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Abstract in English 

This cumulative dissertation presents four contributions that attempt to shed light on the 

issues regarding price bubbles in Chinese agricultural commodity market. 

Given that the public and policymakers show their concern on the price bubbles in Chinese 

agricultural commodity market, chapter 2 and 3 investigate the origin of price bubbles in 

futures and spot markets, respectively. In particular, after accurately identifying the bubble 

dates in agricultural futures market and fixing the estimation bias of rare events models, our 

empirical results in chapter 2 indicate that bubble episodes only account for a very limited 

proportion of the sample period, meanwhile, China’s corn and soybeans markets respond 

differently to the speculative activity and external shocks from international markets. Price 

bubbles are more likely to be associated with strong economic activity, high interest rates and 

low inflation levels. Furthermore, by gauging the synchronization level of bubble occurrences 

between futures and spot markets in chapter 3, we find that even cointegrated futures and spot 

prices for agricultural commodities seldom bubble together. Further analysis through a 

regime-switching approach of price transmission reveals that the adjustment effect of futures 

prices on spot prices is the lowest during the regime where bubbles occur the most frequently 

for spot prices, while the spot price returns are more likely to be affected by its own lagged 

terms. All these results challenge the idea that bubbles are originated from over-

financialization in futures markets and are then transmitted to spot markets. Therefore, we 

conclude that futures price bubbles are more sensitive to fundamental factors, while spot price 

bubbles are more likely to be affected by their own market features. Apart from empirical 

analyses on the origin of price bubbles, it is widely believed that bubbles could distort 

resource allocation and a recession usually follows the collapse of bubbles. Inspired by the 

findings from chapter 2 and 3, chapter 4 attempts to build a systematic theoretical framework 

that explains the observed economic process with bubbles. From a new perspective of firm 

growth, we construct a theoretical model to describe the evolvement of bubbles, including 

their origin, development, collapse, and their effect on the output of economy. Following our 

research topic, chapter 5 tends to investigate the effects of the newly established futures 

contract for apples in China. The results of various tests suggest that the apple futures market 

does not serve well for the price discovery and may reduce the spot price volatility to some 

extent. In order to improve the efficiency of the apple futures market, the regulators should 

consider effective measures to attract more commercial traders from different regions in 

China into the futures market. 
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Abstract in German 

Diese kumulative Dissertation besteht aus vier Beiträgen; dabei gilt es, die Probleme 

bezüglich Preisblasen auf dem chinesischen Agrarrohstoffmarkt zu beleuchten. 

Angesichts der Aufmerksamkeit der Öffentlichkeit und der politischen Entscheidungsträger 

bezüglich der Preisblasen auf dem chinesischen Agrarrohstoffmarkt wird jeweils in Kapitel 2 

und 3 die Entstehung von Preisblasen auf den Termin- und Kassamärkten untersucht. 

Insbesondere nach genauer Identifizierung des Blasendatums auf dem Agrar-Terminmarkt 

und Korrektur der geschätzten Abweichung von Modellen für seltene Ereignisse zeigen 

unsere empirischen Ergebnisse in Kapitel 2, dass die Blasenepisoden nur einen sehr 

begrenzten Anteil der Abtastperiode ausmachen, und dass die Märkte für Mais und 

Sojabohnen in China unterschiedlich auf spekulative Aktivitäten und externe Schocks auf den 

internationalen Märkten reagieren. Die Preisblasen hängen eher mit der starken 

Wirtschaftstätigkeit, den hohen Zinssätzen und der niedrigen Inflation zusammen. Darüber 

hinaus wird in Kapitel 3 durch die Messung des Synchronisationsgrades der Blasen zwischen 

dem Termin- und Kassamarkt festgestellt, dass selbst die kointegrierten Termin- und 

Kassapreise der Agrarrohstoffe selten gleichzeitig Blasen bilden. Eine weitere Analyse durch 

den Regime-Switching Ansatz der Preisübertragung zeigt, dass der Anpassungseffekt des 

Terminpreises an den Kassapreis am geringsten ist während des Zeitraumes, in dem die 

Kassapreisblasen am häufigsten auftreten. Zudem werden die Kassapreisrenditen eher von 

ihren eigenen verzögerten Konditionen beeinflusst. Alle diese Ergebnisse stellen die Idee in 

Frage, dass Blasen durch Überfinanzialisierung auf den Terminmärkten entstehen und dann 

auf die Kassamärkte übertragen werden. Daraus schließen wir, dass die Termin-Preisblasen 

empfindlicher auf fundamentale Faktoren reagieren, während die Kassa-Preisblasen eher von 

ihren eigenen Merkmalen des Marktes beeinflusst werden. Abgesehen von empirischen 

Analysen zur Entstehung von Preisblasen wird allgemein angenommen, dass Blasen die 

Ressourcenallokation verzerren könnten und die Rezession der Wirtschaft normalerweise auf 

den Zusammenbruch der Blase folgt. Inspiriert von den Ergebnissen aus Kapitel 2 und 3 wird 

in Kapitel 4 versucht, einen systematischen theoretischen Rahmen aufzubauen, um den 

beobachteten wirtschaftlichen Prozess mit Blasen zu erklären. Aus einer neuen Perspektive 

konstruieren wir ein theoretisches Modell, um die Entwicklungsübersicht der Blasen zu 

beschreiben, das ihre Entstehung, ihre Entwicklung, ihren Zusammenbruch und ihre 

Auswirkung auf die Wirtschaftsleistung einschließt. Im Rahmen des Forschungsthemas 
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werden in Kapitel 5 die Auswirkungen des neueingerichteten Apfel-Terminkontrakts in China 

erforscht. Die Ergebnisse verschiedener Tests zeigen an, dass der Apfel-Terminmarkt die 

Preisfindung nicht gut fördern, aber die Volatilität der Kassapreise in gewissem Maße 

verringern kann. Um die Effizienz des Apfel-Terminmarktes zu erhöhen, sollten die 

Regulierungsbehörden wirksame Maßnahmen in Betracht ziehen, mehr gewerbliche Händler 

aus verschiedenen Regionen Chinas für die Teilnahme an Termingeschäften zu gewinnen.  
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The global agricultural commodity markets have witnessed price booms and busts during the 

last decades. Around the financial crisis of 2007/08, agricultural commodity prices, such as 

corn and soybeans, reached their historical high levels. Fig. 1.1 and 1.2 below show the (log) 

corn and soybeans futures prices in Chicago Board of Trade (CBOT) from 2006 to 2017. It 

indicates that both corn and soybeans have experienced significant price booms and busts 

around 2007-2008 and 2010-2012. This has triggered a lasting public and academic concern 

on the existence, causes, and effects of agricultural commodity price bubbles.  

Due to that food expenditure takes a large proportion of the poor’s income, the welfare of 

people in developing countries could be strongly affected by a large increase in grain prices 

(Tadesse et al. 2014, Bellemare 2015). In addition, the livelihood of farmers mainly depends 

on agricultural production. The drastic fluctuations of agricultural commodity prices may 

further affect farmers’ production decisions (Gouel 2014). Therefore, the agricultural price 

anomalies are supposed to have profound and complicated effects on the welfare of the poor 

in developing countries.  

As pointed out by the World Bank (2018), the rapid growth among the major emerging 

markets and developing economies over the past 20 years has boosted the global demand for 

various commodities, especially given that 39 percent of the increase in global food 

consumption between 1996 and 2016 is from emerging economies. Being the most populous 

emerging economy, China plays an important role in global markets and suffers welfare 

losses from volatile agricultural commodity prices. Especially after becoming a member of 

the World Trade Organization (WTO) at 2001, China’s agricultural market has become more 

and more integrated into the international market (Hernandez et al. 2014). Figure 1.1 and 1.2 
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show that both Chinese corn and soybeans prices (from Dalian Commodity Exchange, DCE) 

have experienced similar booms and busts as the US market. Meanwhile, as an important 

producer and consumer of many agricultural commodities, China significantly impacts the 

global supply/demand balance (Coxhead and Jayasuriya 2010). One extremely case is that 

China imported more than half of its consumption volume for soybeans in 2017.  

 

Figure 1.1 CBOT and DCE Soybean Prices 2006-2017 

Source: Own calculations based on data from CBOT and DCE using Stata 15. 
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Figure 1.2 CBOT and DCE Corn Prices 2006-2017 

Source: Own calculations based on data from CBOT and DCE using Stata 15. 

 

Another important feature about the agricultural commodity markets is the increasing 

financialization over the last decades. As stated by Master (2008), ‘assets allocated to 

commodity index replication trading strategies have grown from $13 billion in 2003 to $317 

billion in July 2008. At the same time, the prices for the 25 commodities that make up these 

indices have risen by an average of over 200%’. The unprecedented inflow of institutional 

funds into commodity futures market has been considered as the primary reason for 

agricultural price bubbles (Master 2008, 2009, Basak and Pavlova 2016). Irwin and Sanders 

(2012) refer to this argument as Masters Hypothesis, which is often cited by sequent studies in 

this field.  

Although many people describe commodity price booms coupled with massive speculation as 

price bubbles, the basic definition of asset price bubbles is straightforward: if the reason that 

the price is high today is only because investors believe that the resale price will be higher 

tomorrow and the fundamental factors do not seem to justify such a price (Stiglitz 1990, 

Scheinkman and Xiong 2003, Gürkaynak 2008). The fundamental value of an asset is 

determined by the standard present discounted value (PDV) of its future dividends. Pindyck 
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(1992) further develops the present discounted value model of rational commodity pricing, 

which uses convenience yields as future payoffs for storable commodities. Thereby, the 

standard theoretical framework of asset price bubbles could be applied to commodity prices.  

More importantly, it is noticeable that rational expectations cannot prevent the occurrence of 

price bubbles defined above. The intertemporal no-arbitrage condition holds in the case of 

rational price bubbles, namely the bubble would grow in the risk-free interest rate. The 

standard PDV model would have multiple equilibria under the hypothesis of rational 

expectations, which suggests the indeterminacy of bubble solutions (Blanchard and Watson 

1982). Price series containing with various bubble paths could evolve without violating 

rational expectations. A detailed mathematical deduction of this process will be presented in 

the methodology part of Chapter 2. Evans (1991) further generalizes the model of rational 

price bubbles into a periodically collapsing form. The type of bubbles in this dissertation is 

constrained to rational price bubbles. For irrational bubbles, please refer to the research work 

of Shiller (2015). 

So far, no consensus has been reached about the underlying factors driving the price bubbles 

in agricultural commodity futures markets. There are two main strings of studies on the 

possible factors. The first one is consistent with the ‘Master hypothesis’, arguing that 

agricultural commodity price bubbles are caused by over-financialization. Related studies 

empirically investigate the effect of over-financialization on agricultural price bubbles and 

find mixed evidences (Headey and Fan 2008, Sanders and Irwin 2011, 2017, Will et al. 2013, 

Etienne et al. 2015, Etienne 2017). Nevertheless, the regulators have taken measures to curb 

speculative positions in agricultural futures markets. Scholars show their worries that these 

anti-speculation measures may lower the efficiency of agricultural futures markets, due to that 

speculators play an important role in price discovery and are important counterparties to 

commercial traders (Tirole 1982, Sanders and Irwin 2010). Another string of studies focuses 

on fundamental economic factors, such as supply/demand pressure, economic climate index, 

exchange rate and so on (Krugman 2008, Frankel 2014, Etienne et al. 2017, Li, Chavas, et al. 

2017). They argue that price bubbles are more likely to occur under certain conditions of 

fundamental economic factors. Increasing empirical evidences tend to support this point 

(Boyd et al. 2018).  

Meanwhile, it is noticeable that few studies have investigated price bubbles in agricultural 

spot markets. The co-integration relationship between agricultural futures and spot prices 

guarantees a long run equilibrium across markets (Pindyck 2001). The return on purchasing a 



Chapter 1 Introduction and Summary 

5 

 

commodity and selling it for deliver using futures contracts equals the interest forgone less the 

convenience yield net of storage costs (Kaldor 1939, Working 1948, Telser 1958, Casassus et 

al. 2013). This link is supposed to guarantee the Law of One Price (LOP) (Listorti and Esposti 

2012). Hence, one underlying point of the ‘Master hypothesis’ is that agricultural price 

bubbles caused by over-speculation in futures market would simultaneously transmit to 

agricultural spot markets. As a result, commodity prices in spot market would also exceed 

their fundamental values. 

