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Abstract

Tests administered in studies of student achievement often have a certain amount of
not-reached items (NRIs). The propensity for NRIs may depend on the proficiency
measured by the test and on additional covariates. This article proposes a semipara-
metric model to study such relationships. Our model extends Glas and Pimentel’s item
response theory model for NRIs by (1) including a semiparametric representation of
the distribution of the onset of NRIs, (2) modeling the relationships of NRIs with profi-
ciency via a flexible multinomial logit regression, and (3) including additional covariates
to predict NRIs. We show that Glas and Pimentel’s and our model have close connec-
tions to event history analysis, thereby making it possible to apply tools developed in
this context to the analysis of NRIs. Our model was applied to a timed low-stakes test
of mathematics achievement. Our model fitted the data better than Glas and Pimentel’s
model, and allowed for a more fine-grained assessment of the onset of NRIs. The
results of a simulation study showed that our model accurately recovered the relation-
ships of proficiency and covariates with the onset of NRIs, and reduced bias in the esti-
mates of item parameters, proficiency distributions, and covariate effects on proficiency.
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Within scientific studies of student achievement, tests are typically administered with

a time limit. As a consequence, students might not reach the end of a test within the

allotted testing time, and this can lead to a special type of missing data, reflected in
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the number of not-reached items (NRIs). NRIs imply a monotone pattern of missing

data; that is, all items located after the first item not reached are missing. Hence, the

earlier the onset of NRIs, the more item responses are missing in a test. NRIs have

received some attention in the psychometric literature because the onset of NRIs

appears to be related to the proficiency measured by the test (Glas & Pimentel, 2008;

Köhler, Pohl, & Carstensen, 2015a; Lawrence, 1993; Pohl, Gräfe, & Rose, 2014). As

a reaction to the problem, item response theory (IRT; Embretson & Reise, 2000)

models that make it possible to estimate the relationships between proficiency and

the onset point of NRIs have been developed, with the approach suggested by Glas

and Pimentel (2008) being most frequently used (e.g., Pohl et al., 2014). However,

the model of Glas and Pimentel (2008), as well as many other approaches (e.g.,

Hutchison & Yeshanew, 2009), assumes a linear relationship between proficiency

and the onset of NRIs: an assumption that might be questioned in many applications.

Linear relationships between NRIs and the proficiency measured by the test

appear most plausible in testing situations in which NRIs can be conceived as pure

reflections of test speededness (e.g., Evans & Reilly, 1972), such as in the case of

high-stakes tests, where test takers invest full effort to respond to all items in the

test. Here, students with higher proficiencies might solve the items at a higher

pace, which means that they are more likely to reach the end of the test. However,

even in situations in which test takers show their maximum performance, non-

linear relationships between proficiency and NRIs could exist because test takers

at low proficiency levels might reach the end of the test by applying too simplistic

or quick strategies to difficult items. In this case, test takers at an intermediate

proficiency level might then show the slowest solution behavior, leading to an ear-

lier onset of NRIs. Relationships between proficiency and the onset point of NRIs

appear likely to be complex in situations in which students are not motivated to

show their maximum performance. In low-stakes assessments, test-taking behavior

has been found to be related to test-taking motivation (Wise & DeMars, 2005),

which means that NRIs could be affected by motivational reactions to the test.

Therefore, students with low proficiencies might either have an early onset of

NRIs because they become frustrated with the test, or they might complete the test

without investing much effort. Hence, the distribution of NRI onsets could be mul-

timodal for certain levels of proficiency.

In addition, the amount of NRIs could also depend on person characteristics as

well as on the proficiency being measured by the test (e.g., Dorans, Schmitt, &

Bleistein, 1992; Evans & Reilly, 1972; Köhler et al., 2015a; Schmitt, Dorans, Crone,

& Maneckshana, 1991). In principle, person variables could be related to the stu-

dents’ proficiencies and to the onset of NRIs. Hence, the question arises of whether

NRIs can be fully predicted by the proficiency variable, or whether the person cov-

ariates have an additional impact on NRIs when proficiency is held constant. This

question has some similarity with the concept of differential test functioning (Shealy

& Stout, 1993) that refers to the question of whether a test works differently for

examinees with the same proficiency but taken from different groups. Therefore, a
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finding that a covariate has an effect on NRIs while conditioning on proficiency indi-

cates a differential onset of NRIs in examinees of the same proficiency, implying a

systematic difference in the amount of information provided (i.e., the number of item

responses preceding NRIs) to measure proficiency at the different levels of the cov-

ariate. Such differences could be due to different mechanisms, such as mastery in the

test language or test-taking motivation, among others. Native speakers have been

found to respond to more items in the allotted testing time (Schmitt & Bleistein,

1987; Sireci, Han, & Wells, 2008), and higher test-taking motivation has been found

to be related to more time being spent on tasks (Scherer, Greiff, & Hautamäki,

2015), which could lead to an earlier onset of NRIs. However, as the background

characteristics examined could be related to proficiency, in both examples, a rigorous

test of the effects of students’ background characteristics on NRIs requires the

impact of proficiency on NRIs to be accounted for.

The aim of the present article is to provide a flexible and easy-to-use IRT approach

for modeling the onset of NRIs as a possibly nonlinear function of the proficiency

measured by the test, as well as of additional person covariates. Our model com-

bines a two-parameter logistic (2PL) IRT model (Birnbaum, 1968), applied to the

item responses, with a latent class model (LCM; Formann, 1985), applied to the

indicators of NRIs. Our LCM can be conceived as a semiparametric version of the

continuous steps model for assessing the onset of NRIs suggested by Glas and

Pimentel (2008). In our approach, the relationships of the onset of NRIs with the

proficiency variable and the additional covariates were modeled via a multinomial

logit regression, thereby allowing for nonlinear relationships. The newly proposed

model was applied to a timed low-stakes test of mathematics achievement in order

to demonstrate its utility in applied settings. In a small simulation study, we further

investigated whether the model correctly recovers the relationships of NRIs with

proficiency and covariates, and whether our approach reduces biases in the esti-

mates of item parameters, proficiency distributions, and covariate effects on profi-

ciency that are often found in IRT models that disregard missing responses (e.g.,

Rose, von Davier, & Xu, 2010).

Relationships of NRIs With Proficiency and Covariates

Several studies have documented relationships between the onset of NRIs and the

characteristics of test takers. Results suggest that the amount of NRIs is higher in eth-

nic minority groups (Dorans et al., 1992; Schmitt & Bleistein, 1987; Schmitt et al.,

1991) but does not appear to differ between gender groups (Evans & Reilly, 1972;

Schmitt et al., 1991; Wild, Durso, & Rubin, 1982). Some more recent studies have

examined the relationships between NRIs and the proficiency measured by the test by

adopting the IRT approach suggested by Glas and Pimentel (2008). These studies

provide evidence for statistically significant relationships between proficiency and

the onset of NRIs, but the pattern of results differed between tests and samples (Glas

& Pimentel, 2008; Pohl et al., 2014). Most recently, Köhler et al. (2015a) studied the

172 Educational and Psychological Measurement 79(1)



predictors of NRIs in reading tests implemented in several age groups. Their analyses

revealed reading speed to be a strong and consistent predictor of NRIs, in that faster

readers had a later onset of NRIs. Köhler et al. (2015a) employed the number of NRIs

as a dependent variable in linear regression analyses. Similarly, researchers employ-

ing the model of Glas and Pimentel (2008) also did not investigate the nonlinear rela-

tionships that, as we have described above, appear plausible in the case of NRIs.

