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Abstract

This work studies the estimation of the jump activity index of Ttd semimartingales in a
setting of high frequency observations with a fixed time horizon and random observation
times.

We give a quick overview over the underlying theory and briefly review already existing
literature connected to the estimation of jump activity index in various settings.

We then prove a central limit theorem based on the empirical characteristic function whose
value is in our case codetermined by the (possibly unknown) structure of the underlying
observation scheme. To bypass this problem we employ an approach, that is new to
existing literature, using a Taylor expansion of the natural logarithm and the exponential
function to develop a comnsistent estimator for the jump activity index. Yet again, the
connected central limit theorem (CLT) depends on the setting of the observation scheme
and is therefore not directly applicable in most situations. Hence, we develop a further

CLT that works without any prior knowledge of the underlying structures.



Zusammenfassung

Die vorliegende Arbeit beschéftigt sich mit der Schatzung des jump activity index von 1to-
Semimartingalen in einem Szenario von hochfrequenten Beobachtungen mit fixem Zeit-
horizont und zufilligen Beobachtungszeiten.

Zuerst geben wir einen kurzen Uberblick iiber die zugrunde liegende Theorie und bespre-
chen bereits vorhandene Literatur zur Schitzung des jump activity inder unter verschie-
denen Annahmen.

Dann beweisen wir einen zentralen Grenzwertsatz basierend auf der empirischen charak-
teristischen Funktion, deren Wert, in unserem Fall, von der (gegebenenfalls unbekannten)
Struktur des zugrunde liegenden Beobachtungsschemas abhéngt. Um dieses Problem zu
umgehen, verwenden wir einen bis dato noch nicht benutzten Ansatz, basierend auf ei-
ner Taylor-Entwicklung des natiirlichen Logarithmus und der Exponentialfunktion, um
einen konsistenten Schitzer fiir den jump activity index zu konstruieren. Jedoch ist auch
in diesem Fall der zugehorige zentrale Grenzwertsatz abhangig von der Struktur des Be-
obachtungsschemas und somit in vielen Situationen nicht direkt anwendbar. Deswegen
entwickeln wir einen weiteren zentralen Grenzwertsatz, der ohne vorheriges Wissen iiber

den Aufbau des Beobachtungschemas auskommt.
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Chapter 1

Motivation and Content of the Work at
Hand

Classical financial mathematic models with a time continuous setting (like the famous
Black-Scholes model) often involve general forms of stochastic integrals with respect to a
Brownian motion but very rarely include jumps at all.

Yet the heavy tails of financial asset returns and other properties of financial data suggest
the existence of jumps. General semimartingales that occur for example as the solution
of stochastic differential equations driven by Lévy processes with jumps offer a great deal
of flexibility when it comes to modeling asset prices, e.g. when modeling electricity prices
(|GKM11]).

However, fitting these models to real data is often more involved, as the ingredients gov-
erning the jumps of the process have to be estimated as well. A key factor here is the
jgump activity index, a measure for the intensity or rate with which jumps occur. In the
past decade much work has been done on the estimation of this index in various statis-
tical settings though often under quite restrictive assumptions. The work at hand builds
upon the existing literature while trying to fill some of the gaps where only few work has
been done until now, namely by finding estimators for the jump activity index when the
process is observed at randomly chosen time points in contrast to equidistant spaced time
points. For many applications this seems like a natural (and much needed) generalization
although full generality does not seem to be achievable with present techniques.

While our estimator builds upon ideas already developed in a setting of equidistant ob-
servations, some concepts cannot be directly applied in the case of random observation
times and have to be fitted to our specific setting. In particular, the main concept of
our estimator, the empirical characteristic function is in our setting dependent on the

(possibly unknown) structure of the observation scheme and this is why the evaluation of



those is notably harder than in the equidistant case. To solve this problem, our estimator
evaluates the empirical characteristic function in points converging to zero and then uses

a Taylor expansion of the natural logarithm and exponential function.

This work is structured in the following way: It starts with two introductory chapters,
the first one being a basic introduction to semimartingales where fundamental terms like
1to semamartingales, jump measures and their compensators are briefly explained. The
second chapter deals with the topic of how jumps of Lévy processes or in general semi-
martingales can be characterized, here the Blumenthal-Getoor indez is introduced and
likewise his semimartingale counterpart, the jump activity indexr. The chapter ends with
an overview of recent developments in the estimation of the jump activity index in the
statistical setting of high frequency statistics, i.e. when the mesh of observation points
gets finer while keeping a finite time horizon.

The next two chapters are the main parts of this work. In Chapter 4 we prepare basic
estimates for [t6 semimartingales and apply a localization procedure to our exact setting
of random observation times in order to strengthen general assumptions to more useful
stronger ones. This establishes the foundation for Chapter 5 where we introduce our ac-
tual estimator for the jump activity index. Furthermore, we give a heuristic explanation
of how and why our adaption of the concepts for equidistant time points works in our
specific setting and finally prove an associated central limit result.

In the last chapter we provide a numerical assessment of our estimator. For this purpose
we simulate an underlying process that is observed at a realistic number of random ob-
servation times and investigate how the asymptotic properties from the previous chapter
perform for a finite sample. Furthermore, as the limiting distribution in the CLT from
the previous chapter contains moments depending on the structure of the observation
scheme and therefore direct application, e.g. for finding confidence intervals, is usually
not feasible, we find a consistent estimator for that variance and upon this build a CLT
that works without any prior knowledge of the observation scheme. In particular, the
estimator for these unknown moments is a small result in itself and may be used in other

applications as well.



Chapter 2

It6 Semimartingales and their Basic

Properties

The following chapter is an introduction to the terms associated with the analysis and
estimation of the jumps of a Lévy process or more general of an [t6 semimartingale, it is
adapted from the introductions found in the standard textbooks on stochastic processes
and their estimation, i.e. Chapter 2.1 in [JP12|, Chapters 1.4-2.2 in [JS87|, Chapter 1.4 in
[ASJ14] or Chapter 3 in [EK19|. Rather than providing extensive proof we only present
the basic definitions and results that are needed to understand the following chapters.
However, rigorous proofs can especially be found in [JS87].

We enter this section by introducing the term (It6) semimartingale, starting with the
characteristics and the definition of a general semimartingale. In this opening we consider
(like in our references) d-dimensional semimartingales although later on we only work with
one-dimensional ones.

What follows now is the fundamental class of processes with which we deal throughout

this work.

Definition 2.1. An R-valued process X on some filtered probability space (0, F, (Fy)i>0, P)

15 called a semimartingale if
1. X s adapted;
2. X has cadlag paths;

3. X = Xo+ A+ L where L is a local martingale and A is a process of finite variation

This decomposition can be made more precise by splitting up L into a continuous

local martingale X¢ and a purely discontinuous local martingale M, the latter meaning
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that the product M N is a local martingale for any continuous local martingale N. The

decomposition of X then reads as
Xt:XO—i-At—i—Xtc—f—Mt, (21)

again with Ay = X§ = M, = 0.

Nevertheless the decomposition above is not unique. Therefore one wants to employ a

strengthened version of the definition above:

Definition 2.2. A semimartingale Y is called a special semimartingale if Y = Yo+ A + L'
where L' is a local martingale and A’ is a predictable process of finite variation. A’ is called

the compensator of Y.

In this case the decomposition is unique and can be seen as a more general version of

the Doob-Meyer decomposition.
Theorem 2.1. For a process X the following properties are equivalent:

1. X s a special semimartingale.

2. X s a locally integrable semimartingale.

As semimartingales with bounded jumps are at least locally integrable, e.g. by using
the localizing sequence of stopping times 7, := inf{¢t : X; > n} oo, we have the

following implication.
Remark 2.1. A semimartingale X is a special semimartingale if its jumps are bounded.

Using the definition of special semimartingales we can find a more detailed decompo-

sition of a general semimartingale X. For the jumps AX,; := X, — h;l% X, of X we set

Ji = Y0t AXoIgax, =1y (where || || is the Euclidean vector norm in R?) and look at

the special semimartingale Y defined by
}/t :Xt—Jt:XO—}—Bt—FXtC—FMtI

which now has a unique decomposition into a predictable process of finite variation B
and a continuous X ¢ and purely discontinuous martingale part M’. As X° is continuous
and therefore does not contain jumps it does not depend on the decomposition by J and

is the same as in (2.1). In total this yields

Xi=Xo+ B+ X{ + M+ > AX,lax, =1} (2.2)

0<s<t



That means depending on where we set the cutoff for the jumps of Y = X — J we find
a unique decomposition of X, or more precise we find a unique decomposition for each
truncation function x : R? — RY i.e. x is a bounded measurable function with x(x) = x
in a neighborhood around 0, in the following way: Setting J; = > ., #'(AX,) for
K'(x) =z — k(x) we find a decomposition of X as

Xy =Xo+Bf + X7+ My + ) K(AX,), (2.3)

0<s<t

for a unique predictable process of finite variation B" and a unique completely discontin-
uous local martingale M*.
If the process X in (2.3) were to be a Lévy process with characteristic triplet (b",c, F)
w.r.t. K where b® € R? is the drift vector, c € R¥™? is a symmetric, nonnegative definite
diffusion matriz and F(dz) is a Lévy measure on R? then B = bt and X¢ = c'/2W,,
where ¢'/? € R4 with (01/201/2)T = c and W a standard Brownian motion on R?. The
remaining part M" + J then contains the jumps of the process and is completely charac-
terized by the Lévy measure F(dz). How this part can be constructed from F'(dx) is laid
out below.
Now It6 semimartingales can be described as a subclass of general semimartingales such
that for an infinitesimal small time period these behave like a Lévy process, meaning
that for each time point s € [0, 7] there exists a characteristic triplet (b%, cs, Fs) (making
b7, cs, Fs processes, though with very different spaces to which they map) and the set of
these triplets for all s € [0,7T] characterizes the behavior of the process up to time T

completely. For an It6 semimartingale we have that
t t
Br = / beds and Xt = / c2aws.
0 0

In order to understand how the remaining parts consisting of the jumps can be constructed
from F, one has to understand the concept of random measures and its compensators.
Let D(X) = {(w,t) : AX;(w) # 0} then the jump measure p~ of X is defined as

p (w; dt, dx) = Z €(s,AX, (w)) (dt, dz) (2.4)
(w,8)eD(X)

X is then a random

where ¢, is the Dirac measure with mass 1 in ¢ € Ry x R p
measure meaning that for each that w, u(w;-) is an integer valued measure on R, x R

Furthermore for each Borel subset A of R% we define

Mg * S (w) o = ¥ (w; (0,8] x A) (2.5)
=Y La(AX,(w)) = [{(s,2) € (0,] x A: AX,(w) =z} .

s<t



Now 14 * X can be seen as a non-decreasing and adapted process which is finite val-
ued if inf {||z|| : 2 € A} > 0 as we only have a finite number of jumps bigger than
inf {||z|| : € A} on any interval (0,¢]. If inf{||z|| : z € A} > 0 the process L4 * u~
admits a predictable compensator and one can find a positive valued random measure

vX(w;dt, dz) on Ry x R? such that the process defined via
Lax X (w) = v¥(w; (0,1] x A) (2.6)

is the compensator of the process 14 * . The random measure v is then called the
(predictable) compensator of X, One may extend the notation of (2.5) and (2.6) to more
general functions of the form §: @ x R, x R — R, (w,t,z) = 6(w, t, ), by defining “w -

wise”
Sopf) = [ S wsds,do)
[0,¢] xRd
Sx v (w) = / §(w, s, 2)v™ (w; ds, dr)
[0,t] xRd
whenever the right hand sides make sense, i.e. when for ¢t > 0
/ 16(w, s, 2)|p™ (w;ds,dz) < 0o or / 16(w, 8, 2) | (w; ds, dr) < co. (2.7)
[0,t] xR [0,t] xR

Here it should be noted that the second condition in (2.7) implies the first one (c.f. [EK19],
Theorem 3.36) and that it is customary to use a shorthand notation for some functions,
e.g. la(w,t,x) = 1a(z) (which we already used above) and x(w,t,y) = y. As a very

prominent example we have

37]1{|x|21}*ﬂf(=/ dﬂ{nmuzl}ﬂx(d&dﬂf):ZAXJ{HAXSHzl}-
X

[Ovt] SSt

Again notation may be found a little bit misleading as x stands for two different things in
the line above, on the one hand it is a function and on the other an integration variable.
Also in contrast to (2.7), w is suppressed in line with general notation for stochastic
processes. Now we can finally define the characteristics of a general semimartingale X
also known as "predictable characteristics or "integrated characteristics” as being the

triplet (B*, C,v¥), for a truncation function x, where

e B* = ((B")")1<i<d, the predictable process of locally finite variation with B§ = 0,

occuring in (2.3) when truncating with x(z),

o C' = (CY)i<;j<q, where CY = ((X€)", (X)) (for a definition see either p.28 in
[JP12| or the end of this chapter),



e X is the compensator of the jump measure X as defined above.

As Lévy processes are semimartingales the characteristic triplet (b7, ¢, F') of a Lévy process
and their semimartingale characteristics are directly linked in the following way, already

partly mentioned above.

Remark 2.2. A d-dimensional (F;)-semimartingale X is an (F;)-Lévy process if and only
if Xo =0 (depending on the definition) and its characteristics are of the form

Bf(w) = bt Cy(w) = ct, vX(w; dt,dr) = dt ® F(d).

So these characteristics are non-random and are furthermore linear over time. As illus-
trated above Itd6 semimartingales can be seen as time-varying Lévy processes whose be-
havior at a certain time point s is characterized by a characteristic Lévy triplet (b7, cs, Fy)

giving rise to the following definition:

Definition 2.3. A d-dimensional semimartingale X is an It6 semimartingale if its char-
acteristics (B*,C,vX) are absolutely continuous with respect to the Lebesque measure,
that is

B = [ Gl= [t Sl xa)= [ R,

where (b5)i>o is a Re-valued process, (c;)i>o0 s a process in the space of symmetric, non-

negative definite matrices, and Fy = F,(w, dx) is for each (w,t) a measure on RY.

These 0", ¢ and F; have to fulfill additional measurability properties that ensure that
the definitions above make sense and fit into the definition of general semimartingale
characteristics. In addition one can always find a version of Fj(-, dx) that fulfills, similar

to standard Lévy measures, for each (w,t):

[ i 71) Fio, di) < o

To round things up we want to write the discontinuous martingale part M" in (2.3) in
terms of the jump measure uX and its compensator v~. As for each Borel subset A of
R? with inf {||z|| : z € A} > 0 we have that 14 x u* — 14 x ¥ is a local martingale
and for an It6 semimartingale it holds that kK(AM*) = k(AX) we would like to define
M*® = k% u* — k %« vX. The problem that arises here is that, due to x(z) = z in a
neighborhood around 0, k% uX < 0o a.s is equivalent to X being of finite variation which

is too restrictive. To bypass this problem one can define the term of a predictable function



§,ie. §:Q xRy x R — R that is measurable w.r.t. the o-field P ® R?, where P is the
predictable o-field on Q x R, and R is the Borel o-field on R?. If it additionally fulfills

(|6] A 0%) * 13" < 00, Vt > 0, (2.8)
there exists a unique purely discontinuous local martingale whose jumps are given by
§(t, dx) (X — v ({t}, dx) = 6(t, AX,) —/ 5(t, x)vX ({t}, dzx). (2.9)
R R

The unique purely discontinuous local martingale with jumps as in (2.9) is called stochastic

integral of 6 with respect to 4 — v and is denoted by

/Ot /R (s, ) (X — v¥)(ds,dz)  or 8% (¥ — ),

Moreover this coincides with the jumps of §x uX — §x X if §x ¥ is well-defined. We note
that the function d(w,t,z) = k(z) is predictable and that when we decompose, for some
€ >0, k() = TL{jja|<c} + K () L{je|>p we have that #%xu =3, K(AX,)* < oo due to
the fact that >°__,(AX,)? < oo, k(z) is bounded and we have almost surely only finitely
many jumps bigger than e. Furthermore, again due to the boundedness of , x% x uX has
bounded jumps, is therefore locally integrable and allows for the compensator x? x vX to
exist, therefore condition (2.8) is fulfilled. Finally putting all the components together we

arrive at the Lévy-Ito decomposition of a semimartingale

X=Xo+B"+ X+ rx(u* —v¥)+ (. — k) » p*,

X

where xx (uX — v%) and (z — k) x X should be read component by component if d > 1.

In the case of an It6 semimartingale we have more specifically

t ¢
X = Xo +/ bds +/ c2aw, +/ k() (™ — v¥)(ds, dz) (2.10)
0

0 (0,t] xR

+ /(O,t]x]Rd (z — k(z))p™ (ds, dz).

Usually in applications [t6 semimartingales are the objects considered and for estimating
their rate of growth we need this specific form of time continuous characteristics. Therefore
in the sequel (as in most literature regarding the subject of statistics on semimartingales)
we only look at the class of 1t6 semimartingales. There is one last addition to make,
namely that not only there exists a decomposition in the form of (2.10) but also that
every d-dimensional It6 semimartingale can be written with respect to the same Brownian
motion and (compensated) random measure p, © — v. This is then called the Grigelionis

decomposition of semimartingale. For this matter we need to be able to define random



measures that are not directly associated to a process but are rather defined by a single
(non random) measure A on some space FE. To be more precise, (E,£) is an arbitrary
Polish space endowed with its Borel o-field £ and ) is a o-finite measure. Then a random
measure g = p(w;dt,dxr) on Ry x E is called (F;)-Poisson random measure if it is the
sum of Dirac masses, no two such masses lie on the same “vertical” line {t} x FE and that

for all A € £ with A\(A) < oo we have (again using the shorthand 14(w,t,z) = 1a(x)):
o 14*u = pu([0,t] x A) is an (F;)-Lévy process,
o £ [:H_A * ,ut] = t)\(A)

When A(A) < oo we notice that 14 %y is an ordinary Poisson process with parameter
A(A). Setting v(w;dt, dr) = dt ® A(dx) we find that for all B € R, ® £ with v(B) < oo
I * 14 is the compensator of 1g * p; and therefore v is the (non random and hence
predictable) compensator of . Comparing this with Remark 2.2, it is no surprise that
the jump measure u~ of an (F;)-Lévy process is indeed a (F;)-Poisson random measure
with £ = R? and therefore when defining i as above the measure \ is often called the
Lévy measure of v. For all predictable (i.e. measurable w.r.t. P ® &) functions § on
Q x R, x E which satisfy (2.8) with v* replaced by v one may then define § x (1 — v),
as in (2.9) and similarly one can generalize the definitions of § % p;, 0 * 14 and the other
concepts presented previously.

Now follows the Grigelionis decomposition, let d > d and E be an arbitrary Polish space

with a o-finite measure A with A(E) = oo having not atoms.

Theorem 2.2 (Thm. 2.1.2 in [JP12|). Let X be a d-dimensional Ito semimartingale
on the space (0, F, (F)is0,P), with characteristics (B,C,v™) given as in Definition 2.5.
Then there exists a very good filtered extension (0, F, (F)iso, P) (definition p.36, [JP12]),
on which there are defined a d'-dimensional Brownian motion W and a Poisson random

measure [ on Ry X E with compensator v, such that

t t
Xy =Xo+ / bids + / nsdWs + / k(6% (s, 7)) (1 — v)(ds, dx) (2.11)
0 0 (0,t]xE

+/(O’t]XE(5 (s,z) — k(6% (s, 2)))p(ds, dz),

where n; is an R? @ R - valued predictable process on (0, F, (F)is0, P) and 6% is a pre-
dictable R-valued function on ) x Ry x E.

Additionally outside a null set one has nm! = ¢; and Fy(w, A) = X{z : 6(w,t,2) € A})
for each A € R with 0 ¢ A, where A is the closure of A.

Conversely, even if X is defined via (2.11) with b®,n,0 defined on the extension it is still
an Ito semimartingale on (U, F, (F )0, P) if it is further adapted to (F;)i>o-
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There is much freedom in choosing the number of Brownian motions d’, the space E
and the measure X\. A canonical choice would be £ = R?% with \ being the Lebesgue
measure but £ = R is also always possible even if the semimartingale X has more than
one dimension. The important thing here is that even countably many semimartingales
X, Y, Z ... can be represented at the same time by the same random measure p by using
a different function 6%,6,8%, ... for each process to be represented. So basically when
comparing two processes X,Y with a representation as in (2.11) all information about
the jumps is encapsulated in the functions 6%,6", e.g. if 6% is bounded the jumps of X
are bounded.

(2.11) is how most papers on statistics for semimartingales are set up and we con-
tinue in the same manner when we come to Chapter 4 where we give upper bounds
for E |Xt7; — X;,_,| dependent on the coefficients b*,n, 6~ of X.

At last we want to briefly present the quadratic variation of a process X, a concept which
is very important to the world of stochastic calculus in general and for us of relevance
when we want to calculate the aforementioned upper bounds. If Y is a continuous local
martingale the local submartingale Y2 allows, by the Doob-Meyer decomposition, for an
unique increasing adapted continuous process with Yy = 0, and denoted by < Y)Y >,
such that Y2— < Y)Y > is a local martingale. For a one-dimensional semimartingale X

we define

X, X = (X X+ ) (AX,)
s<t
as the quadratic variation process of X. If X is in addition an It6 semimartingale we find

that this reads as
t
(X, X]; = / ¢ ds+ "
0

The last two formulas will play a leading role when we want to find the aforementioned
upper bounds for £ {Xti - Xy, } with the help of the Burkholder-Davis-Gundy inequality,
cf. Theorem 4.1.

For two one-dimensional process X, Y this concept can be generalized to the quadratic
covariation process of X and Y, denoted as [X,Y] and if [X,Y] is locally integrable it
admits a (predictable) compensator denoted by < XY >. Furthermore the quadratic
covariation gives rise to a definition of [X, X] and [X,Y] when X,Y are d-dimensional.
However, this case is of no further relevance for the rest of the work and hence we point

to any of the references mentioned at the beginning of this chapter.



Chapter 3

The Blumenthal-Getoor and the Jump
Activity Index

3.1 The Blumenthal-Getoor Index

We now take one step back from the general setting of semimartingales and look at Lévy
processes, in particular the properties of their jumps and how these can be characterized.
As the results presented in this section are much closer related to the quantities that we
want to estimate in Chapter 5 and as such closer to the actual topic of this work, we
employ a more rigorous approach than in the previous chapter.

We assume that X is a one-dimensional Lévy process (although the concepts presented
here may be lifted easily to more than one dimension) on the filtered probability space
(Q, F, (Ft)t>0,P) with a characteristic triplet in the Lévy process sense (b, ¢, F') with
respect to some truncation function x(x). Then, as already mentioned, the jump measure

p = i~ is a Poisson random measure with compensator
v(dt,dz) = dt @ F(dx).

In this introductory chapter we fix a setting of equidistant observation times with a fi-
.. ,XT while

A,, — 0. The question that arises now, is which parts of the measure F' can be estimated

nite time horizon 0 < T < oo, i.e. for A, = % we observe Xy, Xa,, Xoa,,,-
from a single path of the process X.

In Lemma 3.3 we prove that for any Borel subset A C R we either have almost surely
infinitely many jumps on any time interval (¢,¢ + s] iff F(A) = oo and almost surely
finitely many iff F'(A) < oco. Choosing some ¢ > 0 we have F'((e€,00)) < oo and therefore
a single path of the process may or may not have a jump of size € or bigger at all (this

is true not only for Lévy processes but for all Tt6 semimartingales in general). Therefore

11
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we cannot estimate F' on its complete domain as even if the complete information of this
single path would be available to us we would not be able to estimate F'((e,00)). While
testing for F'(R) < oo or F(R) = oo is always possible, we want to infer the behavior of
the jumps around zero, e.g. F((z,00)) when x N\, 0. This is only feasible when the mass
of these sets (z, 00) is increasing to infinity, which is equivalent to F'(R) = oo, and this is

why we usually restrict ourselves to this case of infinite jump activity.

To describe the behavior of F/(dz) around zero and the related path behavior of X Blumen-
thal and Getoor [BG61| introduced the Blumenthal-Getoor(BG) index for Lévy processes

g :=inf(I) where I = {p >0: /{ |z|PF(dx) < oo} . (3.1)

|z|<1}
Some key properties of § or the set I are rather obvious. First the set is always of
the form I = (f,00) or I = [f,00) and since it must hold for all Lévy measures that
J(Jz]* A1)F(dx) < oo we have that 2 € I and in particular 8 € [0, 2]. Referring to basic
properties of the process itself, X has finite jump activity if and only if F(R) < oo or
0 € I and F(R) = co. Furthermore we have § > 0 in the case of infinite jumps. A more

precise connection is stated later on.

As outlined above another way to describe the behavior of F(dx) around 0 is to work
with the (double sided) tail function of F namely

F(r)=F({y:lyl = r}) (3.2)
Now we find an alternative definition/characterization of 8 in terms of F(x).

Theorem 3.1 (Theorem 2.1 in [BG61]). It holds that

p= inf{a >0: li_r)rg)r“ﬁ(r) = 0} .
Proof. First we note that for the (signed) measure pz(dz) induced by the decreasing
function F we have for x > ¢ > 0
presa)) = Jim F(@) — I F(G)
= F((=00, —z) U (x,00)) — F((—00, —€¢] U e, 00))
= —F([-z, = Ule,2]),

using the o-continuity of F' and the fact that {y : |y| > 7,,} (=00, —z) U (x,00) when

Tp \yrand {y : |y| > yn} \¢ (—00, €]U[e, 00) when ¥, €. Set v = inf {a >0: hH(l)’I"aF(’I“) = 0}
r—

and choose some 9,6" with § > 6’ > ~. Then for all € > 0

2| Fdz) = — 17"50[77“ =F(e) - F(1 1) 17“‘5_5,_17"5/F7"dr 3.3
/ESMH (@) =~ [ #dF() = F( - F1)+5 [ (dr  (33)

€ €
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where we used the partial integration rule for Stieltjes integrals in the last step. And
because 70 F(r) — 0 as r — 0 we have r® F(r)1y(r) < K1y y(r) for some constant
K > 0 and as such for another finite number M < oo

1 1
/ PO~ (r)dr < K/ P dr - M as e€—0.

€

Considering the limit when € — 0 in (3.3) we have that 0 > [ and hence v > f.
To prove the other direction we take an o > [ and have for all n > ¢ > 0

2 F(dr) = — nrédfr > — nr‘sdfr > [Fle)— F
/0§|x|g77|| (dz) / (r) = / (r) = [() (77)}

0 €

where the last two steps hold because pz(dx) is a negative valued measure. Therefore

lim sup € F(e) < / 2|’ F (dx)
0<|z[<n

e—0

and since § > ( the right hand side converges to 0 when n — 0 (F'(dz) has no mass in 0).
It follows that r°F(r) — 0 as r — 0 and as such § > v and 3 > 7. O

3.2 The Blumenthal-Getoor Index and Basic Path Prop-

erties

The Blumenthal-Getoor index indicates the behavior of the process paths in numerous
ways though we will only point out a few here. In our case the most relevant feature is
the relation between the BG index and whether the jumps of the paths are p-summable,

i.e. whether the sums

Alp)e == IAX,J? (3.4)

are a.s. finite or not for some p > 0.

The following two results are needed for the proofs of Lemma 3.3 and 3.4.

Lemma 3.1. Let Y be a nonnegative random variable then it holds that

Y <ooas < E[le™] =1 when A \,0, (3.5)
Y =00as < E[e™]=0 foral \>0. (3.6)

Proof. We start with the proof of (3.5). Let Y be almost surely finite then =Y L 1 when

AN 0 and as || = ™Y < 1 we have with dominated convergence that E [e™*Y] — 1.
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For the converse assume that E [e™*] — 1 when A \, 0. Then this implies e 51
when A N\, 0 and by passing unto a subsequence we even find e %% 1 which is
equivalent to Y < oo a.s.

To prove (3.6) assume that Y = 0o a.s. then it follows that e=*Y = 0 a.s. for all A > 0 and
therefore E [e‘ky] = 0. For the converse assume that ¥ = oo a.s. does not hold. Then
there exists A € F with P(4) > 0 and Y (w) < oo for all w € A. Therefore e > 0

for all A > 0,w € A and as e™ > 0 we can conclude E [e™*Y] > 0. O

Lemma 3.2. Let f : R, Xx R — R be a nonnegative Borel measurable function and p be

the jump measure and v its compensator of some Lévy process X. Then it holds

E {exp <—/f(r, 2uldr, dx))] ~ exp <—/(1 — exp(—f(r,2))) v(dr, dx)).

