgroups presented a decreased Amyloid β protein (Aβ) 1-42 level, only PDIdio-

pathic and PDGBA showed lower total-microtubule associated protein tau (t-tau) and 

phosphorylated- microtubule associated protein tau (p-tau) [436]. An association 

between an accelerated cognitive decline and higher p-tau levels in the baseline 

investigation was found for PDGBA but not for PDIdiopathic [436]. In contrast, another 

study recently objectified similar levels of Aβ1-42, p-tau, and t-tau for both PDGBA 

and healthy controls in CSF samples [437]. The authors concluded that the high-

lighted cognitive impairment in PDGBA may rather not be associated with specific 

CSF profile of neurodegeneration parameters [437]. 

PDGBA and the role of skin punch biopsies in prodromal PDGBA 

A recent study with RBD-subjects, considered to be at high-risk for developing 

PD, was carried out to investigate the appropriateness of skin biopsies for pro-

dromal PDGBA and to detect potential differences in dermal p-syn deposition be-

tween PDGBA and PDIdiopathic [85, 126]. Doppler et al found no relevant differences 

between PDGBA and PDIdiopathic in p-syn pathology, consistent with other skin bi-

opsy studies [126]. In addition, no significant association could be demonstrated 

for any of the GBA variants studied (N370S, E326K and L444P) [126]. 
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Remarkably, p-syn deposits correlated with PDGBA disease duration and are pos-

sibly related to the faster disease progression of PDGBA, which is reported in this 

present study [126, 129]. The authors concluded that the involvement of the pe-

ripheral nervous system is similarly heterogeneous as are the clinical and neuro-

pathological features in PDGBA and PDIdiopathic and further, that skin punch biopsies 

are suitable as a simple tool for future analysis of prodromal PDGBA [126]. 

 

4.6 PDGBA – targeted therapy 

To mitigate the accumulation of α-syn and thus to protect midbrain dopaminergic 

neurons from damage, the effects of GBA gene delivery were investigated in 

mouse models [438]. In a wt SNCA model, cerebral GBA gene injection increased 

GCase activity and further, it reduced striatal and nigral α-syn accumulation [438]. 

The authors concluded, that reinforcing the clearance of α-syn may be associated 

with neuroprotective effects and might verify lysosomal genes like GBA as com-

ponents of a targeted therapy [438]. However, as it is still not fully understood 

how exactly GBA mutations increase the risk for PD and DLB and what precisely 

originates the accelerated disease course of PDGBA, GBA-related therapies con-

tinue to be challenging [439]. Therefore, various approaches are being pursued. 

At present, the increase of GCase activity and the alteration of GBA-associated 

substrates – the glycosphingolipids – are the most promising attempts [439]. 

4.6.1 PDGBA – lysosomal therapeutic strategies 

One possible approach to optimize GCase function is to influence the signal path-

ways, leading to degradation of the mutated or physiological GCase [440]. Con-

sequently, more GCase can be transported to the lysosome [440]. One sug-

gested strategy comprises the regulation of chaperones. These molecules sup-

port both the correct folding and unfolding of proteins or direct them to a pathway 

of degradation, e.g. the proteasome, in case the proteins are misfolded [441]. 

Therefore, a possible approach aims to prevent specified chaperones from rec-

ognizing mutated GCase and initiating its degradation [440]. 
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4.6.2 PDGBA – the role of pharmaceutical chaperons 

As ER mediates the degradation of mutated GCase, this leads to ER stress and 

further, the increasing appearance of unfolded or misfolded proteins inside of ER 

initiates the UPR [442]. UPR is a complex interaction of multiple signal cascades 

and aims to maintain or restore the cell integrity [442]. More specifically, UPR 

aims to: 

 reduce or stop protein translation 

 degrade the misfolded proteins and 

 increase the chaperon production in oder to sustain a correct protein 

folding [442] 