Investigating the effects of covariates on NRIs while simultaneously controlling

for latent proficiency might be of interest for two reasons. First, in studies aiming to

describe the distribution of student proficiencies in different subpopulations, the dif-

ferential onset of NRIs indicates a threat to the validity of group comparisons as it

means that groups differ in their test-taking behavior. Thus, group differences in pro-

ficiency might be different if respondents of the same proficiency level show the

same test-taking behavior. Second, the effect of covariates on the onset of NRIs,

while controlling for proficiency, could be a key research question in some applica-

tions. For example, researchers might hypothesize that a specific curricular interven-

tion raises students’ proficiencies and, in addition, enhances the pace at which

students work on the test, thereby reducing the number of NRIs. To provide support

for this hypothesis, a result indicating a differential onset of NRIs would be required.

Taken together, the differential onset of NRIs indicates that proficiency does not

provide a sufficient explanation for differences in the onset of NRIs across different

levels of a covariate. Therefore, differential onsets of NRIs indicate that test takers

that differ with respect to the covariate’s value, but not to the level of proficiency,

show different test-taking behavior. The differential onset of NRIs could indicate that

the equivalence of measuring the proficiency variable across groups is violated.

However, whether such a finding is considered as a threat to the validity clearly

depends of the aims of the investigation.

IRT Models for Missing Responses and the Onsets of NRIs

Missing item responses in tests are regarded as problematic because they are likely to

be related to the proficiencies being measured. As such, the missing data are non-

ignorable (NMAR; Little & Rubin, 2002), which means that missing data mechan-

isms need to be included in the model in order to prevent biased parameter estimates.

To accomplish this task within the framework of the IRT, the full data likelihood that

includes the vector of item scores Y, a set of missing-data indicators D, and possibly

a set of covariates X, that is P Y , DjXð Þ, needs to be considered. Consideration of X

makes it possible to investigate whether the relationships between Y and D vanish

once accounting for X, so that the missing-data process is turned into a missing-

at-random (MAR; Little & Rubin, 2002) process. Under MAR, D no longer contri-

butes to the estimation of parameters that apply to Y, and can therefore be ignored

(e.g., Glas, Pimentel, & Lamers, 2015). Different types of modeling strategies have

been applied to P Y , DjXð Þ. In typical IRT applications, the item scores Y are assumed

to reflect one or multiple continuous proficiency variables, so that the relationships
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between Y and D are modeled via the relationships of the proficiency variables with

D (e.g., Rose, von Davier, & Nagengast, 2015).

Pattern mixture IRT models (Little, 1994) aim to stratify the sample according to

distinct missing-data patterns. They provide indications of NMAR patterns when the

proficiency variable (e.g., its mean) differs between strata. Practically, these models

can be implemented either by means of multigroup IRT models, in which the groups

are defined by distinct patterns of missingness, or by regressing the proficiency vari-

ables on indicators of the missing-data patterns, as well as on the covariates (e.g.,

Rose, von Davier, & Nagengast, 2017). In the context of NRIs, Rose et al. (2010)

suggested regressing the continuous proficiency variable on the number of the indi-

viduals’ NRIs. The model can be extended to include X, as well as nonlinear relation-

ships between proficiency and NRIs, for example, by using the polynomial functions

of the amount of NRIs. Although the model is quite flexible and easy to use, it is not

well suited for the purpose of studying the determinants of NRIs, because D is treated

as an independent variable.

A second type of models assumes that additional latent variables underlie the

missing-data indicators D, which means that the relationships between proficiency

and D are modeled via the relationships between latent variables. Most often, the joint

distribution of latent variables is assumed to be multivariate and normal. These kinds

of IRT models can be considered to belong to the family of shared parameter models

(Wu & Carroll, 1988). They have been extended to multidimensional representations

of D, with the possibility of combining indicators of omissions with indicators of

NRIs (Rose et al., 2017), and of including the covariates X affecting all latent vari-

ables (Glas, Pimentel, & Lamers, 2015). A drawback of these models is that the (con-

ditional) multivariate normality assumption implies linear relationships between

latent variables; this might be called into question. Köhler, Pohl, and Carstensen

(2015b) relaxed the linearity assumption by formulating a two-dimensional IRT

model for proficiency and omitted responses as a general diagnostic model (GDM;

von Davier, 2008). GDMs allow any kind of multivariate distribution to be approxi-

mated by discretizing the latent variables into different prespecified levels. However,

to the best of our knowledge, GDMs for missing responses have not yet been

extended to include continuous covariates, and have not been applied to NRIs.

Selection models (Little & Rubin, 2002) refer to the third type of models that can

be applied to account for NMAR patterns. Here, the full data likelihood P Y , DjXð Þ is

factorized into the distribution of Y conditional on X, P Y jXð Þ, and the probability of

missing data D given Y and X, P DjY , Xð Þ, such that (e.g., Rose et al., 2017):

P Y , DjXð Þ= P Y jXð ÞP DjY , Xð Þ: ð1Þ

Because D is expressed as an outcome variable, selection IRT models provide a nat-

ural way for studying the determinants of missing responses, including NRIs. Within

the IRT there are different ways of specifying models in which D depends on profi-

ciency. In some models, it is assumed that the dependencies between all indicators Y

and D can be fully explained by the proficiency variables. This assumption has been
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relaxed in other applications by including an additional continuous latent variable, so

that D is simultaneously affected by multiple dimensions. In addition, the models

can be extended to include covariates assumed to affect proficiencies, as well as the

missing-data indicators. Furthermore, Bacci and Bartolucci (2015) relaxed distribu-

tional assumptions in these models by discretizing the latent variable. Their model is

very flexible because it allows the relationships of proficiencies and covariates with

missing responses to be item-specific. However, its drawback is that it includes many

parameters that might not be reliably estimated in the case of a small percentage of

missing values. Therefore, examining the determinants of the onsets of NRIs in the

context of selection IRT models calls for an approach that consists of a suitable num-

ber of parameters to be estimated, and that allows for nonlinear effects of all the vari-

ables, including proficiencies. Furthermore, the model should allow for a flexible

assessment of relationships.

NRIs reflect a special kind of missing data, because once an item response is miss-

ing in the sequence of test items, all responses that follow the first missing response

are also missing. Hence, this pattern of missing data can be regarded as being irrever-

sible. Such situations are often at the core of longitudinal investigations that focus

their attention on the risk (or hazard) that some irreversible events occur over time

by employing methods known as event history analysis or survival analysis (Allison,

2014; Singer & Willett, 1993). Hence, the occurrence of NRIs over the sequence of

test items, as represented by P DjY , Xð Þ in Equation (1), can be examined by similar

methods, with the difference that the (discrete) time points are replaced by discrete

positions in a sequence of items. As we will show in the next section, when reformu-

lated as a selection model, the model proposed by Glas and Pimentel (2008) can be

regarded as a type of discrete-time event history model.

Glas and Pimentel’s (2008) Model for NRIs in Speeded Tests

Glas and Pimentel (2008) considered NRIs and proposed a two-dimensional IRT

model that includes a latent proficiency dimension and a second dimension indicating

the number of items attempted by the examinees (i.e., a steps variable). The indica-

tors of the proficiency variable are the actual item responses. In the case of dichoto-

mous item responses, the proficiency variable is defined according to the 2PL model

such that:

logit P yij = 1jui

� �� �
= aj ui � bj

� �
, ð2Þ

which means that the logit of the probability of a correct item response of individual i

(i = 1, 2, . . ., N) to item j (j = 1, 2, . . ., J), yij, is a function of the individual’s profi-

ciency ui. In Equation (2), aj and bj stand for the discrimination and difficulty of item

j.