Proof. As f is nonnegative there exists a sequence of simple functions (f,)nen /* f where

each function is of the form

n

fnzzaiﬂA“ n €N

i=1
for some A; which are disjoint Borel measurable subsets of R, x R and a; > 0. For each
A; we have that u(A4;) is a Poisson distributed random variable with mean v(4;), i.e. for
alln e N

14 Az n
P(u(4) = n) = exp(—w(4)) 127
Therefore we have
v(A)"
E fexp (— = 3 exp(-am) exp(—(4) 2L < exp (~(1 — exp(a))(A).
n>0
Furthermore, as the A; are disjoint, the random variables v(A;),...,v(A,) are indepen-

dent and hence

E {exp (— / £, @) (dr, dx))] _E

H [exp (—aipi(A;))]
11

€xp <— i az’M(Az'>>

i=1

—(1 — exp(—a;))v(Ai))

< 1 — exp(az))u(AZ-))

( 1 — exp(— fu(r, 2)))w(dr, d@) .
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Using monotone convergence for the measures p(dr, dz), v(dr, dz) and dominated conver-

gence for the expected value we have

[exp( / £ 2)uldr, da:))] ~ I E [exp (- / £, 2)p(dr, dx))]

~ lim exp (— / (1 exp(—f, (r, 2)))v(dr, d@) ~ exp (— / (1 = exp(—f(r,2)))w(dr, dx)) |

n—oo

[]

Now follows the result that proves the properties used in the introduction of this

chapter.
Lemma 3.3. Let A € R where R is the Borel o-algebra on R. Then we have that

F(A) <00 <= Z L4(AXS) < 00, a.s. V>0, (3.7)
s<t

F(A) =00 < Z 14(AX,) =00, a.s. YVt >0,s > 0. (3.8)
t<r<t+s

Proof. Set g(x) = 14(x). We prove (3.8) by defining the function f(r,z) = A(g(z) A
1)1 (t,+5(r) for some XA > 0 and set

Y = Z ﬂA(AXr)
t<r<tts
= Y (X)L (6(AX) + ey @A) = [ Ffra)utdrdo)

We then have with Lemma 3.2
E [exp(—\Y)] = E [exp (—/f('r, 2uldr, da:))] ~ exp (-/(1 — exp(—f(r,2))) v(dr, d@).
As

1-— exp(—f(r, l’)) - eXP(Er,x)f(Ta (L’)

for some €, , € [—f(r,x),0] and f(r,z) < X we have

exp(=A)f(r,z) <1 —exp(=f(r,z)) < f(r,z)

which results in

—/(1 —exp(—f(r,x))) v(dr,dr) < exp(— / —f(r,z)v(dr,dx)

— exp(—)\) /R + / ~Ag(x) A D) (s (r) F(dz)dr
— _exp(— / ” / d)dr

— exp(— M)A /t (A)dr (3.9)
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and

— / (1 —exp(—f(r,z))) v(dr,dz) > —)\/tt+s /R(g(x) A1) F(dx)dr = —)\/tHsF(A)dr.

(3.10)

The two inequalities above together with the fact that by Lemma 3.1 Y is a.s. infinite if
and only if E [e=*] = 0 for all A > 0 gives (3.8).

To prove (3.7) we define the function f(r,z) = A(g(x) A1)Ljo4(r) and use that by Lemma
3.1 a nonnegative random variable Y is a.s. finite if and only if E [e™*] — 1 as A \, 0.
Then replacing the domain of integration for the slightly altered f(r,z) in (3.9) and (3.10)
yields (3.7). O

The following Lemma is a generalization of the previous one and is used to state the

connection between the BG index and p-summability in the next corollary.

Lemma 3.4 (cf. p.31 in [ASJ14]). Let g : R — R be a nonnegative Borel measurable
function with g(0) = 0. Then we have that

/(g(x) A)F(d) < 0o <= 3 g(AX,) < 00, as. Vit > 0, (3.11)
/(g(:c) A1) F(dx) = 00 <~ Z g(AX,) =00, a.s. YVt >0,s > 0. (3.12)

Proof. We start by discussing the case of F (g7'([1,00))) = oo, we then have that the
left hand side of (3.12) is true. Furthermore by (3.8) we have infinitely many jumps AX,
on any interval r € (¢,t + s] with g(AX,) > 1 yielding the right hand side of (3.12).
Therefore (3.11) and (3.12) are then fulfilled trivially.

For the rest of the proof we may now assume that F (¢~'([1,00))) < oco. Then by (3.7) for
any interval r € (¢,t+ s] there exists only a finite number of jumps AX, with g(AX,) > 1

and hence
Zg (AX;) < 0 <= Z (9(AX)) + ]1(1,00)(9(AX8))) < 00,
s<t s<t

S gAX) <00 &= S (9(AX) Ly (9(AX,) + 1 (9(AX,))) < oc.

t<r<t+s t<r<t+s
To show (3.12) we define as in the previous proof f(r,x) = A(g(x) A1)L( 444 (r) for some
A >0, set
1
Y= ) (9(AX)10y(9(AX) + L (9(AX,))) = / ~f(ry 2)pldr, dr)
R4 xR A
t<r<t+s +
and from now on follow exactly the proof of Lemma 3.3 omitting the (not needed) identity
Ja(g( )F (dx)dr = F(A). For (3.11) we define f(r,x) = A(g(x) A 1)14(r) and then

hkew1se use the arguments in the proof of Lemma 3.3. O]
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Corollary 3.1. Applying Lemma 3.4 to the function g(x) = |z|P yields the well known

result
/(|g;|p ADF(dr) < oo <= Y |AX,|P < oo, as. Vt >0, (3.13)
s<t
/(|x\p AF(dr) =0 <= 3 JAX P =00, as VE>0,5>0.  (3.14)
t<r<t+s

Using the above corollary we see that the process has finite variation iff 1 € I.

Furthermore in [BG61] more connections between the BG index and other key properties
of the process are made. Although these will not play a role in the sequel we name few

here. First the BG index is connected to the “scalability” of a process namely

Theorem 3.2 (Theorem 3.1 in [BG61|). If o > (3 then
7YX, = 0 fort — 0 a.s.
Theorem 3.3 (Theorem 3.3 in [BG61|). If o < 3 then

limsup ¢~/ X,| = 00 a.s.
t—0

We will encounter a much stronger version of this scaling property in the class of stable
processes featured in the section below.
Other results in [BG61] link the BG index to the Hausdorff dimension of the image of a

process. Depending on the conditions one can achieve lower or upper bounds.

3.3 Stable Processes and Related Processes

In this section we give basic examples of Lévy processes in reference to their BG index.
The most prominent one being the class of stable processes which plays a major role in

Chapter 5, being one of the building blocks of the observed process.

3.3.1 Stable Processes

Stable distributions were originally introduced by Lévy as an example for infinitely di-
visible distributions and are well known as the limiting objects of central limit theorems
when second moment conditions are missing.

A random variable Y is strictly stable distributed when for independent copies Y7, ...,Y,,,n €
N, of Y it holds that for some a,, € R
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Yi+...+Y,~aY

where the equality is in distribution, so this is a very special case of infinite divisibility.
It turns out, if Y is not constant 0, that it must hold a, = n'/? for some 8 € (0,2]
which is called the stability index of a stable distribution. The characteristic exponent
V() = —log (E [exp (—i¢Y)]) of such a distribution is given by

c — jsgn an (=2 1
pig) - { PO —ism@) an (), Fo#1 )

clol, ifB=1
where o € [—1,1] and ¢ > 0. As Y has an infinitely divisible distribution there exists a
Lévy process S whose characteristic exponent — log (E [exp (—i¢S1)]) equals (3.15) (p.5
in [Kypl14]). We call these Lévy processes the class of strictly stable processes. Here two
special cases are included in this class of processes. The case = 1 contains, besides
the Cauchy process, a linear (non random) process starting in 0 and § = 2 refers to a
Brownian motion. When g € (0,1) U (1,2) the characteristic triplet of S with respect
to a truncation function  is then of the form (0%,0, F') for some drift b* € R and Lévy

measure satisfying
a(+) a(_)
with a(), a7) > 0 and ) + =) > 0 and b* fulfills in addition

0, if 8€(0,1) for k(x) =0
0, if B€(1,2) for k(x)

x.

In the context of Chapter 2 the choice of k(z) tells us that S is a special semimartingale
if > 1 and a process of finite variation if 5 < 1. Note that x(z) = z is not a “real”
truncation function, as it is not bounded, but in the case of a special semimartingale and

S being not a Brownian motion it still gives us a valid decomposition of S of the form
Sy = / z (u—v)(ds,dx)
(0,t] xR

where (1 is a jump measure with compensator v(dt, dr) = dt® F(dx). Furthermore we note
that there is no conflicting notation here, i.e. the stability index of the process coincides
with its BG index. 3 controls the rate with which F' diverges near 0: the higher the value

of B, the faster F' diverges and therefore we have a higher concentration of small jumps



19

by Corollary 3.1. When 8 — 2 the jumps become “so dense” that the limiting object has
continuous (albeit still not differentiable) paths and is a Brownian motion. In the case
of stable processes the parameter § also governs the behavior of the big jumps and using
the fact that for all p > 0,2 >0
E[|Xif] < 00 <= |z|PF(dx) < oo, (3.16)
{l=[>1}
(c.f. Theorem 2.19.1 in [EK19]) we see that if S is a stable process we have

E[|Sif] <oo for 0<p< B and E[|S;|’] = oo otherwise.

The last key property of stable processes is their self-similarity. For all n € N it holds
that

S, =514+ (S3—51)+...+ S, — Sh_1 ~nPS

or more generally for all A > 0 we see that {S), : t > 0} has the same law as {\'/?S, : t >
0}.

In general the density of a stable distribution /process is unknown, though, except for cases
B = 1,2 mentioned above. In the sequel we will work with the characteristic function of
strictly stable processes in particular if these are symmetric, i.e. o™ = a(7) or a = 0,

then the Lévy measure and characteristic function reduce to

A .
F(dz) = de and E [exp(—iuS;)] = exp(—Ag|ul?) (3.17)

for some constants A, Ag > 0.

3.3.2 Tempered Stable Process

A tempered stable process of index € (0, 2) is a Lévy process whose characteristic triplet
is (b,0, F'), where b € R and F'is
(+) — (=) —
a') exp(—By|z|) a'™) exp(—B_|z|)
F(dﬂf) = ( ’x|1+/8 ]]-{x>0} + |§E’1+f8 I].{:c<0} dl‘a

for some (™), a(™) > 0 with a(*) + a(~) > 0, and B_, B, > 0. The reason for introducing

tempered stable processes is that since exp(—B.y|z|),exp(—B_|z|]) — 1 as x — 0 their
small jumps behave similar to stable processes and as a result their BG index equal to .
But in contrast to stable processes applying (3.16) yields that moments of all orders exist,
as exp(—|z|)|z[P11,00)(|x]) is integrable for all p € Ry. Tempered stable processes are
featured in financial applications and can also be incorporated as an underlying process
for the estimator presented in Chapter 5.

The well known inverse Gaussian process is a prominent example of a tempered stable

process with al™) = 0 (i.e. it is a subordinator) and index equal to 3.
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3.4 The Jump Activity Index and Basic Models

We now lift the concept of the BG index to general semimartingales. (3.4) is defined for
semimartingales in the same manner and again the question arises when these objects are
finite and when not. We now assume that X is an [t6 semimartingale with characteristics

(by, ¢, v) where the compensator of the jump measure is of the form
v(dt,dx) = dt ® Fy(dz).

As the spot Lévy measure Fy(dx) might vary over time for semimartingales we set up a

definition alternative to (3.1)

I :={p>0: /(|x|p A1) Fi(dz) < oo}, B¢ :=inf I}, (3.18)

Jo=1{p>0:(|zP Al)xv; < 00}, 7 :=infJ (3.19)

with (|z]P A1) x v = f[O’t]m(|x|p A1) v¥(ds,dz) as defined in Chapter 2. The form of
these random sets is similar to the set I in (3.1) and again both -, and §; take values
in [0,2]. It is obvious that when t increases the set J; decreases. One can interpret 7
as the "global“ Blumenthal-Getoor index on the interval [0,¢] and §; is the "spot“ index
at time t. When X is a Lévy process there is no need for this distinction as the Lévy
measure is then non-random and g, = v = [ for all ¢t > 0. Though a non constant [,
may occur in a general semimartingale setting our estimator presented in Chapter 5 only
works in a setting where 3; and ~; are assumed to be constant over time and non-random
(and therefore equal) and we call this number jump activity inder. This nomenclature
allows us to still have a distinction between the Lévy case and the case of semimartingales
who may have a time changing F;(dx) but a non varying jump activity index 5. Most
estimators from recent papers work in such a setting of a constant index. One of the
very few exceptions is the paper [Tod17| by Todorov where a test is developed to check
whether the instantaneous index [; stays constant or varies over time.

Again compared to the Lévy case it does not surprise that we have a result similar to
Corollary 3.1.

Lemma 3.5 (cf. Lemma 3.2.1 in [JP12|). For all 2 > p,t > 0 it holds that
A(p) < oo <= pe€ J;.

The reason for estimating (3 is simple, many models in finance stopped using only
processes with continuous paths for the underlying structure but instead use processes

with jumps instead. The advantage of including jumps into financial models is that these
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can be used to reproduce various stylized fact of asset prices that cannot be explained
in classical models such as heavy tailed distribution and “big” jumps. These models
include simple compound Poisson-based models (5 = 0), normal inverse Gaussian models
(8 = 0.5), variance gamma models (5 = 0) or hyperbolic/generalized hyperbolic models
and the CGMY model of Carr et al. [CGO02| where [ is a free parameter. Therefore
estimation procedures may be used to fit real data to a model or, if they include a central
limit theorem, to come up with statistical tests for model assumptions.

To lift the setting of Lévy processes to a bigger class of semimartingales one can use the

following model assumption on the observed process X:

¢ ¢ ¢
X=Xy + / bsds + / NsdW, + / H,_dL,, (3.20)
0 0 0

where L is Lévy process whose BG-index is known, e.g. a stable process, b a locally
bounded, n a cadlag and H a locally bounded process. Then under general conditions the

activity index of X equals the one of L (c.f. Example 11.4 in [Kypl4]|).

3.5 Estimation procedures in Recent Literature

Most papers in the recent past use an underlying process of the form (3.20) for their
estimators while the assumptions regarding the Lévy measure of the process L may vary
slightly but follow the same underlying principles. They all describe the behavior of the
Lévy measure of L such that in a neighborhood around 0 it can be related to the behavior

of a stable process. The first example is taken from [TT11].

Assumption A. The density of the Lévy measure of L is given by

A
v(z) = 2iTe + V' (z), B € (0,2), (3.21)
where A > 0 and there exists some xo > 0 with |V'(z)| < WLW' for some ' < B and all

|£L‘| < Zyp.

The following assumption is from Chapter 11 in [ASJ14] using the tail function (3.2)
but generalized to semimartingales (exclusion of the point z in this definition in contrast

to (3.2) is of no real relevance here)
Fy(z) = Fi((—00,7) U (z,00)), t>0,2>0.
Assumption B. There ezist constants 0 < 5 < < 2 such that for allt > 0,z € (0,1]:
2P F,(2) — ay| < Mya®", (3.22)

where a;, M, are nonnegative predictable and locally bounded processes.
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Like already mentioned both assumptions work with a setting that assumes a constant
jump activity index equal to § though one must mention that, because we allow for
a; = 0, (3.22) allows for times when the process does not jump at all or only with
intensity lower than 4. Both convey that the behavior of the jumps of L around 0
resemble those of a stable process and restrict the possible forms of Lévy measures quite
a bit. Nevertheless nearly all models proposed for financial application fulfill (3.21) and
(3.22). The most notable differences in the model assumptions occur when X is allowed
to contain a diffusion part like f(f nsdWs or not. In the following we will present estimators
for both those situations. Before that we introduce the probably most used tool when it
comes to the analysis of integrated volatility or activity estimation: the power variation
of the process X

[t/An]
Vi(X,p, An) = Y |AIX]?, p>0,t>0, (3.23)
i=1
where A?X = X;a, — X(i-1)a, is the difference of the regularly spaced observations at
times 0, A, 2A,,, ..., [t/A,]A,. Results for convergence in probability of the power vari-
ation for this class of underlying process are stated as early as 2003 by [Woe03b|,|Woe03a|,
[BNS03| and continue with adjoined central limit theorems until [TT11]. From the latter

one we cite a few results omitting some technical assumptions

Theorem 3.4 (cf. Theorem 3.2 in [TT11|). 1. Suppose X is given by (3.20), L is a
Lévy process with characteristic triple (0,0,v) w.r.t. to some truncation function

k(x), where v is given by (3.21) for some 5 < 2 and |ns|, |ns—| > 0 a.s. Then for a
fized T > 0 we have

T
ASPRYL(X A S 1,(2) / Ins|Pds (3.24)
0

locally uniformly in p € (0,2), with u,(2) = E[|Z?] where Z is a standard normal

distributed random variable.

2. Suppose that for a fired T > 0 X is defined by (3.20) with ns = 0 for all s < T
a.s. and again L is a Lévy process with characteristic triple (0,0,v) w.r.t. to some
truncation function k(x), where v is given by (3.21) for some f € (0,2). Further
assume that if § < 1 then by — H,_ [, k(x)v(dzx) is identically zero on [0,T1], then it
holds that:

T
ALPIBYL(X, A B (B)K / \HL[Pds (3.25)
0
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locally uniformly in p € (0, ), with p,(8) = E|[|Z|P] where Z is a symmetrical stable

random variable with stability index B and Kz > 0 some constant only depending

on 3.

The last theorem clearly shows the different cases where each time a different part of
the underlying process determines the limit of the power variation. We briefly explain the
reason for this limit behavior when A,, — 0.

For a Brownian motion W we always have that

iAn,
/ NsdW
(i—1)A,

p

A;P/Q ~ A;p/z |77(i71)An(WiA - W(ifl)An)|p (3.26)

Win, — Wi—na, |°
=l ~ na-nan P12,
VA,

= |77(i—1)An‘p p> 07

where Z is a standard normal distributed random variable. On the other hand if S is a
stable process with stability index § we have from the self scaling property that

p

iAn
A;p/,@ ‘/( )A HS_dSS ~ A;p/’8|HiAn_(SiAn — S(ifl)An”p (327)
i—1

p

SZ _Si—
An “ OG- DA A PSP, p e [0, B).

A}/’B

= |Hia, |

For the drift part it is obvious that

iAp
/ b.ds
(i—1)Ap,

Putting these things together we can see the overall behavior outlined in Theorem 3.4,

p

AP ~ [bi—1a,l’,  p>0.

n

namely (assuming p = 1 for simplicity)

e If a diffusion part is present it dominates the jump part with activity § < 2 and
the drift part alike. The latter parts converge to zero faster than the diffusion and

scaling with a coefficient smaller than A, 2 would yield a degenerated limit.

e If no diffusion is present and 1 < 8 < 2 the jumps driven by the stable process have

to be scaled with A, "/? and the drift part converges faster to zero.

o If 3 < 1 we have AP < A1 and the drift determines the limit behavior. The only
possibility to still infer something about the jumps is when the drift is essentially
zero which boils down to the condition by — H,_ [, k(z)v(dz) = 0.

As with simple (non truncated) power variations only the part of the process can be

inferred that converges the slowest towards zero, we have that most of the estimators for
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B restrict X to have no diffusion part. In this case of ns = 0 and some smaller additional
conditions we find with (3.25) that (m"l)jﬂ/ Ve(Xp28n) B and from here one can build
An P VT(Xavan)

a basic version of an estimator for such a setting of no diffusion:

o plog(2)
) = g Ve (X, .28, [V (X, 1, 28,))

This concept can be extended for example by using the difference of increments, i.e.
A?X — A? | X instead of A'X, as carried out in |[Tod13|, to obtain better convergence
rates. A major advantage of this method is that the influence of the drift part is diminished

and we will use this concept when we construct our estimator in Chapter 5.

When the underlying process may contain a diffusion, the problem is that the “small
jumps” determining [ are now contaminated by the small increments of the diffusion.
The key idea to disentangling the jumps from the diffusion part is that increments of the
diffusion behave approximately like v/A, times a constant, see (3.26), and therefore to
only take into account the increments that are bigger than some threshold u, ~ A7 for

some w € (0,1). For an X of the form (3.20) this leads to functionals of the form

[t/An]
J(Arwun)t = Z IL{|A?X|>un}7 t>0

i=1

and under the assumption of (3.22) Ait-Sahalia and Jacod show in [ASJ09]
P t
uﬁJ(An,un)t — A = / agds, t>0, (3.28)
0
which leads to an estimator of £ even if a diffusion part is present:

R log(J(An, un)e/J(Ap, yun):)
Bl ) = log()

H{J(Anﬁun)t>0}a t> O,

for some vy > 1. This estimator can be improved by using test functions g(x) as smooth
approximations for the plain indicator function used in J(A,,u,): e.g. carried out in
Chapter 11.2 of [ASJ14] or [JKLM12|. The main drawback of this concept is that de-
pending on the parameter w one might omit most of the observations which hinders the

accuracy when only a small sample is available.

We now present an estimator for 5 taken from [Tod15| which is based on the empirical
characteristic function of a process. The following can also be seen as an introduction
to Chapter 5 as a large portion of the concepts used there is inspired by this estimator.
The main idea is that if X is defined according to (3.20) with no diffusion part and Lévy

measure as in (3.21), that in view of (3.27) and (3.17) it seems reasonable to assume, as
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long as § > 1, that:

n 1
An Y cos (uA;H(ATX — AT X)) S / e A ge oy e Ry, (3.29)

i=1 0
for some Az > 0. The difference of increments again diminishes the influence of the
drift and furthermore makes the Lévy measure symmetric around zero. Note that for a

symmetric stable process S we have
E [exp(iuSt)] = E [cos(uS1) + isin(uSt)] = E [cos(uSh)]

which motivates the definition in the first place. The problem is that if one wants to
estimate 8 from the limit above, it is not only part of the correct scaling but also of the
limit. Therefore it does not directly untangle from the integral above when we evaluate
the above functional for different values of u. A way out is to use power variations for a
local estimator of H and use it to scale the increments appropriately. This leads to the

estimator proposed in [Tod15]:

P = 2 (Srgs ) veRar>0

with (V/*(p))'/? being the local estimator for H, scaled by a constant:

i—2
1
Vi"(p) ::k_ E IATX — A [ X|P, i=k,+3,...,n,
" j:ifkn*l

built out of k, — oo, %” — 0 intervals prior to the two increments forming the charac-
teristic function. Note that the scaling needed in (3.29) is gone as the scalings in the

nominator and denominator cancel. The law of large numbers (LLN) result is then

Theorem 3.5 ((Theorem 1 in |Tod15]). Assume 5 € (1,2). Let k,, be a sequence with
k, =< n® with a w € (0,1). Then we have for 0 <p < 3

~

L™(p,u) L L(p,u,p) = e~ Crpv” for n — oo
with Opﬂ > 0.

We will return to this estimator in Chapter 5 as a base for our own estimator and
discuss the associated central limit theorem (CLT) there.
At last we want to mention a very recent publication by Jacod and Todorov [JT18|

in which the authors work with a related kind of functionals, namely local empirical
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characteristic exponents. Here h,, k, € N, u,, € R, are tuning parameters of the estimator

which all behave asymptotically like n® for different x € (0,1). We define

“-n n 1
1) = tox (L V 5 ). (3.30)
where
= _ N N hn—1
L(y)i = T cos (uny (Yﬁzlhn - iTJer(lH)hn)) with V" := Z 9(j/hn )AZLY
" =0 j=1

for some function g(x) with support on (0,1). The process Y is basically the process X
from (3.20) (with a possible diffusion part) plus some added noise using (3.22) to define
the behavior of the jumps. The }7;" are pre-averaged increments over h,, intervals and one
takes the difference of k, of those Y to build L(y)? respectively ¢(y), meaning that it
needs in total w,, = 2h,k, increments to form L(y)?. The final estimator then consists of
| N/ Jw, | — 1 of the €' (y):

[N fwn -1
2 - - . 1 —
C(y)? = Z (Cjwn( ) - _f( ]wn( )7 ]wn(2j> - ﬁ¢ny2ui) )
3=0 "

with f(z,y) = 3 (exp(2z —y) +exp(22) — 2) and ¢, = hy 2ien(9(55) — 9(52))% N
is the integer valued random variable that indicates the number observation times of Y
smaller than ¢. The second and last expression in the bracket are only needed for bias
corrections due to the noise and the nonlinear transformation in (3.30) and are of no
further interest here. Again h,, k, — oo with h" k” — 0 so we really form a local version
of the characteristic exponent. The centered process is of the form

~ 24,2 n 2 ~
2)7 = Ot)i ~ Lo, — Zyylpuidin()A

where ¢, qzn are non-random values depending on the function g(z) used for the pre-
averaging, x(/3) is a constant, A; as in (3.28) and C; = fo n2ds. The authors show that
0,y # 0 under many
0 (cf. Theorem 1 in

for a normalizing sequence u, of positive numbers and any ¢ >
restrictions on the tuning parameters w,, k,, h, it holds Z(y) L
[JT18]).

With the result it is possible to construct various estimators for the integrated volatility

C; or § and the associated value A;, one example being:

v (Cap —16C(1)y
b Oy —40)y )’
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471

where f~! is the reciprocal function to f(z) = 235_46. For more details see sections 4.3.1

and 4.3.2 in [JT18]. The reason we mention this paper in particular, is that it is the only
publication which can deal with underlying semimartingale in nearly full generality. That
means a process that may contain a diffusion in addition to a jump part with added noise.
Furthermore their estimator, similar to our estimator from Chapter 5, works in a setting
of (exogenous) random observation times which none of other articles mentioned in this

section does.
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Chapter 4

Estimates for I1td6 Semimartingales and

the Localization Procedure

With this chapter we now leave the introductory part of this work. While the first chapter
is mainly concerned with the basic definitions of semimartingales and the second one is
essentially a long motivation for why it is actually important to have estimators for the
jump activity index, this chapter finally provides results that have direct applications
in the following proofs. Furthermore, whilst in the previous chapters we only repeated
results and in some case added a rigorous proof, many of the results in this part are
adapted to the setting of random observation times, presented in subsection 4.2.1, and
are therefore, in this form, not included in the standard textbooks.

Throughout the proofs in Chapter 5 we will repeatedly use upper bounds for stochastic
processes to determine the rate of convergence for the different parts of [t6 semimartingales

when the distance A,, between observations Xa,, Xon,,, ... goes to zero. These estimates

are used commonly by authors working in a semimartingale setting and by nearly all
papers mentioned in the previous chapter. Usually they consist of two things. First,
upper bounds for different parts of an It6 semimartingale stated in a very general manner,
sometimes these bounds may be infinite (and therefore render uninformative) depending
on the conditions. Second, a localization procedure that makes the aforementioned bounds
applicable to semimartingales that only fulfill very general conditions. The localization
procedure strengthens the weak/general assumptions such that the earlier stated bounds
that may have been uninformative before are now actually finite. Section 4.1 states
estimates for different parts of a semimartingale and Section 4.2 then deals with the

localization of semimartingales.

29



30

4.1 Basic Estimates for It6 semimartingales

The following estimates are all stated in Section 2.1.5 of [JP12] and will play a major role
in the upcoming proofs of Chapter 5. As already mentioned the results are phrased in
a slightly generalized version that is fitted to our setting of irregular observation times.
That means in contrast to [JP12] we allow for both U and 7 to be (bounded) stopping
times. For the sake of completeness we include some of the proofs which can be found in
the Appendix of [JP12].

The motivation for the following lemmas is that we consider a one-dimensional semi-

martingale in the form of Theorem 2.2, i.e.
t t
Xy =Xo+ / bsds + / nsdWs + / k(6% (s,2))(p — v)(ds, dz) (4.1)
0 0 (0,] xR?
o[ @)~ (sl o)
(0,t] xR

where the compensator of u is given by v(dt, dx) = dt ® A\(dz) for a o-finite measure A\ on
some polish space E and the other parts of X likewise fulfill the conditions of Theorem
2.2 with d = d’ = 1. We start off with an upper bound for the drift part.

Lemma 4.1. (¢f. p.40 in [JP12]). Let U > 7 stopping times where U is bounded then
we have for p > 0

T4+u p p
sup / bydr| < (U—71)P ( sup |bu|) . (4.2)
0<u<(U-71) |J 7 T<u<U
Proof.
T+u p T+u b
sup / bedr| < sup / |b,.|dr
0<u<(U-7) |J1 0<u<(U-71) Jr

< (W= s l) <@ —rr (s )"

T<ulU T<ulU

O

The idea of this and the following estimates is always that 7 and U are two random
time points where we observe our process and that E. [U — 7] is of the order A,,. When
the distance between observations goes to 0, i.e. A, — 0, the rate of the drift term is
AP if the process b is bounded. In general this is too strong to be an assumption but in
Section 4.2 we show that it suffices that b is locally bounded to assume by localization
that it is bounded.

Before we start with the estimates involving stochastic integrals we need to cite the
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famous Burkholder-Davis-Gundy (BDG) inequality which will contribute to many of the

upcoming proofs.

Theorem 4.1 (Burkholder-Davis-Gundy inequality). For each real p > 1 there ezist
constants 0 < ¢, < C,, < oo such that for any local martingale M with My = 0 and any

two stopping times T < T, we have
B (M, M]z — [M, M), )" |F, |
<E { sup M, — MT|p]]-"T} < C,E [([M, M)y — [M, M],)"? | F,| .
teRyir<t<T
From now on and for the rest of this work we use for any stopping time 7 the following
notation E,[-] := E[-|F;]. Furthermore, if not explicitly mentioned K > 0 is a constant
that may change from line to and K, > 0 is likewise a constant that may depend on a
parameter ¢ € R that is non-random and usually known or fixed.

