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The molecular foundation of chronic inflammatory diseases (CIDs) can differ markedly
between individuals. As our understanding of the biochemical mechanisms underlying
individual disease manifestations and progressions expands, new strategies to adjust
treatments to the patient’s characteristics will continue to profoundly transform clinical
practice. Nutrition has long been recognized as an important determinant of inflammatory
disease phenotypes and treatment response. Yet empirical work demonstrating the
therapeutic effectiveness of patient-tailored nutrition remains scarce. This is mainly due
to the challenges presented by long-term effects of nutrition, variations in inter-individual
gastrointestinal microbiota, the multiplicity of humanmetabolic pathways potentially affected
by food ingredients, nutrition behavior, and the complexity of food composition. Historically,
these challenges have been addressed in both human studies and experimental model
laboratory studies primarily by using individual nutrition data collection in tandem with large-
scale biomolecular data acquisition (e.g. genomics, metabolomics, etc.). This review
highlights recent findings in the field of precision nutrition and their potential implications
for the development of personalized treatment strategies for CIDs. It emphasizes the
importance of computational approaches to integrate nutritional information into multi-
omics data analysis and to predict which molecular mechanisms may explain how nutrients
intersect with disease pathways. We conclude that recent findings point towards the
unexhausted potential of nutrition as part of personalized medicine in chronic inflammation.
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INTRODUCTION

Over the past several decades, increased incidence rates of
diseases associated with chronic inflammation, including
inflammatory bowel disease (IBD), diabetes, and asthma have
been observed in countries experiencing industrial and urban
growth (1–3). While the causes of this incidence surge are still
highly debated in biology and medicine communities, there is
increasing epidemiological evidence that the rise of chronic
inflammatory diseases (CIDs) can be attributed to nutritional
changes (4–7). A dietary basis for CIDs is further supported by
the fact that they frequently involve physiological changes in the
gastrointestinal tract including alterations in gut microbiota
composition and metabolism (8–11). In this context, a number
of studies have identified molecular mechanisms by which
dietary components can interact with immunological pathways
either directly (12, 13) or indirectly, via modulation of the gut
microbiota (14, 15).

Patients with the same CID can differ markedly in their
precise disease manifestation with respect to inflammation
relapse, remission, and response to therapy (16, 17). Studies
using clinical cohorts have revealed several molecular features
that are associated with disease heterogeneity. These include
genetic (18, 19) microbial (20), and metabolic factors (10, 21).
The appreciation of the wide range of individual factors
influencing the pathology of CIDs intensified research
endeavours to further tailor treatment strategies to the patient’s
molecular characteristics (22, 23).

Given the multitude of molecular mechanisms by which
nutrition can intersect with immunological pathways,
microbiome dynamics, and human metabolism, nutrition
therapy has been recognized as integral to the development of
novel personalized CID prevention and disease management
strategies (24). Additionally, nutrition has vast potential to
contribute to personalized medicine in two ways: first, the
patient’s nutritional status and dietary intake information can
be used to inform new prescriptive biomarkers, i.e. biomarkers
that can predict the patient’s response to potential treatment
strategies (25). Second, nutritional interventions display promise
for patient-centered treatments of CIDs.

Those ideas are mirrored in an increasing number of CID-
related articles in the scientific literature that also involve aspects
of nutrition and diet (Figure 1). Yet, empirical studies reporting
clear evidence of the effectiveness of using nutrition-derived
biomarkers and nutritional interventions in CID therapies are
rare, thereby limiting nutrition data-assisted decision making
and dietary interventions in clinical practice of personalized
medicine. For instance, a recent systematic review combined
with an expert survey to derive guidelines for clinical nutrition
management in IBD yielded only 7 evidence-based dietary/
nutrition recommendations that relate the patient’s individual
characteristics, e.g. age, current and previous treatments, and
nutritional status (26).