However, the deduction from the cointegrated relationship to the bubbles’ synchronisation 

between futures and spot prices lacks solid support from theories and empirical studies. 

Futures contracts are generally supposed to speed up the homogenizing process of traders’ 

common expectations concerning a future event. Evidences from experimental economics 

show that futures markets dampen, though do not eliminate, bubbles (Porter and Smith 2003). 

Moreover, nonlinear price transmission or sluggish response to market information could 

result in temporary disjunction between cointegrated prices (Listorti and Esposti 2012, Loy et 

al. 2016, Alexakis et al. 2017). This raises our suspect about the bubble synchronisation 

between the agricultural futures and spot markets. If bubbles in agricultural futures market 

truly reflect the changes of fundamental economic factors, bubbles in spot market should not 

be caused by speculation in futures market. The true origin of commodity price bubbles may 

be attributable to certain features of the spot market. 

Apart from the empirical studies on agricultural commodity price bubbles, there is still an 

urgent issue regarding the theoretical modelling of bubbles. Many insightful theoretical 

models for price bubbles have been constructed on the basis of the Overlapping Generations 

(OLG) framework proposed by Samuelson (1958). The advantage for this kind of models is 

that they do not impose any terminal conditions on price series and explain the economic 

process with bubbles (Samuelson 1958, Tirole 1985, Olivier 2000, Martin and Ventura 2012). 

Nevertheless, the finite lived agents of OLG framework cannot be used for empirical analyses 

on the price data, which is based on calendar time (Miao 2014). Kocherlakota (1992, 2008) 

made important contributions to the infinite-horizon models. The bubble is considered as a 

windfall to the firms and relax their borrow constraints. In the presence of financial frictions, 

bubble trades could enhance financial market efficiency and economic growth.  

The moment we notice the bubbles in the market, their potential precipitating factors has long 

been existed in the economy (Shiller 2015). Thus, it needs a more comprehensive explanation 
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on the formation of price bubbles in agricultural markets, especially considering that most 

previous studies only focus on the effect of over-financialization and seldom refer to other 

bubble theories. Although the model of rational bubbles is useful to explain the existence of 

bubbles, it doesn’t explain the underlying market process: neither the timing of a bubble, nor 

the reasons for its onset, nor the type of transactions that occur during the bubble episodes are 

explained by this model (Lux and Sornette 2002). Meanwhile, the shortage of the theoretical 

models based on the OLG framework is the assumption of finite lived agents, who could only 

live for two or three periods, otherwise the model would be extremely complicated. Therefore, 

we still need new efforts to explain the economic process with bubbles. Inspired by the 

studies by Kocherlakota (1992, 2008) and Martin and Ventura (2012), we try to construct a 

new model that embodies the rational bubbles into economic process. 

Given that there are only a few empirical researches into the agricultural commodity price 

bubbles in China, this cumulative dissertation consists of four independent studies that 

contribute to the research on the origin of agricultural price bubbles, price transmission during 

bubble episodes, as well as a new theoretical model that explains the effects of bubbles on 

economic growth. The first study (Chapter 2) is devoted to identifying the exact bubble dates 

in Chinese agricultural corn and soybeans futures markets and to investigating the possible 

contributing factors to the formation of bubbles. The second study (Chapter 3) measures the 

degree of bubble synchronisation between agricultural futures and spot markets and attempts 

to analyse the price transmission processes during bubble episodes. The third study (Chapter 4) 

provides a new theoretical framework of asset price bubbles and sheds light on the economic 

effects of bubbles by assuming infinite lived agents. The last study (Chapter 5) evaluates the 

performance of the global first fresh fruit futures contract for apples (red Fuji) in China. 

Each study is summarized below. The summary includes the aim of the study, the data, the 

methods applied, and the main results. The main conclusions, policy implications, and 

limitations of each contribution are presented in Chapter 7. 

Price Bubbles in Agricultural Commodity Markets and Contributing Factors: Evidence 

for Corn and Soybeans in China  

Given the fact that Chinese agricultural commodity futures markets have experienced similar 

fluctuations as the international market (see Figure 1.1 and 1.2), the objectives of this study 

are to detect the bubble dates for corn and soybeans futures prices, and to investigate the 

possible contributing factors to agricultural price bubbles in China.  
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We concentrate on the two highly traded agricultural commodities in Chinese futures market, 

namely corn and soybeans. Using individual futures contract prices drawn from the Dalian 

Commodity Exchange (DCE) during the period 2006-2017, we apply a recently developed 

rolling window right-side augmented Dickey-Fuller test to identify the bubble dates. After 

detecting the bubble dates for each commodity species, we examine the contributing factors to 

agricultural price bubbles in China using a multinomial logistic model.  

The results indicate that price bubbles account for 5.48 % (3.91 %) of the sample period for 

corn (soybeans). For the contributing factors, we find that market liquidity and speculation 

have opposite effects on the occurrences of bubbles in the corn and soybeans futures markets. 

World stocks-to-use and exchange rates affect the occurrences of bubbles in a different way 

for each commodity, as well. Price bubbles are more likely to be associated with strong 

economic activity, high interest rates and low inflation levels. 

Agricultural Price Transmission between Futures and Spot Markets during Price 

Bubbles 

Using the weekly price data from Dalian Commodity Exchange (DCE) and China Grain 

Reserves Group Company over the period 2009-2017, this article measures the degree of 

bubble synchronisation between futures and spot markets for corn and soybeans in China. A 

new approach comparing the standard deviation of bubble shares with that of perfect bubble 

synchronisation/staggering is applied to gauge the degree of bubble synchronisation between 

markets. To further investigate the interdependence between agricultural futures and spot 

prices during their bubble episodes, we use the Markov Switching Error Correction Model 

(MSECM) and the Dynamic Conditional Correlation Multivariate GARCH Model (DCC-

MGARCH).  

Our results provide little evidence for bubble synchronisation between the agricultural futures 

and spot prices. This does not support the prediction from the conventional co-integration and 

Granger-causality relationships. Bubbles are more frequent and durable for agricultural spot 

prices, even though futures prices dominate the price discovery. Specifically, the results from 

the MSECM model suggest a nonlinear transmission across the futures and spot prices. The 

co-integration relationship becomes weak and the adjustment effect of the spot price toward 

the long-run equilibrium is the lowest during the regime with the most frequent spot price 

bubbles. The agricultural spot price returns are more likely to be affected by its own lagged 

terms. Through the DCC-MGARCH model, we further find a very loose dynamic volatility 
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interdependence between these two prices. These features of agricultural spot markets could 

have resulted in more frequent bubbles. 

Economic Growth, Bubbles, and Firm Size Distribution 

The relationship between bubbles and economic growth has received increasing attention by 

scholars, particularly in a production economy with financial frictions. The existing literature 

generally investigates the effect of bubbles on economic growth by embedding the bubbles 

into the framework of Overlapping Generations (OLG); however, the interpretation of these 

models for economic data are limited. A new theoretical model is constructed in this chapter 

to combine the model of rational bubbles and the stochastic model of firm growth proposed 

by Ijiri and Simon (1967). Under the assumption of infinite lived agents, we relax the 

propositions that allow the occurrences of bubbles and investigate the effects of bubbles on 

the dynamic economic process. A simulation is then conducted to show that our model is 

useful to demonstrate the bubble’s process and economic development.  

Price discovery and volatility spillovers in Chinese apple futures market 

The Red Fuji apple futures contracts introduced in China at the end of 2017 marked the first 

fresh fruit trade at a futures exchange. This paper investigates the performance of the newly 

established apple futures market, using the data from the Zhengzhou Commodity Exchange 

(ZCE) in China. After identifying a weak correlation between apple futures and spot prices, 

we gauge the synchronisation degree of price changes across major apple spot markets 

nationwide and investigate the volatility spillovers between the apple futures and spot markets.  

We find that the apple futures market has a limited function of price discovery, which 

undermines its hedging effectiveness for commercial traders. The establishment of apple 

futures market doesn’t improve the synchronisation level of price changes among the major 

apple markets in China. Moreover, the volatility analyses through GARCH and BEKK-

MGARCH models indicate that the apple spot price volatility has increased significantly 

during the last two years, but we find that futures price tends to reduce the spot price volatility 

in the short term. Our study reveals that apple futures market does not serve well for the price 

discovery and may reduce the spot price volatility. This raises a doubt about whether fresh 

fruit is suitable for futures trading.  
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Abstract  

The purpose of this paper is to detect the existence of price bubbles and examine the 

possible contributing factors that associate with price bubble occurrences in China 

agricultural commodity markets. Using recently developed rolling window right-side 

augmented Dickey-Fuller test, we first detect the dates of price bubbles in China’s 

two important agricultural commodity markets, namely corn and soybeans. Then, we 

use a penalized maximum likelihood estimation of a multinomial logistic model to 

estimate the contributing factors of price bubbles in both markets, respectively. 

Results from the bubble detection indicate that price bubbles account for 5.48 % 

(3.91 %) of the studied periods for corn (soybeans). More importantly, we find that 

market liquidity and speculation have opposite effects on the occurrences of bubbles 

in the corn and soybeans market. World stocks-to-use and exchange rates affect the 

occurrences of bubbles in a different way for each commodity, as well. Price bubbles 

are more likely associated with strong economic activity, high interest rates and low 

inflation levels. The results imply that China’s corn and soybeans market respond 

differently to the speculative activity and external shocks from international markets. 

Therefore, future policy regulations on commodity markets should focus on more 

commodity-specific factors when aiming at avoiding bubble occurrences. 

Keywords: Price Bubbles; Agricultural Commodities, Futures Markets, China 
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2.1 Introduction  

The word ‘price bubble’ creates a mental picture of an expanding soap bubble, which 

is destined to burst suddenly and irrevocably (Shiller 2015). Among the substantive 

research on the global financial crisis in 2007/08, the controversy on price bubbles in 

commodity futures markets is long lasting (Gutierrez 2013). It has been widely 

recognized that price bubbles could distort market trades since prices are the most 

important signals for traders (Phillips et al. 2012). Meanwhile, price explosiveness on 

agricultural commodity markets may reduce the welfare of the poor due to rising food 

expenditures (Carter et al. 2011). Such crisis may even cause economic and political 

instabilities (Bellemare 2015). World Bank (2008) reports that 130 million people in 

developing countries fell into extreme poverty and suffered from food shortages due 

to the sudden increasing prices in food and fuel markets around 2007/08. This has 

urged scholars and policymakers to further understand the explosive nature of 

commodity prices. 

A price bubble is a situation in which an asset price is higher (lower) than its 

fundamental value derived from the discounted dividend stream (Brunnermeier 2008, 

Gürkaynak 2008, Gutierrez 2013). A price spike is a comparatively large upward or 

downward movement of a price over a short period of time. Price bubbles are price 

spikes, but the reverse is not necessarily true. Price spikes can be caused by structural 

changes of fundamental values (Harvey et al. 2016). Many studies show that some 

historical price spikes are not price bubbles. Those spikes are systematic and rational 

responses to underlying economic structural changes (Meltzer 2002, Etienne et al. 

2015).  

After the financial crisis, the two main strings of studies on the possible factors 

contributing to price bubbles result in mixed findings. One string of these studies 

attributes bubbles to massive speculation or growing inflow of institutional funds into 

the commodity markets, and particularly argues that the motivation of commodity 

index traders is to diversify their own portfolios, rather than based on the market 

fundamentals (Master 2008, 2009, Basak and Pavlova 2016). Speculators are 

commonly considered to be any trader who is not engaged in the physical trade of a 

commodity (Working 1960), and speculation is regularly defined as a process of 
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transferring price risks for market traders with different beliefs, prospects or risk 

aversions (Tirole 1982). Nevertheless, speculation has long been suspected to distort 

the normal market trades in the extant literature (Boyd et al. 2018). Master (2008, 

2009) states that excessive speculation is the major reason for commodity price 

bubbles in futures markets during the global financial crisis, which is often cited as 

‘Master hypothesis’. He strongly urges restrictive rules on speculative positions in 

commodity futures markets. It is argued that futures markets with a relative inelastic 

supply of futures contracts experience dramatic price changes if new demand from 

excessive speculation is introduced or if speculative activities are not based on market 

fundamentals (Henderson et al. 2015, Sockin and Xiong 2015a). Tang and Xiong 

(2012) find that financialization of commodities leads to a co-movement in returns 

between commodity futures and financial assets. Basak and Pavlova (2016) then 

construct a model of financialization of commodities which suggests that both 

(commodity) index trades and non-index trades could drive up commodity futures 

prices, volatilities and correlations under the financialization of commodities.  