Now direct application of the BDG inequality gives us an estimate for the continuous

martingale part.

Lemma 4.2. (c¢f. p.40 in [JP12]). Let U > 7 stopping times where U is bounded then

forp>1:
T4+u /2 1 U ) p/2
/ ndez (U - 7—)p ((U _ 7_) / |772| dZ)

and for p < 1 we have:
T+u p s 1 U ) 1/2 p
[ naw | < (wtm o (G [Cwpes) |

p

E,

sup
0<u<(U—-7)

< KR,

E- sup

0<u<(U—7)

Proof. For p > 1:

T+u P [ U p/2
E, sup / 1, dW, ] < K,E- (/ ‘Uz\2d2> ]
0<u<(U—7) |J+ | \Jr
i ) 1 U p/2
< K,E, [(U—71)P/? .|*d
< i | = (e [ ) ]
and for p <1
T+u p T+u p
E. sup / NsdW <E, sup / NsdW
0<u<(U-7) |J1 0<u<(U-1) |J7
1 U 1/2 p
< | KPE, [(U —1)/? / .|2d .
—( 1 ( T) (U—T) . |77| <
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Again the right hand sides of the inequalities do not have a specific order of convergence
when (U — 7) — 0 in general, but only under additional assumptions usually obtained
through localization.

Next we turn our attention to estimates for purely discontinuous martingales. The fol-
lowing Lemma is 2.1.5 of [JP12] in our slightly more general version for stopping times.

Here we define for a predictable function 6 on 2 x Ry x F and s > 0:

5(q)ns = % / o /E 16(u, 2)|7A(d=) . (4.3)

Lemma 4.3. Suppose that [ [,.10(s,2)[?\(d2)ds < oo for all t > 0. Let U > 7 be
stopping times where U is bounded then for Y = 0% (u—v), q € [1,2],

~

E, sup Yoy, — Y |?| < KE; [(U —7)0(q) -
0<u<(U—7)
and for q > 2:
E.| sup [Yeyu—Y7|*
0<u<(U—71)

< K, (B, [(U = )8(@)ewn | + B [0 = 7752)% ]).
Proof. The proof is conducted by checking that the arguments in [JP12] still hold in this
slightly more general setting.

Let ¢ € [1,2] and define for all w > 0 the processes
Z(w) = (|0]"Lizoey) ¥t and  Z(w) = (|0]“Lr00)) * Vs

noting that Z(w)y = (U — T)g(w)Tv(U_T).
By the BDG-inequality we have

]ET sup ‘YT+S - Y;' ’q

0<s<(U—7)

~E, { sup [V, — YT\q} < K,E, [2(2)‘52] .

T<s<U

Using

p
< Z la;|? Vp € (0,1] and all real valued {a;}i>1 (4.4)

2_lail
i

we have Z(2)7? < Z(q) and as such

ET sSup |Y;'+S - YT ‘q

0<s<(U~7)

< KE, [Z(ou] = K,E | Z()]
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where we used the Optional Stopping Theorem for bounded stopping times in the last
step.
The proof in the case of ¢ > 2 and U being non random is more lengthy and can be found

on p.566 in [JP12]. However it may be generalized in the same way. O

Note that Lemma 2.1.7 b) of [JP12] can also be proven under the same conditions,
that is:

Lemma 4.4. Suppose that f(f [ 10(s, 2)|A(dz)ds < oo for allt > 0. Let U > T be stopping

times where U is bounded then the process Y = § x u is of locally integrable variation and

for p € (0,1] we have
/ / s, x)p(ds, dz)
0<u<g(U~-7)

/ / sxudsdx)]

< K, (B (U = 7B ] + B — 7)3) ]

~

sup ]<KE[(U—T)()UT]

and for p > 1

sup
0<u<(U~-71)

Again the above estimates are in general of no further use as it is not clear why
E, [g(p)r,(U—T)} should be finite in the setting above. The necessary assumptions to guar-
antee the finiteness are now covered in the next section whereas section 4.3 puts these

strengthened assumptions together with the previous estimates.

4.2 Localization Procedure

We start this section by introducing the general assumptions that we impose on our
observed semimartingale X used as the underlying process for the estimator presented in

the next chapter:

; t
X, =X+ / agds + / os_dLs+dY;, t>0, (4.5)
0 0

where the precise assumptions of the processes L,«,0,Y are specified in Assumptions
A and B below. The way we represent X in (4.5) differs from (4.1) because we do not
need an estimate on something like E, [SUPogsg(U—T) | X5 — X,|7] directly but only on
its components and rather emphasize how X would be written in modeling applications.
Nevertheless the processes occurring as components of X are represented as in (4.1).

We assume that:
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Assumption A. The process X is defined on a filtered probability space (2, F, (Ft)i>o0, P)
and k(zx) is a truncation function, i.e. it is the identity in a neighbourhood around zero,

odd, bounded and equals zero for large values of x and we set k(x) = x — k(x).

1. L is a Lévy process with characteristic triple ( fR ‘ Wldaz 0, F) with respect to
the truncation function k(x), where the Lebesque density of the Lévy measure F(dx)

15 given by

h(z) = + h(z) with a B € (1,2), A > 0;

|x|1+ﬁ

and for h(x) there exist xo > 0 with |h(x)
g < 1.

| < = |1+5, for all |xz| < xy and some fized

According to the appendix of [TT12] we can find (with a suitable extension of the

probability space) a decomposition as follows:

Lt - St + St - St (46)
where S is a Lévy process with characteristic triplet (— [, /( \B+1 dzx, 0, |z“f+6 dx), S and

S are pure-jump Lévy processes with the first two Characterlstlcs zero (with respect to the
truncation function x) and densities of the Lévy measure |h(z)| and 2|l~1(a:)]]l{ﬁ($)<0}. This
means in particular that S is a strictly S-stable Lévy process. We denote the associated

jump measures of S, S and S with i, po1 and po.

Assumption B. The processes o, o and Y are Ité semimartingales of the form

at:ao+/ b ds+/t “dw, +/ ?dWs+/Ot/E/i(5°‘(s,x))E(ds,dx)
/ / (6° (s, 2))ulds, dz),
at—ao—l—/ b"ds+/ 7AW, +/ ;’dWs—i—/ot/E/i(éa(s,x))E(ds,dm)
/ / (6% (s, 2))u(ds, dz).
Yt:/ /x,uy(ds,dx),
0 R

1. |oy| and |oy_| are strictly positive;

where

2. W and W are independent Brownian motions; ji is a Poisson random measure on
R, x E having arbitrary dependence with the jump measure of L, with compensator

dt @ N(dzx) for some o-finite measure \ on E. H is the compensated jump measure;
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3. 0%(t,x) and 6°(t,x) are predictable with [6%(t,z)| + |07 (¢, z)| < y(x) for all t < Ty,
where vy(x) is a deterministic function on R with [, (Jyk(x)[" A1) A(dx) < oo for

some 0 < r < 2 and Ty 1s a sequence of stopping times increasing to +00;
4. b, b7 are locally bounded;
5. n*.n%,n% and N® are processes with cadlag paths;

6. 1Y is an integer-valued random measure on Ry x R with jump compensator dt ®
v} (dz) such that the process ([, (|z|? A1) v (dz))
Assumption A.

is locally bounded for 5" from

>0

Following are the stronger assumptions that allow us to use the estimates of the previous

section:
Assumption SB. In addition to Assumptions A and B we have
1. |oy| and |o|™t are uniformly bounded;

2. 10%(t,x)| + 169(t, )| < y(x) for all t > 0, where y(x) is a deterministic bounded
function on R with [, |y(z)|"A\(dz) < oo for some 0 < r < 2;

3. 0%, 07,0, n%,n% and n® are bounded;

4. the process ([, (|z|* A1) vy (dx)), o 8 bounded and the jumps of Y are bounded;

>

5. the jumps ofS and S are bounded;

We now argue how to strengthen Assumption B meaning why we may assume the
stronger Assumption SB instead. Section 4.4.3 in [JP12| discusses the localization proce-
dure in very great detail. Here we will roughly outline the path discussed there and only
give detailed account when deviations occur.

In a simplified version Jacod and Protter say that the localization procedure applies from
(SB) to (B) if it holds that: If some sequence of functionals U"(X);, depending on the
underlying process X, converges for all t > 0 stably in law under a strong assumption on
the process X (in our case (SB)) towards some limit U(X);, then it also converges under
a weaker assumption (in or case (B)).

The proof that this actually holds true for various sets of strong and weak assumptions is
conducted in Lemma 4.4.9 of [JP12| and needs some prerequisites which we will check in
the following. As for ¢ > 0 the functionals U™(X), considered in our case are build solely

out of the increments of the underlying process up to the time ¢ and furthermore, as we
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will see in Chapter 5, the limiting object U(X); does not depend on X at all, we certainly
have condition (4.4.2) in [JP12], that is: If X and X’ are two semimartingales and 7 is a

stopping time then they are subject to the following condition:

If X; = X] a.s. Vt <7 then:
o fort <7=U"X), =U"X"), as.,
e the F — conditional laws of (U(X);)i<, and (U(X'))i<, are a.s. equal.

The proof of Lemma 4.4.9 now consists of two steps. The first step is to show that for
a semimartingale X satisfying Assumptions A and B there exists a localizing sequence
of stopping times, F), /" oo a.s. when p — oo, such that for each p > 0 there exists a
semimartingale X (p) with

o forallt < F,= X(p): = X; as.,
e cach X (p) satisfies Assumption SB.

The second step is to show that if we have a localizing sequence as above and convergence
U™X (p))e £=5 U(X(p)), then it also holds that U"(X), £=% U(X),. The second step
is generic and independent of the assumptions placed upon the processes X and X (p).
Therefore we omit this step which consists of part 1) and 2) of the proof of Theorem 4.4.9

in [JP12] and only show that a localizing sequence as above exists.

Lemma 4.5. Let X be a process fulfilling Assumption A where the components of X
fulfill Assumption B. Then for each p > 0 there exists a stopping time F, and a process
X(p) such that X (p) and its components, a(p), o) and Y (p), fulfill Assumption SB and
it holds that X (p), = Xy for all t < F,, while F,, /* 0o when p — oo.

Proof. The proof follows in great parts and notation the proof of Theorem 4.4.9 3) in
[JP12|. We start with the assumptions on the process ¢ and omit the superscript in
b7, 1%, n°,7 in the following. By (B) b is locally bounded therefore we have a localizing
sequence of stopping times V), /* oo such that [b,] < pif 0 <t < V,. Then we define
the stopping times U, := inf{t : |oy| + || + || > p} and L, := inf{t : |oy| < 1—1)} As
o,n,17 are assumed to be cadlag it is a well known fact that U, ,* co. We now prove that
L, /* oo by showing that for any ¢ > 0,w € 2 there exists some constant M (w) > 0 with
los(w)] > M(w) on the interval s € [0,¢]. Then we can find a p’ € N with 1/p’ < M(w)
and have L,(w) > t for all p > p/. Assume such an M (w) does not exists then there exists

a sequence x,, — x in [0,¢] such that lim o, (w) = 0. By passing onto a subsequence of
Ty —>T
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x, we either have that lig 0z, (w) =0 or li@ 0z, (w) = 0. The first is a contradiction
Tn /T Tn (T

to the assumption that |o_| is strictly positive and the second one is a contradiction to

the assumption that |o| is strictly positive and a cadlag process. For p € N let T}, be the

stopping time from Assumption B.3. Set
E, =V, NU, NL, \T, (4.7)
and

b = by,

"%gp) = ntAEpﬂﬂTltAEp\SP}’

i = NenEy L{jiiupm, |<p}s

0W(t,2) = 6(t A E,, 2)L{5(nE,,2)|<2p} -

By construction we have [b?)| < p, [n®| < p, [7?)| < p (note that nisg,, finp, Would
not be bounded in general) and ®, 7 are cadlag, 6% (¢, z) predictable. Furthermore,
it holds that [6®(¢,2)| < 4P (z), where yP)(2) = 5, A 2p and 7, is the associated
function to 7, from Assumption B. Due to [, (| (x)|" A1) A(dz) < oo we find that

[ (17 (2)[") A(dz) < co. The process 0@ defined as
P, if t>E,
o =S oo+ L0 ds + [P aw, + [l
+ fo [ 6(6P) (s, 2))fi(ds, dx) + [, fEm(é(p)(s,x))H(ds,dx), if t<E,,

(4.8)

then satisfies Assumptions SB.1, SB.2, SB.3 as min (]— — 2p|, ) == < ]Uﬁp)\ < 3p and

1
p
E, / oo. The only thing that remains to show is that o, = a§ ?) a.s. when ¢ < E,. The
proof and arguments here are exactly the same is in the proof of Theorem 4.4.9 3) in
[JP12] therefore we omit it here.

The same methods can then be applied to the process a to give us a localized version
a(p) fulfilling Assumption SB with localizing sequence A, 7 oco.

Moving on to the process Y; = fg fR zp¥ (ds,dr) we let B, be the localizing sequence from
Assumption B.6 such that [, (|z|¥ A1) 1) (dz) < p for all t < B,. We set Z, := inf{t :
Y; > p} and

tABpNZp
:/ /x]l{$|§2p}uy(ds,dx).
0 R
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We see that the process Y®) fulfills Assumption SB.4 as its jumps are bounded and

)

furthermore Yt(p =Y, for all t < Z,. Moving on to the process S from (4.6) we proceed

in the same manner as with the process Y, meaning we set Zp = inf{¢ : S, > p} and

, tAZp
Slgp) :/ /%ﬂ{x|<2p}ul(d$,dl').
0 R

Likewise we construct a process S® and stopping time Ep for the process S. We note
again that the jumps of S® and S® are bounded and therefore satisfy Assumption SB.5.
The proof that for all t < Z, we have fOZ”M P astt) = OZ’M 0,_dS, (and similar for S®)
is again part of the proof of Theorem 4.4.9 3) in [JP12].
Finally we define F, = E, A Ay A B, A Z, A Z, A Z, and

FpAt FpAt FpAt )
X(p)e = Xo + / alPds + / oPds, + / P as)
0 0 0
Fpnt .
- [T easw s (vi2),),
0

which fulfills Assumption SB, X (p); = X; a.s. for all ¢ < F}, and F, / oc.

4.2.1 Localization Procedure for Random Discretization Schemes

We now introduce the specific scheme of observation times how the process X is actually
observed. This is a simple case of the way “restricted discretization schemes” are intro-
duced in chapter 14.1 of [JP12]. For this matter we assume that the probability measure
P is defined on a o-field G bigger than F.

Assumption C. For each n € N we observe the process X at stopping times 0 = 7 <
T < 1y < ... with:

n __ n __ n
78 = 0,7 = A, ¢} and

T =T+ Andi A, for all 2 <.

]

For all t > 0 the random variable N, (t) is the number of observation times smaller than

t and can be written as

M) = Y Tz

i>1

Furthermore we assume:
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1. The process N\, is a strictly positive semimartingale w.r.t. the filtration (F;)i>o and in
addition fulfills the same structural conditions as the process oy stated in Assumption
B.

2. (1)1 is a family of random variables with respect to the o-field G and independent

2

of F;

3. ¢ ~ ¢ for a strictly positive random variable ¢ with E[¢] = 1. We assume that for
all p € (—2,00) the moments E [¢P] exist;

This Assumption is build such that there is infinite number of observations while in
applications we usually have only a finite number of observations up to fixed time point
T > 0, i.e. the number of observations is N, (7"). This does not pose a problem as the
estimator from the next chapter only uses the values of the process X up to the N, (T')-th
observation and all observations after that are only used to conduct the proofs but have
no impact on the estimator (or its limit) whatsoever.

For the proofs in Chapter 5 it is necessary that the process \;, driving the observation
times 7%, is bounded from below and above. So again we need additional assumptions
that are stronger than Assumption C and can be derived in a similar way than before.

These stronger assumptions then are:
Assumption SC. In addition to assumption C there exists a constant C > 1 such that

1. The process X fulfills the stronger assumptions for o in Assumption SB, in particular
for allt > 0:

1
— < N <C
oSS

2. The final number of observation times is bounded from above by n times some con-

stant, i.e.

N,(T) < CnT.

The reason why we cannot directly employ the previous localization procedure is that
the process \; is part of the discretization scheme but not embodied in an actual class
of processes like before. Therefore we have the following Lemma that proves Assumption
SC.1. It is formulated in a general way for an arbitrary sequence of random variables
(Fy)nen that are dependent on the process X, the discretization scheme {77* : i > 0},
N,(T') and the process A, and likewise a possible limit in distribution F' of F,, dependent

on the same factors and realized on an extension (Q,GV, ﬁ) of the original probability
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space (£2,G,P). Here F,, takes the role of our (appropriately scaled) estimator for the
jump activity index from Chapter 5 and F' is then the random variable it converges to in
the central limit theorem we want to prove. However, in the proof of this CLT we need
Arp = A,y

assume the same structure on A as we did for ¢ and to stop the process appropriately.

estimates for expressions like E [ } and one way to get these estimates is to

Hence, for C' > 1 let E¢ be the stopping time defined by (4.7) with C replacing p and
the process A and its components replacing o. Furthermore define )\gc) according to (4.8)
again with the components of A replacing those of o everywhere. In particular it now
holds for the stopped process A(©) that % < )\EC) < (' and that we have the analogues of
Assumption SB. Now we proof that a localization for our observation scheme is actually

possible:

Lemma 4.6. Assume that Assumption C holds and construct, for each C' > 1, stopping
time Ec and process N©), a new discretization scheme, i.e. new stopping times {TZ-"’C

i > 0} and a new NS(T) as in Condition C but with the process \©) instead of X. Define
a sequence of associated random variables F,(C') similar to F,, as well but with the process
O replacing X, {7°C 11 > 0} replacing {7 : i > 0} and NE(T) replacing N,(T), and
likewise for F(C) on (Q,G,P). If for each C > 1 it holds that

L—s

F.(C) — F(C) (4.9)

and if furthermore
Fn<C)H{EC>T} = Fn]l{EC>T} and F(C)H{EC>T} == F]l{Ec>T} (410)
then we have F), ey o}

Proof. Let E be the expectation w.r.t. P. We clearly need to prove

lim sup ‘E [Yf(F,)] —E [Yf(F)]‘ = limsuplimsup |E[Y f(F,)] — E[Y f(F)]

n—00 C—o0 n—o00

<limsuplimsup [E[Y f(F,)] — E[Y f(F.(C))]|

C—oo n—oo

+ limsup limsup |E [Y f(F,(C))] — E [Yf(F(C))]‘

C'—o0 n—oo

+limsup lim sup |E [Y f(F(C))] —IE[Yf(F)]‘ =0

C—oo n—00
where Y is any bounded random variable on (2,G) and f is any bounded continuous
function, and we show the claim for each of the three terms above separately. For the

first one, by boundedness of Y and f and using (4.10), it is obvious that

EY(f(Fa) = F(F(ON)]] = B [Y(f(Fa) = f(Fu(C)Ype<ry] | < KP(Ec <T)
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for some constant K > 0. Thus

limsup limsup [E[Y f(F,)] —E[Y f(F.(C))]| < KlimsupP (Ec <T) =0,

C—oo n—00 C—o0
and the same proof applies for the third term. Finally, note that
limsup [E[Y f(F,(C))] = E[Y f(F(C))]| =0
n—o0

for each fixed C' is an immediate consequence of (4.9). O

Remark 4.1. By construction \; and A§C) coincide on the set { Ec < T} forall0 <t <T.
As the estimator from Chapter 5 will only look at observations up to a fixed time horizon
T (in our specific case the convenient but arbitrary T = 1) and therefore the values of
Xt,)\l(tc) for t > T are irrelevant to the estimator and its limit, we have that condition
(4.10) is met. Therefore we may assume that for the following proofs Assumption SC.1 is

in force.

In order to show that we can deduct Assumption SC.2 from Assumption C one again has

to construct a discretization scheme with the desired properties and find an appropriate
way of localizing it. Here we reference to part 2) of the proof of Lemma 9 in [JT18| where
this procedure is carried out in great detail.
For further information on random discretization schemes one can consult Section 14.1 in
[JP12| where a slightly different version of Lemma 4.6 and other important properties of
objects connected to these schemes are proven. We want to name one of those properties
in particular because we will use it repeatedly in the following chapters: (cf. (14.1.10) in
[JP12]) For all t > 0 we have

1
Na(l) ﬂ/ Las. (4.11)
n 0 As

4.3 Estimates for It6 semimartingales under Strength-

ened Assumptions

e~

We start off by using the strengthened assumptions to show the finiteness of k(5%), k’(0%)
which is (4.3) applied to the functions k(6%), &'(6%).

Lemma 4.7. As long as (U — 1) is bounded, we have under Assumption SB that

k(6%)(q)r,(w—r) <00 forq € [r,00),

K'(0%)(q)rw—r) <00 forg>0

and likewise results for §°.
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Proof. Because k is a truncation function and as such equals the identity in a neighbour-

hood around zero and is bounded, we can split it up with e > 0, K > 0
[w(@)] = |2[Lgai<e + (K@) Lgaze < [2[ 1<y + K fap>q-

Therefore by Assumption SB.2

k(0% (u, 2))| _ |6%(u, 2)| K
< 1 0% (u,z)|<e +—1 6% (u,z)|>e
) V) Hewal<a T ors sz
K
< Lo al<e + Lo we)ze) (4.12)

and

/E |k(6%(u, 2))|9A\(dz) < (1 + %)Q/Efy(z)q)\(dz) < oo for all ¢ € [r,00),u > 0. (4.13)

Therefore with some constant K, > 0

—_— 1

KON @0 = g [ [ el (2D A

1 U
SU—T/ Kqdu < K.

Moving on to £’(0%)(q),s we have

K (z)| = |z — k(@) = [ — (2L {ja)<c) + K(T) L{jz)2e})]
= (|z] + [£(2) )11z

and therefore because [0%(u, z)| < 7v(z) for some constant K > 0
[6'(0%(u, 2))| < (16(6%(u, 2))| + 16%(w, 2)]) L)z < (K +79(2)) L2

Due to [, [v(2)|"A(dx) < oo we have A({7(z) > €}) < oo and because 7(z) is bounded
we find that

/E|/£’(5°‘(u,z))|q)\(dz) < /{ . }(7(2’) + K)I\(dz) < oo forallg>0,u>0 (4.14)

—

and as such &/(6%)(q),s < oo for all ¢ > 0. O
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Lemma 4.8. For any q € (0,00), stopping times U > T such that U is bounded then it
holds under Assumption SB

ET[ sup |a7'+u - &T|q] S Kq <ET[(U — T)q] + ]ET [(U _ 7—)‘1/2} + ET [(U . T)I/Q}Q

0<u<(U—7)

+E, [(U - 7)) 4 E (U - 7)) (4.15)
and likewise

E-[ sup  |orry — 00l < Ky (B [(U = 1)+ E (U = 7)) + E[(U - 7)77]

0<u(U~7)

+E, (U — 7)) £ B [(U — T)]) .

In general these estimates hold true for any process fulfilling the structural assumptions

for either the process o or o in Assumption SB, in particular this holds for the process \.

Proof. We prove Lemma 4.8 by breaking down the process « into its components and
proving the estimates one at a time.

For the drift term we have with (4.2) and the strengthened assumptions from the local-

T+u
/ bds

For the continuous martingale part we use Lemma 4.2 for ¢ > 1 and with some constant

M >0
T+u ) 1 U ) q/2
[ waw. W= (Gt [ )

S Kq]ET [(U — 7-)q/2Mq/2] S KqET [(U i T)q/?] )

ization

q

sup
0<u<(U—7)

<@ - ( su Ibffl)q < K@U -7y,

T<u<U

E, sup

0<ug(U~-7)

q
< KQET

And likewise with Lemma 4.2 for ¢ <1

T+u
/ ne dW

Moving on to the jump components we apply Lemma 4.3 together with Lemma 4.7 to get

E, sup

0<u<(U-7)

] < KE, [(U -7

for g € [rv1,2]
T+u q —
E, sup / / k(6% (s, x))u(ds, dz) ] < K,E, [(U — T)K(6%)(q)r,(—r)
0<u<(U-71) |Jr E

< Kq]ET [(U - 7_)]
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and for ¢ > 2

sup k(6%(s, w))u(ds dw)

0<u<(U

gK(EKU PR (@)ro—n)] + (U = 7267 @)% )
< K, (B((U =) +E (U = 7))

In the case of ¢ € (0,7 V 1] we apply Jensen inequality and have

sup / / (6%(s, z))p(ds d:c)
0<u<(U—-7)
(rv1) q/(rv1)
<E sup / / (0%(s,x))p(ds, dx)
0<u<(U~—71)

/(rv1)
f < KB [(U = )]0,

§l¥(EKU TIR(8) (V1))

Moving on to the “big jumps” applying Lemma 4.4 gives for ¢ € (0, 1]

sup / / (0%(s, ) pu(ds, dz) ] < KE((U — )R (5% (@)rv-o)]
0<u<(U-7)
< KB (U = 7)]
and for ¢ > 1
sup / / (6%(s, z))p(ds, dx) ]
0<u<(U—7)

gK(Ewwwwm&x»g+Emfr%@%@mD
< Ky (B (U = 7)1 + E-[(U = 7))

[]

Using the previous lemma we can now derive the asymptotic behavior in our specific

setting. We set (F}");>0 as the smallest filtration containing (F;);>o and for which all

7', 1 > 1, are stopping times. Furthermore in accordance with the previous notation for

conditional expectations we set E?[-] := E[-|F%]. Tt should be noted that ¢ € (0,00)

appearing in the next lemma and in the lemmas above will be in our application a fixed

and known number. In order to make the next result more readable we suppress the

dependency on ¢ (or a,b appearing in the proof below) of the constant K, > 0 in the

following.
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Corollary 4.1. For q € (0,00), 4,7 € Ny with i + j < N,(1) it holds

E?[ sup ’07f+u — Uri"‘q] < KA;q/Z)/\l
0<u<(r}},=7]")
E?[(K <?Up . |0 s — 0001 < K(jA,) @D, (4.16)

With similar results for the processes a and .

Proof. First we note that due to TN,y < 1in Assumption C we have that 7; < 1 for all
0 <i < N,(1) and therefore Lemma 4.8 is applicable. We note that the assumptions on
7/, — 7;* give us that for a,b > 0

B [(rt — ) < B [(Audg,0r)] < AP

using the boundedness of A and that moments of all powers a for ¢ exist. More generally

we have if a < 1 by applying Jensen inequality

E; [(Tzﬁj - T¢n>a]b =E; ( Z_ (k1 — 7'1?)) ]

k=t

b

Fitj—1 ab
<E}| ) (nz;l—r,:?)] < K (jA,)™

k=1

and if a > 1

_ _1 aq b
n n n\a]b n 1 n n
E [( H—] Ti) } :Ez .] ; (Tk—i-l — Tk )) ]
k=

i+j—

<EI ES
J 7

b
(TI?H—T/?)“] <K‘7 (7A5)" = (JA)™.

k=i
Applying the lines above to Lemma 4.8 and comparing the rates for A, gives

]En[ Sup |07'i”+u — Orn |q]
0<u (), —7]")

< K (BP[(r] — o)+ EX((rf, — 7)) Y21 + B (7, — 1)
Lty — 7]+ B — )
K ((jA)" + (jA)" + (jAn> + (jAL)Y VD)

<K(jA )q/2 N
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Remark 4.2. For some proofs of the next chapter the previous results are not specific
enough yet. Instead of taking conditional expectations with respect to .7-";} as in Corollary
4.1 we would like to take them with respect to a slightly bigger o-algebra, e.g. A =
Fi\ 0(& 19, 0711). As the (¢])i>1 are independent from F by Assumption C we note
that all the processes from Assumptions A and B retain their properties when we take
them as processes w.r.t. the filtration (F*'\/ 0(d} s, 91\ 1))i=0 and similar do the (7]')i>1
remain stopping times. Therefore the Lemmas from Section 4.1 are still applicable in this
case. For example Corollary 4.1 then reads as:

Let g € (0,00), 4,5 € No with i+j < Nu(1) and A= Fn \/ 0(P}y - -, OFyy) then it holds

.

< K, (E[(rly, = ) AL+ E [ (77, — )" A"+ E (7, = 7)72| A

q

E

sup |U iy — O

Oﬁug(riﬁj —1)

+E [(; — ) A 4 Bl - )] A))

< KCI(TiT—Li-j - Tin)(q/Q)/\la

using the boundedness of (Tiﬂj — 1"). Other definitions of A are possible as well as long

as the “added information” does not change the properties of the processes considered.



Chapter 5

Estimating the Jump Activity Index in
the Presence of Random Observation

Times

This chapter can be seen as the main part of this work. Here we motivate and construct
our estimator for the jump activity index of a semimartingale defined as in (4.5) and then
use the results from the previous chapter to prove an associated central limit theorem. It
will become apparent why the previous localization procedure is so important for us, as
many proofs rely on the boundedness of the processes involved and therefore most of the
following results would not be feasible without use of the strengthened Assumptions SB
and SC.