If these steps fail to restore the physiological cell function within a distinct period 

of time, programmed cell death (apoptosis) is the goal [214]. Both accumulation 

of misfolded proteins and increased UPR have been described for PDIdiopathic 

cases [443, 444]. An experimental study, using a transgenic Drosophila model, 

revealed that flies with the human GBA variants N370S and L444P presented 

signs of UPR as well and developed Parkinsonian symptoms [214]. These effects 

were partly reversible due to the addition of the chaperone ambroxol hydrochlo-

ride [214]. How did the administration of ambroxol – a substance previously used 

as a mucolytic agent (Mucosolvan) to increase mucus clearance in bronchopul-

monary disorders – come on board [445]? Over 1000 approved drugs were 

screened for potential enzyme-enhancing therapy in GD [445]. Ambroxol was 

shown to inhibit the denaturation of wt GCase in a pH-dependent manner: it was 

found that the enzyme-stabilizing effect of ambroxol is greatest in neutral ER mi-

lieu but did not exist in an acid lysosomal environment [445]. As a result, an am-

broxol-induced increase of enzymatic function and a reduced GlcCer deposition 

could be demonstrated for wt and for mutant N370S GCase [445]. Further studies 

proved that ambroxol supports the correct folding of mutated GCase in the ER, 

shows an association with increased lysosomal levels of GCase, presumably 

through facilitated transport from ER to the lysosome and presents with an in-

creased activity of the mutated GCase in type 1 and 2 GD skin fibroblast models 

[446]. Further, improvement of anemia and thrombocytopenia as well as a 
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reduction of hepatosplenomegaly were observed in patients with type 1 GD, who 

underwent 6 months of therapy with ambroxol 150 mg per day [446-449].  

In 2014, McNeill et al described that ambroxol can increase GCase activity and 

reduce markers of oxidative stress in mutant GCase cells [447]. The mechanism 

for this is seen in an activation of the so-called CLEAR (coordinated lysosomal 

expression and regulation) system, which, in addition to GBA, comprises more 

than 400 other genes, encoding for lysosomal enzymes, transport proteins or 

membrane proteins [447]. As a CLEAR activator, ambroxol is thus seen as an 

activator of the lysosomal autophagy system in PDGBA and GD [447].  

The pioneering fact, that small chaperones can cross the blood-brain barrier, in 

opposite to ERT used in GD therapy, suggests that they might be helpful in ERT-

unaffected neurodegenerative pathology [214]. This finding is strengthened by 

the effects of a clear reduction in ER stress and prevention of loss of motor func-

tions in PDGBA fibroblasts as well as in a fly model with wt GBA and the mutations 

N370S and L444P – after administration of the chaperones isofagomine and am-

broxol [450].  

Isofagomine interacts with the active GCase center, thus stabilizing GCase and 

theoretically increasing its activity. However, it did not provide any relevant clini-

cal improvement in GD in corresponding studies, so this approach was discon-

tinued [439, 451]. Nevertheless, ambroxol is currently being investigated in two 

clinical studies with regard to its tolerability, efficacy and safety (trial identifier: 

NCT02941822, NCT02914366) [439]. In addition, a non-inhibitory chaperone, 

NCGC607, was developed, leading to decreased substrate accumulation and in-

creased transport of GCase to the lysosome in mesencephalic dopaminergic 

neurons in GD- and PD-models [439, 452]. Furthermore, the treatment with 

NCGC607 increased lysosomal activity, it effectively reestablished GCase activ-

ity and reduced both GlcSph and GlcCer levels in macrophages and dopaminer-

gic neuron models [452]. 

4.6.3 PDGBA – the role of mTOR inhibitors 

Studies, based on fly models, suggested that rapamycin (Sirolimus, a mTOR-

inhibitor) might be a potential option as the substance increased the clearance of 
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α-syn in GBA-models of primary cortical neurons [453]. However, long-term ra-

pamycin therapy worsened muscle weakness in mouse models and induced 

apoptosis of iPSC-derived neurons with GBA mutation [454, 455]. Kinghorn et al 

called for further studies to characterize rapamycin-induced effects and to learn 

more about the optimal PD stage as to when this therapy regime can be applied 

to PD patients [311]. 

4.6.4 PDGBA – the role of glucosylceramide synthase (GCS) inhibitors 

Another approach to influence the bi-directional loop between mutant GCase and 

α-syn accumulation aims to alter the sphingolipid turnover [439]. A cell biological 

study, using mouse models, showed that the administration of a novel GCS in-

hibitor (GZ667161) was able to cross the blood-brain barrier and that it lowered 

glucosylceramide levels in a GD-related cell model [456].  

