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Abstract

This work studies the estimation of the jump activity index of Itô semimartingales in a

setting of high frequency observations with a �xed time horizon and random observation

times.

We give a quick overview over the underlying theory and brie�y review already existing

literature connected to the estimation of jump activity index in various settings.

We then prove a central limit theorem based on the empirical characteristic function whose

value is in our case codetermined by the (possibly unknown) structure of the underlying

observation scheme. To bypass this problem we employ an approach, that is new to

existing literature, using a Taylor expansion of the natural logarithm and the exponential

function to develop a consistent estimator for the jump activity index. Yet again, the

connected central limit theorem (CLT) depends on the setting of the observation scheme

and is therefore not directly applicable in most situations. Hence, we develop a further

CLT that works without any prior knowledge of the underlying structures.



Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Schätzung des jump activity index von Itô-

Semimartingalen in einem Szenario von hochfrequenten Beobachtungen mit �xem Zeit-

horizont und zufälligen Beobachtungszeiten.

Zuerst geben wir einen kurzen Überblick über die zugrunde liegende Theorie und bespre-

chen bereits vorhandene Literatur zur Schätzung des jump activity index unter verschie-

denen Annahmen.

Dann beweisen wir einen zentralen Grenzwertsatz basierend auf der empirischen charak-

teristischen Funktion, deren Wert, in unserem Fall, von der (gegebenenfalls unbekannten)

Struktur des zugrunde liegenden Beobachtungsschemas abhängt. Um dieses Problem zu

umgehen, verwenden wir einen bis dato noch nicht benutzten Ansatz, basierend auf ei-

ner Taylor-Entwicklung des natürlichen Logarithmus und der Exponentialfunktion, um

einen konsistenten Schätzer für den jump activity index zu konstruieren. Jedoch ist auch

in diesem Fall der zugehörige zentrale Grenzwertsatz abhängig von der Struktur des Be-

obachtungsschemas und somit in vielen Situationen nicht direkt anwendbar. Deswegen

entwickeln wir einen weiteren zentralen Grenzwertsatz, der ohne vorheriges Wissen über

den Aufbau des Beobachtungschemas auskommt.
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Chapter 1

Motivation and Content of the Work at

Hand

Classical �nancial mathematic models with a time continuous setting (like the famous

Black-Scholes model) often involve general forms of stochastic integrals with respect to a

Brownian motion but very rarely include jumps at all.

Yet the heavy tails of �nancial asset returns and other properties of �nancial data suggest

the existence of jumps. General semimartingales that occur for example as the solution

of stochastic di�erential equations driven by Lévy processes with jumps o�er a great deal

of �exibility when it comes to modeling asset prices, e.g. when modeling electricity prices

([GKM11]).

However, �tting these models to real data is often more involved, as the ingredients gov-

erning the jumps of the process have to be estimated as well. A key factor here is the

jump activity index, a measure for the intensity or rate with which jumps occur. In the

past decade much work has been done on the estimation of this index in various statis-

tical settings though often under quite restrictive assumptions. The work at hand builds

upon the existing literature while trying to �ll some of the gaps where only few work has

been done until now, namely by �nding estimators for the jump activity index when the

process is observed at randomly chosen time points in contrast to equidistant spaced time

points. For many applications this seems like a natural (and much needed) generalization

although full generality does not seem to be achievable with present techniques.

While our estimator builds upon ideas already developed in a setting of equidistant ob-

servations, some concepts cannot be directly applied in the case of random observation

times and have to be �tted to our speci�c setting. In particular, the main concept of

our estimator, the empirical characteristic function is in our setting dependent on the

(possibly unknown) structure of the observation scheme and this is why the evaluation of
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those is notably harder than in the equidistant case. To solve this problem, our estimator

evaluates the empirical characteristic function in points converging to zero and then uses

a Taylor expansion of the natural logarithm and exponential function.

This work is structured in the following way: It starts with two introductory chapters,

the �rst one being a basic introduction to semimartingales where fundamental terms like

Itô semimartingales, jump measures and their compensators are brie�y explained. The

second chapter deals with the topic of how jumps of Lévy processes or in general semi-

martingales can be characterized, here the Blumenthal-Getoor index is introduced and

likewise his semimartingale counterpart, the jump activity index. The chapter ends with

an overview of recent developments in the estimation of the jump activity index in the

statistical setting of high frequency statistics, i.e. when the mesh of observation points

gets �ner while keeping a �nite time horizon.

The next two chapters are the main parts of this work. In Chapter 4 we prepare basic

estimates for Itô semimartingales and apply a localization procedure to our exact setting

of random observation times in order to strengthen general assumptions to more useful

stronger ones. This establishes the foundation for Chapter 5 where we introduce our ac-

tual estimator for the jump activity index. Furthermore, we give a heuristic explanation

of how and why our adaption of the concepts for equidistant time points works in our

speci�c setting and �nally prove an associated central limit result.

In the last chapter we provide a numerical assessment of our estimator. For this purpose

we simulate an underlying process that is observed at a realistic number of random ob-

servation times and investigate how the asymptotic properties from the previous chapter

perform for a �nite sample. Furthermore, as the limiting distribution in the CLT from

the previous chapter contains moments depending on the structure of the observation

scheme and therefore direct application, e.g. for �nding con�dence intervals, is usually

not feasible, we �nd a consistent estimator for that variance and upon this build a CLT

that works without any prior knowledge of the observation scheme. In particular, the

estimator for these unknown moments is a small result in itself and may be used in other

applications as well.



Chapter 2

Itô Semimartingales and their Basic

Properties

The following chapter is an introduction to the terms associated with the analysis and

estimation of the jumps of a Lévy process or more general of an Itô semimartingale, it is

adapted from the introductions found in the standard textbooks on stochastic processes

and their estimation, i.e. Chapter 2.1 in [JP12], Chapters 1.4-2.2 in [JS87], Chapter 1.4 in

[ASJ14] or Chapter 3 in [EK19]. Rather than providing extensive proof we only present

the basic de�nitions and results that are needed to understand the following chapters.

However, rigorous proofs can especially be found in [JS87].

We enter this section by introducing the term (Itô) semimartingale, starting with the

characteristics and the de�nition of a general semimartingale. In this opening we consider

(like in our references) d-dimensional semimartingales although later on we only work with

one-dimensional ones.

What follows now is the fundamental class of processes with which we deal throughout

this work.

De�nition 2.1. An Rd-valued process X on some �ltered probability space (Ω,F , (Ft)t≥0,P)

is called a semimartingale if

1. X is adapted;

2. X has càdlàg paths;

3. X = X0 +A+L where L is a local martingale and A is a process of �nite variation

with A0 = L0 = 0.

This decomposition can be made more precise by splitting up L into a continuous

local martingale Xc and a purely discontinuous local martingale M , the latter meaning

3
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that the product MN is a local martingale for any continuous local martingale N . The

decomposition of X then reads as

Xt = X0 + At +Xc
t +Mt, (2.1)

again with A0 = Xc
0 = M0 = 0.

Nevertheless the decomposition above is not unique. Therefore one wants to employ a

strengthened version of the de�nition above:

De�nition 2.2. A semimartingale Y is called a special semimartingale if Y = Y0+A′+L′

where L′ is a local martingale and A′ is a predictable process of �nite variation. A′ is called

the compensator of Y .

In this case the decomposition is unique and can be seen as a more general version of

the Doob-Meyer decomposition.

Theorem 2.1. For a process X the following properties are equivalent:

1. X is a special semimartingale.

2. X is a locally integrable semimartingale.

As semimartingales with bounded jumps are at least locally integrable, e.g. by using

the localizing sequence of stopping times τn := inf{t : Xt ≥ n} ↗ ∞, we have the

following implication.

Remark 2.1. A semimartingale X is a special semimartingale if its jumps are bounded.

Using the de�nition of special semimartingales we can �nd a more detailed decompo-

sition of a general semimartingale X. For the jumps ∆Xt := Xt − lim
s↗t

Xs of X we set

Jt =
∑

0≤s≤t ∆Xs1{||∆Xs||≥1} (where || · || is the Euclidean vector norm in Rd) and look at

the special semimartingale Y de�ned by

Yt := Xt − Jt = X0 +Bt +Xc
t +M ′

t

which now has a unique decomposition into a predictable process of �nite variation B

and a continuous Xc and purely discontinuous martingale part M ′. As Xc is continuous

and therefore does not contain jumps it does not depend on the decomposition by J and

is the same as in (2.1). In total this yields

Xt = X0 +Bt +Xc
t +M ′

t +
∑

0≤s≤t

∆Xs1{||∆Xs||≥1}. (2.2)
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That means depending on where we set the cuto� for the jumps of Y = X − J we �nd

a unique decomposition of X, or more precise we �nd a unique decomposition for each

truncation function κ : Rd → Rd, i.e. κ is a bounded measurable function with κ(x) = x

in a neighborhood around 0, in the following way: Setting Jt =
∑

0≤s≤t κ
′(∆Xs) for

κ′(x) = x− κ(x) we �nd a decomposition of X as

Xt = X0 +Bκ
t +Xc

t +Mκ
t +

∑
0≤s≤t

κ′(∆Xs), (2.3)

for a unique predictable process of �nite variation Bκ and a unique completely discontin-

uous local martingale Mκ.

If the process X in (2.3) were to be a Lévy process with characteristic triplet (bκ, c, F )

w.r.t. κ where bκ ∈ Rd is the drift vector, c ∈ Rd×d is a symmetric, nonnegative de�nite

di�usion matrix and F (dx) is a Lévy measure on Rd then Bκ
t = bκt and Xc

t = c1/2Wt,

where c1/2 ∈ Rd×d with
(
c1/2c1/2

)T
= c and W a standard Brownian motion on Rd. The

remaining part Mκ + J then contains the jumps of the process and is completely charac-

terized by the Lévy measure F (dx). How this part can be constructed from F (dx) is laid

out below.

Now Itô semimartingales can be described as a subclass of general semimartingales such

that for an in�nitesimal small time period these behave like a Lévy process, meaning

that for each time point s ∈ [0, T ] there exists a characteristic triplet (bκs , cs, Fs) (making

bκs , cs, Fs processes, though with very di�erent spaces to which they map) and the set of

these triplets for all s ∈ [0, T ] characterizes the behavior of the process up to time T

completely. For an Itô semimartingale we have that

Bκ
t =

∫ t

0

bκsds and Xc
t =

∫ t

0

c1/2
s dWs.

In order to understand how the remaining parts consisting of the jumps can be constructed

from Fs one has to understand the concept of random measures and its compensators.

Let D(X) = {(ω, t) : ∆Xt(ω) 6= 0} then the jump measure µX of X is de�ned as

µX(ω; dt, dx) =
∑

(ω,s)∈D(X)

ε(s,∆Xs(ω))(dt, dx) (2.4)

where εa is the Dirac measure with mass 1 in a ∈ R+ × Rd. µX is then a random

measure meaning that for each that ω, µX(ω; ·) is an integer valued measure on R+×Rd.

Furthermore for each Borel subset A of Rd we de�ne

1A ? µ
X
t (ω) : = µX(ω; (0, t]× A) (2.5)

=
∑
s≤t

1A(∆Xs(ω)) = | {(s, x) ∈ (0, t]× A : ∆Xs(ω) = x} |.
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Now 1A ? µ
X can be seen as a non-decreasing and adapted process which is �nite val-

ued if inf {||x|| : x ∈ A} > 0 as we only have a �nite number of jumps bigger than

inf {||x|| : x ∈ A} on any interval (0, t]. If inf {||x|| : x ∈ A} > 0 the process 1A ? µX

admits a predictable compensator and one can �nd a positive valued random measure

νX(ω; dt, dx) on R+ × Rd such that the process de�ned via

1A ? ν
X
t (ω) = νX(ω; (0, t]× A) (2.6)

is the compensator of the process 1A ? µX . The random measure νX is then called the

(predictable) compensator of µX . One may extend the notation of (2.5) and (2.6) to more

general functions of the form δ : Ω×R+ ×Rd → R, (ω, t, x) 7→ δ(ω, t, x), by de�ning �ω -

wise�

δ ? µXt (ω) =

∫
[0,t]×Rd

δ(ω, s, x)µX(ω; ds, dx)

δ ? νXt (ω) =

∫
[0,t]×Rd

δ(ω, s, x)νX(ω; ds, dx)

whenever the right hand sides make sense, i.e. when for t ≥ 0∫
[0,t]×Rd

|δ(ω, s, x)|µX(ω; ds, dx) <∞ or
∫

[0,t]×Rd
|δ(ω, s, x)|νX(ω; ds, dx) <∞. (2.7)

Here it should be noted that the second condition in (2.7) implies the �rst one (c.f. [EK19],

Theorem 3.36) and that it is customary to use a shorthand notation for some functions,

e.g. 1A(ω, t, x) = 1A(x) (which we already used above) and x(ω, t, y) = y. As a very

prominent example we have

x1{||x||≥1} ? µ
X
t =

∫
[0,t]×Rd

x1{||x||≥1}µ
X(ds, dx) =

∑
s≤t

∆Xs1{||∆Xs||≥1}.

Again notation may be found a little bit misleading as x stands for two di�erent things in

the line above, on the one hand it is a function and on the other an integration variable.

Also in contrast to (2.7), ω is suppressed in line with general notation for stochastic

processes. Now we can �nally de�ne the characteristics of a general semimartingale X

also known as �predictable characteristics� or �integrated characteristics� as being the

triplet (Bκ, C, νX), for a truncation function κ, where

• Bκ = ((Bκ)i)1≤i≤d, the predictable process of locally �nite variation with Bκ
0 = 0,

occuring in (2.3) when truncating with κ(x),

• C = (Cij)1≤i,j≤d, where Cij = 〈(Xc)i, (Xc)j〉 (for a de�nition see either p.28 in

[JP12] or the end of this chapter),
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• νX is the compensator of the jump measure µX as de�ned above.

As Lévy processes are semimartingales the characteristic triplet (bκ, c, F ) of a Lévy process

and their semimartingale characteristics are directly linked in the following way, already

partly mentioned above.

Remark 2.2. A d-dimensional (Ft)-semimartingale X is an (Ft)-Lévy process if and only

if X0 = 0 (depending on the de�nition) and its characteristics are of the form

Bκ
t (ω) = bκt, Ct(ω) = ct, νX(ω; dt, dx) = dt⊗ F (dx).

So these characteristics are non-random and are furthermore linear over time. As illus-

trated above Itô semimartingales can be seen as time-varying Lévy processes whose be-

havior at a certain time point s is characterized by a characteristic Lévy triplet (bκs , cs, Fs)

giving rise to the following de�nition:

De�nition 2.3. A d-dimensional semimartingale X is an Itô semimartingale if its char-

acteristics (Bκ, C, νX) are absolutely continuous with respect to the Lebesgue measure,

that is

Bκ
t (ω) =

∫ t

0

bκs (ω)ds, Ct(ω) =

∫ t

0

cs(ω)ds, νX(ω; [0, t]× A) =

∫ t

0

Fs(ω,A)ds,

where (bκt )t≥0 is a Rd-valued process, (ct)t≥0 is a process in the space of symmetric, non-

negative de�nite matrices, and Ft = Ft(ω, dx) is for each (ω, t) a measure on Rd.

These bκ, c and Ft have to ful�ll additional measurability properties that ensure that

the de�nitions above make sense and �t into the de�nition of general semimartingale

characteristics. In addition one can always �nd a version of Ft(·, dx) that ful�lls, similar

to standard Lévy measures, for each (ω, t):∫ (
||x||2 ∧ 1

)
Ft(ω, dx) <∞.

To round things up we want to write the discontinuous martingale part Mκ in (2.3) in

terms of the jump measure µX and its compensator νX . As for each Borel subset A of

Rd with inf {||x|| : x ∈ A} > 0 we have that 1A ? µX − 1A ? ν
X is a local martingale

and for an Itô semimartingale it holds that κ(∆Mκ) = κ(∆X) we would like to de�ne

Mκ = κ ? µX − κ ? νX . The problem that arises here is that, due to κ(x) = x in a

neighborhood around 0, κ ?µX <∞ a.s is equivalent to X being of �nite variation which

is too restrictive. To bypass this problem one can de�ne the term of a predictable function
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δ, i.e. δ : Ω× R+ × Rd → R that is measurable w.r.t. the σ-�eld P ⊗Rd, where P is the

predictable σ-�eld on Ω× R+ and Rd is the Borel σ-�eld on Rd. If it additionally ful�lls(
|δ| ∧ δ2

)
? νXt <∞, ∀t > 0, (2.8)

there exists a unique purely discontinuous local martingale whose jumps are given by∫
Rd
δ(t, dx)(µX − νX)({t}, dx) = δ(t,∆Xt)−

∫
Rd
δ(t, x)νX({t}, dx). (2.9)

The unique purely discontinuous local martingale with jumps as in (2.9) is called stochastic

integral of δ with respect to µ− ν and is denoted by∫ t

0

∫
Rd
δ(s, x)(µX − νX)(ds, dx) or δ ? (µX − νX)t.

Moreover this coincides with the jumps of δ ?µX−δ ?νX if δ ?νX is well-de�ned. We note

that the function δ(ω, t, x) = κ(x) is predictable and that when we decompose, for some

ε > 0, κ(x) = x1{||x||<ε}+κ(x)1{||x||≥ε} we have that κ2 ?µXt =
∑

s≤t κ(∆Xs)
2 <∞ due to

the fact that
∑

s≤t(∆Xs)
2 <∞, κ(x) is bounded and we have almost surely only �nitely

many jumps bigger than ε. Furthermore, again due to the boundedness of κ, κ2 ? µX has

bounded jumps, is therefore locally integrable and allows for the compensator κ2 ? νX to

exist, therefore condition (2.8) is ful�lled. Finally putting all the components together we

arrive at the Lévy-Itô decomposition of a semimartingale

X = X0 +Bκ +Xc + κ ? (µX − νX) + (x− κ) ? µX ,

where κ ? (µX − νX) and (x− κ) ? µX should be read component by component if d > 1.

In the case of an Itô semimartingale we have more speci�cally

Xt = X0 +

∫ t

0

bκsds+

∫ t

0

c1/2
s dWs +

∫
(0,t]×Rd

κ(x)(µX − νX)(ds, dx) (2.10)

+

∫
(0,t]×Rd

(x− κ(x))µX(ds, dx).

Usually in applications Itô semimartingales are the objects considered and for estimating

their rate of growth we need this speci�c form of time continuous characteristics. Therefore

in the sequel (as in most literature regarding the subject of statistics on semimartingales)

we only look at the class of Itô semimartingales. There is one last addition to make,

namely that not only there exists a decomposition in the form of (2.10) but also that

every d-dimensional Itô semimartingale can be written with respect to the same Brownian

motion and (compensated) random measure µ, µ− ν. This is then called the Grigelionis

decomposition of semimartingale. For this matter we need to be able to de�ne random
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measures that are not directly associated to a process but are rather de�ned by a single

(non random) measure λ on some space E. To be more precise, (E, E) is an arbitrary

Polish space endowed with its Borel σ-�eld E and λ is a σ-�nite measure. Then a random

measure µ = µ(ω; dt, dx) on R+ × E is called (Ft)-Poisson random measure if it is the

sum of Dirac masses, no two such masses lie on the same �vertical� line {t} ×E and that

for all A ∈ E with λ(A) <∞ we have (again using the shorthand 1A(ω, t, x) = 1A(x)):

• 1A ? µt = µ([0, t]× A) is an (Ft)-Lévy process,

• E [1A ? µt] = tλ(A).

When λ(A) < ∞ we notice that 1A ? µt is an ordinary Poisson process with parameter

λ(A). Setting ν(ω; dt, dx) = dt⊗ λ(dx) we �nd that for all B ∈ R+ ⊗ E with ν(B) <∞
1B ? νt is the compensator of 1B ? µt and therefore ν is the (non random and hence

predictable) compensator of µ. Comparing this with Remark 2.2, it is no surprise that

the jump measure µX of an (Ft)-Lévy process is indeed a (Ft)-Poisson random measure

with E = Rd and therefore when de�ning µ as above the measure λ is often called the

Lévy measure of ν. For all predictable (i.e. measurable w.r.t. P ⊗ E) functions δ on

Ω × R+ × E which satisfy (2.8) with νX replaced by ν one may then de�ne δ ? (µ − ν)t

as in (2.9) and similarly one can generalize the de�nitions of δ ? µt, δ ? νt and the other

concepts presented previously.

Now follows the Grigelionis decomposition, let d′ ≥ d and E be an arbitrary Polish space

with a σ-�nite measure λ with λ(E) =∞ having not atoms.

Theorem 2.2 (Thm. 2.1.2 in [JP12]). Let X be a d-dimensional Itô semimartingale

on the space (Ω,F , (F)t≥0,P), with characteristics (B,C, νX) given as in De�nition 2.3.

Then there exists a very good �ltered extension (Ω̃, F̃ , (F̃)t≥0, P̃)(de�nition p.36, [JP12]),

on which there are de�ned a d′-dimensional Brownian motion W and a Poisson random

measure µ on R+ × E with compensator ν, such that

Xt = X0 +

∫ t

0

bκsds+

∫ t

0

ηsdWs +

∫
(0,t]×E

κ(δX(s, x))(µ− ν)(ds, dx) (2.11)

+

∫
(0,t]×E

(δX(s, x)− κ(δX(s, x)))µ(ds, dx),

where ηt is an Rd ⊗ Rd′- valued predictable process on (Ω,F , (F)t≥0,P) and δX is a pre-

dictable Rd-valued function on Ω× R+ × E.
Additionally outside a null set one has ηtη

T
t = ct and Ft(ω,A) = λ({x : δ(ω, t, x) ∈ A})

for each A ∈ Rd with 0 /∈ A, where A is the closure of A.

Conversely, even if X is de�ned via (2.11) with bκ, η, δ de�ned on the extension it is still

an Itô semimartingale on (Ω,F , (F)t≥0,P) if it is further adapted to (Ft)t≥0.
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There is much freedom in choosing the number of Brownian motions d′, the space E

and the measure λ. A canonical choice would be E = Rd with λ being the Lebesgue

measure but E = R is also always possible even if the semimartingale X has more than

one dimension. The important thing here is that even countably many semimartingales

X, Y, Z, . . . can be represented at the same time by the same random measure µ by using

a di�erent function δX , δY , δZ , . . . for each process to be represented. So basically when

comparing two processes X, Y with a representation as in (2.11) all information about

the jumps is encapsulated in the functions δX , δY , e.g. if δX is bounded the jumps of X

are bounded.

(2.11) is how most papers on statistics for semimartingales are set up and we con-

tinue in the same manner when we come to Chapter 4 where we give upper bounds

for E
∣∣Xti −Xti−1

∣∣ dependent on the coe�cients bκ, η, δX of X.

At last we want to brie�y present the quadratic variation of a process X, a concept which

is very important to the world of stochastic calculus in general and for us of relevance

when we want to calculate the aforementioned upper bounds. If Y is a continuous local

martingale the local submartingale Y 2 allows, by the Doob-Meyer decomposition, for an

unique increasing adapted continuous process with Y0 = 0, and denoted by < Y, Y >,

such that Y 2− < Y, Y > is a local martingale. For a one-dimensional semimartingale X

we de�ne

[X,X]t = 〈Xc, Xc〉t +
∑
s≤t

(∆Xs)
2

as the quadratic variation process of X. If X is in addition an Itô semimartingale we �nd

that this reads as

[X,X]t =

∫ t

0

c2
s ds+ x2 ? µXt .

The last two formulas will play a leading role when we want to �nd the aforementioned

upper bounds for E
∣∣Xti −Xti−1

∣∣ with the help of the Burkholder-Davis-Gundy inequality,
cf. Theorem 4.1.

For two one-dimensional process X, Y this concept can be generalized to the quadratic

covariation process of X and Y , denoted as [X, Y ] and if [X, Y ] is locally integrable it

admits a (predictable) compensator denoted by < X, Y >. Furthermore the quadratic

covariation gives rise to a de�nition of [X,X] and [X, Y ] when X, Y are d-dimensional.

However, this case is of no further relevance for the rest of the work and hence we point

to any of the references mentioned at the beginning of this chapter.



Chapter 3

The Blumenthal-Getoor and the Jump

Activity Index

3.1 The Blumenthal-Getoor Index

We now take one step back from the general setting of semimartingales and look at Lévy

processes, in particular the properties of their jumps and how these can be characterized.

As the results presented in this section are much closer related to the quantities that we

want to estimate in Chapter 5 and as such closer to the actual topic of this work, we

employ a more rigorous approach than in the previous chapter.

We assume that X is a one-dimensional Lévy process (although the concepts presented

here may be lifted easily to more than one dimension) on the �ltered probability space

(Ω,F , (Ft)t≥0,P) with a characteristic triplet in the Lévy process sense (bκ, c, F ) with

respect to some truncation function κ(x). Then, as already mentioned, the jump measure

µ = µX is a Poisson random measure with compensator

ν(dt, dx) = dt⊗ F (dx).

In this introductory chapter we �x a setting of equidistant observation times with a �-

nite time horizon 0 < T < ∞, i.e. for ∆n = 1
n
we observe X0, X∆n , X2∆n , . . . , XT while

∆n → 0. The question that arises now, is which parts of the measure F can be estimated

from a single path of the process X.

In Lemma 3.3 we prove that for any Borel subset A ⊂ R we either have almost surely

in�nitely many jumps on any time interval (t, t + s] i� F (A) = ∞ and almost surely

�nitely many i� F (A) <∞. Choosing some ε > 0 we have F ((ε,∞)) <∞ and therefore

a single path of the process may or may not have a jump of size ε or bigger at all (this

is true not only for Lévy processes but for all Itô semimartingales in general). Therefore

11
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we cannot estimate F on its complete domain as even if the complete information of this

single path would be available to us we would not be able to estimate F ((ε,∞)). While

testing for F (R) < ∞ or F (R) = ∞ is always possible, we want to infer the behavior of

the jumps around zero, e.g. F ((x,∞)) when x↘ 0. This is only feasible when the mass

of these sets (x,∞) is increasing to in�nity, which is equivalent to F (R) =∞, and this is

why we usually restrict ourselves to this case of in�nite jump activity.

To describe the behavior of F (dx) around zero and the related path behavior ofX Blumen-

thal and Getoor [BG61] introduced the Blumenthal-Getoor(BG) index for Lévy processes

β := inf(I) where I =

{
p ≥ 0 :

∫
{|x|≤1}

|x|pF (dx) <∞
}
. (3.1)

Some key properties of β or the set I are rather obvious. First the set is always of

the form I = (β,∞) or I = [β,∞) and since it must hold for all Lévy measures that∫
(|x|2 ∧ 1)F (dx) <∞ we have that 2 ∈ I and in particular β ∈ [0, 2]. Referring to basic

properties of the process itself, X has �nite jump activity if and only if F (R) < ∞ or

0 ∈ I and F (R) =∞. Furthermore we have β > 0 in the case of in�nite jumps. A more

precise connection is stated later on.

As outlined above another way to describe the behavior of F (dx) around 0 is to work

with the (double sided) tail function of F namely

F (r) = F ({y : |y| ≥ r}). (3.2)

Now we �nd an alternative de�nition/characterization of β in terms of F (x).

Theorem 3.1 (Theorem 2.1 in [BG61]). It holds that

β = inf
{
α > 0 : lim

r→0
rαF (r) = 0

}
.

Proof. First we note that for the (signed) measure µF (dx) induced by the decreasing

function F we have for x > ε > 0

µF ([ε, x]) = lim
x̃n↘x

F (x̃n)− lim
ỹn↗ε

F (ỹn)

= F ((−∞,−x) ∪ (x,∞))− F ((−∞,−ε] ∪ [ε,∞))

= −F ([−x,−ε] ∪ [ε, x]),

using the σ-continuity of F and the fact that {y : |y| ≥ x̃n} ↗ (−∞,−x) ∪ (x,∞) when

x̃n ↘ x and {y : |y| ≥ ỹn} ↘ (−∞, ε]∪[ε,∞) when ỹn ↗ ε. Set γ = inf
{
α > 0 : lim

r→0
rαF (r) = 0

}
and choose some δ, δ′ with δ > δ′ > γ. Then for all ε > 0∫

ε≤|x|≤1

|x|δF (dx) = −
∫ 1

ε

rδdF (r) = εδF (ε)− F (1) + δ

∫ 1

ε

rδ−δ
′−1rδ

′
F (r)dr (3.3)
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where we used the partial integration rule for Stieltjes integrals in the last step. And

because rδ
′
F (r) → 0 as r → 0 we have rδ

′
F (r)1[0,1](r) ≤ K1[0,1](r) for some constant

K > 0 and as such for another �nite number M <∞∫ 1

ε

rδ−δ
′−1rδ

′
F (r)dr ≤ K

∫ 1

ε

rδ−δ
′−1dr →M as ε→ 0.

Considering the limit when ε→ 0 in (3.3) we have that δ ≥ β and hence γ ≥ β.

To prove the other direction we take an δ > β and have for all η > ε > 0∫
0≤|x|≤η

|x|δF (dx) = −
∫ η

0

rδdF (r) ≥ −
∫ η

ε

rδdF (r) ≥ εδ
[
F (ε)− F (η)

]
where the last two steps hold because µF (dx) is a negative valued measure. Therefore

lim sup
ε→0

εδF (ε) ≤
∫

0≤|x|≤η
|x|δF (dx)

and since δ > β the right hand side converges to 0 when η → 0 (F (dx) has no mass in 0).

It follows that rδF (r)→ 0 as r → 0 and as such δ ≥ γ and β ≥ γ.

3.2 The Blumenthal-Getoor Index and Basic Path Prop-

erties

The Blumenthal-Getoor index indicates the behavior of the process paths in numerous

ways though we will only point out a few here. In our case the most relevant feature is

the relation between the BG index and whether the jumps of the paths are p-summable,

i.e. whether the sums

A(p)t :=
∑
s≤t

|∆Xs|p (3.4)

are a.s. �nite or not for some p > 0.

The following two results are needed for the proofs of Lemma 3.3 and 3.4.

Lemma 3.1. Let Y be a nonnegative random variable then it holds that

Y <∞ a.s. ⇐⇒ E
[
e−λY

]
→ 1 when λ↘ 0, (3.5)

Y =∞ a.s. ⇐⇒ E
[
e−λY

]
= 0 for all λ > 0. (3.6)

Proof. We start with the proof of (3.5). Let Y be almost surely �nite then e−λY P−→ 1 when

λ↘ 0 and as
∣∣e−λY ∣∣ = e−λY ≤ 1 we have with dominated convergence that E

[
e−λY

]
→ 1.
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For the converse assume that E
[
e−λY

]
→ 1 when λ ↘ 0. Then this implies e−λY P−→ 1

when λ ↘ 0 and by passing unto a subsequence we even �nd e−λY
a.s.−−→ 1 which is

equivalent to Y <∞ a.s.

To prove (3.6) assume that Y =∞ a.s. then it follows that e−λY = 0 a.s. for all λ > 0 and

therefore E
[
e−λY

]
= 0. For the converse assume that Y = ∞ a.s. does not hold. Then

there exists A ∈ F with P(A) > 0 and Y (ω) < ∞ for all ω ∈ A. Therefore e−λY (ω) > 0

for all λ > 0, ω ∈ A and as e−λY ≥ 0 we can conclude E
[
e−λY

]
> 0.

Lemma 3.2. Let f : R+ × R→ R be a nonnegative Borel measurable function and µ be

the jump measure and ν its compensator of some Lévy process X. Then it holds

E
[
exp

(
−
∫
f(r, x)µ(dr, dx)

)]
= exp

(
−
∫

(1− exp(−f(r, x))) ν(dr, dx)

)
.

Proof. As f is nonnegative there exists a sequence of simple functions (fn)n∈N ↗ f where

each function is of the form

fn =
n∑
i=1

ai1Ai , n ∈ N

for some Ai which are disjoint Borel measurable subsets of R+ × R and ai ≥ 0. For each

Ai we have that µ(Ai) is a Poisson distributed random variable with mean ν(Ai), i.e. for

all n ∈ N

P(µ(Ai) = n) = exp(−ν(Ai))
ν(Ai)

n

n!
.

Therefore we have

E [exp (−aiµ(Ai))] =
∑
n≥0

exp(−ain) exp(−ν(Ai))
ν(Ai)

n

n
= exp (−(1− exp(−ai))ν(Ai)) .

Furthermore, as the Ai are disjoint, the random variables ν(A1), . . . , ν(An) are indepen-

dent and hence

E
[
exp

(
−
∫
fn(r, x)µ(dr, dx)

)]
= E

[
exp

(
−

n∑
i=1

aiµ(Ai)

)]

=
n∏
i=1

E [exp (−aiµ(Ai))]

=
n∏
i=1

exp (−(1− exp(−ai))ν(Ai))

= exp

(
−

n∑
i=1

(1− exp(ai))ν(Ai)

)

= exp

(
−
∫

(1− exp(−fn(r, x)))ν(dr, dx)

)
.
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Using monotone convergence for the measures µ(dr, dx), ν(dr, dx) and dominated conver-

gence for the expected value we have

E
[
exp

(
−
∫
f(r, x)µ(dr, dx)

)]
= lim

n→∞
E
[
exp

(
−
∫
fn(r, x)µ(dr, dx)

)]
= lim

n→∞
exp

(
−
∫

(1− exp(−fn(r, x)))ν(dr, dx)

)
= exp

(
−
∫

(1− exp(−f(r, x)))ν(dr, dx)

)
.

Now follows the result that proves the properties used in the introduction of this

chapter.

Lemma 3.3. Let A ∈ R where R is the Borel σ-algebra on R. Then we have that

F (A) <∞ ⇐⇒
∑
s≤t

1A(∆Xs) <∞, a.s. ∀t > 0, (3.7)

F (A) =∞ ⇐⇒
∑

t<r≤t+s

1A(∆Xr) =∞, a.s. ∀t ≥ 0, s > 0. (3.8)

Proof. Set g(x) = 1A(x). We prove (3.8) by de�ning the function f(r, x) = λ(g(x) ∧
1)1(t,t+s](r) for some λ > 0 and set

Y =
∑

t<r≤t+s

1A(∆Xr)

=
∑

t<r≤t+s

(
g(∆Xr)1[0,1](g(∆Xr)) + 1(1,∞)(g(∆Xr))

)
=

∫
R+×R

1

λ
f(r, x)µ(dr, dx).

We then have with Lemma 3.2

E [exp(−λY )] = E
[
exp

(
−
∫
f(r, x)µ(dr, dx)

)]
= exp

(
−
∫

(1− exp(−f(r, x))) ν(dr, dx)

)
.

As

1− exp(−f(r, x)) = exp(εr,x)f(r, x)

for some εr,x ∈ [−f(r, x), 0] and f(r, x) ≤ λ we have

exp(−λ)f(r, x) ≤ 1− exp(−f(r, x)) ≤ f(r, x)

which results in

−
∫

(1− exp(−f(r, x))) ν(dr, dx) ≤ exp(−λ)

∫
−f(r, x)ν(dr, dx)

= exp(−λ)

∫
R+

∫
R
−λ(g(x) ∧ 1)1(t,t+s](r)F (dx)dr

= − exp(−λ)λ

∫ t+s

t

∫
R
(g(x) ∧ 1)F (dx)dr

= − exp(−λ)λ

∫ t+s

t

F (A)dr (3.9)
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and

−
∫

(1− exp(−f(r, x))) ν(dr, dx) ≥ −λ
∫ t+s

t

∫
R
(g(x) ∧ 1)F (dx)dr = −λ

∫ t+s

t

F (A)dr.

(3.10)

The two inequalities above together with the fact that by Lemma 3.1 Y is a.s. in�nite if

and only if E
[
e−λY

]
= 0 for all λ > 0 gives (3.8).

To prove (3.7) we de�ne the function f(r, x) = λ(g(x)∧1)1[0,t](r) and use that by Lemma

3.1 a nonnegative random variable Y is a.s. �nite if and only if E
[
e−λY

]
→ 1 as λ ↘ 0.

Then replacing the domain of integration for the slightly altered f(r, x) in (3.9) and (3.10)

yields (3.7).

The following Lemma is a generalization of the previous one and is used to state the

connection between the BG index and p-summability in the next corollary.

Lemma 3.4 (cf. p.31 in [ASJ14]). Let g : R → R be a nonnegative Borel measurable

function with g(0) = 0. Then we have that∫
(g(x) ∧ 1)F (dx) <∞ ⇐⇒

∑
s≤t

g(∆Xs) <∞, a.s. ∀t > 0, (3.11)∫
(g(x) ∧ 1)F (dx) =∞ ⇐⇒

∑
t<r≤t+s

g(∆Xr) =∞, a.s. ∀t ≥ 0, s > 0. (3.12)

Proof. We start by discussing the case of F (g−1([1,∞))) = ∞, we then have that the

left hand side of (3.12) is true. Furthermore by (3.8) we have in�nitely many jumps ∆Xr

on any interval r ∈ (t, t + s] with g(∆Xr) ≥ 1 yielding the right hand side of (3.12).

Therefore (3.11) and (3.12) are then ful�lled trivially.

For the rest of the proof we may now assume that F (g−1([1,∞))) <∞. Then by (3.7) for

any interval r ∈ (t, t+s] there exists only a �nite number of jumps ∆Xr with g(∆Xr) ≥ 1

and hence∑
s≤t

g(∆Xs) <∞ ⇐⇒
∑
s≤t

(
g(∆Xs)1[0,1](g(∆Xs)) + 1(1,∞)(g(∆Xs))

)
<∞,

∑
t<r≤t+s

g(∆Xr) <∞ ⇐⇒
∑

t<r≤t+s

(
g(∆Xr)1[0,1](g(∆Xr)) + 1(1,∞)(g(∆Xr))

)
<∞.

To show (3.12) we de�ne as in the previous proof f(r, x) = λ(g(x)∧ 1)1(t,t+s](r) for some

λ > 0, set

Y =
∑

t<r≤t+s

(
g(∆Xr)1[0,1](g(∆Xr)) + 1(1,∞)(g(∆Xr))

)
=

∫
R+×R

1

λ
f(r, x)µ(dr, dx)

and from now on follow exactly the proof of Lemma 3.3 omitting the (not needed) identity∫
R(g(x) ∧ 1)F (dx)dr = F (A). For (3.11) we de�ne f(r, x) = λ(g(x) ∧ 1)1[0,t](r) and then

likewise use the arguments in the proof of Lemma 3.3.
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Corollary 3.1. Applying Lemma 3.4 to the function g(x) = |x|p yields the well known

result ∫
(|x|p ∧ 1)F (dx) <∞ ⇐⇒

∑
s≤t

|∆Xs|p <∞, a.s. ∀t > 0, (3.13)∫
(|x|p ∧ 1)F (dx) =∞ ⇐⇒

∑
t<r≤t+s

|∆Xr|p =∞, a.s. ∀t ≥ 0, s > 0. (3.14)

Using the above corollary we see that the process has �nite variation i� 1 ∈ I.

Furthermore in [BG61] more connections between the BG index and other key properties

of the process are made. Although these will not play a role in the sequel we name few

here. First the BG index is connected to the �scalability� of a process namely

Theorem 3.2 (Theorem 3.1 in [BG61]). If α > β then

t−1/αXt → 0 for t→ 0 a.s.

Theorem 3.3 (Theorem 3.3 in [BG61]). If α < β then

lim sup
t→0

t−1/α|Xt| =∞ a.s.

We will encounter a much stronger version of this scaling property in the class of stable

processes featured in the section below.

Other results in [BG61] link the BG index to the Hausdor� dimension of the image of a

process. Depending on the conditions one can achieve lower or upper bounds.

3.3 Stable Processes and Related Processes

In this section we give basic examples of Lévy processes in reference to their BG index.

The most prominent one being the class of stable processes which plays a major role in

Chapter 5, being one of the building blocks of the observed process.