The latent variable that assesses the onset of NRIs is measured by means of

response indicators that are defined as follows: For each examinee, the vector of

response indicators consists of a series of ‘‘1’’ for all items to which the examinee
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responds, followed by, at most, one ‘‘0’’ for the first NRI, and missing flags for all

subsequent NRIs. For example, in a hypothetical seven-item test, an examinee who

does not reach the last three items receives a vector of response indicators of d
0

i=

[1111099], where ‘‘9’’ indicates a missing value.

The steps variable underlying response indicators is defined by the steps model

(Verhelst, Glas, & de Vries, 1997), which expresses the probability that a response is

observed in a particular item position, given that all former item responses were

observed. Glas and Pimentel (2008) presented applications in which the steps model

included only a difficulty parameter, similar to the Rasch model (Rasch, 1960), such

that

logit P dij = 1jji

� �� �
= ji � tj, ð3Þ

where dij is the value of the response indicator for person i for item position j, ji

stands for the examinee i’s steps variable with zero mean and unconstrained var-

iance, and tj is a difficulty parameter of the response indicator in item position j. In

the steps model, the difficulty parameters tj are constrained to follow a linear func-

tion across item positions, tj = t0 + j� Jð Þt1, which means that only two parameters

are estimated (i.e., t0 and t1). The latent variable j measures the number of steps

taken by an examinee (i.e., number of items that are not NRIs): The lower the values

of the steps variable j, the earlier the onset of NRIs.

The proficiency variable u and the steps variable j are assumed to have a bivariate

normal distribution with the correlation coefficient rj, u. Positive correlations indicate

that higher proficiencies are associated with later onsets of NRIs, whereas negative

relationships indicate that higher proficiencies are related to earlier onsets of NRIs. In

applications of Glas and Pimentel’s (2008) model, the absolute size of the correlation

coefficient is regarded as an indicator of NMAR missing-data patterns. However, as

our focus is on the relationship between proficiency and the onset of NRIs, we

focused on a reparametrized version of their model in which j was treated as a depen-

dent variable predicted by u.

Relationships to Discrete-Time Event History Analysis. As previously mentioned, j can be

treated as a variable depending on u, such that

ji = gj, uui + zj, i, ð4Þ

with gj, u being a structural regression weight, and zj standing for a normally distrib-

uted residual with zero mean and unconstrained variance that is uncorrelated with u.

By combining Equations (3) and (4), the relationships of u with the response indica-

tors dj can be represented as

logit P dij = 1jui, zj, i

� �� �
= gj, uui + zj, i � tj, ð5Þ

showing that the model implies the same effect of the proficiency variable on the

logit of each response indicator irrespective of its position.
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Equation (5) has direct connections to discrete-time event history analysis, which

models the effect of a variable on the probability that an irreversible event will occur,

given that the event has not occurred before. If the ideas of event history analysis are

applied to the phenomenon of NRIs, the focus is on P dij = 0
� �

, marking the probabil-

ity of not making the step from item j21 to item j (given that all previous steps were

taken), instead of on P dij = 1
� �

, which refers to the probability of making the step

from item j21 to item j. To derive the hazard probability, the right-hand side of

Equation (5) could be multiplied by 21, such that

logit P dij = 0jui, zj, i

� �� �
= tj � gj, uui + zj, i

� �
: ð6Þ

Hence, the model of Glas and Pimentel (2008) can be reformulated as a kind of

discrete-time event history model that is applied to the sequence of test items instead

of to the sequence of time points, which means that the model can be understood as a

discrete (item) sequence event model (DSEM). In Equation (6), u serves as an expla-

natory variable, and the person variable zj reflects a frailty factor (Allison, 2014; B.

Muthén & Masyn, 2005) that accounts for heterogeneity in the hazards of NRI onsets

not explained by u. Similar to traditional discrete-time event models (Allison, 2014),

the DSEM representation of the model of Glas and Pimentel (2008) assumes that the

logits of all items’ hazard probabilities are equally affected by u because gj, u is not

allowed to vary across items. In event history models, this assumption is known as

the proportional hazards assumption, which means that the logit-hazard profiles

(defined by j = 1, 2, . . ., J) predicted by u are proportional to one another (i.e., they

have a common shape and are mutually parallel; Singer & Willett, 1993). Note that

the DSEM presented in Equation (6) is more restrictive than conventional event his-

tory models because the parameters tj are constrained to follow a linear function,

thereby forcing the baseline hazards of NRIs to increase over the course of the test.

Typical discrete-time event models do not incorporate such assumptions and leave

the t-parameters unconstrained.

The DSEM formulation of Glas and Pimentel’s (2008) model makes it possible to

apply the graphical tools developed in the context of event history analysis to

the onset of NRIs. Here, we focus on the survival function, which depicts the prob-

ability of ‘‘surviving’’ over a sequence of m (m� J) items as a function of the expla-

natory variable u. In the context of the present model, the survival function can be

written as

P Si � mjui, zj, i

� �
=
Ym
j = 1

P dij = 1jui, zj, i

� �
, ð7Þ

where S = 1, 2, . . . , J denotes the individual survival variable, whose value is equal

to the last item a person has responded to. The survival function allows for a com-

pact representation of the relationships between person variables and the probability

of completing the test up to a specific point. In real applications, the survival func-

tion P Si � mjuið Þ, defined over the full distribution of the frailty factor, might be
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more relevant than the survival function specified for specific combinations of u and

zj (Equation 7). Deriving P Si � mjuið Þ requires determining the average of the func-

tion given in Equation (7) over the full distribution of zj, which might turn out to be

quite cumbersome in practice. This goal can be achieved by integrating over zj, i, or

by simulating the distribution survival functions at the desired values of u.

To sum up, the model suggested by Glas and Pimentel (2008) can be reformulated

as a DSEM. This shows that Glas and Pimentel’s (2008) model builds upon the pro-

portional hazards assumption, that is, it specifies that u has an equal impact on all

response indicators. Their model also makes strong assumptions about the increasing

baseline hazards (for a discussion, see Pohl et al., 2014). Furthermore, the model

builds upon the assumption of a normally distributed frailty factor.

A Semiparametric Model for the Onset of NRIs

In this section, we present a semiparametric version of the model of Glas and

Pimentel (2008), which makes less strong assumptions about the distribution of the

steps variable (i.e., the j-variable in Equation 4) and relaxes the proportional hazards

assumption. In addition, we extend the model to include covariates, so that the model

allows the differential onset of NRIs to be examined. Our approach builds upon the

(continuous) 2PL model for item responses as represented in Equation (2), and on a

semiparametric representation of the steps model given in Equation (4). To provide a

metric for the steps variable that can be interpreted more easily, we propose a differ-

ent parameterization of Equation (3). We define a new steps variable d that can be

understood as a direct measure of the number of steps taken by an individual:

logit P dij = 1jdi

� �� �
= l di � jð Þ: ð8Þ

In Equation (8), l stands for a discrimination parameter that applies to all response

indicators. The difficulty parameters given in Equation (3) are replaced by the item

indexes j = 1, 2, . . ., J. Because the difficulties in Equation (8) are fixed, the mean of

d can now be estimated. The latent variable d is measured in units of item positions,

such that di = j provides a probability of .5 of providing an item response in position j.

The probabilities of providing responses to items preceding j are higher than .5 and

the probabilities for item positions after j are lower than .5. Because the items are

assumed to be equally spaced, the probability curve follows a logistic function. The

steepness of the function is driven by l, with higher values indicating more abrupt

changes in the probability of responding around the individual inflection point di.