The large discrepancy between the anticipated role and actual
application of nutrition in personalized CID management is
largely due to the intrinsic biochemical complexity of nutrition,
including its long-term effects and interaction with various
Frontiers in Immunology | www.frontiersin.org 2
environmental factors (27, 28). However, recent studies have
started to address this issue by investigating the impact of
nutrients on host organisms alongside the molecular
interactions between nutrients, microorganisms, drugs, and
host genetics (29). In this review, we highlight recent
developments at the interface between nutrition and precision
medicine in chronic inflammation. In addition, key challenges in
the field are discussed and potential solutions proposed.
NUTRITION AND PRESCRIPTIVE
BIOMARKERS

Nutrition is an important determinant of CID patient
heterogeneity (30). Thus, specific information about an
individual’s nutritional status and dietary habits can support
data-driven decision making to optimize a patient-tailored
treatment. There are a few nutrition-derived objective
indicators that predict therapeutic outcomes and are used in
clinical practice to adjust CID treatments. For instance, Crohn’s
Diease patients experiencing extended nutritional deprivation
are at increased risk of refeeding syndrome; European Society for
Clinical Nutrition and Metabolism (ESPEN) guidelines
recommend nutritional supplementation of phosphate and
thiamine in such cases (26). In addition, it is well-documented
that malnutrition promotes increased risk of morbidity and
mortality following surgery in IBD patients (31, 32). Hence, if
malnourishment is documented, nutritional support following
emergency surgery is commonly recommended (26).

One ambitious goal of precision medicine is to emhance the
amount and accuracy of data that describe a patient’s nutritional
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FIGURE 1 | Percentage of CID-related articles, whose titles or abstracts
involve the terms “nutrition' or “diet'. The search was performed on July 6th
2020 using PubMed® and limited to the years 1999–2019. Lines denote the
results from linear regression analysis. Percentages increased significantly for
all diseases (Pearson’s product-moment correlation, P < 0.005) except for
rheumatoid arthritis (P = 0.87).
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status, in order to identify novel biomarkers that can predict the
clinical outcome of possible treatments. To achieve this goal,
nutritional status data should be analyzed in close combination
with other personal data as the effects of nutrients are moderated
by other influencing factors such as host genetics, body
composition or the intestinal microbiome (33). In a seminal
study by Zeevi et al. (34), the authors collected longitudinal data
from 800 participants including blood glucose levels,
microbiome structure and function, nutritional status, and
dietary behavior. On the basis of these data, a machine-
learning algorithm was devised that was able to predict
individual postprandial glycaemic response to a given meal
Zeevi et al. (34). This example illustrates that the potential of
nutritional information for identifying biomarkers for individual
metabolic responses can be substantially potentiated when
coupled with additional personal data, such as that related to
the intestinal microbiome. Although the construction of such
mathematical predictors relies on large cohorts and longitudinal
data acquisition, similar approaches may also be applied to
clinical CID patient cohorts, where nutritional data is
incorporated in the predictor. Such predictors could assists
clinicians in making personalized treatment decisions.

Moreover, the possibility of deriving prescriptive biomarkers
from nutritional data will further increase as more molecular
mechanisms describing the interplay among immunological
pathways, the microbiome, and nutrients are elucidated. A
series of studies within the past decade provided new evidence
that the microbiome could act as a crucial intermediary between
diet and inflammatory diseases (35). This complex relationship
between dietary compounds, the microbiome, and inflammation
is probably best elucidated for the anti-inflammatory effects of
microbiome-derived butyrate. Butyrate and other short-chain
fatty acids (SCFAs) are produced in large amounts through
fermentation of dietary fibres by certain bacterial species (e.g.
Bacteroides fragilis) that possess the enzymatic machinery to
degrade those compounds (36). The diet-dependent and
immunomodulating role of butyrate is especially interesting in
the light of recent studies that demonstrated an association
between colonic butyrate with clinical outcomes of CID
therapies. For instance, it has been shown that butyrate levels
are associated with clinical remission following anti-TNFa
therapy in IBD patients (10, 37). Similarly, the efficacy of anti-
CTLA-4 immunotherapy has been reported to be associated with
the proportion of specific butyrate-producing bacteria within
melanoma patients’ gut microbiota (38, 39). Moreover, a
reduction in colonic butyrate-producing bacteria has been
reported in HIV infection (40) and appears to affect the
response to antiretroviral therapy (41). Such studies emphasise
the potential to combine dietary information and microbiome
data to approximate intestinal butyrate production capacity and,
hence, individual responses to therapies.