3.3.1 Stable Processes

Stable distributions were originally introduced by Lévy as an example for in�nitely di-

visible distributions and are well known as the limiting objects of central limit theorems

when second moment conditions are missing.

A random variable Y is strictly stable distributed when for independent copies Y1, . . . , Yn, n ∈
N, of Y it holds that for some an ∈ R
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Y1 + . . .+ Yn ∼ anY

where the equality is in distribution, so this is a very special case of in�nite divisibility.

It turns out, if Y is not constant 0, that it must hold an = n1/β for some β ∈ (0, 2]

which is called the stability index of a stable distribution. The characteristic exponent

Ψ(φ) = − log (E [exp (−iφY )]) of such a distribution is given by

Ψ(φ) =

cβ|φ|β(1− iα sgn(φ) tan
(
πβ
2

)
), if β 6= 1

c|φ|, if β = 1
(3.15)

where α ∈ [−1, 1] and c > 0. As Y has an in�nitely divisible distribution there exists a

Lévy process S whose characteristic exponent − log (E [exp (−iφS1)]) equals (3.15) (p.5

in [Kyp14]). We call these Lévy processes the class of strictly stable processes. Here two

special cases are included in this class of processes. The case β = 1 contains, besides

the Cauchy process, a linear (non random) process starting in 0 and β = 2 refers to a

Brownian motion. When β ∈ (0, 1) ∪ (1, 2) the characteristic triplet of S with respect

to a truncation function κ is then of the form (bκ, 0, F ) for some drift bκ ∈ R and Lévy

measure satisfying

F (dx) =

(
a(+)

|x|1+β
1{x>0} +

a(−)

|x|1+β
1{x<0}

)
dx

with a(+), a(−) ≥ 0 and a(+) + a(−) > 0 and bκ ful�lls in addition

bκ =

0, if β ∈ (0, 1) for κ(x) = 0

0, if β ∈ (1, 2) for κ(x) = x.

In the context of Chapter 2 the choice of κ(x) tells us that S is a special semimartingale

if β > 1 and a process of �nite variation if β < 1. Note that κ(x) = x is not a �real�

truncation function, as it is not bounded, but in the case of a special semimartingale and

S being not a Brownian motion it still gives us a valid decomposition of S of the form

St =

∫
(0,t]×Rd

x (µ− ν)(ds, dx)

where µ is a jump measure with compensator ν(dt, dx) = dt⊗F (dx). Furthermore we note

that there is no con�icting notation here, i.e. the stability index of the process coincides

with its BG index. β controls the rate with which F diverges near 0: the higher the value

of β, the faster F diverges and therefore we have a higher concentration of small jumps
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by Corollary 3.1. When β → 2 the jumps become �so dense� that the limiting object has

continuous (albeit still not di�erentiable) paths and is a Brownian motion. In the case

of stable processes the parameter β also governs the behavior of the big jumps and using

the fact that for all p > 0, t > 0

E [|Xt|p] <∞ ⇐⇒
∫
{|x|>1}

|x|pF (dx) <∞, (3.16)

(c.f. Theorem 2.19.1 in [EK19]) we see that if S is a stable process we have

E [|St|p] <∞ for 0 ≤ p < β and E [|St|p] =∞ otherwise.

The last key property of stable processes is their self-similarity. For all n ∈ N it holds

that

Sn = S1 + (S2 − S1) + . . .+ Sn − Sn−1 ∼ n1/βS1

or more generally for all λ > 0 we see that {Sλt : t ≥ 0} has the same law as {λ1/βSt : t ≥
0}.
In general the density of a stable distribution/process is unknown, though, except for cases

β = 1, 2 mentioned above. In the sequel we will work with the characteristic function of

strictly stable processes in particular if these are symmetric, i.e. a(+) = a(−) or α = 0,

then the Lévy measure and characteristic function reduce to

F (dx) =
A

|x|1+β
dx and E [exp(−iuS1)] = exp(−Aβ|u|β) (3.17)

for some constants A,Aβ > 0.

3.3.2 Tempered Stable Process

A tempered stable process of index β ∈ (0, 2) is a Lévy process whose characteristic triplet

is (b, 0, F ), where b ∈ R and F is

F (dx) =

(
a(+) exp(−B+|x|)

|x|1+β
1{x>0} +

a(−) exp(−B−|x|)
|x|1+β

1{x<0}

)
dx,

for some a(+), a(−) ≥ 0 with a(+) + a(−) > 0, and B−, B+ ≥ 0. The reason for introducing

tempered stable processes is that since exp(−B+|x|), exp(−B−|x|) → 1 as x → 0 their

small jumps behave similar to stable processes and as a result their BG index equal to β.

But in contrast to stable processes applying (3.16) yields that moments of all orders exist,

as exp(−|x|)|x|p1(1,∞)(|x|) is integrable for all p ∈ R+. Tempered stable processes are

featured in �nancial applications and can also be incorporated as an underlying process

for the estimator presented in Chapter 5.

The well known inverse Gaussian process is a prominent example of a tempered stable

process with a(−) = 0 (i.e. it is a subordinator) and index equal to 1
2
.
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3.4 The Jump Activity Index and Basic Models

We now lift the concept of the BG index to general semimartingales. (3.4) is de�ned for

semimartingales in the same manner and again the question arises when these objects are

�nite and when not. We now assume that X is an Itô semimartingale with characteristics

(bt, ct, v) where the compensator of the jump measure is of the form

v(dt, dx) = dt⊗ Ft(dx).

As the spot Lévy measure Ft(dx) might vary over time for semimartingales we set up a

de�nition alternative to (3.1)

It := {p ≥ 0 :

∫
(|x|p ∧ 1)Ft(dx) <∞}, βt := inf It, (3.18)

Jt := {p ≥ 0 : (|x|p ∧ 1) ? vt <∞}, γt := inf Jt (3.19)

with (|x|p ∧ 1) ? vt =
∫

[0,t]×R(|x|p ∧ 1) νX(ds, dx) as de�ned in Chapter 2. The form of

these random sets is similar to the set I in (3.1) and again both γt and βt take values

in [0, 2]. It is obvious that when t increases the set Jt decreases. One can interpret γt
as the �global� Blumenthal-Getoor index on the interval [0, t] and βt is the �spot� index

at time t. When X is a Lévy process there is no need for this distinction as the Lévy

measure is then non-random and βt = γt = β for all t > 0. Though a non constant βt
may occur in a general semimartingale setting our estimator presented in Chapter 5 only

works in a setting where βt and γt are assumed to be constant over time and non-random

(and therefore equal) and we call this number jump activity index. This nomenclature

allows us to still have a distinction between the Lévy case and the case of semimartingales

who may have a time changing Ft(dx) but a non varying jump activity index β. Most

estimators from recent papers work in such a setting of a constant index. One of the

very few exceptions is the paper [Tod17] by Todorov where a test is developed to check

whether the instantaneous index βt stays constant or varies over time.

Again compared to the Lévy case it does not surprise that we have a result similar to

Corollary 3.1.

Lemma 3.5 (cf. Lemma 3.2.1 in [JP12]). For all 2 > p, t > 0 it holds that

A(p)t <∞ ⇐⇒ p ∈ Jt.

The reason for estimating β is simple, many models in �nance stopped using only

processes with continuous paths for the underlying structure but instead use processes

with jumps instead. The advantage of including jumps into �nancial models is that these
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can be used to reproduce various stylized fact of asset prices that cannot be explained

in classical models such as heavy tailed distribution and �big� jumps. These models

include simple compound Poisson-based models (β = 0), normal inverse Gaussian models

(β = 0.5), variance gamma models (β = 0) or hyperbolic/generalized hyperbolic models

and the CGMY model of Carr et al. [CG02] where β is a free parameter. Therefore

estimation procedures may be used to �t real data to a model or, if they include a central

limit theorem, to come up with statistical tests for model assumptions.

To lift the setting of Lévy processes to a bigger class of semimartingales one can use the

following model assumption on the observed process X:

Xt = X0 +

∫ t

0

bsds+

∫ t

0

ηsdWs +

∫ t

0

Hs−dLs, (3.20)

where L is Lévy process whose BG-index is known, e.g. a stable process, b a locally

bounded, η a càdlàg and H a locally bounded process. Then under general conditions the

activity index of X equals the one of L (c.f. Example 11.4 in [Kyp14]).

3.5 Estimation procedures in Recent Literature

Most papers in the recent past use an underlying process of the form (3.20) for their

estimators while the assumptions regarding the Lévy measure of the process L may vary

slightly but follow the same underlying principles. They all describe the behavior of the

Lévy measure of L such that in a neighborhood around 0 it can be related to the behavior

of a stable process. The �rst example is taken from [TT11].

Assumption A. The density of the Lévy measure of L is given by

ν(x) =
A

|x|1+β
+ ν ′(x), β ∈ (0, 2), (3.21)

where A > 0 and there exists some x0 > 0 with |ν ′(x)| ≤ C
|x|1+β′ for some β′ < β and all

|x| < x0.

The following assumption is from Chapter 11 in [ASJ14] using the tail function (3.2)

but generalized to semimartingales (exclusion of the point x in this de�nition in contrast

to (3.2) is of no real relevance here)

F t(x) = Ft((−∞, x) ∪ (x,∞)), t > 0, x > 0.

Assumption B. There exist constants 0 ≤ β′ < β < 2 such that for all t > 0, x ∈ (0, 1]:

|xβF t(x)− at| ≤Mtx
β−β′ , (3.22)

where at,Mt are nonnegative predictable and locally bounded processes.
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Like already mentioned both assumptions work with a setting that assumes a constant

jump activity index equal to β though one must mention that, because we allow for

at = 0, (3.22) allows for times when the process does not jump at all or only with

intensity lower than β′. Both convey that the behavior of the jumps of L around 0

resemble those of a stable process and restrict the possible forms of Lévy measures quite

a bit. Nevertheless nearly all models proposed for �nancial application ful�ll (3.21) and

(3.22). The most notable di�erences in the model assumptions occur when X is allowed

to contain a di�usion part like
∫ t

0
ηsdWs or not. In the following we will present estimators

for both those situations. Before that we introduce the probably most used tool when it

comes to the analysis of integrated volatility or activity estimation: the power variation

of the process X

Vt(X, p,∆n) =

bt/∆nc∑
i=1

|∆n
iX|p, p > 0, t > 0, (3.23)

where ∆n
iX = Xi∆n − X(i−1)∆n is the di�erence of the regularly spaced observations at

times 0,∆n, 2∆n, . . . , bt/∆nc∆n. Results for convergence in probability of the power vari-

ation for this class of underlying process are stated as early as 2003 by [Woe03b],[Woe03a],

[BNS03] and continue with adjoined central limit theorems until [TT11]. From the latter

one we cite a few results omitting some technical assumptions

Theorem 3.4 (cf. Theorem 3.2 in [TT11]). 1. Suppose X is given by (3.20), L is a

Lévy process with characteristic triple (0, 0, ν) w.r.t. to some truncation function

κ(x), where ν is given by (3.21) for some β < 2 and |ηs|, |ηs−| > 0 a.s. Then for a

�xed T > 0 we have

∆1−p/2
n VT (X, p,∆n)

P−→ µp(2)

∫ T

0

|ηs|pds (3.24)

locally uniformly in p ∈ (0, 2), with µp(2) = E [|Z|p] where Z is a standard normal

distributed random variable.

2. Suppose that for a �xed T > 0 X is de�ned by (3.20) with ηs = 0 for all s ≤ T

a.s. and again L is a Lévy process with characteristic triple (0, 0, ν) w.r.t. to some

truncation function κ(x), where ν is given by (3.21) for some β ∈ (0, 2). Further

assume that if β ≤ 1 then bs−Hs−
∫
R κ(x)ν(dx) is identically zero on [0, T ], then it

holds that:

∆1−p/β
n VT (X, p,∆n)

P−→ µp(β)Kβ

∫ T

0

|Hs|pds (3.25)



23

locally uniformly in p ∈ (0, β), with µp(β) = E [|Z|p] where Z is a symmetrical stable

random variable with stability index β and Kβ > 0 some constant only depending

on β.

The last theorem clearly shows the di�erent cases where each time a di�erent part of

the underlying process determines the limit of the power variation. We brie�y explain the

reason for this limit behavior when ∆n → 0.

For a Brownian motion W we always have that

∆−p/2n

∣∣∣∣∫ i∆n

(i−1)∆n

ηsdWs

∣∣∣∣p ≈ ∆−p/2n

∣∣η(i−1)∆n(Wi∆n −W(i−1)∆n)
∣∣p (3.26)

= |η(i−1)∆n|p
∣∣∣∣Wi∆n −W(i−1)∆n√

∆n

∣∣∣∣p ∼ |η(i−1)∆n|p|Z|p, p > 0,

where Z is a standard normal distributed random variable. On the other hand if S is a

stable process with stability index β we have from the self scaling property that

∆−p/βn

∣∣∣∣∫ i∆n

(i−1)∆n

Hs−dSs

∣∣∣∣p ≈ ∆−p/βn |Hi∆n−(Si∆n − S(i−1)∆n)|p (3.27)

= |Hi∆n−|p
∣∣∣∣Si∆n − S(i−1)∆n

∆
1/β
n

∣∣∣∣p ∼ |Hi∆n−|p|S1|p, p ∈ [0, β).

For the drift part it is obvious that

∆−pn

∣∣∣∣∫ i∆n

(i−1)∆n

bsds

∣∣∣∣p ≈ |b(i−1)∆n|p, p > 0.

Putting these things together we can see the overall behavior outlined in Theorem 3.4,

namely (assuming p = 1 for simplicity)

• If a di�usion part is present it dominates the jump part with activity β < 2 and

the drift part alike. The latter parts converge to zero faster than the di�usion and

scaling with a coe�cient smaller than ∆
−1/2
n would yield a degenerated limit.

• If no di�usion is present and 1 < β < 2 the jumps driven by the stable process have

to be scaled with ∆
−1/β
n and the drift part converges faster to zero.

• If β < 1 we have ∆
−1/β
n ≤ ∆−1

n and the drift determines the limit behavior. The only

possibility to still infer something about the jumps is when the drift is essentially

zero which boils down to the condition bs −Hs−
∫
R κ(x)ν(dx) = 0.

As with simple (non truncated) power variations only the part of the process can be

inferred that converges the slowest towards zero, we have that most of the estimators for
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β restrict X to have no di�usion part. In this case of ηs = 0 and some smaller additional

conditions we �nd with (3.25) that (2∆n)1−p/βVT (X,p,2∆n)

∆
1−p/β
n VT (X,p,∆n)

P−→ 1 and from here one can build

a basic version of an estimator for such a setting of no di�usion:

β̂(p) =
p log(2)

log(2VT (X, p, 2∆n)/VT (X, p, 2∆n))
.

This concept can be extended for example by using the di�erence of increments, i.e.

∆n
iX − ∆n

i−1X instead of ∆n
iX, as carried out in [Tod13], to obtain better convergence

rates. A major advantage of this method is that the in�uence of the drift part is diminished

and we will use this concept when we construct our estimator in Chapter 5.

When the underlying process may contain a di�usion, the problem is that the �small

jumps� determining β are now contaminated by the small increments of the di�usion.

The key idea to disentangling the jumps from the di�usion part is that increments of the

di�usion behave approximately like
√

∆n times a constant, see (3.26), and therefore to

only take into account the increments that are bigger than some threshold un ≈ ∆$
n for

some $ ∈ (0, 1
2
). For an X of the form (3.20) this leads to functionals of the form

J(∆n, un)t =

bt/∆nc∑
i=1

1{|∆n
i X|>un}, t > 0

and under the assumption of (3.22) Ait-Sahalia and Jacod show in [ASJ09]

uβnJ(∆n, un)t
P−→ At :=

∫ t

0

asds, t > 0, (3.28)

which leads to an estimator of β even if a di�usion part is present:

β̂n(γ, un) :=
log(J(∆n, un)t/J(∆n, γun)t)

log(γ)
1{J(∆n,γun)t>0}, t > 0,

for some γ > 1. This estimator can be improved by using test functions g(x) as smooth

approximations for the plain indicator function used in J(∆n, un)t, e.g. carried out in

Chapter 11.2 of [ASJ14] or [JKLM12]. The main drawback of this concept is that de-

pending on the parameter $ one might omit most of the observations which hinders the

accuracy when only a small sample is available.

We now present an estimator for β taken from [Tod15] which is based on the empirical

characteristic function of a process. The following can also be seen as an introduction

to Chapter 5 as a large portion of the concepts used there is inspired by this estimator.

The main idea is that if X is de�ned according to (3.20) with no di�usion part and Lévy

measure as in (3.21), that in view of (3.27) and (3.17) it seems reasonable to assume, as
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long as β > 1, that:

∆n

n∑
i=1

cos
(
u∆−1/β

n (∆n
iX −∆n

i−1X)
) P−→

∫ 1

0

e−u
β |Hs|βAβds, u ∈ R+, (3.29)

for some Aβ > 0. The di�erence of increments again diminishes the in�uence of the

drift and furthermore makes the Lévy measure symmetric around zero. Note that for a

symmetric stable process S we have

E [exp(iuS1)] = E [cos(uS1) + i sin(uS1)] = E [cos(uS1)]

which motivates the de�nition in the �rst place. The problem is that if one wants to

estimate β from the limit above, it is not only part of the correct scaling but also of the

limit. Therefore it does not directly untangle from the integral above when we evaluate

the above functional for di�erent values of u. A way out is to use power variations for a

local estimator of H and use it to scale the increments appropriately. This leads to the

estimator proposed in [Tod15]:

L̂n(p, u) =
1

n− kn − 2

n∑
i=kn+3

cos

(
u

∆n
iX −∆n

i−1X

(V n
i (p))1/p

)
, u ∈ R+, p > 0,

with (V n
i (p))1/p being the local estimator for Hs scaled by a constant:

V n
i (p) :=

1

kn

i−2∑
j=i−kn−1

|∆n
iX −∆n

i−1X|p, i = kn + 3, . . . , n,

built out of kn → ∞, knn → 0 intervals prior to the two increments forming the charac-

teristic function. Note that the scaling needed in (3.29) is gone as the scalings in the

nominator and denominator cancel. The law of large numbers (LLN) result is then

Theorem 3.5 ((Theorem 1 in [Tod15]). Assume β ∈ (1, 2). Let kn be a sequence with

kn � n$ with a $ ∈ (0, 1). Then we have for 0 < p < β

L̂n(p, u)
P−→ L(p, u, β) := e−Cp,βu

β

for n→∞

with Cp,β > 0.

We will return to this estimator in Chapter 5 as a base for our own estimator and

discuss the associated central limit theorem (CLT) there.

At last we want to mention a very recent publication by Jacod and Todorov [JT18]

in which the authors work with a related kind of functionals, namely local empirical
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characteristic exponents. Here hn, kn ∈ N, un ∈ R+ are tuning parameters of the estimator

which all behave asymptotically like nx for di�erent x ∈ (0, 1). We de�ne

ĉni (y) := log

(
L(y)ni ∨

1

hn

)
, (3.30)

where

L(y)ni :=
1

kn

kn−1∑
l=0

cos
(
uny

(
Ỹ n
i+2lhn − Ỹ

n
i+2(l+1)hn

))
with Ỹ n

i :=
hn−1∑
j=1

g(j/hn)∆n
i+jY,

for some function g(x) with support on (0, 1). The process Y is basically the process X

from (3.20) (with a possible di�usion part) plus some added noise using (3.22) to de�ne

the behavior of the jumps. The Ỹ n
i are pre-averaged increments over hn intervals and one

takes the di�erence of kn of those Ỹ n
i to build L(y)ni respectively ĉni (y), meaning that it

needs in total wn = 2hnkn increments to form L(y)ni . The �nal estimator then consists of

bNn
t /wnc − 1 of the ĉni (y):

Ĉ(y)nt =

bNn
t /wnc−1∑
j=0

(
ĉnjwn(y)− 1

2kn
f(ĉnjwn(y), ĉnjwn(2j)− 1

2hn
φny

2u2
n

)
,

with f(x, y) = 1
2

(exp(2x− y) + exp(2x)− 2) and φn = hn
∑

i∈N(g( i+1
hn

) − g( i
hn

))2. Nn
t

is the integer valued random variable that indicates the number observation times of Y

smaller than t. The second and last expression in the bracket are only needed for bias

corrections due to the noise and the nonlinear transformation in (3.30) and are of no

further interest here. Again hn, kn →∞ with hn
n
, kn
n
→ 0 so we really form a local version

of the characteristic exponent. The centered process is of the form

Z(y)nt = Ĉ(y)nt −
y2u2

nφn
2kn

Ct −
2

kn
|y|βuβnφ̃βnχ(β)At

where φn, φ̃n are non-random values depending on the function g(x) used for the pre-

averaging, χ(β) is a constant, At as in (3.28) and Ct =
∫ t

0
η2
sds. The authors show that

for a normalizing sequence un of positive numbers and any t ≥ 0, y 6= 0 under many

restrictions on the tuning parameters un, kn, hn it holds Z(y)nt
P−→ 0 (cf. Theorem 1 in

[JT18]).

With the result it is possible to construct various estimators for the integrated volatility

Ct or β and the associated value At, one example being:

β̂n,1t = f−1

(
Ĉ(4)nt − 16Ĉ(1)nt

Ĉ(2)nt − 4Ĉ(1)nt

)
,
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where f−1 is the reciprocal function to f(x) = 4x−16
2x−4

. For more details see sections 4.3.1

and 4.3.2 in [JT18]. The reason we mention this paper in particular, is that it is the only

publication which can deal with underlying semimartingale in nearly full generality. That

means a process that may contain a di�usion in addition to a jump part with added noise.

Furthermore their estimator, similar to our estimator from Chapter 5, works in a setting

of (exogenous) random observation times which none of other articles mentioned in this

section does.
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Chapter 4

Estimates for Itô Semimartingales and

the Localization Procedure

With this chapter we now leave the introductory part of this work. While the �rst chapter

is mainly concerned with the basic de�nitions of semimartingales and the second one is

essentially a long motivation for why it is actually important to have estimators for the

jump activity index, this chapter �nally provides results that have direct applications

in the following proofs. Furthermore, whilst in the previous chapters we only repeated

results and in some case added a rigorous proof, many of the results in this part are

adapted to the setting of random observation times, presented in subsection 4.2.1, and

are therefore, in this form, not included in the standard textbooks.

Throughout the proofs in Chapter 5 we will repeatedly use upper bounds for stochastic

processes to determine the rate of convergence for the di�erent parts of Itô semimartingales

when the distance ∆n between observations X∆n , X2∆n , . . . goes to zero. These estimates

are used commonly by authors working in a semimartingale setting and by nearly all

papers mentioned in the previous chapter. Usually they consist of two things. First,

upper bounds for di�erent parts of an Itô semimartingale stated in a very general manner,

sometimes these bounds may be in�nite (and therefore render uninformative) depending

on the conditions. Second, a localization procedure that makes the aforementioned bounds

applicable to semimartingales that only ful�ll very general conditions. The localization

procedure strengthens the weak/general assumptions such that the earlier stated bounds

that may have been uninformative before are now actually �nite. Section 4.1 states

estimates for di�erent parts of a semimartingale and Section 4.2 then deals with the

localization of semimartingales.

29
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4.1 Basic Estimates for Itô semimartingales

The following estimates are all stated in Section 2.1.5 of [JP12] and will play a major role

in the upcoming proofs of Chapter 5. As already mentioned the results are phrased in

a slightly generalized version that is �tted to our setting of irregular observation times.

That means in contrast to [JP12] we allow for both U and τ to be (bounded) stopping

times. For the sake of completeness we include some of the proofs which can be found in

the Appendix of [JP12].

The motivation for the following lemmas is that we consider a one-dimensional semi-

martingale in the form of Theorem 2.2, i.e.

Xt = X0 +

∫ t

0

bsds+

∫ t

0

ηsdWs +

∫
(0,t]×Rd

κ(δX(s, x))(µ− ν)(ds, dx) (4.1)

+

∫
(0,t]×Rd

(δX(s, x)− κ(δX(s, x)))µ(ds, dx),

where the compensator of µ is given by ν(dt, dx) = dt⊗λ(dx) for a σ-�nite measure λ on

some polish space E and the other parts of X likewise ful�ll the conditions of Theorem

2.2 with d = d′ = 1. We start o� with an upper bound for the drift part.

Lemma 4.1. (cf. p.40 in [JP12]). Let U > τ stopping times where U is bounded then

we have for p ≥ 0

sup
0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

brdr

∣∣∣∣p ≤ (U − τ)p
(

sup
τ≤u≤U

|bu|
)p

. (4.2)

Proof.

sup
0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

brdr

∣∣∣∣p ≤
(

sup
0≤u≤(U−τ)

∫ τ+u

τ

|br|dr

)p

≤
(

(U − τ) sup
τ≤u≤U

|bu|
)p
≤ (U − τ)p

(
sup

τ≤u≤U
|bu|
)p

.

The idea of this and the following estimates is always that τ and U are two random

time points where we observe our process and that Eτ [U − τ ] is of the order ∆n. When

the distance between observations goes to 0, i.e. ∆n → 0, the rate of the drift term is

∆p
n if the process b is bounded. In general this is too strong to be an assumption but in

Section 4.2 we show that it su�ces that b is locally bounded to assume by localization

that it is bounded.

Before we start with the estimates involving stochastic integrals we need to cite the
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famous Burkholder-Davis-Gundy (BDG) inequality which will contribute to many of the

upcoming proofs.

Theorem 4.1 (Burkholder-Davis-Gundy inequality). For each real p ≥ 1 there exist

constants 0 < cp < Cp < ∞ such that for any local martingale M with M0 = 0 and any

two stopping times τ ≤ T , we have

cpE
[
([M,M ]T − [M,M ]τ )

p/2 |Fτ
]

≤ E
[

sup
t∈R+:τ<t≤T

|Mt −Mτ |p|Fτ
]
≤ CpE

[
([M,M ]T − [M,M ]τ )

p/2 |Fτ
]
.

From now on and for the rest of this work we use for any stopping time τ the following

notation Eτ [·] := E[·|Fτ ]. Furthermore, if not explicitly mentioned K > 0 is a constant

that may change from line to and Kq > 0 is likewise a constant that may depend on a

parameter q ∈ R that is non-random and usually known or �xed.

Now direct application of the BDG inequality gives us an estimate for the continuous

martingale part.

Lemma 4.2. (cf. p.40 in [JP12]). Let U > τ stopping times where U is bounded then

for p ≥ 1:

Eτ

[
sup

0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

ηzdWz

∣∣∣∣p
]
≤ KpEτ

[
(U − τ)p/2

(
1

(U − τ)

∫ U

τ

|ηz|2dz
)p/2]

and for p ≤ 1 we have:

Eτ

[
sup

0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

ηsdWs

∣∣∣∣p
]
≤

(
Kp

1Eτ

[
(U − τ)1/2

(
1

(U − τ)

∫ U

τ

|ηz|2dz
)1/2

])p

.

Proof. For p ≥ 1:

Eτ

[
sup

0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

ηzdWz

∣∣∣∣p
]
≤ KpEτ

[(∫ U

τ

|ηz|2dz
)p/2]

≤ KpEτ

[
(U − τ)p/2

(
1

(U − τ)

∫ U

τ

|ηz|2dz
)p/2]

and for p ≤ 1

Eτ

[
sup

0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

ηsdWs

∣∣∣∣p
]
≤ Eτ

[
sup

0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

ηsdWs

∣∣∣∣
]p

≤

(
Kp

1Eτ

[
(U − τ)1/2

(
1

(U − τ)

∫ U

τ

|ηz|2dz
)1/2

])p

.
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Again the right hand sides of the inequalities do not have a speci�c order of convergence

when (U − τ) → 0 in general, but only under additional assumptions usually obtained

through localization.

Next we turn our attention to estimates for purely discontinuous martingales. The fol-

lowing Lemma is 2.1.5 of [JP12] in our slightly more general version for stopping times.

Here we de�ne for a predictable function δ on Ω× R+ × E and s > 0:

δ̂(q)τ,s :=
1

s

∫ τ+s

τ

∫
E

|δ(u, z)|qλ(dz)du. (4.3)

Lemma 4.3. Suppose that
∫ t

0

∫
E
|δ(s, z)|2λ(dz)ds < ∞ for all t > 0. Let U > τ be

stopping times where U is bounded then for Y = δ ? (µ− ν), q ∈ [1, 2],

Eτ

[
sup

0<u<(U−τ)

|Yτ+u − Yτ |q
]
≤ KqEτ

[
(U − τ)δ̂(q)τ,(U−τ)

]
and for q ≥ 2:

Eτ

[
sup

0<u<(U−τ)

|Yτ+u − Yτ |q
]

≤ Kq

(
Eτ
[
(U − τ)δ̂(q)τ,(U−τ)

]
+ Eτ

[
(U − τ)p/2δ̂(2)

q/2
τ,(U−τ)

])
.

Proof. The proof is conducted by checking that the arguments in [JP12] still hold in this

slightly more general setting.

Let q ∈ [1, 2] and de�ne for all w ≥ 0 the processes

Z(w) = (|δ|w1(τ,∞)) ? µ and Z̃(w) = (|δ|w1(τ,∞)) ? ν,

noting that Z̃(w)U = (U − τ)δ̂(w)τ,(U−τ).

By the BDG-inequality we have

Eτ

[
sup

0≤s≤(U−τ)

|Yτ+s − Yτ |q
]

= Eτ
[

sup
τ≤s≤U

|Ys − Yτ |q
]
≤ KqEτ

[
Z(2)

q/2
U

]
.

Using ∣∣∣∣∣∑
i

|ai|

∣∣∣∣∣
p

≤
∑
i

|ai|p ∀p ∈ (0, 1] and all real valued {ai}i>1 (4.4)

we have Z(2)q/2 ≤ Z(q) and as such

Eτ

[
sup

0≤s≤(U−τ)

|Yτ+s − Yτ |q
]
≤ KqEτ [Z(q)U ] = KqE

[
Z̃(q)U

]
,
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where we used the Optional Stopping Theorem for bounded stopping times in the last

step.

The proof in the case of q ≥ 2 and U being non random is more lengthy and can be found

on p.566 in [JP12]. However it may be generalized in the same way.

Note that Lemma 2.1.7 b) of [JP12] can also be proven under the same conditions,

that is:

Lemma 4.4. Suppose that
∫ t

0

∫
E
|δ(s, z)|λ(dz)ds <∞ for all t > 0. Let U > τ be stopping

times where U is bounded then the process Y = δ ? µ is of locally integrable variation and

for p ∈ (0, 1] we have

Eτ

[
sup

0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

∫
E

δ(s, x)µ(ds, dx)

∣∣∣∣p
]
≤ KpEτ [(U − τ)δ̂(p)τ,(U−τ)]

and for p > 1

Eτ

[
sup

0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

∫
E

δ(s, x)µ(ds, dx)

∣∣∣∣p
]

≤ Kp

(
Eτ [(U − τ)pδ̂(1)pτ,(U−τ)] + Eτ [(U − τ)δ̂(p)τ,(U−τ)]

)
.

Again the above estimates are in general of no further use as it is not clear why

Eτ [δ̂(p)τ,(U−τ)] should be �nite in the setting above. The necessary assumptions to guar-

antee the �niteness are now covered in the next section whereas section 4.3 puts these

strengthened assumptions together with the previous estimates.

4.2 Localization Procedure

We start this section by introducing the general assumptions that we impose on our

observed semimartingale X used as the underlying process for the estimator presented in

the next chapter:

Xt = X0 +

∫ t

0

αsds+

∫ t

0

σs−dLs + dYt, t > 0, (4.5)

where the precise assumptions of the processes L, α, σ, Y are speci�ed in Assumptions

A and B below. The way we represent X in (4.5) di�ers from (4.1) because we do not

need an estimate on something like Eτ
[
sup0≤s≤(U−τ) |Xτ+s −Xτ |q

]
directly but only on

its components and rather emphasize how X would be written in modeling applications.

Nevertheless the processes occurring as components of X are represented as in (4.1).

We assume that:
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Assumption A. The process X is de�ned on a �ltered probability space (Ω,F , (Ft)t≥0,P)

and κ(x) is a truncation function, i.e. it is the identity in a neighbourhood around zero,

odd, bounded and equals zero for large values of x and we set κ(x)′ = x− κ(x).

1. L is a Lévy process with characteristic triple (−
∫
R κ
′(x) A

|x|β+1dx, 0, F ) with respect to

the truncation function κ(x), where the Lebesgue density of the Lévy measure F (dx)

is given by

h(x) =
A

|x|1+β
+ h̃(x) with a β ∈ (1, 2), A > 0;

and for h̃(x) there exist x0 > 0 with |h̃(x)| ≤ C
|x|1+β′ for all |x| ≤ x0 and some �xed

β′ < 1.

According to the appendix of [TT12] we can �nd (with a suitable extension of the

probability space) a decomposition as follows:

Lt = St + Śt − S̀t (4.6)

where S is a Lévy process with characteristic triplet (−
∫
R κ
′(x) A

|x|β+1dx, 0,
A

|x|1+β dx), Ś and

S̀ are pure-jump Lévy processes with the �rst two characteristics zero (with respect to the

truncation function κ) and densities of the Lévy measure |h̃(x)| and 2|h̃(x)|1{h̃(x)<0}. This

means in particular that S is a strictly β-stable Lévy process. We denote the associated

jump measures of S, Ś and S̀ with µ, µ1 and µ2.

Assumption B. The processes α, σ and Y are Itô semimartingales of the form

αt = α0 +

∫ t

0

bαs ds+

∫ t

0

ηαs dWs +

∫ t

0

η̃αs dW̃s +

∫ t

0

∫
E

κ(δα(s, x))µ̃(ds, dx)

+

∫ t

0

∫
E

κ′(δα(s, x))µ(ds, dx),

σt = σ0 +

∫ t

0

bσsds+

∫ t

0

ησs dWs +

∫ t

0

η̃σs dW̃s +

∫ t

0

∫
E

κ(δσ(s, x))µ̃(ds, dx)

+

∫ t

0

∫
E

κ′(δσ(s, x))µ(ds, dx),

Yt =

∫ t

0

∫
R
xµY (ds, dx),

where

1. |σt| and |σt−| are strictly positive;

2. W and W̃ are independent Brownian motions; µ is a Poisson random measure on

R+×E having arbitrary dependence with the jump measure of L, with compensator

dt⊗ λ(dx) for some σ-�nite measure λ on E. µ̃ is the compensated jump measure;
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3. δα(t, x) and δσ(t, x) are predictable with |δα(t, x)|+ |δσ(t, x)| ≤ γk(x) for all t ≤ Tk,

where γk(x) is a deterministic function on R with
∫
E

(|γk(x)|r ∧ 1)λ(dx) < ∞ for

some 0 ≤ r < 2 and Tk is a sequence of stopping times increasing to +∞;

4. bα, bσ are locally bounded;

5. ηα, ησ, η̃α and η̃α are processes with càdlàg paths;

6. µY is an integer-valued random measure on R+ × R with jump compensator dt ⊗
νYt (dx) such that the process

(∫
R

(
|x|β′ ∧ 1

)
νYt (dx)

)
t≥0

is locally bounded for β′ from

Assumption A.

Following are the stronger assumptions that allow us to use the estimates of the previous

section:

Assumption SB. In addition to Assumptions A and B we have

1. |σt| and |σt|−1 are uniformly bounded;

2. |δα(t, x)| + |δσ(t, x)| ≤ γ(x) for all t > 0, where γ(x) is a deterministic bounded

function on R with
∫
E
|γ(x)|rλ(dx) <∞ for some 0 ≤ r < 2;

3. bα, bσ, ηα, ησ, η̃α and η̃α are bounded;

4. the process
(∫

R

(
|x|β′ ∧ 1

)
νYt (dx)

)
t≥0

is bounded and the jumps of Y are bounded;

5. the jumps of Ś and S̀ are bounded;

We now argue how to strengthen Assumption B meaning why we may assume the

stronger Assumption SB instead. Section 4.4.3 in [JP12] discusses the localization proce-

dure in very great detail. Here we will roughly outline the path discussed there and only

give detailed account when deviations occur.

In a simpli�ed version Jacod and Protter say that the localization procedure applies from

(SB) to (B) if it holds that: If some sequence of functionals Un(X)t, depending on the

underlying process X, converges for all t > 0 stably in law under a strong assumption on

the process X (in our case (SB)) towards some limit U(X)t, then it also converges under

a weaker assumption (in or case (B)).

The proof that this actually holds true for various sets of strong and weak assumptions is

conducted in Lemma 4.4.9 of [JP12] and needs some prerequisites which we will check in

the following. As for t > 0 the functionals Un(X)t considered in our case are build solely

out of the increments of the underlying process up to the time t and furthermore, as we
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will see in Chapter 5, the limiting object U(X)t does not depend on X at all, we certainly

have condition (4.4.2) in [JP12], that is: If X and X ′ are two semimartingales and τ is a

stopping time then they are subject to the following condition:

If Xt = X ′t a.s. ∀t < τ then:

• for t < τ ⇒ Un(X)t = Un(X ′)t a.s.,

• the F − conditional laws of (U(X)t)t<τ and (U(X ′)t)t<τ are a.s. equal.

The proof of Lemma 4.4.9 now consists of two steps. The �rst step is to show that for

a semimartingale X satisfying Assumptions A and B there exists a localizing sequence

of stopping times, Fp ↗ ∞ a.s. when p → ∞, such that for each p > 0 there exists a

semimartingale X(p) with

• for all t < Fp ⇒ X(p)t = Xt a.s.,

• each X(p) satis�es Assumption SB.

The second step is to show that if we have a localizing sequence as above and convergence

Un(X(p))t
L−s−−→ U(X(p))t then it also holds that Un(X)t

L−s−−→ U(X)t. The second step

is generic and independent of the assumptions placed upon the processes X and X(p).

Therefore we omit this step which consists of part 1) and 2) of the proof of Theorem 4.4.9

in [JP12] and only show that a localizing sequence as above exists.

Lemma 4.5. Let X be a process ful�lling Assumption A where the components of X

ful�ll Assumption B. Then for each p > 0 there exists a stopping time Fp and a process

X(p) such that X(p) and its components, α(p), σ(p) and Y (p), ful�ll Assumption SB and

it holds that X(p)t = Xt for all t < Fp while Fp ↗∞ when p→∞.

Proof. The proof follows in great parts and notation the proof of Theorem 4.4.9 3) in

[JP12]. We start with the assumptions on the process σ and omit the superscript in

bσ, ησ, η̃σ, δσ in the following. By (B) b is locally bounded therefore we have a localizing

sequence of stopping times Vp ↗ ∞ such that |bt| ≤ p if 0 ≤ t ≤ Vp. Then we de�ne

the stopping times Up := inf{t : |σt| + |ηt| + |η̃t| ≥ p} and Lp := inf{t : |σt| ≤ 1
p
}. As

σ, η, η̃ are assumed to be càdlàg it is a well known fact that Up ↗∞. We now prove that

Lp ↗∞ by showing that for any t > 0, ω ∈ Ω there exists some constant M(ω) > 0 with

|σs(ω)| > M(ω) on the interval s ∈ [0, t]. Then we can �nd a p′ ∈ N with 1/p′ < M(ω)

and have Lp(ω) > t for all p ≥ p′. Assume such an M(ω) does not exists then there exists

a sequence xn → x in [0, t] such that lim
xn→x

σxn(ω) = 0. By passing onto a subsequence of
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xn we either have that lim
xn↗x

σxn(ω) = 0 or lim
xn↘x

σxn(ω) = 0. The �rst is a contradiction

to the assumption that |σ−| is strictly positive and the second one is a contradiction to

the assumption that |σ| is strictly positive and a càdlàg process. For p ∈ N let Tp be the

stopping time from Assumption B.3. Set

Ep := Vp ∧ Up ∧ Lp ∧ Tp (4.7)

and

b
(p)
t = bt∧Ep ,

η
(p)
t = ηt∧Ep1{|ηt∧Ep |≤p},

η̃
(p)
t = η̃t∧Ep1{|η̃t∧Ep |≤p},

δ(p)(t, z) = δ(t ∧ Ep, z)1{|δ(t∧Ep,z)|≤2p}.