In our semiparametric version of the steps model, we specify d to have a discrete

distribution, with K support points dk (k = 1, 2, . . ., K) that are freely estimated, in

order to derive a flexible representation of the distribution of the d-variable. This

approach is equivalent to a located latent class model (Formann, 1985), which

includes a latent class variable c with K categories and class proportions pk with 0

�pk � 1 and
PK

k = 1 pk = 1. The purpose of our LCM application was to relax the

assumption of a normally distributed steps variable (and, therefore, of a normally
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distributed frailty factor), and to approximate the unknown distribution of d (B.

Muthén & Masyn, 2005; Masyn, 2009). Our approach makes it possible to relax the

linearity assumption included in the model of Glas and Pimentel (2008), which

implies the proportional hazards assumption. Our approach can be considered as an

indirect application of an LCM (Bauer, 2005), where the primary task is not to clas-

sify individuals, but to relax distributional and functional assumptions. The LCM

part can be represented by altering Equation (8) to

logit P dij = 1jci = k
� �� �

= l dk � jð Þ ð9Þ

As shown in Equation (9), d is assumed to be constant within latent classes, which

means that, for each class, only one pattern of probabilities exists for all J response

indicators. The values of dk can be considered as the support points of a nonpara-

metric approximation of an arbitrary continuous distribution, whereas the latent class

proportions pk can be considered as the weights associated with support points

(Aitkin, 1999; Bacci & Bartolucci, 2015).

The model for response indicators has connections to mixture discrete-time event

history analysis (B. Muthén & Masyn, 2005). As the pattern of probabilities of

response indicators is constant within each latent class, each class provides one sur-

vival function:

P Si � mjci = kð Þ=
Ym
j = 1

P dij = 1jci = k
� �

: ð10Þ

Furthermore, the marginal survival function can be derived by summing over the

class-specific survival functions (Equation 10) weighted by their class proportions:

P Si � mð Þ =
XK

k = 1

pkP Si � mjc = kð Þ: ð11Þ

The semiparametric approach allows for heterogeneity in the latent steps variable d,

since the LCM approach circumvents the assumption of a normally distributed latent

steps variable.

The main motivation behind our semiparametric approach was to relax the propor-

tional hazards assumption implicitly made in the model of Glas and Pimentel (2008;

see Equation 6). Here, we estimate the impact of u on d by means of multinomial

regression, relating the latent class variable c to u, such that

P ci = ljuið Þ=
exp nl + gl, uui

� �
PK

k = 1 exp nk + gk, uui

� � , ð12Þ

where nl is the structural intercept specific to class c = l, and gl, u is the regression

weight relating the proficiency variable u to the latent class c = l. We impose the
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typical identification restriction of fixing the multinomial parameters of the class c =

K to zero.

By using the multinomial regression (Equation 12), the proportional hazards

assumption is relaxed. Since, for each latent class c, a regression coefficient is esti-

mated, an overall nonlinear relationship between proficiency and the onset of NRIs

is modeled. For example, the analysis could uncover that u is only related to mem-

bership in classes representing later onsets of NRIs, whereas the continuous approach

specifies that u shows an equal impact on all response indicators. Alternatively, find-

ings could indicate that low levels of proficiency are simultaneously related to mem-

bership in classes representing an early onset of NRIs and classes representing a late

onset of NRIs.

The model described in Equations (9) and (12) fits into the framework of mixture

discrete-time event history models (B. Muthén & Masyn, 2005). Therefore, we refer

to this model as mixture discrete (item) sequence event model (MDSEM). In the

MDSEM, the survival function that depends on u is derived by summing over the

class-specific survival functions (Equation 10) weighted by the class probability pre-

dicted by u (Equation 12):

P Si � mjuið Þ =
XK

k = 1

P ci = kjuið ÞP Si � mjci = kð Þ: ð13Þ

The MDSEM provides a flexible and easy-to-use framework for deriving the sur-

vival functions at fixed values of u. Deriving the survival functions for fixed levels of

u no longer requires integration over a continuous frailty factor, as is the case in the

DSEM (Equation 7).

Introducing Additional Covariates. We now address the case of introducing covariates

into the model. To keep the presentation simple, we focus on the case with a single

covariate x, but note that multiple covariates could be included simultaneously. We

begin by using x for predicting u. Here, we assume a linear relationship, such that

ui = ku + gu, xxi + zu, i ð14Þ

where ku is a structural intercept, gu, x is the regression weight of x predicting u, and

zu is a normally distributed residual term with an expectation value of zero that is

assumed to be uncorrelated with all other variables in the model.

The relationship between latent classes and predictors u and x is now given as

P ci = ljui, xið Þ=
exp nl + gl, uui + gl, xxi

� �
PK

k = 1 exp nk + gk, uui + gk, xxi

� � , ð15Þ

where the parameters are as defined as before (Equation 12) and subjected to the

same identification constraints. The only difference is that the multinomial regression
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part is extended by the covariate x and its class-specific multinomial regression

weight gl, x.

Equation (15) is of key importance to the suggested model. More specifically, the

hypothesis that missing data caused by NRIs do not depend on the covariate x (or on

a set of covariates X) implies that g1, x = g2, x = � � � = gK, x = 0, assuming that the cov-

ariate’s effects on class membership are transmitted via its impact on the proficiency

variable (Equation 14). When the model is estimated by maximum likelihood, this

hypothesis can be evaluated by means of a likelihood ratio test (LRT) that compares

the data likelihood of a full model with a nested model in which the relationships

with the latent class variable c are accessed via Equation 12, that is, by setting

g1, x = g2, x = � � � = gK , x = 0. A statistically significant LRT provides evidence for the

differential onset of NRIs, depending on the covariate considered.

If the covariate x is found to predict latent class membership, its impact can be

visualized by using the survival function, evaluated with selected combinations of u

and x:

P Si � mjui, xið Þ =
XK

k = 1

P ci = kjui, xið ÞP Si � mjci = kð Þ: ð16Þ

Model Estimation and Implementation. The MDSEM can be estimated by maximum

likelihood estimation. Indeed, Guo, Wall, and Amemiya (2006) have outlined the

estimation of a general class of models, of which the MDSEM is a special case. The

joint distribution of the item responses Y and NRI indicators D can be written as (by

dropping the symbolic representation of model parameters)

P Y , DjXð Þ=
XK

k = 1

ð
P Djci = kð ÞP Y juð ÞP ci = kju, Xð ÞP ujXð Þdu, ð17Þ

with the full data likelihood function L given by

L =
YN
i = 1

P Y i, DijX ið Þ=
YN
i = 1

ð
P Y i, Di, ci, uijX ið Þd ci, uið Þ, ð18Þ

whereby the integral includes the continuous integral over u, as well as summation

over c.

Guo et al. (2006) have shown that the model parameters can be estimated by

means of the expectation maximization (EM) algorithm, as well as by a Gaussian

quadrature with a quasi-Newton algorithm. Hence, the MDSEM can be estimated

with different computer programs, including Latent Gold (Vermunt & Magidson,

2005) and Mplus (L. K. Muthén & Muthén, 1998-2012). In the present article, we

used Mplus, which combines the aforementioned algorithms to a so-called acceler-

ated EM algorithm (EMA). Model estimation starts with the EM algorithm but

changes to the quasi-Newton algorithm if EM becomes slow.
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There are several issues that need to be considered in practice. The first issue is

how to define the metric of the proficiency variable. In most IRT applications, this

issue is resolved by standardizing the distribution of u (i.e., M = 0, SD = 1). Since, in

the general case, u is specified as an endogenous variable that is impacted by covari-

ates, we suggest freely estimating the (residual) variance term, fixing the mean or the

structural intercept of u to zero (Equation 14), and constraining the discrimination

parameters such that they are, on average, one. The latter constraint allows the (resi-

dual) variance of the proficiency variable to be freely estimated and does not alter its

units of measurement when including covariates to predict u.