5.1 Basics and Preliminaries

As already mentioned, we look at the following class of pure-jump semimartingales as
defined by (4.5), i.e.

t t
X, =Xo+ / agds + / 0s_dLs+ dY;,
0 0
where L is a pure-jump Lévy process that can be decomposed as follows
Lt :St+gt—gt, (51)

where S is a Lévy process with characteristic triplet (— [, /f’(:p)m%daz, 0, |gc‘%%dx), S and
S are pure-jump Lévy processes with the first two characteristics zero (with respect to

the truncation function x) and densities of the Lévy measure |A(z)| and 2]/3(2:)\1{,;(@@}.

47
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Y is a pure-jump process whose jump behavior at high frequencies is dominated by .S, see
Assumptions A and B for the exact definition of S,Y and their components. Our aim is

to estimate the jump activity index

B = inf {p D IAXP < oo}

t<1
where the process is observed only at discrete random time points 7' with the time
between two observations sup;cy |77 — 77" 1| — 0 and the exact behavior of our observation
times made precise by Assumptions C and SC.

The key ingredients towards estimation of the activity index are, like already men-
tioned, that it coincides with the 8 from the definition of the jump measure and that we

know the form of the characteristic function of the strictly stable process S, namely
E[cos(uS;)] = Elexp(iuS;)] = exp(—Agu’t) with a constant Az > 0,u € R,.

We define AT X := X;n — X;n = and as before A, := % The estimator for 5 in a setting
of n equidistant observations, i.e. when 7/* — 7/, = A,,, proposed in [Tod15] is based on

the "empirical characteristic function®,

1 = APX — AT X
L"(p,u) = —— COS(U : 1 ),UER , with
(. ) n—k, —2 i%;ﬁ (V(p))i/p +
=
Vip) = > IAIX AT LXP, i=ky+3,...,m, p>0,
" i=i—kp—1

for some k, < n? 0 € (0,1). In the setting of equidistant observations (Aﬁl/ﬁ‘/;n(p)) can
be a seen as the localized version of (3.25) on the time-interval [(i — k, — 1)A,,, (i — 2)A,)]
and hence is a local estimator for |0, [P multiplied by E[|.S; |P].

These estimators make use of the fact that in the equidistant case the difference of the drift
terms of A’ X and A? ;X have a higher rate of convergence than the drift term of just the
single increment A" X. This concept does not apply in the presence of random observation
times. Therefore we propose a modified version of the estimator above, namely by scaling

AT X with its corresponding interval length. Therefore we introduce

B (X — X ) __Bn Arx and ATS = —Bn_ang
TZ' _Ti_l ) 1— n n

n n
T —Tiq T —Tiq

X -

and our modified version of the estimator above becomes

N"(l) —~ P
~ 1 APX — A" X
L™(p,u) := 0s (u L il ) , u € Ry, with
N k2,2 Vo) r

i—2
~ 1 —_—— —_
Vi) =1 > IATX AT X, i=ky+3,...,Na(1), p> 0.

" i=i—kp—1
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We note that the possibly unknown A, which is used to scale the A’ X in the numerator

and denominator cancels such that Z”(p, u) “simplifies” to

) Nn(1) APX AKX
~ Tn_n T _rn
L™(p,u) = E cos | u A u € Ry,
(P, ) Nn(1) =k, —2 i AnX NI AN *
i=kn+3 1 Z . J — i1
kn ]:’l—kn—l Tj—Tj—1 Tj—1—Tj—2
(5.2)

In order to state the limit of the estimator above we introduce ¢’ as an independent copy
of the variable ¢ from Assumption C governing the behavior of the stopping times. With

the constants

B
P
)

tps = E[S1P]7, ks = E[(6'7 + (¢)9)F]

we can show that the limit of the estimator ﬁ"(p, u) will be:

L(p,u, B) := Elexp(—u"Cys(6' =" + (¢/)7%))].

The problem here is that we cannot directly interfere the parameter 5 because unlike in
the setting with fixed observation times we have to evaluate some expectation based on
the unknown distribution of the observation times. To bypass this problem we will let

u — 0 to use the linearity of the exponential function for values around zero, meaning
exp(z) = 14+ x + o(z) for  — 0.
Intuitively we have for "small" u
Elexp(—u’Cyp(¢' ™7 + (¢) )] m 1+ E [~ Cpp(¢' ™" + (¢)'77)] =1 = u’Cyprips,

from which we can interfere 5 by evaluating our estimator at different points wu, v:

B(p,U,U> - log(—(Ln(p, u) — 11(2;(;/12?(_([’”(]77 'U) — 1))7 (53)

see Section 5.3 for more details. We state the following definitions in dependence of u but

whenever rates of convergence matter we will use u,, instead of u, assuming that u,, — 0

with some rate made precise below.

5.1.1 Preliminary Results

Throughout all the proofs of this chapter we assume that Assumptions SB and SC (which

implies Assumptions A,B and C as well) are in force.
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Lemma 5.1. Let A be a semimartingale with

< KjA,,

B} [An,, — Ac]
1+ 7

]Ey[

AT-" . ATZ"

itj

q .
| < Kyanr

for all i,j € No with i+ 7 < N,(1),q € (0,00), and let |A;| be in addition bounded from
below. Then it holds for 0 <p <1, y > 0 and some constant K

!

y .
| < myGane,

< KjA,,

B} | 1As, P = Az

E?[

|ATZ-"+J- |p - |A7ﬁ|p

Proof. For a,b € R,a # 0,0 < p < 1 with some constant K, we cite the inequality (cf.
[Tod15])

lla +b|P — |a|” — psign(a)|al’~"b| < K,|a[P~?|b]*. (5.4)
Using (5.4) together with the boundedness of |A;|~!, the triangular inequality and the
l

A2 (Arn = AP

i+7 (3

assumptions on the speed of convergence of the process A; we get

5| )-=]

< KB | |psign(An) A P (Ars, — Ary)
2y:|

where we use |a +b]Y < |alV +|b]Y if y < 1 and |a+b]Y <27 (Ja] +[0]Y) if y > 1. A
small calculation yields that from (5.4) it follows that

A [P — |Asg?

i+j

’A.,.in + ATinJrj — ATin|p _ ’A.,-Zjn|p

y
+ K,

< KpyEi [)An’ij — A

Y
V]An, - A

7

S Kp,y (jA’fL>y/2/\1)

—Kplal"~?[b]* + psign(a) al”~'b < |a + b — |al” < Ky|alP~?|b]* + psign(a)|al" 0,

from where we can deduce that

B} || A, 17 = |4 7]
1+7 (3

Er [\Ann + A — Al — | Ay yp]

Y

< max{

K [—Kp|An" P2 (Arp, — Arp)? + psign(Aey ) [ Are [P (Arp, — Arp)

k3

JE{Kquw*caﬁj—Aﬁf+4mQMA¢nA¢w*@&ﬁj—A&ﬂ\}

< |E} [p sign(Ars )| Ara | (Arn | — AT;»)] ‘ + K, |E! [yAT;z!”‘Q(ATyH - AT;L)Q]
= pl APt B [(Any, — A ‘ A 2K (B [(Ary — Arp)?] ‘
< KjA,.
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Remark 5.1. Using the same arqguments as in Lemma 4.8, because the components of o,

not appearing in the representation below are martingales, we have

E? [m{;j - UTin] /T:L blds —I—/ / (07 (s, z))u(ds da:)]

and likewise for the process \. Combined with Corollary 4.1 we find that Lemma 5.1

< KjA, (5.5)

= Ep

18 applicable to the processes o and \ or any other process that fulfills the equivalent of

Assumption SB replacing o.
The following inequality is needed in the proof of the subsequent lemma.

Lemma 5.2. Let f: Rog — Ry be an increasing function in C? with f"(z) < 0 and let
a,b,c € Ry. Then it holds that

[fla+¢) = fla+b)] < [f(c) = FD)]. (5.6)
This holds in particular for the function |- P : Ry — Ry with 0 < p < 1 so we have
(@ + )" = (a+b)"| < |c” — ]
for all a,b,c € R,.

Proof. We may assume that ¢ > b because otherwise we simply switch positions inside

the absolute values on both sides of (5.6). There exist ¢, € [b,c], 2 € [a + b, a + ¢] with

f/(el) _ f(ci : l]:(b)
Fley = L0 = Tat )

(a+c)—(a+0)
and due to f”(x) < 0 we have that

flatc) = fla+b) = fl(e)(c—b) < f(a)(c—b) = f(c) — f(b).
As f is also increasing we have that f(c) > f(b) and f(a + ¢) > f(a + b) and therefore
[fla+c) = fla+b)| = flatc) = fla+b) < f(c) = f(b) = |f(c) = F(D)].
0

Lemma 5.3. Under the previous assumptions it holds that for p € (=1, ) and for some
constant M > 0

—_—

— p
E" ‘A‘W (A7S — A S)‘ <M, (5.7)
EL, |A;P O PATS - NP ALS) | = (5.8)

and furthermore for p € (0, 3)

n - AT C n B B, p/B
BL, [A;VATS — ALS)| = ]| < AL



52

Proof. Let S7,57 be r.v. with the same distribution as S; which are independent from
(¢);>1 and in addition (contrary to Sj) independent from F jthat means in particular
from the process . Using standard properties of stable processes (see Section 1.2 in

[ST94] as a reference) we have that for constants 01,09 € R
0181 + 0257 ~ (o] + |02]) /P57,
and due to the self similarity of stable processes:
(Sy — Si_n,) ~ AYBS, for all t > A,

Because the increments of the process (St)tzrgzz are independent of the difference of stop-

ping times (7' — 772 ;) = A, ¢f An | it holds that
E [A?SKTz‘n —Ti) = a] =k [(Tzn — e )IS (=) = a] =k [al/ﬁsﬂ :

Using the last line it holds for all Borel sets M (note that the following calculation is
possible because the moments of (¢1)? for ¢ € (—2,0) exist and 1/ —1 > —1)

E{HM( nAiSn )1 :/E HM( nAisn )

T —Tiq R T —Tiq
= [ B [Las (27751 B

/ / (a'/#=1b) P51 (ab)PU" 1) (da)

_]E ILM ((7’ -7 )1/5 IS')]

(2 7

(7 —7y) = a] P70 (da)

or put differently
AYEATS ~ ALV — ) VES] s (g 1)L,

ATVINITS ~ ATV = VIS e (A 61,) VS

where ¢ |, ¢}, 51,57 are independent of Fn —and of each other. Taking conditional
expectation then yields for p <

B2, | A VAT = ALS)| = B [ ALV (AAg 61 VA1) — (And )OS
m¢ |

= B, (B[ (A 60778~ (Badep 670177 SY)

1 p
— Bl [AL V(A 00) <Anw_3¢?_1>1-ﬁ>1/ﬁsl>

= B2, [(Onn, 1)+ (81280

=B [(Onp, 60) 7 + <AT;_:,¢?,1>I*W} E|Si < M (5.9)
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using the boundedness of A in the last step. Again moments of the stopping times exist
by Assumption C' (which is implied by Assumption SC) and by (1 — 8)p/5 > —1 due
to p < f and f < 2. Because the density of a §-stable random variable exists and is
continuous (cf. p.9 in ST94) it is bounded in a neighborhood of zero and we have that if

f is the density of Sy, for a ¢ € (—1,0), t > 0 and some constant M

/f qu</Mx “dz < oo
/tf( qda;</f tdx < 0o

and as such the expectation E|S;|? is finite. Using the same arguments as above we can

calculate

n
EZFZ

ATPIOATS - P AL )|

p

— Bl [ AL YA P (A 61 = A (DA 60 ) A1)

[ [| A — () ISP 7 et
=Eio [((0)' "+ (a) )P RISI = w) )]

If we restrict p € (0, 5) we can with the lines above approximate the conditional expecta-
tion of the difference of increments &f‘@' — A" |S to the part of the stopping times that

is F.n _-measurable (i.e. A\n ):
i—2 =2

E?Q‘A 1/8 AnS An ) _)\P/LBQP p/ﬁﬂg/gﬁ
= 18 B [( )77+ Qv 01 P2 = X2 PRI, [((60)' 7 + (91|
= 107 |Bs [(Omp 807 4 (g 61007 = (g 6007 + O 01007

<K

Ei, [()\T.n_ qf)?_l)p/ﬁ_p (A n n l)p/ﬁ—’p}

17—

< KE [(¢1)"* 7] By | >P/ﬁ-p—<AT:;3>”“‘p

|

< KA)?,

where we used Lemma 5.2 in the third step and Lemma 5.1 (first apply Lemma 5.7
on the process A and the function f(z) = 3:%_1, see the proof of Lemma 5.9) and the
independence from ¢ ; of ", in the second to last step.

O

Later on we will show that A,_Ll/ﬁf/?"( ) 5 p;/ﬁﬁ ;/§|JT?72|1’|)\T?72|%’1”. Keeping this in
mind when we look at the definition of L"(p, u) we can motivate the definition of L(p, u, 3)

with the following lemma.
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Lemma 5.4. It holds that

e BTGt
E? 5 |cos | u—= = = L(p,u, B).
E /g 1/8 1/8 B
A Hp.p Fop,3

Proof. Using the same arguments as in equation (5.9) we have

NTOTS AT
Al/ﬁ 1/8 1/8

n
E', |cos | u

n HpgHlpp
n\1-3 n \1-p8 I/BS/
_E, |oos <u<<¢l> + (9 >>]
Fop,s Fpp
¢;’L 1—ﬁ+ ;’L_ 1-p 1/,851/
e o (u« )P G NI |
Fop.s Fop,p
A _ n
=8 fexp (=o' 2o+ (0|
Hp,pkp,s

=E [exp (v’ Cps((67) ™ + (67-1)""))] = L(p, u, B).
Il

Furthermore we need throughout the following proofs some basic inequalities which we

prove now.

Lemma 5.5. It holds that

| cos(x) — cos(y)| < 2|z —y|P for all xz,y € R and p € (0, 1], (5.10)
| cos(z) — cos(y)|* < 4|z — y[P for all 2,y € R and p € (0, 2], (5.11)
|exp(—2z) — exp(—y)|* < |z —y|P for z,y € R, and p € (0,2]. (5.12)

Proof. We start with (5.10). Let z,y € R, p € (0, 1] then it holds that for some e between
x and y

cos(z) — cos(y) = —sin(e)(z — y).
Using the last line we can distinguish two cases

<2< 2z -yl iflz—y[ > 1
| cos(x) — cos(y)| :
< |sin(e)|le —y| < 2lz—ylP if jo—y] <1

Let now p € (0,2]. Then by (5.10)

| cos(z) — cos(y)| < 2w — y|”?



%)

and as a result
| cos() — cos(y)[* < dfz -y
which proves (5.11). The proof of (5.12) is similar with the difference that

|exp(—z) —exp(—y)| < 1 for all z,y € R,.

5.2 A Central Limit Theorem for the Empirical Char-

acteristic Function Z"(p, u)

In the following the term ¢ always refers to an arbitrarily small number greater than zero
which might change from line to line. The same holds for K > 0 but without limitations
on the size.

In order to prove a CLT for B(p,u,v) — B we first need to prove a CLT for E”(p, u) —
L(p,u, ). For this purpose we decompose the latter difference into five terms and look

at their limiting behavior separately

Ny (1)
> [Ry+Ry+ 2"+ Ry + R}

i:kn +3

1
No(1) — by —2

Zn(pa u) - L(p7u76) -

with the term driving the limiting behavior

__ n \ P~
oo (805 (222) 5

Vi (p) /e

T3

TS

zi(u) :=cos | u

B O e e i (G A R G )
P A;lf/@n (p)B/» ’
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and the residual terms being

1 APX — AP X o (APS — AT, S)
ri(u) = cos | u——= — — ,
Vi (p)/e Vit (p)t/P
— A_,.n %_1 —~——
— P O-T:"‘ A;’LS _ X i—2 A;’L_ls
oo (ATS — Al | S) =2 s
r?(u) = cos | u—"2-—= —cos | u —
Vi (p)tie Vi (p)tie

5 n Aguorn 1A [P ((60) 7 + (0121) 1)
ri(u) =E, [exp | — =
AT )
B O B e
i (JoA[7)sre ’
Clp gt |, |I” [ Ar [P (1) 7 + (612 )'F)
4 n P8 Ti—2 Ti—2 4 i—1
r(u) = E! €eX — — - L , W, )
z( ) i—2 p ( (|O')\|f)6/p (p /B)
N (1)
Ry = > rl(u)for j e {1,2,3,4},
i=kp+3
where
=
_ b _
oAl = Do o P 577
" j=i—kp—1
In order to determine the limit of WZ” we approximate the summands z; via:
N PATS - AL YPAS O
Zi(u) := cos | u—= v 1/511?}5 — L(p,u,B) and Z" := Z Zi(u).
Ay P B i=kn+3

It should be noted, that in particular how the decomposition above is structured is adapted
from the repeatedly mentioned paper [Tod15|. Furthermore, many concepts used in the
proofs of this chapter, most notably those of Lemma 5.1, 5.10, 5.11, 5.16 and 5.17, are
part of [Tod15| or [Tod17].

For the rest of the proof we need some auxiliary notation

i—2
1 n O IATY _ An X

Vi'(p) = = Z Ej—ZlAjX - Aj—IX‘p
" i=i—kp—1

and the following random function

B AguPozn [P A P ((01) 7 + (972)'7)
f%u(x) =€exp | — .I'B/p s

(5.13)
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with pointwise first and second order derivatives

, AguPlon P A 7P ((67)8 + (7))
frala) =2 frale) e S (5.14)
) AguPlon 1P e [7P(00) P + (62) %)\
fz,u(‘r) = flﬂb(x) (g ’ . - 2B/p+1 : ) (515)
BB\ Astlom, P [E((07) 7 + (600) )
~ fiul@) D (E * 1) xB/p+2 1 '

For the all the following proofs keep in mind that Assumptions SB and SC are in force.

Lemma 5.6. If for some 2 < i < N,(1), X is a positive F]' y-measurable random variable
it holds for the (random) terms fi, (X), fi", (X) that

) J Uy,

n Ug n uﬁ
]Ei—Q [lf;,un(X)H S KXP/,B+1 and Ei—2 Ulejun(X)H S KXP/6+2

If X is also bounded from below and above we have that

Ef s [|fiu, @] < Kup  and  EX, [|f],, ()] < Ku,

Ty U,

Proof. We have by Assumption C that E [(¢7')'™" + (¢7_,)' "] < co and therefore

Agulomn [ Aen |77 - - 1
< X;/P” —Fi s [fiu, (X)) + (9]1) 7] < K“Qma

¥ Aguplozn | Ae [7((07) 77 + (671)'77)
fi (X) XB/p+2

n
]Ei—Q

where in the last step we use that f; ,, () is bounded by 1 for positive values of x and that
|o¢|, |o¢| 7" are uniformly bounded by Assumption SB and therefore |g.» | is bounded from
above and below as is |>\T]n_2|1_6 by the same arguments. Also all components involved
are positive so we can omit the outer absolute value. Similarly we get

. 1
B (£, (X)) < Kujl<g

In order to deal with the first term in (5.15) we have that the function

y — |exp(—y)y| withy € Ry

Agunlorn 1PDon P01 P +(67 1))

<577 in the second

is bounded. Using this result with y =
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step we have that

BuBAglon 1A A ((60) 8 + (91 0)
I X B/pt+1

Ei o || fiun (X) (

2 UEA Oon ,8>\Tn 1-p8 qb? 1= 4 " 1-3
(2 s [ B P D )
P o XB8/p
unAglorn [P A 7P ((0F)70 4 (671)!77)
X B/p+2
AE'LLB’UT?l 2‘6’)\7"” 2‘1_6 1
nt - i— n\1-3 n \1-8 B
— X B/p+2 Ei s [<¢z) + ( i—l) } < KunXg/p+2

again using the boundedness of [o.n |, |\ | in the last step. Finally

p Xﬁ/p""l

AguPlon [PIAn FP((00) P + (o1 )P 2
B, [, (O] < L [[70(3) (@ o Plhog 260 + (61 >>

n B (B Agtorn P A 7P ((00)' 7 + (674)'77)
+ Ei, fz,U(X)E —+1 X B/p+2
|
un
= K xisrs

5.2.1 Auxiliary Results

The purpose of the two following Lemmas is solely to prove Lemma 5.9.
Lemma 5.7. Let
t t t t
Ay = Ay +/ bitds + / nAdW, + / / k(04 (s, 2))i(ds, dx) + / / K (04 (s, ) u(ds, dx)
0 0 0 JE B 0 JE B
(5.16)

be a semimartingale where Assumption SB holds true with A replacing o. Let f(x) be
a C*-function on an open interval including the domain of A. Then the process f(A)

equally fulfills Assumption SB.

Proof. As Assumption SB allows us to assume that A is bounded so is the process f(A).

In particular both are special semimartingales by Remark 2.1 and we may write

A= Ag+ /Ot (b;4 + /E/i/((SA(s,x)))\(dx)) ds + /Ot nAdW, + /Ot/E(SA(s,;E)E(dS,da:).
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We start by using Ito’s formula (cf. (3.53) in [EK19]), let u*, 4 denote the jump measure

of A respectively its compensator, then:

= s+ [ (f’(A (4 [ RO anA@) ) G A ds
# [ sacmtanes [ [ () - ) 0t o de)
# [0 = 1) = £ )0) ). (517)

Let A be an additional point outside F, then there exists an E U {A}-valued optional

process #; such that

pldt,dz) = Y o (dt, d2), (5.18)

s:0s(w)EE

where ¢, is the Dirac mass sitting at the point @« € R, x E. Setting 6(w,t, A) = 0, then
outside a P-null set we have AX, = §4(s,0,) (cf. p. 119 in [JP12]).
Because f(f Jo (F(Asm 4+ 2) — f(A2) = f/(Asm)z) v*(ds, dx) exists we may write

/ / f(Ae +2) — f(A) — /(A )z) A (ds, dz)
=) (f(A- + AX,) = f(As) — f/(A,0)AX,)

s<t

= > (F(A +0%(5,0.)) = F(Asn) = f'(A)6%(s.05))

s<t

:/0 /E(f(As+5A(5’:C))—f(As)_f/<AS)614(871_)) u(ds, d)

and taking compensators on both sides yields

/0 /R(ﬂAs— +x) = f(An) — [/(A)x) v (ds, dx)
= /0 /E (f(AS, + 5A(3,;U)> — f(AS,) _ f/(AS,)5A(S,;C)) )\(dﬂ?) ds. (519)

Similarly we get

/0 /R(f(As_ ) — f(AL) (u? — v (ds, dx)
[ [0t st - ) gasa
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arguing that both side are completely discontinuous martingales with the same jumps and
therefore coincide. Plugging (5.19) and (5.20) into (5.17) leaves us with

a0 = s+ [ (700 (1 + [ W66 m)A@)) + 47 A0
b [ (A +84600) = P — 1 (4)5(5.2)) M) ) s
/ (A )ndw, +/ / (f(Asm +6%(s,2)) — f(As)) R(ds,dx).

The coefficients of f(A) then are (b/,n7,67), where

b= (00 (14 [ R0 s ) + A0
b [ (A +560) = £ — (415 (5.2)) A(d)).

Uf = f,(AS—)n?7
o' (s,2) = f(Asm + 6% (s,2)) = F(As-).

We are left with to check whether these fulfill Assumption SB. According to (4.14) we have
that the (random) integral [}, x'(64 (s, z))A(dz) is bounded. Using [6%(s,z)| < ~(z), where
~(x) is the bounded function from Assumption SB, and a second order Taylor expansion
there exists for each (w,s,2) € Q@ X Ry X E an €5, € [As—(w), As— (w) + 64 (w, s, 7)]
with

[f(Asm (W) + 04w, 5,2)) = f(As- () = f'(Asm (w))8% (w, 5, 2)]

< ’f,,(e(w,s,x))(SA(wa S, w)Z‘
- 2

< Ky(z)

resulting with Assumption SB.2 in the boundedness of

[ (f(As + 64(s,2)) — f(As) — f'(As2)6%(s,2)) A(dz). In the last step we used that
the process A is bounded and [6(s, z)| < y(x) which leads to €, ») being bounded as well.
By the boundedness of b2, n? and A, we then have boundedness of b/ and n/. Finally
we see, as previously, with a Taylor expansion that for each (w,s,z) € Q x Ry x E there
exists €, . ) € [As—(w), As—(w) + §4(w, s, )] with

167 (w, 5,2)] = [f(As— (@) + 64w, 5,2)) = F(A(@)] = [['(€{u50))87 (W, 5, 2))] < K ().
(5.21)

Concluding, due to (5.21) 6/ (s, z) fulfills Assumption SB.2 for a modified function v/(z) =
K~(z) having the same properties as y(z). O
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Lemma 5.8. Let A, B be two semimartingales of the form (5.16) where Assumption SB
holds true with A, B replacing o. Then AB likewise fulfills Assumption SB.

Proof. Again we may assume that A, B are bounded so AB is bounded as well and in

particular a special semimartingale. Defining

alt = bt + /Em’(éA(s,x)))\(dx),
a? =P —I—/E/-f'(éB(s,a:))/\(dx).

t
At:A0+/afds+/ dW+//6Asx fi(ds, dz),
0
t
Bt:Bo+/asBds+/ BdW+//5Bsx (ds, dx).
0

By the integration by parts rule for semimartingales we have

we may write

t t
AB, = AyBy + / A,_dB, + / B,_dA, + [A, B,
0 0

—AOBO+/A aBds+/A _nBaw, —|—//A 5Bsx) (ds,dx)
0

+/ Bsafds+/ Bsndes—i—/ /BsdA(s,x)E(ds,d:c)
0 0o JE

t
+/ ninlds +>  AAANB,

s<t

Proceeding as in the previous Lemma we have due to (5.18)

> AAAB, =) 5%(s,0,)6"(s,06,)

s<t s<t
//5AS$5BS:B) (ds,dx).
And because 6(s, )67 (s, z) < v(z)? we find with Assumption SB that
/ECSA(S,:E)(SB(s,x) Adzx) < M (5.22)

for some constant M > 0, which leaves us with

t
AB; = AyBy + / (A _a? 4+ B,_a? + ninP / 64 (s, )08 (s, 2) A(dx)) ds
0 E

t
+ / (As—n? + Bs_n) aw,
0

+ /0 /E (A6 (s,z) + B,_6%(s, ) + 6%(s, 2)6" (s, z)) fi(ds, dx).
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Similar to the proof of Lemma 5.7 we find that a?, aZ are bounded and so are A,_, B,_,nt, n?

s717s

by Assumption SB. Considering (5.22) we find that the coefficients of the semimartingale
AB fulfill Assumption SB, because

|A,_65(s,2) + By_0%(s,2) + 6(s,2)0% (s, 2)| < Kv().
[

Lemma 5.9. Let k, < n®, w € (0,1), then it holds that for k, +3 <i < N,(1),0<p <
B/2 and y > 1

Er o sl oD — o [P |577]] < KknA, (5.23)

Ei s [[I78F = b, P2 1577 ] < K (hndd)/2, (5.24)

1 we have that

Proof. Using Lemma 5.7 on the process A and the function f(z) = P
A5 s again an Itd6 semimartingale fulfilling Assumption SB. Then applying Lemma
5.8 to the processes o and A yields that o A7 fulfills the same ssumption. Finally

applying Lemma 5.1 (note Remark 5.1) we get:

B} low, Pl 1577 = o PA B 7) | < KjA, (5.25)
and likewise
P Y y
By ||l Pl 1B = o P 7] | < KA. (5.26)
(5.25) is sufficient to prove (5.23):
E} g, slloAl = lown, [PlAc, 777
= ’
- E?—kn—?) [k_ Z (’an,Q‘pp‘T]{Q’Eip - ‘O—T[’2|p’)‘7i"2|ﬁp)] ‘
" i=i—kn—1
=
% Z B2y [l PP 577 = o PP 177
<! i A, < Kk, A,
— Z —
= L J)

and likewise (5.24) can be proven with (5.26) due to z — ¥ being a convex function on



R,

PR b _
By, o |72 — o, P, 7

= ]E?—kn—:; [

-2

i
1 1—2
ya
2 (o g )

" i=i—kp—1

1 p_ b_
5 Z g | e L L P

- |U7'z‘n72 ‘pM"'ﬁQ

57)

|

T
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]

Lemma 5.10. For 2 <i < N,(1),0 <p < g and an arbitrarily small constant ¢ > 0 it

holds that

AL, [||ATX — AT XP — 0w PIATS - A7 5P

I T’“A(( AL —2IAL—,
with a,, = A; 7 o2

| <

Proof. We decompose S; = St(l) + 552) + 5153) where St(l fo fR

fi(ds,dx) being the compensated jump measure of S,

3)._ _ fot fR ,«;’(x)m%dx ds. Then we have with A =

n q
A Tim141
n n 1
E", (Ou — 071712)d55 )
T~ Ticogr Jor L
A 4 Tii 14
frd Eni —n E (Uu— - O-T7L )
1—2 n —7n i—2
i—141 1—2+1 L T

i—2+41

An q [ i—141 .
=K, (ﬁ) E / N / Ou- — 07 )k(2)fi(du, dr)
| \Tim141 — Tic2p i

1 241

dstH

St( - fO f]R
./—"77_27172\/0( ?7

|

q

Ko, (5.27)

p(ds,dx), with
p(ds, dz) and

?71)

q

Al o2

where we used Proposition 3.37 in [EK19| for the last step. Then applying Remark 4.2 in

the first step one has for ¢ € (5,2],1=0,1

(7' 141 — Tz 2+z)

(5.28) <E! ,

1 A
/T /| Ou — Opn Ve(z)|? z |6+1dxdu

|

w5 T 4]

2+l
A T 14
< KE!, <ﬁ E e ?_2|qdu
Tii141 — Ti—oql R
- A LT
n n n n
< KE, <—T” — > E | (70— 7ap) sup
i—141 i—241 i
qTRn n I ) 1—q
< AJE?, (7}‘—1+z Ti—2+l) E sup

u€lT 5 T 4]

|ou — O’Tl_n_2|

< AJE? [( Titqsl — Ti- 2+l)17qA?/2] < KA%/Qﬂa

n-i—2 i—

1

|

[ UTZLQ|

1
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where the second step holds by

K(z dx < 00,
’ﬁﬂ

using the boundedness of x(x) and the fact that around 0 we have |k(z)|? = |z|? with
q > (. In the second to last step we applied one more time Remark 4.2 to Corollary 4.1.