By construction we have |b(p)| ≤ p, |η(p)| ≤ p, |η̃(p)| ≤ p (note that ηt∧Ep , η̃t∧Ep would

not be bounded in general) and η(p), η̃(p) are càdlàg, δ(p)(t, z) predictable. Furthermore,

it holds that |δ(p)(t, z)| ≤ γ(p)(z), where γ(p)(z) = γp ∧ 2p and γp is the associated

function to Tp from Assumption B. Due to
∫
E

(|γk(x)|r ∧ 1)λ(dx) < ∞ we �nd that∫
E

(
|γ(p)(x)|r

)
λ(dx) <∞. The process σ(p) de�ned as

σ
(p)
t =


p, if t ≥ Ep,

σ0 +
∫ t

0
b

(p)
s ds+

∫ t
0
η

(p)
s dWs +

∫ t
0
η̃

(p)
s dW̃s

+
∫ t

0

∫
E
κ(δ(p)(s, x))µ̃(ds, dx) +

∫ t
0

∫
E
κ′(δ(p)(s, x))µ(ds, dx), if t < Ep,

(4.8)

then satis�es Assumptions SB.1, SB.2, SB.3 as min
(
|1
p
− 2p|, 1

p

)
= 1

p
≤ |σ(p)

t | ≤ 3p and

Ep ↗ ∞. The only thing that remains to show is that σt = σ
(p)
t a.s. when t < Ep. The

proof and arguments here are exactly the same is in the proof of Theorem 4.4.9 3) in

[JP12] therefore we omit it here.

The same methods can then be applied to the process α to give us a localized version

α(p) ful�lling Assumption SB with localizing sequence Ap ↗∞.

Moving on to the process Yt =
∫ t

0

∫
R xµ

Y (ds, dx) we let Bp be the localizing sequence from

Assumption B.6 such that
∫
R

(
|x|β′ ∧ 1

)
νYt (dx) ≤ p for all t ≤ Bp. We set Zp := inf{t :

Yt ≥ p} and

Y
(p)
t =

∫ t∧Bp∧Zp

0

∫
R
x1{|x|≤2p}µ

Y (ds, dx).
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We see that the process Y (p) ful�lls Assumption SB.4 as its jumps are bounded and

furthermore Y (p)
t = Yt for all t < Zp. Moving on to the process Ś from (4.6) we proceed

in the same manner as with the process Y , meaning we set Z̃p := inf{t : Śt ≥ p} and

Ś
(p)
t =

∫ t∧Z̃p

0

∫
R
x1{|x|≤2p}µ1(ds, dx).

Likewise we construct a process S̀(p) and stopping time Ẑp for the process S̀. We note

again that the jumps of Ś(p) and S̀(p) are bounded and therefore satisfy Assumption SB.5.

The proof that for all t < Z̃p we have
∫ Z̃p∧t

0
σ

(p)
s−dŚ

(p)
s =

∫ Z̃p∧t
0

σs−dŚs (and similar for S̀(p))

is again part of the proof of Theorem 4.4.9 3) in [JP12].

Finally we de�ne Fp = Ep ∧ Ap ∧Bp ∧ Zp ∧ Z̃p ∧ Ẑp and

X(p)t = X0 +

∫ Fp∧t

0

α(p)
s ds+

∫ Fp∧t

0

σ
(p)
s−dSs +

∫ Fp∧t

0

σ
(p)
s−dŚ

(p)
s

−
∫ Fp∧t

0

σ
(p)
s−dS̀

(p)
s +

(
Y

(p)
Fp∧t

)
,

which ful�lls Assumption SB, X(p)t = Xt a.s. for all t < Fp and Fp ↗∞.

4.2.1 Localization Procedure for Random Discretization Schemes

We now introduce the speci�c scheme of observation times how the process X is actually

observed. This is a simple case of the way �restricted discretization schemes� are intro-

duced in chapter 14.1 of [JP12]. For this matter we assume that the probability measure

P is de�ned on a σ-�eld G bigger than F .

Assumption C. For each n ∈ N we observe the process X at stopping times 0 = τn0 <

τn1 < τn2 < . . . with:

τn0 = 0, τn1 = ∆nφ
n
1 and

τni = τni−1 + ∆nφ
n
i λτni−2

for all 2 ≤ i.

For all t > 0 the random variable Nn(t) is the number of observation times smaller than

t and can be written as

Nn(t) =
∑
i≥1

1{τni ≤t}.

Furthermore we assume:
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1. The process λt is a strictly positive semimartingale w.r.t. the �ltration (Ft)t≥0 and in

addition ful�lls the same structural conditions as the process σt stated in Assumption

B.

2. (φni )i≥1 is a family of random variables with respect to the σ-�eld G and independent

of F ;

3. φni ∼ φ for a strictly positive random variable φ with E[φ] = 1. We assume that for

all p ∈ (−2,∞) the moments E [φp] exist;

This Assumption is build such that there is in�nite number of observations while in

applications we usually have only a �nite number of observations up to �xed time point

T > 0, i.e. the number of observations is Nn(T ). This does not pose a problem as the

estimator from the next chapter only uses the values of the process X up to the Nn(T )-th

observation and all observations after that are only used to conduct the proofs but have

no impact on the estimator (or its limit) whatsoever.

For the proofs in Chapter 5 it is necessary that the process λt, driving the observation

times τni , is bounded from below and above. So again we need additional assumptions

that are stronger than Assumption C and can be derived in a similar way than before.

These stronger assumptions then are:

Assumption SC. In addition to assumption C there exists a constant C > 1 such that

1. The process λ ful�lls the stronger assumptions for σ in Assumption SB, in particular

for all t > 0:

1

C
≤ λt ≤ C.

2. The �nal number of observation times is bounded from above by n times some con-

stant, i.e.

Nn(T ) ≤ CnT.

The reason why we cannot directly employ the previous localization procedure is that

the process λt is part of the discretization scheme but not embodied in an actual class

of processes like before. Therefore we have the following Lemma that proves Assumption

SC.1. It is formulated in a general way for an arbitrary sequence of random variables

(Fn)n∈N that are dependent on the process X, the discretization scheme {τni : i ≥ 0},
Nn(T ) and the process λ, and likewise a possible limit in distribution F of Fn dependent

on the same factors and realized on an extension (Ω̃, G̃, P̃) of the original probability
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space (Ω,G,P). Here Fn takes the role of our (appropriately scaled) estimator for the

jump activity index from Chapter 5 and F is then the random variable it converges to in

the central limit theorem we want to prove. However, in the proof of this CLT we need

estimates for expressions like E
[∣∣∣λτni − λτni−1

∣∣∣] and one way to get these estimates is to

assume the same structure on λ as we did for σ and to stop the process appropriately.

Hence, for C > 1 let EC be the stopping time de�ned by (4.7) with C replacing p and

the process λ and its components replacing σ. Furthermore de�ne λ(C)
t according to (4.8)

again with the components of λ replacing those of σ everywhere. In particular it now

holds for the stopped process λ(C) that 1
C
≤ λ

(C)
t ≤ C and that we have the analogues of

Assumption SB. Now we proof that a localization for our observation scheme is actually

possible:

Lemma 4.6. Assume that Assumption C holds and construct, for each C > 1, stopping

time EC and process λ(C), a new discretization scheme, i.e. new stopping times {τn,Ci :

i ≥ 0} and a new NC
n (T ) as in Condition C but with the process λ(C) instead of λ. De�ne

a sequence of associated random variables Fn(C) similar to Fn as well but with the process

λ(C) replacing λ, {τn,Ci : i ≥ 0} replacing {τni : i ≥ 0} and NC
n (T ) replacing Nn(T ), and

likewise for F (C) on (Ω̃, G̃, P̃). If for each C > 1 it holds that

Fn(C)
L−s−−→ F (C) (4.9)

and if furthermore

Fn(C)1{EC>T} = Fn1{EC>T} and F (C)1{EC>T} = F1{EC>T} (4.10)

then we have Fn
L−s−−→ F .

Proof. Let Ẽ be the expectation w.r.t. P̃. We clearly need to prove

lim sup
n→∞

∣∣∣E [Y f(Fn)]− Ẽ [Y f(F )]
∣∣∣ = lim sup

C→∞
lim sup
n→∞

∣∣∣E [Y f(Fn)]− Ẽ [Y f(F )]
∣∣∣

≤ lim sup
C→∞

lim sup
n→∞

|E [Y f(Fn)]− E [Y f(Fn(C))]|

+ lim sup
C→∞

lim sup
n→∞

∣∣∣E [Y f(Fn(C))]− Ẽ [Y f(F (C))]
∣∣∣

+ lim sup
C→∞

lim sup
n→∞

∣∣∣Ẽ [Y f(F (C))]− Ẽ [Y f(F )]
∣∣∣ = 0

where Y is any bounded random variable on (Ω,G) and f is any bounded continuous

function, and we show the claim for each of the three terms above separately. For the

�rst one, by boundedness of Y and f and using (4.10), it is obvious that

|E [Y (f(Fn)− f(Fn(C)))]| =
∣∣E [Y (f(Fn)− f(Fn(C)))1{EC≤T}

]∣∣ ≤ KP (EC ≤ T )



41

for some constant K > 0. Thus

lim sup
C→∞

lim sup
n→∞

|E [Y f(Fn)]− E [Y f(Fn(C))]| ≤ K lim sup
C→∞

P (EC ≤ T ) = 0,

and the same proof applies for the third term. Finally, note that

lim sup
n→∞

∣∣∣E [Y f(Fn(C))]− Ẽ [Y f(F (C))]
∣∣∣ = 0

for each �xed C is an immediate consequence of (4.9).

Remark 4.1. By construction λt and λ
(C)
t coincide on the set {EC ≤ T} for all 0 ≤ t ≤ T .

As the estimator from Chapter 5 will only look at observations up to a �xed time horizon

T (in our speci�c case the convenient but arbitrary T = 1) and therefore the values of

Xt, λ
(C)
t for t > T are irrelevant to the estimator and its limit, we have that condition

(4.10) is met. Therefore we may assume that for the following proofs Assumption SC.1 is

in force.

In order to show that we can deduct Assumption SC.2 from Assumption C one again has

to construct a discretization scheme with the desired properties and �nd an appropriate

way of localizing it. Here we reference to part 2) of the proof of Lemma 9 in [JT18] where

this procedure is carried out in great detail.

For further information on random discretization schemes one can consult Section 14.1 in

[JP12] where a slightly di�erent version of Lemma 4.6 and other important properties of

objects connected to these schemes are proven. We want to name one of those properties

in particular because we will use it repeatedly in the following chapters: (cf. (14.1.10) in

[JP12]) For all t ≥ 0 we have

Nn(1)

n

P−→
∫ 1

0

1

λs
ds. (4.11)

4.3 Estimates for Itô semimartingales under Strength-

ened Assumptions

We start o� by using the strengthened assumptions to show the �niteness of κ̂(δα), κ̂′(δα)

which is (4.3) applied to the functions κ(δα), κ′(δα).

Lemma 4.7. As long as (U − τ) is bounded, we have under Assumption SB that

κ̂(δα)(q)τ,(U−τ) <∞ for q ∈ [r,∞),

κ̂′(δα)(q)τ,(U−τ) <∞ for q > 0

and likewise results for δσ.
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Proof. Because κ is a truncation function and as such equals the identity in a neighbour-

hood around zero and is bounded, we can split it up with ε > 0, K > 0

|κ(x)| = |x|1{|x|<ε} + |κ(x)|1{|x|≥ε} ≤ |x|1{|x|<ε} +K1{|x|≥ε}.

Therefore by Assumption SB.2

|κ(δα(u, z))|
γ(z)

≤ |δ
α(u, z)|
γ(z)

1{|δα(u,z)|<ε} +
K

γ(z)
1{|δα(u,z)|≥ε}

≤ 1{|δα(u,z)|<ε} +
K

ε
1{|δα(u,z)|≥ε} (4.12)

and∫
E

|κ(δα(u, z))|qλ(dz) ≤
(

1 +
K

ε

)q ∫
E

γ(z)qλ(dz) <∞ for all q ∈ [r,∞), u ≥ 0. (4.13)

Therefore with some constant Kq > 0

κ̂(δα)(q)τ,(U−τ) =
1

U − τ

∫ U

τ

∫
E

|κ(δα(u, z))|qλ(dz)du

≤ 1

U − τ

∫ U

τ

Kqdu ≤ Kq.

Moving on to κ̂′(δα)(q)τ,s we have

|κ′(x)| = |x− κ(x)| = |x− (x1{|x|<ε} + κ(x)1{|x|≥ε})|

= (|x|+ |κ(x)|)1{|x|≥ε}

and therefore because |δα(u, z)| ≤ γ(z) for some constant K > 0

|κ′(δα(u, z))| ≤ (|κ(δα(u, z))|+ |δα(u, z)|)1{γ(z)≥ε} ≤ (K + γ(z))1{γ(z)≥ε}.

Due to
∫
E
|γ(x)|rλ(dx) < ∞ we have λ({γ(z) ≥ ε}) < ∞ and because γ(z) is bounded

we �nd that∫
E

|κ′(δα(u, z))|qλ(dz) <

∫
{γ(z)≥ε}

(γ(z) +K)qλ(dz) <∞ for all q > 0, u ≥ 0 (4.14)

and as such κ̂′(δα)(q)τ,s <∞ for all q > 0.
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Lemma 4.8. For any q ∈ (0,∞), stopping times U > τ such that U is bounded then it

holds under Assumption SB

Eτ [ sup
0≤u≤(U−τ)

|ατ+u − ατ |q] ≤ Kq

(
Eτ [(U − τ)q] + Eτ

[
(U − τ)q/2

]
+ Eτ

[
(U − τ)1/2

]q
+Eτ [(U − τ)]q/(r∨1) + Eτ [(U − τ)]

)
(4.15)

and likewise

Eτ [ sup
0≤u≤(U−τ)

|στ+u − στ |q] ≤ Kq

(
Eτ [(U − τ)q] + Eτ [(U − τ)1/2]q + Eτ [(U − τ)q/2]

+Eτ [(U − τ)]q/(r∨1) + Eτ [(U − τ)]
)
.

In general these estimates hold true for any process ful�lling the structural assumptions

for either the process α or σ in Assumption SB, in particular this holds for the process λ.

Proof. We prove Lemma 4.8 by breaking down the process α into its components and

proving the estimates one at a time.

For the drift term we have with (4.2) and the strengthened assumptions from the local-

ization

sup
0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

bαs ds

∣∣∣∣q ≤ (U − τ)q
(

sup
τ≤u≤U

|bαu |
)q
≤ K(U − τ)q.

For the continuous martingale part we use Lemma 4.2 for q ≥ 1 and with some constant

M > 0

Eτ

[
sup

0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

ηαz dWz

∣∣∣∣q
]
≤ KqEτ

[
(U − τ)q/2

(
1

(U − τ)

∫ U

τ

|ηαz |2dz
)q/2]

≤ KqEτ
[
(U − τ)q/2M q/2

]
≤ KqEτ

[
(U − τ)q/2

]
.

And likewise with Lemma 4.2 for q ≤ 1

Eτ

[
sup

0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

ηαs dWs

∣∣∣∣q
]
≤ KqEτ

[
(U − τ)1/2

]q
.

Moving on to the jump components we apply Lemma 4.3 together with Lemma 4.7 to get

for q ∈ [r ∨ 1, 2]

Eτ

[
sup

0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

∫
E

κ(δα(s, x))µ̃(ds, dx)

∣∣∣∣q
]
≤ KqEτ

[
(U − τ)κ̂(δα)(q)τ,(U−τ)

]
≤ KqEτ [(U − τ)]
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and for q > 2

Eτ

[
sup

0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

∫
E

κ(δα(s, x))µ̃(ds, dx)

∣∣∣∣q
]

≤ Kq

(
Eτ [(U − τ)κ̂(δα)(q)τ,(U−τ)] + Eτ [(U − τ)q/2κ̂(δα)(2)

q/2
τ,(U−τ)]

)
≤ Kq

(
Eτ [(U − τ)] + Eτ [(U − τ)q/2]

)
.

In the case of q ∈ (0, r ∨ 1] we apply Jensen inequality and have

Eτ

[
sup

0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

∫
E

κ(δα(s, x))µ̃(ds, dx)

∣∣∣∣q
]

≤ Eτ

[
sup

0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

∫
E

κ(δα(s, x))µ̃(ds, dx)

∣∣∣∣(r∨1)
]q/(r∨1)

≤ Kq

(
Eτ [(U − τ)κ̂(δα)(r ∨ 1)τ,(U−τ)]

)q/(r∨1)

≤ KqEτ [(U − τ)]q/(r∨1).

Moving on to the �big jumps� applying Lemma 4.4 gives for q ∈ (0, 1]

Eτ

[
sup

0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

∫
E

κ′(δα(s, x))µ(ds, dx)

∣∣∣∣q
]
≤ KqEτ [(U − τ)κ̂′(δα)(q)τ,(U−τ)]

≤ KqEτ [(U − τ)]

and for q > 1

Eτ

[
sup

0≤u≤(U−τ)

∣∣∣∣∫ τ+u

τ

∫
E

κ′(δα(s, x))µ(ds, dx)

∣∣∣∣q
]

≤ Kq

(
Eτ [(U − τ)qκ̂′(δα)(1)τ,s] + Eτ [(U − τ)κ̂′(δα)(q)τ,s]

)
≤ Kq (Eτ [(U − τ)q] + Eτ [(U − τ)]) .

Using the previous lemma we can now derive the asymptotic behavior in our speci�c

setting. We set (Fnt )t≥0 as the smallest �ltration containing (Ft)t≥0 and for which all

τni , i ≥ 1, are stopping times. Furthermore in accordance with the previous notation for

conditional expectations we set Eni [·] := E[·|Fnτni ]. It should be noted that q ∈ (0,∞)

appearing in the next lemma and in the lemmas above will be in our application a �xed

and known number. In order to make the next result more readable we suppress the

dependency on q (or a, b appearing in the proof below) of the constant Kq > 0 in the

following.
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Corollary 4.1. For q ∈ (0,∞), i, j ∈ N0 with i+ j ≤ Nn(1) it holds

Eni [ sup
0≤u≤(τni+1−τni )

|στni +u − στni |
q] ≤ K∆(q/2)∧1

n ,

Eni [ sup
0≤u≤(τni+j−τni )

|στni +u − στni |
q] ≤ K(j∆n)(q/2)∧1. (4.16)

With similar results for the processes α and λ.

Proof. First we note that due to τnNn(1) ≤ 1 in Assumption C we have that τi ≤ 1 for all

0 ≤ i ≤ Nn(1) and therefore Lemma 4.8 is applicable. We note that the assumptions on

τni+1 − τni give us that for a, b ≥ 0

Eni
[
(τni+1 − τni )a

]b ≤ Eni
[(

∆nλτni−2
φni

)a]b
≤ K∆ab

n

using the boundedness of λ and that moments of all powers a for φni exist. More generally

we have if a ≤ 1 by applying Jensen inequality

Eni
[
(τni+j − τni )a

]b
= Eni

[(
i+j−1∑
k=i

(τnk+1 − τnk )

)a]b

≤ Eni

[
i+j−1∑
k=i

(τnk+1 − τnk )

]ab
≤ K (j∆n)ab

and if a > 1

Eni
[
(τni+j − τni )a

]b
= Eni

[
ja

(
1

j

i+j−1∑
k=i

(τnk+1 − τnk )

)a]b

≤ Eni

[
ja

j

i+j−1∑
k=i

(τnk+1 − τnk )a

]b
≤ K

jab

jb
(j∆a

n)b = (j∆n)ab .

Applying the lines above to Lemma 4.8 and comparing the rates for ∆n gives

Eni [ sup
0≤u≤(τni+j−τni )

|στni +u − στni |
q]

≤ K
(
Eni [(τni+j − τni )q] + Eni [(τni+j − τni )1/2]q + Eni [(τni+j − τni )q/2]

+Eni [(τni+j − τni )] + Eni [(τni+j − τni )]q/(r∨1)
)

≤ K
(
(j∆n)q + (j∆n)q/2 + (j∆n) + (j∆n)q/(r∨1)

)
≤ K(j∆n)(q/2)∧1.
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Remark 4.2. For some proofs of the next chapter the previous results are not speci�c

enough yet. Instead of taking conditional expectations with respect to Fnτni as in Corollary

4.1 we would like to take them with respect to a slightly bigger σ-algebra, e.g. A =

Fnτni
∨
σ(φni+2, φ

n
i+1). As the (φni )i≥1 are independent from F by Assumption C we note

that all the processes from Assumptions A and B retain their properties when we take

them as processes w.r.t. the �ltration (Fnt
∨
σ(φni+2, φ

n
i+1))t≥0 and similar do the (τni )i≥1

remain stopping times. Therefore the Lemmas from Section 4.1 are still applicable in this

case. For example Corollary 4.1 then reads as:

Let q ∈ (0,∞), i, j ∈ N0 with i+ j ≤ Nn(1) and A = Fnτni
∨
σ(φni+j, . . . , φ

n
i+1) then it holds

E

[
sup

0≤u≤(τni+j−τni )

|στni +u − στni |
q

∣∣∣∣∣A
]

≤ Kq

(
E[ (τni+j − τni )q

∣∣A] + E
[
(τni+j − τni )1/2

∣∣A]q + E
[
(τni+j − τni )q/2

∣∣A]
+E

[
(τni+j − τni )

∣∣A]q/(r∨1)
+ E[ (τni+j − τni )

∣∣A]
)

≤ Kq(τ
n
i+j − τni )(q/2)∧1,

using the boundedness of (τni+j − τni ). Other de�nitions of A are possible as well as long

as the �added information� does not change the properties of the processes considered.



Chapter 5

Estimating the Jump Activity Index in

the Presence of Random Observation

Times

This chapter can be seen as the main part of this work. Here we motivate and construct

our estimator for the jump activity index of a semimartingale de�ned as in (4.5) and then

use the results from the previous chapter to prove an associated central limit theorem. It

will become apparent why the previous localization procedure is so important for us, as

many proofs rely on the boundedness of the processes involved and therefore most of the

following results would not be feasible without use of the strengthened Assumptions SB

and SC.

5.1 Basics and Preliminaries

As already mentioned, we look at the following class of pure-jump semimartingales as

de�ned by (4.5), i.e.

Xt = X0 +

∫ t

0

αsds+

∫ t

0

σs−dLs + dYt,

where L is a pure-jump Lévy process that can be decomposed as follows

Lt = St + Śt − S̀t, (5.1)

where S is a Lévy process with characteristic triplet (−
∫
R κ
′(x) A

|x|β+1dx, 0,
A

|x|1+β dx), Ś and

S̀ are pure-jump Lévy processes with the �rst two characteristics zero (with respect to

the truncation function κ) and densities of the Lévy measure |h̃(x)| and 2|h̃(x)|1{h̃(x)<0}.
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Y is a pure-jump process whose jump behavior at high frequencies is dominated by S, see

Assumptions A and B for the exact de�nition of S, Y and their components. Our aim is

to estimate the jump activity index

β = inf

{
p :
∑
t≤1

|∆Xt|p <∞

}
where the process is observed only at discrete random time points τni with the time

between two observations supi∈N |τni −τni−1| → 0 and the exact behavior of our observation

times made precise by Assumptions C and SC.

The key ingredients towards estimation of the activity index are, like already men-

tioned, that it coincides with the β from the de�nition of the jump measure and that we

know the form of the characteristic function of the strictly stable process S, namely

E[cos(uSt)] = E[exp(iuSt)] = exp(−Aβuβt) with a constant Aβ > 0, u ∈ R+.

We de�ne ∆n
iX := Xτni

−Xτni−1
and as before ∆n := 1

n
. The estimator for β in a setting

of n equidistant observations, i.e. when τni − τni−1 = ∆n, proposed in [Tod15] is based on

the �empirical characteristic function�,

Ln(p, u) :=
1

n− kn − 2

n∑
i=kn+3

cos

(
u

∆n
iX −∆n

i−1X

(V n
i (p))1/p

)
, u ∈ R+, with

V n
i (p) :=

1

kn

i−2∑
j=i−kn−1

|∆n
jX −∆n

j−1X|p, i = kn + 3, . . . , n, p > 0,

for some kn � n%, % ∈ (0, 1). In the setting of equidistant observations (∆
−1/β
n V n

i (p)) can

be a seen as the localized version of (3.25) on the time-interval [(i− kn− 1)∆n, (i− 2)∆n]

and hence is a local estimator for |στni−2
|p multiplied by E[|S1|p].

These estimators make use of the fact that in the equidistant case the di�erence of the drift

terms of ∆n
iX and ∆n

i−1X have a higher rate of convergence than the drift term of just the

single increment ∆n
iX. This concept does not apply in the presence of random observation

times. Therefore we propose a modi�ed version of the estimator above, namely by scaling

∆n
iX with its corresponding interval length. Therefore we introduce

∆̃n
iX :=

∆n

τni − τni−1

(
Xτni
−Xτni−1

)
=

∆n

τni − τni−1

∆n
iX and ∆̃n

i S :=
∆n

τni − τni−1

∆n
i S

and our modi�ed version of the estimator above becomes

L̃n(p, u) :=
1

Nn(1)− kn − 2

Nn(1)∑
i=kn+3

cos

(
u

∆̃n
iX − ∆̃n

i−1X

(Ṽ n
i (p))1/p

)
, u ∈ R+, with

Ṽ n
i (p) :=

1

kn

i−2∑
j=i−kn−1

|∆̃n
jX − ∆̃n

j−1X|p, i = kn + 3, . . . , Nn(1), p > 0.
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We note that the possibly unknown ∆n which is used to scale the ∆n
iX in the numerator

and denominator cancels such that L̃n(p, u) �simpli�es� to

L̃n(p, u) =
1

Nn(1)− kn − 2

Nn(1)∑
i=kn+3

cos

u ∆n
i X

τni −τni−1
− ∆n

i−1X

τni−1−τni−2(
1
kn

∑i−2
j=i−kn−1

∣∣∣ ∆n
jX

τj−τj−1
− ∆n

j−1X

τj−1−τj−2

∣∣∣p)1/p

 , u ∈ R+.

(5.2)

In order to state the limit of the estimator above we introduce φ′ as an independent copy

of the variable φ from Assumption C governing the behavior of the stopping times. With

the constants

µp,β := E[|S1|p]
β
p , κp,β := E[(φ1−β + (φ′)1−β)

p
β ]

β
p , Cp,β :=

Aβ
µp,βκp,β

> 0,

we can show that the limit of the estimator L̂n(p, u) will be:

L(p, u, β) := E[exp(−uβCp,β(φ1−β + (φ′)1−β))].

The problem here is that we cannot directly interfere the parameter β because unlike in

the setting with �xed observation times we have to evaluate some expectation based on

the unknown distribution of the observation times. To bypass this problem we will let

u→ 0 to use the linearity of the exponential function for values around zero, meaning

exp(x) = 1 + x+ o(x) for x→ 0.

Intuitively we have for "small" u

E[exp(−uβCp,β(φ1−β + (φ′)1−β))] ≈ 1 + E
[
−uβCp,β(φ1−β + (φ′)1−β)

]
= 1− uβCp,βκβ,β,

from which we can interfere β by evaluating our estimator at di�erent points u, v:

β̂(p, u, v) :=
log(−(L̃n(p, u)− 1))− log(−(L̃n(p, v)− 1))

log(u/v)
, (5.3)

see Section 5.3 for more details. We state the following de�nitions in dependence of u but

whenever rates of convergence matter we will use un instead of u, assuming that un → 0

with some rate made precise below.

5.1.1 Preliminary Results

Throughout all the proofs of this chapter we assume that Assumptions SB and SC (which

implies Assumptions A,B and C as well) are in force.
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Lemma 5.1. Let A be a semimartingale with∣∣∣Eni [Aτni+j − Aτni ]∣∣∣ ≤ Kj∆n,

Eni
[∣∣∣Aτni+j − Aτni ∣∣∣q] ≤ Kq(j∆n)q/2∧1

for all i, j ∈ N0 with i + j ≤ Nn(1), q ∈ (0,∞), and let |At| be in addition bounded from

below. Then it holds for 0 < p < 1, y > 0 and some constant K∣∣∣Eni [|Aτni+j |p − |Aτni |p]∣∣∣ ≤ Kj∆n,

Eni
[∣∣∣|Aτni+j |p − |Aτni |p∣∣∣y] ≤ Ky(j∆n)y/2∧1.

Proof. For a, b ∈ R, a 6= 0, 0 < p < 1 with some constant Kp we cite the inequality (cf.

[Tod15]) ∣∣|a+ b|p − |a|p − p sign(a)|a|p−1b
∣∣ ≤ Kp|a|p−2|b|2. (5.4)

Using (5.4) together with the boundedness of |At|−1, the triangular inequality and the

assumptions on the speed of convergence of the process At we get

Ei
[∣∣∣|Aτni+j |p − |Aτni |p∣∣∣y] = Eni

[∣∣∣|Aτni + Aτni+j − Aτni |
p − |Aτni |

p
∣∣∣y]

≤ KyEni
[∣∣∣p sign(Aτni )|Aτni |

p−1(Aτni+j − Aτni )
∣∣∣y +Kp

∣∣∣|Aτni |p−2(Aτni+j − Aτni )2
∣∣∣y]

≤ Kp,yEni
[∣∣∣Aτni+j − Aτni ∣∣∣y ∨ ∣∣∣Aτni+j − Aτni ∣∣∣2y]

≤ Kp,y(j∆n)y/2∧1,

where we use |a + b|y ≤ |a|y + |b|y if y ≤ 1 and |a + b|y ≤ 2y−1 (|a|y + |b|y) if y > 1. A

small calculation yields that from (5.4) it follows that

−Kp|a|p−2|b|2 + p sign(a)|a|p−1b ≤ |a+ b|p − |a|p ≤ Kp|a|p−2|b|2 + p sign(a)|a|p−1b,

from where we can deduce that∣∣∣Eni [|Aτni+j |p − |Aτni |p]∣∣∣
=
∣∣∣Eni [|Aτni + Aτni+j − Aτni |

p − |Aτni |
p
]∣∣∣

≤ max
{∣∣∣Eni [−Kp|Aτni |

p−2(Aτni+j − Aτni )2 + p sign(Aτni )|Aτni |
p−1(Aτni+j − Aτni )

]∣∣∣ ,∣∣∣Eni [Kp|Aτni |
p−2(Aτni+j − Aτni )2 + p sign(Aτni )|Aτni |

p−1(Aτni+j − Aτni )
]∣∣∣}

≤
∣∣∣Eni [p sign(Aτni )|Aτni |

p−1(Aτni+j − Aτni )
]∣∣∣+Kp

∣∣∣Eni [|Aτni |p−2(Aτni+j − Aτni )2
]∣∣∣

= p|Aτni |
p−1
∣∣∣Eni [(Aτni+j − Aτni )

]∣∣∣+ |Aτni |
p−2Kp

∣∣∣Eni [(Aτni+j − Aτni )2
]∣∣∣

≤ Kj∆n.
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Remark 5.1. Using the same arguments as in Lemma 4.8, because the components of σt

not appearing in the representation below are martingales, we have∣∣∣Eni [στni+j − στni ]∣∣∣ =

∣∣∣∣∣Eni
[∫ τni+j

τni

bσsds+

∫ τni+j

τni

∫
E

κ′(δσ(s, x))µ(ds, dx)

]∣∣∣∣∣ ≤ Kj∆n (5.5)

and likewise for the process λ. Combined with Corollary 4.1 we �nd that Lemma 5.1

is applicable to the processes σ and λ or any other process that ful�lls the equivalent of

Assumption SB replacing σ.

The following inequality is needed in the proof of the subsequent lemma.

Lemma 5.2. Let f : R>0 → R>0 be an increasing function in C2 with f ′′(x) ≤ 0 and let

a, b, c ∈ R+. Then it holds that

|f(a+ c)− f(a+ b)| ≤ |f(c)− f(b)|. (5.6)

This holds in particular for the function | · |p : R+ → R+ with 0 < p < 1 so we have

|(a+ c)p − (a+ b)p| ≤ |cp − bp|

for all a, b, c ∈ R+.

Proof. We may assume that c ≥ b because otherwise we simply switch positions inside

the absolute values on both sides of (5.6). There exist ε1 ∈ [b, c], ε2 ∈ [a+ b, a+ c] with

f ′(ε1) =
f(c)− f(b)

c− b

f ′(ε2) =
f(a+ c)− f(a+ b)

(a+ c)− (a+ b)

and due to f ′′(x) ≤ 0 we have that

f(a+ c)− f(a+ b) = f ′(ε2)(c− b) ≤ f ′(ε1)(c− b) = f(c)− f(b).

As f is also increasing we have that f(c) ≥ f(b) and f(a+ c) ≥ f(a+ b) and therefore

|f(a+ c)− f(a+ b)| = f(a+ c)− f(a+ b) ≤ f(c)− f(b) = |f(c)− f(b)|.

Lemma 5.3. Under the previous assumptions it holds that for p ∈ (−1, β) and for some

constant M > 0

Eni−2

∣∣∣∆−1/β
n (∆̃n

i S − ∆̃n
i−1S)

∣∣∣p < M, (5.7)

Eni−2

∣∣∣∆−1/β
n (λ

1−1/β
τni−2

∆̃n
i S − λ

1−1/β
τni−3

∆̃n
i−1S)

∣∣∣p = κ
p/β
p,β µ

p/β
p,β . (5.8)

and furthermore for p ∈ (0, β)∣∣∣Eni−2

∣∣∣∆−1/β
n (∆̃n

i S − ∆̃n
i−1S)

∣∣∣p − λp/β−pτni−2
κ
p/β
p,β µ

p/β
p,β

∣∣∣ ≤ K∆1/2
n
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Proof. Let S ′1, S
′′
1 be r.v. with the same distribution as S1 which are independent from

(φni )i≥1 and in addition (contrary to S1) independent from F ,that means in particular

from the process λ. Using standard properties of stable processes (see Section 1.2 in

[ST94] as a reference) we have that for constants σ1, σ2 ∈ R

σ1S1 + σ2S
′
1 ∼ (|σ1|β + |σ2|β)1/βS ′′1 ,

and due to the self similarity of stable processes:

(St − St−∆n) ∼ ∆1/β
n S1 for all t ≥ ∆n.

Because the increments of the process (St)t≥τni−2
are independent of the di�erence of stop-

ping times (τni − τni−1) = ∆nφ
n
i λτni−2

it holds that

E
[
∆n
i S|(τni − τni−1) = a

]
= E

[
(τni − τni−1)1/βS ′1|(τni − τni−1) = a

]
= E

[
a1/βS ′1

]
.

Using the last line it holds for all Borel sets M (note that the following calculation is

possible because the moments of (φni )q for q ∈ (−2, 0) exist and 1/β − 1 > −1)

E
[
1M

(
∆n
i S

τni − τni−1

)]
=

∫
R
E

[
1M

(
∆n
i S

τni − τni−1

) ∣∣∣∣∣ (τni − τni−1

)
= a

]
P(τni −τni−1)(da)

=

∫
R
E
[
1M

(
a1/β−1S ′1

)]
P(τni −τni−1)(da)

=

∫
R

∫
R
1M

(
a1/β−1b

)
PS′1(db)P(τni −τni−1)(da)

= E
[
1M

(
(τni − τni−1)1/β−1S ′1

)]
or put di�erently

∆−1/β
n ∆̃n

i S ∼ ∆1−1/β
n (τni − τni−1)1/β−1S ′1 ∼ (λτni−2

φni )1/β−1S ′1

∆−1/β
n ∆̃n

i−1S ∼ ∆1−1/β
n (τni−1 − τni−2)1/β−1S ′′1 ∼ (λτni−3

φni−1)1/β−1S ′′1

where φni−1, φ
n
i , S

′
1, S

′′
1 are independent of Fτni−2

and of each other. Taking conditional

expectation then yields for p < β

Eni−2

∣∣∣∆−1/β
n (∆̃n

i S − ∆̃n
i−1S)

∣∣∣p = Eni−2

∣∣∣∆1−1/β
n ((∆nλτni−2

φni )1/β−1S ′1 − (∆nλτni−3
φni−1)1/β−1S ′′1 )

∣∣∣p
= Eni−2

[
E
[∣∣∣∆1−1/β

n ((∆nλτni−2
φni )1/β−1S ′1 − (∆nλτni−3

φni−1)1/β−1S ′′1 )
∣∣∣p ∣∣Fnτni−2

, φni , φ
n
i−1

]]
= Eni−2

∣∣∣∆1−1/β
n ((∆nλτni−2

φni )1−β + (∆nλτni−3
φni−1)1−β)1/βS ′′1 )

∣∣∣p
= Eni−2

∣∣∣((λτni−2
φni )1−β + (λτni−3

φni−1)1−β)1/βS ′′1 )
∣∣∣p

= Ei−2

[
((λτni−2

φni )1−β + (λτni−3
φni−1)1−β)p/β

]
E |S ′1|

p
< M (5.9)
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using the boundedness of λ in the last step. Again moments of the stopping times exist

by Assumption C (which is implied by Assumption SC) and by (1 − β)p/β > −1 due

to p < β and β < 2. Because the density of a β-stable random variable exists and is

continuous (cf. p.9 in ST94) it is bounded in a neighborhood of zero and we have that if

f is the density of S1, for a q ∈ (−1, 0), t > 0 and some constant M∫ t

0

f(x)x−qdx ≤
∫ t

0

Mx−qdx <∞∫ ∞
t

f(x)x−qdx ≤
∫ ∞
t

f(x)t−qdx <∞

and as such the expectation E|S1|q is �nite. Using the same arguments as above we can

calculate

Eni−2

∣∣∣∆−1/β
n (λ

1−1/β
τni−2

∆̃n
i S − λ

1−1/β
τni−3

∆̃n
i−1S)

∣∣∣p
= Eni−2

∣∣∣∆1−1/β
n (λ

1−1/β
τni−2

(∆nλτni−2
φni )1/β−1S ′1 − λ

1−1/β
τni−3

(∆nλτni−3
φni−1)1/β−1S ′′1 )

∣∣∣p
= Eni−2

[
E
[∣∣∆1−1/β

n ((∆nφ
n
i )1/β−1S ′1 − (∆nφ

n
i−1)1/β−1S ′′1 )

∣∣p ∣∣Fnτni−2
, φni , φ

n
i−1

]]
= Ei−2

[
((φni )1−β + (φni−1)1−β)p/β

]
E |S ′1|

p
= κ

p/β
p,β µ

p/β
p,β .

If we restrict p ∈ (0, β) we can with the lines above approximate the conditional expecta-

tion of the di�erence of increments ∆̃n
i S − ∆̃n

i−1S to the part of the stopping times that

is Fτni−2
-measurable (i.e. λτni−2

):∣∣∣Eni−2

∣∣∣∆−1/β
n (∆̃n

i S − ∆̃n
i−1S)

∣∣∣p − λp/β−pτni−2
κ
p/β
p,β µ

p/β
p,β

∣∣∣
= µ

p/β
p,β

∣∣∣Eni−2

[
((λτni−2

φni )1−β + (λτni−3
φni−1)1−β)p/β

]
− λp/β−pτni−2

Eni−2

[
((φni )1−β + (φni−1)1−β)p/β

]∣∣∣
= µ

p/β
p,β

∣∣∣Eni−2

[
((λτni−2

φni )1−β + (λτni−3
φni−1)1−β)p/β − ((λτni−2

φni )1−β + (λτni−2
φni−1)1−β)p/β

]∣∣∣
≤ K

∣∣∣Eni−2

[
(λτni−3

φni−1)p/β−p − (λτni−2
φni−1)p/β−p

]∣∣∣
≤ KE

[
(φni−1)p/β−p

]
Eni−2

[∣∣∣(λτni−2
)p/β−p − (λτni−3

)p/β−p
∣∣∣]

≤ K∆1/2
n ,

where we used Lemma 5.2 in the third step and Lemma 5.1 (�rst apply Lemma 5.7

on the process λ and the function f(x) = x
1
β
−1, see the proof of Lemma 5.9) and the

independence from φni−1 of Fni−2 in the second to last step.