Another stream of studies sees fundamental supply and demand as well as 

macroeconomic factors as the main contributing factors for the significant price rise in 

2007/08 (Will et al. 2013, Boyd et al. 2018). One example in this area is the huge 

demand from bio-energy industries and the increasing demand from emerging 

economies (Krugman 2008, Hamilton 2009, Carter et al. 2012, Kilian and Murphy 

2014). Rapid growth among the major emerging markets and developing economies 

over the past 20 years has boosted the global demand for commodities, especially 

given that 39 percent of the increase in global food consumption between 1996 and 

2016 is from emerging economies (World Bank 2018). Some studies even argue that 

the implementation of the limits on institutional positions may even take the liquidity 

out of the commodity futures markets and result in high price volatility (Brunetti and 

Buyuksahin 2009, Sanders and Irwin 2010, 2011). Using pooled data from different 

agricultural commodity markets in USA, Etienne et al. (2017, 2015) find no effects of 

increasing commodity index trades on bubbles; they conclude that positive price 

bubbles mostly occur in the presence of inventory shortages, strong exports, weak 

US$ exchange rates, and booming economic growth. This is in line with the idea that 
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price bubbles grow when insufficiently informed traders overreact to market news 

(Scheinkman and Xiong, 2003).  

Likewise, macroeconomic factors have been shown to play significant roles in 

explaining the price movements in agricultural commodities (Pindyck and Rotemberg 

1988, Bailey and Chan 1993, Carter et al. 2011), which might contribute to price 

bubbles. For instance, Pindyck and Rotemberg (1988) find that inflation, industrial 

production, interest rates, and exchange rates can be used to explain the co-

movements of different commodity prices. Phillips and Yu (2011) even point out that 

varying interest rates could induce temporary explosive behaviours in asset prices. Li 

et al. (2017) find that price bubbles are more likely to happen under certain 

macroeconomic conditions. In addition, some other studies concerning commodity 

price volatility prove that macroeconomic factors significantly affect the low-

frequency component of price volatility (Engle and Rangel 2008, Karali and Power 

2013). Therefore, macroeconomic factors can capture the critical features of the 

economy and may further affect traders’ expectations of commodity markets. 

This paper concentrates on the price bubbles of corn and soybeans futures market in 

China and hopes to find the potential contributing factors behind these bubbles. China 

has a huge, rigid and everlasting demand for agricultural commodities from its home 

and global market. Its rising food consumption demand has profound effects on the 

world food balance and trade pattern (Coxhead and Jayasuriya 2010) and is often 

taken as the main sources of global commodity price spikes. It is also a special case 

for China that it is the major player as an important agricultural producer and 

consumer in the global market, such as corn and soybeans. Hernandez et al. (2014) 

also find that China is a locally oriented and highly regulated market (2014). They 

verify the dynamic international interlink between China market and many other 

major international markets. Therefore, as the most populated country, it is extremely 

important for China to maintain food safety and keep a stable agricultural commodity 

market. An additional background is that retailing investors are the main force of 

China’s commodity futures market. Since commodity index funds are beginning to 

enter into the futures market recently, it is necessary to study the latent impact of 

speculation and other factors through available data.  
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To the best of our knowledge, this study is the first one considering the commodity-

specific factors into the formation of price bubbles for important Chinese agricultural 

markets. Using a newly developed rolling window right-side ADF test (GSADF) with 

the wild bootstrap procedure 1 , we first accurately identify price bubble dates in 

China’s corn and soybeans futures markets. Afterwards, we adopt a penalized 

maximum likelihood estimation of a multinomial logistic model to explore the 

potential factors contributing to price bubbles for each commodity, respectively.  

Importantly, our study is different from the other studies in the way of estimating the 

contributing factors of price bubbles. Due to the rare occurrences of bubbles, the 

existing empirical studies would pool different commodities together, when 

estimating the common potential influencing factors of price bubbles (Etienne et al., 

2015; Li, et al., 2017). This is no longer appropriate if considering the specific 

features of different commodity markets and may even result in misleading 

conclusions. Especially, the commodities we consider here are corn and soybeans. 

These two commodities have different restrictive rules regarding importing from the 

international market in China. One may expect some different effects of world stocks-

to-use and exchange rates in the model of corn and soybeans. In this case, the 

penalized maximum likelihood estimation method of a multinomial logistic model 

enables us to avoid the bias caused by rare events. 

In this paper, we try to fix the estimation bias of rare events models and obtain a 

robust result using data from individual commodity market. If the ‘Master hypothesis’ 

is true that price bubbles are mainly driven by excessive speculation, we may expect 

price bubbles to be accompanied by high futures trade volumes or open interests, and 

do not reflect fundamentals of supply and demand in the market. If the ‘Master 

hypothesis’ is rejected, price bubbles would be the outcome of extreme supply and 

demand conditions on the corresponding commodity, as well as an outcome of 

                                                 

1 The newly developed rolling window right-side ADF test combined with the bootstrap procedure has 

been proved to be an adequate procedure to detecting the location of bubbles, because it could avoid 

“pseudo bubbles” caused by underlying economic structural changes (Harvey et al. 2016). Specifically, 

this method outperforms the other bubble testing procedures, such as sequential Chow-test and 

CUSUM tests, in the case of multiple periodically collapsing bubbles (Homm and Breitung 2012, 

Phillips et al. 2012, 2015). 
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macroeconomic activities. These hypotheses will be investigated for each commodity 

market, respectively. 

The outline of the rest of the paper is as following. Section 2.2 briefly introduces the 

methods to detecting price bubbles, including bubble testing and the penalized 

multinomial logistic model to determine the factors that contribute to price bubbles. 

Section 2.3 describes the data and provides some descriptive statistics. Section 2.4 

discusses the main model estimation results. Section 2.5 summarizes the paper and 

presents conclusion. 

2.2 Methodology 

2.2.1 Testing for price bubbles 

A conventional definition of a price bubble is that it is a situation in which an asset 

price is higher (lower) than its fundamental value derived from the discounted 

dividend stream (Brunnermeier 2008, Gürkaynak 2008, Gutierrez 2013). If investors 

already know that the present price of an asset is biased from its fundamental value 

and investors are still buying or holding the asset to acquire benefits from future sales, 

price bubbles are rational. The cross-period arbitrage-free condition always holds in 

the case of rational price bubbles, which means the bubble would grow in the risk-free 

rate. Following the study of Blanchard and Watson (1982), the price process of one 

asset should follow the form: 

𝑃𝑡 =
𝐸𝑡[𝑃𝑡+1+𝐷𝑡+1]

1+𝑟𝑓
                                                      (1) 

where 𝑃𝑡 represents the price at time t, 𝐷𝑡 represents the dividend or payoff for time t, 

𝑟𝑓 represents the risk-free interest rate and 𝐸𝑡[·] represents the expectation based on 

the information at time t. Taking the convenience yields as the dividends for 

commodities, Pindyck (2001) then finds that equation (1) can be used to explain the 

formation of commodity futures price. Forward iterating equation (1) to infinite 

periods, we can get the fundamental price of the asset: 

𝑃𝑡
𝑓
= ∑

1

(1+𝑟𝑓)
𝑖 𝐸𝑡(𝐷𝑡+𝑖)

∞
𝑖=1                                          (2) 
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equation (2) is the unique solution of equation (1) only when the transversality 

condition is fulfilled, that is the price at the infinite future point is zero: 

𝑙𝑖𝑚
𝑘→∞

𝐸𝑡 [
1

(1+𝑟𝑓)
𝑘 𝑃𝑡+𝑘] = 0                                                (3) 

However, when equation (3) does not hold, the equation (2) will no longer be the 

unique solution of equation (1). This suggests that a deviation from the fundamental 

price could occur even under the constraint of non-arbitrage. Consider a bubble 

component 𝐵𝑡 with the property 

𝐸𝑡[𝐵𝑡+1] = (1 + 𝑟𝑓)𝐵𝑡                                               (4) 

adding this 𝐵𝑡 into equation (2) will also satisfy equation (1). That is  

    𝑃𝑡 = 𝑃𝑡
𝑓
+ 𝐵𝑡                                                   (5) 

In this case, the non-arbitrage condition still holds, because the bubble component 

grows at rate 𝑟𝑓, and the rational expectation of investors is not biased. Thus, this kind 

of price bubble is called as rational price bubbles. 

Moreover, under the plausible assumption that the dividends would follow a random 

walk with a drift 𝜇  

𝐷𝑡+1 = 𝜇 + 𝐷𝑡 + 휀𝑡                                               (6) 

where 휀𝑡 is a white noise process. Substituting equation (6) into equation (2), we can 

get 

𝑃𝑡
𝑓
=

𝑟𝑓

1+𝑟𝑓
𝜇 +

1

𝑟𝑓
𝐷𝑡                                            (7). 

The first term of the right side of Equation (7) is constant, while the second term is a 

random walk process based on equation (6). Thus, equation (7) shows that the 

fundamental price should be a random walk series and will become an explosive 

process when there is bubble component as in equation (4). For more details, please 

refer to the study of Blanchard and Watson (1982), Gürkaynak (2008), and Hamilton 

(1994). 
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Another important issue is about the existence of negative bubbles, or price bubbles 

during the price downward process. Similar with Etienne et al. (2015), we define the 

positive bubbles as phases in which the average price is higher than the fundamental 

value, while negative bubbles occur when the average price is below the fundamental 

value. Based on the deduction above, it seems that 𝐵𝑡 cannot be negative because it 

will result in a negative price which is not allowed in the markets (Diba and Grossman 

1988). However, it has been found that there are two situations in which bubbles can 

occur during the price downward process. Firstly, the existence of a bubble may lead 

to an increase in interest rates which so depresses the fundamental value that the sum 

of the bubble component and the fundamental falls short of the nonbubbly 

fundamental value. Hence, a rational bubble component may in fact decrease the 

overall price of an asset (Weil 1990). Secondly, Payne and Waters (2005) find that 

negative bubbles are allowed in the case of periodically collapsing bubbles, which 

also satisfy the conditions of equation (1) to (5). Thus, bubbles could occur along both 

with the upward and downward price movements. This suggests that we should 

separate the negative bubbles from positive ones, because the potential contributing 

factors may have opposite effects for these two types of bubbles2.  

The definition of price bubbles above provides the basis for the right-tailed unit root 

test to testing bubbles (Diba and Grossman 1988). When price bubbles occur, the 

rational bubble component of prices is an explosive process, while the remaining part 

is a stationary or integrated process of order one at the most. Phillips et al. (2011, 

2009) further develop the right-tailed unit root test into a new forward recursive right-

tailed ADF test (SADF), which suggest implementing the right-tailed ADF test 

repeatedly on a forward expanding sample sequence and performing inference based 

on the supreme value of the corresponding ADF statistic sequence.  