Applying Jensen inequality for ¢ € (0, 5]:
q

A Tit 141
Ei s ﬁ/ (Oue — Urfiz)dngl)
Ticott = Ticaqr o,
A . e\ 7B+
Ti—1+1
< | Ei:|= - / (Ou- — OT?_Q)dSS) < KAZ/”‘W‘—{
T — Titip ey,

Combining the last two estimates yields for ¢ € (0, 2]

JANS T4
/ v (Ou- — UT?_Z)dSQ(Ll)

n
Tilowl = Titaqr Jon 2l

q
< KAq/2+q/6A1_L.

n
Ei—Q

Setting M := [, #’ (l')m%dl' < oo we find that similarly to the previous calculations for
q € [1,2] with Corollary 4.1

An i1t
/ : (Ou — 07512)(15(3)

q

n
Ei—?

u

n
Ticapl — Ticop Jom -

q

A i1
=E! )| ————— (Ou_ — 0on YMdu
n _ N i—2
Tici41 = Ti—o1 7,
< KAE!, sup 0w —ogn |7 < KA

u€lT o T 4]

and applying with Jensen inequality in the case ¢ < 1 we have for ¢ € [0, 2]:

An T4
T, / (ou- = oz, )dSLY

Ti—1+1 —24+1 ST,

q

E", < KA3/2,

Because by Assumption SB.1 o; is bounded, the process fot(ou_ — 07252)d5£2) is of finite
variation, then conditioning first on A as above and afterwards using Lemma 4.4 with

Remark 4.2 one gets likewise for ¢ € (0, 1]

n q
An Til141
E?, n—/ (Ou — O-TZLZ)dS'[SQ)
Titopl — Ticap Jom .-
141 A
< KE, ( > / /! O — oy ) (@) oy da dul A
Tili4 — Tico4 LA Ed

< KAY/2H1
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and for ¢ € (1, 8) with Jensen inequality

n a
A, Tim141
E?, n—/ i (Oy — UT{LQ)dSl(Lz)
Ti—2+41 1+,
a
A Ti-1+1 A
<KE',|[—2r o (0w — on )i (2)]' —o—da du | |A
i—2 Tn -2 | |ﬁ+1
i—141 2+l T 241
i—141 A
/ / [(Oue — 0en ) ()] e de du| A
_— |z
< KAq/2+1.

For the difference of the drift parts we have that

n

A, Ti A it
_— Qudty — ———— o du
T _ o n

i i—1Jrn i-1 — Ti—2 Jrr

1 =2
1 g 1 Ty
= Sn n n (a“ B aTin_z)du + aTin—z - n n <a“ B OéTin—z)du + OéTin—Q
Ti — Tim1 Jrr Tic1 — Ti—2 Jn,
1 g 1 ity
=8| o | (w—ag Jdu— = [ (au—agp)du |
Ti — Tim1 Jrr Ti-1 — Ti—2 Jrr,

1 g 1 Tita
]E?_Q An (m /n (Oéu — C(Tifi2)du — W /n (Oéu — a7n2>du>
i i—1 J7 i—1 =2 J7,
T TiLq
< KAEL, | =) [ o= anfidut (7 =) [ e Oén"Jqu]
T Tilo

and as above for [ = 0,1 with Corollary 4.1

1 7'z'n—1-~-z
q n n _ n — _ q
ATE? , (Ti—l-H Ti—?-i—l) [e 047312‘ du
7'?—24-1
< AIE? su |, — o |7 < A3Y2
n—i—2 p u T, = n
uE[T o T ]

Using the steps above and applying Jensen inequality in the case of ¢ < 1 we have for
q € [0,2]

q
< A%/2,
— n

n

An T An Tit1
o | owdu— aydu
T —Ti—1 Jrp Tic1 — Ti—2 Jr1,

K3 i—1 3

n
Ei—2

In order to boun
of [o(lz|? A1)y” (d;z:) and ﬁ’ < 1 we have that [ (|z[? A 1)) (da:) is bounded too for all
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g > ['. Because the jumps of Y are also bounded we conclude that for all ¢t > 0,q > 3’

/ |lz|?) (dr) < oo
R

As B’ < /2 < 1 the process Y; = fot Jo xp¥ (ds, dx) then has locally integrable variation
and furthermore E [Y}!] < oo for all ¢ > 0,¢ > 0 (see the next few lines). Using (4.4) and
the fact that the jumps of Y are bounded by Assumption SB we get for some constant
M >0A4 = Fin o, Vo(@r ) and /' <q¢<1,1=0,1

B q

E[|Ar, Y] A] <E > Ay A (5.29)

Ti—o 41 SSST

<E Z |AY |71 A

<s<7'Z 141

71— 1+l
=E / /|gv|qp,S (dz)ds

Tl 2+1

7' —2+1

d

_E / 1“/ (2| A M) Y (d)ds| A

—2+1

- / 1+l/ (|29 A M) vY (dx)ds| A | < K (7014 — T 00)-

using Remark 4.2 in the second to last step and the fact that by Assumption SB the

process ([ (|z]7 A1) Vty(d@)tzo
apply Remark 4.2 on Lemma 4.4 and get

is bounded in the last step. In the case of ¢ > 1 we again

E HA 1+zY’ |Al] < K, (( Ti 141 — ‘n—2+l) + (Tz‘n—1+z - 7}”—2+z)q) . (5.30)

With a final application of Jensen inequality in the case of 0 < ¢ < [’ and iterated

expectations we can then conclude for all ¢ > 0

, A, ,
Er , [|A7 Y]] < KAWFIN and likewise E7, n—A” 1+ly < KAW)
Tic1+1 — Ti—2+41
We proceed with bounds for —2z; f:;? ou_dS, — _"T f:_f:l’; 0u_dS,. Let F denote
1 i—1 1—1 i—1 —2 1—

the Lévy measure of S then we have with |h(z)| < for all |z| < z( from Assumption

|z ‘H—ﬁ’

A that [, (|z]? A1)F “(dz) < oo < for all ¢ > 3. As the jumps of S are also bounded by

Assumption SB.5 we have similarly to Y

/ya;\qﬁ(dx) < oo
R

Al
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for all ¢ > f’. Due to its finite variation we can write

S, = / / x)n(ds, dx) + / / x)pq(ds, dx)
:/ /xul(ds,da:)—/ /FQ’.TFd:L’ ds
0 JR o Jr

and note that

A Tt ,
/ / ) ds — T S ~ / / k(z)F(dx) ds = 0. (5.31)
T T Ti-1 — Ti2 Jrr, JR

Proceeding as in (5.29) and (5.30) and using the subsequent arguments we find that for
g>0and [ =0,1

z 1+1
/ /x,ul (ds,dx)

z 241

q

Due to the boundedness of o, we have likewise

n q
A Tic141 ,
DA n—n/ Ou_dS,y,
Ti—1+1 241 ST,
i—1-+1
=K, = / /au_xul (ds dx)
—141 — Ti— 2+l LA
< KAS/B

Combining the last line with (5.31) we have for all ¢ > 0

n
An Ti , An Ti—1 ,
—_— OudSy — ———— oy-dSy
T — T n T — T n
i i—1 J7 -1 —2J7 4

3 3

q
] < KASI/B/)M_L

. . A T p A i
and a similar result for -=2— [ 0,.dS, — =—=2— _dS
e [ oS — e [ o
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—_~—

Now we introduce Y1, X2, X3 with Z — X,_1 = X1+ X2 + x3 where

X1=0m, (gz - S:) )

n

A, T A T
—_ —-n _ n___=n _ 1)
X2 = pT— (O Uri"_Q)dSu T —— (Oy aTin_2)dSu
i i—1J7 i—1 i-2 J7,
A, ik A, i1
b= (g — e )dS® — 2 (0w — 0n )dS®)
n n i—2 u n n i—2 u
T —T! n T, — T
i i—1 J7 i—1 i—2 JT 4
A, i A, i1
+ — — aydu — — — o, du,
T —Ti—1 Jrn Ti—1 — Ti—2 Jor
n n
A T An T
X3 = n - n (O-u* — Oz )dsl(J,z) - n <O-“* - O-Tzn, )dsng)
Ti — Tim1 Jop Ti—1 — Ti—2 Jrr,
A, A
n n n
* T =T AY - T =T ALY
i i—1 i—1 i—2
n
A, 7 , A, L
+ Ou_dS, — Ou_dS,
T n Tn o _n
i i1 J i—1 i-2 JTr,
A, s A, it .
— Ou_dS, — Ou_dS,
n n n n ?
7" — 7! n T, — T
i i—1 J7t i—1 =2 J7,

remembering that L, = St(l) + 5,5(2) + St(3) + 8, — S,. As a result of the inequalities above
and noting the obvious 3¢/2 > ¢/2+ q/B A1 and ¢/2+ 1 > ¢/’ A1 we can determine

the rate of convergence for xo, x3

B, |xo|? < KAYZ9/0M= for all g € [0, 2], (5.32)
n q
n q n An K (2)
E', [xs" < K| Ef, TR (0u- — Ufﬁz)dsu
i i—1Jrn
n q
An Ti—1
+E | = n / (0u- = 0y, )dS,?
Tie1 = Ti—a Jr "
i—2
A, e A, !
+E7, {E% o AY } TEL | ALY
T —Tioa i-1 — Ti—2
n n q
An Ti , An Ti—1 ,
+ E?_Q ﬁ/ O'u_dSu - ﬁ/ cru_dSu
Ti = Tim1 Jrr | Ti—1 = Ti—2 Jrm,
n n q
An Ti . An Ti—1 .
+ Ef, ﬁ/ Oy-dSy — ﬁ/ Oy Sy
Ty —Ti—1 Jrn Tic1 = Ti2 Jrp,
< KAYPN= for all ¢ € (0, B). (5.33)

Furthermore ]E?_2|Agl/ﬁxl\p is a constant for all p € (—1, ) by Lemma 5.3.
For proving (5.27) we use the shorthand y; = A;l/ﬁxi for i = 1,2,3 and see that using



the estimates (5.32),(5.33) above on xs, x5 we have

B, |[Xal? < KA, 98 A2t/
E?, |%‘q < KA%/ﬁ//\l—q//B—L for all ¢ € (0’ 5)’

= KAY/2Ha/BN=a/6= for all ¢ € [0, 2],
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furthermore for all ¢ € (0, 3) we have EI" , |x1|? < M for some constant M > 0. Then

(5.27) =Ei5 |IX1 + X2 + Xs/” — Xa "l

<E? 5 [Ix1+ X2 + Xx3|” —

X1+ Xal| +Ei [IxX1 + X’ —

Xl

We note, because p < /2 < 1 and therefore | - [P is subadditive, that

E? o [IX1+ X2 + X3|” —

For the remaining term we use the algebraic inequality

X1 + Xaff —

N1+ Xol?| < EP,|XsP < KAR/PN-p/B-

XalPl < KX P Rl Lgg samai<ia + 2P (g + Lz 16);

which holds for any ¢ > 0 and p € (0,1] and a constant K that does not depend on e.
Using (5.34), (5.35) plus Markov and Holder inequality then yields

Ei, [|5€1|p_1|>z2|1{|;1|>e,\§2\<%5}} <Ez 2 [|X1 = 1

1—
{|>?1|>67\>?2\<%6}}>

5 5
(B, 1%a1%)

S( 6/2 L) A1/2 L
Lo (X2l Lgruiza) < (B [Lgmiza)) _% (B [IX=17])°
<K (B, [l ) TR @y (530
S elfp/ﬁfLAZ/27L7
1-Z P

[|X2| AR 5}} = <E [1{\><2\> E}D i (B, [IX217]) "

< (B [XlT) 7y (5.37)
(36)° !

< KAZ AP 0D) < fem(B-p) pAB/2—

where the last inequality only holds for an € < 1. Setting e = A"

both in (5.36) and (5.37) which yields the result. O
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Corollary 5.1. For all 2 <i < N,(1) and 0 < g < B it holds that for some constant M

B, [a797 [0, - AT X

q
] < M.
Proof.
—_ — —_ — q — - -
APER HA?Xz‘ - A?_lXi—l‘ ‘ =E,||x1+ X2 + x3]Y
< Ko (B 5 [Xa|" + EP 5 [Xa]" + Ef 5 [Xs]7)

and according to proof of the previous Lemma all expectations in the last line are bounded.
This yields the result. O

Lemma 5.11. Let k,, < n® with anw € (0,1). Then we have for k,+3 <i < N,(1),0 <
p < g and 1 <z < §
ALTPR(V(p) = V()] < Kby 2 (5.38)

(2

Proof. Using the notation

G = A0 | AT - AT [ - ARy, |RIX - AT X
J - n J Jj—1 n j—2 J j—1

we have
" 1 1—2
APVER) = Vi) =1 D G
n j:i—kn—l
1 2 1 Lkn_2J
~ Z kn142j Z Cimknt2j
0 n
and

ARV Mp) = V()]

T kn2 T

L]
1
<K — Z Cimkp—1+2j Z Gimknt2j . (5.39)

Each of the sums can be seen as a discrete martingale w.r.t. to its own filtration with
k./2 (or k,/2 — 1) jumps and we subsequently use the BDG inequality to bound each of
the sums individually. The corollary above gives us that the z-th conditional moment of

¢; is bounded, i.e.

Ej o|GlI* < K (5.40)
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5 in particular the second (conditional)

and so is the unconditional moment. Due to p <
moment exists. Therefore applying the BDG inequality yields

x x/2
1 2
k— Z Cimh— 142 —2 Z G123’ |, (5.41)
and for an r < 2 we may use Jensen inequality
=y z/2
1 —x
(6541) <Ko | E Z |Ci k1424 < Kk;°/2.

In the case of 2 < z < 4 we use (4.4) and that the function y — y*/? is convex, and
)and k(j) =1 —k, —1+2j

therefore one gets again with BDG inequality, (5.40), (

Lkn_lj Lkn_lJ o/
1 & 1 )
(5.41) = KE || G |” = Engy—2 [GE)] ) + 2 [Ci)]
k k2
no =0 no =0
[ | Bn=l | z/2
1 2
<KZE|1 Y (Jaol B [Gol)| |+ Kk
n j=0
- Lk"’lj x/4
1 2 2 2 z/2
S KZE (ICk i’ = Exg-s [%’)]) + Kk,
n =0
gt |
1 2 z/2 —xz/2
< KEE ‘ [ | —Evj)—2 (G J)} + Kk,
n | j=0 i

< Kk + Kko? < Kk22,

If x > 4 one repeats the previous steps (for x > 8 more than once)

In the case of



72

4 < x <8 (5.41) reads as

kp—1 kp—1 z/2
| 2 | et
KE || > (60"~ B2 [G0)]) + = Do Exore [¢y)
n =0 no§=0
i Lkn—1 z/2
1 —x
s KK (|Cm)| — B2 [¢ ()D + Kk,
n j=0
= o
< KE]E <|Ck J)| — Eg(j) [Ck D + Kk,
n §=0
. kn—1 x/4
[=5—=] ) 9 ) 2
< KR <<Kk<j)\ = Erg)—2 [sz(j)D — Er)-2 {(ICW)I = By [Cﬁ(j)D D
n §=0
) Lkn_IJ , x/4
B [ 3 B | (160 ~ B [0]) ]| | + 5k
n j=0
ko=t , N 2 z/8
<kzB || S (6ol = Bos [Go]) = B (a0 ~Eio [G])'|)
n §=0

+ Kk;x3/4 —f—Kk;x/Q
< Kk " 4 Kk o2 < Kk o2,

0
Lemma 5.12. Let k, +3 <i < N,(1),0 <p < é and k, < n® with a w € (0,1). Then
it holds for the set C" := {|A"PVn(p) — ]a)\\p,ug/g §/§| > 1 |a)\\p,ug/g g/g} that
P(C") < K,k P2+, (5.42)
Proof. Using Lemma 5.3 and Lemma 5.10 it follows that
o | T[S
< AL, ||ATX - A X‘ o [P |ATS — AT 15‘ ‘
p/B,.p/B

_|_

E;_ Q‘A p/ﬁ‘an P

ATS — A{LISH |

< Ka, + K’ |UT{L2|pA71/2

2’p| T 2’6 pﬂpﬁ P,



73

with a,, being defined as in Lemma 5.10 and therefore

AV (p) — [l (543)
1—2
1 n n
N G S SSEPIrG)
" i=i—kn—1
1 i—2
k_ Z (A—p/ﬁEn ‘A”X Ar X‘ — Jon, PI e |57l 21T
—kn
< Kay + K| [PAY?,

Due to the boundedness from below in (SB) it holds that [cA[?, |o-n [P > M and therefore

as o — 0 and AY? — 0 an ng € N exists with Ka, + K'|owm |pA1/2 4|cr)\|pu£/ﬁ6 ﬁ/ﬁﬁ

for all n > ng and as such

(1A, PV(p) — [oN [yl 5 w51 > - |aA|puz/§ K2/5) = 0 for all n > ny.

For C' it now follows with Lemma 5.11
P(Cr) < P(ATPA)V(p) — V7(p)] > —|aA|”u§/§ )
+ P(APVR(p) — [oAPulE k2] > = rawﬁi/f K27
< Kbk—ﬁ/Qp-H

for all n > ny. O

Corollary 5.2. As a result of the proof above we have that for some K > 0 large enough

APV (p) — [oXPHET K2 < K (0 + AY?) a. (5.45)

5.2.2 Bounding the Residual Terms

Lemma 5.13. Let 0 < p < 5 and k, < n® with a @ € (0,1). Then it holds that

1

TE |R§L(Un>| S KL (k;;ﬁ/??—ﬂ V UEL/A%B_B/)/B Y, UnAiL/2_L> )
n—ky, —

Proof. Because we need to bound the term V/(p) from below we decompose 7!(u,) =

ri (un)Len + 7 (un)l(enyc and note that because cos(z) is bounded we have for &, + 3 <
i < N,(1) by (5.42)

B, |rh(un)len| < KP(CP) < Kk, 5%+
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and as a direct consequence for all &k, +3 <
E‘E{Nn(l)Zi}ril(u)]lcﬂ < KLk;ﬁ/2p+L.

Applying this we get due to N, (1) < Cn:

1 1 [ Na(1)
ey R L L CTV G 1 _;3 i (w) Ly
1 [ ¢ 1
- mE ;3 | Loz (u) ey |
< ; f E|1 art(u)len| < K |—B/2pt
“n—Fk,—2 A {Nn(1)zi}" el S IR, .

(5.46)

From the definition of the set it follows that on (C)¢ it holds that for k, +3 < i < N, (1)

AT ) — (AR wE) < Sl oty

and as a result:

AP (p) > |aAWu§f ks and APV (p) < IUAVM?E s

Because by (SB) |oA[? is bounded from above and below, Aﬁp/ﬁﬁ”(p) is now likewise.

Using the notation from Lemma 5.10 we have that

A;VB(ATX — A7 X) = X1 + X2 + Xas

AP0 (AFS — AF,S) = X,

Using the boundedness of A;p/ﬁf/i"(p) and the inequality | cos(z) — cos(y)| < 2|z — y|P for
all z,y € R and p € (0, 1] we have

X1+ X2+ X3 X1+ X2
€OS | Un——175 =~ = COS | Un——7/5 = Liemye
An PV (R)) P An PV ()P

COoS | U 55_1/ i 55_2/ — COS | u 55_1/
AT ) A )

< K( i—2 |unX3| +]E?—2 |un5(\5|)

E? 5 ‘Tzl (Un)]l(C?)C‘ <E’,

—|— ]E;L_z ]l(cn)C

%

and likewise

Er, [} (un) Leme Lz | < KB, [ L, >a 35| + By [ L,z Xa])-
(5.47)
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For the rate of convergence we get

El [Liv.ziXe| < KA,
8 B*TB'
E?, [Linv,zaxs| < KAq

as on the set {N,,(1) > i} we can apply (5.34) and (5.35) and otherwise 1y, 1)>i} X2, L{n, (1)>i} X3

are zero. By inserting these into (5.47) and proceeding as in (5.46) we get
1

n B AB-B")/B 1/2—

]

In the following Lemma we will, for easier readability, usually omit the condition ¢ <
N, (1) which is needed to guarantee that 77 is indeed a bounded stopping time in order
to make the estimates from the previous chapter applicable. However, to proceed as in
(5.46) we are looking for estimates of the type E|Liy, )= (u)len| < K, kn "™ and
here the indicator Ly, (1)>; suspends the restriction on ¢. Besides that, we usually need

t > k, + 3 but this can be easily deducted from the specific equation.

Lemma 5.14. Let 0 < p < 2 and k, < n® with a @ € (0,1). Then it holds that

1 n - L

T g ()] < K (k270 v u, ANP).
Proof. As with the previous term we bound V(p) by decomposing r2(u,) = 73 (tn)Len +
77 (un)Lenyc and note that because cos(z) is bounded we have as in the previous lemma

using (5.42)

1
E? o [rf(un)len| < KP(C]) < Kk, ?/*%  and — L, | Ry (uy)ler| < Kk, /%,
i n — ' — i
where we proceed as in (5.46). Using the boundedness of A;p/ﬂf/in(p) and the inequality

| cos(z) — cos(y)| < 2|x — y|P for all z,y € R and p € (0, 1] we have

Eiy |77 (un)Liep)e]

A 51
N
fo Z(A?S — A |9) b s
= LenyeE o |cos [ up——= —cos | uy, —
' Vi (p)tie Vi (p)'/r
O'Tn —~— )\T']L %71 —~—
< Klepyctty | —g75=— Er, |AYEAR S — [ =2 AVPAR S
n TV ()Y Arr

1 1 1_1
B B
<ATZL3> B ()\7’312)
< Ku, .
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Now as in the proof of Lemma 5.9 we apply Lemma 5.7 on the process A and the function

f(z) = 27", Then the boundedness from below of A+ and Lemma 5.1 yield
E |7”i2(Un)]l(cy)C| < Ku,AL?,

Proceeding as in (5.46) we get

1

e 2B B () Lepe| < Kund/?.

Lemma 5.15. Let 0 <p < 5 5 and k, =< n® with a w € (0,1) then it holds that

1

E|R" < K B 1/2 —B/2p+e )
P — | RS (uy,)| (uPa, Vulk V2V k, )

Proof. As with the previous term we bound V"(p) by decomposing 7(u,) = ¥ (tn) Len +
7} (un)L(eryc and note that because exp(—z) is bounded for all z > 0 we have again by
(5.42)

1
E? o [rd(un)ler| < KP(C]) < Kk, /?% and — L, | RY (up)ler| < Kk, P72t
7 n — " — (3
In order to deal with the term including 1cn)c we use a first order Taylor expansion of

(5.13) and get that

E® ox _Aﬂugbn’”_g|’8|)‘T}L_2|17’8((¢?)176 + ( ?—1)176)
1—2 p A;l‘zn (p)ﬁ/p
_E, |ex Cp,ﬂumaﬁiz|5|AT}L_2’175((¢?)17ﬁ + ( ?—1)1%})
o REE

= (ATPV ) = oM ) Baca [ff ()]

for some ¢; between A"’V (p) and |JA|puz/§ 2/5 Again by the conditions on the set
(cme, A;p/ﬁf/ﬁ is bounded from below and above, as is |0, _|[A;n |, |0l by combining
the Assumptions SB and SC. Then using Lemma 5.6 we have

—p/B1/n B /B
E’r?(un)l(Cf)c’ < KUQE )Anp/ﬁv; ( ) ’U)‘|p/l§/5 5/,8

< KB [|A72 (V7 (p) = Vi) + | A7V 1) = [ 5|
< KuP (kY2 v o v AY?) < KuB (kY2 V an,)

where the last line holds by (5.38) and (5.45). O
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Lemma 5.16. Let 0 < p < & 5, kn X 07 with a w € (0,1) and u, <n~? for a o € (0,1)
then it holds that

1

P — 2E[|R4 (un)] < Kub Apk,

Proof. We prove Lemma 5.16 with a Taylor expansion of second order of the function

fiu(z). For this purpose we start by decomposing with 7 = (o[} — \073172]p|)\¢72]%_p)

(2

n n B, p/B B z— =
E|R} ()| <E| R} (wn) — 12/} 0 Z Bl [, (5K o P A 1570 7

i=kn+3
(5.48)
Nn(1)
S (G S G o 30 o O A R PSR ]
i=kn+3
(5.49)
Nn(1)
FE Tkl S B [ f, G Do P 1) B, [74]]
i=kn+3
(5.50)

In the sequel prove the same rate of convergence for all three terms on the right hand
side. Starting with (5.48), from the definition of 7! we have with the function (5.13)

) = B8 [ [ Gl PP P22 + (010 )
s (X

~ Elexp(~u3Cya(61)'7 + (¢1)" )

=B | i WSRO = Fran G0 P2 577

Using Taylor expansion we get for some ¢; between up/g £/§|0)\\p and “5/[? 5/[5"77;12 Pl Aen | 5P

that

N (1)

n o n Z_
E|Ri(un) = > FELy | [, (e o Pl |57 b wtls
i=kn+3
S 1 s, ()
— p/P P 2 ,8 ~4 n ,Un \ "t B
—B| 3 im0 | < Ktk
i=kn+3 n

proceeding as in (5.46) and using that with (5.24) we have

E|(7)"] < kA
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and furthermore that

E;, o [%] ‘ is bounded because of Lemma 5.6 and the bound-

n

edness of |oy|7!, \;t. For (5.50) we note again that because ,ug/g i//35|‘77ﬁ2|p’/\rgi2‘%_

]Ei—2|: ' ( p/B p/6|07f_2|p|/\7ﬁ_2m_ ” < Kug by

is bounded from above and below, tun (K 5 B

Lemma 5.6. Furthermore we obtain with (5.23)
Eip,—s [Fi]]| < Kk.A, (5.51)

and therefore (again proceeding as in (5.46)):

Ny (1)
B p/B n B Z— n =~
B\l 3 EL RO e e P o] D A

p/B p/ﬂ
E Hopp Fop.
1=kn+3

n n_ -
E? 5 [ffun(ﬂﬁ/ﬁﬁ §/g|0ﬁ_2|p\)\7r_2|5 P ” By, s [Fi]]
< KuPk,.

For (5.49) it remains to prove similar rates of convergence for the sum of differences

Z =7 —Eiy,_3[F}]. Applying (5.24) to 7} we have

E|7|" < K(k,A,)Y*M for all g € [0,2]
and therefore with (5.51)
E|Zi|? < K(k,A,)Y*M for all ¢ € [0,2]. (5.52)

To get the right order of convergence we have to apply (5.52) with ¢ = 2. We achieve
this by applying the BDG inequality. As =; is the difference of 7! and its conditional
expectation with respect to fﬁ’:k . the sums over Z; spaced by k, + 1 steps are discrete

martingales, meaning

1 -1
Bl 1) +(=1)(kn+1) Zﬂkn+3+(3 )+(i—1)(kn+1) Z

=1 =1

forallj=1,...;k,+land [ =1,..., [(N,(1) — k, —2)/(k, + 1)].

[1]

kn+3+(—1)+(i—1)(kn+1)s

Therefore our discrete martingales are

L(Nn(1)—kn—2)/(kn+1)]
AJ’ = Z Ekn+3+(j—1)+(i—1)(k:n+1)a jg=1,...k,+ 1.

i=1
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Because these objects have | (N, (1) —k,—2)/(k,+1)| < [Na(1)/kn] < [Cn/k,]| elements
we get with (5.52) and BDG inequality

(N (1)~ —2)/ (kn+1)] 1/2

E |Aj| < KE Z (Ekn"l‘3+(j—1)+(i—1)(kn+1))2

=1

< K (|Cn/ky|(knA))Y? < K.