The GCS inhibitor further decreased the hippocampal enrichment of neurodegen-

erative metabolites such as α-syn and tau and improved murine memory perfor-

mance [456]. The authors therefore suggested that sustained GCS administration 

might affect cerebral α-syn metabolism and proposed GCS inhibition to be a dis-

ease modifying therapy [456]. Notably, it is essential to check the extent to which 

the insights gained from rodent models can actually be transferred to complex 

human organisms [457]. NMS, which are of great relevance in PD and even more 

in PD GBA, are barely characterized in murine models, as noted by Vingill et al 

[457]. An interventional multicenter phase 2 study by Sanofi (MOVES-PD) is in-

vestigating the safety and tolerability of the small molecule GZ/SAR402671 from 

2016 to presumably 2022 in a placebo-controlled setting (ClinicalTrials.gov Iden-

tifier: NCT02906020) [185]. 

4.6.5 PDGBA – the role micro ribonucleic acid’s (miRNA) 

Transcription is the transfer of DNA information into ribonucleic acid (RNA), while 

translation is the transfer of RNA information into amino acid sequences as part 

of protein synthesis. One type of RNA is the miRNA, which consists of only few 

nucleotides and does not encode for protein synthesis [458]. Instead, it regulates 

post-transcriptional translation [458]. Studies have shown that over- and under-

expressing of miRNA can lead to an altered expression of NO synthases – whose 
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NO-species can cause DNA damage, synaptic lesions and also apoptosis [458]. 

Oxidative stress makes dopaminergic neurons vulnerable, may contribute to their 

cell death and is therefore a link to PD pathology, as mentioned above [458]. 

Thus, miRNAs were also discussed as potential target-directed therapy options 

in PD [458]. As recently reported by Martinez et al, numerous down-regulated 

miRNAs were detected in brain biopsies from PD patients, which targeted genes 

such as GBA as well as SCNA, LRRK2, LAMP-2A or PARK 2 [458]. 

In fact, in PD-animal-models it was recently demonstrated that change in certain 

miRNA levels can have favorable effects on PD-outcome [458]. Synthetically-en-

gineered molecules that either mimic human miRNAs (agomir) or inhibit miRNA 

(antagomir) may be therefore therapeutic targets to positively affect early neuro-

pathological processes in PD [458]. 

4.6.6 PDGBA – the role of adeno-associated Virus (AAV)-based gene therapies 

Transferring genes in order to treat complex diseases is an approach that has 

already been applied for neurodegenerative disorders such as AD or FTD [459]. 

According to Hudry et al, AAV seems to be best suited for being applied regard-

ing disorders of the central nervous system, due to its properties as a suffi-

ciently safe vector and its profound neurotropism [459]. Therefore, PDGBA pa-

tients are currently being recruited in a phase 1/2 trial, which investigates AAV9 

serotype as a gene-based therapeutic method transferring the whole wt-GBA 

gene into the cells of PDGBA patients [459-461].  
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4.7 Limitations of this study 

Like many studies carried out so far, also this presented study has limitations that 

must be considered for evaluation of the results reported. These limitations are 

identified below: 

 The survival rates of the included PDIdiopathic subjects are higher than gen-

eral PD survival rates assessed after literature review. In order to avoid a 

potential distortion, clarity should be gained on the number of subjects who 

could not be included and why this was not possible [129].  

 The small number of cases: a larger sample would be desirable, which is 

not easy to accomplish due to the rarity of GBA mutations and the disease-

related severe general condition of PD patients [129]. Nevertheless, this 

would possibly allow mutation-related intragroup analyzes and increase 

the external validity in general.  

 Only the two most common mutations were investigated: Further, only the 

two most common GBA mutations were investigated in this study due to 

organizational and financial feasibility. However, a whole gene screening 

would be useful for detection of mutations-specific effects. 

 Short follow-up period: a longer follow-up period would be desirable. 