The second issue is that NRIs might not exist in the first positions of a test. As a

consequence, all response indicators gathered before the first onset of NRIs have a

constant value across all respondents, which means that they should be disregarded

in the process of model estimation.

The third issue pertains to the optimal number of latent classes. In applications of

latent class analysis, the decision concerning the number of classes to use is typically

based on measures of goodness of fit, such as Schwarz’s (1978) Bayesian informa-

tion criterion (BIC; Nylund, Asparouhov, & Muthen, 2007). Users need to be aware

that the optimal number of latent classes could also depend on the covariates used for

predicting latent class membership (Lubke & B. Muthén, 2005). We suggest basing

the decision about the number of classes K on the full MDSEM and keeping K con-

stant across different versions of the model (e.g., models where the covariates are

excluded) to make sure that results are not affected by the use of different numbers

of classes. Some researchers have suggested identifying the number of latent classes

prior to the inclusion of covariates (Kim, Vermunt, Bakk, Jaki, & Van Horn, 2016;

Nylund-Gibson & Masyn, 2016). This approach is useful in direct applications of the

LCM (Bauer, 2005) that require the categorical latent variable to exist independent

of the covariates included because individuals’ class membership is substantively

interpreted. However, the MDSEM is based on an indirect application of the LCM

that does not aim to categorize individuals, but only to relax parametric assumptions.

Finally, one problem with maximum likelihood estimation for mixture IRT mod-

els is that the solution can converge to a local rather than the global maximum (Finch

& French, 2012). Therefore, the usage of multiple random starting values is recom-

mended to ensure replication of the best likelihood value (Lubke & B. Muthén,

2005).

Empirical Illustration

In the next sections, we report on our application of the proposed MDSEM to a timed

low-stakes mathematics test taken from a typical large-scale study. This application

served three purposes. First, we compared the MDSEM to the model suggested by

Glas and Pimentel (2008), thereby demonstrating the flexibility gained by implement-

ing their model in a semiparametric framework. Second, we exemplify how to use

the MDSEM to evaluate a test for the differential onset of NRIs while holding the
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proficiency variable constant. Third, we exemplify the use of graphical procedures to

aid the interpretation of model results, while focusing on the survival function.

The models were implemented in Mplus 7.4 (L. K. Muthén & Muthén, 1998-

2012) by using the EMA algorithm using standard integration with 15 integration

points for the proficiency variable. All models were estimated using multiple sets of

random starts. In all cases, the best log-likelihood was replicated. In order to deter-

mine the number of classes, we estimated a series of models ranging from 3 to 8

latent classes. The decision concerning the number of classes was based on the BIC.

Sample and Procedure

The sample was taken from the study ‘‘Mathematics and Science Competence in

Vocational Education and Training’’ (ManKobE; e.g., Retelsdorf, Lindner,

Nickolaus, Winther, & Köller, 2013). It encompassed apprentices in their first year

of vocational education and training (VET) in mathematics and science-related occu-

pations, namely, industrial clerks and different technical professions (e.g. industrial

and laboratory technicians; further referred to as technicians). The test was designed

to assess mathematical skills at the core of VET for industrial clerks. The test con-

tained only tasks that could, in principle, be solved with the mathematical knowledge

acquired in regular schooling, but the problems presented were embedded in an orga-

nizational context typical for industrial clerks. Hence, in this analysis, we expected

that industrial clerks would have higher proficiency, and we hypothesized that they

would show a later onset of NRIs than technicians because the context in which the

items were presented was more familiar to clerks.

We considered the data of N = 967 apprentices at the beginning of their VET

(average time in VET of about 3 months); cases with less than three valid responses

in the whole test and those with missing information on the covariate considered were

excluded. From all test takers, n = 214 cases were in VET for industrial clerks; the

remaining apprentices were in VET for technicians (n = 753). On average, appren-

tices were 18.70 years old (SD = 2.88). The test considered consists of 20 dichoto-

mously scored items and it was administered with a time limit of approximately 15

minutes. NRIs were first observed in item position j = 5. Therefore, response indica-

tors for the first four items were not included in the analysis.

Results
Descriptive Results. Only 28% of the sample completed the first three quarters of the

test and only 16% reached the last item. The sample-based baseline hazard function

of the onsets of NRIs is depicted in Figure 1. It appeared that the hazard rates for

NRIs did not constantly increase across item positions but rather reached a maximum

after the first three quarters of the test (i.e., in position 15). In addition, the hazard

function given in Figure 1 appeared to be constituted of several peaks. This led us to

expect that the semiparametric steps model was likely to identify several latent

classes that are sharply separated from each other.
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Nonparametric Representation of the Distribution of Steps Variable. As shown in Table

1, the model with K = 6 classes achieved the best fit in terms of the BIC, and we

therefore decided on six classes. In this model, the discrimination parameter of

response indicators was estimated to be l̂ = 2.16 (SE = 0.116). Hence, a relatively

sharp step in the probability of responding to items around the inflection points (sup-

port points) was estimated. This pattern was expected, on the basis of the sharply

peaked hazard function (Figure 1). The estimates of support points and posterior

class proportions are summarized in Table 2. As shown there, the support points

were quite evenly distributed, and were close to the peaks of the empirical hazard

function (Figure 1). As indicated by the estimated posterior proportions, the distribu-

tion of the steps variable appeared to have two modes. For c = 6, the support point

was somewhat above the maximum test length of 20 items (i.e., d̂6 = 20.92) and this

class received a proportion of p̂6 = .19. This class describes test takers who were

likely to complete the test. Class c = 3 received the largest proportion, indicating that

around 30% of the test takers (p̂3 = .32) switched to NRIs around the middle position

of the test (d̂3 = 10.43).

Comparison With the Model of Glas and Pimentel (2008). We now turn to the compari-

son of the MDSEM, in which the indicator of group membership was discarded, with

the model for NRIs proposed by Glas and Pimentel (2008). The first step was to esti-

mate the MDSEM without considering group membership and to estimate Glas and

Pimentel’s model. The MDSEM contained 57 free parameters and achieved a log-

likelihood value of LL = 26,994 (AIC = 14,103, BIC = 14,381). The model of Glas

and Pimentel (2008) contained fewer parameters (44) and achieved a lower log-

likelihood value of LL = 27,172 (AIC = 14,432, BIC = 14,647). In addition, the

information indices were clearly in favor of the MDSEM.

Despite the difference in model-data fit, both models provided nearly identical

estimates for the measurement part of the proficiency variable. The estimates of item

discriminations showed only minor deviations between the models (mean absolute

Figure 1. Sample-estimated hazard probabilities of onsets of not-reached items (NRIs).
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deviation [MAD] = 0.030), and the same was true for item difficulties (MAD =

0.080). Furthermore, the variance of the latent proficiency variable was estimated by

the model of Glas and Pimentel (2008) as ŝ2
u = 1.95 (SE = 0.257), and by the

MDSEM as ŝ2
u = 1.91 (SE = 0.248). Marked differences were found for the esti-

mated relationship between u and the steps variable. In the model of Glas and

Pimentel (2008), the unstandardized regression weight was estimated to be ĝj, u =

20.21 (SE = 0.044, p \ .001) and a standardized counterpart to be ĝstnd
j, u = 20.39

(SE = 0.100, p \ .001). This result documents a relationship of medium strengths

that indicates that higher levels of proficiency were related to earlier onsets of NRIs.