Several molecular mechanisms have been elucidated how
butyrate interacts with immunological pathways, illustrating
the compound’s central role in CIDs. Smith et al. (14) have
identified specialized butyrate-sensing receptors expressed by
anti-inflammatory regulatory T-cells, whose differentiation is
Frontiers in Immunology | www.frontiersin.org 3
stimulated by butyrate (42). Butyrate also functions as a potent
inhibitor of histone deacetylase enzymes, thereby linking
microbial metabolites to the regulation of host transcriptional
profiles (43, 44). Furthermore, Li et al. (45) have shown in a cell
culture model that butyrate activates pyruvate kinase M2, leading
to substantially altered cell metabolism, and thereby suppressing
the proliferation of colorectal cancer cells.

Besides butyrate and other SCFAs, gastrointestinal micro-
organisms transform dietary components to contribute a wide
range of additional compounds to the human metabolome (46).
Future research on the role of these metabolites in health and
disease will yield additional biomarkers and targets for
personalized treatment of CIDs.
PERSONALIZED NUTRITIONAL
INTERVENTIONS

Nutrition is likely the largest toolbox we have at hand to
influence both metabolic processes in the human body and the
intestinal microbiome’s structure and function. Thus, nutritional
interventions represent a promising strategy for personalizing
CID treatments. Nevertheless, various generalized nutritional
recommendations, established over the past four decades in the
context of chronic diseases, have not noticeably diminished their
incidence (47).

New targets for nutritional interventions are expected to
emerge as our mechanistic understanding of inflammatory
diseases and the effect of nutrition on the immune system
expands. For example, the above-mentioned anti-inflammatory
effect of butyrate and its involvement in maintaining
gastrointestinal health has promted researchers to explore using
targeted dietary interventions to increase its intestinal production.
Marino et al. (35) have shown that administration of a diet
yielding high butyrate levels through gut microbial fermentation
enhanced gut integrity, increased the number and activity of
regulatory T cells, and decelerated the progression of diabetes in
a diabetic mouse strain model. Such results exemplify the potential
of dietary interventions to specifically target immunomodulating
microorganisms. Thus, quantification of patient-specific activity of
molecular processes (e.g. via coupled metagenomics and
metabolomics) associated with the maintenance or initiation of
CID remission are highly promising indicators for the efficacy of
nutritional interventions targeted to modulate them.

Another intriguing development with implications for
nutritional interventions are recent findings that the therapeutic
effects of drugs are mediated through complex interactions between
the bioactive agent, dietary compounds, and microorganisms (48,
49). These include pharmaceuticals frequently administered to
treat certain CIDs, such as sulfasalazine or metformin (49, 50).
In the case of metformin, a medication for the treatment of type 2
diabetes, Pryor et al. (50) have shown using a Caenorhabditis
elegans model system that nutrition influences the animal’s
response to the drug, and that the effects are mediated by the gut
bacterium Escherichia coli. Specifically, metformin’s impact on host
metabolism and lifespan are attributed to an increased production
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of agmatine, which further depends on nitrogen-containing
compounds in the nematode’s diet, namely amino acids, amino
sugars, and nucleotides. As part of the same study, reanalysis of
microbiome data from four independent human cohorts indicated
that the abundance of bacteria capable of producing agmatine
increased in conjunction with metformin treatment. This suggests
that similar synergistic interactions between the drug and nutrients
may occur also in humans. In general, a mechanistic understanding
of nutrient-drug interactions could pave the way to personalized
CID treatment strategies that combine pharmacological and
nutritional interventions.

Nutritional interventions that specifically target colonic
microorganisms might be hindered by nutrient absorption in
the small intestine. For instance, the vitamin niacin has been
shown to beneficially affect intestinal homeostasis and decrease
susceptibility to intestinal inflammation in a mouse model system
(51). Fangmann et al. (52) employed a food-technological
approach to deliver high amounts of nicotinic acid into the
colon by micro-encapsulating the compound, thereby delaying
its release until the capsules reached the ileocolonic region. In vivo
administration of the capsules in humans changed the microbiota
composition in ways that are commonly considered favourable; i.e.
the increased abundance of Bacteroidetes. In addition, biomarkers
of systemic insulin sensitivity and metabolic inflammation
improved without observable negative side-effects (e.g. facial
flushing) that have been described for un-capsulated orally
administered niacin (52). Thus, food-technological approaches
may promote the development of nutritional interventions for
precision medicine by increasing the intervention efficacy and
reducing unwanted side effects. In addition, several preclinical
models demonstrated the potential of microbiome-directed
nutritional interventions for the treatment of malnutrition and
its associated inflammatory complications (53–55) and promising
initial results were recently gained in preliminary clinical studies
(56, 57).
CHALLENGES AND POTENTIAL
SOLUTIONS