Because k,A, — 0 we may assume N, (1) to be large in enough in relation to k,, i.e.
N,(1) > 2k, + 3 (which also yields | (N, (1) — k, — 2)/(k, + 1)] > 1), such that we can

decompose the whole sum of the =; as

Nn(1) kn+1 Na(1)
dYooEi=) A+ > = (5.53)
1=kn+3 j=1 1=2kn+4+([(Nn(1)—kn—2)/(kn+1)] 1) (kn+1)

As the second sum in (5.53) has at most k, elements we have that

1 Ny (1)
S — =] < .
pa— ‘Z | < K(ALK,)
i=kn+3

]

Lemma 5.17. Let k, < n® with w € (0,1) and u,, < n=¢ for o € (0,1), then it holds for
0<p<pB/2,0>0,

1

WEZ”(U?J _7n(un)| S K <k;6/2p+b v A}’L/?ug/Q—L (k;l/z Vay, V (knAn)1/2)1/2> .
n—k, —

(5.54)
Proof. Like before we decompose Z™(un) — Z (un) = EM(uy) + E3(uy,) with E}(u,) =

Nn(1 - n Nn(1 _
S (zilun) = Zolun))Lers Bp(un) = S0 (2i(un) — Zi(un))Lierye.  As usual @

cos(x) and x — exp(—x) are bounded functions and therefore with (5.42) it holds that

1

- RE[E™ < KP(C") < Kk 8/?p+e.

Recalling the notation of L(p,u, ) we have

L(p,un, B) = E, [eXP(_“gcp,ﬁ((ﬁﬁ?)liﬁ + ( ?—1)176)} .

Using the inequalities (5.11), (5.12), 22y < 2? + y? for z,y € R, p € (0,2], cos(z) =
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cos(|z|) and the line above we get for arbitrarily small ¢ > 0

B [|(zi(un) = Zi(un) Lepel’]

1
— Arn Tl
n 1— n
0'7-1712 Az S — Aon Ai—ls
i—3

Vi (p) Ve

<2E!, ||cos | u,

— —_ — 2
A VPATS — AL YPAT S

o8 | 75 175 15 Lery
An Pp.p Fop,p
Agullam [P hn 7P ((¢P) P 4 ()P
+oEn, |[Er, |exp [ -2 o7z e, P00 + (9707
AV (p)Ple
2
- L [expl-udGal(6f)' 7 + (6] n@)c]
1 B—t
Orn /\T-" E_l 1 —— -
< Kuy Bl | 1_31! z;j| OAYB 1/B 1/B B(CWMEZMA?S_Aiﬁ/%?fls‘ﬂﬂ
‘/i (p) P An :u’p”BK:p,B
Aglosr |ﬁ|AT” |17ﬁ A
+ KupEf et P e (67) 7+ (¢1,)' 7| (5.55)
ATV (p)Prr Foships )
Then together with the fact that by Lemma 5.3
= —)mn [\ 1=1/B Anc 1-1/BAn g~ — (B=0)/B (B-1)/B
A1(1 /)8 )E’L'72|:|ATZL2/ A'LS_ )\T{LS/ﬂAi—ISW ] - li(ﬁ—L,%/ MEB—L,;/ ) (556)

is a constant, E |(¢7)'? + (¢7_,)'?| < co and the measurability of the other terms we

have
1.1 1/8.1 ~1/B3rn A
(5 55) <K uP~* |JT{12H)‘T¢32|ﬁ I/Lp,/gﬁpv/ﬁﬂ - Ay /Bvi <p>1/p 1
. S Uy, A_l/ﬂ\N/”( )1/p 1/8,1/8 cne
no Vi \P)THy g Ry

|z, 1P Aen [P i gt 5 — ATV (p) PP
AT_Ll‘/;n (p)ﬁ/pﬂp,ﬁ"ﬂpﬂ

Like before we get the boundedness from above and below for A,,” /A XZ” via the conditions
on the set C" and for |o,n |, [cA[ by (SB). Using the inequality for ,y € Ry and some
¢ & zy]
|27 — 7| = qle" | |z — y| (5.57)
gl min(z,y)" |z —yl, ifg<1
glmax(z,y)" |z —y|, ifqg>1
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it follows that

_ ~ B
(g e [T i PR E — APV (p) P

.5 p,8 ﬂ(cn)c
~1/87rn 1/8 1 i
A /ﬁ‘/; (p )1/plup/§ p/ﬁﬁ
B—t
On )\7'77‘ 5 -1 1/8 1/18 A;l/ﬁ";n 1/p
S KL | 'L—QH i— | MP/B pﬁ K (p> ]]_(cn)c

1/p i
p,p/B, p/B 1/6,.1/8
(|U)" HppF pﬁ) FppFpp

(5.57)

< K ;maX(Wrwl e R AT ) e
P g P 7 e
< K [T 0) — o P[5 StlE]
and likewise
(oen 1 e 1Pt i s — ALV (D) 1
A () g @
< K807 0) ~ o P[5 P32
Together we have
(5.55) < Tiepycu, (KL VI (0) = lows [P A |7 P15 pﬁ R

_ = p_
+ K ‘Anp/ﬁvi (p) _ ’UT;L_2|p|>\T;l_2\5 p’uz/ﬁ p/B

)

Because S—¢ > 1 (for ¢ chosen small enough) and we may, with a possibly modified version
of C, assume that on the set (C?)C it holds [A,P°Vr(p) — o [P Aen |6 p,uz/g §/§| <1

we have

E [[(2i(un) — Zi(un) Lemel?] < Kul ™ Eis | APV (p) — g, [P Aen | P20 625
(5.58)

In order to bound E¥(u,) we note that by Lemma 5.4 and using the same arguments for

zi(uy)
B 5 [zi(un)] = 0 = B [Zi(un)] -
As a result it holds that for all i, 7 € N where |i — j| > 2 (assuming here w.l.o.g. j > i)

E [(Zz‘(un) — Zi(un)) (2 (un) = Zj(un)) Liepyo Lierye IL{Jvn(1)+32j}Il{Nn(l)+32i}}

=E [1@)01<c;>0ﬂ{Nn<1>+3zj}]l{Nn(1>+3zi}(Zi(un) — Zi(un) JEF_5 [(2 (un) — Z; (un))]] =0,
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using that 1y, (1)+3>51, Lin. (1)+3>i)» ﬂ(cgl)c and ]1((;;;)0 are ]:fjn_Q—measurable. We note that
due to the boundedness of  z(w,) and  Z;(u,) we have that
#H (vaz’ﬁlgg(zz(un) —Ei(un))ll(cln)c> and #HES(UH) are asymptotically equiva-
lent. With the last line, 2|zy| < 2% + y* and (5.58) we get that

2
Np(1)4+3

i > (ailun) = Ziun)) L iemye

i=kn+3

=K

nC+3
D ((ilun) = Zi(un)) diemye Tinpyrsziy ((2i(tn) = Zi(un)) Lieme Lin, 1) 4324 ]
i=kn+3

+(zi1(un) = Zic1(un)) Liep oL y+szi-1y + (Zi1(Un) — Ziza(un)) L, e H{Nn(1)+3zi+1}>>

+E Z (2i(un) = Zi(un)) (2 (un) = Zj (un)) Lemye Leme LN, 1) +325) Lina (1) +3>4)
kn-+3<i,j<nC+3
[i—j|>2

nC+3
<E Z 3(zi(un)—Z-(un))211<cg>cH{Nn(1)+3zz’}]
_i:kn,+3

< KE

nC+3
Z (2i(un) — E'L'(UTL))2IL(C'Z-T‘)C]

i=kn+3
nC+3
— —p/BTrn B p/B
< Kul Y B[|AE0) — o P Pl |
1=kn+3
nC+3

< Kul™ 3 B [|A00 ) — A2V 0)] + 870V ) — XLl
1=kn+3

B p/B B p/B
N R e |

< Kul ™ (nC — ky + 1) (k2 Vo, VAY2V (k,A0)Y?)

where the last line results from (5.38), (5.45) and (5.24). Using this we get

1 Nn(1)+3
B | D (ilw) = F(w) Ly
" i=kn+3
1 Nn(1)43 9~ 1/2
<———E (| 3 () = () Ly
" i=kn+3
C —k, +1)\/2 s
< Kufr= - 2V V(K Ay) Y
< Kuy, R A— ( n an V ( ) ) ’

which yields the result. O
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Corollary 5.3. As a result of the previous Lemmas 5.13, 5.14, 5.15, 5.16 and 5.17, we
have that if u, < n=2 with a o € (0,1) and k, < n®,w € (0,1) under the conditions

5/<§, %\/8iQ<p<§, wz%, %<Q<%andmaddition (5.59)
% <30 (5.60)
2w —of <1 (5.61)
1t holds:
?7 — kl 5127 () = Z"(wa)| = 0, (5.62)
g 50 (5.6
Rl S0 (5.64)
ﬁ — kln —5 |5 (wa)| = 0, (5.65)
i) Do (5.66)

Proof. In order to apply Lemmas 5.13, 5.14, 5.15 and 5.17 we need that

n
\é/;KLk;B/%JrL — nl/2,08/2,,—=(8/2p+)
Un

goes to zero. Because we can choose an arbitrarily small but fixed ¢« > 0 the dependency

of K, is irrelvant and the last line is implied by

1 1
§+Q——w(——b)<0¢§+Q——w—<0<:>(5.60).
p

Furthermore we have to show that for Lemma 5.13

%uﬁ An® =50, (5.67)
Un
BLZUHA}/“ 0. (5.68)
Un

The last condition is immediately fulfilled due to /2 < 1 and due to the same reason the

condition of Lemma 5.14

BLZUTLA%/Q — 0
Un
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B+

is fulfilled likewise. For Lemma 5.15 we split up o, = A,
\/ﬁufl/QAg%_L — 0,

VadfPAY TR o,

\/ﬁug/zAéﬂ — 0,

N )

and finally for Lemma 5.16
Vnul Ak, — 0.

The second condition for Lemma 5.17

2P

is fulfilled because ¢ can be chosen arbitrarily small and therefore

Bt A((ZA1)-2)AL—,
2 1 ! 2
(remember a,, = A; ?

)

uyt (k2 v al v (k-nAn)ﬁ/Z’)l/2

— 0.

n

Starting with (5.67)

(5-67)¢1+Q<é—5’)—5_5/<0@1+g(é—6’)——

(-0

2 2

which is true by (5.59).
Continuing with (5.69) we have

(5.69) < 1 < 0B + %(pjt 1)

which is, because of ¢ > 75 and % < 2, fulfilled if

4< +1& >1
3~ P )

Continuing with the second term from «,,, in the case of p < '’
B-p
By

(5.70) <1< 2p + 0B.

Because of ' < g this is true if

2p
1< —+ppb.
B

bl
S ELIA(HAL-B)A

ﬁA}/Zug/Q_L (k?;l/2 v ag \/ (knAn>@/2)1/2 N



85

As the function S8 +— % + 08 achieves its minimum at (3*)? = 2—;’ this is true if
* *\ 2 2p 2 1
f* < 2p+0(f*) = — < 16p <:>p>8—<:(5.59).
0 0

In the case of p > /' (5.70) is true because

1
p<é<:>1— 3

p
=
2 g

(5.71) is trivial because, for ¢ small enough, A-*uly> — 0. For (5.72) we have

1 1
(5.72)<:>§—Q§—w§<0<:>1<96+w

which is fulfilled if
1 2
1< §+w<:>w2 §<:(5.59)

as o > % by (5.59). For the last condition to hold true we have

(5.73) < % — Qg —(1-w) <0<« (5.61).

]

Remark 5.2. The above choice of parameters o, w and p is feasible if we do not know (3.

One possible choice for example could be o = %,w = % and any p € (%, %)

5.2.3 Limiting Behavior of Z"

Lemma 5.18. Let u, <n=¢, o € (0,1/2) and v, = pu,, with 0 < p < 1 then it holds that
for all 2 < i <n when n — oo

1 SN 2+20° = (1-p)f = (1+p)°
WE [Zz(un»zz(vn)} - Cpﬁ"iﬁﬁ 2,0/3/2 ’
1 SN 2+20° = (1-p)f = (1+p)°

WE [Zi(un)Zi—1(vn)] — Cppkpp 1572

and if p > 1

1 SN 2+20° —(p—1)" = (1+p)°
WE [Zi(un)Zi(vn)] = Cpprip, Yl ,
1 N 2+20° —(p—1)7 — (14 p)?
WE [Zi(un)Zi-1(vn)] = Cpptips I ,

with the same results when we exchange positions of u,, v,.
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Proof. Throughout the proof we assume 0 < p < 1 and discuss the case p > 1 in the end.

Recalling the definition of Z;(u,,) we have

)\;11/2»3-&-1&{3 . /\—1/5+1Z;Z1/S

2 ()% (vn) = | cos | un—= AUF T8, 1P — L(p, un, B)
Hp,8 Fp,8
)\ 1/ﬁ+1AnS )\ 1/5+1An S ( )
cos | vy, i 73 1/6 1/6 — L(p, vy, B
Ay Hpp Fop.

Using the shorthand notation A/;?SY = A;%QBH@ and the equality
cos(z) cos(y) = 5 (cos(x — y) + cos(x +y)) we have that conditionally on Frn _

( ATS AT S 3@ AT
oS 178 1/8 1/ 178 1/8, 1/
An Hp, p,3 A

n Hpghpp
1 (un = 0a)ATS + (—up + va) A7 1S (un + va)APS + (—up — va) A7 S
—2 €08 AYB 1/B, 1/B T cos NGV )
n Hpghpp n Hpghpp
cos \ un— 175175 178 | ©°5 | Un 178 178 178
A Fop.3 Fop. Ay Fop.3 Bp,p
1 ( (un@—}—(un Un) AT 1S—i—vnA;‘25)
= — | cos
2 1/8, 1/8 1/5
Al Fop.5 Bpp

1/8 1/8 1/6
Ay Fop.3 Bop,p

With the same arguments and notation as in Lemma 5.3 and 0 < p < 1, conditionally

(unA?S b (—tn + v)AP 5 - K}g) )
+ cos .

on F,n  we can calculate the exact distributions of the random variables above, namely:
(t — 02) A YVPALS + (—uy + v,) A, VAT S
~ (1= PIA T (S A ) )Y+ (o = DAL (7 A )0 P ST
~ (1= ) (6)' ) + (1= ) (61) ) )
~ (1= p)ST((67)' 7 + (67-) )7 (5.75)

and in the same manner, again conditionally on Frn |

(tn + ) AP AT S+ (—tty, — ) ATVPAT LS ~ (14 p) S5 (00)' 7 + (9,)' 7)1
un AP ATS 4 (—u —vn)A VBAR S + v, A VPAR LS

~up ST + (14 )P (0 4) 7 + 0P (875) )7,
UnA;1/5@+( Up + V) ASVBAT S—UHA”/BA/@\S

~unS1((67) 77 + (1= )P (¢10)' ™7 + p7(01y) )Y (5.76)



87

In the previous calculations we can see that exchanging roles of w, and v, is irrelevant
to the distributions as only the absolute value of the factors in front of @ , A/f_?g and
A/?_?S’ is relevant. Using these distributions and the equalities on cos from above we can

explicitly compute the expectations using the result of Lemma 5.4 and its proof

1 o 1 1 un (1= p)Sy((¢7) P + (7)) P)/P
E i\Un )2i\Un)| — — sl | =
ug/Qvg/Q [Zi (un ) Zi (vn)] u§/2vg/2 2 o8 ( u;,/ﬁﬁ;,/f "
L (w14 p)Si((7) 7 + (9py) )7
—COS< L+ 25 1) 0 Sl — L(p, un, B)L(p, vn, B)
2 /B,.1/8
Fop, p,g

= 57 [P (=Chsun(l = )°(61) 7 + (41.1)")
Unp
Fexp (~Cpaul(1+ 9P (1) + (1))

UB;ME[exp(—uﬁcpﬁ«w—ﬁ (681 P DIElexp(—ulo?Cop (1) + (671) 7)),

1
75775 [Zi(Un) Zim1 (vn)]
ullBr2

1 1 unST((7) P + (1 + p)P (o7 )P + p (g 5)'P)P
= G |5 08 /8 1/8
Un Un Hopp Fop,
1 S n\1-23 1= p)B(on 18 B(An \1-B\1/8
o L (S 0= PO PO NN
2 /ﬁ,il/ﬁ
Hopp Fop.

| o o -
B WE [oxp (_Cp»ﬁug((@)l T+ (L4001 )' 7 + PP (] y)! ﬁ))

+exp (=Cpsun((61)' 77 + (1 = p)°(1-0)' 7 + 07 (910)' )]

— Bl ((67)' 7+ (61 Blexp(—ulp Gyl (61)' 7 + (62

With e1; € [0,u)(1 = p)’Cop((@])' 7 + (81-1)' )] €25 € [0,un(1 + p)7Cpp((¢7) ™7 +

( ?—1)1_[3)]’
€3 € [0,unCop((67)' 77 +(¢111)'77)] and ey € [0,up"Cop((67)' =7+ (¢71)'77)] we have
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that

TS —Cpaun(1 — p)°E [exp(—e1) ((¢67)' 7 + (¢71) )] +1
g i) (n)] = — WA :
L ~Cotl(Lt p)E [exp(—e2) (97) 7 + (010)' /)] +1

2 (—uBCpsE [exp(=es,)((61)'7 + (61)'*)] (~03Cps)E [exp(—eas) (1) + (¢11)2)))

2 (0 fesp(—es (€)' + (611)1)] — kP Cyo [exp(—ea) (61)' " + (62"
2

Because E [(¢7)' 7] ,E [(¢7) "] ,E [(¢7')* "] < M for some constant M we have that
for any € > 0

P (up(¢})' " >¢€) =P <(¢?)1_5 - %)

E [(61)7]

<u — 0 when u,, — 0

and therefore with a similar result on u? (¢ )'#:

P
€1, --,€1; — 0 when u,, — 0.

Because x — exp(—x) is bounded by 1 for x € Ry and €,,...,€4; > 0 we find that with

dominated convergence

E [exp(—e)((¢7)' ™" + (¢7-1)" )] = E [((67) 77 + (#1-1)'77)] = Kigps

when u, — 0 for [ € 1,...,4. As a result we have

2 (—unCp s [exp( =3, (61)'~° + (611)' )] (—0RCp0)E [exp(—es)((61)' 7 + (911)' )] )
2ub ph/2

and therefore

1
575 7L [Zi(un)Zi(vn)]
NIENCIE

—Cys(1 = )k + 1= Cps(1+p) ks +1—2(=Cystiss — P°Copking +1)
2p/3/2
2+2p" = (1=p) = (1+p)f

—

= Cppkp,p

—0
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We treat the second term alike and have with €;; € [0, u2C, 5((¢7") P+ (1+p)? (o1 1) P+
PO e € [0uCs((@n' P + (1 — pPr )P + pera) P,
s € [0, Cya((67)7 + (67,)77) and eq; € [0,u0°Cpp((67)' + (67,)'7)] that

1

—72 gl [Zi(un)Zia (vn))]
ug/%gﬂ

=G pupE [exp(—er)(67) 7 4+ (14 )7 (37-1)" 7 + pP (67 5)"P)] +1
N 2ub pB/2
—Cp g E [exp(—€2,:) ((97) 7 + (1= p)P(d71) 7 + p° (¢} 5) 7 7)] +1
+ 5
Qunpﬁﬂ
2 (— )Gy [exp(—es)((61)' = + (811 =)] (~eCy)E [expl—eas) (81)'" + (611)')])
2ul pB/2
2 (—u)Cy gE [exp(—es,:) ((67) 7 + (67-1)"7)])
2u£p5/2
2 (—uppPCy sE [exp(—es ) ((¢7) 0 + (¢7-1)F)] + 1)
2y pP/? '

Using the same arguments as above we have when u, — 0 (note: E [(¢7)'7]) = “22)
_ n — n — K s
E [exp(~er)((67)' 7 + (14 ) (07 )' 7 4 0 (019)' )] = =221+ (1 +p)° + )

E [exp(—e2)((¢7)' ™7 + (1 = p)(61)' 7 + p7(6,)'™7)] — %(1 +(1=p)"+p")

and as a result

_ 1 = (0. )5 P kppd+4p" — (1+ (1 +p)° +p°) — (14 (1 —p)° + p°)
uﬁ/%ﬁ/QE [Zi(un)Zi—1(vn)] = Cp 5 3,7
2+2p" = (1—=p)P = (1+p)°
= p76/‘€5,6 4pﬁ/2 .

We now discuss the case of p > 1 and see that the only lines where this condition is
relevant are (5.75), (5.76). As in these calculations only the absolute value of (1 — p) is
decisive, we only need to exchange (1 — p)? for (p — 1)? here and in all the subsequent

calculations if p > 1. O

Lemma 5.19. Let u, <n=2, o € (0,1/5) and v, = pu,, with 0 < p < 1 then it holds that

Vn | NG 1 .

where X, Y are normal distributed random variables with mean 0 and covariance matriz
C with
|
CH = CQQ = /O )\—dS Opﬁliﬁﬁ(ll — 25),

1 8 _ B _(1—p)B
1 242 1+ 1
Cio =Co1 = / " ds Cppkp,s o= pg/pg) d=0) ;
0 S
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if0<p<1and

1
1
Ci1 =Cyp = / )\—ds Cppkipp(4—2%),
0 S

1 B8 _ B_(p—_1)8
1 24+2p" —(1+p)"—(p—1)
6122621:/—(1807/{, ,
%, Ceties PEE
if p> 1.
Proof. To prove the theorem we define
n_ Yl
G = W% (Zi(un), Zi(vn))

1 ( 1 ( ( ArS — A/n\s> L 5 1 K’TS’ Ar S L 8
=7\ am (oo 178 175 _1/8 | — P Un:P) |5 —575 | €O8 18,178,378 | T P, Un; .
\/ﬁ Un Ax Hp.8 Fp.8 Un A Hp.8Fp.8

Furthermore we decompose

Na(1) Nn(1) -1
Z?:Z C?_Eyl ZEn zn+1
i=kn+ i=kn+3 i=kn+2
Np(1)—1
= (M ~Elumor [Raw]) B [Ghas] + D0 (G —EL G+ EF [Ga]) -
i=kn+3

Because Z;(uy,), Z;(v,) are bounded by the boundedness of z — cos(z) and Ry — R,z —

exp(—r), and because of nu? < n'=#¢ — co we see that

Np(1) —1 Nyp(1)+1
> ¢ and Z (¢ —Er (¢ +EF[¢f]) and > (¢ —EF (¢ +EF [¢14])
i=kn+3 i=kn+3 i=kn+3

are asymptotically equivalent. We note that N, (1) + 1 is a (F,»);>1-stopping time and
therefore in order to apply Theorem 2.2.13 in [JP12] it is sufficient to show that for

=155 +2> 2,00 = —Ep [+ E ¢

Z 7, [ = (0,0), (5.78)

i= kn+3

Z <]E | B [ B ] ) B G, (5.79)
1= kn+3
NTL

S Bl (5.50)
i=kn+3

We first note that because of Lemma 5.4 we have

EY [¢1] = (0,0) (5.81)
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and therefore
EY ) [07] = EY . [¢F — EY L [GF] + EF [¢ha]] = (0,0) (5.82)

and by this (5.78) holds.
By the boundedness of Z;(uy,), Z;(v,), 0 < %, N,(1) < Cn due to Assumption SC and

l+1-98 1 —(1—gp)

of = <0
1—08 1— 08 1—08
we have
Nn(D)+1 ! _pltl=o8 i _plti=oB
> EL —=Zi(un)| | < Na(1)Kun e e < Kuy, % n e — 0,
i=kn+3 nun

which proves (5.80). To show (5.79) we first note that E | [5"/] = 0 and E}" , [nz"k] =0
due to (5.82) and furthermore make use of (5.81) to get

B, (6 - B (6] + B2 [G)) (cz“’“ —EL, ¢ B [G])]
=7 |96 — By (6] ¢ - B [ 6]
+EL (GO B (G4 B (VR ] +E [t (6]
~EL, B, (G E |Gt ]| - B (B [0t B [CZ”;’%]] + L B [ B (o
— B |GG — B [ B [ B [V B ]

+E [E? [¢i) B [CZL’]‘{H ’

using in the last step that, by the appropriate scaling inside A/I;S’ = )\;%/Qﬁﬂm, the

distribution E? [¢[] ,EP [@’11} is independent of Fr» (cf. (5.86)). We note that

B, (GO B [ B [t B G| B |GG | build each o its own

a triangular array of random variables. We want to show that

Nn (1) 1 .
Y E, [g”fc"k L[ Zdslim nE c;wg““],
i3 i 0 s n—oo L

- 1 ~
1 .
S wn e o] 5 [ L e e R 0],
i=kn+3 - 0 s L
w ] 1P 11 o
Z E? [Qw Zrk{ — —ds nlggo nE | (" Z”Jr’i] \
i=kn+3 - 0 s L
W 1P 11 r
n n,k n,j . nk onj
Z E [Cz Gl — —ds lim nE | C1+J1]

n—oo
i=kn-+3 0 7s

/)
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and that the limits right-hand side exist. This would result in

Ny (1)
> (G B G B [C])T (- B ] [G]) (5.83)
i=kn+3
1
B [ s T n (B [(G)7Ga] + B (G Ghna] + E (GG

0 S

everything for an arbitrary m.

In order to prove the results above we would like to make use of Lemma 2.2.12 in [JP12],
3 n, n n n n, n n T o n n, n n n

setting Xj b= E; [( i+1)T( i—&—l)}J X; = E; [ i+1] E; [ i+1]7 X; = E; [( i+1)T i+2}

and X" = EP [(¢",)7¢?] and show that for [ =1,2,3,4

i+2 i+1
Nn(1)—1 1 1
> B X S [ ds lim B (X
2 0 s n—oo

and that the array <E?_1 [(XZ” ’1)2D is asymptotically negligible meaning that

((Xin,l>jk>2] 0 for g k=1,2.

Noting that N,,(1) — 1 is not a (F,»);>1-stopping time in general we again use asymptotic

Np(1)-1

> EL

i=kn+2

equivalence and show instead

Nn(1)+1 _ 1

1
S OE, X;”] 5| —ds lim nE [X2], (5.84)
) L 0 As n—oo
i=kn+2
Nyp(1)+1 r 2
Y OE, ((XZ”) ) ] B 0for j k=12 (5.85)
i=kp 42 L Ik

To show (5.84) we note that the distribution of the X' does not depend on the process
A+ anymore but only on ¢} and the increments of the process S after 7, which are

independent of F;» and therefore

1

E" [X;”] ~E [X;”] and E7 | [(X.”J)ﬂ ~E [(Xi”’lﬂ . (5.86)

Using Lemma 5.18 we have the convergences for j # kand 0 < p <1

2+20° = (1-p)f = (1+p)°
2)05/2 ’

nE [(¢hCmiq)ik] = nE [Cm’j mﬁ1i| — Cpphips VD (5.88)

nE |((GA)Gh) ] = nE [GRCHM] = Cpomss (5.87)




93

and, as u,, v, can also be equal in Lemma 5.18, for j = k

nk [((Cm)TCm)jk} = nE [GICF] = Crprps——
- 490
nB [(¢némi)in] = nE [Cffijé”m’_]ﬁl} — Cpprips—
With the previous lines and (4.11) we can prove (5.84):
N (1)+1 ]
> EL X =B [XP] —(Na(1) + 1)
i=k+2 "

1
LN ials lim nE [X;;;l] .

0 s n—oo

Using Jensen inequality we have

B () =B | (&2 [ans])| <o |

E[(X]"")a)?] =E [(E? [ B [cﬁ’im ~E :<E? ) (= [ent]) ]

|
E [(X]")3)"] =E [(E? [C% ’%DQ] = ]E? [
|
|

()~ | (B [oet])| <2 [er 6]

Again using the fact that N, (1) < Cn and Z;(u,), Z;(v,) are bounded we can conclude
that for j,k=1,2

Np(1)+1 N (D41 ' N
> B[] <K Y, R[]
i=kn+2 i=kn+2 TVUn
< K(No(1) + 1)n—iﬁE [(gﬁﬂ nzR ).

using (5.87) and nu® — oo in the last step. Proceeding likewise for the sums with
((X7%);0)% (XT72);0)2, (X[, 4)? vields a similar result.

K3 K3
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Finally combining (5.83) with (5.87) and (5.88) we have for 0 < p <1

1 B _ (1 _ )8 _ B
1 242 1 1+
Cia =Co = /0 45 Copiags - 5 p;; L)
1
1 2+2p" —(1—p)f = (1+p)°

+/0 )\—dS QCp”g/i/B”g 4p5/2

1
[t 24207 = (1-p) = (1+p)°
—/0 )\—SdS Opﬂlilgﬂ pﬁ/z .

The calculations for C;; and Cos follow along the same lines. In both cases the results
change only by setting p to one. The case of p > 1 works similar, only exchanging the
results in (5.87) and (5.88) according to Lemma 5.18. O

Theorem 5.1. Under the same conditions and for the same variables X,Y as in Lemma

5.19 we have that

(\/ﬁ L Z”(Un),ﬁ L 7"(vn))ﬁ>(X,Y), (5.89)

u§/2n—kn—2 Ug/2n_kn_2

meaning that the convergence is not only in law, but stably in law. As a result we have
that

n (\/ﬁ LT (. 7”(1}”)>E>(X',Y’), (5.90)

N,(1) \8%n—k, —2 w2t —k, —2
where X' Y are normal distributed random variables with mean 0 and covariance matrix
C' where C'yy = C'yy = Cppripp(d — 2°) and C'yy = C'oy = Cp prig o 22007 i
0<p<landCiy=Cy = C’pﬁﬁgﬂgwpﬁ_(l;ﬁ)f (0=D" i p > 1.