                                                 

2 It should be noted that both types of bubbles may distort normal market trades and affect farmers’ 

decisions on future consumption and agricultural investments. Positive bubbles occur during the price 

upward movement, while negative bubbles occur during the price downward movement. The main 

reason to distinguish between these two types of bubbles is that they may be derived from different 

mechanisms or contributing factors. The deviating effects of the two types of bubbles depend on the 

income and consumption structures of poorer farm households. Poorer farm households mostly engage 

in agricultural production for their own consumption (Gouel, 2014). For net food buyer households, 

positive bubbles increase their food budget. For net food seller households, negative bubbles lower 

their revenues, which may hinder their agricultural investments and production. Therefore, both 

positive and negative bubbles affect the wellbeing of the poor. 
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A great advantage of this SADF test is that it can identify the points of origination and 

termination of a bubble. Homm and Breitung (2012) use extensive simulations prove 

that the SADF test works satisfactorily for structural breaks, when comparing to other 

bubble testing approaches (such as sequential Chow-tests and CUSUM tests), 

especially it can detect market exuberance induced by a variety of sources, such as 

speculation or the time-varying discount factor. However, all of these methods suffer 

from reduced power when detecting the periodically collapsing bubbles. To solve this, 

Phillips et al. (2012, 2015) propose an alternative approach named the generalized 

supreme ADF test (GSADF). Currently, the GASDF test has been widely accepted 

and used to detect bubbles in many markets, such as stock markets (Caspi and 

Graham 2018, Hu and Oxley 2018), real estate markets(Anundsen et al. 2016, 

Engsted et al. 2016, Pavlidis et al. 2016), and energy markets (Tsvetanov et al. 2016, 

Caspi et al. 2018). Recently, many studies also try to apply this method into the 

agricultural commodity markets (Etienne et al., 2015; Gutierrez, 2013; Li, et al., 

2017). Detailed introduction of the GSADF test is described as following. 

According to Phillips et al. (2015), a recommended empirical regression model of 

random walk process for bubble detection has the following weak (local to zero) 

intercept form: 

𝑃𝑡 = 𝑑𝑇− + 𝜃𝑃𝑡−1 + 휀𝑡 with  휀𝑡 ∼ 𝑖𝑖𝑑(𝜎
2) and 𝜃 = 1                            (8) 

where 𝑃𝑡 is the asset price, 𝑑 is a constant, 𝑇 is the sample size and η is a localizing 

coefficient that controls the magnitude of the intercept and drift as 𝑇 → ∞. 

The main idea of the GASDF method is to implement the ADF test on the sequential 

subsets (rolling window) of the whole sample. Suppose that the rolling window 

sample starts from the 𝑟1
𝑡ℎ fraction of the total sample (T) and ends at the 𝑟2

𝑡ℎ fraction 

of the sample, where 𝑟2 = 𝑟1 + 𝑟𝑤  and 𝑟𝑤 > 0 is the fractional window size of the 

regression. The empirical regression model can then be written as 

𝛥𝑃𝑡 = �̂�𝑟1,𝑟2 + �̂�𝑟1,𝑟2𝑃𝑡−1 + ∑ �̂�𝑖
𝑟1,𝑟2

𝛥𝑃𝑡−𝑖 + 휀�̂�
𝑘
𝑖=1                                 (9)

 

where k is the lag order. The number of observations in the regression is 𝑇𝑊 = ⌊𝑇𝑟𝑤⌋, 

where⌊. ⌋ is the floor function (given the integer part of the argument). The ADF 
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statistic (t-ratio) based on this regression is denoted as 𝐴𝐷𝐹𝑟1
𝑟2 . Then, the rolling 

regression of the repeated ADF test is implemented for the bubble detection using the 

subsamples of the data. The GSADF relies on the repeated estimation of the ADF 

model. It varies the endpoint of the ADF regression 𝑟2 from 𝑟0 (the minimum window 

width) to 1, and it allows the starting point 𝑟1 to change within a feasible range, that is, 

from 0 to 𝑟2−𝑟0. The GSADF test statistic of 𝑟2 is then obtained as the sup value of 

the corresponding ADF statistic sequence: 

𝐺𝑆𝐴𝐷𝐹(𝑟0) = 𝑠𝑢𝑝𝑟1∈[0,𝑟0]
𝑟2∈[𝑟0,1]{ 𝐴𝐷𝐹𝑟1

𝑟2}                                             (10) 

The origination date of a bubble  ⌊𝑇𝑟𝑒⌋  is calculated as the first chronological 

observation whose GSADF statistic exceeds the critical value. The calculated 

origination date is denoted by ⌊𝑇𝑟�̂�⌋. The estimated termination date of a bubble ⌊𝑇𝑟�̂�⌋ 

is the first chronological observation after ⌊𝑇𝑟�̂�⌋ + 𝐿𝑇 whose GSADF statistic is below 

the critical value. We set the minimum window size to 20 observations, which is 

amount to one month’s trading days3. The bubble duration must exceed the length of 

log(T). Here, in our paper, it is around log(264) = 2.42. The bubble duration should 

at least last 3 days.  

For the calculation of critical values in the GSADF method, Phillips et al. (2012) 

firstly propose to use the Monte Carlo simulation. However, Harvey et al. (2016) find 

that the Monte Carlo method will mistake the potential structural breaks in the price 

series as price bubbles and the results of bubble detection will be quite severely over-

sized. They propose to use the wild bootstrap method to calculate the critical values, 

which will consider the underlying structural break of the time series and thus find 

fewer but more accurate bubble days than the Monte Carlo method. In this paper, we 

adopt the wild bootstrap method. The number of iterations of wild bootstrapping is 

2000. 

                                                 

3 We adjust the minimum window size and find that the result of bubble dates is rather robust. 
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2.2.2 Estimation of Possible Contributing Factors on Price Bubbles 

Employing the GSADF approach, we could identify the bubble dates and types in the 

sample period. Each observation has three possible states, namely no bubble, positive 

bubble and negative bubble. In the case of discrete response models with three 

outcomes, a multinomial logistic model is adequate to test for possible contributing 

factors on the different outcomes (Wooldrige 2010).  There are two commodities, 

namely corn and soybeans, indexed by 𝑖 = 1, 2. The variables of the multinomial 

logistic model are as shown in the equation below: 

𝐵𝑢𝑏𝑏𝑙𝑒𝑠𝑖𝑡 = 𝐶𝑜𝑛𝑠𝑖 + 𝛽𝑖1𝑀𝐿𝐹𝑖𝑡 + 𝛽𝑖2𝑆𝑡𝑜𝑐𝑘𝑠𝑖𝑡 + 𝛽𝑖3𝑆𝑂𝐼𝑡 + 𝛽𝑖4𝑈𝑆𝐵𝑢𝑏𝑏𝑙𝑒𝑠𝑡 +

𝛽𝑖5𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑡 + 𝛽𝑖6𝐸𝐶𝐼𝑡 + 𝛽𝑖7𝑆ℎ𝑖𝑏𝑜𝑟𝑡 + 𝛽𝑖8𝑃𝑃𝐼𝑡  + 𝛽𝑖9𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒𝑡 + 휀𝑖𝑡      (11)                                             

where i =1 for corn and 2 for soybeans, the dependent variable ‘Bubbles’ are dummy 

variables which include three categories: positive, negative, and no bubbles (base 

category). As presented in the introduction, the current discussion on the origin of 

agricultural price bubbles mainly focuses on two directions: excessive speculative 

trade and fundamental economic factors. Speculation in futures market has long been 

considered as the source of market instability, because speculators are thought to be 

irrational traders who only want to make extra profits (Boyd et al. 2018). However, 

speculation is also important for risk transferring and price discovery in futures 

markets, and speculators are important counterparties to commercial traders (Tirole 

1982). The trade volume and open interests are used to capture the effects of 

speculation (Castro Campos 2019, Tadesse et al. 2014, Hong and Yogo 2012, Irwin et 

al. 2009). Similarly, bubbles from international commodity markets, e.g. US markets, 

can affect markets in China. Market information from international exchanges is 

available in real time and processed by arbitrage brokers which leads to tightly linked 

futures markets (Hernandez et al. 2014). Price bubbles may thus transmit between 

different markets by these mechanisms.  

The fundamental factors include the stock-to-use ratio, macroeconomic factors, and 

weather shocks (Southern Oscillation Index, SOI). All factors have been found to 

influence the expectation of commodity price (Pindyck and Rotemberg 1988, Gilbert 

2010, Adämmer and Bohl 2015, Etienne et al. 2015, Li, Chavas, et al. 2017, Castro 

Campos 2019). Specifically, the factors of domestic and global stocks-to-use ratios 
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mirror the degree of demand pressure for corn and soybeans, while the weather 

shocks (SOI) significantly affect the traders’ expectations on future supplies. Thereby 

we cover the supply and demand effects. The macroeconomic factors, e.g. the 

exchange rate, the economic climate index (ECI), the interest rates, inflation, and 

gasoline prices, reflect the various economic activities and the impact of business 

cycles. There is plenty of evidence for the impact of macroeconomic factors on the 

movement of commodity prices (Li, et al., 2017; Etienne et al., 2015; Adämmer and 

Bohl, 2015; Frankel, 2014; Pindyck and Rotemberg, 1988). 

Exchange rate changes the incentives to international trade of corn and soybeans. The 

economic climate index reflects the degree of economic activity, which affects the 

demand on various commodities. Interest rates affect investments and commodity 

storage costs. By considering the inflation rate, we control the general price level. 

Gasoline prices reflect energy price, which have direct and indirect effects on 

agricultural commodity markets. More details of the variables will be stated in Table 

2.1. 

One problem in existing studies is that they usually pool the data of different 

commodities together to estimate the effects of the possible contributing factors 

(Etienne et al. 2015, Li, Chavas, et al. 2017). This pooling is due to the rare 

occurrences of bubbles, which may result in a biased estimation of the parameters 

using the conventional multinomial logistic model (King and Zeng 2001). However, 

though some price co-movement caused by common macroeconomic factors can be 

seen in the commodity markets, Ghoshray (2018), Kellard and Wohar (2006) find that 

the price dynamics for related commodities, such as corn and soybeans, tend to be 

distinctly different from each other and warn against the aggregation of commodities. 

This is particularly true in the case of China. China is still a self-sustaining market and 

has high domestic inventory volumes for corn, while China imports more than half of 

its soybean consumption from global markets. According to the statistics from 

China’s General Administration of Customs, the import volume of soybeans in 2017 

is about 95.54 mt. This is a historic peak that increased by 13.9 % compared with 

2016. However, the import volume of corn is only 2.83 mt. Its import share decreases 

by 11 % compared with 2016. As the largest soybean importer, it is important to 
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consider international shocks for soybeans market. In order to avoid the biased 

estimation problem caused by rare events when estimating each market, we adopt the 

penalized maximum likelihood estimation for the multinomial logistic model, which 

can provide an unbiased estimation of the potential contributing factors to price 

bubbles for corn and soybeans, respectively. The penalized maximum likelihood 

estimation (PLE) is developed by Firth (1993) and it penalizes the likelihood 

estimates of a logistic regression using the Jeffreys prior. Similar to the method 

proposed by King and Zeng (2001), the PLE method can reduce the bias of the 

maximum likelihood estimation in the case of rare events for discrete choice models 

(Paul 2012). Fortunately, Colby et al. (2010) has further developed an R package 

‘PMLR’ to employ this method for the multinomial logistic model. 

2.3 Data 

Our study focusses on China, which is one of the most important emerging economies. 

China has a huge, rigid and lasting demand for agricultural commodities not only 

from its domestic market but also from global markets. Forecasts of the world 

economy to 2030 suggest China would continue to become more food import-

dependent (Anderson 2018). Its rising demand for food consumption has profound 

effects on the world food balance and trade patterns (Coxhead and Jayasuriya 2010). 

Effective policies and regulations to keep commodity prices stable require better 

insights into the dates and formation of price bubbles.  

China has established futures markets for many agricultural commodities in the last 

decades (Chang 2020), and they serve important functions for price discovery during 

the process of marketization for most agricultural commodities (Ju and Yang 2019). 

We collect the price data from the Dalian Commodity Exchange (DCE) in China. 

According to the Futures Industry Association (FIA), the DCE was the 8th largest 

exchange in the world in 2016. Our sample period runs from 2006 to 2017, including 

the periods of global price peaks in 2007/08 and 2010/11. Here, we use the sequences 

of individual futures contract prices and detect bubbles on each futures contract price 

series. The rolling nearby contract price behaving like cash prices is not used, because 

bubbles within it could be entirely driven by fundamental demand and supply factors 

rather than speculative trades in the futures market (Etienne et al. 2015). Meanwhile, 
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nearby futures prices may suffer the potential ‘splicing bias’, because the price jumps 

generated from rolling one futures contract to the next nearby futures contract would 

result in ‘pseudo bubbles’. Unlike nearby contract price, the individual contract price 

should behave as a random walk and reflect the complete evolvement of traders’ 

continuous expectation on the market over the whole trading year (Fama and French 

2013).  