 

4.8 Outlook 

Further studies in a longitudinal prospective design with shorter examination in-

tervals are needed to adequately explore the more rapid progression in PDGBA – 

especially with regard to its shorter and more severe prodromal phase [129]. In 

particular, it is necessary to further investigate prodromal phase of PDGBA for pos-

sible risk factors as well as bio- and progression markers. Early diagnosis and 

the inclusion in clinical trials enable to investigate disease-modifying therapies, 

to establish and to reduce or even prevent irreversible neurodegenerative degra-

dation. After PD diagnosis, including PDGBA, is still based on clinical aspects, alt-

hough supported by laboratory, neuroimaging and histopathological methods, the 

use of quantitative diagnostic methods should be reinforced – to compensate for 

the subjectivity of the examiner and to increase the accuracy of research .
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5. Summary 

The following comprises a short summary of this clinical observation study includ-

ing the objective, the applied methods and results as well as the discussion.  

A common disease such as Parkinson's disease, which is now understood as a 

systemic disease and goes far beyond pure motor disturbance, is clearly associ-

ated with the rare lysosomal disorder Gaucher’s disease. At first glance, GD has 

little in common with the second most frequent neurodegenerative disease world-

wide. Nevertheless, the genetic origin of this compound is based on mutations in 

the GBA gene that lead to an increased risk of PD. Profound acknowledgement 

of prodromal and clinical symptoms of PDGBA as well as of the progression char-

acteristics of this PD subgroup is of essential importance.  

Otherwise, one will not be able at all to detect subjects with the most relevant risk 

factor for PD and – as the next step – these subjects at risk for PD might not be 

included in clinical and experimental trials. This, however, is the only way to hope-

fully expand and deepen the current understanding of the underlying mecha-

nisms on how GBA mutations exactly contribute to PD pathology. Based on these 

required investigations, the development of promising therapeutic options, that 

go far beyond the present symptomatic level, are conceivable and are expected 

to slow down or even stop PD progression in the future. 

Therefore, a clinical phenotyping of GBA patients was performed in this study. It 

revealed that the PDGBA group presented not significantly different from the PDId-

iopathic group at the beginning of the 3-year period regarding motor and non-motor 

performance. However, at time of the examination in 2013, the PDGBA group was 

affected more severely than the comparison group: motor and cognitive impair-

ment had worsened more rapidly. Moreover, higher doses of dopaminergic drugs 

were required, and H&Y disease stages reflected a faster progression of PDGBA 

to one PD-milestone that can be life-changing for PD patients: the endpoint of 

postural instability. Further, higher mortality rates for PDGBA patients were demon-

strated in this study.  
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Epigenetic and environmental factors may seem to play a relevant role in this 

subgroup of PD, as well as complex gene-gene interactions. Theories, attempting 

to explain the underlying pathology, range from the causal linkage of common 

diseases with common genetic variants (CDCV hypothesis) to the currently more 

probable assumption that common diseases, such as Parkinson's disease, are 

caused by a variety of singular and separately rare variants (CDRV). At the cel-

lular level, moreover, several approaches are pursued, including the pathological 

interaction of GCase and α-syn, the impairment of lysosomal clearance, dysfunc-

tional lipid metabolism, disturbances in the area of the proteasome as well as 

deficits in mitochondrial function.  

The primary background of this prospective study was to contribute to a better 

understanding of this neurodegenerative disease by phenotypically characteriz-

ing the subtype PDGBA. This is of crucial importance for following steps as to be 

able to make a diagnosis at a preferably early disease stage and thus, to prevent 

disease-associated and irreversibly neuronal cell loss by means of future dis-

ease-modifying, targeted therapies. Currently, promising therapeutic studies are 

in progress with the aim of increasing GCase activity or alternatively, minimizing 

its pathogenic substrate glucosylceramide. 
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6. Deutsche Zusammenfassung 

Im Folgenden soll eine kurze Zusammenfassung dieser Studie inklusive der Fra-

gestellung, der angewandten Methoden und Ergebnisse sowie der Diskussion 

gegeben werden. Die relativ häufige Erkrankung Morbus Parkinson, die mittler-

weile als systemische Erkrankung verstanden wird und weit über rein motorische 

Defizite hinausgeht, steht offensichtlich in Zusammenhang mit wiederum der re-

lativ seltenen lysosomalen Störung Morbus Gaucher. Auf den ersten Blick schien 

diese klinisch zunächst wenig mit der weltweit zweithäufigsten neurodegenerati-

ven Erkrankung zu tun zu haben. Die genetische Grundlage dieser Verbindung 

basiert auf Mutationen im GBA-Gen, die zu einem gesteigerten PD-Risiko führen 

– wobei wiederum nicht vollständig vom GBA-Genotyp auf den PD-Phänotyp ge-

schlossen werden kann, wie Studien zeigten. Das frühzeitige Erkennen von klini-

schen, laborchemischen aber auch bildgebenden Zeichen ist von essentieller Be-

deutung – um darauf aufbauend zugrunde liegende lokale neuropathologische 

Veränderungen im zentralen wie im peripheren Nervensystem untersuchen zu 

können und die zugrunde liegenden Mechanismen besser zu verstehen, die zu 

einer manifesten und irreversiblen PD-Erkrankung führen.  