The multinomial logit coefficients determined by the MDSEM are reported in

Table 3. The intercept parameters mirrored the latent class proportions (Table 2). The

regression weights represent the change in the log-odds of belonging to class c = l

relative to the reference class c = 6 for one-unit increase in u. The analyses uncovered

a pattern reflecting a curvilinear relationship and indicating that the chance of being

classified into Classes 2 to 4, as opposed to Class 6, increased with higher values of

u. To gain a better insight into the relationships, Table 3 also reports the class prob-

abilities expected for values of u at the 10th, 50th, and 90th percentiles of the (nor-

mal) proficiency distribution. As can be seen, test takers of low ability tended to be

Table 1. Fit Statistics for Mixture Discrete (Item) Sequence Event Model With Different
Numbers of Latent Classes (K).

No. of parameters Log-likelihood AIC BIC

K = 3 51 27,066 14,233 14,482
K = 4 55 27,056 14,222 14,490
K = 5 59 27,021 14,159 14,447
K = 6 63 26,969 14,064 14,371
K = 7 67 26,963 14,060 14,387
K = 8 71 26,954 14,050 14,396

Note. AIC, Akaike information criterion; BIC, Bayesian information criterion.

Table 2. Proportions and Support Points of the Nonparametric Representation of the
Distribution of the Steps Variable.

p̂k d̂k (SE)

k = 1 .05 4.75 (0.167)
k = 2 .16 7.65 (0.078)
k = 3 .32 10.43 (0.052)
k = 4 .19 13.48 (0.064)
k = 5 .09 17.62 (0.099)
k = 6 .19 20.92 (0.123)
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more evenly distributed across latent classes, whereas high ability test takers became

more concentrated in the interim classes, especially in Class 3.

To facilitate a better comparison of the predictions made by the two models,

Figure 2 provides the survival curves derived at the 10th, 50th, and 90th percentiles

of the (normal) proficiency distribution. The survival functions were markedly differ-

ent. More specifically, Glas and Pimentel’s (2008) model predicted that the survival

curves were already different at the onset of the first NRIs (i.e., starting from j = 5).

In contrast, the MDSEM revealed that the onset of NRIs, and hence the survival

curves, started to be affected by proficiency from the middle position (around j = 10)

on, which means that the occurrence of NRIs in the second quarter of the test

(between the 5th and 10th item position) was not related to proficiency. In addition,

the MDSEM indicated larger differences in the survival probabilities in the last quar-

ter of the test, compared to the model of Glas and Pimentel (2008). Moreover, the

survival curves provided by the MDSEM were not as smooth as the curves provided

by the model of Glas and Pimentel (2008), which were close to a linear function.

The survival curves of the MDSEM appeared to reflect the peaked nature of the

hazard functions (Figure 1).

Differential Onset of NRIs. The last issue considered here concerns the question of

whether membership in the two VET fields was related to the onset of NRIs. Hence,

we now turn to the full MDSEM, in which the group membership was included (0 =

technicians, 1 = clerks). The goodness of fit of the full MDSEM is reported in Table

1. In order to find out whether group membership was related to the onset of NRIs

over and above proficiency, we estimated a more constrained version of the

MDSEM, in which the multinomial weights of group membership were fixed to zero.

The fit of the models was compared via an LRT and provided a statistically signifi-

cant result, x2(df = 5) = 24.9 (p \ .001), indicating that group membership was

related to the onset of NRIs over and above the proficiency variable.

Table 3. Multinomial Logit Coefficients of the Regression of Latent Class on the Proficiency
Variable (u), and Predicted Class Probabilities as Selected Values of u (10th, 50th, and 90th
Percentiles).

Multinomial logit coefficients Predicted class probabilities

n̂k (SE) ĝk, u (SE) u = 21.77 u = 0.00 u = 1.77

k = 1 21.25 (0.196)*** 0.08 (0.184) .08 .05 .03
k = 2 20.05 (0.123) 0.38 (0.113)** .15 .17 .17
k = 3 0.59 (0.107)*** 0.49 (0.098)** .23 .32 .40
k = 4 0.11 (0.117) 0.46 (0.104)** .15 .20 .24
k = 5 20.69 (0.148)*** 0.20 (0.124) .11 .09 .07
k = 6 — — — — .30 .18 .09

**p \ .01. ***p \ .001.
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The analysis provided the expected results. Clerks were found to have a higher

proficiency level (ĝu, x = 0.66, SE = 0.130, p \ .001), and a lower probability of

belonging to the classes c = 2 and c = 3 than to the reference class c = 6, compared

with the technicians. These results are shown by the multinomial regression weights

provided in Table 4.

The regression weights for the proficiency variable predicting class membership

were very similar to the results provided in Table 3. Table 4 also reports the class

probabilities predicted by proficiency and group membership. The corresponding

probabilities were evaluated at the 10th, 50th, and 90th percentiles of the combined

proficiency distribution with equally weighted groups. Clerks of the same proficiency

level were more likely to belong to the latent classes associated with a later onset of

NRIs. This finding is visualized by the survival functions in Figure 3. The survival

function already differed between groups right after the first onset of NRIs (at j = 5).

In this region, survival did not depend on proficiency. The most pronounced group

differences were determined for the third quarter of the test, where the survival func-

tion showed a steeper decrease at all levels of proficiency in the group of technicians.

In the fourth quarter of the test, the survival curve was flatter for technicians, but the

survival probability was still lower compared to the group of industrial clerks.

Summary

With this application, we intended to provide an example for an application of the

proposed MDSEM in a low-stakes test characterized by a high prevalence of NRIs.

Figure 2. Survival functions determined for the 10th, 50th, and 90th percentile (Prct.) of the
proficiency distribution determined on basis of the model of Glas and Pimentel (2008) and
the Mixture Discrete (Item) Sequence Event Model (MDSEM).
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As we have shown, the MDSEM provides a method for detecting nonlinear patterns

of the onset points of NRIs by using a semiparametric parameterization of the steps

model. Compared with the parametric NRI model provided by Glas and Pimentel

(2008), the MDSEM allows for a more flexible representation of the test survival

function. In the present case, the MDSEM provided a survival curve that better

reflected the peaked nature of the hazard function. In addition, the MDSEM does not

rely on the proportional hazard assumption and was therefore able to identify regions

where the onset of NRIs depended on person variables, and regions where NRIs did

not depend on the variables considered. Finally, as we have demonstrated, the

MDSEM allows for a simple test of the differential onset of NRIs as a function of

the covariates, while simultaneously controlling for the proficiency variable.

Simulation Study

In this section, we report the results of a simulation study that was conducted in order

to study the behavior of the MDSEM in the presence of a high amount of NRIs. We

examined the MDSEM’s capability of uncovering (1) item parameters (i.e., discrimi-

nations, a, and difficulties, b, Equation 2), (2) structural parameters pertaining to the

relationship between a covariate x and the proficiency variable u (i.e., gu, x, Equation

14) and the variance of u conditional on x (i.e., s2
zu

, Equation 14), and (3) the survival

function P Si � mjui, xið Þ (Equation 16). We simulated item responses and response

indicators for a test with J = 30 items administered to two groups (variable x) of equal

size (N = 1,000 per group). Three conditions with 100 replications per condition were

examined. In the first condition, NRIs depended solely on group membership. In the

Figure 3. Survival functions determined for the 10th, 50th, and 90th percentiles (Prct.) of
the joint proficiency distribution, determined for subgroups on the basis of the Mixture
Discrete (Item) Sequence Event Model (MDSEM).
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second condition, NRIs were only affected by the proficiency variable u. Finally, in

the third condition, NRIs depended on both characteristics. Except when constrained

to be zero, the effects of x and u on the onset of NRIs were held constant across con-

ditions. The data sets were generated in such a way that all subjects had complete

data on the first four items, and approximately 33% of the item responses were miss-

ing in all conditions.