We choose the futures contract with the highest trade volume per commodity each 

year. Taking the corn contract ‘c1701’ as an instance, its time span is from 2016.01.18 

to 2017.01.15. The price data in the delivery month (2017 January) is excluded and 

only the price data from 2016.01.18 to 2016.12.30 is kept. Due to the min-window 

size of the bubble testing method, we further use the price data from 2015.11.16 to 

2016.01.17 of the nearest corn contract ‘c1611’ as our initial window period. Thus, 

we can get a thirteen-month price series for each commodity in 2016. The same 

procedure goes for the other sample periods. Then, we will use the bubble detecting 

method (GSADF) to test each price series and date-stamp the bubbles.  

Table 2.1 presents detailed information on the model variables in equation (11). Trade 

volume and open interest represent the market liquidity and speculation for different 

commodities. Data comes from the Dalian Commodity Exchange (2019). The 

domestic and world stocks-to-use data is from the U.S. Department of Agriculture 

(USDA). We take the initial (not corrected) data available at the respective period. 

The stocks-to-use ratio is the ratio of net consumption over initial stocks of each 

period. For weather shocks, the Southern Oscillation Index (SOI) is used to predict El 

Niño and La Niña episodes, which affects yields of grains in the western and eastern 

tropical Pacific area (Shuai et al. 2016). The ‘USBubbles’ is a dummy variable 

indicating price bubbles for US corn and soybeans markets. This information is taken 

from the study of Etienne et al. (2015)4. The exchange rate and Shibor are from China 

Central Bank. Gasoline is the refined oil price obtained from China Ministry of the 

Commerce. ECI is the economic climate index measuring the economic activity and 

PPI is the production price index (China National Statistical Bureau). Based on the 

                                                 

4 The bubble dates from 2016 to 2017 are calculated by us using the same bubble testing procedure as 

theirs. 
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literature, all these factors may have direct and indirect effects on traders’ 

expectations (Pindyck and Rotemberg 1988, Gilbert 2010, Hong and Yogo 2012).  

Most of the independent variables have a daily frequency, except domestic and world 

stocks-to-use ratios, SOI, Gasoline, ECI and PPI. These variables indicate a monthly 

frequency. We convert monthly data to daily by simply filling up the days of the 

month with the respective monthly observation. As these monthly data do not show 

significant changes in the short-term, the changes in frequency may not affect the 

estimation results (Etienne et al., 2015; Li et al., 2017).  
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Table 2.1  Price and Possible Factors Contributing to Price Bubbles (2006-2017) 

Variables Description Corn Soybean 

 
Price Price for each commodity (¥/ton) 1935.48 

(345.24) 

3982.82 

(575.46) 

Daily controls    

Trade Volume Daily hands of futures contracts 

exchanged in the Dalian Commodity 

Exchange (thousand hands) 

 

128.13 

(227.20) 

 

107.80 

(201.2729) 

Open Interest Daily number of futures contracts that 

are still open and held by traders 

(thousand contracts). These contracts 

have not been closed out, expired or 

exercised 

 

285.43 

(403.42) 

 

131.14 

(120.41) 

Exchange Rate 

 

Daily RMB to Dollar exchange rate 

(¥/$) 

 

6.72 

(0.53) 

 

6.72 

(0.53) 

Shibor The ‘Shanghai Interbank Offered 

Rate’, which is used to represent the 

interest rates. Shibor is regularly 

considered as the risk-free interest rate 

in China 

 

2.34 

(0.94) 

 

2.34 

(0.94) 

USBubbles_Positive Dummy variable for positive bubbles 

in US corn and soybeans markets. 

 

0.015 

(0.125) 

 

0.028 

(0.166) 

USBubbles_Negative Dummy variable for negative bubbles 

in US corn and soybeans markets. 

 

0.015 

(0.121) 

 

0.014 

(0.118) 

Monthly controls    

China Stocks-to-use The ratio of changes in the inventory 

volume of each commodity over the 

beginning stocks of each period in 

China. 

 

0.15 

(1.13) 

 

0.20 

(1.11) 

World Stocks-to-use The ratio of changes in the inventory 

volume of each commodity over the 

beginning stocks of each period at a 

global scale. 

 

0.26 

(1.26) 

 

0.26 

(1.26) 
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SOI Southern Oscillation Index: Predicting 

the El Niño (La Niña) episodes across 

the eastern tropical Pacific area 

 

0.31 

(0.97) 

 

0.31 

(0.97) 

ECI Index indicator of the economic 

activity in China (baseline = 100) 

 

91.79 

(17.54) 

 

91.79 

(17.54) 
PPI 

 

Producer Price Index, which is used to 

represent the inflation rate. It indicates 

the monthly average changes in the 

price levels received by producers for 

their output. (PPI =100 in 2002) 

 

128.11 

(6.17) 

 

128.11 

(6.17) 

Gasoline Gasoline price (¥/100*ton) 69.80 

(12.77) 

69.80 

(12.77) 

Notes: The last two columns report the mean value of corresponding variables and the standard 

deviations are in the parentheses. Monthly data will be converted into daily data by assuming constant 

values throughout the month and their mean value could be calculated on this basis. 

Source: Own calculations with Stata 15. 

2.4 Results 

2.4.1 Bubble Dates 

Figures 2.1 and 2.2 illustrate the relationship between the price trends and bubble 

periods for corn and soybeans, respectively. Similar to global markets, the prices of 

corn and soybeans in China both experience dramatic fluctuations during 2007/08 and 

2010/11. However, we can see that not all bubbles occur at times when prices of 

individual futures contract sharply increase or decrease. 5  This seemingly 

counterintuitive result is also found in other studies using the same methodology 

(Etienne et al. 2015, Harvey et al. 2016). Generally, this kind of results will be 

accepted in former studies. According to asset pricing theory, a normal price series 

should be a random walk process. Here, we should distinguish two types of price 

series. One is a process containing explosive root, and the other one is a process 

behaving as random walk with high price volatility. The price period between 

01jan2008 and 01 jan2009 has been proved to be a random walk without explosive 

roots, its dramatic fluctuations thus should be attributed to the high volatility. To 

                                                 

5 There are some steep changes in the pricing process at the end or beginning of each year because we 

use individual futures contract price for each year. 
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verify this, we further implement the GASDF test on a simulated random walk 

process with high price volatility and still get no evidence of price bubbles6, though 

the simulated random walk also seems to have explosive periods. Another explanation 

is that the wild bootstrap method considers the underlying structural breaks in the 

price process and improves the critical values in certain periods.  

Generally, most bubble episodes last less than 10 days. The maximum single bubble 

duration of corn lasts 24 days from 2008.11.28 to 2008.12.31 and the maximum 

duration of a single soybean price bubble lasts 28 days from 2007.10.11 to 2007.11.19. 

For the bubble frequencies, there are 19 bubbles in the corn market and 16 bubbles in 

the soybean market during the whole sample period.  

As mentioned earlier in the part of methodology, we classify the bubbles into two 

types: positive and negative bubbles. There are 158 days (5.48% of the sample period) 

of price bubbles for corn, 46 days of which are positive bubbles and 112 days of 

which are negative bubbles. In contrast, 113 days (3.91% of the sample period) are 

found to be price bubbles for soybeans, 91 days of which are positive bubbles and 22 

days of which are negative bubbles. Negative bubbles are most frequently observed in 

the corn market, while positive bubbles are more prominent in the soybeans market. 

The different performances of bubbles may also reflect that the corn market is highly 

self-sustaining while the soybean market always experiences shortages. These facts 

suggest there may be different market conditions behind these two markets and we 

cannot simply pool them together as in other studies (Etienne et al., 2015; Li, et al., 

2017). Moreover, the positive and negative bubbles are not tightly connected with 

each other and tend to be independent events. This supports our use of the 

multinomial logistic model to estimate the contributing factors of positive and 

negative bubbles, respectively.   

                                                 

6  The simulated random walk is defined as 𝑦𝑡 = 0.1 + 𝑦𝑡−1 + 휀𝑡 ,  휀𝑡 ∼ 𝑁(0,5) . The length of the 

random walk is 264, that is amount to the length of an individual contract price series. The results 

remain constant when the drift term or the random error term varies. 
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Figure 2.1 Price Bubbles for Corn 

Source: Own calculations based on data from DCE using Stata 15. 

 

Figure 2.2 Price Bubbles for Soybeans 

Source: Own calculations based on data from DCE using Stata 15. 

More detailed information about the bubble dates is presented in Table 2.5A-1 and 

Table 2.6A-2 in the appendix. In line with former studies using the same bubble 

testing method, we could conclude that price bubbles are rare events and only 

comprise a limited proportion of the sample period. In the following part, we will 

further discuss the effects of possible contributing factors on price bubbles. 

2.4.2 Multinomial Logistic Regression Results 

We first calculate the descriptive statistics for the independent variables in Table 2.2. 

Compared with periods without bubbles, the mean values of the trade volume and 

open interest are much lower during bubble periods. It may imply that price bubbles 

are more likely to occur under low market liquidity. For the domestic and world 
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stocks-to-use ratios, we could see different trends of mean values during positive 

bubbles and negative bubble episodes. The SOI tends to be negative during negative 

bubble periods. The rest macroeconomic factors do not show significant trends.  

We will use a multinomial logistic model to estimate the effects of the potential 

contributing factors. A penalized maximum likelihood estimation method is applied to 

avoid biases, which occur with conventional multinomial logistic regression. Tables 

2.3 and 2.4 present the main results. Tables 2.7A-3 and 2.8A-4 in the appendix show 

the marginal effects of the independent variables. Signs of the marginal effects are 

consistent with the signs of the corresponding coefficients in Tables 2.3 and 2.4. 

Table 2.2 Summary Statistics of the Contributing Variables 

Notes: The cells report the mean value of corresponding variables and the standard deviations are in the 

 Corn  Soybean 

 No Bubbles Positive  Negative   No Bubbles Positive  Negative 

Trade volume 131.74 

(233.39) 

19.98 

(44.12) 

125.56 

(144.76) 

 111.11 

(207.99) 

39.38 

(91.61) 

48.85 

(87.42) 

Open Interest 290.10 

(408.54) 

41.25 

(51.67) 

259.30 

(261.23) 

 132.77 

(120.94) 

92.98 

(95.28) 

78.74 

(98.26) 

China Stocks-to-use 0.02 

(0.11) 

-0.03 

(0.12) 

0.01 

(0.11) 

 0.02 

(0.11) 

0.06 

(0.04) 

0.09 

(0.06) 

World Stocks-to-use 0.03 

(0.13) 

0.07 

(0.13) 

0.04 

(0.09) 

 0.03 

(0.13) 

-0.02 

(0.08) 

0.02 

(0.18) 

SOI 0.33 

(0.96) 

0.02 

(0.88) 

-0.05 

(1.05) 

 0.30 

(0.97) 

0.02 

(0.88) 

-0.05 

(1.05) 

USBubbles Positive 0.02 

(0.13) 

0.00 

(0.00) 

0.01 

(0.10) 

 0.02 

(0.15) 

0.16 

(0.37) 

0.00 

(0.00) 

USBubbles Negative 0.02 

(0.13) 

0.00 

(0.00) 

0.00 

(0.00) 

 0.01 

(0.12) 

0.04 

(0.20) 

0.00 

(0.00) 

Exchange Rate 6.74 

(0.54) 

7.05 

(0.62) 

6.82 

(0.60) 

 6.73 

(0.54) 

7.24 

(0.45) 

7.17 

(0.80) 

ECI 92.06 

(17.31) 

90.28 

(20.14) 

91.57 

(20.39) 

 91.33 

(17.16) 

112.66 

(15.13) 

91.52 

(15.25) 

Shibor 2.36 

(0.96) 

1.89 

(0.88) 

2.08 

(1.15) 

 2.34 

(0.97) 

2.45 

(1.06) 

2.18 

(0.26) 

PPI 128.21 

(6.25) 

120.94 

(2.86) 

125.32 

(5.68) 

 128.10 

(6.31) 

124.83 

(2.86) 

125.36 

(7.97) 

Gasoline 7023.51 

(1271.36) 

5889.13 

(773.39) 

6388.93 

(1232.85) 

 7018.72 

(1264.21) 

5919.73 

(1101.97) 

6552.22 

(1576.23) 

Observations 2194 38 91  2231 74 18 
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parentheses. The number of bubble days here is different from that in the previous part because there 

are some missing values in the independent variables, such as Shibor. 