Eine solche klinische Phänotypisierung von GBA-Patienten wurde durch diese 

Studie vorgenommen. Es zeigte sich, dass sich die PDGBA Gruppe zu Beginn 

einer 3-jährigen Untersuchungsperiode sowohl motorisch, als auch nicht-moto-

risch von der PDIdiopathic Gruppe nicht signifikant unterschied. Zum Zeitpunkt der 

Untersuchung in 2013 waren PD-Patienten mit einer der beiden Mutationen 

N370S oder L444P deutlich schwerer betroffen, als die Vergleichsgruppe: die 

motorische und kognitive Einschränkung hatte sich rascher verschlechtert.  

Es waren höhere Dosen dopaminerger Medikamente erforderlich, auch die 

Krankheitsstadien nach H&Y spiegelten den rascheren Verlauf von PDGBA hin zu 

einem der drei großen Meilensteine wieder, die für PD-Patienten lebensverän-

dernd sein können: das Erreichen des Endpunktes posturale Instabilität. Höhere 

Mortalitätsraten für PDGBA Patienten wurden in dieser Studie ebenso belegt. Mög-

licherweise spielen epigenetische und umwelt-assoziierte Faktoren eine rele-

vante Rolle sowie nicht zuletzt komplexe Gen-Gen-Interaktionen.  
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Theorien, die die zugrunde liegende Pathologie zu erklären versuchen, reichen 

hierbei von der ursächlichen Verknüpfung häufiger Erkrankungen mit häufig auf-

tretenden genetischen Varianten (CDCV-Hypothese) bis zur derzeit wahrschein-

licheren Annahme, dass häufige Erkrankungen wie Morbus Parkinson durch eine 

Vielzahl einzelner und für sich genommen seltener Varianten bedingt sein könn-

ten (CDRV). Auf zellulärer Ebene werden des Weiteren mehrere Ansätze ver-

folgt, die die pathologische Interaktion von GCase und alpha-Synuklein, die Be-

einträchtigung lysosomaler Clearance, einen dysfunktionalen Lipidstoffwechsel 

und Störungen im Bereich des Proteasoms sowie Defizite in der mitochondrialen 

Funktion umfassen.  

Der führende Hintergrund dieser prospektiven Studie bestand darin, durch phä-

notypische Charakterisierung des Subtyps PDGBA zu einem besseren Verständ-

nis dieser neurodegenerativen Erkrankung beizutragen. Dies ist von entschei-

dender Bedeutung, um möglichst frühzeitig eine Diagnose stellen zu können und 

hoffentlich den krankheitsassoziierten, irreversiblen neuronalen Zellverlust durch 

zukünftige, vielversprechende krankheitsmodifizierende, zielgerichtete Thera-

pien verhindern zu können. Es erfolgen derzeit vielversprechende Studien mit 

dem Ziel, die GCase Aktivität zu steigern oder alternativ deren pathologisch an-

fallendes Substrat, nämlich Glucosylceramid, zu minimieren. 

. 
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8. Appendix 
 

I. UK Parkinson’s disease Society Brain Bank Clinical Diagnostic Criteria 
(UKBBC) 
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II. MDS-Unified Parkinson’s Disease Rating Scale III (UPDRS-III)  
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III. Modified Hoehn & Yahr scale (H&Y) 
 

 1.0:  Unilateral involvement only  

 1.5:  Unilateral and axial involvement  

 2.0:  Bilateral involvement without impairment of balance  

 2.5:  Mild bilateral disease with recovery on pull test  

 3.0:   Mild to moderate bilateral disease; some postural instability; physically  
    independent 

 4.0:  Severe disability; still able to walk or stand unassisted  

 5.0:  Wheelchair bound or bedridden unless aided  

According to [462] 