The probabilities of NRI onsets were generated via a nonnormally distributed

steps variable, d (Equation 8) with l fixed to one in the data-generation process.

Nonnormality in d was generated by means of a mixture of K = 6 univariate normal

distributions with proportions p1 = .12, p2 = .10, p3 = .21, p4 = .28, p5 = .16, and

p6 = .14, means m1 = 7, m2 = 12, m3 = 17, m4 = 22, m5 = 27, and m6 = 35, and var-

iances s2
1 = 1.00, s2

2 = s2
3 = s2

4 = 2.25, and s2
6 = 12.25. The relationships of d

with u and x were generated via a multinomial logit model (Equation 15) with para-

meters g1, u = -2.00, g2, u = 0.50, g3, u = 1.50, g4, u = 2.00, and g5, u = -0.25 for u, and

g1, x = -2.00, g2, x = -0.75, g3, x = -0.75, g4, x = -2.00, and g5, x = 2.00 for x. Intercepts

were set in such a way that the proportions p1 to p6 were equal across conditions.

The discrimination parameters for item responses a were generated according to a

uniform distribution ranging between 0.5 and 1.5 (mean = 1), whereas the difficulty

parameters b followed a standard normal distribution (mean = 0). We centered x to

its mean and fixed the intercept of the structural regression part (Equation 14) to zero.

The effect of x on u was set to 0.5, and s2
zu

was set to 0.937. These values imply that

u had a variance of one and a mean of zero, so that the effect of x can be directly

interpreted as a standardized effect.

In each condition, the data were analyzed via the MDSEM with K = 6 classes, and

a 2PL model in which the response indicators were ignored. In both models, u was

regressed on x, and both models were identified by constraining the mean of the item

discriminations to one. In light of the previous results, we expected the MDSEM to

provide less biased parameters than a 2PL ignoring NRIs in conditions in which NRIs

were nonignorable (i.e., Conditions 2 and 3). In Condition 1, we expected both mod-

els to perform equally well because the missing-data process was completely due to

x. Because of its flexible nature, we expected the MDSEM to provide unbiased esti-

mates of survival functions for various combinations of u and x (10th, 50th, and 90th

percentiles of the u-distribution for each value of x).

Results

Table 5 provides the bias (i.e., the difference between average estimates and popula-

tion values) of the parameters gu, x, and s2
zu

, as well as the coverage rates of the para-

meter estimates (i.e., the proportion of parameter estimates whose 95% confidence

intervals included the population values). The results for the 2PL model that ignored

NRIs show that this model provided essentially unbiased structural parameters with

good coverage rates only in the first condition. In this model, the variability of u was

underestimated in Conditions 2 and 3. Furthermore, the regression weight gu, x was
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clearly biased in the third condition. The bias in the estimate of gu, x was lower in the

second condition, where the model also provided an acceptable coverage rate. In con-

trast, the MDSEM provided virtually unbiased structural parameters that were accom-

panied by good coverage rates in all conditions studied.

Figure 4 provides scatter plots of the population values and the average item para-

meter estimates. Both models provided almost identical estimates that were virtually

unbiased in the first condition. In the second and third conditions, where NRIs

depended on u, the MDSEM provided more accurate estimates for the items’ dis-

crimination parameters. In addition, the estimates of item difficulties appeared to be

somewhat more accurate in the MDSEM, although the parameters provided by the

standard 2PL were not strongly biased.

The last issue approached was the recovery of survival functions. The MDSEM

correctly identified the variables not related to the onset of NRIs. Type I error rates

for the multinomial logistic regression weights of u were close to the nominal rate of

.05 (range .06 to .02) in Condition 1, and the same pattern was found for the Type I

errors of the logistic regression weights of x in Condition 2 (range .08 to .03). The

survival functions provided by the model for the 10th, 50th, and 90th percentiles of

the u-distribution for both values of x are presented in Figure 5. As can be seen, the

survival functions were virtually unbiased.

Summary

The results clearly show the advantages of the MDSEM. The model accurately esti-

mated the survival functions in each condition studied, thereby underscoring the

MDSEM’s utility for examining the determinants of test takers’ onset points of NRIs.

Table 5. Population Values, Parameter Bias, and Coverage Rates for Structural Parameters
Provided by the 2PL Ignoring NRIs, and the MDSEM Separated by Conditions (Condition 1:
NRIs Affected by x; Condition 2: NRIs Affected by u; Condition 3: NRIs Affected by x and u).

Population

2PL MDSEM

Bias Coverage Bias Coverage

Condition 1
gu, x 0.500 0.001 1.00 0.001 1.00
s2

zu
0.937 0.011 .99 0.013 .99

Condition 2
gu, x 0.500 20.043 .98 0.005 1.00
s2

zu
0.937 20.132 .18 0.028 .98

Condition 3
gu, x 0.500 20.093 .50 0.003 1.00
s2

zu
0.937 20.120 .28 0.022 1.00

Note. gu, x = regression weight of x predicting u, s2
zu

= variance of u conditional on x; 2PL = two-

parameter logistic; MDSEM = Mixture Discrete (Item) Sequence Event Model; NRI = not-reached item.
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Figure 4. Estimated item parameters by corresponding population values for the 2PL
ignoring NRIs and the MDSEM separated by conditions (Condition 1: NRIs affected by x;
Condition 2: NRIs affected by u; Condition 3: NRIs affected by x and u).
Note. 2PL = two-parameter logistic; MDSEM = Mixture Discrete (Item) Sequence Event Model; NRI =

not-reached item.
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Figure 5. Population and estimated survival functions for the MDSEM separated by
conditions (Condition 1: NRIs affected by x; Condition 2: NRIs affected by u; Condition 3:
NRIs affected by x and u).
Note. MDSEM = Mixture Discrete (Item) Sequence Event Model; NRI = not-reached item.
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In addition, our results show that the MDSEM reduced biases in parameters caused

by nonignorable missing data. The MDSEM provided parameter estimates identical

to the 2PL in a situation in which the missing-data process was accurately modeled

by the inclusion of the covariate (i.e., Condition 1; Glas et al., 2015). In the condi-

tions in which the onset of NRIs also depended on proficiency, the MDSEM provided

unbiased estimates of the structural parameters, whereas the standard 2PL did not. In

these conditions, the MDSEM produced more accurate item parameters, although the

bias was also relatively low in the case of the conventional 2PL model that ignored

NRIs.

Discussion

In educational assessments, one concern is whether the amount of NRIs is related to

the proficiency being measured. Such relationships are considered to be indicative of

NMAR patterns, which means that not accounting for such relationships could induce

bias in the estimates of item parameters and students’ proficiencies (Ludlow &

O’Leary, 1999; for a review, see Pohl & Carstensen, 2013). However, an often-

overlooked point is the possible relationship between NRIs and the student character-

istics that are at the core of comparative studies. As we have argued in this article,

situations in which such relationships cannot be accounted for by the students’ profi-

ciencies indicate a differential onset of NRIs that can be regarded as a threat to the

validity of group comparisons. However, whether the differential onset of NRIs is

treated as an indication of a threat to the validity of group comparisons, or whether it

is treated as a key outcome in its own right, depends on the goals of the study.