Source: Own calculations with Stata 15. 

2.4.2.1 Contributing Factors of Price Bubbles for the Corn Market 

We use two variables to measure the futures market liquidity and speculation, namely 

the trading volume and open interest of the futures contracts under study. Because of 

the highly co-linearity, we introduce each of these two factors separately into the 

model. Table 2.3 shows that all coefficients remain robust in the two models. Trade 

volume and open interest both have significant negative effects on positive bubbles, 

while their coefficients for negative bubbles are insignificant. Higher liquidity and 

more speculation seem not to increase the likelihood of price bubbles for corn. If 

future markets with higher liquidity attract more speculators or if more liquid markets 

imply more speculation, we may conclude that price bubbles of corn are more likely 

to occur during the illiquidity periods with less speculation activities. The futures 

market of corn with higher liquidity is more likely to be invulnerable to external 

shocks. 

The fundamental stocks-to-use factors measure the net consumption of each period 

relative to its beginning stocks and are expected to explain the differences in price 

dynamics of commodities (Wright, 2009). However, we find no significant effects of 

China and World stocks-to-use on the occurrences of bubbles. This may be due to that 

China has a relatively self-sustaining market for corn. Meanwhile, there are various 

policies that prevent excessive price changes of corn. All of these may result in the 

insensitivity of corn price to the changes of domestic and world stocks-to-use. In 

addition, we introduce the (positive/negative) bubble dummy variable in the US 

futures market of corn into the model and find no significant effects. This further 

proves that China’s corn market is more invulnerable to international shocks. Instead, 

the SOI is a significant predictor for both positive and negative bubbles of corn. 

Prolonged positive (negative) SOI index coincides with abnormally cold (warm) 

weather and thus lower (increase) the yield of grains. Therefore, low (high) yield of 

corn suggested by higher (lower) SOI index predicts more positive (negative) bubbles 

in its futures market. Traders in China’s futures market are more sensitive to the 

temperature changes or future yields in the main production area of corn.  
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Moreover, considering the significant negative effects of the exchange rate on both 

kinds of bubbles, a weak RMB (higher exchange rate) may suspend imports from 

international markets and thus reduce external shocks on domestic corn markets. Lin 

and Xu (2019) also find that exchange rate has an inverse ‘U-shaped’ nonlinear effect 

on commodity price in China. Therefore, higher exchange rate may even inhibit 

positive price bubbles. In addition, based on the cost information regularly published 

by Dalian Commodity Exchange (DCE), the price of domestic corn is always higher 

than that of the imported corn. When positive bubbles occur in domestic market and 

exchange rate is relatively high, the imported corn is still cheaper than the domestic 

corn and may even help stabilize the domestic corn price. For the other 

macroeconomic factors, higher economic activity could increase the demand for raw 

materials, our results also show that ECI has a significant positive effect on positive 

price bubbles in both models. A higher SHIBOR (Shanghai Interbank Offered Rate) 

significantly increases the probability of positive price bubbles. We may imply that 

less money would flow into the futures market during periods with high interest rates. 

Another possible explanation is that higher interest rates may reduce capital 

investments by suppliers of various commodities, thereby reducing the future supply 

and raising current prices (Pindyck and Rotemberg 1988). With respect to the 

negative effect of inflation, it has been found that there is a chaotic and nonlinear 

interdependence between inflation and commodity price movement (Kyrtsou and 

Labys 2006). A perturbation on inflation level will not necessarily have the expected 

impact on commodity price and can even lead to wide distortions. Zhang et al. (2019) 

further show that PPI has a negative effect on commodity prices in China. As we have 

seen in Figure 2.1, most price bubbles do not occur during the historical high price 

periods. Thus, the negative effect of PPI on positive price bubbles is counterintuitive 

at first glance, but it does reflect the complex and chaotic relationship between 

inflation and commodity prices7.Finally, for the gasoline price, it is often used to 

predict the fundamental prices of commodities and many studies have shown the 

connectedness between energy prices (ethanol) and agricultural prices (Tyner 2010, 

Wu et al. 2011, Adämmer and Bohl 2015). We use this variable to estimate the 

                                                 

7 We further conduct a robustness check of the lagged effects for PPI and find that the estimation 

results remain unchanged (see Table 2.11A-7 and Table 2.12A-8 in the appendix).  
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influence of energy prices and find that a higher gasoline price will lead to more 

positive bubbles and fewer negative bubbles in our models. Thus, it may increase the 

costs of agricultural production and even increase the demand for ethanol producing 

from corn. 

2.4.2.2 Contributing Factors of Price Bubbles for the Soybean Market 

As we can see in Table 2.4, the results of the two models for soybeans are also robust. 

However, compared with the case of corn, the trade volume and open interest of 

soybeans both have positive and significant effects on positive price bubbles. This 

again indicates that the soybeans market has different characteristics or structure with 

the corn market in China. Compared with corn, China always suffers a tight 

demand/supply balance for soybeans. In this case, traders may be more easily to be 

misled by speculative trades. Higher speculation in the soybean futures market could 

thus induce more price bubbles. 

Regarding China’s stocks-to-use for soybeans, positive effects on positive bubbles are 

significant across both model specifications. Price bubbles tend to occur more easily 

during periods of high domestic consumption. We already discussed that China has 

lost control over its soybeans market and faces a shortage problem since joining the 

WTO in 2001. Chinese soybeans market is more open to global markets and thus 

more easily affected by international price shocks. In our model, it is easy to 

understand that the world stocks-to-use ratio has a significant negative effect on 

negative bubbles, which means high demand pressure refrains the soybeans price 

from collapsing. Nevertheless, we find no reasonable explanations for the negative 

effect of world stocks-to-use on positive bubbles, except that many positive bubbles 

may be caused by speculation. Furthermore, though SOI could affect the yield of 

soybeans, it doesn’t change the likelihood of soybeans price bubbles. These results 

may suggest that positive bubbles in soybeans market could be partly caused by 

speculation. More importantly, we find that the positive bubbles in US soybeans 

futures market have significant positive effects on those in China, which proves that 

soybeans markets in China and USA are highly connected with each other. All these 

mixed effects make soybeans price bubbles in China more complicated to predict. 
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When further considering the effects of the exchange rate, negative price bubbles 

occur more frequently in the presence of a weak RMB (higher exchange rate), though 

the costs of importing soybeans increase. As expected for the rest macroeconomic 

factors, a higher ECI increases the likelihood of positive bubbles and reduces negative 

bubbles. SHIBOR has a positive effect on the positive bubbles, similar to the case of 

corn. PPI has a negative effect on the positive bubbles. The gasoline price has no 

direct effects on the bubbles in the soybeans market. 

Table 2.3 Penalized Maximum Likelihood Estimation for the Multinomial 

Logistic Regression: Corn 

 Model 1 Model 2 

 Positive Negative Positive Negative 

Cons 202.84*** 

(32.13) 

10.01 

(1.03) 

220.12*** 

(3.39) 

11.46 

(10.41) 

Trade volume/100 -3.32*** 

(0.88) 

-0.05 

(0.06) 

  

Open Interest/100   -1.88*** 

(0.47) 

-0.05 

(0.04) 

China Stocks-to-use -0.58 

(4.45) 

-1.64 

(1.52) 

-3.96 

(3.94) 

-1.31 

(1.56) 

World Stocks-to-use 1.77 

(3.23) 

-0.15 

(1.35) 

5.07 

(3.31) 

-0.10 

(1.35) 

SOI 2.00*** 

(3.23) 

-0.34** 

(0.17) 

1.96*** 

(0.46) 

-0.34** 

(0.17) 

USBubbles Positive -0.93 

(1.53) 

-0.93 

(0.88) 

-0.70 

(1.54) 

-0.92 

(0.88) 

USBubbles Negative 3.17 

(2.05) 

-0.44 

(1.50) 

3.95 

(2.18) 

-0.48 

(1.50) 

Exchange Rate -4.99*** 

(1.51) 

-1.75** 

(0.72) 

-7.49*** 

(1.71) 

-1.84*** 

(0.72) 

ECI 0.11*** 

(0.04) 

0.01 

(0.01) 

0.14*** 

(0.04) 

0.02 

(0.01) 

Shibor 0.29 

(0.26) 

0.01 

(0.17) 

0.57** 

(0.25) 

0.02 

(0.17) 

PPI -1.66*** 

(0.25) 

0.01 

(0.06) 

-1.64*** 

(0.24) 

0.01 

(0.06) 

Gasoline 0.34*** 

(0.00) 

-0.12*** 

(0.00) 

0.25*** 

(0.00) 

-0.12*** 

(0.02) 

Quarter 2 -2.40** 

(1.37) 

3.90*** 

(1.40) 

-1.81 

(1.35) 

3.94*** 

(1.40) 

Quarter 3 -1.88 

(1.49) 

4.17*** 

(1.40) 

-0.55 

(1.51) 

4.26*** 

(1.40) 

Quarter 4 1.98*** 

(0.59) 

5.11*** 

(1.39) 

2.53*** 

(0.61) 

5.12*** 

(1.39) 

Observations 2321 2321 2321 2321 

Notes: Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: Own calculations with R software. 
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Table 2.4 Penalized Maximum Likelihood Estimation for the Multinomial 

Logistic Regression: Soybeans 

 Model 1 Model 2 

 Positive Negative Positive Negative 

Cons 38.60** 

(1.78) 

-66.44*** 

(17.76) 

47.54** 

(19.38) 

-57.55*** 

(17.01) 

Trade volume/100 0.27** 

(0.10) 

0.07 

(0.17) 

  

Open Interest/100   0.70*** 

(0.23) 

-0.63 

(0.34) 

China Stocks-to-use 6.76** 

(2.77) 

4.21 

(2.86) 

6.02** 

(2.83) 

6.80* 

(3.41) 

World Stocks-to-use 
-6.19*** 

(1.87) 

-7.83*** 

(2.42) 

-4.87*** 

(1.90) 

-9.88*** 

(2.84) 

SOI 0.35 

(0.28) 

0.12 

(0.36) 

0.48 

(0.29) 

-0.06 

(0.35) 

USBubbles Positive 1.37** 

(0.73) 

1.53 

(1.37) 

1.42** 

(0.73) 

1.54 

(1.43) 

USBubbles Negative 2.84 

(0.78) 

1.65 

(1.64) 

2.14 

(0.85) 

1.83 

(1.56) 

Exchange Rate -1.59 

(1.22) 

6.34*** 

(1.44) 

-2.10 

(1.30) 

5.19*** 

(1.35) 

ECI 0.14*** 

(0.02) 

-0.08*** 

(0.03) 

0.16*** 

(0.02) 

-0.05** 

(0.03) 

Shibor 0.94*** 

(0.20) 

-0.78 

(0.50) 

0.97*** 

(0.20) 

-0.74 

(0.49) 

PPI -0.43*** 

(0.12) 

0.15 

(0.12) 

-0.51*** 

(0.14) 

0.13 

(0.13) 

Gasoline 0.04 

(0.06) 

0.11 

(0.07) 

0.06 

(0.06) 

0.11 

(0.08) 

Quarter 2 -1.61 

(1.82) 

1.23* 

(0.67) 

-1.68 

(1.90) 

1.56** 

(0.68) 

Quarter 3 3.18*** 

(0.99) 

1.26 

(0.78) 

3.52 

(1.06) 

1.65* 

(0.81) 

Quarter 4 4.83*** 

(0.93) 

-1.72 

(1.38) 

5.47 

(1.05) 

-1.49 

(1.35) 

Observations 2321 2321 2321 2321 

Notes: Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: Own calculations with R software. 

So far, higher market liquidity and speculation have opposite effects on the bubble 

occurrences in Chinese corn and soybeans markets. Thus, the ‘Master hypothesis’ 

cannot fully explain the origin of bubbles for Chinese agricultural commodities. 