Later on we will show that ∆
−1/β
n Ṽ n

i (p)
P−→ µ

1/β
p,β κ

1/β
p,β |στni−2

|p|λτni−2
|
p
β
−p. Keeping this in

mind when we look at the de�nition of L̃n(p, u) we can motivate the de�nition of L(p, u, β)

with the following lemma.
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Lemma 5.4. It holds that

Eni−2

cos

uλ1−1/β
τni−2

∆̃n
i S − λ

1−1/β
τni−3

∆̃n
i−1S

∆
1/β
n µ

1/β
p,β κ

1/β
p,β

 = L(p, u, β).

Proof. Using the same arguments as in equation (5.9) we have

Eni−2

cos

uλ1−1/β
τni−2

∆̃n
i S − λ

1−1/β
τni−3

∆̃n
i−1S

∆
1/β
n µ

1/β
p,β κ

1/β
p,β


= Eni−2

[
cos

(
u

((φni )1−β + (φni−1)1−β)1/βS ′1)

µ
1/β
p,β κ

1/β
p,β

)]

= E

[
E

[
cos

(
u

((φni )1−β + (φni−1)1−β)1/βS ′1)

µ
1/β
p,β κ

1/β
p,β

)∣∣∣∣φi, φi−1

]]

= E
[
exp

(
−uβ Aβ

µp,βκp,β
((φni )1−β + (φni−1)1−β)

)]
= E

[
exp

(
−uβCp,β((φni )1−β + (φni−1)1−β)

)]
= L(p, u, β).

Furthermore we need throughout the following proofs some basic inequalities which we

prove now.

Lemma 5.5. It holds that

| cos(x)− cos(y)| ≤ 2|x− y|p for all x, y ∈ R and p ∈ (0, 1], (5.10)

| cos(x)− cos(y)|2 ≤ 4|x− y|p for all x, y ∈ R and p ∈ (0, 2], (5.11)

| exp(−x)− exp(−y)|2 ≤ |x− y|p for x, y ∈ R+ and p ∈ (0, 2]. (5.12)

Proof. We start with (5.10). Let x, y ∈ R, p ∈ (0, 1] then it holds that for some ε between

x and y

cos(x)− cos(y) = − sin(ε)(x− y).

Using the last line we can distinguish two cases

| cos(x)− cos(y)|

≤ 2 ≤ 2|x− y|p , if |x− y| ≥ 1

≤ | sin(ε)||x− y| ≤ 2|x− y|p , if |x− y| ≤ 1
.

Let now p ∈ (0, 2]. Then by (5.10)

| cos(x)− cos(y)| ≤ 2|x− y|p/2
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and as a result

| cos(x)− cos(y)|2 ≤ 4|x− y|p

which proves (5.11). The proof of (5.12) is similar with the di�erence that

| exp(−x)− exp(−y)| ≤ 1 for all x, y ∈ R+.

5.2 A Central Limit Theorem for the Empirical Char-

acteristic Function L̃n(p, u)

In the following the term ι always refers to an arbitrarily small number greater than zero

which might change from line to line. The same holds for K > 0 but without limitations

on the size.

In order to prove a CLT for β̂(p, u, v) − β we �rst need to prove a CLT for L̃n(p, u) −
L(p, u, β). For this purpose we decompose the latter di�erence into �ve terms and look

at their limiting behavior separately

L̃n(p, u)− L(p, u, β) =
1

Nn(1)− kn − 2

Nn(1)∑
i=kn+3

[Rn
1 +Rn

2 + Zn +Rn
3 +Rn

4 ]

with the term driving the limiting behavior

zi(u) := cos

u
στni−2

(
∆̃n
i S −

(
λτn
i−2

λτn
i−3

) 1
β
−1

∆̃n
i−1S

)
Ṽ n
i (p)1/p


− Eni−2

[
exp

(
−
Aβu

β|στni−2
|β|λτni−2

|1−β((φni )1−β + (φni−1)1−β)

∆−1
n Ṽ n

i (p)β/p

)]
,

Zn :=

Nn(1)∑
i=kn+3

zi(u)
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and the residual terms being

r1
i (u) = cos

(
u

∆̃n
iX − ∆̃n

i−1X

Ṽ n
i (p)1/p

)
− cos

uστni−2
(∆̃n

i S − ∆̃n
i−1S)

Ṽ n
i (p)1/p

 ,

r2
i (u) = cos

uστni−2
(∆̃n

i S − ∆̃n
i−1S)

Ṽ n
i (p)1/p

− cos

u
στni−2

(
∆̃n
i S −

(
λτn
i−2

λτn
i−3

) 1
β
−1

∆̃n
i−1S

)
Ṽ n
i (p)1/p


r3
i (u) = Eni−2

[
exp

(
−
Aβu

β|στni−2
|β|λτni−2

|1−β((φni )1−β + (φni−1)1−β)

∆−1
n Ṽ n

i (p)β/p

)]

− Eni−2

[
exp

(
−
Cp,βu

β|στni−2
|β|λτni−2

|1−β((φni )1−β + (φni−1)1−β)

(|σλ|pi )β/p

)]
,

r4
i (u) = Eni−2

[
exp

(
−
Cp,βu

β|στni−2
|β|λτni−2

|1−β((φni )1−β + (φni−1)1−β)

(|σλ|pi )β/p

)]
− L(p, u, β),

Rn
j =

Nn(1)∑
i=kn+3

rji (u) for j ∈ {1, 2, 3, 4},

where

|σλ|pi :=
1

kn

i−2∑
j=i−kn−1

|στnj−2
|p|λτnj−2

|
p
β
−p.

In order to determine the limit of 1
Nn(1)−kn−2

Zn we approximate the summands zi via:

zi(u) := cos

uλ1−1/β
τni−2

∆̃n
i S − λ

1−1/β
τni−3

∆̃n
i−1S

∆
1/β
n µ

1/β
p,β κ

1/β
p,β

− L(p, u, β) and Z
n

:=

Nn(1)∑
i=kn+3

zi(u).

It should be noted, that in particular how the decomposition above is structured is adapted

from the repeatedly mentioned paper [Tod15]. Furthermore, many concepts used in the

proofs of this chapter, most notably those of Lemma 5.1, 5.10, 5.11, 5.16 and 5.17, are

part of [Tod15] or [Tod17].

For the rest of the proof we need some auxiliary notation

V n
i (p) :=

1

kn

i−2∑
j=i−kn−1

Enj−2|∆̃n
jX − ∆̃n

j−1X|p

and the following random function

fi,u(x) = exp

(
−
Aβu

β|στni−2
|β|λτnj−2

|1−β((φni )1−β + (φni−1)1−β)

xβ/p

)
, (5.13)
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with pointwise �rst and second order derivatives

f ′i,u(x) =
β

p
fi,u(x)

Aβu
β|στni−2

|β|λτnj−2
|1−β((φni )1−β + (φni−1)1−β)

xβ/p+1
, (5.14)

f ′′i,u(x) = fi,u(x)

(
β

p

Aβu
β|στni−2

|β|λτnj−2
|1−β((φni )1−β + (φni−1)1−β)

xβ/p+1

)2

(5.15)

− fi,u(x)
β

p

(
β

p
+ 1

)
Aβu

β|στni−2
|β|λτnj−2

|1−β((φni )1−β + (φni−1)1−β)

xβ/p+2
.

For the all the following proofs keep in mind that Assumptions SB and SC are in force.

Lemma 5.6. If for some 2 ≤ i ≤ Nn(1), X is a positive Fni−2-measurable random variable

it holds for the (random) terms f ′i,un(X), f ′′i,un(X) that

Eni−2

[
|f ′i,un(X)|

]
≤ K

uβn
Xp/β+1

and Eni−2

[
|f ′′i,un(X)|

]
≤ K

uβn
Xp/β+2

If X is also bounded from below and above we have that

Eni−2

[
|f ′i,un(x)|

]
≤ Kuβn and Eni−2

[
|f ′′i,un(x)|

]
≤ Kuβn

Proof. We have by Assumption C that E
[
(φni )1−β + (φni−1)1−β] <∞ and therefore

Eni−2

[∣∣∣∣∣fi,un(X)
Aβu

β
n|στni−2

|β|λτnj−2
|1−β((φni )1−β + (φni−1)1−β)

Xβ/p+2

∣∣∣∣∣
]

≤
Aβu

β
n|στni−2

|β|λτnj−2
|1−β

Xβ/p+2
Ei−2

[
fi,un(X)((φni )1−β + (φni−1)1−β)

]
≤ Kuβn

1

Xβ/p+2
,

where in the last step we use that fi,un(x) is bounded by 1 for positive values of x and that

|σt|, |σt|−1 are uniformly bounded by Assumption SB and therefore |στni−2
| is bounded from

above and below as is |λτnj−2
|1−β by the same arguments. Also all components involved

are positive so we can omit the outer absolute value. Similarly we get

Eni−2

[
f ′i,un(X)

]
≤ Kuβn

1

Xβ/p+1
.

In order to deal with the �rst term in (5.15) we have that the function

y 7→ | exp(−y)y| with y ∈ R+

is bounded. Using this result with y =
Aβu

β
n|στn

i−2
|β |λτn

j−2
|1−β((φni )1−β+(φni−1)1−β)

Xβ/p in the second
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step we have that

Eni−2

∣∣∣∣∣∣fi,un(X)

(
β

p

uβnAβ|στni−2
|β|λτnj−2

|1−β((φni )1−β + (φni−1)1−β)

Xβ/p+1

)2
∣∣∣∣∣∣


=

(
β

p

)2

Ei−2

[
fi,un(X)

uβnAβ|στni−2
|β|λτnj−2

|1−β((φni )1−β + (φni−1)1−β)

Xβ/p

uβnAβ|στni−2
|β|λτnj−2

|1−β((φni )1−β + (φni−1)1−β)

Xβ/p+2

]

≤ K
Aβu

β
n|στni−2

|β|λτnj−2
|1−β

Xβ/p+2
Ei−2

[
(φni )1−β + (φni−1)1−β] ≤ Kuβn

1

Xβ/p+2

again using the boundedness of |στni−2
|, |λτni−2

| in the last step. Finally

Eni−2

[
|f ′′i,un(X)|

]
≤ Eni−2

∣∣∣∣∣∣fi,u(X)

(
β

p

Aβu
β|στni−2

|β|λτnj−2
|1−β((φni )1−β + (φni−1)1−β)

Xβ/p+1

)2
∣∣∣∣∣∣


+ Eni−2

[∣∣∣∣∣fi,u(X)
β

p

(
β

p
+ 1

)
Aβu

β|στni−2
|β|λτnj−2

|1−β((φni )1−β + (φni−1)1−β)

Xβ/p+2

∣∣∣∣∣
]

≤ K
uβn

Xp/β+2
.

5.2.1 Auxiliary Results

The purpose of the two following Lemmas is solely to prove Lemma 5.9.

Lemma 5.7. Let

At = A0 +

∫ t

0

bAs ds+

∫ t

0

ηAs dWs +

∫ t

0

∫
E

κ(δA(s, x))µ̃(ds, dx) +

∫ t

0

∫
E

κ′(δA(s, x))µ(ds, dx)

(5.16)

be a semimartingale where Assumption SB holds true with A replacing σ. Let f(x) be

a C2-function on an open interval including the domain of A. Then the process f(A)

equally ful�lls Assumption SB.

Proof. As Assumption SB allows us to assume that A is bounded so is the process f(A).

In particular both are special semimartingales by Remark 2.1 and we may write

At = A0 +

∫ t

0

(
bAs +

∫
E

κ′(δA(s, x))λ(dx)

)
ds+

∫ t

0

ηAs dWs +

∫ t

0

∫
E

δA(s, x)µ̃(ds, dx).
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We start by using Itô's formula (cf. (3.53) in [EK19]), let µA, νA denote the jump measure

of A respectively its compensator, then:

f(At) = f(A0) +

∫ t

0

(
f ′(As−)

(
bAs +

∫
E

κ′(δA(s, x))λ(dx)

)
+

1

2
f ′′(As−)(ηAs )2

)
ds

+

∫ t

0

f ′(As−)ηAs dWs +

∫ t

0

∫
R

(f(As− + x)− f(As−)) (µA − νA)(ds, dx)

+

∫ t

0

∫
R

(f(As− + x)− f(As−)− f ′(As−)x) νA(ds, dx). (5.17)

Let ∆ be an additional point outside E,�then there exists an E ∪ {∆}-valued optional

process θt such that

µ(dt, dz) =
∑

s:θs(ω)∈E

ε(s,θs(ω))(dt, dz), (5.18)

where εa is the Dirac mass sitting at the point a ∈ R+ × E. Setting δ(ω, t,∆) = 0, then

outside a P-null set we have ∆Xs = δA(s, θs) (cf. p. 119 in [JP12]).

Because
∫ t

0

∫
R (f(As− + x)− f(As−)− f ′(As−)x) νA(ds, dx) exists we may write∫ t

0

∫
R

(f(As− + x)− f(As−)− f ′(As−)x) µA(ds, dx)

=
∑
s≤t

(f(As− + ∆Xs)− f(As−)− f ′(As−)∆Xs)

=
∑
s≤t

(
f(As− + δA(s, θs))− f(As−)− f ′(As−)δA(s, θs)

)
=

∫ t

0

∫
E

(
f(As− + δA(s, x))− f(As−)− f ′(As−)δA(s, x)

)
µ(ds, dx)

and taking compensators on both sides yields∫ t

0

∫
R

(f(As− + x)− f(As−)− f ′(As−)x) νA(ds, dx)

=

∫ t

0

∫
E

(
f(As− + δA(s, x))− f(As−)− f ′(As−)δA(s, x)

)
λ(dx) ds. (5.19)

Similarly we get ∫ t

0

∫
R

(f(As− + x)− f(As−)) (µA − νA)(ds, dx)

=

∫ t

0

∫
E

(
f(As− + δA(s, x))− f(As−)

)
µ̃(ds, dx) (5.20)
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arguing that both side are completely discontinuous martingales with the same jumps and

therefore coincide. Plugging (5.19) and (5.20) into (5.17) leaves us with

f(At) = f(A0) +

∫ t

0

(
f ′(As−)

(
bAs +

∫
E

κ′(δA(s, x))λ(dx)

)
+

1

2
f ′′(As−)(ηAs )2

+

∫
E

(
f(As− + δA(s, x))− f(As−)− f ′(As−)δA(s, x)

)
λ(dx)

)
ds

+

∫ t

0

f ′(As−)ηAs dWs +

∫ t

0

∫
E

(
f(As− + δA(s, x))− f(As−)

)
µ̃(ds, dx).

The coe�cients of f(A) then are (bf , ηf , δf ), where

bfs =

(
f ′(As−)

(
bAs +

∫
E

κ′(δA(s, x))λ(dx)

)
+

1

2
f ′′(As−)(ηAs )2

+

∫
E

(
f(As− + δA(s, x))− f(As−)− f ′(As−)δA(s, x)

)
λ(dx)

)
,

ηfs = f ′(As−)ηAs ,

δf (s, x) = f(As− + δA(s, x))− f(As−).

We are left with to check whether these ful�ll Assumption SB. According to (4.14) we have

that the (random) integral
∫
E
κ′(δA(s, x))λ(dx) is bounded. Using |δA(s, x)| ≤ γ(x), where

γ(x) is the bounded function from Assumption SB, and a second order Taylor expansion

there exists for each (ω, s, x) ∈ Ω × R+ × E an ε(ω,s,x) ∈ [As−(ω), As−(ω) + δA(ω, s, x)]

with ∣∣f(As−(ω) + δA(ω, s, x))− f(As−(ω))− f ′(As−(ω))δA(ω, s, x)
∣∣

≤
|f ′′(ε(ω,s,x))δ

A(ω, s, x)2|
2

≤ Kγ(x)2

resulting with Assumption SB.2 in the boundedness of∫
E

(
f(As− + δA(s, x))− f(As−)− f ′(As−)δA(s, x)

)
λ(dx). In the last step we used that

the process A is bounded and |δ(s, x)| ≤ γ(x) which leads to ε(ω,s,x) being bounded as well.

By the boundedness of bAs , η
A
s and As− we then have boundedness of bfs and ηfs . Finally

we see, as previously, with a Taylor expansion that for each (ω, s, x) ∈ Ω×R+ ×E there

exists ε′(ω,s,x) ∈ [As−(ω), As−(ω) + δA(ω, s, x)] with

|δf (ω, s, x)| = |f(As−(ω) + δA(ω, s, x))− f(As−(ω))| = |f ′(ε′(ω,s,x))δ
A(ω, s, x))| ≤ Kγ(x).

(5.21)

Concluding, due to (5.21) δf (s, x) ful�lls Assumption SB.2 for a modi�ed function γ′(x) =

Kγ(x) having the same properties as γ(x).
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Lemma 5.8. Let A,B be two semimartingales of the form (5.16) where Assumption SB

holds true with A,B replacing σ. Then AB likewise ful�lls Assumption SB.

Proof. Again we may assume that A,B are bounded so AB is bounded as well and in

particular a special semimartingale. De�ning

aAs = bAs +

∫
E

κ′(δA(s, x))λ(dx),

aBs = bBs +

∫
E

κ′(δB(s, x))λ(dx).

we may write

At = A0 +

∫ t

0

aAs ds+

∫ t

0

ηAs dWs +

∫ t

0

∫
E

δA(s, x)µ̃(ds, dx),

Bt = B0 +

∫ t

0

aBs ds+

∫ t

0

ηBs dWs +

∫ t

0

∫
E

δB(s, x)µ̃(ds, dx).

By the integration by parts rule for semimartingales we have

ABt = A0B0 +

∫ t

0

As−dBs +

∫ t

0

Bs−dAs + [A,B]t

= A0B0 +

∫ t

0

As−a
B
s ds+

∫ t

0

As−η
B
s dWs +

∫ t

0

∫
E

As−δ
B(s, x)µ̃(ds, dx)

+

∫ t

0

Bs−a
A
s ds+

∫ t

0

Bs−η
A
s dWs +

∫ t

0

∫
E

Bs−δ
A(s, x)µ̃(ds, dx)

+

∫ t

0

ηAs η
B
s ds+

∑
s≤t

∆As∆Bs

Proceeding as in the previous Lemma we have due to (5.18)∑
s≤t

∆As∆Bs =
∑
s≤t

δA(s, θs)δ
B(s, θs)

=

∫ t

0

∫
E

δA(s, x)δB(s, x)µ(ds, dx).

And because δA(s, x)δB(s, x) ≤ γ(x)2 we �nd with Assumption SB that∫
E

δA(s, x)δB(s, x) λ(dx) < M (5.22)

for some constant M > 0, which leaves us with

ABt = A0B0 +

∫ t

0

(
As−a

B
s +Bs−a

A
s + ηAs η

B
s +

∫
E

δA(s, x)δB(s, x) λ(dx)

)
ds

+

∫ t

0

(
As−η

B
s +Bs−η

A
s

)
dWs

+

∫ t

0

∫
E

(
As−δ

B(s, x) +Bs−δ
A(s, x) + δA(s, x)δB(s, x)

)
µ̃(ds, dx).
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Similar to the proof of Lemma 5.7 we �nd that aAs , a
B
s are bounded and so areAs−, Bs−, η

A
s , η

B
s

by Assumption SB. Considering (5.22) we �nd that the coe�cients of the semimartingale

AB ful�ll Assumption SB, because

|As−δB(s, x) +Bs−δ
A(s, x) + δA(s, x)δB(s, x)| ≤ Kγ(x).

Lemma 5.9. Let kn � n$, $ ∈ (0, 1), then it holds that for kn + 3 ≤ i ≤ Nn(1), 0 < p <

β/2 and y > 1 ∣∣∣Eni−kn−3[|σλ|pi − |στni−2
|p|λτni−2

|
p
β
−p]
∣∣∣ ≤ Kkn∆n, (5.23)

Ei−kn−3

[∣∣∣|σλ|pi − |στni−2
|p|λτni−2

|
p
β
−p
∣∣∣y] ≤ K(kn∆n)y/2∧1. (5.24)

Proof. Using Lemma 5.7 on the process λ and the function f(x) = x
1
β
−1 we have that

λ
1
β
−1 is again an Itô semimartingale ful�lling Assumption SB. Then applying Lemma

5.8 to the processes σ and λ
1
β
−1 yields that σλ

1
β
−1 ful�lls the same ssumption. Finally

applying Lemma 5.1 (note Remark 5.1) we get:∣∣∣Eni [|στni+j |p|λτni+j | pβ−p − |στni |p|λτni | pβ−p]∣∣∣ ≤ Kj∆n (5.25)

and likewise

Eni
[∣∣∣|στni+j |p|λτni+j | pβ−p − |στni |p|λτni | pβ−p∣∣∣y] ≤ K(j∆n)

y
2
∧1. (5.26)

(5.25) is su�cient to prove (5.23):∣∣∣Eni−kn−3[|σλ|pi − |στni−2
|p|λτni−2

|
p
β
−p]
∣∣∣

=

∣∣∣∣∣Eni−kn−3

[
1

kn

i−2∑
j=i−kn−1

(|στnj−2
|p|λτnj−2

|
p
β
−p − |στni−2

|p|λτni−2
|
p
β
−p)

]∣∣∣∣∣
≤ 1

kn

i−2∑
j=i−kn−1

∣∣∣Eni−kn−3

[
|στnj−2

|p|λτnj−2
|
p
β
−p − |στni−2

|p|λτni−2
|
p
β
−p
]∣∣∣

≤ 1

kn

i−2∑
j=i−kn−1

K(i− j)∆n ≤ Kkn∆n.

and likewise (5.24) can be proven with (5.26) due to x 7→ xy being a convex function on
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R+

Eni−kn−3

[∣∣∣|σλ|pi − |στni−2
|p|λτni−2

|
p
β
−p
∣∣∣y]

= Eni−kn−3

[∣∣∣∣∣ 1

kn

i−2∑
j=i−kn−1

(|στnj−2
|p|λτnj−2

|
p
β
−p − |στni−2

|p|λτni−2
|
p
β
−p)

∣∣∣∣∣
y]

≤ 1

kn

i−2∑
j=i−kn−1

Eni−kn−3

[∣∣∣|στnj−2
|p|λτni−2

|
p
β
−p − |στni−2

|p|λτni−2
|
p
β
−p
∣∣∣y] .

Lemma 5.10. For 2 ≤ i ≤ Nn(1), 0 < p < β
2
and an arbitrarily small constant ι > 0 it

holds that

∆−p/βn Eni−2

[∣∣∣|∆̃n
iX − ∆̃n

i−1X|p − |στni−2
|p|∆̃n

i S − ∆̃n
i−1S|p

∣∣∣] ≤ Kαn (5.27)

with αn = ∆
β
2
p+1
β+1
∧(( p

β′ ∧1)− p
β

)∧ 1
2
−ι

n .

Proof. We decompose St = S
(1)
t + S

(2)
t + S

(3)
t where S(1)

t =
∫ t

0

∫
R κ(x)µ̃(ds, dx), with

µ̃(ds, dx) being the compensated jump measure of S, S(2)
t =

∫ t
0

∫
R κ
′(x)µ(ds, dx) and

S
(3)
t := −

∫ t
0

∫
R κ
′(x) A

|x|β+1dx ds. Then we have with A = Fnτni−2

∨
σ(φni , φ

n
i−1)

Eni−2

∣∣∣∣∣ ∆n

τni−1+l − τni−2+l

∫ τni−1+l

τni−2+l

(σu− − στni−2
)dS(1)

u

∣∣∣∣∣
q

= Eni−2

[(
∆n

τni−1+l − τni−2+l

)q
E

[∣∣∣∣∣
∫ τni−1+l

τni−2+l

(σu− − στni−2
)dS(1)

u

∣∣∣∣∣
q ∣∣∣∣∣A

]]

= Eni−2

[(
∆n

τni−1+l − τni−2+l

)q
E

[∣∣∣∣∣
∫ τni−1+l

τni−2+l

∫
R
(σu− − στni−2

)κ(x)µ̃(du, dx)

∣∣∣∣∣
q ∣∣∣∣∣A

]]
, (5.28)

where we used Proposition 3.37 in [EK19] for the last step. Then applying Remark 4.2 in

the �rst step one has for q ∈ (β, 2], l = 0, 1

(5.28) ≤Eni−2

[(
∆n

τni−1+l − τni−2+l

)q
E

[∫ τni−1+l

τni−2+l

∫
R
|(σu− − στni−2

)κ(x)|q A

|x|β+1
dx du

∣∣∣∣∣A
]]

≤ KEni−2

[(
∆n

τni−1+l − τni−2+l

)q
E

[∫ τni−1+l

τni−2+l

|σu− − στni−2
|qdu

∣∣∣∣∣A
]]

≤ KEni−2

[(
∆n

τni−1+l − τni−2+l

)q
E

[
(τni−1+l − τni−2+l) sup

u∈[τni−2+l,τ
n
i−1+l]

|σu− − στni−2
|q
∣∣∣∣∣A
]]

≤ ∆q
nEni−2

[
(τni−1+l − τni−2+l)

1−qE

[
sup

u∈[τni−2+l,τ
n
i−1+l]

|σu− − στni−2
|q
∣∣∣∣∣A
]]

≤ ∆q
nEni−2

[
(τni−1+l − τni−2+l)

1−q∆q/2
n

]
≤ K∆q/2+1

n ,
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where the second step holds by ∫
R
|κ(x)|q A

|x|β+1
dx <∞,

using the boundedness of κ(x) and the fact that around 0 we have |κ(x)|q = |x|q with
q > β. In the second to last step we applied one more time Remark 4.2 to Corollary 4.1.

Applying Jensen inequality for q ∈ (0, β]:

Eni−2

∣∣∣∣∣ ∆n

τni−2+l − τni−1+l

∫ τni−1+l

τni−2+l

(σu− − στni−2
)dS(1)

u

∣∣∣∣∣
q

≤

Eni−2

∣∣∣∣∣ ∆n

τni−2+l − τni−1+l

∫ τni−1+l

τni−2+l

(σu− − στni−2
)dS(1)

u

∣∣∣∣∣
β+ι
q/(β+ι)

≤ K∆q/2+q/β−ι
n .

Combining the last two estimates yields for q ∈ (0, 2]

Eni−2

∣∣∣∣∣ ∆n

τni−2+l − τni−1+l

∫ τni−1+l

τni−2+l

(σu− − στni−2
)dS(1)

u

∣∣∣∣∣
q

≤ K∆q/2+q/β∧1−ι
n .

Setting M :=
∫
R κ
′(x) A

|x|β+1dx <∞ we �nd that similarly to the previous calculations for

q ∈ [1, 2] with Corollary 4.1

Eni−2

∣∣∣∣∣ ∆n

τni−1+l − τni−2+l

∫ τni−1+l

τni−2+l

(σu− − στni−2
)dS(3)

u

∣∣∣∣∣
q

= Eni−2

∣∣∣∣∣ ∆n

τni−1+l − τni−2+l

∫ τni−1+l

τni−2+l

(σu− − στni−2
)Mdu

∣∣∣∣∣
q

≤ K∆q
nEni−2

[
sup

u∈[τni−2+l,τ
n
i−1+l]

|σu− − στni−2
|q
]
≤ K∆3q/2

n

and applying with Jensen inequality in the case q < 1 we have for q ∈ [0, 2]:

Eni−2

∣∣∣∣∣ ∆n

τni−1+l − τni−2+l

∫ τni−1+l

τni−2+l

(σu− − στni−2
)dS(3)

u

∣∣∣∣∣
q

≤ K∆3q/2
n .

Because by Assumption SB.1 σt is bounded, the process
∫ t

0
(σu− − στni−2

)dS
(2)
u is of �nite

variation, then conditioning �rst on A as above and afterwards using Lemma 4.4 with

Remark 4.2 one gets likewise for q ∈ (0, 1]

Eni−2

∣∣∣∣∣ ∆n

τni−2+l − τni−1+l

∫ τni−1+l

τni−2+l

(σu− − στni−2
)dS(2)

u

∣∣∣∣∣
q

≤ KEni−2

[(
∆n

τni−1+l − τni−2+l

)q
E

[∫ τni−1+l

τni−2+l

∫
R
|(σu− − στni−2

)κ′(x)|q A

|x|β+1
dx du

∣∣∣∣∣A
]]

≤ K∆q/2+1
n
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and for q ∈ (1, β) with Jensen inequality

Eni−2

∣∣∣∣∣ ∆n

τni−2+l − τni−1+l

∫ τni−1+l

τni−2+l

(σu− − στni−2
)dS(2)

u

∣∣∣∣∣
q

≤ KEni−2

[(
∆n

τni−1+l − τni−2+l

)q(
E

[(∫ τni−1+l

τni−2+l

∫
R
|(σu− − στni−2

)κ′(x)|1 A

|x|β+1
dx du

)q ∣∣∣∣∣A
]

+E

[∫ τni−1+l

τni−2+l

∫
R
|(σu− − στni−2

)κ′(x)|q A

|x|β+1
dx du

∣∣∣∣∣A
])]

≤ K∆q/2+1
n .

For the di�erence of the drift parts we have that

∆n

τni − τni−1

∫ τni

τni−1

αudu−
∆n

τni−1 − τni−2

∫ τni−1

τni−2

αudu

= ∆n

(
1

τni − τni−1

∫ τni

τni−1

(αu − ατni−2
)du+ ατni−2

−

(
1

τni−1 − τni−2

∫ τni−1

τni−2

(αu − ατni−2
)du+ ατni−2

))

= ∆n

(
1

τni − τni−1

∫ τni

τni−1

(αu − ατni−2
)du− 1

τni−1 − τni−2

∫ τni−1

τni−2

(αu − ατni−2
)du

)
.

Furthermore we have for q ∈ [1, 2] using Hölder inequality

Eni−2

∣∣∣∣∣∆n

(
1

τni − τni−1

∫ τni

τni−1

(αu − ατni−2
)du− 1

τni−1 − τni−2

∫ τni−1

τni−2

(αu − ατni−2
)du

)∣∣∣∣∣
q

≤ K∆q
nEni−2

[
(τni − τni−1)−1

∫ τni

τni−1

|αu − ατni−2
|qdu+ (τni−1 − τni−2)−1

∫ τni−1

τni−2

|αu − ατni−2
|qdu

]

and as above for l = 0, 1 with Corollary 4.1

∆q
nEni−2

[
(τni−1+l − τni−2+l)

−1

∫ τni−1+l

τni−2+l

|αu − ατni−2
|qdu

]

≤ ∆q
nEni−2

[
sup

u∈[τni−2+l,τ
n
i−1+l]

|αu − ατni−2
|q
]
≤ ∆3q/2

n .

Using the steps above and applying Jensen inequality in the case of q < 1 we have for

q ∈ [0, 2]

Eni−2

∣∣∣∣∣ ∆n

τni − τni−1

∫ τni

τni−1

αudu−
∆n

τni−1 − τni−2

∫ τni−1

τni−2

αudu

∣∣∣∣∣
q

≤ ∆3q/2
n .

In order to bound ∆n

τni −τni−1
∆n
i Y we make use of Assumption SB.4. By the boundedness

of
∫
R(|x|β′ ∧ 1)νYt (dx) and β′ < 1 we have that

∫
R(|x|q ∧ 1)νYt (dx) is bounded too for all
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q ≥ β′. Because the jumps of Y are also bounded we conclude that for all t > 0, q ≥ β′∫
R
|x|qνYt (dx) <∞.

As β′ < β/2 < 1 the process Yt =
∫ t

0

∫
R xµ

Y (ds, dx) then has locally integrable variation

and furthermore E [Y q
t ] <∞ for all q ≥ 0, t ≥ 0 (see the next few lines). Using (4.4) and

the fact that the jumps of Y are bounded by Assumption SB we get for some constant

M > 0,Al := Fnτni−2+l

∨
σ(φni−1+l) and β

′ ≤ q ≤ 1, l = 0, 1

E
[∣∣∆n

i−1+lY
∣∣q∣∣Al] ≤ E

∣∣∣∣∣∣
∑

τi−2+l≤s≤τni−1+l

|∆Ys|

∣∣∣∣∣∣
q∣∣∣∣∣∣Al

 (5.29)

≤ E

 ∑
τni−2+l≤s≤τ

n
i−1+l

|∆Ys|q
∣∣∣∣∣∣Al


= E

[∫ τni−1+l

τni−2+l

∫
R
|x|qµYs (dx)ds

∣∣∣∣∣Al
]

= E

[∫ τni−1+l

τni−2+l

∫
R

(|x|q ∧M)µYs (dx)ds

∣∣∣∣∣Al
]

= E

[∫ τni−1+l

τni−2+l

∫
R

(|x|q ∧M) νYs (dx)ds

∣∣∣∣∣Al
]
≤ K(τni−1+l − τni−2+l).

using Remark 4.2 in the second to last step and the fact that by Assumption SB the

process
(∫

R (|x|q ∧ 1) νYt (dx)
)
t≥0

is bounded in the last step. In the case of q ≥ 1 we again

apply Remark 4.2 on Lemma 4.4 and get

E
[∣∣∆n

i−1+lY
∣∣q∣∣Al] ≤ Kq

(
(τni−1+l − τni−2+l) + (τni−1+l − τni−2+l)

q
)
. (5.30)

With a �nal application of Jensen inequality in the case of 0 < q < β′ and iterated

expectations we can then conclude for all q > 0

Eni−2

[∣∣∆n
i−1+lY

∣∣q] ≤ K∆(q/β′)∧1
n and likewise Eni−2

∣∣∣∣ ∆n

τni−1+l − τni−2+l

∆n
i−1+lY

∣∣∣∣q ≤ K∆(q/β′)∧1
n .

We proceed with bounds for ∆n

τni −τni−1

∫ τni
τni−1

σu−dŚu − ∆n

τni−1−τni−2

∫ τni−1

τni−2
σu−dŚu. Let F́ denote

the Lévy measure of Ś then we have with |h̃(x)| ≤ C
|x|1+β′ for all |x| ≤ x0 from Assumption

A that
∫
R(|x|q ∧ 1)F́ (dx) < ∞ < for all q > β′. As the jumps of Ś are also bounded by

Assumption SB.5 we have similarly to Y∫
R
|x|qF́ (dx) <∞,
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for all q ≥ β′. Due to its �nite variation we can write

Śt =

∫ t

0

∫
R
κ(x)µ̃1(ds, dx) +

∫ t

0

∫
R
κ′(x)µ1(ds, dx)

=

∫ t

0

∫
R
xµ1(ds, dx)−

∫ t

0

∫
R
κ′(x)F́ (dx) ds

and note that

∆n

τni − τni−1

∫ τni

τni−1

∫
R
κ(x)F́ (dx) ds− ∆n

τni−1 − τni−2

∫ τni−1

τni−2

∫
R
κ(x)F́ (dx) ds = 0. (5.31)

Proceeding as in (5.29) and (5.30) and using the subsequent arguments we �nd that for

q > 0 and l = 0, 1

Eni−2+l

[∣∣∣∣∣
∫ τni−1+l

τni−2+l

∫
R
xµ1(ds, dx)

∣∣∣∣∣
q]
≤ K∆(q/β′)∧1−ι

n .

Due to the boundedness of σt− we have likewise

Eni−2+l

[∣∣∣∣∣ ∆n

τni−1+l − τni−2+l

∫ τni−1+l

τni−2+l

σu−dŚu

∣∣∣∣∣
q]

= Eni−2+l

[∣∣∣∣∣ ∆n

τni−1+l − τni−2+l

∫ τni−1+l

τni−2+l

∫
R
σu−xµ1(ds, dx)

∣∣∣∣∣
q]

≤ K∆(q/β′)∧1−ι
n .

Combining the last line with (5.31) we have for all q > 0

Eni−2

[∣∣∣∣∣ ∆n

τni − τni−1

∫ τni

τni−1

σu−dŚu −
∆n

τni−1 − τni−2

∫ τni−1

τni−2

σu−dŚu

∣∣∣∣∣
q]
≤ K∆(q/β′)∧1−ι

n

and a similar result for ∆n

τni −τni−1

∫ τni
τni−1

σu−dS̀u − ∆n

τni−1−τni−2

∫ τni−1

τni−2
σu−dS̀u.
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Now we introduce χ1, χ2, χ3 with X̃i − X̃i−1 = χ1 + χ2 + χ3 where

χ1 = στni−2

(
S̃i − S̃i−1

)
,

χ2 =
∆n

τni − τni−1

∫ τni

τni−1

(σu− − στni−2
)dS(1)

u −
∆n

τni−1 − τni−2

∫ τni−1

τni−2

(σu− − στni−2
)dS(1)

u

+
∆n

τni − τni−1

∫ τni

τni−1

(σu− − στni−2
)dS(3)

u −
∆n

τni−1 − τni−2

∫ τni−1

τni−2

(σu− − στni−2
)dS(3)

u

+
∆n

τni − τni−1

∫ τni

τni−1

αudu−
∆n

τni−1 − τni−2

∫ τni−1

τni−2

αudu,

χ3 =
∆n

τni − τni−1

∫ τni

τni−1

(σu− − στni−2
)dS(2)

u −
∆n

τni−1 − τni−2

∫ τni−1

τni−2

(σu− − στni−2
)dS(2)

u

+
∆n

τni − τni−1

∆n
i Y −

∆n

τni−1 − τni−2

∆n
i−1Y

+
∆n

τni − τni−1

∫ τni

τni−1

σu−dŚu −
∆n

τni−1 − τni−2

∫ τni−1

τni−2

σu−dŚu

− ∆n

τni − τni−1

∫ τni

τni−1

σu−dS̀u −
∆n

τni−1 − τni−2

∫ τni−1

τni−2

σu−dS̀u,

remembering that Lt = S
(1)
t + S

(2)
t + S

(3)
t + Śt − S̀t. As a result of the inequalities above

and noting the obvious 3q/2 ≥ q/2 + q/β ∧ 1 and q/2 + 1 ≥ q/β′ ∧ 1 we can determine

the rate of convergence for χ2, χ3

Eni−2 |χ2|q ≤ K∆q/2+q/β∧1−ι
n for all q ∈ [0, 2], (5.32)

Eni−2 |χ3|q ≤ K

(
Eni−2

∣∣∣∣∣ ∆n

τni − τni−1

∫ τni

τni−1

(σu− − στni−2
)dS(2)

u

∣∣∣∣∣
q

+ Eni−2

∣∣∣∣∣ ∆n

τni−1 − τni−2

∫ τni−1

τni−2

(σu− − στni−2
)dS(2)

u

∣∣∣∣∣
q

+ Eni−2

[
Eni−1

∣∣∣∣ ∆n

τni − τni−1

∆n
i Y

∣∣∣∣q]+ Eni−2

∣∣∣∣ ∆n

τni−1 − τni−2

∆n
i−1Y

∣∣∣∣q
+ Eni−2

[∣∣∣∣∣ ∆n

τni − τni−1

∫ τni

τni−1

σu−dŚu −
∆n

τni−1 − τni−2

∫ τni−1

τni−2

σu−dŚu

∣∣∣∣∣
q]

+ Eni−2

[∣∣∣∣∣ ∆n

τni − τni−1

∫ τni

τni−1

σu−dS̀u −
∆n

τni−1 − τni−2

∫ τni−1

τni−2

σu−dS̀u

∣∣∣∣∣
q])

≤ K∆q/β′∧1−ι
n for all q ∈ (0, β). (5.33)

Furthermore Eni−2|∆
−1/β
n χ1|p is a constant for all p ∈ (−1, β) by Lemma 5.3.