Precision in Dietary Assessment
Technological advances over the past decade have elevated the
degree of precision with which a person can be characterized on
both the genetic level (i.e. genomics) and phenotypic level (i.e.
transcriptomics, proteomics, metabolomics). Available methods for
assessing the environmental factor of nutrition (in terms of the
person’s food consumption and habits) do not currently provide
the same degree of detail in most cases. An exception is nutrition
provided during intensive care, where nutritional intake is usually
well documented, e.g. for preterm infants in neonatal intensive care
units (58). In most other human cohort studies, nutrition is
typically recorded using dietary questionnaires. Such
questionnaires have the disadvantage that realiability of the data
obtained may be limited, since it is based on the subjective
perception of the study participant (59). Several software
solutions (mainly mobile apps) have emerged that aim to
Frontiers in Immunology | www.frontiersin.org 4
increase dietary data quality (e.g. via incorporating automatic
food item recognition from images), but that entail their own
data acquisition shortcomings as reviewed elsewhere (60). While
some of these solutions are already in use in biomedical research
projects [e.g. (61)], a major issue remains: the dietary information
obtained cannot be treated as objective and thereby does not meet
the criteria for a source of potential medical biomarkers (62).

A promising approach to address this challenge is the
identification of novel food intake biomarkers, which are
molecularly-based objective indicators derived from human
samples (63). The idea is to estimate previous dietary intake by
measurements of dietary compounds or derived chemicals in
human matrices such as blood, urine, faeces, hair, or dental
calculus. Ongoing research focuses on the identification and
evaluation of a wide range of different food intake biomarkers
using metabolomics techniques (64). If proven applicable, such
biomarkers will reveal new links between nutrition and
inflammatory disease mechanisms.

Nutrition and the Curse of Dimensionality
Food is molecularly complex. Online Databases such as FooDB
(65) or FoodData (66) enable users to approximate the amount
of macro- and micronutrients in a given diet. Thus, if personal
dietary information is available for a large study cohort involving
CID patients, one could statistically test for associations between
individual nutrients and the patients’ disease manifestation and
progression parameters. Yet, as Bauer et al. (27) pointed out, this
approach would be hindered by the so-called curse of
dimensionality, where the number of features (nutrients)
quickly becomes larger than the number of samples
(individuals), which often makes it difficult to distinguish real
differences from differences that occur by chance. The true
integration of omics data has been a major task in biomedical
research in recent years, and several promising bioinformatics
approaches have emerged [see Pinu et al. (67); Huang et al. (68)
for reviews].

The basic idea behind multi-omics data analysis is to combine
multiple biological features in a single analysis, in order to
simulate phenotypic and environmental complexity and
interrelatedness of biological systems as close as possible to the
true nature of things. According to de Toro-Martıń et al. (69),
this includes deep phenotyping, physical activity, food behavior,
and dietary habits in combination with multi-omics data. In fact,
multi-omics data analysis might be a major driving force on the
way to personalized medicine; some progress has been made in
cancer research in particular (70), though to date none of these
tools has enough predictive power for routine clinical use. This
might be, because many tools still apply a sequential approach by
analyzing one data layer after another and integrating the results
post-analysis. As de Anda-Jáuregui and Hernández-Lemus (71)
pointed out, biological processes and phenomena are not
comprised of single, independent layers of biological features,
and therefore algorithms that can simultaneously analyze
multiple data types are preferred.

In multi-omics data analysis, an important distinction must
be made between candidate/hypothesis-driven methods and
more exploratory approaches employing dimensionality
November 2020 | Volume 11 | Article 587895
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reduction techniques, such as principal component analysis.
While the former has a potential drawback of information loss
if the full data collected are no incorporated, the latter shows
weaknesses in integrating biological system background
knowledge. In addition, integration of non-omics data, like
clinical phenotypes and nutritional data with omics data layers
(e.g. gene variants, transcriptomes and microbiome data) is even
more challenging, due to the heterogeneity of data types, possible
interactions, and the existence of sub-phenotypes (72). To
address those points, we need complex mathematical and
bioinformatics methods [see Bersanelli et al. (73)] for a review]
and careful attention to the preparation (such as standardization
and normalization) and quality control in the different data
types. Tools evolving from the field of systems biology, like
metabolic network and pathway analysis, are incorporating
known interactions between genes, proteins, micronutritional
supply, and molecules, and can contribute significantly to the
rapidly developing field of multi-omics analysis (74).