Meanwhile, the fundamental demand/supply factors contribute to price bubble 

occurrences for soybeans, but not for corn. The macroeconomic factors are also found 

to significantly affect the probability of price bubbles, and their effects are not 
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completely the same for the two commodity species. These results cannot be obtained 

if we only use pooled data of these two commodity markets. 

Finally, in order to estimate the Independence of Irrelevant Alternatives (IIA) 

assumption on the categories of price bubbles, we use two individual penalized 

maximum likelihood estimations and only consider the positive or negative bubbles in 

the model each time. If the IIA is accurate, the individual model that removes one 

category of dependent variables will get a consistent estimation just as with the 

multinomial logistic model but in a less efficient way. Tables 2.9A-5 and 2.10A-6 in 

the appendix show the results of the individual models. Compared with results in 

Tables 2.3 and 2.4, we can see that almost every sign and magnitude of the 

coefficients remain robust. The same holds for the significance levels. We may thus 

conclude that the IIA condition is satisfied in our study. 

2.5 Discussion and Conclusions 

Agricultural commodity price bubbles often read as signals for food crises or 

disruptions of normal market operations. After the financial crisis in 2007/08, 

researchers start to find evidence of commodity price bubbles and explore the possible 

contributing factors. Based on daily data from China’s main futures market, this study 

aims to detect the exact dates of bubble occurrences using a recently developed rolling 

window right-sided ADF-test. After determining price bubbles’ dates in the corn and 

soybeans futures market, we examine potential factors contributing to price bubbles in 

each market separately. In the presence of rare events, the penalized maximum 

likelihood method avoids the estimation bias of the regular multinomial logistic model. 

Our results show that bubbles only occur in a very low proportion of days in our 

sample period (2006-2017), namely, 5.48% for corn and 3.91% for soybean. The 

magnitudes of the price changes during these bubble periods are generally small and 

price bubbles usually do not coincide with price peaks or troughs. Bubbles often show 

up when prices suddenly increase or crash.  

The different dates and types of bubbles in the corn and soybean markets imply a 

separate investigation of the potential factors contributing to price bubbles for the two 

markets. Unlike those studies that pool the price bubbles of different commodities 
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together, we try to introduce more commodity-specific factors and estimate their 

effects on bubbles. Specifically, considering the different openness to international 

markets and different self-sufficiency rate of domestic consumption, we use the trade 

volume, open interest, domestic stocks-to-use and world stocks-to-use for corn and 

soybeans, respectively.  

The results show that higher market liquidity and speculation have no significant 

positive effects on bubbles and even reduces the likelihood of positive bubbles for 

corn, while they increase the likelihood of positive bubbles for soybeans. The 

difference becomes more significant, considering that the daily average trade volume 

and open interest of corn are relatively higher than those of soybeans (see Table 2.1). 

This supports the idea that these two markets have different characteristics and may 

thus react differently to speculative attacks. The main difference between Chinese 

corn and soybean markets is the self-sufficiency rate of domestic 

production/consumption. Chinese corn has a high self-sufficiency rate of over 95%, 

while soybean is the largest imported agricultural commodity with the self-sufficiency 

rate less than 25% (Li, et al., 2017). The commodities with higher self-sufficiency rate 

have shown less volatile price movements in China, such as corn, rice and wheat (Li, 

et al., 2017; Yang et al., 2008). In the contrary, Chinese soybean market is often 

confronted with a tight balance of supply/demand and may thus become more 

sensitive to price fluctuations. This is consistent with our findings that Chinese 

soybean market is more vulnerable to speculative attacks, while corn market is more 

stable under higher market liquidity and speculation. 

For the rest of fundamental economic factors, domestic and world stocks-to-use, and 

external bubble shocks (from corresponding USA futures market) exhibit different 

effects across these two commodity markets. Again, we find that Chinese corn market 

is relatively stable, while the soybean price bubbles are more easily to be affected by 

its domestic and world stocks-to-use, and external bubble shocks. This may reflect the 

different market openness for corn and soybeans, since China is highly connected 

with international markets and imports more than half of its soybeans for domestic 

consumption. Moreover, higher exchange rate tends to reduce both types of bubbles 

for corn, while it increases the negative bubbles for soybeans. The weather shocks 
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(SOI) and gasoline price are found to only affect the bubble occurrences in the corn 

market. The probability of positive (negative) bubbles increases when the weather 

condition is bad (good) for the growth of corn. Higher gasoline prices are associated 

with more (less) positive (negative) bubbles. This is consistent with previous studies 

that find increasing demand of corn for producing biofuels leads to a higher corn price 

(Wu et al. 2011, Adämmer and Bohl 2015). Finally, positive bubbles for both corn 

and soybeans are more likely to occur in the presence of strong economic activity, 

high interest rates and low inflation level. 

Furthermore, it should be clarified that relating bubbles to fundamental economic 

factors may be viewed as identifying market conditions when investors are more 

likely to generate different views to the same information (Scheinkman and Xiong, 

2003; Singleton, 2013). Taking positive bubbles as an instance, when exposed to the 

same public information, optimistic traders would be likely to pay more if they 

believe they can get an even higher payoff in the future. China’s futures market 

participants (mainly consisting of retailing investors 8 ) could be sensitive to the 

fundamental economic factors and have more divergent beliefs about futures price. In 

this case, due to the herding behaviours of retailing investors, divergent beliefs 

towards the changes in the fundamental economic factors may thus result in massive 

herding trades, which may further contribute to bubbles. 

We also consider the effects of market intervention policies by Chinese government, 

which may have significantly affected China’s grain futures prices (Xiao et al. 2019). 

China has implemented many national policies to stabilize its agricultural markets 

during the sample period, such as the Minimum Procurement Price Program (MPP), 

National Provisional Reserve Program (NPR) and Target Price Policy (TPP). Some 

studies show mixed results about the effects of the intervention policies in Chinese 

food market. For instance, through a qualitative analysis, Li et.al (2017) find that 

domestic policy instruments have different effects on the bubbles for corn and 

soybeans in China. Yang et al. (2008) find that around 2008 global food crisis, 

                                                 

8 According to the China Futures Market Yearbook (2016), the proportion of investors whose equity is 

lower than 100 000 Yuan is 87.58%, while the proportion of investors whose equity higher than 1 

million Yuan is merely 0.61%. 
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Chinese officials responded to higher world prices by drawing down domestic stocks 

and limiting exports of major grains. Meanwhile, Tan and Zeng (2019) find that the 

reserve policy induces hypercorrection and impels greater price volatility in the pork 

market, and Sun et al. (2018) conclude that China’s temporary soybean trade policies 

do not improve market integration and stability. 

In order to ensure the robustness of our estimation results, we further use dummy 

variables to indicate the implementing period of two important policies (NPR and 

TPP) for corn and soybeans, respectively. The estimation results (see Table 2.13A-9 

and Table 2.14A-10 in the appendix) remain with consideration of the dummy 

variables for NPR and TPP. The policy dummy variables for NPR and TPP seem not 

to affect the bubble occurrences.  

Through comparing futures market for corn and soybean in China, we could conclude 

that these two commodity markets have different frequencies and types of bubbles 

and exhibit different responses to the same contributing factors. This is different from 

the underlying assumption in previous studies that these contributing factors have 

same effects on bubble occurrences, regardless of commodity species (Etienne et al., 

2015; Li, et al., 2017). More importantly, our estimation results indicate that higher 

market liquidity and speculation only increase the probability of bubble occurrences 

for soybean market. Thus, the ‘Master hypothesis’ cannot fully explain the origin of 

bubbles for Chinese agricultural commodities. Our results are more likely to support 

the idea that price bubbles are associated with commodity-specific supply/demand 

pressure and other macroeconomic factors9.  

In conclusion, compared with previous studies that pool different commodities 

together, our result suggests that regulators of commodity markets aiming to avoid 

price bubbles should pay more attention to the specific conditions of each commodity 

market. More information and data on production, consumption and stocks of 

agricultural commodities should be regularly collected and published. This could 

                                                 

9  Please notice that the results from the multinomial logistic model does not necessarily imply a 

causality relationship between the dependent variable and independent variables, and it mainly helps us 

to identify which factors will affect the bubble occurrences significantly. Thus, the endogeneity 

problem is not our major concern in this analysis. The endogeneity problem may be solved if a more 

specific dataset is available in the future. 
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reduce the traders’ wrong expectations and enhance the efficiency of price discovery 

in futures market. Meanwhile, the regulators should be more cautious with the 

measure of restricting speculative positions and focus on the extreme cases of 

economic fundamentals, because speculation activity may have different effects on 

different commodity markets.  
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Appendix 

Table 2.5  A-1: Summary of Price Bubbles for Corn 

  Positive Bubbles  Negative Bubbles 

Bubble Periods 
Length 

(days) 
Start Peak End 

% Price Change 

 (Start to Peak) 

% Price Change 

 (Peak to End) 
  Start Trough End 

%Price Change 

 (Start to Trough) 

%Price Change 

 (Trough to End) 

2006/02/24 -2006/02/28 3 1504 1514 1501 0.66% -0.86%       

2006/08/07 -2006/08/14 6       1342 1342 1326 0.00% -1.19% 

2006/11/14 -2006/11/28 11 1436 1513 1513 5.36% 0.00%       

2007/06/15 -2007/06/28 10       1653 1561 1561 -5.57% 0.00% 

2007/07/05 -2007/07/18 10       1539 1496 1505 -2.79% 0.60% 

2007/07/24 -2007/07/26 3       1496 1481 1484 -1.00% 0.20% 

2008/11/28 -2008/12/31 24       1517 1411 1438 -6.99% 1.91% 

2009/02/09 -2009/02/17 7 1681 1720 1716 2.32% -0.23%       

2009/11/16 -2009/11/26 9 1734 1762 1762 1.61% 0.00%       

2009/12/01 -2009/12/14 10       1786 1778 1783 -0.45% 0.28% 

2011/06/28 -2011/07/05 6       2310 2265 2275 -1.95% 0.44% 

2011/11/21 -2011/11/30 8       2179 2143 2156 -1.65% 0.61% 

2013/12/19 -2013/12/25 5       2203 2131 2131 -3.27% 0.00% 

2015/06/03 -2015/06/10 6       2209 2128 2128 -3.67% 0.00% 

2015/06/25 -2015/06/30 4       2137 2111 2111 -1.22% 0.00% 

2015/07/24 -2015/07/30 5       2052 1994 2005 -2.83% 0.55% 

2015/09/29 -2015/10/26 15       1922 1873 1899 -2.55% 1.39% 

2015/11/27 -2015/12/04 6 2022 2033 2033 0.54% 0.00%       

2015/12/09 -2015/12/22 10 2046 2069 2063 1.12% -0.29%       

Sum 158days (5.48%)  Positive: 46 days (29.11%)     Negative:112 days (70.89%) 

Maximum Single Bubble 

Duration 

24 days 
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Table 2.6 A-2: Summary of Price Bubbles for Soybeans 

  Positive Bubbles  Negative Bubbles 

Bubble Periods 
Length 

(days) 
Start Peak End 

%Price Change 

 (Start to Peak) 

%Price Change 

 (Peak to End) 
  Start Trough End 

%Price Change 

 (Start to Trough) 

%Price Change 

 (Trough to End) 

2006/04/11-2006/04/13 3             2635 2632 2632 -0.11% 0.00% 

2006/07/24-2006/07/28 5             2595 2541 2541 -2.08% 0.00% 

2006/11/16-2006/11/21 4 2707 2773 2756 2.44% -0.61%             

2007/09/10-2007/09/19 8 3833 4092 4032 6.76% -1.47%             

2007/09/24-2007/09/28 5 3990 4081 4081 2.28% 0.00%             

2007/10/11-2007/11/19 28 4083 4449 4431 8.96% -0.40%             

2007/11/21-2007/12/05 11 4385 4486 4387 2.30% -2.21%             

2007/12/11-2007/12/17 5 4421 4488 4488 1.52% 0.00%             

2007/12/20-2008/01/07 9 4464 4590 4300 2.82% -6.32%             

2009/11/25-2009/12/02 6 3860 3944 3944 2.18% 0.00%             

2009/12/04-2009/12/08 3 3943 4022 4022 2.00% 0.00%             

2012/05/14-2012/05/18 5             4397 4310 4310 -1.98% 0.00% 

2014/08/04-2014/08/14 9 4497 4610 4610 2.51% 0.00%             

2015/04/08-2015/04/10 3             4101 4075 4075 -0.63% 0.00% 

2017/03/10-2017/03/17 6             3943 3897 3897 -1.17% 0.00% 

2017/10/27-2017/10/31 3 3627 3630 3627 0.08% -0.08%       

Sum 113days (3.91%)   Positive: 91 days (80.53%)    Negative: 22days (19.47%) 