For proving (5.27) we use the shorthand χ̃i = ∆
−1/β
n χi for i = 1, 2, 3 and see that using
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the estimates (5.32),(5.33) above on χ2, χ3 we have

Eni−2 |χ̃2|q ≤ K∆−q/βn ∆q/2+q/β∧1−ι
n = K∆q/2+q/β∧1−q/β−ι

n for all q ∈ [0, 2], (5.34)

Eni−2 |χ̃3|q ≤ K∆q/β′∧1−q/β−ι
n for all q ∈ (0, β), (5.35)

furthermore for all q ∈ (0, β) we have Eni−2 |χ̃1|q < M for some constant M > 0. Then

(5.27) =Eni−2 ||χ̃1 + χ̃2 + χ̃3|p − |χ̃1|p|

≤Eni−2 ||χ̃1 + χ̃2 + χ̃3|p − |χ̃1 + χ̃2|p|+ Eni−2 ||χ̃1 + χ̃2|p − |χ̃1|p| .

We note, because p < β/2 < 1 and therefore | · |p is subadditive, that

Eni−2 ||χ̃1 + χ̃2 + χ̃3|p − |χ̃1 + χ̃2|p| ≤ Eni−2|χ̃3|p ≤ K∆p/β′∧1−p/β−ι
n .

For the remaining term we use the algebraic inequality

||χ̃1 + χ̃2|p − |χ̃1|p| ≤ K|χ̃1|p−1|χ̃2|1{|χ̃1|>ε,|χ̃2|< 1
2
ε} + |χ̃2|p(1{|χ̃1|≤ε} + 1{|χ̃2|> 1

2
ε}),

which holds for any ε > 0 and p ∈ (0, 1] and a constant K that does not depend on ε.

Using (5.34), (5.35) plus Markov and Hölder inequality then yields

Eni−2

[
|χ̃1|p−1|χ̃2|1{|χ̃1|>ε,|χ̃2|< 1

2
ε}

]
≤
(
Eni−2

[
|χ̃1|

(p−1)β
β−1 1{|χ̃1|>ε,|χ̃2|< 1

2
ε}

])1− 1
β
(
Eni−2 |χ̃2|β

) 1
β

≤ (∆β/2−ι
n )

1
β = ∆1/2−ι

n ,

Eni−2

[
|χ̃2|p1{|χ̃1|≤ε}

]
≤
(
Eni−2

[
1{|χ̃1|≤ε}

])1− p
β
(
Eni−2

[
|χ̃2|β

]) p
β

≤ K
(
Eni−2

[
|χ̃1|−1+ι

]
ε1−ι

)1− p
β (∆β/2−ι

n )p/β

≤ ε1−p/β−ι∆p/2−ι
n ,

(5.36)

Eni−2

[
|χ̃2|p1{|χ̃2|> 1

2
ε}

]
≤
(
Eni−2

[
1{|χ̃2|> 1

2
ε}

])1− p
β (Eni−2

[
|χ̃2|β

]) p
β

≤

(
Eni−2

[
|χ̃2|β

]
(1

2
ε)β

)1− p
β

∆p/2−ι
n

≤ K∆
β
2
β−p
β

n ∆p/2−ι
n ε−(β−p) ≤ Kε−(β−p)∆β/2−ι

n ,

(5.37)

where the last inequality only holds for an ε ≤ 1. Setting ε = ∆
1
2

β
β+1

n gives the same orders

both in (5.36) and (5.37) which yields the result.
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Corollary 5.1. For all 2 ≤ i ≤ Nn(1) and 0 < q < β it holds that for some constant M

Eni−2

[
∆−q/βn

∣∣∣∆̃n
iXi − ˜∆n

i−1Xi−1

∣∣∣q] ≤M.

Proof.

∆−q/βn Eni−2

∣∣∣∣∣∣∆̃n
iXi − ˜∆n

i−1Xi−1

∣∣∣q∣∣∣ = Eni−2 ||χ̃1 + χ̃2 + χ̃3|q|

≤ Kq

(
Eni−2 |χ̃1|q + Eni−2 |χ̃2|q + Eni−2 |χ̃3|q

)
and according to proof of the previous Lemma all expectations in the last line are bounded.

This yields the result.

Lemma 5.11. Let kn � n$ with an $ ∈ (0, 1). Then we have for kn+3 ≤ i ≤ Nn(1), 0 <

p < β
2
and 1 ≤ x < β

p

∆−xp/βn E[|Ṽ n
i (p)− V n

i (p)|
x
] ≤ Kxk

−x/2
n (5.38)

Proof. Using the notation

ζnj := ∆−p/βn

∣∣∣∆̃n
jX − ∆̃n

j−1X
∣∣∣p −∆−p/βn Enj−2

∣∣∣∆̃n
jX − ∆̃n

j−1X
∣∣∣p

we have

∆−p/βn (Ṽ n
i (p)− V n

i (p)) =
1

kn

i−2∑
j=i−kn−1

ζj

=
1

kn

b kn−1
2
c∑

j=0

ζi−kn−1+2j +
1

kn

b kn−2
2
c∑

j=0

ζi−kn+2j

and

∆−xp/βn E[|Ṽ n
i (p)− V n

i (p)|
x
]

≤ K

E

∣∣∣∣∣∣ 1

kn

b kn−1
2
c∑

j=0

ζi−kn−1+2j

∣∣∣∣∣∣
x+ E

∣∣∣∣∣∣ 1

kn

b kn−2
2
c∑

j=0

ζi−kn+2j

∣∣∣∣∣∣
x . (5.39)

Each of the sums can be seen as a discrete martingale w.r.t. to its own �ltration with

kn/2 (or kn/2− 1) jumps and we subsequently use the BDG inequality to bound each of

the sums individually. The corollary above gives us that the x-th conditional moment of

ζj is bounded, i.e.

Enj−2|ζj|x ≤ K (5.40)
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and so is the unconditional moment. Due to p < β
2
in particular the second (conditional)

moment exists. Therefore applying the BDG inequality yields:

E

∣∣∣∣∣∣ 1

kn

b kn−1
2
c∑

j=0

ζi−kn−1+2j

∣∣∣∣∣∣
x ≤ KE


∣∣∣∣∣∣ 1

k2
n

b kn−1
2
c∑

j=0

|ζi−kn−1+2j|2
∣∣∣∣∣∣
x/2
 , (5.41)

and for an x ≤ 2 we may use Jensen inequality:

(5.41) ≤ K
1

kxn

E

∣∣∣∣∣∣
b kn−1

2
c∑

j=0

|ζi−kn−1+2j|2
∣∣∣∣∣∣
x/2

≤ Kk−x/2n .

In the case of 2 < x ≤ 4 we use (4.4) and that the function y 7→ yx/2 is convex, and

therefore one gets again with BDG inequality, (5.40), (4.4) and k(j) := i− kn − 1 + 2j

(5.41) = KE


∣∣∣∣∣∣ 1

k2
n

b kn−1
2
c∑

j=0

(∣∣ζk(j)

∣∣2 − Ek(j)−2

[
ζ2
k(j)

])
+

1

k2
n

b kn−1
2
c∑

j=0

Ek(j)−2

[
ζ2
k(j)

]∣∣∣∣∣∣
x/2


≤ K
1

kxn
E


∣∣∣∣∣∣
b kn−1

2
c∑

j=0

(∣∣ζk(j)

∣∣2 − Ek(j)−2

[
ζ2
k(j)

])∣∣∣∣∣∣
x/2
+Kk−x/2n

≤ K
1

kxn
E


∣∣∣∣∣∣
b kn−1

2
c∑

j=0

(∣∣ζk(j)

∣∣2 − Ek(j)−2

[
ζ2
k(j)

])2

∣∣∣∣∣∣
x/4
+Kk−x/2n

≤ K
1

kxn
E

b kn−1
2
c∑

j=0

∣∣∣∣∣ζk(j)

∣∣2 − Ek(j)−2

[
ζ2
k(j)

]∣∣∣x/2
+Kk−x/2n

≤ Kk1−x
n +Kk−x/2n ≤ Kk−x/2n .

If x > 4 one repeats the previous steps (for x > 8 more than once). In the case of
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4 < x ≤ 8 (5.41) reads as

KE


∣∣∣∣∣∣ 1

k2
n

b kn−1
2
c∑

j=0

(∣∣ζk(j)

∣∣2 − Ek(j)−2

[
ζ2
k(j)

])
+

1

k2
n

b kn−1
2
c∑

j=0

Ek(j)−2

[
ζ2
k(j)

]∣∣∣∣∣∣
x/2


≤ K
1

kxn
E


∣∣∣∣∣∣
b kn−1

2
c∑

j=0

(∣∣ζk(j)

∣∣2 − Ek(j)−2

[
ζ2
k(j)

])∣∣∣∣∣∣
x/2
+Kk−x/2n

≤ K
1

kxn
E


∣∣∣∣∣∣
b kn−1

2
c∑

j=0

(∣∣ζk(j)

∣∣2 − Ek(j)−2

[
ζ2
k(j)

])2

∣∣∣∣∣∣
x/4
+Kk−x/2n

≤ K
1

kxn
E


∣∣∣∣∣∣
b kn−1

2
c∑

j=0

((∣∣ζk(j)

∣∣2 − Ek(j)−2

[
ζ2
k(j)

])2

− Ek(j)−2

[(∣∣ζk(j)

∣∣2 − Ek(j)−2

[
ζ2
k(j)

])2
])∣∣∣∣∣∣

x/4


+
1

kxn
E


∣∣∣∣∣∣
b kn−1

2
c∑

j=0

Ek(j)−2

[(∣∣ζk(j)

∣∣2 − Ek(j)−2

[
ζ2
k(j)

])2
]∣∣∣∣∣∣
x/4
+Kk−x/2n

≤ K
1

kxn
E


∣∣∣∣∣∣
b kn−1

2
c∑

j=0

((∣∣ζk(j)

∣∣2 − Ek(j)−2

[
ζ2
k(j)

])2

− Ek(j)−2

[(∣∣ζk(j)

∣∣2 − Ek(j)−2

[
ζ2
k(j)

])2
])2

∣∣∣∣∣∣
x/8


+Kk−x3/4
n +Kk−x/2n

≤ Kk1−x
n +Kk−x/2n ≤ Kk−x/2n .

Lemma 5.12. Let kn + 3 ≤ i ≤ Nn(1), 0 < p < β
2
and kn � n$ with a $ ∈ (0, 1). Then

it holds for the set Cni := {|∆−p/βn Ṽ n
i (p)− |σλ|piµ

p/β
p,β κ

p/β
p,β | > 1

2
|σλ|piµ

p/β
p,β κ

p/β
p,β } that

P(Cni ) ≤ Kιk
−β/2p+ι
n . (5.42)

Proof. Using Lemma 5.3 and Lemma 5.10 it follows that∣∣∣∆−p/βn Eni−2

∣∣∣∆̃n
iX − ∆̃n

i−1X
∣∣∣p − |στni−2

|p|λτnj−2
|
p
β
−pµ

p/β
p,β κ

p/β
p,β

∣∣∣
≤ ∆−p/βn Eni−2

∣∣∣∣∣∣∆̃n
iX − ∆̃n

i−1X
∣∣∣p − |στni−2

|p
∣∣∣∆̃n

i S − ∆̃n
i−1S

∣∣∣p∣∣∣
+
∣∣∣Ei−2

∣∣∣∆−p/βn |στni−2
|p
∣∣∣∆̃n

i S − ∆̃n
i−1S

∣∣∣p∣∣∣− |στni−2
|p|λτnj−2

|
p
β
−pµ

p/β
p,β κ

p/β
p,β

∣∣∣
≤ Kαn +K ′|στni−2

|p∆1/2
n
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with αn being de�ned as in Lemma 5.10 and therefore

|∆−p/βn V n
i (p)− |σλ|piµ

p/β
p,β κ

p/β
p,β | (5.43)

=

∣∣∣∣∣ 1

kn

i−2∑
j=i−kn−1

(
∆−p/βn Enj−2

∣∣∣∆̃n
jX − ∆̃n

j−1X
∣∣∣p − |στnj−2

|p|λτnj−2
|
p
β
−pµ

p/β
p,β κ

p/β
p,β

)∣∣∣∣∣ (5.44)

≤ 1

kn

i−2∑
j=i−kn−1

∣∣∣∆−p/βn Enj−2

∣∣∣∆̃n
jX − ∆̃n

j−1X
∣∣∣p − |στnj−2

|p|λτnj−2
|
p
β
−pµ

p/β
p,β κ

p/β
p,β

∣∣∣
≤ Kαn +K ′|στnj−2

|p∆1/2
n .

Due to the boundedness from below in (SB) it holds that |σλ|pi , |στni−2
|p > M and therefore

as αn → 0 and ∆
1/2
n → 0 an n0 ∈ N exists with Kαn + K ′|στni−2

|p∆1/2
n < 1

4
|σλ|piµ

p/β
p,β κ

p/β
p,β

for all n ≥ n0 and as such

P(|∆−p/βn V n
i (p)− |σλ|piµ

p/β
p,β κ

p/β
p,β | >

1

4
|σλ|piµ

p/β
p,β κ

p/β
p,β ) = 0 for all n ≥ n0.

For Cni it now follows with Lemma 5.11

P(Cni ) ≤ P(∆−p/βn |Ṽ n
i (p)− V n

i (p)| > 1

4
|σλ|piµ

p/β
p,β κ

p/β
p,β )

+ P(|∆−p/βn V n
i (p)− |σλ|piµ

p/β
p,β κ

p/β
p,β | >

1

4
|σλ|piµ

p/β
p,β κ

p/β
p,β )

≤ Kιk
−β/2p+ι
n

for all n ≥ n0.

Corollary 5.2. As a result of the proof above we have that for some K > 0 large enough

|∆−p/βn V n
i (p)− |σλ|piµ

p/β
p,β κ

p/β
p,β | ≤ K(αn + ∆1/2

n ) a.s. (5.45)

5.2.2 Bounding the Residual Terms

Lemma 5.13. Let 0 < p < β
2
and kn � n$ with a $ ∈ (0, 1). Then it holds that

1

n− kn − 2
E |Rn

1 (un)| ≤ Kι

(
k−β/2p+ιn ∨ uβ′n ∆(β−β′)/β

n ∨ un∆1/2−ι
n

)
.

Proof. Because we need to bound the term Ṽ n
i (p) from below we decompose r1

i (un) =

r1
i (un)1Cni + r1

i (un)1(Cni )C and note that because cos(x) is bounded we have for kn + 3 ≤
i ≤ Nn(1) by (5.42)

Eni−2

∣∣r1
i (un)1Cni

∣∣ ≤ KP(Cni ) ≤ Kιk
−β/2p+ι
n
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and as a direct consequence for all kn + 3 ≤ i

E|1{Nn(1)≥i}r
1
i (u)1Cni | ≤ Kιk

−β/2p+ι
n .

Applying this we get due to Nn(1) ≤ Cn:

1

n− kn − 2
E
∣∣Rn

1 (un)1Cni
∣∣ ≤ 1

n− kn − 2
E

 Nn(1)∑
i=kn+3

∣∣r1
i (u)1Cni

∣∣
=

1

n− kn − 2
E

[
nC∑

i=kn+3

∣∣1{Nn(1)≥i}r
1
i (u)1Cni

∣∣]

≤ 1

n− kn − 2

nC∑
i=kn+3

E|1{Nn(1)≥i}r
1
i (u)1Cni | ≤ Kιk

−β/2p+ι
n .

(5.46)

From the de�nition of the set it follows that on (Cni )C it holds that for kn+ 3 ≤ i ≤ Nn(1)

|∆−p/βn Ṽ n
i (p)− |σλ|piµ

p/β
p,β κ

p/β
p,β | ≤

1

2
|σλ|piµ

p/β
p,β κ

p/β
p,β

and as a result:

∆−p/βn Ṽ n
i (p) ≥ 1

2
|σλ|piµ

p/β
p,β κ

p/β
p,β and ∆−p/βn Ṽ n

i (p) ≤ 3

2
|σλ|piµ

p/β
p,β κ

p/β
p,β .

Because by (SB) |σλ|pi is bounded from above and below, ∆
−p/β
n Ṽ n

i (p) is now likewise.

Using the notation from Lemma 5.10 we have that

∆−1/β
n (∆̃n

iX − ∆̃n
i−1X) = χ̃1 + χ̃2 + χ̃3,

∆−1/β
n στni−2

(∆̃n
i S − ∆̃n

i−1S) = χ̃1.

Using the boundedness of ∆
−p/β
n Ṽ n

i (p) and the inequality | cos(x)− cos(y)| ≤ 2|x− y|p for
all x, y ∈ R and p ∈ (0, 1] we have

Eni−2

∣∣r1
i (un)1(Cni )C

∣∣ ≤ Eni−2

∣∣∣∣∣cos

(
un

χ̃1 + χ̃2 + χ̃3

∆
−1/β
n (Ṽ n

i (p))1/p

)
− cos

(
un

χ̃1 + χ̃2

∆
−1/β
n (Ṽ n

i (p))1/p

)∣∣∣∣∣1(Cni )C

+ Eni−2

∣∣∣∣∣cos

(
un

χ̃1 + χ̃2

∆
−1/β
n (Ṽ n

i (p))1/p

)
− cos

(
un

χ̃1

∆
−1/β
n (Ṽ n

i (p))1/p

)∣∣∣∣∣1(Cni )C

≤ K(Eni−2 |unχ̃3|β
′
+ Eni−2 |unχ̃2|)

and likewise

Eni−2

∣∣r1
i (un)1(Cni )C1{Nn(1)≥i}

∣∣ ≤ K(uβ
′

n Eni−2

∣∣1{Nn(1)≥i}χ̃3

∣∣β′ + unEni−2

∣∣1{Nn(1)≥i}χ̃2

∣∣).
(5.47)
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For the rate of convergence we get

Eni−2

∣∣1{Nn(1)≥i}χ̃2

∣∣ ≤ K∆1/2−ι
n ,

Eni−2

∣∣1{Nn(1)≥i}χ̃3

∣∣β′ ≤ K∆
β−β′
β

n

as on the set {Nn(1) ≥ i} we can apply (5.34) and (5.35) and otherwise 1{Nn(1)≥i}χ̃2,1{Nn(1)≥i}χ̃3

are zero. By inserting these into (5.47) and proceeding as in (5.46) we get

1

n− kn − 2
E
∣∣Rn

1 (un)1(Cni )C

∣∣ ≤ K
(
uβ
′

n ∆(β−β′)/β
n ∨ un∆1/2−ι

n

)
.

In the following Lemma we will, for easier readability, usually omit the condition i ≤
Nn(1) which is needed to guarantee that τni is indeed a bounded stopping time in order

to make the estimates from the previous chapter applicable. However, to proceed as in

(5.46) we are looking for estimates of the type E|1{Nn(1)≥i}r
1
i (u)1Cni | ≤ Kιk

−β/2p+ι
n and

here the indicator 1{Nn(1)≥i} suspends the restriction on i. Besides that, we usually need

i ≥ kn + 3 but this can be easily deducted from the speci�c equation.

Lemma 5.14. Let 0 < p < β
2
and kn � n$ with a $ ∈ (0, 1). Then it holds that

1

n− kn − 2
E|Rn

2 (un)| ≤ K(k−β/2p+ιn ∨ un∆1/2
n ).

Proof. As with the previous term we bound Ṽ n
i (p) by decomposing r2

i (un) = r2
i (un)1Cni +

r2
i (un)1(Cni )C and note that because cos(x) is bounded we have as in the previous lemma

using (5.42)

Eni−2

∣∣r2
i (un)1Cni

∣∣ ≤ KP(Cni ) ≤ Kk−β/2p+ιn and
1

n− kn − 2
Eni−2

∣∣Rn
2 (un)1Cni

∣∣ ≤ Kk−β/2p+ιn ,

where we proceed as in (5.46). Using the boundedness of ∆
−p/β
n Ṽ n

i (p) and the inequality

| cos(x)− cos(y)| ≤ 2|x− y|p for all x, y ∈ R and p ∈ (0, 1] we have

Eni−2

∣∣r2
i (un)1(Cni )C

∣∣
= 1(Cni )CEni−2

∣∣∣∣∣∣∣∣∣∣
cos

unστni−2
(∆̃n

i S − ∆̃n
i−1S)

Ṽ n
i (p)1/p

− cos

un
στni−2

(
∆̃n
i S −

(
λτn
i−2

λτn
i−3

) 1
β
−1

∆̃n
i−1S

)
Ṽ n
i (p)1/p


∣∣∣∣∣∣∣∣∣∣

≤ K1(Cni )Cun

∣∣∣∣∣ στni−2

∆
−1/β
n Ṽ n

i (p)1/p

∣∣∣∣∣Eni−2

∣∣∣∣∣∣∆−1/β
n ∆̃n

i−1S −

(
λτni−2

λτni−3

) 1
β
−1

∆−1/β
n ∆̃n

i−1S

∣∣∣∣∣∣
≤ Kun

∣∣∣∣∣∣∣
(
λτni−3

) 1
β
−1

−
(
λτni−2

) 1
β
−1

(
λτni−3

) 1
β
−1

∣∣∣∣∣∣∣ .
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Now as in the proof of Lemma 5.9 we apply Lemma 5.7 on the process λ and the function

f(x) = x
1
β
−1. Then the boundedness from below of λt and Lemma 5.1 yield

E
∣∣r2
i (un)1(Cni )C

∣∣ ≤ Kun∆1/2
n .

Proceeding as in (5.46) we get

1

n− kn − 2
E
∣∣Rn

2 (un)1(Cni )C

∣∣ ≤ Kun∆1/2
n .

Lemma 5.15. Let 0 < p < β
2
and kn � n$ with a $ ∈ (0, 1) then it holds that

1

n− kn − 2
E|Rn

3 (un)| ≤ K(uβnαn ∨ uβnk−1/2
n ∨ k−β/2p+ιn ).

Proof. As with the previous term we bound Ṽ n
i (p) by decomposing r3

i (un) = r3
i (un)1Cni +

r3
i (un)1(Cni )C and note that because exp(−x) is bounded for all x ≥ 0 we have again by

(5.42)

Eni−2

∣∣r3
i (un)1Cni

∣∣ ≤ KP(Cni ) ≤ Kk−β/2p+ιn and
1

n− kn − 2
Eni−2

∣∣Rn
3 (un)1Cni

∣∣ ≤ Kk−β/2p+ιn .

In order to deal with the term including 1(Cni )C we use a �rst order Taylor expansion of

(5.13) and get that

Eni−2

[
exp

(
−
Aβu

β
n|στni−2

|β|λτnj−2
|1−β((φni )1−β + (φni−1)1−β)

∆−1
n Ṽ n

i (p)β/p

)]

− Eni−2

[
exp

(
−
Cp,βu

β
n|στni−2

|β|λτnj−2
|1−β((φni )1−β + (φni−1)1−β)

(|σλ|pi )β/p

)]
=
(

∆−p/βn Ṽ n
i (p)− |σλ|piµ

p/β
p,β κ

p/β
p,β

)
Ei−2

[
f ′i,un(εi)

]
for some εi between ∆

−p/β
n Ṽ n

i (p) and |σλ|piµ
p/β
p,β κ

p/β
p,β . Again by the conditions on the set

(Cni )C , ∆
−p/β
n Ṽ n

i is bounded from below and above, as is |στni−2
||λτni−2

|, |σλ|pi by combining

the Assumptions SB and SC. Then using Lemma 5.6 we have

E|r3
i (un)1(Cni )C | ≤ KuβnE

∣∣∣∆−p/βn Ṽ n
i (p)− |σλ|piµ

p/β
p,β κ

p/β
p,β

∣∣∣
≤ KuβnE

[∣∣∣∆−p/βn (Ṽ n
i (p)− V n

i (p))
∣∣∣+
∣∣∣∆−p/βn V

n

i (p)− |σλ|piµ
p/β
p,β κ

p/β
p,β

∣∣∣]
≤ Kuβn(k−1/2

n ∨ αn ∨∆1/2
n ) ≤ Kuβn(k−1/2

n ∨ αn)

where the last line holds by (5.38) and (5.45).
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Lemma 5.16. Let 0 < p < β
2
, kn � n$ with a $ ∈ (0, 1) and un � n−% for a % ∈ (0, 1)

then it holds that

1

n− kn − 2
E[|Rn

4 (un)] ≤ Kuβn∆nkn

Proof. We prove Lemma 5.16 with a Taylor expansion of second order of the function

fi,u(x). For this purpose we start by decomposing with r̃4
i = (|σλ|pi − |στni−2

|p|λτni−2
|
p
β
−p)

E |Rn
4 (un)| ≤E

∣∣∣∣∣∣Rn
4 (un)− µp/βp,β κ

p/β
p,β

Nn(1)∑
i=kn+3

Eni−2

[
f ′i,un(µ

p/β
p,β κ

p/β
p,β |στni−2

|p|λτni−2
|
p
β
−p)
]
r̃4
i

∣∣∣∣∣∣
(5.48)

+ E

∣∣∣∣∣∣µp/βp,β κ
p/β
p,β

Nn(1)∑
i=kn+3

(r̃4
i − Eni−kn−3

[
r̃4
i

]
)Eni−2

[
f ′i,un(µ

p/β
p,β κ

p/β
p,β |στni−2

|p|λτni−2
|
p
β
−p)
]∣∣∣∣∣∣

(5.49)

+ E

∣∣∣∣∣∣µp/βp,β κ
p/β
p,β

Nn(1)∑
i=kn+3

Eni−2

[
f ′i,un(µ

p/β
p,β κ

p/β
p,β |στni−2

|p|λτni−2
|
p
β
−p)
]
Ei−kn−3

[
r̃4
i

]∣∣∣∣∣∣ .
(5.50)

In the sequel prove the same rate of convergence for all three terms on the right hand

side. Starting with (5.48), from the de�nition of r4
i we have with the function (5.13)

r4
i (un) = Eni−2

[
exp

(
−
Cp,βu

β
n|στni−2

|β|λτni−2
|1−β|((φni )1−β + (φni−1)1−β)

(|σλ|pi )β/p

)]
− E[exp(−uβnCp,β((φni )1−β + (φni−1)1−β))]

= Eni−2

[
fi,un(µ

p/β
p,β κ

p/β
p,β |σλ|

p
i )− fi,un(µ

p/β
p,β κ

p/β
p,β |στni−2

|p|λτni−2
|
p
β
−p)
]
.

Using Taylor expansion we get for some εi between µ
p/β
p,β κ

p/β
p,β |σλ|

p
i and µ

p/β
p,β κ

p/β
p,β |στni−2

|p|λτni−2
|
p
β
−p

that

E

∣∣∣∣∣∣Rn
4 (un)−

Nn(1)∑
i=kn+3

r̃4
iEni−2

[
f ′i,un(µ

p/β
p,β κ

p/β
p,β |στni−2

|p|λτni−2
|
p
β
−p)
]
µ
p/β
p,β κ

p/β
p,β

∣∣∣∣∣∣
= E

∣∣∣∣∣∣
Nn(1)∑
i=kn+3

1

2
(µ

p/β
p,β κ

p/β
p,β )2uβn(r̃4

i )
2Eni−2

[
f ′′i,un(εi)

uβn

]∣∣∣∣∣∣ ≤ Kuβnkn,

proceeding as in (5.46) and using that with (5.24) we have

E
[(
r̃4
i

)2
]
≤ kn∆n
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and furthermore that
∣∣∣Ei−2

[
f ′′i,un (εi)

uβn

]∣∣∣ is bounded because of Lemma 5.6 and the bound-

edness of |σt|−1, λ−1
t . For (5.50) we note again that because µp/βp,β κ

p/β
p,β |στni−2

|p|λτni−2
|
p
β
−p

is bounded from above and below,
∣∣∣Ei−2

[
f ′i,un(µ

p/β
p,β κ

p/β
p,β |στni−2

|p|λτni−2
|
p
β
−p)
]∣∣∣ ≤ Kuβn by

Lemma 5.6. Furthermore we obtain with (5.23)

∣∣Ei−kn−3

[
r̃4
i

]∣∣ ≤ Kkn∆n (5.51)

and therefore (again proceeding as in (5.46)):

E

∣∣∣∣∣∣µp/βp,β κ
p/β
p,β

Nn(1)∑
i=kn+3

Eni−2

[
f ′i,un(µ

p/β
p,β κ

p/β
p,β |στni−2

|p|λτni−2
|
p
β
−p)
]
Eni−kn−3

[
r̃4
i

]∣∣∣∣∣∣
E

µp/βp,β κ
p/β
p,β

Nn(1)∑
i=kn+3

∣∣∣Eni−2

[
f ′i,un(µ

p/β
p,β κ

p/β
p,β |στni−2

|p|λτni−2
|
p
β
−p)
]∣∣∣ ∣∣Eni−kn−3

[
r̃4
i

]∣∣
≤ Kuβnkn.

For (5.49) it remains to prove similar rates of convergence for the sum of di�erences

Ξi = r̃4
i − Ei−kn−3 [r̃4

i ]. Applying (5.24) to r̃4
i we have

E
∣∣r̃4
i

∣∣q ≤ K(kn∆n)q/2∧1 for all q ∈ [0, 2]

and therefore with (5.51)

E |Ξi|q ≤ K(kn∆n)q/2∧1 for all q ∈ [0, 2]. (5.52)

To get the right order of convergence we have to apply (5.52) with q = 2. We achieve

this by applying the BDG inequality. As Ξi is the di�erence of r̃4
i and its conditional

expectation with respect to Fnτni−kn−3
, the sums over Ξi spaced by kn + 1 steps are discrete

martingales, meaning

En(j−1)+(l−1)(kn+1)

[
l∑

i=1

Ξkn+3+(j−1)+(i−1)(kn+1)

]
=

l−1∑
i=1

Ξkn+3+(j−1)+(i−1)(kn+1),

for all j = 1, . . . , kn + 1 and l = 1, . . . , b(Nn(1)− kn − 2)/(kn + 1)c.

Therefore our discrete martingales are

Aj =

b(Nn(1)−kn−2)/(kn+1)c∑
i=1

Ξkn+3+(j−1)+(i−1)(kn+1), j = 1, . . . , kn + 1.
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Because these objects have b(Nn(1)−kn−2)/(kn+1)c ≤ bNn(1)/knc ≤ bCn/knc elements

we get with (5.52) and BDG inequality

E |Aj| ≤ KE

∣∣∣∣∣∣
b(Nn(1)−kn−2)/(kn+1)c∑

i=1

(Ξkn+3+(j−1)+(i−1)(kn+1))
2

∣∣∣∣∣∣
1/2

≤ K (bCn/knc( kn∆n))1/2 ≤ K.

Because kn∆n → 0 we may assume Nn(1) to be large in enough in relation to kn, i.e.

Nn(1) ≥ 2kn + 3 (which also yields b(Nn(1) − kn − 2)/(kn + 1)c ≥ 1), such that we can

decompose the whole sum of the Ξi as

Nn(1)∑
i=kn+3

Ξi =
kn+1∑
j=1

Aj +

Nn(1)∑
i=2kn+4+(b(Nn(1)−kn−2)/(kn+1)c−1)(kn+1)

Ξi, (5.53)

As the second sum in (5.53) has at most kn elements we have that

1

n− kn − 2
E

∣∣∣∣∣∣
Nn(1)∑
i=kn+3

Ξi

∣∣∣∣∣∣ ≤ K(∆nkn).

Lemma 5.17. Let kn � n$ with $ ∈ (0, 1) and un � n−% for % ∈ (0, 1), then it holds for

0 < p < β/2, ι > 0,

1

n− kn − 2
E|Zn(un)− Zn

(un)| ≤ K
(
k−β/2p+ιn ∨∆1/2

n uβ/2−ιn

(
k−1/2
n ∨ αn ∨ (kn∆n)1/2

)1/2
)
.

(5.54)

Proof. Like before we decompose Zn(un) − Z
n
(un) = En

1 (un) + En
2 (un) with En

1 (un) =∑Nn(1)
i=kn+1(zi(un) − zi(un))1Cni , E

n
2 (un) =

∑Nn(1)
i=kn+1(zi(un) − zi(un))1(Cni )c . As usual x 7→

cos(x) and x 7→ exp(−x) are bounded functions and therefore with (5.42) it holds that

1

n− kn − 2
E [|En

1 (un)|] ≤ KP(Cni ) ≤ Kk−β/2p+ιn .

Recalling the notation of L(p, u, β) we have

L(p, un, β) = Eni−2

[
exp(−uβnCp,β((φni )1−β + (φni−1)1−β)

]
.

Using the inequalities (5.11), (5.12), 2xy ≤ x2 + y2 for x, y ∈ R+, p ∈ (0, 2], cos(x) =
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cos(|x|) and the line above we get for arbitrarily small ι > 0

Eni−2

[
|(zi(un)− zi(un)1(Cni )C |2

]

≤ 2Eni−2


∣∣∣∣∣∣∣∣∣∣
cos

un
στni−2

(
∆̃n
i S −

(
λτn
i−2

λτn
i−3

) 1
β
−1

∆̃n
i−1S

)
Ṽ n
i (p)1/p


− cos

unλ1−1/β
τni−2

∆̃n
i S − λ

1−1/β
τni−3

∆̃n
i−1S

∆
1/β
n µ

1/β
p,β κ

1/β
p,β

∣∣∣∣∣∣
2

1(Cni )c


+ 2Eni−2

[∣∣∣∣∣Eni−2

[
exp

(
−
Aβu

β
n|στni−2

|β|λτni−2
|1−β((φni )1−β + (φni−1)1−β)

∆−1
n Ṽ n

i (p)β/p

)]

− Eni−2

[
exp(−uβnCp,β((φni )1−β + (φni−1)1−β)

]∣∣∣∣2 1(Cni )C

]

≤ Kuβ−ιn Eni−2

∣∣∣∣∣ |στni−2
||λτni−2

|
1
β
−1

Ṽ n
i (p)1/p

− 1

∆
1/β
n µ

1/β
p,β κ

1/β
p,β

∣∣∣∣∣
β−ι

1(Cni )C |λ
1−1/β
τni−2

∆̃n
i S − λ

1−1/β
τni−3

∆̃n
i−1S|β−ι


+KuβnEni−2

∣∣∣∣∣
(
Aβ|στni−2

|β|λτni−2
|1−β

∆−1
n Ṽ n

i (p)β/p
− Aβ
µp,βκp,β

)
1(Cni )C |(φni )1−β + (φni−1)1−β|

∣∣∣∣∣ (5.55)

Then together with the fact that by Lemma 5.3

∆(−1/β)(β−ι)
n Eni−2[|λ1−1/β

τni−2
∆̃n
i S − λ

1−1/β
τni−3

∆̃n
i−1S|β−ι] = κ

(β−ι)/β
β−ι,β µ

(β−ι)/β
β−ι,β , (5.56)

is a constant, E
∣∣(φni )1−β + (φni−1)1−β

∣∣ < ∞ and the measurability of the other terms we

have

(5.55) ≤Kιu
β−ι
n

∣∣∣∣∣ |στni−2
||λτni−2

|
1
β
−1µ

1/β
p,β κ

1/β
p,β −∆

−1/β
n Ṽ n

i (p)1/p

∆
−1/β
n Ṽ n

i (p)1/pµ
1/β
p,β κ

1/β
p,β

∣∣∣∣∣
β−ι

1(Cni )C

+Kuβn

∣∣∣∣∣ |στni−2
|β|λτni−2

|1−βµp,βκp,β −∆−1
n Ṽ n

i (p)β/p

∆−1
n Ṽ n

i (p)β/pµp,βκp,β

∣∣∣∣∣1(Cni )C .

Like before we get the boundedness from above and below for ∆
−p/β
n Ṽ n

i via the conditions

on the set Cni and for |στni−2
|, |σλ|pi by (SB). Using the inequality for x, y ∈ R+ and some

ε ∈ [x, y]

|xq − yq| = q|εq−1| |x− y| (5.57)

≤

q|min(x, y)q−1||x− y|, if q < 1

q|max(x, y)q−1||x− y|, if q ≥ 1
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it follows that∣∣∣∣∣ |στni−2
||λτni−2

|
1
β
−1µ

1/β
p,β κ

1/β
p,β −∆

−1/β
n Ṽ n

i (p)1/p

∆
−1/β
n Ṽ n

i (p)1/pµ
1/β
p,β κ

1/β
p,β

∣∣∣∣∣
β−ι

1(Cni )C

≤ Kι

∣∣∣∣∣∣∣
|στni−2

||λτni−2
|
1
β
−1µ

1/β
p,β κ

1/β
p,β −∆

−1/β
n Ṽ n

i (p)1/p(
|σλ|piµ

p/β
p,β κ

p/β
p,β

)1/p

µ
1/β
p,β κ

1/β
p,β

∣∣∣∣∣∣∣
β−ι

1(Cni )C

(5.57)

≤ Kι

∣∣∣∣1p max
(
|στni−2

|p|λτni−2
|
p
β
−pµ

p/β
p,β κ

p/β
p,β ,∆

−p/β
n Ṽ n

i (p)
)1/p−1

1(Cni )C∣∣∣∆−p/βn Ṽ n
i (p)− |στni−2

|p|λτni−2
|
p
β
−pµ

p/β
p,β κ

p/β
p,β

∣∣∣∣∣∣β−ι
≤ Kι

∣∣∣∆−p/βn Ṽ n
i (p)− |στni−2

|p|λτni−2
|
p
β
−pµ

p/β
p,β κ

p/β
p,β

∣∣∣β−ι
and likewise ∣∣∣∣∣ |στni−2

|β|λτni−2
|1−βµp,βκp,β −∆−1

n Ṽ n
i (p)β/p

∆−1
n Ṽ n

i (p)β/pµp,βκp,β

∣∣∣∣∣1(Cni )C

≤ K
∣∣∣∆−p/βn Ṽ n

i (p)− |στni−2
|p|λτni−2

|
p
β
−pµ

p/β
p,β κ

p/β
p,β

∣∣∣ .
Together we have

(5.55) ≤ 1(Cni )Cu
β−ι
n

(
Kι

∣∣∣∆−p/βn Ṽ n
i (p)− |στni−2

|p|λτni−2
|
p
β
−pµ

p/β
p,β κ

p/β
p,β

∣∣∣β−ι
+K

∣∣∣∆−p/βn Ṽ n
i (p)− |στni−2

|p|λτni−2
|
p
β
−pµ

p/β
p,β κ

p/β
p,β

∣∣∣) .
Because β−ι > 1 (for ι chosen small enough) and we may, with a possibly modi�ed version

of Cni , assume that on the set (Cni )C it holds |∆−p/βn Ṽ n
i (p)− |στni−2

|p|λτni−2
|
p
β
−pµ

p/β
p,β κ

p/β
p,β | ≤ 1

we have

Eni−2

[
|(zi(un)− zi(un)1(Cni )C |2

]
≤ Kuβ−ιn Ei−2

∣∣∣∆−p/βn Ṽ n
i (p)− |στni−2

|p|λτni−2
|
p
β
−pµ

p/β
p,β κ

p/β
p,β

∣∣∣ .
(5.58)

In order to bound En
2 (un) we note that by Lemma 5.4 and using the same arguments for

zi(un)

Eni−2 [zi(un)] = 0 = Eni−2 [zi(un)] .