Furthermore under the conditions of Corollary 5.3 we have for the estimator z”(p, w):

(J\,;—/2(1>(Ln(p7 Un) - L(p, Unp, ﬂ))a ]\;—/Q(D<Ln(pa Un) - L(p, Un, B))) i} (X/, Y/)

(5.91)

Proof. Using Theorem 2.2.15 in |[JP12] we have to show that in addition to Lemma 5.19
it holds that

Nn(1
Z B [CH(M, — My, )] 50 (5.92)
i=kn+3

wherever M is either one of the Brownian motions W, W or a bounded martingale or-
thogonal to W.

Following the idea of the proof of Lemma 26 in [JT18] it is sufficient to show the line
above only for M equal to a continuous bounded martingale or M = W, M = W. To
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prove (5.92) we use Theorem 4.34 in Chapter III of [JS87|. We set for k, +3 < i < N, (1)

and t > 7/
H = ./—'.73172 and He = H\/U (Sr tr> TZ‘n_Q) )

i.e. (H)izrn, is the filtration generated by H and o (ST > 7'1»"_2). Now (S)izrn, is a
process with independent increments w.r.t. to o (S, : 7 > 77%,). For all ¢ > 7/, we set
K; := E[(|H,] and note that K;» = (; due to (; being H.n-measurable. Then with the

aforementioned Theorem 4.34 we have
Ci = K‘rz" = KTZLQ +/ Hsts>
Ti—2

where (H;);>»  is a predictable process. Then

Ti—1
E?fl [CZL(M‘FZ - Mfi71)} = (K‘Q”Q + / HSdSS> Eglfl [M‘Fi - MTi71i|
LR [ / | HdSJ(M,, — M, )
Ti—1
=0,

where we used that the martingale (S;);>o is orthogonal to M in all cases.

We remember that Yzl E) fol )\ids and as such

1 -1/2
n P 1
o o ( /0 )\—Sds> , (5.93)

which gives us (5.90). For the statement (5.91) concerning the actual estimator L"(p, u,,),
we remember that by Corollary 5.3 we have in addition to (5.89) for i =1,2,3,4

Vvn 1 n —n P
g =22 () = Z ()] =0 (5.95)

which gives us in addition to (5.90) with (5.93)

n \/n 1 . P
N (D) uf ey 2 () = 0 (5.96)

n \/n 1 . »
Z"(un) — Z" (tn . '
No() u?P =y =212 () = Z ()| =0 (5.97)
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Calculating

N,(1) n
WHNL (D) = ky —2)  ud*/Ny(D)(n — ky — 2)
_ (kn + 2)(n — N,(1))
W (N, (1) = Ky — 2)v/n(n — ky — 2)
(ka2 n-NMD) a1
(N =k =2 n PPk, -2

and noting that = 50, "] < K we have with (5.89),(5.94),(5.95) that

N,(1) 1 n \/n 1
R (u,)| — R (uy, 0,
ug/2 Nn(l)_kn_2| z(u )| N(l)ugﬁn_k _2| z(u )|_>
N,(1) 1 —=n n \/n 1 —n
Z"(up) — 2 (uy)| — Z"(up) — 2 (up 0,
u£/2 Nn(l)—kn—2’ (u ) (u )’ N(l)ug/zn_k _2’ (u ) (u )’_>
Z (uy) — Z (up 0
B N =k =22 W) TR P k=22 ) 7
This results by (5.96),(5.97) and (5.90) in
N, (1) 1 P
R (uy, 0,
Z"(un) — Z (un, 0,
S Nl )~ 7 )]
Nn(l) 1 —n L—s
Z (u,) — X'
B N — k=32 ()
and finally
Nn(1> Tn
uﬁ/z (L (p7 un) - L(pa U s 5))
Nn (1)
Nn(l) 1 n n n n n] L£—s /
MR AT e — > [RI+Ry+Z"+ Ry + Ry =5 X',
n i=kn+3
Applying similar calculations to the tuple
Nn(1) / 7p Nn(1) 7y
Y (L, wn) — L(ps tn, B), Yt (L7 (0, 00) = L(p, v, B))) we get (5.91). O

5.3 A Central Limit Theorem for the Estimator of

Theorem 5.2. Under the conditions of Corollary 5.3, 0 < 1/ and v, = pu,, we have for
the estimator of [
5 log(— (L™ (p, un) — 1)) — log(=(L"(p, va) — 1))

B(p, tn, vy) = g (i, /o,) (5.98)
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that the convergence

WS/ Na (D) (B(p, sy va) — B) = X (5.99)

holds, where X s a normal distributed random variable with mean 0 and variance

(PP +1)(4—2°) —2(242p° — (1 +p)’ — (1 —p)”)
kp,pp° log(1/p)?Cp s

, if 0<p<1
and
(P +1)(4=2°) =22 +20" = (1 +p)’ = (p—1)")
kp,50" 10g(1/p)*Cp g
Proof. Using a two dimensional Taylor expansion of the function
log(—(z — 1)) —log(—(y — 1))
log(un/vy)

, if p>1.

(z,y) —

with gradient

(). 0200 = (o L)

log(tn /vn)(x — 1) " log(un /v,)(1 — y)
around the point (L(p, u,, 3), L(p, vs, 5)) it holds that
>/ N (1) (B, tn, vn) — B) =

U,B/Q log(—(L(p, unaﬁ) - 1)) _ log(—(L(p, 'Umﬁ) _ 1)) _
R ( Tog(un/on) ’)

(5.100)

L Uy N o
gl /o) Blexp(— G017 + G P 1 e ) T e )
(5.101)
L1 v VN 5 o
+10g(un/vn)p’8/21—E[GXP(—UgCPWB«gb?)l_ﬁ—{—( n BN P2 (L"(pyvn) = L(p, vn; )
(5.102)
P01 ) = 120 s )Y E ) = Lpr s )
+v5ﬁ(gz(n2) — g2(L(p, vn, B)))~ 1]}\;72(1) (L™(p, vn) — L(p, vn, B)), (5.103)

for some 7, between z”(p, Un), L(p, un, 5) and 1y between z"(p, Un), L(p, vn, B).
As L™(p, un), L"(p, vy) € (—1,1) a.s. and gy, g» are continuous on (—1,1) we have that by

(5.91) g1(m) 5 91(L(p,uy, B)) and go(n2) 5 g2(L(p,v,, 5)) and as a result together with
the convergence in (5.91):

ul (g1(m) — g1 (L(p, un, B)))

vfl#(gmz) — 0o(L(p, v B))) i?}z(” (Z"(p. vw) = L{p v, B)) 55 0
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We now prove the convergence of the bias term (5.100) towards zero.
With e; € [0, Cpgul((97)° +(7-1) )], €24 € [Elexp(—ers) ((¢1) 7 + (67 1) )], r5.,6]
it holds that:
Elexp(~Cpau (67)1 7 + (61-1)' )] = 1 = Elexp(—e1) (= Coaud (61) 7 + (61-)' )]

and as such

log(—(L(un, p, B) — 1)) = log(u;;Cy,5) + log(Elexp(—er) (¢])' ™ + (¢]-1)' "))

— l0g(1Ca) + ——(Blexp(—e,)((60)'° + (610)' )] — i)

Z

+log(ra,p)-

As €1; > 0 we have with dominated convergence Elexp(—e; ;) ((¢2)* P+ (o1 )1 P)] = ks
and as such es; — kg g for u, — 0. With €3 € [0, €] it holds for ¢« > 0

i (Blep(-a)(60)' + (61)' )] ~ )
= i (Elep(-a)(—e) + D) + (60" - 5
= Lferp(—e) 2 (0112 + (0] =0,

as e ((gM) P 4 (o7 ) P) <ulCLa((¢7) P + (o)1 7#)? again with dominated conver-
gence and Assumption C.3. The same arguments hold for log(—(L(v,, p, 5)—1)), therefore

we get:
1 <10g(—(L(p, Un, 3) —1)) —log(—=(L(p,vn, f) — 1)) 5)
ug_b 1Og(un/vn)
1 (log(upCpp) +log(ris,s) — (log(v,Cpy) + log(kis,s))
- np ’ np LIV 1) = 1
== e 3) +0p(1) =0+ 0,1
and as a result, because usﬁ "VN,(1) = 0 due to % < o under Corollary 5.3 and
N,(1) < Cn,
26— 1 (log(—=(L(p, un, B) = 1)) = log(=(L(p, vn, ) = 1))

1 = uy N, (1 — = .
(5.100) = u ( )ug_b( g (e /o) B =o0,(1)
Again using a Taylor expansion of exp(z) and E [(¢7")' 7 + (¢ ,)'P] = k5 we have

uf 1
% Y
1~ E [exp(~ulCys((6)' =7 + (1) =7)| - #05Chs
v 1
% —

E [exp(—lCpal(#)' 2 + (611)#))] =1 #5:5Cps
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and therefore get for the variance of X by (5.91) if 0 < p < 1:

1 1
Cpakipp(d—2°) +

VCLT(X) = Cp,gﬁ,/g,ﬂ(ll — 26)

(log(1/p)kp,Cp,)° (p?21og(1/p)rp,Cy,6)?
2 2420 — (14 p)? — (1 —p)?
20, Tog(1/p)RpP e 572
5,605, 108(1/p)%p P
(DA =27 =22 +2p" = (14+p)" = (1-p)’)
k0" log(1/p)*Cpp

and the respective result in the case of p > 1. O
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Chapter 6
Numerical Assessment

In this chapter we use a numerical implementation of a setting fulfilling Assumptions A,
B, C and an implementation of the estimator 5(p, u,,v,) defined by (5.98) to gauge its
finite sample quality. However, as the variance of the limiting object in Theorem 5.2
is dependent on the (probably unknown) xsg,C, 3 and [ itself, it is not possible, apart
from the consistency of B(p, Up, Un), to use Theorem 5.2 in applications, e.g. to construct

confidence intervals. Therefore Section 6.4 deals with the problem of finding a CLT for

B(p, un,v,) — B where the limiting object is not determined by unknown variables.

6.1 Setting

For the underlying process X in (4.5) we define for all ¢ > 0

t t
oy = / 2(1 — a)ds + 2/ dWs,
0 0

t
O't_/ CkdeS,
0

;=0
and
t t
X =Xy —|—/ asds~|—/ os_dLsg,
0 0

with L being a symmetrical stable process, i.e. its Lévy measure is given via the density

1
h(z) = W;

101
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for some 8 € (1,2). For the observation scheme we assume

t t
/\t:/(5—>\s)ds+/ dw,, (6.1)
0 0

@' V0.1

¢ = W, where ¢ ~ Exp(1), (6.2)

with starting values of the processes being oy = 09 = Xg = Ao = 1. Again, W,W are
two independent Brownian motions. The purpose of the minimum in the definition of ¢
in (6.2) is to ensure the (negative) moment condition of ¢ in Assumption C.3. Further-
more numerical analysis has shown that large values for the negative moments of ¢, i.e.
E [gbl*ﬁ} when [ is close to 2 worsen the asymptotic quality of the estimator strongly.

The choice of the processes has no specific application in mind and could easily replaced
by different (and more complex) variants. It was done to underline the possibilities of the
model assumptions, while simulation should remain a feasible task. It should be noted
that the choice of \j = 1 combined with the tendency of A to return to 5 leads to an

irregular change in observation times over the course of time.

6.2 Numerical Approximation and Simulation

To approximate the processes a, o, A, X, we use a simple Euler scheme. We start with the

approximation for the observation scheme, i.e. for N, (1) > i > 1 we set recursively

—~ o~

Aen R A 4 (5= A )7 = 7y) + (Won — Win

? i 171>’
iy =T + An@ Arn (63)
and 73 = 0, 71" = A,¢}. For the remaining processes we set for N,(1) >i >0
R +2(1 — o) (7] — 1)+ 2(Won | — Win),

I3 (3 i+1

g n
Tit1

~ O-Tl." + O[Ti" (WT" - WQ")?

i+1

XTﬁLl ~ XTZ'.” + Oé.,—l;n (Tﬁl — Tin) + O'.,—Z;n (L n_— LTin). (64)

Tit1

For the purpose of simulation we note that

/n n
WT;L+1_WTZ7LN Ti+1_Ti XN,

where N ~ N(0,1) is a standard normally distributed random variable and that all
occurrences of W, W in the approximation above are either independent from each other

or exactly the same. Therefore it is sufficient for the simulation of WT; _Wn’i Wen —Win,

177 Tt
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etc. that we are able to simulate independent standard normal random variables. For the

increments of the stable process we note that

n
Tit1

where S is a symmetrical stable random variable with characteristic function given by
E [exp(iuS)] = exp(—|ul?), u € R. (6.5)
To simulate S we use the following result.

Theorem 6.1 (cf. Proposition 1.7.11in [ST94]). Let 8 € (0, 2], v be uniform on (—mw/2,7/2)
and let Q) be exponential with mean 1. Assume v and Q) are independent. Then
_sin(By) (eos((1—B)y) "
cos(y)1/? Q

has characteristic function given by (6.5).

Assuming that the software/programming language used for the implementation offers
the possibility to simulate normally and exponentially distributed random variables we
have all the tools to proceed with the implementation.

In the appendix we provide an implementation in Python which follows these steps:

1. First we select the model parameter 8 € (1,2), the last time point 7' = 1 for the
observation, the number N of paths that we simulate, the approximate number n

of observations and the parameters for our estimator p, q.

2. Implementation of L"(p,u) according to (5.2) and 3(p, u,v) according to (5.98) as
functions of p, uy,, vy, kn, {7 : 0 < i < N, (1)} and {A?X : 0 <i < N,(1)}.

3. The main loop running N times with these steps:

(a) For 1 <i < N,(1) simulate iteratively An, 7/, an 070
2 i+1 i+1
(63) and (64) with )\0 = XO = g — 0g — 1.
(b) Choose u, = N,(1)""% k, = N,(1)¥*,p = 1/2 in accordance with Remark
2.2.

X.n according to
i+1

(¢) Choose v, = pu, for p € {1/2,2}. More on the choice of p follows in the next

section.

(d) Apply the implementation of B(p, u,v) to the simulation from (a) and save the

result in an array.

(e) To determine the quality of the approximation to a normal distribution in
Theorem 5.2 we save ug/Q\/Nn(l)(ﬁA(p, u,v) — ) to a second array.
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6.3 Results

We use the implementation presented above to derive results for 5 € {1.1,1.3,1.5,1.7,1.9}
and p € {1/2,2}. We choose N = 1000 and n = 1000 which yields for (6.1) and (6.2)
roughly N, (1) ~ 520 observations before the terminal time 7" = 1. Displayed are results
for p = 1/2 and in brackets the results for p = 2. Here "Mean® is the empirical mean of
the N = 1000 samples of B(p, Un, Uy), "Empirical variance® is the empirical variance of the
1000 samples of ul? \/W(B(p, Un, vp) — ) and "Theoretical variance® is the asymptotic
variance from Theorem 5.2. In order to build this asymptotic variance the values for x, s
and kg are calculated via a separate Monte-Carlo estimate with a large sample size and
can be assumed to be sufficiently accurate. More on how the variance can be calculated

follows in the next section.

B | Mean of /3 (p,u,v) | Empirical Variance | Theoretical Variance
1.1 | 1.1181 (1.0455) | 7.2689 (3.2672) 7.2457 (3.3802)
1.3 | 1.3123 (1.2356) 5.2131 (2.2777) 5.4853 (2.2274)
1.5 | 1.4923 (1.4421) 3.2153 (1.3201) 3.907 (1.3817)
17| 1.7173 (1.6086) | 1.6501 (0.73274) 2.354 (0.7245)
1.9 | 1.8849 (1.7759) 0.425 (0.2716) 0.7852 (0.2107)

We can see that the larger choice of p directly effects the error of the estimator for
small sample sizes in a negative way while it reduces the variance. Analysis of the small
sample error is quite delicate here and complete understanding seems to be a non feasible
task. However, using the Taylor approximation in Theorem 5.2 and analyzing the bias
term (5.100) yields that many of the estimates there depend on the size of u,, respectively
v, and large values worsen the convergence towards zero. Furthermore numerical analysis
supports this claim as we have for n = 1000, p = 0.5, 5 = 1.9 that (5.100)~ —0.1807 while
for p = 2 we have (5.100)~ —0.641. As this does not account for the complete difference
in the sample error, one factor that one may consider additionally is the normal approxi-
mation of (5.102), Here large values of p respectively v, worsen the approximation as well
and may additionally contribute to the error. We note that the variance in Theorem 5.2
is monotone decreasing in p for p > 1. Therefore we have in this range a direct trade off
between variance and bias.

We follow this discussion with a table in the same manner as above for n = 10000 which
roughly yields IV, (1) =~ 5200. We see that the sample error diminishes for larger values of
n in the case of p = 2 while the sample size of appears N = 1000 to be not sufficient large
enough for further analysis of the already small error in the case p = 0.5. Nevertheless,

we can see that the approximated variance for 5 € {1.5,1.7,1.9} is much closer to the



theoretical one.

s

Mean of B(p, u,v)

Empirical Variance

Theoretical Variance

1.1

1.1048 (1.0852)

7.451 (3.3392)

7.2458 (3.3802)

1.3

1.3067 (1.2763

5.257 (2.229)

5.4853 (2.2274)

1.5

3.6036 (1.3626)

3.907 (1.3817)

1.7

)
1.5197 (1.4772)
1.7088 (1.6743)

2.1925 (0.7034)

2.354 (0.7245)

1.9

1.914 (1.8726)

0.4864 (0.21937)

0.7852 (0.2107)

Before we delve into the analysis of QQ-plots we have a small intermediate result that

can contribute to the discussion.
Lemma 6.1. Let p=1/2 and v, = pu, then it holds that

log(—(L"(p, un) — 1)) — log(—(L"(p, v,) — 1)) <2

. . > ~ : ATX-AT X
Proof. Using the definition of L"(p, u,), L™ (p,v,) we see with a; := W that (6.6)
is equivalent to
N'"/
log(—(Fr7mms Lo s €08 (na:) — 1)) = log(—(§rimmg Sicines €08 (vaai) — 1)) <y
log(1/p) -
1) Tn—2 Zz kn+3(1 — cos (Una;)) 1
& log Mol <log| —
Mo 3 Loimkay3(1 — €08 (punai)) P
. Na(1) ] Na(1)
(1 - ) < 1— )
< No(1) —kp—2 Z p~ (L — cos (una;)) < No(1) —kp—2 Z (1 — cos (puna;))
i=kn+3 i=kn+3
(6.7)
For (6.7) to hold, it is sufficient that
p*(1 —cos(b)) <1 —cos(pb) forall b€ R
which is equivalent to
9,(b) :== 1 — cos (pb) — p*(1 — cos(b)) > 0 for all b € R. (6.8)

Using properties of the cosine and inserting p = 1/2 we note g%(b) = g%(—b) and g1 (b) =
g%(b + 4m). For (6.8) to hold it then suffices to show g%(b) > 0 for all b € [0,27]. Let
x € [0,27] then

)<y (B (5) - hn () (1o 3) 20
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by properties of the trigonometric functions. Together with g1 (0) = 0 the last line yields
g%(b) > 0 for all b € [0, 27]. O

Noting that B(p, Up, Un) = B(p, v, uy,), this result also holds in the case of p = 2.

Furthermore, analyzing (6.8) for different values of p numerically one can find that

gp(b) >0 for 0<p<0.5, be [—4m 4n],
g,(b) >0 for 0<p<1, be[-2m2n].

Because the a;, as defined in the previous lemma, converge to a non degenerate distribu-
tion, small values of u,, will eventually lead to B(p, Un, Uy) attaining values above 2 very
rarely, in particular when p < 0.5. From the symmetry of B(p, Un, Vy) the same can be
said for p € (1,2] or p > 1 in general.

The following QQ-plots of u}/? N, (D) (B(p, un, va) — 3) against a standard-normal distri-
bution with variance equal to the theoretical variance use the same configuration of param-
eters as discussed earlier for p € {0.5,2} and
n € {1000, 10000}. They clearly display the aforementioned boundedness of B(p, Up, Up)
for both choices of p. However, when p = 2 the smaller variance makes the boundedness
less noticeable and therefore we have different qualities in the approximation towards a
normal distribution for the two different choices of p, in particular when [ attains values
closer to 2. It should be noted that the distributional approximation quality increases
visibly with the higher sample-size in both cases. This becomes more apparent for val-
ues of g close to 2 as ug/Q\/m is relatively small for our choice of u, = N, (1)
and therefore the asymptotic normal distribution becomes visible only for larger N, (1)

respectively n.
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6.4 A Consistent Estimator for the Variance

and a Further CLT

As already addressed in the introduction, the major problem that arises when we want to
apply the estimator B(p, Up, U,) from the previous sections in testing procedures is that
the asymptotic variance of
wn\/Na(D)(B(p, wny va) = ) is
(P + 1) -2°) —22+20° = (1+p)’ = (1 -p)’)
tip,ap" 1og(1/p)*Cp

(for simplicity we assume in this section that 0 < p < 1 while the case p > 1 follows in a

, (6.9)

completely similar manner) where

B _ N1—8) 2
top = E[SiPIr,  kys =E[(6' 7 + (&) 77)5]r, Cppi=
with exp(—Agu’t) = Elexp(iuS;)], u € R,

Thus it is determined by many non observable model parameters, in particular it depends
on [ itself. To bypass this problem, one may hope that inserting the estimator B(p, Up, Up)
whenever (3 is needed will yield the correct result. However the moments «, 3, kg 3 have
to be derived from the random variables ¢ that are not directly observable as they are
intertwined with values of the process A when building our observation scheme. Further-

more, the normalization u? in ul? N,(1)(B(p, un, v,) — B) is dependent on 5 as well.

This section now deals with the problem of finding a consistent estimator for (6.9) and
then applying it to find a normalization that works without the use of unknown model

variables or parameters.

Theorem 6.2. Let r, € N with 1 < r, < N,(1) — 3,7, < n¥ for some ¥ € (0,1),
0<p<p/2. Let Bn be a consistent estimator for B such that there exists a ¢ > 0 with

)5 — Bl Bo (6.10)

and furthermore assume that ¢ from Assumption C fulfills M < ¢ for some 0 < M < 1.
Setting

Tn L=fn 1-4 1-5 /i
X:<(——> (=) ™ (s = ) ”’>) |

we have that

G — > i El6 7+ (@) ) =Rl (6.11)
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Proof. Before we start with the actual proof we note that N,(7") = ¢ and thus for all

1> 1, +3 we can write

Nn (T 5)
Tn = L= gy =) Ly, <o)
J=Nu(rl,_, ) j2i-l-ry j>1

which can be seen as a version of N,(t) = > .5, L{;n<yy restricted to the time interval
(77" 5_,, T 5]. Throughout the last chapters we repeatedly used that A, N, (1) LN fot Lds

therefore our motivation for the estimator in (6.11) is the idea (which is proven later on)

Apr P 1 T o 1 P
that vlo — =ds —
7_1'712_7—271277"71 Ti712_7_in7271"n fTin—Q—Tn As )‘T;;n_z

The additional notation needed for the proof of (6.11) is as following:

1-8 p/B
1 _ Tn n n 1-8 n n 1-8
€ = (—7'7"‘ L Tin—Q—rn) ((Tz - Tifl) + (Tifl - Ti72) >> )

71—

- 1-8 p/B
1 i—2 - I_B
e = ( - o / —d3> <()\7-," 2¢Z) + ()\ 3¢i—1> ) s
Tim2 = Tica—p, Jrit, s - -
1-8 p/B
3 n 175 >\Tin—3 (o3
e; = | (¢7) + o, it )
Ti—2

6= (e + (o))"

with corresponding sums

and the following decomposition:
n n

RE— w0 — (R — EY) + (BL— E2) + (B2 — E%) + (E} — Z,) + (zn - ﬁgfg) . (6.12)

As the final step we prove Z, — E[(¢'~7 + (¢/)1=9)5] = /ig/ﬁﬁ. Therefore we aim to show
N P ’
that kP — Z,, — 0.
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In order to show <2 — E} L 0 we define the set A, = {|ﬁ — | > %} and note that
for all e > 0

. -1
P ([ — Ep| 14, >€) <P(1a, >¢)=P (‘5—& > BT) -0 (6.13)
as Bn is a consistent estimator and [ > 1.
And in contrast on the set AC, due to 5 < 2:
. . -1 p—-1_ -1
n 1= n > )
g =B+ —5—+— 5— >0
. . . -1 .
3= u=3-B48-Bu>145-B> e s fuz0
or put differently Bn € (1,3). For the sake of easier notation we define a; = — f:ﬁ" ,
i—2  Ti—2—rp

n__.n n _.n
b = Ti “Tia C: = Tic1—Ti—2
(2 An ) - An

Fanmenn(@) = (@)~ ((0)' = + () ™))"

and furthermore the (random) function

We show that (k2 — E) 1 ¢ L, 0 via looking at the differences (y; — e;)14c and note
that for some €, € [3,, 5] C (1,3):

fai,bi,c,-,p(Bn) - faj7b1j,Ci,p</8)’ :H'Ag
= Lag|fr, e (€)I|B = Bal, (6.14)

IXi —eillac =

with the derivative

fc/Li,bi,ci,p<x>
= faiabivci7p (I)p (

—b; "log(bi) — ;" log(ci) —log(a:) (b " +¢; ") _ log(a; "(b; " + Cilx)))
z(b; " +c}7") z? '

RN — B, = 0 uni ormly over z € (1,3).
i B—p % 0 uniforml 1,3
We note, because a;, b;, ¢; > 0, that for x > 0:

Our goal is to show that we have |f, ,

| fas e p ()] (6.15)

by *|log(b)| + ¢; *[log(ci)| + | log(as)|(b; ™ + ¢} ™)
S fai,bi,ci,p(w)p 1—x 1—x
xz(b; " 4 ¢;7")

N | log(a; )| + | log(b; * + C,-l_x)|)
2 '

To continue with our calculations, we need a further localization of the observation scheme (cf.

p.435 in [JP12|) that allows us to assume

¢ <n’, (6.16)
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for an arbitrarily (but a priori) small chosen 7 > 0. We remember that due to Assumption SC

we have for some C > 1

<A<LC. (6.17)

Ql -

Combining (6.16) and (6.17) gives

CMA, <7 =721 = Apdi Arn , < CApn?
i—2 i—2
CMTnAn < TZ‘TL_Q - Z‘n_Q_T" = Z Tjn — Tjn_l < Z CAHTL’Y < C’rnAnnV,
j=i—1—ry j=i—1—ryp
which yields
T~ Tl

(C’M)q < (bi)q — <l

q
X > < Cn%  for q >0, (6.18)

n_ . n o \4
CIn9 < (b;)1 = (TlTll) < (CM)? for q<O0.

We note that for all bounded sets B C R we have
sup{CY : ¢ € B}, sup{(CM)? : ¢ € B} < oo and similarly inf{C? : ¢ € B}, inf{(CM)? :
q € B} > 0. In particular we have for 3 >z > 1

inf{C%:q e (0,-2)}n"2 < (b)) < sup{(CM)? : q € (0,-2)} (6.19)

and likewise for ¢;. As in a; we have 77* 5, — 7,

(6.18) and (6.19): Z

—r in the denominator we find similar results to

A’I’L n 1
Cin™ < (a;)1 = < — Tn ) < (CM)T  for q>0, (6.20)
Tico — Tio—r,
Anrn 4 _
(CM)T < (i)' = | — — < Cin™7 for ¢ <0,
Ti—a = Ti—2—r,
which results for 3 > 2 > 11in
inf{(CM)?: g € (0,-2)} < (a;)"™" < max{C?: g € (0,—2)}n%. (6.21)

Combining (6.19) and (6.21) we get for all 3 >z > 1
Fapiscip(@) < Kn?®7P/7) < Kpw, (6.22)
Using (6.18) - (6.21) we find that for 3 >z > 1
[log(a; ~")[, [log(b; ™™ +¢; )| < K|log(n™™")|,
[log(ai)l, |log(bs)], [log(c;)| < K[log(n™")]

which yields

b;*|log(bs)| + ¢; *|log(ci)| + |log(a:)|(b; " + ¢; )
(b ")

| log(a; )| + |log(b; " +¢;~")|
2

< K|log(n™7)[n*,

< K|log(n™7)].