 

IV. Becks Depression Inventory - II (BDI-II) 
Dieser Fragebogen besteht aus 21 Gruppen von Aussagen. Bitte lesen Sie jede dieser Gruppen von Aus-
sagen sorgfältig durch und suchen Sie sich dann die eine Aussage in jeder Gruppe heraus, die am besten 
beschreibt, wie Sie sich in den letzten zwei Wochen, einschließlich heute, gefühlt haben. Kreuzen Sie die 
Zahl neben der Aussage an, die Sie sich herausgesucht haben. Falls mehrere Aussagen einer Gruppe 
gleichermaßen zutreffen, kreuzen Sie die Aussage mit der höheren Zahl an. Bitte achten Sie darauf, dass 
Sie in jeder Gruppe nicht mehr als eine Aussage Ankreuzen. Lesen Sie auf jeden Fall alle Aussagen in jeder 
Gruppe, bevor Sie Ihre Wahl treffen. 

 

1. Traurigkeit 

 0 Ich bin nicht traurig. 

 1 Ich bin oft traurig. 

 2 Ich bin ständig traurig. 

 3 Ich bin so traurig oder unglücklich, dass ich es nicht aushalten kann. 

2. Pessimismus 

 0 Ich bin nicht mutlos, was meine Zukunft angeht. 

 1 Ich bin mutloser als früher, was meine Zukunft angeht. 

 2 Ich glaube nicht, dass sich meine Lage verbessert. 

 3 Ich habe das Gefühl, dass es keine Hoffnung gibt für meine Zukunft und es nur noch  

 schlimmer wird. 

3. Frühere Misserfolge 

 0 Ich fühle mich nicht als Versager. 

 1 Ich habe öfter versagt als ich sollte. 

 2 Wenn ich zurückblicke, sehe ich eine Menge Misserfolge. 

 3 Ich fühle mich persönlich als totaler Versager.  
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4. Verlust von Freude 