As a result it holds that for all i, j ∈ N where |i− j| ≥ 2 (assuming here w.l.o.g. j > i)

E
[
(zi(un)− zi(un))(zj(un)− zj(un))1(Cni )C1(Cnj )C1{Nn(1)+3≥j}1{Nn(1)+3≥i}

]
= E

[
1(Cni )C1(Cnj )C1{Nn(1)+3≥j}1{Nn(1)+3≥i}(zi(un)− zi(un))Enj−2 [(zj(un)− zj(un))]

]
= 0,
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using that 1{Nn(1)+3≥j},1{Nn(1)+3≥i},1(Cni )C and 1(Cnj )C are Fnτnj−2
-measurable. We note that

due to the boundedness of zi(un) and zi(un) we have that
1

n−kn−2

(∑Nn(1)+3
i=kn+3 (zi(un)− zi(un))1(Cni )c

)
and 1

n−kn−2
En

2 (un) are asymptotically equiva-

lent. With the last line, 2|xy| ≤ x2 + y2 and (5.58) we get that

E

Nn(1)+3∑
i=kn+3

(zi(un)− zi(un))1(Cni )c

2
= E

[
nC+3∑
i=kn+3

(
(zi(un)− zi(un))1(Cni )C1{Nn(1)+3≥i}

(
(zi(un)− zi(un))1(Cni )C1{Nn(1)+3≥i}

]
+(zi−1(un)− zi−1(un))1(Cni−1)C1{Nn(1)+3≥i−1} + (zi+1(un)− zi+1(un))1(Cni+1)C1{Nn(1)+3≥i+1}

))

+ E

 ∑
kn+3≤i,j≤nC+3

|i−j|≥2

(zi(un)− zi(un))(zj(un)− z1
j(un))1(Cni )C1(Cnj )C1{Nn(1)+3≥j}1{Nn(1)+3≥i}


≤ E

[
nC+3∑
i=kn+3

3(zi(un)− zi(un))2
1(Cni )C1{Nn(1)+3≥i}

]

≤ KE

[
nC+3∑
i=kn+3

(zi(un)− zi(un))2
1(Cni )C

]

≤ Kuβ−ιn

nC+3∑
i=kn+3

E
[∣∣∣∆−p/βn Ṽ n

i (p)− |στni−2
|p|λτni−2

|
p
β
−pµ

p/β
p,β κ

p/β
p,β

∣∣∣]
≤ Kuβ−ιn

nC+3∑
i=kn+3

E
[∣∣∣∆−p/βn Ṽ n

i (p)−∆−p/βn V
n

i (p)
∣∣∣+
∣∣∣∆−p/βn V

n

i (p)− |σλ|piµ
p/β
p,β κ

p/β
p,β

∣∣∣
+
∣∣∣|στni−2

|p|λτni−2
|
p
β
−pµ

p/β
p,β κ

p/β
p,β − |σλ|

p
iµ

p/β
p,β κ

p/β
p,β

∣∣∣ ]
≤ Kuβ−ιn (nC − kn + 1)

(
k−1/2
n ∨ αn ∨∆1/2

n ∨ (kn∆n)1/2
)
,

where the last line results from (5.38), (5.45) and (5.24). Using this we get

1

n− kn − 2
E

Nn(1)+3∑
i=kn+3

(zi(un)− zi(un))1(Cni )c


≤ 1

n− kn − 2
E

Nn(1)+3∑
i=kn+3

(zi(un)− zi(un))1(Cni )c

21/2

≤ Kuβ/2−ιn

(nC − kn + 1)1/2

n− kn − 2

(
k−1/2
n ∨ αn ∨ (kn∆n)1/2

)1/2
,

which yields the result.
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Corollary 5.3. As a result of the previous Lemmas 5.13, 5.14, 5.15, 5.16 and 5.17, we

have that if un � n−% with a % ∈ (0, 1) and kn � n$, $ ∈ (0, 1) under the conditions

β′ <
β

2
,

1

3
∨ 1

8%
< p <

β

2
, $ ≥ 2

3
,

1

3β
< % <

1

β
and in addition (5.59)

1

β
<
$

p
− %, (5.60)

2$ − %β < 1 (5.61)

it holds:
√
n

u
β/2
n

1

n− kn − 2
|Zn(un)− Zn

(un)| P−→ 0, (5.62)
√
n

u
β/2
n

1

n− kn − 2
|Rn

1 (un)| P−→ 0, (5.63)
√
n

u
β/2
n

1

n− kn − 2
|Rn

2 (un)| P−→ 0, (5.64)
√
n

u
β/2
n

1

n− kn − 2
|Rn

3 (un)| P−→ 0, (5.65)
√
n

u
β/2
n

1

n− kn − 2
|Rn

4 (un)| P−→ 0. (5.66)

Proof. In order to apply Lemmas 5.13, 5.14, 5.15 and 5.17 we need that
√
n

u
β/2
n

Kιk
−β/2p+ι
n � n1/2n%β/2n−$(β/2p+ι)

goes to zero. Because we can choose an arbitrarily small but �xed ι > 0 the dependency

of Kι is irrelvant and the last line is implied by

1

2
+ %

β

2
−$(

β

2p
− ι) < 0⇐ 1

2
+ %

β

2
−$ β

2p
< 0⇔ (5.60).

Furthermore we have to show that for Lemma 5.13
√
n

u
β/2
n

uβ
′

n ∆
β−β′
β

n → 0, (5.67)
√
n

u
β/2
n

un∆1/2−ι
n → 0. (5.68)

The last condition is immediately ful�lled due to β/2 < 1 and due to the same reason the

condition of Lemma 5.14
√
n

u
β/2
n

un∆1/2
n → 0
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is ful�lled likewise. For Lemma 5.15 we split up αn = ∆
β
2
p+1
β+1
∧( p

β′∧1− p
β

)∧ 1
2
−ι

n into

√
nuβ/2n ∆

β
2
p+1
β+1
−ι

n → 0, (5.69)
√
nuβ/2n ∆

( p
β′∧1− p

β
)−ι

n → 0, (5.70)
√
nuβ/2n ∆

1
2
−ι

n → 0, (5.71)
√
nuβ/2n k−1/2

n → 0, (5.72)

and �nally for Lemma 5.16

√
nuβ/2n ∆nkn → 0. (5.73)

The second condition for Lemma 5.17
√
n

u
β/2
n

∆1/2
n uβ/2−ιn

(
k−1/2
n ∨ αβn ∨ (kn∆n)β/2

)1/2 → 0 (5.74)

is ful�lled because ι can be chosen arbitrarily small and therefore

(remember αn = ∆
β
2
p+1
β+1
∧(( p

β′∧1)− p
β

)∧ 1
2
−ι

n )

u−ιn
(
k−1/2
n ∨ αβn ∨ (kn∆n)β/2

)1/2 → 0.

Starting with (5.67)

(5.67)⇐ 1

2
+ %

(
β

2
− β′

)
− β − β′

β
< 0⇔ 1

2
+ %

(
β

2
− β′

)
− 1

β

(
β

2
− β′

)
− 1

2
< 0

⇔
(
%− 1

β

)(
β

2
− β′

)
< 0

which is true by (5.59).

Continuing with (5.69) we have

(5.69)⇐ 1 < %β +
β

β + 1
(p+ 1)

which is, because of % > 1
3β

and β+1
β
< 2, ful�lled if

4

3
< p+ 1⇔ p >

1

3
.

Continuing with the second term from αn, in the case of p ≤ β′

(5.70)⇐ 1 < 2p
β − β′

ββ′
+ %β.

Because of β′ < β
2
this is true if

1 <
2p

β
+ %β.
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As the function β 7→ 2p
β

+ %β achieves its minimum at (β∗)2 = 2p
%
this is true if

β∗ < 2p+ %(β∗)2 ⇔ 2p

%
< 16p2 ⇔ p >

1

8%
⇐ (5.59).

In the case of p > β′ (5.70) is true because

p <
β

2
⇔ 1− p

β
>

1

2
.

(5.71) is trivial because, for ι small enough, ∆−ιn u
β/2
n → 0. For (5.72) we have

(5.72)⇔ 1

2
− %β

2
−$1

2
< 0⇔ 1 < %β +$

which is ful�lled if

1 ≤ 1

3
+$ ⇔ $ ≥ 2

3
⇐ (5.59)

as % > 1
3β

by (5.59). For the last condition to hold true we have

(5.73)⇐ 1

2
− %β

2
− (1−$) < 0⇔ (5.61).

Remark 5.2. The above choice of parameters %,$ and p is feasible if we do not know β.

One possible choice for example could be % = 1
3
, $ = 2

3
and any p ∈ (3

8
, 1

2
).

5.2.3 Limiting Behavior of Z
n

Lemma 5.18. Let un � n−%, % ∈ (0, 1/2) and vn = ρun with 0 < ρ ≤ 1 then it holds that

for all 2 < i < n when n→∞

1

u
β/2
n v

β/2
n

E [zi(un)zi(vn)] −→ Cp,βκβ,β
2 + 2ρβ − (1− ρ)β − (1 + ρ)β

2ρβ/2
,

1

u
β/2
n v

β/2
n

E [zi(un)zi−1(vn)] −→ Cp,βκβ,β
2 + 2ρβ − (1− ρ)β − (1 + ρ)β

4ρβ/2

and if ρ ≥ 1

1

u
β/2
n v

β/2
n

E [zi(un)zi(vn)] −→ Cp,βκβ,β
2 + 2ρβ − (ρ− 1)β − (1 + ρ)β

2ρβ/2
,

1

u
β/2
n v

β/2
n

E [zi(un)zi−1(vn)] −→ Cp,βκβ,β
2 + 2ρβ − (ρ− 1)β − (1 + ρ)β

4ρβ/2
,

with the same results when we exchange positions of un, vn.



86

Proof. Throughout the proof we assume 0 < ρ ≤ 1 and discuss the case ρ ≥ 1 in the end.

Recalling the de�nition of zi(un) we have

zi(un)zi(vn) =

cos

unλ−1/β+1
τni−2

∆̃n
i S − λ

−1/β+1
τni−3

∆̃n
i−1S

∆
1/β
n µ

1/β
p,β κ

1/β
p,β

− L(p, un, β)


cos

vnλ−1/β+1
τni−2

∆̃n
i S − λ

−1/β+1
τni−3

∆̃n
i−1S

∆
1/β
n µ

1/β
p,β κ

1/β
p,β

− L(p, vn, β)

 .

Using the shorthand notation ∆̂n
i S = λ

−1/β+1
τni−2

∆̃n
i S and the equality

cos(x) cos(y) = 1
2

(cos(x− y) + cos(x+ y)) we have that conditionally on Fτni−2

cos

un ∆̂n
i S − ∆̂n

i−1S

∆
1/β
n µ

1/β
p,β κ

1/β
p,β

 cos

vn ∆̂n
i S − ∆̂n

i−1S

∆
1/β
n µ

1/β
p,β κ

1/β
p,β


=

1

2

cos

(un − vn)∆̂n
i S + (−un + vn)∆̂n

i−1S

∆
1/β
n µ

1/β
p,β κ

1/β
p,β

+ cos

(un + vn)∆̂n
i S + (−un − vn)∆̂n

i−1S

∆
1/β
n µ

1/β
p,β κ

1/β
p,β

 ,

cos

un ∆̂n
i S − ∆̂n

i−1S

∆
1/β
n µ

1/β
p,β κ

1/β
p,β

 cos

vn ∆̂n
i−1S − ∆̂n

i−2S

∆
1/β
n µ

1/β
p,β κ

1/β
p,β


=

1

2

cos

un∆̂n
i S + (−un − vn)∆̂n

i−1S + vn∆̂n
i−2S

∆
1/β
n µ

1/β
p,β κ

1/β
p,β


+ cos

un∆̂n
i S + (−un + vn)∆̂n

i−1S − vn∆̂n
i−2S

∆
1/β
n µ

1/β
p,β κ

1/β
p,β

 .

With the same arguments and notation as in Lemma 5.3 and 0 < ρ ≤ 1, conditionally

on Fτni−2
we can calculate the exact distributions of the random variables above, namely:

(un − vn)∆−1/β
n ∆̂n

i S + (−un + vn)∆−1/β
n ∆̂n

i−1S

∼ un(1− ρ)λ
−1/β+1
τni−2

((φni λτni−2
)1−β)1/βS ′1 + un(ρ− 1)λ

−1/β+1
τni−3

(((φni−1λτni−3
)1−β)1/βS ′′1

∼
(
uβn(1− ρ)β((φni )1−β) + uβn(1− ρ)β((φni−1)1−β)

)1/β
S ′1,

∼ un(1− ρ)S ′1((φni )1−β + (φni−1)1−β)1/β (5.75)

and in the same manner, again conditionally on Fτni−2

(un + vn)∆−1/β
n ∆̂n

i S+(−un − vn)∆−1/β
n ∆̂n

i−1S ∼ un(1 + ρ)S ′1((φni )1−β + (φni−1)1−β)1/β

un∆−1/β
n ∆̂n

i S+(−un − vn)∆−1/β
n ∆̂n

i−1S + vn∆−1/β
n ∆̂n

i−2S

∼ unS
′
1((φni )1−β + (1 + ρ)β(φni−1)1−β + ρβ(φni−2)1−β)1/β,

un∆−1/β
n ∆̂n

i S+(−un + vn)∆−1/β
n ∆̂n

i−1S − vn∆−1/β
n ∆̂n

i−2S

∼ unS
′
1((φni )1−β + (1− ρ)β(φni−1)1−β + ρβ(φni−2)1−β)1/β. (5.76)
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In the previous calculations we can see that exchanging roles of un and vn is irrelevant

to the distributions as only the absolute value of the factors in front of ∆̂n
i S, ∆̂

n
i−1S and

∆̂n
i−2S is relevant. Using these distributions and the equalities on cos from above we can

explicitly compute the expectations using the result of Lemma 5.4 and its proof

1

u
β/2
n v

β/2
n

E [zi(un)zi(vn)] =
1

u
β/2
n v

β/2
n

E

[
1

2
cos

(
un(1− ρ)S ′1((φni )1−β + (φni−1)1−β)1/β

µ
1/β
p,β κ

1/β
p,β

)
+

1

2
cos

(
un(1 + ρ)S ′1((φni )1−β + (φni−1)1−β)1/β

µ
1/β
p,β κ

1/β
p,β

)
− L(p, un, β)L(p, vn, β)

]

=
1

2uβnρβ/2
E
[
exp

(
−Cp,βuβn(1− ρ)β((φni )1−β + (φni−1)1−β)

)
+ exp

(
−Cp,βuβn(1 + ρ)β((φni )1−β + (φni−1)1−β)

)]
− 1

uβnρβ/2
E[exp(−uβnCp,β((φni )1−β + (φni−1)1−β))]E[exp(−uβnρβCp,β((φni )1−β + (φni−1)1−β))],

1

u
β/2
n v

β/2
n

E [zi(un)zi−1(vn)]

=
1

u
β/2
n v

β/2
n

E

[
1

2
cos

(
unS

′
1((φni )1−β + (1 + ρ)β(φni−1)1−β + ρβ(φni−2)1−β)1/β

µ
1/β
p,β κ

1/β
p,β

)

+
1

2
cos

(
unS

′
1((φni )1−β + (1− ρ)β(φni−1)1−β + ρβ(φni−2)1−β)1/β

µ
1/β
p,β κ

1/β
p,β

)
− L(p, un, β)L(p, vn, β)

]

=
1

2u
β/2
n v

β/2
n

E
[
exp

(
−Cp,βuβn((φni )1−β + (1 + ρ)β(φni−1)1−β + ρβ(φni−2)1−β)

)
+ exp

(
−Cp,βuβn((φni )1−β + (1− ρ)β(φni−1)1−β + ρβ(φni−2)1−β)

)]
− 1

u
β/2
n v

β/2
n

E[exp(−uβnCp,β((φni )1−β + (φni−1)1−β))]E[exp(−uβnρβCp,β((φni )1−β + (φni−1)1−β))].

With ε1,i ∈ [0, uβn(1 − ρ)βCp,β((φni )1−β + (φni−1)1−β)], ε2,i ∈ [0, uβn(1 + ρ)βCp,β((φni )1−β +

(φni−1)1−β)],

ε3,i ∈ [0, uβnCp,β((φni )1−β + (φni−1)1−β)] and ε4,i ∈ [0, uβnρ
βCp,β((φni )1−β + (φni−1)1−β)] we have
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that

1

u
β/2
n v

β/2
n

E [zi(un)zi(vn)] =
−Cp,βuβn(1− ρ)βE

[
exp(−ε1,i)((φni )1−β + (φni−1)1−β)

]
+ 1

2uβnρβ/2

+
−Cp,βuβn(1 + ρ)βE

[
exp(−ε2,i)((φni )1−β + (φni−1)1−β)

]
+ 1

2uβnρβ/2

−
2
(
−uβnCp,βE

[
exp(−ε3,i)((φni )1−β + (φni−1)1−β)

]
(−vβnCp,β)E

[
exp(−ε4,i)((φni )1−β + (φni−1)1−β)

])
2uβnρβ/2

−
2
(
−uβnCp,βE

[
exp(−ε3,i)((φni )1−β + (φni−1)1−β)

]
− uβnρβCp,βE

[
exp(−ε4,i)((φni )1−β + (φni−1)1−β)

])
2uβnρβ/2

− 2

2uβnρβ/2
.

Because E
[
(φni )1−β] ,E [(φni )1−β] ,E [(φni )1−β] < M for some constant M we have that

for any ε > 0

P
(
uβn(φni )1−β > ε

)
= P

(
(φni )1−β >

ε

uβn

)
≤ uβn

E
[
(φni )1−β]
ε

→ 0 when un → 0

and therefore with a similar result on uβn(φni−1)1−β:

ε1,i, . . . , ε4,i
P−→ 0 when un → 0.

Because x 7→ exp(−x) is bounded by 1 for x ∈ R+ and ε1,i, . . . , ε4,i ≥ 0 we �nd that with

dominated convergence

E
[
exp(−εl)((φni )1−β + (φni−1)1−β)

]
→ E

[
((φni )1−β + (φni−1)1−β)

]
= κβ,β

when un → 0 for l ∈ 1, . . . , 4. As a result we have

2
(
−uβnCp,βE

[
exp(−ε3,i)((φni )1−β + (φni−1)1−β)

]
(−vβnCp,β)E

[
exp(−ε4,i)((φni )1−β + (φni−1)1−β)

])
2uβnρβ/2

−→ 0

and therefore

1

u
β/2
n v

β/2
n

E [zi(un)zi(vn)]

−→
−Cp,β(1− ρ)βκβ,β + 1− Cp,β(1 + ρ)βκβ,β + 1− 2

(
−Cp,βκβ,β − ρβCp,βκβ,β + 1

)
2ρβ/2

= Cp,βκβ,β
2 + 2ρβ − (1− ρ)β − (1 + ρ)β

2ρβ/2
.
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We treat the second term alike and have with ε1,i ∈ [0, uβnCp,β((φni )1−β+(1+ρ)β(φni−1)1−β+

ρβ(φni−2)1−β)], ε2,i ∈ [0, uβnCp,β((φni )1−β + (1 − ρ)β(φni−1)1−β + ρβ(φni−2)1−β)],

ε3,i ∈ [0, uβnCp,β((φni )1−β + (φni−1)1−β)] and ε4,i ∈ [0, uβnρ
βCp,β((φni )1−β + (φni−1)1−β)] that

1

u
β/2
n v

β/2
n

E [zi(un)zi−1(vn)]

=
−Cp,βuβnE

[
exp(−ε1,i)((φni )1−β + (1 + ρ)β(φni−1)1−β + ρβ(φni−2)1−β)

]
+ 1

2uβnρβ/2

+
−Cp,βuβnE

[
exp(−ε2,i)((φni )1−β + (1− ρ)β(φni−1)1−β + ρβ(φni−2)1−β)

]
+ 1

2uβnρβ/2

−
2
(
−uβnCp,βE

[
exp(−ε3,i)((φni )1−β + (φni−1)1−β)

]
(−vβnCp,β)E

[
exp(−ε4,i)((φni )1−β + (φni−1)1−β)

])
2uβnρβ/2

−
2
(
−uβnCp,βE

[
exp(−ε3,i)((φni )1−β + (φni−1)1−β)

])
2uβnρβ/2

−
2
(
−uβnρβCp,βE

[
exp(−ε4,i)((φni )1−β + (φni−1)1−β)

]
+ 1
)

2uβnρβ/2
.

Using the same arguments as above we have when un → 0 (note: E
[
(φni )1−β]) =

κβ,β
2
)

E
[
exp(−ε1,i)((φni )1−β + (1 + ρ)β(φni−1)1−β + ρβ(φni−2)1−β)

]
→ κβ,β

2
(1 + (1 + ρ)β + ρβ)

E
[
exp(−ε2,i)((φni )1−β + (1− ρ)β(φni−1)1−β + ρβ(φni−2)1−β)

]
→ κβ,β

2
(1 + (1− ρ)β + ρβ)

and as a result

1

u
β/2
n v

β/2
n

E [zi(un)zi−1(vn)]
P−→ Cp,β

κβ,β
2

4 + 4ρβ − (1 + (1 + ρ)β + ρβ)− (1 + (1− ρ)β + ρβ)

2ρβ/2

= Cp,βκβ,β
2 + 2ρβ − (1− ρ)β − (1 + ρ)β

4ρβ/2
.

We now discuss the case of ρ ≥ 1 and see that the only lines where this condition is

relevant are (5.75), (5.76). As in these calculations only the absolute value of (1 − ρ) is

decisive, we only need to exchange (1 − ρ)β for (ρ − 1)β here and in all the subsequent

calculations if ρ ≥ 1.

Lemma 5.19. Let un � n−%, % ∈ (0, 1/β) and vn = ρun with 0 < ρ < 1 then it holds that( √
n

u
β/2
n

1

n− kn − 2
Z
n
(un),

√
n

v
β/2
n

1

n− kn − 2
Z
n
(vn)

)
L−→ (X, Y ), (5.77)

where X, Y are normal distributed random variables with mean 0 and covariance matrix

C with

C11 = C22 =

∫ 1

0

1

λs
ds Cp,βκβ,β(4− 2β),

C12 = C21 =

∫ 1

0

1

λs
ds Cp,βκβ,β

2 + 2ρβ − (1 + ρ)β − (1− ρ)β

ρβ/2
,
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if 0 < ρ ≤ 1 and

C11 = C22 =

∫ 1

0

1

λs
ds Cp,βκβ,β(4− 2β),

C12 = C21 =

∫ 1

0

1

λs
ds Cp,βκβ,β

2 + 2ρβ − (1 + ρ)β − (ρ− 1)β

ρβ/2
,

if ρ ≥ 1.

Proof. To prove the theorem we de�ne

ζni =

√
n

u
β/2
n

1

n
(zi(un), zi(vn))

=
1√
n

(
1

u
β/2
n

(
cos

(
un

∆̂n
i S − ∆̂n

i−1S

∆
1/β
n µ

1/β
p,β κ

1/β
p,β

)
− L(p, un, β)

)
,

1

v
β/2
n

(
cos

(
vn

∆̂n
i S − ∆̂n

i−1S

∆
1/β
n µ

1/β
p,β κ

1/β
p,β

)
− L(p, vn, β)

))
.

Furthermore we decompose

Nn(1)∑
i=kn+3

ζni =

Nn(1)∑
i=kn+3

(
ζni − Eni−1 [ζni ]

)
+

Nn(1)−1∑
i=kn+2

Eni
[
ζni+1

]
=
(
ζnNn(1) − EnNn(1)−1

[
ζnNn(1)

])
+ Enkn+2

[
ζnkn+3

]
+

Nn(1)−1∑
i=kn+3

(
ζni − Eni−1 [ζni ] + Eni

[
ζni+1

])
.

Because zi(un), zi(vn) are bounded by the boundedness of x 7→ cos(x) and R+ → R+, x 7→
exp(−x), and because of nuβn � n1−β% →∞ we see that

Nn(1)∑
i=kn+3

ζni and
Nn(1)−1∑
i=kn+3

(
ζni − Eni−1 [ζni ] + Eni

[
ζni+1

])
and

Nn(1)+1∑
i=kn+3

(
ζni − Eni−1 [ζni ] + Eni

[
ζni+1

])
are asymptotically equivalent. We note that Nn(1) + 1 is a (Fτni )i≥1-stopping time and

therefore in order to apply Theorem 2.2.13 in [JP12] it is su�cient to show that for

q := 2
1−%β + 2 > 2, ηni := ζni − Eni−1 [ζni ] + Eni

[
ζni+1

]
Nn(1)+1∑
i=kn+3

Eni−1 [ηni ]
P−→ (0, 0), (5.78)

Nn(1)+1∑
i=kn+3

(
Eni−1

[
ηn,ji ηn,ki

]
− Eni−1

[
ηn,ji
]
Eni−1

[
ηn,ki

])
P−→ Cjk, (5.79)

Nn(1)+1∑
i=kn+3

Eni−1 [‖ζni ‖q]
P−→ 0. (5.80)

We �rst note that because of Lemma 5.4 we have

Eni−1

[
ζni+1

]
= (0, 0) (5.81)
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and therefore

Eni−1 [ηni ] = Eni−1

[
ζni − Eni−1 [ζni ] + Eni

[
ζni+1

]]
= (0, 0) (5.82)

and by this (5.78) holds.

By the boundedness of zi(un), zi(vn), % < 1
β
, Nn(1) ≤ Cn due to Assumption SC and

%β
1 + 1− %β

1− %β
− 1

1− %β
=
−(1− %β)2

1− %β
< 0

we have

Nn(1)+1∑
i=kn+3

Eni−1

[∣∣∣∣∣ 1√
nuβn

zi(un)

∣∣∣∣∣
q]
≤ Nn(1)Ku

−β 1+1−%β
1−%β

n n−
1

1−%β−1 ≤ Ku
−β 1+1−%β

1−%β
n n−

1
1−%β −→ 0,

which proves (5.80). To show (5.79) we �rst note that Eni−1

[
ηn,ji
]

= 0 and Eni−1

[
ηn,ki

]
= 0

due to (5.82) and furthermore make use of (5.81) to get

Eni−1

[(
ζn,ji − Eni−1

[
ζn,ji

]
+ Eni

[
ζn,ji+1

]) (
ζn,ki − Eni−1

[
ζn,ki

]
+ Eni

[
ζn,ki+1

])]
= Eni−1

[
(ζn,ji )(ζn,ki )− Eni−1

[
ζn,ji

]
ζn,ki − Eni−1

[
ζn,ki

]
ζn,ji

]
+ Eni−1

[
ζn,ji

]
Eni−1

[
ζn,ki

]
+ Eni−1

[
ζn,ji Eni

[
ζn,ki+1

]]
+ Eni−1

[
ζn,ki Eni

[
ζn,ji+1

]]
− Eni−1

[
Eni−1

[
ζn,ji

]
Eni
[
ζn,ki+1

]]
− Eni−1

[
Eni−1

[
ζn,ki

]
Eni
[
ζn,ji+1

]]
+ Eni−1

[
Eni
[
ζn,ji+1

]
Eni
[
ζn,ki+1

]]
= Eni−1

[
ζn,ji ζn,ki

]
− Eni−1

[
ζn,ji

]
Eni−1

[
ζn,ki

]
+ Eni−1

[
ζn,ji ζn,ki+1

]
+ Eni−1

[
ζn,ki ζn,ji+1

]
+ E

[
Eni
[
ζn,ji+1

]
Eni
[
ζn,ki+1

]]
,

using in the last step that, by the appropriate scaling inside ∆̂n
i S = λ

−1/β+1
τni−2

∆̃n
i S, the

distribution Eni
[
ζn,ji+1

]
,Eni

[
ζn,ki+1

]
is independent of Fτni−1

(cf. (5.86)). We note that

Eni−1

[
ζn,ji ζn,ki

]
,Eni−1

[
ζn,ji

]
Eni−1

[
ζn,ki

]
,Eni−1

[
ζn,ji ζn,ki+1

]
,Eni−1

[
ζn,ki ζn,ji+1

]
build each on its own

a triangular array of random variables. We want to show that

Nn(1)∑
i=kn+3

Eni−1

[
ζn,ji ζn,ki

]
P−→
∫ 1

0

1

λs
ds lim

n→∞
nE
[
ζn,ji ζn,ki

]
,

Nn(1)∑
i=kn+3

Eni−1

[
ζn,ji

]
Eni−1

[
ζn,ki

]
P−→
∫ 1

0

1

λs
ds lim

n→∞
nE
[
Eni−1

[
ζn,ji

]
Eni−1

[
ζn,ki

]]
,

Nn(1)∑
i=kn+3

Eni−1

[
ζn,ji ζn,ki+1

]
P−→
∫ 1

0

1

λs
ds lim

n→∞
nE
[
ζn,ji ζn,ki+1

]
,

Nn(1)∑
i=kn+3

Eni−1

[
ζn,ki ζn,ji+1

]
P−→
∫ 1

0

1

λs
ds lim

n→∞
nE
[
ζn,ki ζn,ji+1

]
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and that the limits right-hand side exist. This would result in

Nn(1)∑
i=kn+3

(
ζni − Eni−1 [ζni ] + Eni

[
ζni+1

])T (
ζni − Eni−1 [ζni ] + Eni

[
ζni+1

])
(5.83)

P−→
∫ 1

0

1

λs
ds lim

n→∞
n
(
E
[
(ζnm)T ζnm

]
+ E

[
(ζnm)T ζnm+1

]
+ E

[
(ζnm+1)T ζnm

])
,

everything for an arbitrary m.

In order to prove the results above we would like to make use of Lemma 2.2.12 in [JP12],

setting Xn,1
i = Eni

[
(ζni+1)T (ζni+1)

]
, Xn,2

i = Eni
[
ζni+1

]T Eni [ζni+1

]
, Xn,3

i = Eni
[
(ζni+1)T ζni+2

]
and Xn,4

i = Eni
[
(ζni+2)T ζni+1

]
and show that for l = 1, 2, 3, 4

Nn(1)−1∑
i=kn+2

Eni−1

[
Xn,l
i

]
P−→
∫ 1

0

1

λs
ds lim

n→∞
nE
[
Xn,l
m

]
and that the array

(
Eni−1

[
(Xn,l

i )2
])

is asymptotically negligible meaning that

Nn(1)−1∑
i=kn+2

Eni−1

[((
Xn,l
i

)
jk

)2
]

P−→ 0 for j, k = 1, 2.

Noting that Nn(1)− 1 is not a (Fτni )i≥1-stopping time in general we again use asymptotic

equivalence and show instead

Nn(1)+1∑
i=kn+2

Eni−1

[
Xn,l
i

]
P−→
∫ 1

0

1

λs
ds lim

n→∞
nE
[
Xn,l
m

]
, (5.84)

Nn(1)+1∑
i=kn+2

Eni−1

[((
Xn,l
i

)
jk

)2
]

P−→ 0 for j, k = 1, 2. (5.85)

To show (5.84) we note that the distribution of the Xn,l
i does not depend on the process

λt anymore but only on φni and the increments of the process S after τni−1 which are

independent of Fτni−1
and therefore

Eni−1

[
Xn,l
i

]
= E

[
Xn,l
i

]
and Eni−1

[
(Xn,l

i )2
]

= E
[
(Xn,l

i )2
]
. (5.86)

Using Lemma 5.18 we have the convergences for j 6= k and 0 < ρ ≤ 1

nE
[(

(ζnm)T ζnm
)
jk

]
= nE

[
ζn,jm ζn,km

]
−→ Cp,βκβ,β

2 + 2ρβ − (1− ρ)β − (1 + ρ)β

2ρβ/2
, (5.87)

nE
[
(ζnmζ

n
m+1)jk

]
= nE

[
ζn,jm ζn,km+1

]
−→ Cp,βκβ,β

2 + 2ρβ − (1− ρ)β − (1 + ρ)β

4ρβ/2
(5.88)
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and, as un, vn can also be equal in Lemma 5.18, for j = k

nE
[(

(ζnm)T ζnm
)
jk

]
= nE

[
ζn,jm ζn,km

]
−→ Cp,βκβ,β

4− 2β

2
,

nE
[
(ζnmζ

n
m+1)jk

]
= nE

[
ζn,jm ζn,km+1

]
−→ Cp,βκβ,β

4− 2β

4
.

With the previous lines and (4.11) we can prove (5.84):

Nn(1)+1∑
i=kn+2

Eni−1

[
Xn,l
i

]
= nE

[
Xn,l
i

] 1

n
(Nn(1) + 1)

P−→
∫ 1

0

1

λs
ds lim

n→∞
nE
[
Xn,l
m

]
.

Using Jensen inequality we have

E
[
((Xn,1

i )jk)
2
]

= E
[(

Eni
[
ζn,ji+1ζ

n,k
i+1

])2
]
≤ E

[
Eni
[(
ζn,ji+1

)2
(
ζn,ki+1

)2
]]

≤ E
[
Eni
[(
ζn,ji+1

)2
]] ∥∥∥∥(ζn,ki+1

)2
∥∥∥∥
∞
,

E
[
((Xn,2

i )jk)
2
]

= E
[(

Eni
[
ζn,ji+1

]
Eni
[
ζn,ki+1

])2
]

= E
[(
Eni
[
ζn,ji+1

])2
(
Eni
[
ζn,ki+1

])2
]

≤ E
[(
Eni
[
ζn,ji+1

])2
] ∥∥∥∥(Eni [ζn,ki+1

])2
∥∥∥∥
∞

≤ E
[
Eni
[(
ζn,ji+1

)2
]] ∥∥∥∥(Eni [ζn,ki+1

])2
∥∥∥∥
∞
,

E
[
((Xn,3

i )jk)
2
]

= E
[(

Eni
[
ζn,ji+1ζ

n,k
i+2

])2
]
≤ E

[
Eni
[(
ζn,ji+1

)2
(
ζn,ki+2

)2
]]

≤ E
[
Eni
[(
ζn,ji+1

)2
]] ∥∥∥∥(ζn,ki+2

)2
∥∥∥∥
∞
,

E
[
((Xn,4

i )jk)
2
]

= E
[(

Eni
[
ζn,ji+2ζ

n,k
i+1

])2
]
≤ E

[
Eni
[(
ζn,ji+2

)2
]] ∥∥∥∥(ζn,ki+1

)2
∥∥∥∥
∞
.

Again using the fact that Nn(1) ≤ Cn and zi(un), zi(vn) are bounded we can conclude

that for j, k = 1, 2

Nn(1)+1∑
i=kn+2

E
[
((Xn,1

i )jk)
2
]
≤ K

Nn(1)+1∑
i=kn+2

1

nuβn
E
[(
ζn,ji+1

)2
]

≤ K(Nn(1) + 1)
1

nuβn
E
[(
ζn,ji+1

)2
]

n→∞−−−→ 0,

using (5.87) and nuβn → ∞ in the last step. Proceeding likewise for the sums with

((Xn,2
i )j,k)

2, ((Xn,3
i )j,k)

2, ((Xn,4
i )j,k)

2 yields a similar result.
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Finally combining (5.83) with (5.87) and (5.88) we have for 0 < ρ ≤ 1

C12 = C21 =

∫ 1

0

1

λs
ds Cp,βκβ,β

2 + 2ρβ − (1− ρ)β − (1 + ρ)β

2ρβ/2

+

∫ 1

0

1

λs
ds 2Cp,βκβ,β

2 + 2ρβ − (1− ρ)β − (1 + ρ)β

4ρβ/2

=

∫ 1

0

1

λs
ds Cp,βκβ,β

2 + 2ρβ − (1− ρ)β − (1 + ρ)β

ρβ/2
.

The calculations for C11 and C22 follow along the same lines. In both cases the results

change only by setting ρ to one. The case of ρ ≥ 1 works similar, only exchanging the

results in (5.87) and (5.88) according to Lemma 5.18.

Theorem 5.1. Under the same conditions and for the same variables X, Y as in Lemma

5.19 we have that( √
n

u
β/2
n

1

n− kn − 2
Z
n
(un),

√
n

v
β/2
n

1

n− kn − 2
Z
n
(vn)

)
L−s−−→ (X, Y ), (5.89)

meaning that the convergence is not only in law, but stably in law. As a result we have

that √
n

Nn(1)

( √
n

u
β/2
n

1

n− kn − 2
Z
n
(un),

√
n

v
β/2
n

1

n− kn − 2
Z
n
(vn)

)
L−s−−→ (X ′, Y ′), (5.90)

where X ′, Y ′ are normal distributed random variables with mean 0 and covariance matrix

C ′ where C ′11 = C ′22 = Cp,βκβ,β(4 − 2β) and C ′12 = C ′21 = Cp,βκβ,β
2+2ρβ−(1+ρ)β−(1−ρ)β

ρβ/2
if

0 < ρ ≤ 1 and C ′12 = C ′21 = Cp,βκβ,β
2+2ρβ−(1+ρ)β−(ρ−1)β

ρβ/2
if ρ ≥ 1.

Furthermore under the conditions of Corollary 5.3 we have for the estimator L̃n(p, u):(√
Nn(1)

u
β/2
n

(L̃n(p, un)− L(p, un, β)),

√
Nn(1)

v
β/2
n

(L̃n(p, vn)− L(p, vn, β))

)
L−s−−→ (X ′, Y ′).

(5.91)

Proof. Using Theorem 2.2.15 in [JP12] we have to show that in addition to Lemma 5.19

it holds that

Nn(1)∑
i=kn+3

Eni−1

[
ζni (Mτi −Mτi−1

)
] P−→ 0 (5.92)

wherever M is either one of the Brownian motions W, W̃ or a bounded martingale or-

thogonal to W .

Following the idea of the proof of Lemma 26 in [JT18] it is su�cient to show the line

above only for M equal to a continuous bounded martingale or M = W,M = W̃ . To
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prove (5.92) we use Theorem 4.34 in Chapter III of [JS87]. We set for kn + 3 ≤ i ≤ Nn(1)

and t ≥ τni−2:

H := Fτni−2
and Ht := H

∨
σ
(
Sr : r ≥ τni−2

)
,

i.e. (Ht)t≥τni−2
is the �ltration generated by H and σ

(
Sr : r ≥ τni−2

)
. Now (St)t≥τni−2

is a

process with independent increments w.r.t. to σ
(
Sr : r ≥ τni−2

)
. For all t ≥ τni−2 we set

Kt := E [ζi|Ht] and note that Kτni
= ζi due to ζi being Hτni

-measurable. Then with the

aforementioned Theorem 4.34 we have

ζi = Kτni
= Kτni−2

+

∫ τi

τi−2

HsdSs,

where (Ht)t≥τni−2
is a predictable process. Then

Eni−1

[
ζni (Mτi −Mτi−1

)
]

=

(
Kτni−2

+

∫ τi−1

τi−2

HsdSs

)
Eni−1

[
Mτi −Mτi−1

]
+ Eni−1

[∫ τi

τi−1

HsdSs(Mτi −Mτi−1
)

]
= 0,

where we used that the martingale (St)t≥0 is orthogonal to M in all cases.

We remember that Nn(1)
n

P−→
∫ 1

0
1
λs
ds and as such

√
n

Nn(1)

P−→
(∫ 1

0

1

λs
ds

)−1/2

, (5.93)

which gives us (5.90). For the statement (5.91) concerning the actual estimator L̃n(p, un),

we remember that by Corollary 5.3 we have in addition to (5.89) for i = 1, 2, 3, 4

√
n

u
β/2
n

1

n− kn − 2
|Rn

i (un)| P−→ 0, (5.94)
√
n

u
β/2
n

1

n− kn − 2
|Zn(un)− Zn

(un)| P−→ 0. (5.95)

which gives us in addition to (5.90) with (5.93)√
n

Nn(1)

√
n

u
β/2
n

1

n− kn − 2
|Rn

i (un)| P−→ 0, (5.96)√
n

Nn(1)

√
n

u
β/2
n

1

n− kn − 2
|Zn(un)− Zn

(un)| P−→ 0. (5.97)
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Calculating √
Nn(1)

u
β/2
n (Nn(1)− kn − 2)

− n

u
β/2
n

√
Nn(1)(n− kn − 2)

=
(kn + 2)(n−Nn(1))

u
β/2
n (Nn(1)− kn − 2)

√
n(n− kn − 2)

=
(kn + 2)

(Nn(1)− kn − 2)

n−Nn(1)

n

√
n

u
β/2
n

1

n− kn − 2

and noting that (kn−2)
(Nn(1)−kn−2)

P−→ 0, |n−Nn(1)
n
| < K we have with (5.89),(5.94),(5.95) that√

Nn(1)

u
β/2
n

1

Nn(1)− kn − 2
|Rn

i (un)| −
√

n

Nn(1)

√
n

u
β/2
n

1

n− kn − 2
|Rn

i (un)| P−→ 0,√
Nn(1)

u
β/2
n

1

Nn(1)− kn − 2
|Zn(un)− Zn

(un)| −
√

n

Nn(1)

√
n

u
β/2
n

1

n− kn − 2
|Zn(un)− Zn

(un)| P−→ 0,√
Nn(1)

u
β/2
n

1

Nn(1)− kn − 2
Z
n
(un)−

√
n

Nn(1)

√
n

u
β/2
n

1

n− kn − 2
Z
n
(un)

P−→ 0.