Following this line of reasoning, we have presented the MDSEM as a flexible

semiparametric approach that can be used for examining the differential onset of

NRIs. Our model stands in close relationship with the approach suggested by Glas

and Pimentel (2008) but relaxes some of its implicit assumptions, including the para-

metric distribution of the steps variable that assesses the onset point of NRIs, and the

proportional hazards assumptions used for assessing the relationships of NRIs with

the proficiency variable. The MDSEM proved valuable for determining the regions

in which the NRIs were related to the explanatory variables, whereas this is not pos-

sible in the model proposed by Glas and Pimentel (2008).

The MDSEM has some similarities with the GDM suggested by Köhler et al.

(2015b) for modeling the possibly nonnormal distribution of proficiency and the ten-

dency to omit item responses. In contrast to the GDM, in the MDSEM, only the dis-

tributional assumptions for the steps variable are relaxed, while the proficiency

variable is still assumed to be normally distributed. Furthermore, in our model, the

categorization of d is based on freely estimated support points, whereas these are

defined in advance in the case of the GDM. The MDSEM is conceptually different

because it allows NRIs to be predicted by proficiency and other covariates, whereas

Köhler et al.’s (2015b) GDM allows only the relationship between proficiency and

the tendency for omissions to be examined. In addition, the MDSEM has similarities

with the model of Bacci and Bartolucci (2015), which uses freely estimated support
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points for proficiencies as well for the latent tendency to omit items. However, our

model relies on a smaller number of parameters because we specified a variable that

can be clearly interpreted as a steps variable, thereby making the interpretation of the

model in real applications easier.

In summary, the MDSEM is easy to implement with conventional software

packages, and it provided a better description of the datasets considered in this article

than the model of Glas and Pimentel (2008). The MDSEM facilitates a straightfor-

ward test of the differential onset of NRIs by means of the LRT, and enables the pre-

sentation of these effects in a manner that can be easily understood by using the

survival function borrowed from discrete-time event history analysis (Allison, 2014).

As such, we believe that the method will prove useful in real applications concerned

with the phenomenon of the differential onset of NRIs.

Furthermore, as we have shown in the simulation study, the MDSEM proved valu-

able for optimizing parameter estimates in the presence of NMAR patterns that were

caused by NRIs. Compared with the 2PL model that ignored NRIs, the MDSEM

clearly reduced biases in the variability of the proficiency variable and in group dif-

ferences. As such, the MDSEM appears to be not only a valuable tool for examining

whether NRIs are a threat to the validity of group comparisons, but also a model that

helps to prevent such biases. However, this issue warrants further investigation. In

particular, further studies should examine whether the MDSEM proves a viable alter-

native to existing models (e.g., Glas & Pimentel, 2008), as we think it does.

Future Developments

Although the MDSEM is highly flexible, it still includes assumptions, some of which

can be easily relaxed. First, our hypothesis about the differential onset of NRIs was

restricted to uniform effects, which means that the model assumed that respondents

at all levels of proficiency were equally affected by this effect. Such a specification

is common in other areas, for example, in studies investigating differential item func-

tioning (DIF; Holland & Wainer, 1993). Following the DIF literature, the MDSEM

could be extended to consider nonuniform effects by allowing the covariates to inter-

act with the proficiency variable. Such models can be implemented in the case of

categorical covariates by means of multigroup MDSEMs. Such an approach would

make it possible to examine whether the effects of proficiency on the onset of NRIs

differ between groups. In our opinion, evidence for an absence of the differential

onset of NRIs would require group-invariant relationships between the proficiency

variable and NRIs, as well as an absence of effects of the covariates on the onset of

NRIs. Therefore, we decided to focus on uniform effects that can be interpreted more

easily. However, extensions of the MDSEM that include interactions between the

proficiency variable and covariates may be an interesting topic for further

investigations.

A further restriction of the MDSEM is that it assumes the proficiency variable to

be normally distributed and linearly related to the covariates. Given that these are
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standard assumptions in continuous latent variable models, we do not consider them

to be a general shortcoming of the MDSEM. However, similar to the GDM proposed

by Köhler et al. (2015b), in the case of omitted items, the distributional assumptions

regarding the proficiency variable could be relaxed. The merits of relaxing the

MDSEM should be clearly examined.

In addition, the MDSEM assumes an invariance of the measurement model

applied to the item responses across groups and across patterns of NRIs. The first

restriction can be easily relaxed in the context of multigroup models. We decided not

to pursue this point, mainly for pragmatic reasons and to enhance the ease of presen-

tation. Relaxing the invariance assumption across patterns of NRIs, however, requires

other types of models, such as the pattern mixture models suggested in the context of

the missing-data literature (Little, 1993). In this context, our proposed semipara-

metric approach for assessing the steps variable could be used to stratify the sample

according to the relevant patterns of NRIs (see Rose et al., 2010). In a next step, by

drawing on the stratified sample, the invariance assumption could be relaxed. Further

studies could consider this issue.

Conclusion

NRIs reflect a type of test-taking behavior that could be of interest in substantive

research. As we have argued in this article, NRIs can either be regarded as a key out-

come variable or can perhaps be treated as a threat to the validity of group compari-

sons of proficiency levels. In this article, we present the MDSEM as a flexible and

easy-to-use approach for studying the onset of NRIs. As we have demonstrated, the

MDSEM can be analyzed using standard software, which might make this approach

appealing for applied researchers.
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Köhler, C., Pohl, S., & Carstensen, C. H. (2015a). Investigating mechanisms for missing

responses in competence tests. Psychological Test and Assessment Modeling, 57, 499-522.

Köhler, C., Pohl, S., & Carstensen, C. H. (2015b). Taking the missing propensity into account

when estimating competence scores: Evaluation of item response theory models for

nonignorable omissions. Educational and Psychological Measurement, 75, 850-874. doi:

10.1177/0013164414561785

Lawrence, I. M. (1993). The effect of test speededness on subgroup performance (Research

Report No. 93-49). Princeton, NJ: Educational Testing Service.

List et al. 197



Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the

American Statistical Association, 88, 125-134. doi:10.2307/2290705

Little, R. J. A. (1994). A class of pattern-mixture models for multivariate incomplete data.

Biometrika, 81, 471-483.

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). New

York, NY: Wiley.

Lubke, G. H., & Muthén, B. (2005). Investigating population heterogeneity with factor mixture

models. Psychological Methods, 10, 21-39. doi:10.1037/1082-989X.10.1.21

Ludlow, L. H., & O’Leary, M. (1999). Scoring omitted and not-reached items: Practical data

analysis implications. Educational and Psychological Measurement, 59, 615-630. doi:

10.1177/0013164499594004

Masyn, K. (2009). Discrete-time survival factor mixture analysis for low-frequency recurrent

event histories. Research in Human Development, 6, 165-194.

Muthén, B., & Masyn, K. (2005). Discrete-time survival mixture analysis. Journal of

Educational and Behavioral Statistics, 30, 27-58. doi:10.3102/10769986030001027

Muthén, L. K., & Muthén, B. O. (1998-2012). Mplus user’s guide (7th ed.). Los Angeles, CA:

Muthén & Muthén.

Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in

latent class analysis and growth mixture modeling: A Monte Carlo simulation study.

Structural Equation Modeling, 14, 535-569. doi:10.1080/10705510701575396

Nylund-Gibson, K., & Masyn, K. E. (2016). Covariates and mixture modeling: Results of a

simulation study exploring the impact of misspecified effects on class enumeration.

Structural Equation Modeling, 23, 782-797. doi:10.1080/10705511.2016.1221313

Pohl, S., & Carstensen, C. H. (2013). Scaling of competence tests in the National Educational

Panel Study—Many questions, some answers, and further challenges. Journal for

Educational Research Online, 5, 189-216.
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