Identifying Molecular Mechanisms
A major challenge in the identification of potential nutritional
interventions is the elucidation of the molecular mechanisms
illustrating how nutrition and specific dietary compounds
influence immunological pathways. High-throughput
technologies such as metagenomics and metabolomics have been
applied to describe quantitative associations of personal nutritional
data with metabolism, inflammation, and the microbiome in
health and disease (75–77). Yet, these associations usually do not
allow conclusions on underlying molecular mechanisms.

To investigate mechanisms, experimental model systems can
be used, which provide valuable insights into key aspects of the
molecular links between nutrition, immune system response,
microbial processes, and inflammation (78). Animal models (e.g.
mice, C. elegans) or cultures of established cell lines can be
applied to elucidate general mechanisms and to screen many
different combinations of potential influencing factors (48, 50).
However, the translation of such results to human subjects is
limited and cannot represent the heterogeneity in immune
responses among human individuals. A promising alternative
are ex vivo and in vitro model systems where biomaterial (e.g.
tissue, cells, stool) are directly sampled from human individuals.
Ex vivo and in vitro model systems enable large-scale
phenotyping experiments under controlled conditions, and
make it possible to link results directly with the individuals’
unique characteristics. Thus, such model systems are of vast
interest in precision medicine. Available and predicted future
model systems for human immunology are reviewed in detail
Wagar et al. (78).

Computer models of biochemical processes are powerful tools
for investigating the effect of nutrition on human metabolism
and gut microbial processes. Various modelling methods exists
[see Kumar et al. (79) for review], which share the common
feature that system elements, namely metabolites, proteins, and
genes, are represented in nodes within a network, where edges
represent known relationships such as biochemical
transformations, gene expression, and regulation. Thus, these
Frontiers in Immunology | www.frontiersin.org 5
network models allow predictions about metabolic flux
distributions through metabolic networks in a given nutritional
environment including the role of individual genes and proteins
(79). The in silico simulations are vastly scalable, which enables
researchers to perform simulations for a wide range of different
scenarios (e.g. diets) as well as potential perturbations.
Furthermore, theoretical models can be parametrized based on
different data (e.g. abundance of specific proteins, transcripts,
microorganisms, diet) from human individuals in order to frame
the model to represent the individual’s conditions (50, 74).
Results obtained from in silico models are useful to generate
hypotheses about complex molecular mechanisms, which can
subsequently be scrutinized by targeted experiments.
DISCUSSION

Clinicians have always striven to provide the best recommendations
based on the patient’s characteristics and particular disease
manifestation (23). Since nutrition is an important factor with
vast impact on human health, nutritional interventions are often
considered promising components in the treatment of a wide range
of diseases. In some diseases, for which the molecular
pathophysiology is well-understood, nutritional interventions have
been proven to be highly effective, for instance in the treatment of
phenylketonuria or coeliac disease (80). It is the ambitious goal of
precision nutrition in chronic inflammation to achieve similar
success with the help of nutrition-derived biomarkers and
personalized nutritional interventions. This is a difficult task since
CIDs arise from complex gene-microbiome-environment
interactions (2) in which most underlying molecular mechanisms
remain obscure. In this review, we discussed recent studies which
address this issue and revealed nutrition’s vast and unexhausted
potential in the treatment of CIDs by elucidating its impact on
disease-related molecular pathways. Based on the applied
methodologies in the reviewed studies and the current challenges
discussed, we emphasize that future research in the field of nutrition
in precision medicine for CIDs should focus on: (i) obtaining
detailed nutritional data alongside omics-data (i.e. genomics,
metagenomics, metabolomics) in human cohort studies in clinical
contexts as well for population-level cohorts; (ii) development of
novel mathematical methods to integrate different data sources in a
systems biology framework that represents the relationship between
measured molecular features; and (iii) elucidating molecular
mechanisms describing how nutrition affects immunological
pathways, including the modulating effects of drugs and the
intestinal microbiota.
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