This results by (5.96),(5.97) and (5.90) in√
Nn(1)

u
β/2
n

1

Nn(1)− kn − 2
|Rn

i (un)| P−→ 0,√
Nn(1)

u
β/2
n

1

Nn(1)− kn − 2
|Zn(un)− Zn

(un)| P−→ 0,√
Nn(1)

u
β/2
n

1

Nn(1)− kn − 2
Z
n
(un)

L−s−−→ X ′

and �nally√
Nn(1)

u
β/2
n

(L̃n(p, un)− L(p, un, β))

=

√
Nn(1)

u
β/2
n

1

Nn(1)− kn − 2

Nn(1)∑
i=kn+3

[Rn
1 +Rn

2 + Zn +Rn
3 +Rn

4 ]
L−s−−→ X ′.

Applying similar calculations to the tuple(√
Nn(1)

u
β/2
n

(L̃n(p, un)− L(p, un, β)),

√
Nn(1)

v
β/2
n

(L̃n(p, vn)− L(p, vn, β))

)
we get (5.91).

5.3 A Central Limit Theorem for the Estimator of β

Theorem 5.2. Under the conditions of Corollary 5.3, % < 1/β and vn = ρun we have for

the estimator of β

β̂(p, un, vn) =
log(−(L̃n(p, un)− 1))− log(−(L̃n(p, vn)− 1))

log(un/vn)
(5.98)
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that the convergence

uβ/2n

√
Nn(1)(β̂(p, un, vn)− β)

L−s−−→ X (5.99)

holds, where X is a normal distributed random variable with mean 0 and variance

(ρβ + 1)(4− 2β)− 2(2 + 2ρβ − (1 + ρ)β − (1− ρ)β)

κβ,βρβ log(1/ρ)2Cp,β
, if 0 < ρ < 1

and
(ρβ + 1)(4− 2β)− 2(2 + 2ρβ − (1 + ρ)β − (ρ− 1)β)

κβ,βρβ log(1/ρ)2Cp,β
, if ρ > 1.

Proof. Using a two dimensional Taylor expansion of the function

(x, y) 7→ log(−(x− 1))− log(−(y − 1))

log(un/vn)

with gradient

(g1(x), g2(y)) =

(
1

log(un/vn)(x− 1)
,

1

log(un/vn)(1− y)

)
around the point (L(p, un, β), L(p, vn, β)) it holds that

uβ/2n

√
Nn(1)(β̂(p, un, vn)− β) =

uβ/2n

√
Nn(1)

(
log(−(L(p, un, β)− 1))− log(−(L(p, vn, β)− 1))

log(un/vn)
− β

)
(5.100)

+
1

log(un/vn)

uβn

E[exp(−uβnCp,β((φni )1−β + (φni−1)1−β)]− 1

√
Nn(1)

u
β/2
n

(L̃n(p, un)− L(p, un, β))

(5.101)

+
1

log(un/vn)

1

ρβ/2
vβn

1− E[exp(−vβnCp,β((φni )1−β + (φni−1)1−β))]

√
Nn(1)

v
β/2
n

(L̃n(p, vn)− L(p, vn, β))

(5.102)

+uβn(g1(η1)− g1(L(p, un, β)))

√
Nn(1)

u
β/2
n

(L̃n(p, un)− L(p, un, β))

+vβn
1

ρβ/2
(g2(η2)− g2(L(p, vn, β)))

√
Nn(1)

v
β/2
n

(L̃n(p, vn)− L(p, vn, β)), (5.103)

for some η1 between L̃n(p, un), L(p, un, β) and η2 between L̃n(p, vn), L(p, vn, β).

As L̃n(p, un), L̃n(p, vn) ∈ (−1, 1) a.s. and g1, g2 are continuous on (−1, 1) we have that by

(5.91) g1(η1)
P−→ g1(L(p, un, β)) and g2(η2)

P−→ g2(L(p, vn, β)) and as a result together with

the convergence in (5.91):

uβn(g1(η1)− g1(L(p, un, β)))

√
Nn(1)

u
β/2
n

(L̃n(p, un)− L(p, un, β))
P−→ 0

vβn
1

ρβ/2
(g2(η2)− g2(L(p, vn, β)))

√
Nn(1)

v
β/2
n

(L̃n(p, vn)− L(p, vn, β))
P−→ 0
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We now prove the convergence of the bias term (5.100) towards zero.

With ε1,i ∈ [0, Cp,βu
β
n((φni )1−β +(φni−1)1−β)], ε2,i ∈ [E[exp(−ε1,i)((φni )1−β +(φni−1)1−β)], κβ,β]

it holds that:

E[exp(−Cp,βuβn((φni )1−β + (φni−1)1−β))]− 1 = E[exp(−ε1,i)(−Cp,βuβn((φni )1−β + (φni−1)1−β))]

and as such

log(−(L(un, p, β)− 1)) = log(uβnCp,β) + log(E[exp(−ε1,i)((φni )1−β + (φni−1)1−β)])

= log(uβnCp,β) +
1

ε2,i
(E[exp(−ε1,i)((φni )1−β + (φni−1)1−β)]− κβ,β)

+ log(κβ,β).

As ε1,i > 0 we have with dominated convergence E[exp(−ε1,i)((φni )1−β+(φni−1)1−β)]→ κβ,β

and as such ε2,i −→ κβ,β for un → 0. With ε3 ∈ [0, ε1,i] it holds for ι > 0

1

uβ−ιn ε2,i

(
E[exp(−ε1,i)((φni )1−β + (φni−1)1−β)]− κβ,β

)
=

1

uβ−ιn ε2,i

(
E[(exp(−ε3)(−ε1,i) + 1)((φni )1−β + (φni−1)1−β)]− κβ,β

)
=

1

ε2,i
E[exp(−ε3)

(−ε1,i)
uβ−ιn

((φni )1−β + (φni−1)1−β)] −→ 0,

as ε1,i((φni )1−β + (φni−1)1−β) ≤ uβnCp,β((φni )1−β + (φni−1)1−β)2 again with dominated conver-

gence and Assumption C.3. The same arguments hold for log(−(L(vn, p, β)−1)), therefore

we get:

1

uβ−ιn

(
log(−(L(p, un, β)− 1))− log(−(L(p, vn, β)− 1))

log(un/vn)
− β

)
=

1

uβ−ιn

(
log(uβnCp,β) + log(κβ,β)− (log(vβnCp,β) + log(κβ,β))

log(un/vn)
− β

)
+ op(1) = 0 + op(1)

and as a result, because u
3
2
β−ι

n

√
Nn(1) → 0 due to 1

3β
< % under Corollary 5.3 and

Nn(1) ≤ Cn,

(5.100) = u
3
2
β−ι

n

√
Nn(1)

1

uβ−ιn

(
log(−(L(p, un, β)− 1))− log(−(L(p, vn, β)− 1))

log(un/vn)
− β

)
= op(1).

Again using a Taylor expansion of exp(x) and E
[
(φni )1−β + (φni−1)1−β] = κβ,β we have

uβn

1− E
[
exp(−uβnCp,β((φni )1−β + (φni−1)1−β))

] → 1

κβ,βCp,β
,

vβn

E
[
exp(−vβnCp,β((φni )1−β + (φni−1)1−β))

]
− 1
→ − 1

κβ,βCp,β
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and therefore get for the variance of X by (5.91) if 0 < ρ < 1:

V ar(X) =
1

(log(1/ρ)κβ,βCp,β)2
Cp,βκβ,β(4− 2β) +

1

(ρβ/2 log(1/ρ)κβ,βCp,β)2
Cp,βκβ,β(4− 2β)

− 2

κ2
β,βC

2
p,β log(1/ρ)2ρβ/2

Cp,βκβ,β
2 + 2ρβ − (1 + ρ)β − (1− ρ)β

ρβ/2

=
(ρβ + 1)(4− 2β)− 2(2 + 2ρβ − (1 + ρ)β − (1− ρ)β)

κβ,βρβ log(1/ρ)2Cp,β

and the respective result in the case of ρ > 1.
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Chapter 6

Numerical Assessment

In this chapter we use a numerical implementation of a setting ful�lling Assumptions A,

B, C and an implementation of the estimator β̂(p, un, vn) de�ned by (5.98) to gauge its

�nite sample quality. However, as the variance of the limiting object in Theorem 5.2

is dependent on the (probably unknown) κβ,β, Cp,β and β itself, it is not possible, apart

from the consistency of β̂(p, un, vn), to use Theorem 5.2 in applications, e.g. to construct

con�dence intervals. Therefore Section 6.4 deals with the problem of �nding a CLT for

β̂(p, un, vn)− β where the limiting object is not determined by unknown variables.

6.1 Setting

For the underlying process X in (4.5) we de�ne for all t > 0

αt =

∫ t

0

2(1− αs)ds+ 2

∫ t

0

dWs,

σt =

∫ t

0

αsdWs,

Yt = 0

and

Xt = X0 +

∫ t

0

αsds+

∫ t

0

σs−dLs,

with L being a symmetrical stable process, i.e. its Lévy measure is given via the density

h(x) =
1

|x|1+β
,

101
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for some β ∈ (1, 2). For the observation scheme we assume

λt =

∫ t

0

(5− λs)ds+

∫ t

0

dW̃s, (6.1)

φ =
φ′ ∨ 0.1

E [φ′ ∨ 0.1]
, where φ′ ∼ Exp(1), (6.2)

with starting values of the processes being α0 = σ0 = X0 = λ0 = 1. Again, W, W̃ are

two independent Brownian motions. The purpose of the minimum in the de�nition of φ

in (6.2) is to ensure the (negative) moment condition of φ in Assumption C.3. Further-

more numerical analysis has shown that large values for the negative moments of φ, i.e.

E
[
φ1−β] when β is close to 2 worsen the asymptotic quality of the estimator strongly.

The choice of the processes has no speci�c application in mind and could easily replaced

by di�erent (and more complex) variants. It was done to underline the possibilities of the

model assumptions, while simulation should remain a feasible task. It should be noted

that the choice of λ0 = 1 combined with the tendency of λ to return to 5 leads to an

irregular change in observation times over the course of time.

6.2 Numerical Approximation and Simulation

To approximate the processes α, σ, λ,X, we use a simple Euler scheme. We start with the

approximation for the observation scheme, i.e. for Nn(1) > i ≥ 1 we set recursively

λτni ≈ λτni−1
+ (5− λτni−1

)(τni − τni−1) + (W̃τni
− W̃τni−1

),

τni+1 = τni + ∆nφ
n
i λτni−1

(6.3)

and τn0 = 0, τn1 = ∆nφ
n
1 . For the remaining processes we set for Nn(1) > i ≥ 0

ατni+1
≈ ατni + 2(1− ατni )(τni+1 − τni ) + 2(Wτni+1

−Wτni
),

στni+1
≈ στni + ατni (Wτni+1

−Wτni
),

Xτni+1
≈ Xτni

+ ατni (τni+1 − τni ) + στni (Lτni+1
− Lτni ). (6.4)

For the purpose of simulation we note that

W̃τni+1
− W̃τni

∼
√
τni+1 − τni ×N,

where N ∼ N (0, 1) is a standard normally distributed random variable and that all

occurrences of W, W̃ in the approximation above are either independent from each other

or exactly the same. Therefore it is su�cient for the simulation of W̃τni
−W̃τni−1

,Wτni+1
−Wτni

,
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etc. that we are able to simulate independent standard normal random variables. For the

increments of the stable process we note that

Lτni+1
− Lτni ∼ (τni+1 − τni )1/βS,

where S is a symmetrical stable random variable with characteristic function given by

E [exp(iuS)] = exp(−|u|β), u ∈ R. (6.5)

To simulate S we use the following result.

Theorem 6.1 (cf. Proposition 1.7.1 in [ST94]). Let β ∈ (0, 2], γ be uniform on (−π/2, π/2)

and let Q be exponential with mean 1. Assume γ and Q are independent. Then

X =
sin(βγ)

cos(γ)1/β

(
cos((1− β)γ)

Q

)(1−β)β

has characteristic function given by (6.5).

Assuming that the software/programming language used for the implementation o�ers

the possibility to simulate normally and exponentially distributed random variables we

have all the tools to proceed with the implementation.

In the appendix we provide an implementation in Python which follows these steps:

1. First we select the model parameter β ∈ (1, 2), the last time point T = 1 for the

observation, the number N of paths that we simulate, the approximate number n

of observations and the parameters for our estimator p, q.

2. Implementation of L̃n(p, u) according to (5.2) and β̂(p, u, v) according to (5.98) as

functions of p, un, vn, kn, {τi : 0 ≤ i ≤ Nn(1)} and {∆n
iX : 0 ≤ i ≤ Nn(1)}.

3. The main loop running N times with these steps:

(a) For 1 ≤ i ≤ Nn(1) simulate iteratively λτni , τ
n
i+1, ατni+1

, στni+1
, Xτni+1

according to

(6.3) and (6.4) with λ0 = X0 = α0 = σ0 = 1.

(b) Choose un = Nn(1)−1/3, kn = Nn(1)2/3, p = 1/2 in accordance with Remark

5.2.

(c) Choose vn = ρun for ρ ∈ {1/2, 2}. More on the choice of ρ follows in the next

section.

(d) Apply the implementation of β̂(p, u, v) to the simulation from (a) and save the

result in an array.

(e) To determine the quality of the approximation to a normal distribution in

Theorem 5.2 we save uβ/2n

√
Nn(1)(β̂(p, u, v)− β) to a second array.
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6.3 Results

We use the implementation presented above to derive results for β ∈ {1.1, 1.3, 1.5, 1.7, 1.9}
and ρ ∈ {1/2, 2}. We choose N = 1000 and n = 1000 which yields for (6.1) and (6.2)

roughly Nn(1) ≈ 520 observations before the terminal time T = 1. Displayed are results

for ρ = 1/2 and in brackets the results for ρ = 2. Here �Mean� is the empirical mean of

the N = 1000 samples of β̂(p, un, vn), �Empirical variance� is the empirical variance of the

1000 samples of uβ/2n

√
Nn(1)(β̂(p, un, vn)−β) and �Theoretical variance� is the asymptotic

variance from Theorem 5.2. In order to build this asymptotic variance the values for κp,β
and κβ,β are calculated via a separate Monte-Carlo estimate with a large sample size and

can be assumed to be su�ciently accurate. More on how the variance can be calculated

follows in the next section.

β Mean of β̂(p, u, v) Empirical Variance Theoretical Variance

1.1 1.1181 (1.0455) 7.2689 (3.2672) 7.2457 (3.3802)

1.3 1.3123 (1.2356) 5.2131 (2.2777) 5.4853 (2.2274)

1.5 1.4923 (1.4421) 3.2153 (1.3201) 3.907 (1.3817)

1.7 1.7173 (1.6086) 1.6501 (0.73274) 2.354 (0.7245)

1.9 1.8849 (1.7759) 0.425 (0.2716) 0.7852 (0.2107)

We can see that the larger choice of ρ directly e�ects the error of the estimator for

small sample sizes in a negative way while it reduces the variance. Analysis of the small

sample error is quite delicate here and complete understanding seems to be a non feasible

task. However, using the Taylor approximation in Theorem 5.2 and analyzing the bias

term (5.100) yields that many of the estimates there depend on the size of un respectively

vn and large values worsen the convergence towards zero. Furthermore numerical analysis

supports this claim as we have for n = 1000, ρ = 0.5, β = 1.9 that (5.100)≈ −0.1807 while

for ρ = 2 we have (5.100)≈ −0.641. As this does not account for the complete di�erence

in the sample error, one factor that one may consider additionally is the normal approxi-

mation of (5.102), Here large values of ρ respectively vn worsen the approximation as well

and may additionally contribute to the error. We note that the variance in Theorem 5.2

is monotone decreasing in ρ for ρ > 1. Therefore we have in this range a direct trade o�

between variance and bias.

We follow this discussion with a table in the same manner as above for n = 10000 which

roughly yields Nn(1) ≈ 5200. We see that the sample error diminishes for larger values of

n in the case of ρ = 2 while the sample size of appears N = 1000 to be not su�cient large

enough for further analysis of the already small error in the case ρ = 0.5. Nevertheless,

we can see that the approximated variance for β ∈ {1.5, 1.7, 1.9} is much closer to the
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theoretical one.

β Mean of β̂(p, u, v) Empirical Variance Theoretical Variance

1.1 1.1048 (1.0852) 7.451 (3.3392) 7.2458 (3.3802)

1.3 1.3067 (1.2763) 5.257 (2.229) 5.4853 (2.2274)

1.5 1.5197 (1.4772) 3.6036 (1.3626) 3.907 (1.3817)

1.7 1.7088 (1.6743) 2.1925 (0.7034) 2.354 (0.7245)

1.9 1.914 (1.8726) 0.4864 (0.21937) 0.7852 (0.2107)

Before we delve into the analysis of QQ-plots we have a small intermediate result that

can contribute to the discussion.

Lemma 6.1. Let ρ = 1/2 and vn = ρun then it holds that

β̂(p, un, vn) =
log(−(L̃n(p, un)− 1))− log(−(L̃n(p, vn)− 1))

log(un/vn)
≤ 2. (6.6)

Proof. Using the de�nition of L̃n(p, un), L̃n(p, vn) we see with ai :=
∆̃n
i X−∆̃n

i−1X

(Ṽ ni (p))1/p
that (6.6)

is equivalent to

log(−( 1
Nn(1)−kn−2

∑Nn(1)
i=kn+3 cos (unai)− 1))− log(−( 1

Nn(1)−kn−2

∑Nn(1)
i=kn+3 cos (vnai)− 1))

log(1/ρ)
≤ 2

⇔ log

(
1

Nn(1)−kn−2

∑Nn(1)
i=kn+3(1− cos (unai))

1
Nn(1)−kn−2

∑Nn(1)
i=kn+3(1− cos (ρunai))

)
≤ log

(
1

ρ2

)

⇔ 1

Nn(1)− kn − 2

Nn(1)∑
i=kn+3

ρ2(1− cos (unai)) ≤
1

Nn(1)− kn − 2

Nn(1)∑
i=kn+3

(1− cos (ρunai)).

(6.7)

For (6.7) to hold, it is su�cient that

ρ2(1− cos(b)) ≤ 1− cos(ρb) for all b ∈ R

which is equivalent to

gρ(b) := 1− cos (ρb)− ρ2(1− cos(b)) ≥ 0 for all b ∈ R. (6.8)

Using properties of the cosine and inserting ρ = 1/2 we note g 1
2
(b) = g 1

2
(−b) and g 1

2
(b) =

g 1
2
(b + 4π). For (6.8) to hold it then su�ces to show g 1

2
(b) ≥ 0 for all b ∈ [0, 2π]. Let

x ∈ [0, 2π] then

g′1
2
(x) =

1

2
sin
(x

2

)
− 1

4
sin(x)

=
1

2
sin
(x

2

)
− 1

2
sin
(x

2

)
cos
(x

2

)
=

1

2
sin
(x

2

)(
1− cos

(x
2

))
≥ 0,
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by properties of the trigonometric functions. Together with g 1
2
(0) = 0 the last line yields

g 1
2
(b) ≥ 0 for all b ∈ [0, 2π].

Noting that β̂(p, un, vn) = β̂(p, vn, un), this result also holds in the case of ρ = 2.

Furthermore, analyzing (6.8) for di�erent values of ρ numerically one can �nd that

gρ(b) ≥ 0 for 0 < ρ ≤ 0.5, b ∈ [−4π, 4π],

gρ(b) ≥ 0 for 0 < ρ ≤ 1, b ∈ [−2π, 2π].

Because the ai, as de�ned in the previous lemma, converge to a non degenerate distribu-

tion, small values of un will eventually lead to β̂(p, un, vn) attaining values above 2 very

rarely, in particular when ρ ≤ 0.5. From the symmetry of β̂(p, un, vn) the same can be

said for ρ ∈ (1, 2] or ρ > 1 in general.

The following QQ-plots of uβ/2n

√
Nn(1)(β̂(p, un, vn)−β) against a standard-normal distri-

bution with variance equal to the theoretical variance use the same con�guration of param-

eters as discussed earlier for ρ ∈ {0.5, 2} and

n ∈ {1000, 10000}. They clearly display the aforementioned boundedness of β̂(p, un, vn)

for both choices of ρ. However, when ρ = 2 the smaller variance makes the boundedness

less noticeable and therefore we have di�erent qualities in the approximation towards a

normal distribution for the two di�erent choices of ρ, in particular when β attains values

closer to 2. It should be noted that the distributional approximation quality increases

visibly with the higher sample-size in both cases. This becomes more apparent for val-

ues of β close to 2 as uβ/2n

√
Nn(1) is relatively small for our choice of un = Nn(1)−1/3

and therefore the asymptotic normal distribution becomes visible only for larger Nn(1)

respectively n.
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Figure 6.1: N = 1000, n = 1000, β ∈ {1.1, 1.3, 1.5, 1.7, 1.9}
left side ρ = 0.5, right side ρ = 2
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Figure 6.2: N = 1000, n = 10000, β ∈ {1.1, 1.3, 1.5, 1.7, 1.9}
left side ρ = 0.5, right side ρ = 2
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6.4 A Consistent Estimator for the Variance

and a Further CLT

As already addressed in the introduction, the major problem that arises when we want to

apply the estimator β̂(p, un, vn) from the previous sections in testing procedures is that

the asymptotic variance of

u
β/2
n

√
Nn(1)(β̂(p, un, vn)− β) is

(ρβ + 1)(4− 2β)− 2(2 + 2ρβ − (1 + ρ)β − (1− ρ)β)

κβ,βρβ log(1/ρ)2Cp,β
, (6.9)

(for simplicity we assume in this section that 0 < ρ < 1 while the case ρ > 1 follows in a

completely similar manner) where

µp,β := E[|S1|p]
β
p , κp,β := E[(φ1−β + (φ′)1−β)

p
β ]

β
p , Cp,β :=

Aβ
µp,βκp,β

,

with exp(−Aβuβt) = E[exp(iuSt)], u ∈ R+.

Thus it is determined by many non observable model parameters, in particular it depends

on β itself. To bypass this problem, one may hope that inserting the estimator β̂(p, un, vn)

whenever β is needed will yield the correct result. However the moments κp,β, κβ,β have

to be derived from the random variables φni that are not directly observable as they are

intertwined with values of the process λ when building our observation scheme. Further-

more, the normalization uβ/2n in uβ/2n

√
Nn(1)(β̂(p, un, vn)− β) is dependent on β as well.

This section now deals with the problem of �nding a consistent estimator for (6.9) and

then applying it to �nd a normalization that works without the use of unknown model

variables or parameters.

Theorem 6.2. Let rn ∈ N with 1 ≤ rn ≤ Nn(1) − 3, rn � nΨ for some Ψ ∈ (0, 1),

0 < p < β/2. Let β̂n be a consistent estimator for β such that there exists a ς > 0 with∣∣∣β − β̂n∣∣∣nς P−→ 0 (6.10)

and furthermore assume that φ from Assumption C ful�lls M < φ for some 0 < M < 1.

Setting

χi =

((
rn

τni−2 − τni−2−rn

)1−β̂n ((
τni − τni−1

)1−β̂n
+
(
τni−1 − τni−2

)1−β̂n
))p/β̂n

,

we have that

κ̂pn :=
1

Nn(1)− rn − 2

Nn(1)∑
i=rn+3

χi
P−→ E[(φ1−β + (φ′)1−β)

p
β ] = κ

p/β
p,β . (6.11)
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Proof. Before we start with the actual proof we note that Nn(τni ) = i and thus for all

i > rn + 3 we can write

rn =

Nn(τni−2)∑
j=Nn(τni−1−rn )

1 =
∑

j≥i−1−rn

1{τnj ≤τni−2} =
∑
j≥1

1{τni−1−rn≤τ
n
j ≤τni−2}

which can be seen as a version of Nn(t) =
∑

i≥1 1{τni ≤t} restricted to the time interval

(τni−2−rn , τ
n
i−2]. Throughout the last chapters we repeatedly used that ∆nNn(1)

P−→
∫ t

0
1
λs
ds

therefore our motivation for the estimator in (6.11) is the idea (which is proven later on)

that ∆nrn
τni−2−τni−2−rn

P−→ 1
τni−2−τni−2−rn

∫ τni−2

τni−2−rn

1
λs
ds

P−→ 1
λτn
i−2

.

The additional notation needed for the proof of (6.11) is as following:

e1
i =

((
rn

τni−2 − τni−2−rn

)1−β ((
τni − τni−1

)1−β
+
(
τni−1 − τni−2

)1−β
))p/β

,

e2
i =

( 1

τni−2 − τni−2−rn

∫ τni−2

τni−2−rn

1

λs
ds

)1−β ((
λτni−2

φni

)1−β
+
(
λτni−3

φni−1

)1−β
)p/β

,

e3
i =

(φni )1−β +

(
λτni−3

λτni−2

φni−1

)1−β
p/β

,

ζi =
(

(φni )1−β +
(
φni−1

)1−β
)p/β

with corresponding sums

E1
n =

1

Nn(1)− rn − 2

Nn(1)∑
i=rn+3

e1
i ,

E2
n =

1

Nn(1)− rn − 2

Nn(1)∑
i=rn+3

e2
i ,

E3
n =

1

Nn(1)− rn − 2

Nn(1)∑
i=rn+3

e3
i ,

Zn =
1

Nn(1)− rn − 2

Nn(1)∑
i=rn+3

ζi

and the following decomposition:

κ̂pn − κ
p/β
p,β =

(
κ̂pn − E1

n

)
+
(
E1
n − E2

n

)
+
(
E2
n − E3

n

)
+
(
E3
n − Zn

)
+
(
Zn − κp/βp,β

)
. (6.12)

As the �nal step we prove Zn
P−→ E[(φ1−β + (φ′)1−β)

p
β ] = κ

p/β
p,β . Therefore we aim to show

that κ̂pn − Zn
P−→ 0.
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In order to show κ̂pn − E1
n

P−→ 0 we de�ne the set An :=
{
|β − β̂n| > β−1

2

}
and note that

for all ε > 0

P
(∣∣κ̂pn − E1

n

∣∣1An > ε
)
≤ P (1An > ε) = P

(∣∣∣β − β̂n∣∣∣ > β − 1

2

)
−→ 0 (6.13)

as β̂n is a consistent estimator and β > 1.

And in contrast on the set ACn , due to β < 2:

β̂n − 1 = β̂n − β +
β − 1

2
+
β − 1

2
≥ β − 1

2
> 0,

3− β̂n = 3− β + β − β̂n > 1 + β − β̂n >
β − 1

2
+ β − β̂n ≥ 0

or put di�erently β̂n ∈ (1, 3). For the sake of easier notation we de�ne ai = ∆nrn
τni−2−τni−2−rn

,

bi =
τni −τni−1

∆n
, ci =

τni−1−τni−2

∆n
and furthermore the (random) function

fai,bi,ci,p(x) =
(
(ai)

1−x ((bi)1−x + (ci)
1−x))p/x .

We show that (κ̂pn − E1
n)1ACn

P−→ 0 via looking at the di�erences (χi − e1
i )1ACn and note

that for some εn ∈ [β̂n, β] ⊂ (1, 3):

|χi − e1
i |1ACn =

∣∣∣fai,bi,ci,p(β̂n)− fai,bi,ci,p(β)
∣∣∣1ACn

= 1ACn
|f ′ai,bi,ci,p(εn)||β − β̂n|, (6.14)

with the derivative

f ′ai,bi,ci,p(x)

= fai,bi,ci,p(x)p

(
−b1−x

i log(bi)− c1−x
i log(ci)− log(ai)(b

1−x
i + c1−x

i )

x(b1−x
i + c1−x

i )
− log(a1−x

i (b1−x
i + c1−x

i ))

x2

)
.

Our goal is to show that we have |f ′ai,bi,ci,p(x)||β − β̂n|
P−→ 0 uniformly over x ∈ (1, 3).

We note, because ai, bi, ci > 0, that for x > 0:

|f ′ai,bi,ci,p(x)| (6.15)

≤ fai,bi,ci,p(x)p

(
b1−xi | log(bi)|+ c1−x

i | log(ci)|+ | log(ai)|(b1−xi + c1−x
i )

x(b1−xi + c1−x
i )

+
| log(a1−x

i )|+ | log(b1−xi + c1−x
i )|

x2

)
.

To continue with our calculations, we need a further localization of the observation scheme (cf.

p.435 in [JP12]) that allows us to assume

φi ≤ nγ , (6.16)
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for an arbitrarily (but a priori) small chosen γ > 0. We remember that due to Assumption SC

we have for some C > 1

1

C
≤ λ ≤ C. (6.17)

Combining (6.16) and (6.17) gives

CM∆n ≤ τni − τni−1 = ∆nφ
n
i λτni−2

≤ C∆nn
γ

CMrn∆n ≤ τni−2 − τni−2−rn =

i−2∑
j=i−1−rn

τnj − τnj−1 ≤
i−2∑

j=i−1−rn

C∆nn
γ ≤ Crn∆nn

γ ,

which yields

(CM)q ≤ (bi)
q =

(
τni − τni−1

∆n

)q
≤ Cqnγq for q > 0, (6.18)

Cqnγq ≤ (bi)
q =

(
τni − τni−1

∆n

)q
≤ (CM)q for q < 0.

We note that for all bounded sets B ⊂ R we have

sup{Cq : q ∈ B}, sup{(CM)q : q ∈ B} < ∞ and similarly inf{Cq : q ∈ B}, inf{(CM)q :

q ∈ B} > 0. In particular we have for 3 > x > 1

inf{Cq : q ∈ (0,−2)}n−2γ ≤ (bi)
1−x ≤ sup{(CM)q : q ∈ (0,−2)} (6.19)

and likewise for ci. As in ai we have τ
n
i−2− τni−2−rn in the denominator we �nd similar results to

(6.18) and (6.19):

Cqn−γq ≤ (ai)
q =

(
∆nrn

τni−2 − τni−2−rn

)q
≤ (CM)q for q > 0, (6.20)

(CM)q ≤ (ai)
q =

(
∆nrn

τni−2 − τni−2−rn

)q
≤ Cqn−γq for q < 0,

which results for 3 > x > 1 in

inf{(CM)q : q ∈ (0,−2)} ≤ (ai)
1−x ≤ max{Cq : q ∈ (0,−2)}n2γ . (6.21)

Combining (6.19) and (6.21) we get for all 3 > x > 1

fai,bi,ci,p(x) ≤ Kn2γ(p−p/x) ≤ Kn
4
3
γp. (6.22)

Using (6.18) - (6.21) we �nd that for 3 > x > 1

| log(a1−x
i )|, | log(b1−xi + c1−x

i )| ≤ K| log(n−2γ)|,

| log(ai)|, | log(bi)|, | log(ci)| ≤ K| log(n−γ)|

which yields

b1−xi | log(bi)|+ c1−x
i | log(ci)|+ | log(ai)|(b1−xi + c1−x

i )

x(b1−xi + c1−x
i )

≤ K| log(n−γ)|n2γ ,

| log(a1−x
i )|+ | log(b1−xi + c1−x

i )|
x2

≤ K| log(n−2γ)|.
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Finally linking the last two inequalities with (6.22) and (6.15) we get for all 3 > x > 1

f ′ai,bi,ci,p(x) ≤ Kn
4
3
γp
(
| log(n−γ)|n2γ +K| log(n−2γ)|

)
(6.23)

and therefore with (6.14)

1

n− rn − 2

Nn(1)∑
i=rn+3

|χi − e1
i |1ACn ≤

1

n− rn − 2

Cn∑
i=rn+3

|χi − e1
i |1ACn

≤ K Cn

n− rn − 2
n

4
3
γp
(
| log(n−γ)|n2γ +K| log(n−2γ)|

)
|β − β̂n|

P−→ 0,

due to (6.10), | log(n−q)n−r| → 0 for all q, r > 0 and the possibility to choose γ (in dependence

of the a priori known ς and p) su�ciently small. Using ∆nNn(1)
P−→
∫ t

0
1
λs
ds one more time we

have

∣∣κ̂pn − E1
n

∣∣1ACn ≤ 1

Nn(1)− rn − 2

Nn(1)∑
i=rn+3

|χi − e1
i |1ACn

=
n− rn − 2

Nn(1)− rn − 2

1

n− rn − 2

Nn(1)∑
i=rn+3

|χi − e1
i |1ACn

P−→ 0

and with (6.13) we have proven κ̂pn − E1
n

P−→ 0.

To prove that |E1
n−E2

n|
P−→ we need a few preliminaries. Using Lemma 5.7 on the process λ and

the function f(x) = x−1 together with Lemma 4.8 yields that for 1 ≤ j ≤ Nn(1)− i

E

[
sup

τni ≤s≤τni+j

∣∣∣∣ 1

λs
− 1

λτni

∣∣∣∣
]
≤ (j∆n)1/2. (6.24)
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For 1 ≤ j ≤ Nn(1) we then de�ne ηj =
φnj
rn

and look at the following di�erence

E

∣∣∣∣∣∣
i−2∑

j=i−1−rn

ηj −
1

∆nrn

∫ τni−2

τni−2−rn

1

λs
ds

∣∣∣∣∣∣


=
1

∆nrn
E

∣∣∣∣∣∣
i−2∑

j=i−1−rn

∆nφ
n
j λτnj−2

1

λτnj−2

−
∫ τni−2

τni−2−rn

1

λs
ds

∣∣∣∣∣∣


=
1

∆nrn
E

∣∣∣∣∣∣
i−2∑

j=i−1−rn

∫ τnj

τnj−1

(
1

λs
− 1

λτnj−2

)
ds

∣∣∣∣∣∣


≤ 1

∆nrn

i−2∑
j=i−1−rn

E

[∫ τnj

τnj−1

∣∣∣∣∣ 1

λs
− 1

λτnj−2

∣∣∣∣∣ ds
]

≤ 1

∆nrn

i−2∑
j=i−1−rn

E

[
(τnj − τnj−1) sup

τnj−1≤s≤τnj

∣∣∣∣∣ 1

λs
− 1

λτnj−2

∣∣∣∣∣
]

≤ 1

∆nrn

i−2∑
j=i−1−rn

E

[
(τnj − τnj−1)

(
sup

τnj−1≤s≤τnj

∣∣∣∣∣ 1

λs
− 1

λτnj−1

∣∣∣∣∣+

∣∣∣∣∣ 1

λτnj−1

− 1

λτnj−2

∣∣∣∣∣
)]

≤ 1

∆nrn

i−2∑
j=i−1−rn

E
[
(τnj − τnj−1)2

]1/2 E
( sup

τnj−1≤s≤τnj

∣∣∣∣∣ 1

λs
− 1

λτnj−1

∣∣∣∣∣
)2
1/2

+E
[
(τnj − τnj−1)2

]1/2 E
( 1

λτnj−1

− 1

λτnj−2

)2
1/2


≤ 1

∆nrn

i−2∑
j=i−1−rn

K∆n

(
∆1/2
n + ∆1/2

n

)
≤ K∆1/2

n ,

using the Cauchy-Schwarz inequality in the third to last to second to last line and (6.24) in the

step afterwards and remembering that for q ≥ 0, due to Assumption SC:

E
[
(τnj − τnj−1)q

]
≤ K∆q

n.

Proceeding, we �nd that Mt =
∑Nn(t)

i=1

(
ηi − Eni−1 [ηi]

)
is a square-integrable martingale w.r.t.

the �ltration (Fτn
Nn(t)

)t≥0 (cf. p. 578 in [JP12]) and therefore using the BDG-inequality we have
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with Eni−1 [ηi] = 1
rn

that

E

∣∣∣∣∣∣1−
i−2∑

j=i−1−rn

ηj

∣∣∣∣∣∣
2 = E

∣∣∣∣∣∣
i−2∑

j=i−1−rn

(
ηj −

1

rn

)∣∣∣∣∣∣
2

= E


∣∣∣∣∣∣

Nn(τni−2)∑
j=Nn(τni−1−rn )

(
ηj − Enj−1 [ηj ]

)∣∣∣∣∣∣
2


= E
[∣∣∣Mτni−2

−Mτni−1−rn

∣∣∣2]
≤ E

[
[M,M ]τni−2

− [M,M ]τni−1−rn

]
= E

 Nn(τni−2)∑
j=Nn(τni−1−rn )

(
ηj − Enj−1 [ηj ]

)2
= E

 Nn(τni−2)∑
j=Nn(τni−1−rn )

(
1

rn
(φj − 1)

)2
 ≤ 1

rn
(1− nγ)2.

The two previous calculations then result in

E

[∣∣∣∣∣1− 1

∆nrn

∫ τni−2

τni−2−rn

1

λs
ds

∣∣∣∣∣
]
≤ K

(
∆1/2
n +

nγ

r
1/2
n

)
. (6.25)

Finally, using the boundedness from below of φi in the assumption of this theorem we have that

due to β < 1: (
(λτni−2

φni )1−β + (λτni−3
φni−1)1−β

)p/β
< K. (6.26)

Combing the last line and a Taylor expansion we can proceed with our calculations for all

i ≥ rn + 3:

|e1i − e2i |

=
(

(λτn
i−2
φni )1−β + (λτn

i−3
φni−1)1−β

)p/β ∣∣∣∣∣∣
(

∆nrn
τni−2 − τni−2−rn

)p/β−p
−

(
1

τni−2 − τni−2−rn

∫ τn
i−2

τn
i−2−rn

1

λs
ds

)p/β−p∣∣∣∣∣∣
=
(

(λτn
i−2
φni )1−β + (λτn

i−3
φni−1)1−β

)p/β
|p/β − p|

∣∣∣∣ ∆nrn
τni−2 − τni−2−rn

∣∣∣∣p/β−p
∣∣∣∣∣εp/β−p−1
i,n

(
1− 1

∆nrn

∫ τn
i−2

τn
i−2−rn

1

λs
ds

)∣∣∣∣∣ ,
for some εi,n between 1 and 1

∆nrn

∫ τni−2

τni−2−rn

1
λs
ds. For an upper bound on |εp/β−p−1

i,n | we note that
with (6.20):

1

∆nrn

∫ τni−2

τni−2−rn

1

λs
ds ≥

(
τni−2 − τni−2−rn

∆nrn

)
inf

τni−2−rn≤s≤τ
n
i−3

1

λs
≥ K (6.27)

and therefore |εp/β−p−1
i,n | ≤ K. Combining the last bound on |εp/β−p−1

i,n | with (6.18), (6.25), (6.26)

and (6.27) yields for rn + 3 ≤ i ≤ Nn(1)

E|e1
i − e2

i | ≤ Knγ(p−p/β)

(
∆1/2
n +

nγ

r
1/2
n

)
.