X
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Finally linking the last two inequalities with (6.22) and (6.15) we get for all 3 >z > 1

Thenp(@) < En (|log(n™")[n? + K] log(n>")]) (6.23)

a;i,bi,Ci\p

and therefore with (6.14)

1 Nn(1) 1 Cn
1 1
- i —ef|l g0 < ——— § —ei |1
n_r”_zz':;r:sxz o Ag_n_rn_Qi:TnJer(Z il
SK—4@>§ﬁWGbQWﬂm“+KM%m*wDW—aJﬂa
n—r7r,—

due to (6.10), |log(n™?)n~"| — 0 for all ¢, > 0 and the possibility to choose v (in dependence
of the a priori known ¢ and p) sufficiently small. Using A, N, (1) 5 fg )\isds one more time we

have

1 Nyn(1)
=b _
Ky En‘]lAC< (1)—rn—2z ’XZ 61‘]1140
=rp+3
Na(1)
n—ry,—2 1 1
= | 1ac — 0

and with (6.13) we have proven &, — E} 5o
To prove that |E} — E2| L, we need a few preliminaries. Using Lemma 5.7 on the process A and

the function f(x) = 27! together with Lemma 4.8 yields that for 1 < j < N, (1) — i

]sUAmW~ (6.24)
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For 1 < j < Np(1) we then define n; = i—z and look at the following difference

i—2 T

1 i—2 1
1 1—2 1 T 1
- E Apd A —— — / —ds
Anrn j:i—l—Tn Y T]_2 )\TJ’(L2 77571*2*7‘71, AS

n

i—2
1 i 1 1
anE| 2 L (e

j=i—1l-ry j—1

1 2 [ ™ 1 ]
= Z £ / 3 ds
Anrn =i Ty, Sy As AT}L—Q
1 1—2 r . ,
S Z E (7'7.1—7—’.11) Sup e ]
Anrn j=i—1—ry | J J 7-]’(1 1<3Sq—jﬂ )‘8 )\7_37172
i—2 r
1 ) . 1 )
< E n_ _n 1 -
— Apry Z (Tj 75 1) (T SEE)STn . o + o )\TTL_ |>]
Jj=i—1-ryn L 1 7 ) ",
& 971/2
1 = 1
= E [(TJn - Tgn—l)Q]l/QE ( sup = )
An?ﬂn Jj=i—1-ryn T]TLlSSSTJn s )\T]’(Ll
27 1/2
1/2 1 1
‘HE Tn — 7'7.17 2 ]E -
[( J Vi 1) ] )\7_77; AT;L72
1—2
<5 KAy (Ai/z + Aiﬂ) < KAY?,
AnTn Jj=t—1—rp

using the Cauchy-Schwarz inequality in the third to last to second to last line and (6.24) in the

step afterwards and remembering that for ¢ > 0, due to Assumption SC:

E[(r} —771)7] < KAS.

Proceeding, we find that M; = vaznl(t) (m —-E? [m]) is a square-integrable martingale w.r.t.

the filtration (Frp (t))tZO (cf. p. 578 in [JP12]) and therefore using the BDG-inequality we have



115

with B} | [n;] = ;- that

i—-2 2 [ i—2 1 2
slli- > wf|=5]| & (w-2)
j=i—1—rp | |i=i—1-7n n
- Na(e 1) 2
=E > (i —Efi)
J=Nn(rl1_,,)

i—1—rn

E UMT“ ~ M,»

|
<E {[M, Ml —[M, M]Tin—lfr'ni|

Np (T 5)

=K Z (77j - ?—1 [771'])2

_]':Nn("'ln )

—1—rn
Nn (1)

“E| Y (1<<z>j—1>)2 < La-ne

.
=Nl ) S "

1—1—rn

The two previous calculations then result in

1 /ﬁ"—z 1
1-— —ds
Apry n As

1—2—rn

E

nY

] <K (A}/Q + 1/2> . (6.25)
'n

Finally, using the boundedness from below of ¢; in the assumption of this theorem we have that

due to f < 1:

/B
(Orre, )77 4 O 02! P) " < K. (6.26)

Combing the last line and a Taylor expansion we can proceed with our calculations for all
1>1rn+ 3
lei — €

- ((/\r;lz(?zn)l—ﬁ T (A73L3¢?_1)1_5>p//5

_ n p/B—p
( An’rn )P/B D 3 1 /Ti,—Q ids
Ty = Tilo r, T o =T oy, Jr As

n
i—2—7Tn

p/B A r p/B—p o 1 ", 1
=((Mpn )P+ (Non P7 17/3> _ n'n p/B=p=1 (4 _ / ~d
(e8! 4 O 1) ) 8 =0l || |l el SRS £
for some ¢; , between 1 and Aim f:i,i:im /\%ds. For an upper bound on |e%’37p71\ we note that
with (6.20):
1 Ti-z 1 Tilo =T o 1
/ —ds > <22"> inf —>K (6.27)
Apry e As Apry T g, SSSTI g A

and therefore ’6%8—;;—1| < K. Combining the last bound on \eﬁ{f—p_ll with (6.18), (6.25), (6.26)
and (6.27) yields for r, +3 <i < N, (1)

Ele; — e} < KnY®=2/F) (A}/Z + 7}2) .
Tn
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As v > 0 can be chosen arbitrarily small, this finally results in

1 2 1 2
nTe et | 2l el < immg 3 Blel - elluen,y = 0,
i=rn+3 i=rp+3

which, with the usual procedure, yields E} — E2 5 0. For the difference E2 — E3 we again use

a Taylor expansion and (6.26):

E[lef —el]
n p/B—p p/B—p
1 Ti2z 1 1 p/B
= — —d - (O, )17 + Orrz 1))
(Tzﬁ—2_7—in—2—rn /Tin2'r-n )‘5 S) <AT?_2> ( 1—2¢1) +( i—3 71 1)
Bep1 1 T2 ] 1
< K|p/B—plE e/ / —ds —
vl | o it~ Tin—Q—Tn T o As )\Tﬁz
1 Tits 1 1
Ti—2 Ti—Q—T‘n Tin—2—rn s Ti_2
1 1
< KE sup — - ; (6.28)
Tf_rn_2<s<’rf_3 )\s )\7'712
for some ¢;, between ﬁ f:ﬁ‘; )\ids and 5 L which is bounded from above and
=2 1—2—1rn 1—2—1Tn S 7'7;712

below due to (6.17).
Applying (6.24) for (6.28) yields that for r,, +3 <1i < N, (1)

E [le} — €}l] < (Aura)'?,

which in return yields E2 — E3 5o Moving on to the difference E3 — Z,, we have that due to

p/B < 1and |- [P/ being a norm then and the reverse triangular inequality for all i > 7, + 3

n

A 1-8 p/B /8
T'n3 n nyl— n -B\?
ed =Gl = || 0+ (Al ) — (617 + (¢11)™)

Ti—2
A\ 1-8 p/B
i 1-8
< () -
Ti—2
_ o [17F = g 1277
< -
|AT,L'TL_2| B
p/B

< e 178 = P 1

Applying Lemma 5.9 on the function f(z) = 2!7% and the process A (see proof of Lemma 5.9)
and then using Lemma 5.1 we can conclude that for r, +3 <i < N,(1)

E[|e} — ¢l < KAr/GH)
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which again leads to E3 — Z, L 0. Tt is left to show that Zn 5 k% Due to the assumed

P,
boundedness from below of ¢; we have (; < K and therefore
1 Np(1)+1
. E" . [¢21 B o
(n—ry,—2)2 Z Zflk@]%
z—rn+3
1 Al
P
B, (B (6] 5o,
(TL T 2 % TZ;-S ] o0

Finally, applying Lemma 2.2.11 a) in [JP12] twice yields that for e > 0

1 1
P PR— Z g a— Z IE >e| =0

i=rn+3 i=rp+3
1 Nn(1)+1 1 Nn(1)+1
Pl >, EL Y > EPL,[ER(Gl]|>e| —0
" i=rn+3 " i=rn+3
. Nn n
Using thatt = S0 15 Eiy (B [Gl] = M550 )] we get
5 ) Na(1)+1
L p/B
Z, = LN
" Nn(l)—rn—Qn—rn—QAZ Gi = Fpg-

i=rnp+3
O

Using exactly the same arguments as in the previous proof and omitting E! in the

decomposition (6.12) we get the following result:

Corollary 6.1. Assuming that ¢ from Assumption C fulfills M < ¢ for some 0 < M < 1,

we have for

1-n X A
v <(—) (=)™ (- f_2>””>)

that
. N (1)
~ P 1-8 N1=81 —
= ) —— 6.29
R Ry E— ;ﬁx [0+ (¢") "] = ks (6.29)

Lemma 6.2. Let p > 0, Bn be a consistent estimator for  and KP, be consistent estimator
for /{p/ﬁ > 0. Then

@Y s (6.30)

Proof. We start the proof by noting that

3 B N - B/p
(R sy = ()07 = (R @ = ()
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For the first difference we define the set A,, := {

/8
i~ B Ky, 2 -1
AL =g | > %}u{rﬁ—ﬁnr >0

and split accordingly

:H.AC.

n

’ (gﬁ)ﬁn/p _ (7%1701)5/?

_ ‘(/l%ﬁ)é”/p o (Eg)ﬁ/p

Lo, + ()™ — ()

We find that

)(Eﬁ)ﬁn/p B (k\ﬁ)ﬁ/zi

Lo, < |R0)™7 — R2)7| 1

/6 P/B
‘Eﬁ_”z,ﬁ ’> 5

+ ‘(Efl)ﬁn/p _ (Eﬁ)ﬁ/p‘ IL{IB—BQD%}

and similar to (6.13) we have for all ¢ > 0

Hp/ﬁ
1 py €] <P Eﬁ—ﬁp/g‘> ps L e — 0,
{’Eﬁ—mp/5>np2‘5 } P 2
P,

P
1{\5—ﬁn|>%} > 6) — 0,

P ‘(Eﬁ)é"/p - (Eﬁ)ﬂ/p

P (‘(Eﬁ)ﬁn/p . (E];)ﬁ/p

5 3 B/p
which yields ‘(gg)ﬁn/f? — @)1, B 0. For |(Re)PP - @ggf) I e we define the
function fz ,(z) = (R)*/? with derivative fL, () = w and see that with a

Taylor-Expansion
(FR)™ 7 = R0 = Frg pl(Bn) = Fanol5)

= "p (B =) (6.31)

for some ¢, € (Bn, B). On AY we have as in the proof of Theorem 6.2 that B, € (1,3) and
/8

Hp
additionally kP € [ o %/ﬁi{g]. Therefore, we see with (6.31) that

log(R2) (R)"/”

) (B — B)| Lac < K|B, — 8| = 0.

‘(Eﬁ)én/p _ (E£>ﬁ/p Lyo =

B/p
For the difference |(72)?/? — (%ﬁﬂf)

n

o |
we proceed similarly with B, := < |kh — £ /5 ‘ > =

and like before we have

N Blv : PO .

G <m£/§) ’ 1, — 0. Finally due to 7 being consistent
: : : s 3 p/B

and z — 2%/? being a continuous function on |22 34 we find that

2 2 2Mps
B/p
(Rp)"P — (Kﬁ(ﬁ) 1pc L, 0, which finishes the proof. O

The final piece that is missing to provide a normalization without prior knowledge of

B is the following Lemma.
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Lemma 6.3. Let Bn be a consistent estimator for B such that there exists a ¢ > 0 with

)/3 ~ Bl Bo (6.32)

and u, < n~? with a ¢ € (0,1). Then we have that
()2 — (u,)?7? 55 0.
Proof. As before we define A,, := {\ﬂ — Bn\ > %} and split up

() ()

= | )7 = ()

L, + ‘(“n>6"/2 — (up)"?

]lAg7

where we already know from the previous proofs that ‘(un)B"/2 - (un)ﬁ/z‘ La, — 0.

For |(un)?/2 — (u,,)?/?

fun (x) = (uy)™? with derivative f, (z) = M and see that with a Taylor expan-

sion

1 4¢ we proceed as in the former proof and define the function

3 1 n n en/2 A
for some ¢, € (1,3). We note that (u,)/? < 1 and
og(ua)] | — 5| = Nog(ua)|u,“us | 8. — 8 5 0

due to (6.32) and |log(u,)|u,® — 0 when w, — 0. The last equation then yields

(Un)B"/Q — (un)?? 1 4¢ which concludes the proof. ]

The previous theorem and lemmas now finally culminate in a central limit theorem

that works without prior knowledge of any (unknown) model specific parameters.

Theorem 6.3. Under the conditions of Corollary 5.3, o < 1/8 and v, = pu, with
0 < p < 1 we have for the estimator of ﬁ(p, Up, Uy) from (5.98), K from (6.11) and &,
from (6.29), both using B(p, Un, Uy) as the estimator for B, that with
(P +1)E=2%) —22+20" - (1+p)’ = (1-p)’)
p _ —B/p
ks.50° log(1/p)? (2 L(14p)/2T(1 p/m) -

Vary, (B, kg, kipp) =

Val(1-p/2) B
we have the convergence
ug(pﬂ‘bnavn)/g Nn(l)

VT (Bt 0) R, (RE) P00/

where X 1s a normal distributed random variable with mean 0 and variance 1.

(B(p, tn, va) — B) 5 X, (6.34)
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Proof. The idea of the proof is to combine the previous results to find that

~

V@pr(ﬁ(p, Un, Uﬂ)a Rna (k\ﬁ
(PP+1)(4—25)—2(242p° —(14+p)? —(1—p)#
rp,pp” log(1/p)2Cyp 5

in law and combine it with the consistency of Var, ,(8(p, tn, vn), Rn, (R2)?@4"/P) and

)Punv)/Py is indeed a consistent estimator for

) and then use that the convergence in (5.99) is stably

Lemma 6.3.
In order to calculate C, 3 = m ?f_: S we find that according to p.6 in [Tod15] we have the
following formula
As _ (2pr<<1 +9)/2)0(1 - p/m)ﬁ“’ (6.35)
Hp, V7l (1 —p/2)

We note that for 0 < p < /2 and 8 € (1, 3) the right hand side of (6.35) is continuously
differentiable in 5 and using the same techniques as before we find that for our consistent

estimator B(p, Uy, V) We have

(6.36)

PP+ )/ =/ B\ e A
VAl(1 = p/2) Hpp

With similar arguments we also find that

(pﬁ(numvn) +1)(4 - 2é(P:Un7”n)) —2(2+ Qpﬁ(p,umvn) — (1 4 p)Pesunvn) (1 — p)Bpunvn)y

pB(p,UnﬂJn)
Fi1)(4—2%) —2(24+20° — (1 B—(1-p)P
r (P +1)( ) — 2( +ﬁp A+p)”—(1-p)") (6.37)
p
Combining Lemma 6.2 with Theorem 6.2 and (6.36) we have
~ —B(pﬂtn,vn)/p
2°L((1+p)/2)L'(1 — p/B(p, tn, vn)) 1 L
Vrl(1 = p/2) (Eg)ﬁ(p,un,vn)/p P
Together with the last line (6.37) and Corollary 6.1 we finally get that
4 ) =p B(p,un,vn)/p P
Van,p(B(p, Un, Vn),s Fins (K ) = Varpvﬂ(ﬁv Kg.B; ’{pvﬁ)
which, in conjunction with Lemma 6.3, finishes the proof. O

We finish this section by applying Theorem 6.3 to our simulation routine from the
previous sections. That is we additionally implement the estimators k2, k,, from Theorem
6.2 and Corollary 6.1 to build the estimator Var, ,(3(p, tn, Up), Rin, (Eﬁ)é(p’“"’”")/p) which
we then use to build the normalization from Theorem 6.3.

)Bn/P

We start the discussion by singling out results for the estimator (k? and compare

] : :
it with x,5 := E[(¢*77 + (¢/)'=P)5]» for the same set of parameters as in Section 6.3,



121

ie. p=1/2,8 € {1.1,1.3,1.5,1.7,1.9},p € {1/2,2}, N = 1000 and n = 1000 with
again roughly N, (1) ~ 520 observations before the terminal time 7" = 1. There is much
freedom in choosing r,, < n? from Theorem 6.2. However, a choice of r,, = Nn(l)o'8 (large
enough for a good estimate of -

s
m Zi]i”r(:i:s X:) seems to provide adequate results in our setting. Similar to the

small enough for a sufficient number of summands in

previous section we collect the results in a table where outside the brackets we have results
for p = 1/2 and inside the brackets for p = 2.

B | Mean of (Eﬁ)ﬁ (prunsun)/P- | Binpirical Variance | Theoretical Value of k, g
11| 2.2574 (2.0019) 0.2172 (0.0416) 2.108
1.3 2.5161 (2.2971) 0.3811 (0.1136) 2.3864
1.5 2.8959 (2.5961) 0.4695 (0.2039) 2.7769
17| 3.2834 (2.9131) 0.3179 (0.2343) 3.3066
1.9 3.6522 (3.2987) 0.425 (0.2315) 4.0041

We note that already for this limited number of observations the estimated values are
relatively close to the theoretical ones and for this reason we omit a second table with
n = 10000. Furthermore, as Vary (8, ka3, kpg) is not linear in 3, we do not expect the

)Pumen)/P ¢ he exactly the theoretical value of k5. Finally r, s

empirical mean of (kP
does not depend on p. Its choice only affects the quality of the estimator B(p, Up, V) and
through this the estimates in the first column.

At last, we present QQ-plots for the normalized estimator of the form (6.34) with again
the same parameter configuration for p € {1/2,2},n € {1000,10000}. The reference for

the theoretical quantiles is a normal distribution with mean 0 and variance 1.



122

Sample Quantiles

-2 -1 4 1 2 3
Theoretical Quantiles

Sample Quantiles

Theoretical Quantiles

Sample Quantiles
o

-2 -1 o 1
Theoretical Quantiles

~ 4
w

Sample Quantiles
o

-2 -1 0 1 2 3
Theoretical Quantiles

Sample Quantiles

Figure 6.3: N

left side p = 0.5, right side p = 2

-2 -1 0 1 2 3
Theoretical Quantiles

sample Quantiles

sample Quantiles

sample Quantiles

sample Quantiles

sample Quantiles

Theoretical Quantiles

Theoretical Quantiles

-

o

|
o

-1 s} 1
Theoretical Quantiles

,\,4
w

-1 0 1 2 3
Theoretical Quantiles

-1 0 1 2 3
Theoretical Quantiles

1000, n = 1000, 8 € {1.1,1.3,1.5,1.7,1.9}




123

3 3
o ®
°®
24 ° 24
w 14 w 11
o &
E 5
3 o S o
& &
P v
g 5
5 -14 5 717
& &
-24 -2
34 34
.
-2 -1 o 1 2 3 -3 -2 -1 0 1 2 3
Theoretical Quantiles Theoretical Quantiles
3]
3 o
o
24 27
14 14
@ "
o &
£ o4 T o
5 5
3 3
& <3
@ -1 v 5
s a1
£ 3
& 24 &
2
_3
_3
—4 L4 l..
° —47
-4 -2 -1 4 1 2 3 -4 -2 -1 o 1 2 3
Theoretical Quantiles Theoretical Quantiles
) 3 o
2 21
14
& o 8
< € 04
3 5
3 3
& <3
£ 2]
3 £
5 H
’ &
2
4]
3]
4
L]
—6 4 . —4 4
-6 —a -2 0 2 -4 -3 -2 -1 0 1 2 3
Theoretical Quantiles Theoretical Quantiles
14
o0 3
34
2
24
1
& 1 8
5 E oo
S o =
& I3
@ ® -1+
s 5
g1 3
H H
’ & 24
24
3
34
P4 &
'.' -4 0
—41 ° °
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 [ 1 2 3
Theoretical Quantiles Theoretical Quantiles
3 3]
.
Py
21 (X ]
14
& g1
5 07 5
3 ]
& S oA
@ v
a -1 s
£ £
& & 14
2]
-34 - -2
® o
-4 ] —312
-4 -3 -2 -1 [ 1 2 3 -3 -2 -1 0 1 2 3
Theoretical Quantiles Theoretical Quantiles

Figure 6.4: N = 1000,n = 10000, 8 € {1.1,1.3,1.5,1.7,1.9}
left side p = 0.5, right side p = 2



124

The most notable difference between these QQ-plots and the previous ones is that, even
though the variance is now estimated and therefore less accurate, in some instances the
distributional shape looks closer a normal distribution than before. In the previous plots
the upper quantiles/largest outcomes of ul/ \/— B(p, un, vy)— B) were not big enough
to fit the quantiles of a normal distribution due to the boundedness of B(p, Up, Up). There
are now two converse effects that cause a change. On the one hand overestimation of 8
leads to smaller values for 2“2 however, on the other hand Var, (B, ks, kpg)

is monotone decreasing in  and therefore overestimation of [ leads to larger values of
1

\/Varp’p(é(pyun7vn)7/h\:n7(7{}1]’7{)6(p’u”’vn>/p)

both contributing to the size of

ug(pﬂ‘t’n?v")/Z Nn(l)
V1 (B0, i, 1), T, (7)) /P

Which effect dominates which is dependent on the choice of 5 and p but also on n as it

(B(]% Up,s U'fl) - ﬁ)

determines the size of u,,. Therefore we have these very different looking plots across our

choice of parameters without a clear pattern compared to the previous ones.
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Appendix: Python Implementation

import numpy
import math
import pylab
import statsmodels.api as sm

import scipy.stats

##4# Model parameters and paramters of the estimator that are not choosen
#4# in dependence of N n(1)

N = 1000
n = 100000
beta = 1.9
T=1

p = 0.5
rho = 2

### Sperate Monte Carlo simulation to determine values of kappa_ {p,beta}

### and kappa_{beta,beta}
def kappa(sample, beta, p):

m = math. floor (len(sample) / 2)

a = numpy .sum(
(numpy . power (sample [0:m], 1 — beta) + numpy.power (
sample [m:len (sample)], 1 — beta)) xx (
b / beta))

return (a / m) xx (beta / p)

phi = numpy.random.exponential (1, 100000)
phi = numpy.maximum (0.1, phi)

K = numpy.mean(phi)

kappa p = kappa(phi, beta, p)

kappa beta = kappa(phi, beta, beta)

125




36

37

38

40

41

42

43

45

46

47

48

50

51

52

54

55

56

57

58

59

60

61

62

63

64

65

66

67

69

70

71

72

73

74

75

76

126

### simulation of one sample path of the model described in section 6.2

def sample path(n, T, X0, alpha0, sigma0, lambdaa0, beta):

delta n =T / n

### Random numbers needed for the simulation
### of a stable random wvariable
gamma = numpy.random.rand(n, 1) % math.pi — math.pi / 2

W = numpy.random.exponential (1, n)

### Phi from the observation scheme
phi = numpy.random.exponential (1, n)
phi = numpy.maximum (0.1, phi)

phi = phi / K

### seperate Brownian motions in alpha/sigma and lambda
W _tilde = numpy.random.normal (0, 1, n)

W _tilde2 = numpy.random.normal (0, 1, n)

X = numpy.empty(n + 1, dtype=float)

S = numpy.empty(n + 1, dtype—float)

alpha = numpy.empty(n + 1, dtype=float)
sigma = numpy.empty(n + 1, dtype=float)
lambdaa = numpy.empty(n + 2, dtype=float)
tau — numpy.empty(n + 2, dtype—float)

X[0] = X0

alpha[0] = alphaO
sigma[0] = sigma0
S[o] — o0

tau[0] = 0

tau[—1] = 0
lambdaa[:] = 1
lambdaa[0] = lambdaa0

### Euler scheme for sample path
for i in range(0, n):
tau[i + 1] = tau[i] + delta_n * phi[i] * lambdaa[i — 1]
if tauf[i + 1] < T:
lambdaa[i] = lambdaa|i — 1] + (5 — lambdaa[i — 1]) * (
tau[i] — tau[i — 1]) + lambdaa|
i — 1] = W_tilde2|
i] * math.sqrt ((tau[i] — tau[i — 1]))
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S[i + 1] = math.sin(beta * gammal[i ]
math. cos (gammal[i]),
1 / beta) % math.pow(
math.cos ((1 — beta) % gammal[il])
((1 — beta) / beta))
alpha[i + 1] = alphai] + (2 — 2 «
tau|[i + 1] — tau[i]) +
i] * math.sqrt(
(tau[i + 1] — tau[i]))
sigma[i + 1] = sigma[i] + alphali]

) / math.pow(

/ Wi,

alpha[i]) =* (

2 «+ W _tilde|

« W_tilde|

i] * math.sqrt((tau[i + 1] — tau[i]))

X[i + 1] =X[i] + alpha[i] * (tau[i

+ 1] — taul[i]) + \

sigma[i] % S[i + 1] * math.pow(

(taul[i + 1] — tau[i]),
1 / beta)
else:
X[i + 1] = None

X = X[ numpy . isnan (X) ]
tau = tau[0:len(X)]

return [X, tau]

### Quotient of A _beta/mu_{p,beta}
def C p(p, beta):
if beta > p:

a = 2 xx p * math.gamma((1 + p) / 2) * math.gamma(

1 — p / beta)

b = math.sqrt (math.pi) * math.gamma(l — p / 2)

return math.pow(a / b, —beta / p)
else:

return numpy.nan

### Estimator for sigma_s scaled by mu {p,beta}
def V_i(delta X tau, p, k, i):
return numpy .sum/(

numpy . power (abs (

delta X tau[(i — k — 1):(i — 1)] — delta_X tau]

p)) / k

(i =k —=2):(i = 2)]),
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g
def

g
def

s
def

def

Implementation of the impericial characteristic function
L n(p, u, delta X tau, k):
a=20
Nn = len(delta X tau)
for i in range(k + 2, Nn):

a = a + math.cos(

u * (delta X tau[i] — delta X tau[i — 1]) / math.pow(
V_i(delta_ X tau, p, k, i), 1 / p))

return a / (No — k — 2)

Estimator for beta from Theorem 5.2

betahat (p, u, v, delta X, delta tau, k):

delta X tau = delta X x (1 / delta_ tau)

a = math.log(—(L_n(p, u, delta X tau, k) — 1)) — math.log(
—(L_n(p, v, delta X tau, k) — 1))

return a / math.log(u / v)

Estimator for kappa_{p,beta} from Theorem 6.2
kappa hat(delta tau, tau, beta, p, r):
a—=20
b = len(delta tau) — 1
for i in range(r, b):

lambda_est = r / (tau[i] — tau[i — r])

a — a + math.pow(

(lambda_est % delta_tau[i]) =*x (1 — beta) + (
lambda_est % delta_tau[i + 1]) *x (
1 — beta),

p / beta)
return math.pow(a / (b — r), beta / p)

Variance from Theorem 5.2
Var_ beta(rho, beta, kappa beta, C p):
if rho < 1:
a = (rho xx beta + 1) * (4 — 2 *x beta) — 2 x (
2 + 2 % (rho #x beta) — (1 + rho) #x beta — (
1 — rho) =*x beta)
else:
a = (rho x*x beta + 1) * (4 — 2 *x beta) — 2 x (
2 + 2 % (rho #x beta) — (1 + rho) #x beta — (
rho — 1) *x beta)
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b = kappa_ beta x (rho xx beta) * (math.log(l / rho) %x 2) % C p
if beta < 2:

return (a / b)
else:

return numpy.nan

result = numpy.empty (N, dtype=float)
resultnormal = numpy.empty (N, dtype=float)
resultnormal self = numpy.empty (N, dtype=float)
result Nn = numpy.empty (N, dtype=float)
kappa_sample = numpy.zeros (N)

var_self = numpy.zeros (N)

### loop over N samples
for j in range(0, N):
[X, tau] = sample path(n, T, 1, 1, 1, 1, beta)

### choose parameters of the estimator according to Corollary 5.8
Nn = len(X)

k = math. floor (math.pow(Nn, 0.6))

u — math.pow(Nn, —0.33)

v .= rho * u

r = math. floor (Nn #x 0.8)

delta X = numpy. diff (X)
delta tau = numpy. diff(tau)

#4# apply the estimator for beta and normalization from Theorem 5.2
result[j] = betahat(p, u, v, delta X, delta tau, k)
resultnormal[j] = (result[j] — beta) x u *x (
beta / 2) % math.sqrt(Nn — k)
result_Nn[j] = Nn

### Estimate kappa_ {p,beta}
kappa sample[j] = kappa hat(delta tau, tau, result[j], p, r)
#4# Apply mormalization from Theorem 6.3
var_self[j] = Var_beta(rho, result[j],

kappa hat(delta tau, tau, result[j],

result [j], r),

C_p(p, result[j]) / kappa_sample[]])

resultnormal self[j] = (result[j] — beta) * u *xx (
result[j] / 2) * math.sqrt(
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Nn — k) / math.sqrt(var_self[j])
print (j)

resultnormal self = resultnormal self[ numpy.isnan(resultnormal self)]

var_self = var self[ numpy.isnan(var_self)]

print ( ’Mean beta hat: ’ + str(numpy.mean(result)))

print (’Empirical Variance: ’ + str(numpy.var(result)))
print (’Theoretical Variance: ’ + str(
Var_ beta(rho, beta, kappa beta, C _p(p, beta) / kappa p)))
print (’Average number of observations: ’ + str(numpy.mean(result Nn)))
print ( 'kappa_{p,beta} theoretical: > + str(

kappa _p) + ’ #4444 kappa sample: ' + str(
numpy . mean ( kappa sample[  numpy . isnan (

kappa sample)])) + ' ### kappa variance: ' + str(
numpy . var (kappa_sample[ numpy. isnan (kappa_sample)])))

print (’Selfnormalized Variance: ’ + str(numpy.var(resultnormal self)))

sm. qqplot (resultnormal ; line=’45",
scale=math.sqrt (Var_ beta(rho, beta, kappa beta,

C_p(p, beta) / kappa_p)))
sm. qqplot (resultnormal self, line="45’, scale=1)

pylab .show ()
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