 0 Ich habe so viel Freude wie immer an den Dingen, die mir Spaß machen. 

 1 Ich habe nicht mehr so viel Freude an den Dingen wie früher. 

 2 Ich habe sehr wenig Freude an den Dingen, die mir früher Spaß gemacht haben. 

 3 Ich habe keine Freude an den Dingen, die mir früher Spaß gemacht haben. 

5. Schuldgefühle 

 0 Ich habe keine besonderen Schuldgefühle. 

 1 Ich habe bei vielen Dingen, die ich getan habe oder hätte tun sollen, Schuldgefühle. 

 2 Ich habe die meiste Zeit Schuldgefühle. 

 3 Ich habe ständig Schuldgefühle. 

6. Gefühle, bestraft zu werden 

 0 Ich habe nicht das Gefühl, für etwas bestraft zu werden. 

 1 Ich habe das Gefühl, dass ich vielleicht für etwas bestraft werde. 

 2 Ich glaube, dass ich für etwas bestraft werde. 

 3 Ich habe das Gefühl, für etwas bestraft zu werden. 

7. Abneigung gegen sich selbst 

 0 Meine Gefühle mir gegenüber sind die gleichen geblieben. 

 1 Ich habe das Vertrauen in mich verloren. 

 2 Ich bin von mir selbst enttäuscht. 

 3 Ich mag mich nicht. 

8. Selbstvorwürfe 

 0 Ich bin mir selbst gegenüber nicht kritischer als sonst und mache mir nicht mehr Vorwürfe als sonst. 

 1 Ich bin mir selbst gegenüber kritischer als früher. 

 2 Ich mache mir Vorwürfe für alle meine Fehler. 

 3 Ich gebe mir die Schuld für alles Schlimme, was passiert. 

9. Selbstmordgedanken oder - wünsche 

 0 Ich denke nie daran, mich umzubringen. 

 1 Ich habe Selbstmordgedanken, aber ich würde sie nicht ausführen. 

 2 Ich möchte mich umbringen. 

 3 Ich würde mich umbringen, wenn ich die Möglichkeit hätte. 

10. Weinen 

 0 Ich weine nicht mehr als früher. 

 1 Ich weine mehr als früher. 

 2 Ich weine wegen jeder Kleinigkeit. 

 3 Mir ist nach Weinen zumute, aber ich kann nicht.  
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11. Unruhe 

 0 Ich bin nicht unruhiger oder erregter als sonst. 

 1 Ich bin unruhiger oder erregter als sonst. 

 2 Ich bin so unruhig oder erregt, dass es schwer ist, mich nicht zu bewegen. 

 3 Ich bin so unruhig oder erregt, dass ich ständig in Bewegung bleiben oder etwas tun muss. 

12. Interesselosigkeit 

 0 Ich habe das Interesse an anderen Menschen oder anderen Tätigkeiten nicht verloren. 

 1 Ich bin weniger an anderen Menschen oder Dingen interessier als vorher. 

 2 Ich habe mein Interesse an anderen Menschen oder Dingen zum größten Teil verloren. 

 3 Es ist schwer, für Irgendetwas Interesse aufzubringen. 

13. Entschlussunfähigkeit 

 0 Ich treffe Entscheidungen etwa so leicht wie immer. 

 1 Ich fällt mir schwerer als sonst, Entscheidungen zu treffen. 

 2 Ich habe viel größere Schwierigkeiten, Entscheidungen zu treffen, als früher. 

 3 Ich habe Mühe, überhaupt Entscheidungen zu treffen. 

14. Wertlosigkeit 

 0 Ich fühle mich nicht wertlos. 

 1 Ich halte mich nicht für so wertvoll und nützlich wie früher. 

 2 Ich habe das Gefühl, weniger wert zu sein als andere Menschen. 

 3 Ich habe das Gefühl, völlig wertlos zu sein. 

15. Verlust an Energie 

 0 Ich habe so viel Energie wie immer. 

 1 Ich habe weniger Energie als früher. 

 2 Ich habe nicht genügend Energie, sehr viel zu tun. 

 3 Ich habe nicht genügend Energie, irgendetwas zu tun. 

16. Veränderungen der Schlafgewohnheiten 

 0 Meine Schlafgewohnheiten haben sich nicht geändert. 

 1a Ich schlafe etwas mehr als sonst.,1b Ich schlafe etwas weniger als sonst. 

 2a Ich schlafe viel mehr als sonst., 2b Ich schlafe viel weniger als sonst. 

 3a Ich schlafe die meiste Zeit des Tages., 3b Ich wache 1-2 Stunden zu früh auf und kann dann nicht mehr  

 einschlafen. 

17. Reizbarkeit 

 0 Ich bin nicht reizbarer als sonst. 

 1 Ich bin reizbarer als sonst. 

 2 Ich bin viel reizbarer als sonst. 

 3 Ich bin ständig reizbar. 
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18. Veränderungen des Appetits 

 0 Mein Appetit hat sich nicht verändert. 

 1a Mein Appetit ist etwas kleiner als sonst., 1b Mein Appetit ist etwas größer als sonst. 

 2a Mein Appetit ist viel kleiner als vorher., 2b Mein Appetit ist viel größer als vorher. 

 3a Ich habe überhaupt keinen Appetit., 3b Ich habe ständig großen Hunger. 

19. Konzentrationsschwierigkeiten 

 0 Ich kann mich so gut konzentrieren wie immer. 

 1 Ich kann mich nicht so gut konzentrieren wie sonst. 

 2 Es fällt mir schwer, mich sehr lange auf etwas zu konzentrieren. 

 3 Ich kann mich auf gar nichts mehr konzentrieren. 

20. Müdigkeit 

 0 Ich bin nicht müder als sonst. 

 1 Ich werde schneller müde als sonst. 

 2 Ich bin für viele Dinge, die ich früher getan habe, zu müde. 

 3 Ich bin für die meisten Dinge, die ich früher getan habe, zu müde. 

21. Verlust des Interesses an Sex 

 0 Ich habe in der letzten Zeit keine Veränderungen meines Interesses an Sex bemerkt. 

 1 Ich habe weniger Interesse am Sex als früher. 

 2 Ich habe jetzt viel weniger Interesse am Sex als früher. 

 3 Ich habe das Interesse am Sex völlig verloren 
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V. Montreal Cognitive Assessment (MoCA) 
According to Z. Nasreddine MD, Version 7. November 2004 – German translation: SM Bartusch/ SG Zipper [185] 
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VI. Levodopa equivalent dose (LED) 
Levodopa equivalent dose according to DGN [365] 
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