116

As γ > 0 can be chosen arbitrarily small, this �nally results in

1

n− rn − 2
E

 Nn(1)∑
i=rn+3

|e1
i − e2

i |

 ≤ 1

n− rn − 2

nC∑
i=rn+3

E|e1
i − e2

i |1{i≤Nn(1)} −→ 0,

which, with the usual procedure, yields E1
n − E2

n
P−→ 0. For the di�erence E2

n − E3
n we again use

a Taylor expansion and (6.26):

E
[
|e2
i − e3

i |
]

= E

∣∣∣∣∣∣
(

1

τni−2 − τni−2−rn

∫ τni−2

τni−2−rn

1

λs
ds

)p/β−p
−

(
1

λτni−2

)p/β−p∣∣∣∣∣∣
(

(λτni−2
φni )1−β + (λτni−3

φni−1)1−β
)p/β

≤ K |p/β − p|E

[∣∣∣∣∣εp/β−p−1
i,n

(
1

τni−2 − τni−2−rn

∫ τni−2

τni−2−rn

1

λs
ds− 1

λτni−2

)∣∣∣∣∣
]

≤ KE

[∣∣∣∣∣ 1

τni−2 − τni−2−rn

∫ τni−2

τni−2−rn

(
1

λs
− 1

λτni−2

)
ds

∣∣∣∣∣
]

≤ KE

[
sup

τni−rn−2<s<τ
n
i−3

∣∣∣∣∣ 1

λs
− 1

λτni−2

∣∣∣∣∣
]
, (6.28)

for some εi,n between 1
τni−2−τni−2−rn

∫ τni−2

τni−2−rn

1
λs
ds and 1

λτn
i−2

which is bounded from above and

below due to (6.17).

Applying (6.24) for (6.28) yields that for rn + 3 ≤ i ≤ Nn(1)

E
[
|e2
i − e3

i |
]
≤ (∆nrn)1/2,

which in return yields E2
n − E3

n
P−→ 0. Moving on to the di�erence E3

n − Zn we have that due to

p/β < 1 and | · |p/β being a norm then and the reverse triangular inequality for all i ≥ rn + 3

|e3
i − ζi| =

∣∣∣∣∣∣∣
(φni )1−β +

(
λτni−3

λτni−2

φni−1

)1−β
p/β

−
(

(φni )1−β +
(
φni−1

)1−β)p/β∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣
(
λτni−3

λτni−2

φni−1

)1−β

−
(
φni−1

)1−β∣∣∣∣∣∣
p/β

≤

∣∣∣∣∣ |λτni−3
|1−β − |λτni−2

|1−β

|λτni−2
|1−β

∣∣∣∣∣
p/β

≤
∣∣∣|λτni−3

|1−β − |λτni−2
|1−β

∣∣∣p/β .
Applying Lemma 5.9 on the function f(x) = x1−β and the process λ (see proof of Lemma 5.9)

and then using Lemma 5.1 we can conclude that for rn + 3 ≤ i ≤ Nn(1)

E
[
|e3
i − ζi|

]
≤ K∆p/(2β)

n



117

which again leads to E3
n − Zn

P−→ 0. It is left to show that Zn
P−→ κ

p/β
p,β . Due to the assumed

boundedness from below of φi we have ζi < K and therefore

1

(n− rn − 2)2

Nn(1)+1∑
i=rn+3

Eni−1

[
ζ2
i

] P−→ 0,

1

(n− rn − 2)2

Nn(1)+1∑
i=rn+3

Eni−2

[
Eni−1 [ζi]

2
]

P−→ 0.

Finally, applying Lemma 2.2.11 a) in [JP12] twice yields that for ε > 0

P

∣∣∣∣∣∣ 1

n− rn − 2

Nn(1)+1∑
i=rn+3

ζi −
1

n− rn − 2

Nn(1)+1∑
i=rn+3

Eni−1 [ζi]

∣∣∣∣∣∣ > ε

→ 0

P

∣∣∣∣∣∣ 1

n− rn − 2

Nn(1)+1∑
i=rn+3

Eni−1 [ζi]−
1

n− rn − 2

Nn(1)+1∑
i=rn+3

Eni−2

[
Eni−1 [ζi]

]∣∣∣∣∣∣ > ε

→ 0.

Using that 1
n−rn−2

∑Nn(1)+1
i=rn+3 Eni−2

[
Eni−1 [ζi]

]
= Nn(1)−rn−1

n−rn−2 κ
p/β
p,β we get

Zn =
n− rn − 2

Nn(1)− rn − 2

1

n− rn − 2

Nn(1)+1∑
i=rn+3

ζi
P−→ κ

p/β
p,β .

Using exactly the same arguments as in the previous proof and omitting E1
n in the

decomposition (6.12) we get the following result:

Corollary 6.1. Assuming that φ from Assumption C ful�lls M < φ for some 0 < M < 1,

we have for

χi =

((
rn

τni−2 − τni−2−rn

)1−β̂n ((
τni − τni−1

)1−β̂n
+
(
τni−1 − τni−2

)1−β̂n
))

that

κ̂n :=
1

Nn(1)− rn − 2

Nn(1)∑
i=rn+3

χi
P−→ E[φ1−β + (φ′)1−β] = κβ,β. (6.29)

Lemma 6.2. Let p > 0, β̂n be a consistent estimator for β and κ̂pn be consistent estimator

for κ
p/β
p,β > 0. Then

(κ̂pn)β̂n/p
P−→ κp,β. (6.30)

Proof. We start the proof by noting that

(κ̂pn)β̂n/p − κp,β = (κ̂pn)β̂n/p − (κ̂pn)β/p + (κ̂pn)β/p −
(
κ
p/β
p,β

)β/p
.
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For the �rst di�erence we de�ne the set An :=

{∣∣∣κ̂pn − κp/βp,β

∣∣∣ > κ
p/β
p,β

2

}
∪
{
|β − β̂n| > β−1

2

}
and split accordingly∣∣∣(κ̂pn)β̂n/p − (κ̂pn)β/p

∣∣∣ =
∣∣∣(κ̂pn)β̂n/p − (κ̂pn)β/p

∣∣∣1An +
∣∣∣(κ̂pn)β̂n/p − (κ̂pn)β/p

∣∣∣1ACn .
We �nd that∣∣∣(κ̂pn)β̂n/p − (κ̂pn)β/p

∣∣∣1An ≤ ∣∣∣(κ̂pn)β̂n/p − (κ̂pn)β/p
∣∣∣1{∣∣∣κ̂pn−κp/βp,β

∣∣∣>κ
p/β
p,β
2

}

+
∣∣∣(κ̂pn)β̂n/p − (κ̂pn)β/p

∣∣∣1{|β−β̂n|>β−1
2 }

and similar to (6.13) we have for all ε > 0

P

∣∣∣(κ̂pn)β̂n/p − (κ̂pn)β/p
∣∣∣1{∣∣∣κ̂pn−κp/βp,β

∣∣∣>κ
p/β
p,β
2

} > ε

 ≤ P

({∣∣∣κ̂pn − κp/βp,β

∣∣∣ > κ
p/β
p,β

2

}
> ε

)
−→ 0,

P
(∣∣∣(κ̂pn)β̂n/p − (κ̂pn)β/p

∣∣∣1{|β−β̂n|>β−1
2 } > ε

)
P−→ 0,

which yields
∣∣∣(κ̂pn)β̂n/p − (κ̂pn)β/p

∣∣∣1An P−→ 0. For

∣∣∣∣(κ̂pn)β̂n/p −
(
κ
p/β
p,β

)β/p∣∣∣∣1ACn we de�ne the

function fκ̂pn,p(x) = (κ̂pn)x/p with derivative f ′
κ̂pn,p

(x) = log(κ̂pn)(κ̂pn)x/p

p
and see that with a

Taylor-Expansion

(κ̂pn)β̂n/p − (κ̂pn)β/p = fκ̂pn,p(β̂n)− fκ̂pn,p(β)

=
log(κ̂pn)(κ̂pn)εn/p

p
(β̂n − β) (6.31)

for some εn ∈ (β̂n, β). On ACn we have as in the proof of Theorem 6.2 that β̂n ∈ (1, 3) and

additionally κ̂pn ∈
[
κ
p/β
p,β

2
, 3

2
κ
p/β
p,β

]
. Therefore, we see with (6.31) that

∣∣∣(κ̂pn)β̂n/p − (κ̂pn)β/p
∣∣∣1ACn =

∣∣∣∣ log(κ̂pn)(κ̂pn)εn/p

p
(β̂n − β)

∣∣∣∣1ACn ≤ K|β̂n − β|
P−→ 0.

For the di�erence

∣∣∣∣(κ̂pn)β/p −
(
κ
p/β
p,β

)β/p∣∣∣∣ we proceed similarly withBn :=

{∣∣∣κ̂pn − κp/βp,β

∣∣∣ > κ
p/β
p,β

2

}
and like before we have

∣∣∣∣(κ̂pn)β/p −
(
κ
p/β
p,β

)β/p∣∣∣∣1Bn P−→ 0. Finally due to κ̂pn being consistent

and x 7→ xβ/p being a continuous function on
[
κ
p/β
p,β

2
, 3

2
κ
p/β
p,β

]
we �nd that∣∣∣∣(κ̂pn)β/p −

(
κ
p/β
p,β

)β/p∣∣∣∣1BCn P−→ 0, which �nishes the proof.

The �nal piece that is missing to provide a normalization without prior knowledge of

β is the following Lemma.
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Lemma 6.3. Let β̂n be a consistent estimator for β such that there exists a ς > 0 with∣∣∣β − β̂n∣∣∣nς P−→ 0 (6.32)

and un � n−% with a % ∈ (0, 1). Then we have that

(un)β̂n/2 − (un)β/2
P−→ 0.

Proof. As before we de�ne An :=
{
|β − β̂n| > β−1

2

}
and split up∣∣∣(un)β̂n/2 − (un)β/2

∣∣∣ =
∣∣∣(un)β̂n/2 − (un)β/2

∣∣∣1An +
∣∣∣(un)β̂n/2 − (un)β/2

∣∣∣1ACn ,
where we already know from the previous proofs that

∣∣∣(un)β̂n/2 − (un)β/2
∣∣∣1An P−→ 0.

For
∣∣∣(un)β̂n/2 − (un)β/2

∣∣∣1ACn we proceed as in the former proof and de�ne the function

fun(x) = (un)x/2 with derivative f ′un(x) = log(un)(un)x/2

2
and see that with a Taylor expan-

sion ∣∣∣(un)β̂n/2 − (un)β/2
∣∣∣1ACn =

∣∣∣∣ log(un)(un)εn/2

2

∣∣∣∣ ∣∣∣β̂n − β∣∣∣1ACn (6.33)

for some εn ∈ (1, 3). We note that (un)εn/2 < 1 and

|log(un)|
∣∣∣β̂n − β∣∣∣ = |log(un)|u−ςn uςn

∣∣∣β̂n − β∣∣∣ P−→ 0

due to (6.32) and | log(un)|u−ςn → 0 when un → 0. The last equation then yields∣∣∣(un)β̂n/2 − (un)β/2
∣∣∣1ACn which concludes the proof.

The previous theorem and lemmas now �nally culminate in a central limit theorem

that works without prior knowledge of any (unknown) model speci�c parameters.

Theorem 6.3. Under the conditions of Corollary 5.3, % < 1/β and vn = ρun with

0 < ρ < 1 we have for the estimator of β̂(p, un, vn) from (5.98), κ̂pn from (6.11) and κ̂n
from (6.29), both using β̂(p, un, vn) as the estimator for β, that with

V arp,ρ(β, κβ,β, κp,β) =
(ρβ + 1)(4− 2β)− 2(2 + 2ρβ − (1 + ρ)β − (1− ρ)β)

κβ,βρβ log(1/ρ)2
(

2pΓ((1+p)/2)Γ(1−p/β)√
πΓ(1−p/2)

)−β/p
κ−1
p,β

we have the convergence

u
β̂(p,un,vn)/2
n

√
Nn(1)√

V arp,ρ(β̂(p, un, vn), κ̂n, (κ̂
p
n)β̂(p,un,vn)/p)

(β̂(p, un, vn)− β)
L−→ X, (6.34)

where X is a normal distributed random variable with mean 0 and variance 1.
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Proof. The idea of the proof is to combine the previous results to �nd that

V arp,ρ(β̂(p, un, vn), κ̂n, (κ̂
p
n)β̂(p,un,vn)/p) is indeed a consistent estimator for

(ρβ+1)(4−2β)−2(2+2ρβ−(1+ρ)β−(1−ρ)β)
κβ,βρβ log(1/ρ)2Cp,β

and then use that the convergence in (5.99) is stably

in law and combine it with the consistency of V arp,ρ(β̂(p, un, vn), κ̂n, (κ̂
p
n)β̂(p,un,vn)/p) and

Lemma 6.3.

In order to calculate Cp,β =
Aβ

µp,βκp,β
we �nd that according to p.6 in [Tod15] we have the

following formula

Aβ
µp,β

=

(
2pΓ((1 + p)/2)Γ(1− p/β)√

πΓ(1− p/2)

)−β/p
. (6.35)

We note that for 0 < p < β/2 and β ∈ (1, 3) the right hand side of (6.35) is continuously

di�erentiable in β and using the same techniques as before we �nd that for our consistent

estimator β̂(p, un, vn) we have(
2pΓ((1 + p)/2)Γ(1− p/β̂(p, un, vn))√

πΓ(1− p/2)

)−β̂(p,un,vn)/p

P−→ Aβ
µp,β

. (6.36)

With similar arguments we also �nd that

(ρβ̂(p,un,vn) + 1)(4− 2β̂(p,un,vn))− 2(2 + 2ρβ̂(p,un,vn) − (1 + ρ)β̂(p,un,vn) − (1− ρ)β̂(p,un,vn))

ρβ̂(p,un,vn)

P−→ (ρβ + 1)(4− 2β)− 2(2 + 2ρβ − (1 + ρ)β − (1− ρ)β)

ρβ
. (6.37)

Combining Lemma 6.2 with Theorem 6.2 and (6.36) we have(
2pΓ((1 + p)/2)Γ(1− p/β̂(p, un, vn))√

πΓ(1− p/2)

)−β̂(p,un,vn)/p
1

(κ̂pn)β̂(p,un,vn)/p

P−→ Cp,β.

Together with the last line (6.37) and Corollary 6.1 we �nally get that

V arp,ρ(β̂(p, un, vn), κ̂n, (κ̂
p
n)β̂(p,un,vn)/p)

P−→ V arp,ρ(β, κβ,β, κp,β)

which, in conjunction with Lemma 6.3, �nishes the proof.

We �nish this section by applying Theorem 6.3 to our simulation routine from the

previous sections. That is we additionally implement the estimators κ̂pn, κ̂n from Theorem

6.2 and Corollary 6.1 to build the estimator V arp,ρ(β̂(p, un, vn), κ̂n, (κ̂
p
n)β̂(p,un,vn)/p) which

we then use to build the normalization from Theorem 6.3.

We start the discussion by singling out results for the estimator (κ̂pn)β̂n/p and compare

it with κp,β := E[(φ1−β + (φ′)1−β)
p
β ]

β
p for the same set of parameters as in Section 6.3,
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i.e. p = 1/2, β ∈ {1.1, 1.3, 1.5, 1.7, 1.9}, ρ ∈ {1/2, 2}, N = 1000 and n = 1000 with

again roughly Nn(1) ≈ 520 observations before the terminal time T = 1. There is much

freedom in choosing rn � nΨ from Theorem 6.2. However, a choice of rn = Nn(1)0.8 (large

enough for a good estimate of 1
λs
, small enough for a su�cient number of summands in

1
Nn(1)−rn−2

∑Nn(1)
i=rn+3 χi) seems to provide adequate results in our setting. Similar to the

previous section we collect the results in a table where outside the brackets we have results

for ρ = 1/2 and inside the brackets for ρ = 2.

β Mean of (κ̂pn)β̂(p,un,vn)/p Empirical Variance Theoretical Value of κp,β

1.1 2.2574 (2.0919) 0.2172 (0.0416) 2.108

1.3 2.5161 (2.2971) 0.3811 (0.1136) 2.3864

1.5 2.8959 (2.5961) 0.4695 (0.2039) 2.7769

1.7 3.2834 (2.9131) 0.3179 (0.2343) 3.3066

1.9 3.6522 (3.2987) 0.425 (0.2315) 4.0041

We note that already for this limited number of observations the estimated values are

relatively close to the theoretical ones and for this reason we omit a second table with

n = 10000. Furthermore, as V arp,ρ(β, κβ,β, κp,β) is not linear in β, we do not expect the

empirical mean of (κ̂pn)β̂(p,un,vn)/p to be exactly the theoretical value of κp,β. Finally κp,β
does not depend on ρ. Its choice only a�ects the quality of the estimator β̂(p, un, vn) and

through this the estimates in the �rst column.

At last, we present QQ-plots for the normalized estimator of the form (6.34) with again

the same parameter con�guration for ρ ∈ {1/2, 2}, n ∈ {1000, 10000}. The reference for
the theoretical quantiles is a normal distribution with mean 0 and variance 1.
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Figure 6.3: N = 1000, n = 1000, β ∈ {1.1, 1.3, 1.5, 1.7, 1.9}
left side ρ = 0.5, right side ρ = 2
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Figure 6.4: N = 1000, n = 10000, β ∈ {1.1, 1.3, 1.5, 1.7, 1.9}
left side ρ = 0.5, right side ρ = 2
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The most notable di�erence between these QQ-plots and the previous ones is that, even

though the variance is now estimated and therefore less accurate, in some instances the

distributional shape looks closer a normal distribution than before. In the previous plots

the upper quantiles/largest outcomes of uβ/2n

√
Nn(1)(β̂(p, un, vn)−β) were not big enough

to �t the quantiles of a normal distribution due to the boundedness of β̂(p, un, vn). There

are now two converse e�ects that cause a change. On the one hand overestimation of β

leads to smaller values for uβ̂(p,un,vn)/2
n , however, on the other hand V arp,ρ(β, κβ,β, κp,β)

is monotone decreasing in β and therefore overestimation of β leads to larger values of
1√

V arp,ρ(β̂(p,un,vn),κ̂n,(κ̂pn)
β̂(p,un,vn)/p

)

both contributing to the size of

u
β̂(p,un,vn)/2
n

√
Nn(1)√

V arp,ρ(β̂(p, un, vn), κ̂n, (κ̂
p
n)β̂(p,un,vn)/p)

(β̂(p, un, vn)− β).

Which e�ect dominates which is dependent on the choice of β and ρ but also on n as it

determines the size of un. Therefore we have these very di�erent looking plots across our

choice of parameters without a clear pattern compared to the previous ones.



Appendix: Python Implementation

� �
1 import numpy

2 import math

3 import pylab

4 import s ta t smode l s . ap i as sm

5 import s c ipy . s t a t s

7 ### Model parameters and paramters o f the es t imator t ha t are not choosen

8 ### in dependence o f N_n(1)

9 N = 1000

10 n = 100000

11 beta = 1 .9

12 T = 1

13 p = 0 .5

14 rho = 2

17 ### Sperate Monte Carlo s imu la t i on to determine va l u e s o f kappa_{p , be ta }

18 ### and kappa_{beta , be ta }

19 def kappa ( sample , beta , p ) :

20 m = math . f l o o r ( len ( sample ) / 2)

21 a = numpy .sum(

22 (numpy . power ( sample [ 0 :m] , 1 − beta ) + numpy . power (

23 sample [m: len ( sample ) ] , 1 − beta ) ) ∗∗ (

24 p / beta ) )

25 return ( a / m) ∗∗ ( beta / p)

28 phi = numpy . random . exponent i a l (1 , 100000)

29 phi = numpy .maximum(0 . 1 , phi )

30 K = numpy .mean( phi )

32 kappa_p = kappa ( phi , beta , p)

33 kappa_beta = kappa ( phi , beta , beta )
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36 ### simu la t i on o f one sample path o f the model d e s c r i b ed in s e c t i on 6.2

37 def sample_path (n , T, X0 , alpha0 , sigma0 , lambdaa0 , beta ) :

38 delta_n = T / n

40 ### Random numbers needed f o r the s imu la t i on

41 ### of a s t a b l e random va r i a b l e

42 gamma = numpy . random . rand (n , 1) ∗ math . p i − math . p i / 2

43 W = numpy . random . exponent i a l (1 , n )

45 ### Phi from the ob s e r va t i on scheme

46 phi = numpy . random . exponent i a l (1 , n )

47 phi = numpy .maximum(0 . 1 , phi )

48 phi = phi / K

50 ### sepera t e Brownian motions in a lpha /sigma and lambda

51 W_tilde = numpy . random . normal (0 , 1 , n )

52 W_tilde2 = numpy . random . normal (0 , 1 , n )

54 X = numpy . empty (n + 1 , dtype=f loat )

55 S = numpy . empty (n + 1 , dtype=f loat )

56 alpha = numpy . empty (n + 1 , dtype=f loat )

57 sigma = numpy . empty (n + 1 , dtype=f loat )

58 lambdaa = numpy . empty (n + 2 , dtype=f loat )

59 tau = numpy . empty (n + 2 , dtype=f loat )

60 X[ 0 ] = X0

61 alpha [ 0 ] = alpha0

62 sigma [ 0 ] = sigma0

63 S [ 0 ] = 0

64 tau [ 0 ] = 0

65 tau [−1] = 0

66 lambdaa [ : ] = 1

67 lambdaa [ 0 ] = lambdaa0

69 ### Euler scheme fo r sample path

70 for i in range (0 , n ) :

71 tau [ i + 1 ] = tau [ i ] + delta_n ∗ phi [ i ] ∗ lambdaa [ i − 1 ]

72 i f tau [ i + 1 ] < T:

73 lambdaa [ i ] = lambdaa [ i − 1 ] + (5 − lambdaa [ i − 1 ] ) ∗ (

74 tau [ i ] − tau [ i − 1 ] ) + lambdaa [

75 i − 1 ] ∗ W_tilde2 [

76 i ] ∗ math . s q r t ( ( tau [ i ] − tau [ i − 1 ] ) )
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77 S [ i + 1 ] = math . s i n ( beta ∗ gamma[ i ] ) / math .pow(

78 math . cos (gamma[ i ] ) ,

79 1 / beta ) ∗ math .pow(

80 math . cos ( (1 − beta ) ∗ gamma[ i ] ) / W[ i ] ,

81 ( (1 − beta ) / beta ) )

82 alpha [ i + 1 ] = alpha [ i ] + (2 − 2 ∗ alpha [ i ] ) ∗ (

83 tau [ i + 1 ] − tau [ i ] ) + 2 ∗ W_tilde [

84 i ] ∗ math . s q r t (

85 ( tau [ i + 1 ] − tau [ i ] ) )

86 sigma [ i + 1 ] = sigma [ i ] + alpha [ i ] ∗ W_tilde [

87 i ] ∗ math . s q r t ( ( tau [ i + 1 ] − tau [ i ] ) )

88 X[ i + 1 ] = X[ i ] + alpha [ i ] ∗ ( tau [ i + 1 ] − tau [ i ] ) + \

89 sigma [ i ] ∗ S [ i + 1 ] ∗ math .pow(

90 ( tau [ i + 1 ] − tau [ i ] ) ,

91 1 / beta )

92 else :

93 X[ i + 1 ] = None

95 X = X[~numpy . i snan (X) ]

96 tau = tau [ 0 : len (X) ]

97 return [X, tau ]

100 ### Quotient o f A_beta/mu_{p , be ta }

101 def C_p(p , beta ) :

102 i f beta > p :

103 a = 2 ∗∗ p ∗ math .gamma((1 + p) / 2) ∗ math .gamma(

104 1 − p / beta )

105 b = math . sq r t (math . p i ) ∗ math .gamma(1 − p / 2)

106 return math .pow( a / b , −beta / p)

107 else :

108 return numpy . nan

111 ### Estimator f o r sigma_s s ca l e d by mu_{p , be ta }

112 def V_i( delta_X_tau , p , k , i ) :

113 return numpy .sum(

114 numpy . power (abs (

115 delta_X_tau [ ( i − k − 1 ) : ( i − 1 ) ] − delta_X_tau [

116 ( i − k − 2 ) : ( i − 2 ) ] ) ,

117 p ) ) / k
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120 ### Implementation o f the impe r i c i a l c h a r a c t e r i s t i c f unc t i on

121 def L_n(p , u , delta_X_tau , k ) :

122 a = 0

123 Nn = len ( delta_X_tau )

124 for i in range ( k + 2 , Nn) :

125 a = a + math . cos (

126 u ∗ ( delta_X_tau [ i ] − delta_X_tau [ i − 1 ] ) / math .pow(

127 V_i( delta_X_tau , p , k , i ) , 1 / p ) )

128 return a / (Nn − k − 2)

131 ### Estimator f o r be ta from Theorem 5.2

132 def betahat (p , u , v , delta_X , delta_tau , k ) :

133 delta_X_tau = delta_X ∗ (1 / delta_tau )

134 a = math . l og (−(L_n(p , u , delta_X_tau , k ) − 1) ) − math . l og (

135 −(L_n(p , v , delta_X_tau , k ) − 1) )

136 return a / math . l og (u / v )

139 ### Estimator f o r kappa_{p , be ta } from Theorem 6.2

140 def kappa_hat ( delta_tau , tau , beta , p , r ) :

141 a = 0

142 b = len ( delta_tau ) − 1

143 for i in range ( r , b ) :

144 lambda_est = r / ( tau [ i ] − tau [ i − r ] )

145 a = a + math .pow(

146 ( lambda_est ∗ delta_tau [ i ] ) ∗∗ (1 − beta ) + (

147 lambda_est ∗ delta_tau [ i + 1 ] ) ∗∗ (

148 1 − beta ) ,

149 p / beta )

150 return math .pow( a / (b − r ) , beta / p)

153 ### Variance from Theorem 5.2

154 def Var_beta ( rho , beta , kappa_beta , C_p) :

155 i f rho < 1 :

156 a = ( rho ∗∗ beta + 1) ∗ (4 − 2 ∗∗ beta ) − 2 ∗ (

157 2 + 2 ∗ ( rho ∗∗ beta ) − (1 + rho ) ∗∗ beta − (

158 1 − rho ) ∗∗ beta )

159 else :

160 a = ( rho ∗∗ beta + 1) ∗ (4 − 2 ∗∗ beta ) − 2 ∗ (

161 2 + 2 ∗ ( rho ∗∗ beta ) − (1 + rho ) ∗∗ beta − (

162 rho − 1) ∗∗ beta )
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163 b = kappa_beta ∗ ( rho ∗∗ beta ) ∗ (math . l og (1 / rho ) ∗∗ 2) ∗ C_p

164 i f beta < 2 :

165 return ( a / b)

166 else :

167 return numpy . nan

170 r e s u l t = numpy . empty (N, dtype=f loat )

171 r e su l tnorma l = numpy . empty (N, dtype=f loat )

172 r e su l tno rma l_se l f = numpy . empty (N, dtype=f loat )

173 result_Nn = numpy . empty (N, dtype=f loat )

174 kappa_sample = numpy . z e ro s (N)

175 var_se l f = numpy . z e r o s (N)

177 ### loop over N samples

178 for j in range (0 , N) :

179 [X, tau ] = sample_path (n , T, 1 , 1 , 1 , 1 , beta )

181 ### choose parameters o f the e s t imator accord ing to Coro l l a ry 5.3

182 Nn = len (X)

183 k = math . f l o o r (math .pow(Nn, 0 . 6 ) )

184 u = math .pow(Nn, −0.33)
185 v = rho ∗ u

186 r = math . f l o o r (Nn ∗∗ 0 . 8 )

188 delta_X = numpy . d i f f (X)

189 delta_tau = numpy . d i f f ( tau )

191 ### app ly the e s t imator f o r be ta and norma l i za t ion from Theorem 5.2

192 r e s u l t [ j ] = betahat (p , u , v , delta_X , delta_tau , k )

193 r e su l tnorma l [ j ] = ( r e s u l t [ j ] − beta ) ∗ u ∗∗ (

194 beta / 2) ∗ math . s q r t (Nn − k )

195 result_Nn [ j ] = Nn

197 ### Estimate kappa_{p , be ta }

198 kappa_sample [ j ] = kappa_hat ( delta_tau , tau , r e s u l t [ j ] , p , r )

199 ### Apply norma l i za t ion from Theorem 6.3

200 var_se l f [ j ] = Var_beta ( rho , r e s u l t [ j ] ,

201 kappa_hat ( delta_tau , tau , r e s u l t [ j ] ,

202 r e s u l t [ j ] , r ) ,

203 C_p(p , r e s u l t [ j ] ) / kappa_sample [ j ] )

204 r e su l tno rma l_se l f [ j ] = ( r e s u l t [ j ] − beta ) ∗ u ∗∗ (

205 r e s u l t [ j ] / 2) ∗ math . s q r t (
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206 Nn − k ) / math . s q r t ( va r_se l f [ j ] )

207 print ( j )

209 r e su l tno rma l_se l f = r e su l tno rma l_se l f [~numpy . i snan ( r e su l tno rma l_se l f ) ]

210 var_se l f = var_se l f [~numpy . i snan ( var_se l f ) ]

212 print ( 'Mean beta_hat : ' + str (numpy .mean( r e s u l t ) ) )

213 print ( ' Empir ica l Variance : ' + str (numpy . var ( r e s u l t ) ) )

214 print ( ' Theo r e t i c a l Variance : ' + str (

215 Var_beta ( rho , beta , kappa_beta , C_p(p , beta ) / kappa_p ) ) )

216 print ( ' Average number o f ob s e rva t i on s : ' + str (numpy .mean( result_Nn ) ) )

217 print ( ' kappa_{p , beta } t h e o r e t i c a l : ' + str (

218 kappa_p) + ' #### kappa_sample : ' + str (

219 numpy .mean( kappa_sample [~numpy . i snan (

220 kappa_sample ) ] ) ) + ' ### kappa_variance : ' + str (

221 numpy . var ( kappa_sample [~numpy . i snan ( kappa_sample ) ] ) ) )

222 print ( ' S e l f no rma l i z ed Variance : ' + str (numpy . var ( r e su l tno rma l_se l f ) ) )

224 sm . qqplot ( resu l tnormal , l i n e=' 45 ' ,

225 s c a l e=math . s q r t (Var_beta ( rho , beta , kappa_beta ,

226 C_p(p , beta ) / kappa_p ) ) )

227 sm . qqplot ( r e su l tnorma l_se l f , l i n e=' 45 ' , s c a l e =1)

228 pylab . show ( )� �



Bibliography

[ASJ09] Ait-Sahalia, Yacine ; Jacod, Jean: Estimating the degree of activity of

jumps in high frequency data. In: Ann. Statist. 37 (2009), 10, Nr. 5A, 2202�

2244. http://dx.doi.org/10.1214/08-AOS640. � DOI 10.1214/08�AOS640

[ASJ14] Ait-Sahalia, Yacine ; Jacod, Jean: High-Frequency Financial Economet-

rics. 2014. http://dx.doi.org/10.1515/9781400850327. http://dx.doi.

org/10.1515/9781400850327

[BG61] BLUMENTHAL, R. M. ; GETOOR, R. K.: Sample Functions of Stochastic

Processes with Stationary Independent Increments. In: Journal of Mathe-

matics and Mechanics 10 (1961), Nr. 3, 493�516. http://www.jstor.org/

stable/24900735. � ISSN 00959057, 19435274

[BNS03] Barndorff-Nielsen, Ole E. ; Shephard, Neil: Realized power vari-

ation and stochastic volatility models. In: Bernoulli 9 (2003), 04,

Nr. 2, 243�265. http://dx.doi.org/10.3150/bj/1068128977. � DOI

10.3150/bj/1068128977

[CG02] Carr, Peter ; Geman, Helyette: The Fine Structure of Asset Returns: An

Empirical Investigation. In: The Journal of Business 75 (2002), Nr. 2, 305-

332. https://EconPapers.repec.org/RePEc:ucp:jnlbus:v:75:y:2002:i:

2:p:305-332

[EK19] Eberlein, Ernst ; Kallsen, Jan: Mathematical �nance. Cham : Springer,

2019 (Springer �nance). http://dx.doi.org/10.1007/978-3-030-26106-1.

http://dx.doi.org/10.1007/978-3-030-26106-1

[GKM11] Garcia, Isabel ; KlÃ1
4
ppelberg, Claudia ; MÃ1

4
ller, Gernot: Estimation

of stable CARMA models with an application to electricity spot prices. In:

Statistical Modelling 11 (2011), Nr. 5, 447-470. http://dx.doi.org/10.1177/

1471082X1001100504. � DOI 10.1177/1471082X1001100504

131

http://dx.doi.org/10.1214/08-AOS640
http://dx.doi.org/10.1515/9781400850327
http://dx.doi.org/10.1515/9781400850327
http://dx.doi.org/10.1515/9781400850327
http://www.jstor.org/stable/24900735
http://www.jstor.org/stable/24900735
http://dx.doi.org/10.3150/bj/1068128977
https://EconPapers.repec.org/RePEc:ucp:jnlbus:v:75:y:2002:i:2:p:305-332
https://EconPapers.repec.org/RePEc:ucp:jnlbus:v:75:y:2002:i:2:p:305-332
http://dx.doi.org/10.1007/978-3-030-26106-1
http://dx.doi.org/10.1007/978-3-030-26106-1
http://dx.doi.org/10.1177/1471082X1001100504
http://dx.doi.org/10.1177/1471082X1001100504


132

[JKLM12] Jing, Bing-Yi ; Kong, Xin-Bing ; Liu, Zhi ;Mykland, Per: On the jump ac-

tivity index for semimartingales. In: Journal of Econometrics 166 (2012), Nr.

2, 213 - 223. http://dx.doi.org/https://doi.org/10.1016/j.jeconom.

2011.09.036. � DOI https://doi.org/10.1016/j.jeconom.2011.09.036. � ISSN

0304�4076

[JP12] Jacod, Jean ; Protter, Philip E.: Discretization of processes. Berlin,

Heidelberg : Springer, 2012 (Stochastic modelling and applied probability).

http://opac.inria.fr/record=b1133542. � ISBN 978�3�642�24126�0

[JS87] Jacod, J. ; Shiryaev, A.N.: Limit Theorems for Stochastic Processes.

Springer Berlin Heidelberg, 1987 (Grundlehren der mathematischen Wis-

senschaften). https://books.google.de/books?id=sUgXKpUIdHwC. � ISBN

9783540178828

[JT18] Jacod, Jean ; Todorov, Viktor: Limit theorems for integrated local empir-

ical characteristic exponents from noisy high-frequency data with application

to volatility and jump activity estimation. In: The Annals of Applied Proba-

bility 28 (2018), 02, S. 511�576. http://dx.doi.org/10.1214/17-AAP1311.

� DOI 10.1214/17�AAP1311

[Kyp14] Kyprianou, A.E.: Fluctuations of Lévy Processes with Applications: Intro-

ductory Lectures. Springer Berlin Heidelberg, 2014 (Universitext). https:

//books.google.de/books?id=_P68BAAAQBAJ. � ISBN 9783642376320

[ST94] Samorodnitsky, Gennady ; Taqqu, Murad S.: Stable non-Gaussian ran-

dom processes : stochastic models with in�nite variance. New York : Chap-

man & Hall, 1994 (Stochastic modeling). http://opac.inria.fr/record=

b1085381. � ISBN 0�412�05171�0. � RÃ	Â¾Â1
2
impr. par CRC Press : 2000

[Tod13] Todorov, Viktor: Power variation from second order di�erences for pure

jump semimartingales. In: Stochastic Processes and their Applications 123

(2013), 07, S. 2829�2850. http://dx.doi.org/10.1016/j.spa.2013.04.005.

� DOI 10.1016/j.spa.2013.04.005

[Tod15] Todorov, Viktor: Jump activity estimation for pure-jump semimartingales

via self-normalized statistics. In: Ann. Statist. 43 (2015), 08, Nr. 4, 1831�1864.

http://dx.doi.org/10.1214/15-AOS1327. � DOI 10.1214/15�AOS1327

http://dx.doi.org/https://doi.org/10.1016/j.jeconom.2011.09.036
http://dx.doi.org/https://doi.org/10.1016/j.jeconom.2011.09.036
http://opac.inria.fr/record=b1133542
https://books.google.de/books?id=sUgXKpUIdHwC
http://dx.doi.org/10.1214/17-AAP1311
https://books.google.de/books?id=_P68BAAAQBAJ
https://books.google.de/books?id=_P68BAAAQBAJ
http://opac.inria.fr/record=b1085381
http://opac.inria.fr/record=b1085381
http://dx.doi.org/10.1016/j.spa.2013.04.005
http://dx.doi.org/10.1214/15-AOS1327


133

[Tod17] Todorov, Viktor: Testing for time-varying jump activity for pure jump

semimartingales. In: Ann. Statist. 45 (2017), 06, Nr. 3, 1284�1311. http:

//dx.doi.org/10.1214/16-AOS1485. � DOI 10.1214/16�AOS1485

[TT11] Todorov, Viktor ; Tauchen, George: Limit theorems for power varia-

tions of pure-jump processes with application to activity estimation. In: Ann.

Appl. Probab. 21 (2011), 04, Nr. 2, 546�588. http://dx.doi.org/10.1214/

10-AAP700. � DOI 10.1214/10�AAP700

[TT12] Todorov, Viktor ; Tauchen, George: Realized Laplace transforms for pure-

jump semimartingales. In: Ann. Statist. 40 (2012), 04, Nr. 2, 1233�1262.

http://dx.doi.org/10.1214/12-AOS1006. � DOI 10.1214/12�AOS1006

[Woe03a] Woerner, Jeannette H.: Purely discontinuous Levy processes and power

variation: inference for integrated volatility and the scale parameter / Ox-

ford Financial Research Centre. Version: 2003. https://ideas.repec.org/

p/sbs/wpsefe/2003mf08.html. 2003 (2003mf08). � OFRC Working Papers

Series

[Woe03b] Woerner, Jeannette H.: Variational sums and power variation: a unifying

approach to model selection and estimation in semimartingale models. In:

Statistics & Risk Modeling 21 (2003), January, Nr. 1/2003, 47-68. https:

//ideas.repec.org/a/bpj/strimo/v21y2003i1-2003p47-68n6.html

http://dx.doi.org/10.1214/16-AOS1485
http://dx.doi.org/10.1214/16-AOS1485
http://dx.doi.org/10.1214/10-AAP700
http://dx.doi.org/10.1214/10-AAP700
http://dx.doi.org/10.1214/12-AOS1006
https://ideas.repec.org/p/sbs/wpsefe/2003mf08.html
https://ideas.repec.org/p/sbs/wpsefe/2003mf08.html
https://ideas.repec.org/a/bpj/strimo/v21y2003i1-2003p47-68n6.html
https://ideas.repec.org/a/bpj/strimo/v21y2003i1-2003p47-68n6.html


134

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit � abgesehen von der Beratung durch

meinen Betreuer Herrn Prof. Dr. Mathias Vetter � nach Inhalt und Form eigenständig

angefertigt und nur die angegebenen Hilfsmittel benutzt habe. Dabei habe ich die Regeln

guter wissenschaftlicher Praxis der Deutschen Forschungsgemeinschaft eingehalten.

Die Arbeit hat weder ganz noch in Teilen an einer anderen Stelle im Rahmen eines Prü-

fungsverfahrens vorgelegen oder ist anderweitig zur Verö�entlichung eingereicht worden.

Weiter ist mir kein akademischer Grad entzogen worden.

Kiel, den 20.08.2020


	Motivation and Content of the Work at Hand
	Itô Semimartingales and their Basic Properties
	The Blumenthal-Getoor and the Jump Activity Index
	The Blumenthal-Getoor Index
	The Blumenthal-Getoor Index and Basic Path Properties
	Stable Processes and Related Processes
	Stable Processes
	Tempered Stable Process

	The Jump Activity Index and Basic Models
	Estimation procedures in Recent Literature

	Estimates for Itô Semimartingales and the Localization Procedure
	Basic Estimates for Itô semimartingales
	Localization Procedure
	Localization Procedure for Random Discretization Schemes

	Estimates for Itô semimartingales under Strengthened Assumptions

	Estimating the Jump Activity Index in the Presence of Random Observation Times
	Basics and Preliminaries
	Preliminary Results

	A Central Limit Theorem for the Empirical Characteristic Function L"0365Ln(p,u)
	Auxiliary Results
	Bounding the Residual Terms
	Limiting Behavior of Zn

	A Central Limit Theorem for the Estimator of 

	Numerical Assessment
	Setting
	Numerical Approximation and Simulation
	Results
	A Consistent Estimator for the Variance and a Further CLT

	Appendix: Python Implementation
	Bibliography