Maximum Single Bubble 

Duration: 
28 days                    
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Table 2.7 A-3: Marginal Effects for PMLR model of Corn 

      (1)   (2)   (3)   (4) 

    Positive Negative Positive Negative 

Cons 2.69 0.06 2.71 0.13 

 (8.59) (1.59) (8.77) (1.53) 

Trade volume/100 -0.04 0.01   

 (0.14) (0.03)   

Open Interest/100   -0.02 0.00 

   (0.07) (0.01) 

China Stocks-to-use -0.01 -0.06 -0.05 -0.04 

 (0.02) (0.07) (0.15) (0.05) 

World Stocks-to-use 0.02 -0.01 0.06 -0.01 

 (0.08) (0.02) (0.20) (0.04) 

SOI 0.03 -0.02 0.02 -0.02 

 (0.09) (0.03) (0.08) (0.02) 

USBubbles Positive -0.01 -0.03 -0.01 -0.03 

 (0.03) (0.04) (0.02) (0.04) 

USBubbles Negative 0.04 -0.02 0.05 -0.02 

 (0.14) (0.04) (0.16) (0.04) 

Exchange Rate -0.06 -0.06 -0.09 -0.06 

 (0.20) (0.07) (0.29) (0.08) 

ECI 0.01 0.00 0.01 0.00 

 (0.01) (0.00) (0.01) (0.00) 

Shibor 0.01 -0.00 0.01 0.00 

 (0.01) (0.00) (0.02) (0.00) 

PPI -0.02 0.01 -0.02 0.01 

 (0.07) (0.01) (0.07) (0.01) 

Gasoline 0.01 -0.01 0.01 -0.01 

 (0.15) (0.01) (0.01) (0.01) 

Q2 -0.04 0.15 -0.03 0.15 

 (0.13) (0.17) (0.10) (0.17) 

Q3 -0.03 0.16 -0.01 0.16 

 (0.11) (0.18) (0.05) (0.18) 

Q4 0.02 0.19 0.02 0.19 

 (0.06) (0.21) (0.08) (0.21) 

Observations 2321 2321 2321 2321 

Notes: The standard deviations are in parentheses.  

Source: Own calculations with R software. 
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Table 2.8 A-4：Marginal Effects for PMLR model of Soybeans 

      (1)   (2)   (3)   (4) 

    Positive Negative Positive Negative 

Cons 0.86 -1.14 1.02 -1.06 

 (2.01) (2.66) (2.52) (2.62) 

Trade volume/100 0.01 0.00   

 (0.01) (0.00)   

Open Interest/100   0.02 -0.01 

   (0.04) (0.02) 

China Stocks-to-use 0.02 0.00 0.01 0.01 

 (0.04) (0.00) (0.04) (0.01) 

World Stocks-to-use -0.01 -0.01 -0.01 -0.01 

 (0.01) (0.01) (0.01) (0.01) 

SOI 0.01 0.00 0.01 -0.00 

 (0.02) (0.00) (0.03) (0.01) 

USBubbles Positive 0.03 0.03 0.03 0.03 

 (0.08) (0.06) (0.08) (0.07) 

USBubbles Negative 0.06 0.02 0.04 0.02 

 (0.15) (0.04) (0.10) (0.06) 

Exchange Rate -0.03 0.11 -0.04 0.09 

 (0.07) (0.24) (0.10) (0.23) 

ECI 0.01 -0.01 0.00 -0.00 

 (0.01) (0.01) (0.01) (0.00) 

Shibor 0.02 -0.01 0.02 -0.01 

 (0.05) (0.03) (0.05) (0.03) 

PPI -0.01 0.00 -0.01 0.00 

 (0.02) (0.01) (0.03) (0.01) 

Gasoline 0.00 0.00 0.00 0.00 

 (0.00) (0.00) (0.00) (0.00) 

Q2 -0.04 0.02 -0.04 0.02 

 (0.08) (0.05) (0.09) (0.06) 

Q3 0.07 0.02 0.07 0.03 

 (0.17) (0.05) (0.18) (0.06) 

Q4 0.11 -0.03 0.11 -0.03 

 (0.26) (0.07) (0.28) (0.06) 

Observations 2321 2321 2321 2321 

Notes: The standard deviations are in parentheses.  

Source: Own calculations with R software. 
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Table 2.9 A-5: Individual Model for Penalized Maximum Likelihood Estimation: Corn 

      (1)   (2)   (3)   (4) 

    Positive Negative Positive Negative 

Cons 199.52*** 5.94 216.11*** 7.23 

 (31.56) (10.50) (25.60) (10.38) 

Trade volume/100 -3.33*** -0.00   

 (0.01) (0.00)   

Open Interest/100   -0.02*** -0.00 

   (0.00) (0.00) 

China Stocks-to-use -1.06 -1.35 -4.24 -1.06 

 (5.66) (1.56) (4.77) (1.59) 

World Stocks-to-use 1.82 -0.56 5.03 -0.51 

 (3.72) (1.39) (3.55) (1.38) 

SOI 2.02*** -0.38** 1.97*** -0.37** 

 (0.50) (0.18) (0.45) (0.18) 

USBubbles Positive -0.85  -0.63  

 (1.51)  (1.51)  

USBubbles Negative  -0.47  -0.51 

  (1.46)  (1.46) 

Exchange Rate -4.83*** -1.58** -7.30*** -1.65** 

 (1.48) (0.73) (1.54) (0.72) 

ECI 0.12*** 0.02 0.14*** 0.01 

 (0.04) (0.01) (0.04) (0.01) 

Shibor 0.29 -0.04 0.57** -0.03 

 (0.26) (0.19) (0.23) (0.19) 

PPI -1.64*** 0.03 -1.62*** 0.03 

 (0.26) (0.06) (0.17) (0.06) 

Gasoline 0.35*** -0.12*** 0.25*** -0.12*** 

 (0.09) (0.03) (0.08) (0.02) 

Q2 -2.40 3.86*** -1.85 3.89*** 

 (1.54) (1.44) (1.50) (1.44) 

Q3 -1.87 4.14*** -0.63 4.21*** 

 (1.51) (1.44) (1.54) (1.44) 

Q4 1.83*** 4.92*** 2.35*** 4.92*** 

 (0.70) (1.43) (0.68) (1.43) 

Observations 2321 2321 2321 2321 

Notes: Standard errors are in parenthesis. *** p<0.01, ** p<0.05, * p<0.1 

Source: Own calculations with Stata 15. 
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Table 2.10 A-6: Individual Model for Penalized Maximum Likelihood Estimation: Soybeans 

      (1)   (2)   (3)   (4) 

    Positive Negative Positive Negative 

 Cons 41.49** -67.10*** 58.09*** -57.38** 

   (19.46) (21.88) (18.04) (23.18) 

Trade volume/100 0.29*** 0.09   

   (0.09) (0.25)   

Open Interest/100   0.87*** -0.66 

     (0.23) (0.44) 

 China Stocks-to-use 8.12*** 4.36 7.22** 7.16 

   (2.82) (3.68) (2.90) (4.66) 

 World Stocks-to-use -6.70*** -7.70*** -5.22*** -9.87*** 

   (1.93) (2.79) (1.93) (3.48) 

 SOI 0.42 0.16 0.66** -0.02 

   (0.30) (0.44) (0.29) (0.43) 

 USBubbles Positive 1.56*  1.62**  

   (0.80)  (0.82)  

USBubbles Negative  1.61  1.76 

    (1.85)  (1.82) 

 Exchange Rate -1.36 6.48*** -2.03 5.26*** 

   (1.23) (1.79) (1.26) (1.77) 

 ECI 0.14*** -0.08*** 0.17*** -0.06 

   (0.02) (0.03) (0.02) (0.04) 

 Shibor 0.96*** -0.80 1.03*** -0.76 

   (0.23) (0.66) (0.23) (0.66) 

 PPI -0.49*** 0.14 -0.64*** 0.12 

   (0.15) (0.15) (0.13) (0.18) 

 Gasoline 0.09 0.12 0.13** 0.11 

   (0.06) (0.09) (0.06) (0.10) 

 Q2 -1.92 1.29* -2.09 1.66** 

   (2.37) (0.77) (2.66) (0.80) 

 Q3 3.41*** 1.28 3.87*** 1.70* 

   (1.03) (0.92) (1.11) (1.00) 

 Q4 4.75*** -1.77 5.65*** -1.57 

   (0.97) (1.5270) (1.1162) (1.52) 

 Observations 2321 2321 2321 2321 

Notes: Standard errors are in parenthesis. *** p<0.01, ** p<0.05, * p<0.1 

Source: Own calculations with Stata 15. 
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Table 2.11 A-7: Individual Model for Penalized Maximum Likelihood Estimation: Corn (Lagged PPI) 

    Model 1 Model 2 

    Positive Negative Positive Negative 

 Cons 216.27*** -18.88** 225.28*** -18.08* 

   (10.08) (9.44) (27.00) (9.73) 

 Trade volume/100 -3.79*** -0.03   

   (0.67) (0.06)   

 Open Interest/100   -2.11*** -0.02 

     (0.49) (0.04) 

 China Stocks-to-use -0.02 -2.36 -1.13 -2.26 

   (4.75) (1.60) (4.82) (1.63) 

 World Stocks-to-use 5.14* -2.35* 7.83** -2.31* 

   (2.92) (1.32) (3.25) (1.33) 

 SOI 2.56*** -0.73*** 2.32*** -0.72*** 

   (0.37) (0.18) (0.42) (0.18) 

 USBubbles Positive -1.13  -1.00  

   (1.49)  (1.51)  

 USBubbles Negative  -0.22  -0.24 

    (1.46)  (1.46) 

 Exchange Rate -4.90*** -0.35 -7.32*** -0.38 

   (0.97) (0.67) (1.40) (0.68) 

 ECI 0.05* 0.00 0.07* 0.00 

   (0.03) (0.01) (0.04) (0.01) 

 Shibor 0.31 -0.28 0.52** -0.28 

   (0.23) (0.21) (0.24) (0.21) 

 Lagged PPI -1.75*** 0.19*** -1.63*** 0.19*** 

   (0.08) (0.05) (0.20) (0.05) 

 Gasoline 0.38*** -0.15*** 0.25*** -0.15*** 

   (0.06) (0.02) (0.08) (0.02) 

 Q2 -3.57** 3.85*** -2.76* 3.86*** 

   (1.53) (1.44) (1.51) (1.44) 

 Q3 -3.38** 4.10*** -1.43 4.12*** 

   (1.51) (1.43) (1.54) (1.44) 

 Q4 1.81*** 4.98*** 2.27*** 4.98*** 

   (0.64) (1.43) (0.65) (1.43) 

Observations 2321 2321 2321 2321 

Notes: Standard errors are in parenthesis *** p<0.01, ** p<0.05, * p<0.1 

Source: Own calculations with Stata 15. 
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Table 2.12 A-8: Individual Model for Penalized Maximum Likelihood Estimation: Soybean (Lagged PPI) 

    Model 1 Model 2 

    Positive Negative Positive Negative 

 Cons 43.89** -70.56*** 63.77*** -61.75*** 

   (21.86) (21.44) (22.15) (18.83) 

 Trade volume/100 0.29*** 0.06   

   (0.11) (0.25)   

 Open Interest/100   0.86*** -0.68 

     (0.23) (0.43) 

 China Stocks-to-use 8.13*** 4.72 7.63*** 7.29 

   (2.78) (3.76) (2.80) (4.48) 

 World Stocks-to-use -6.12*** -7.33*** -4.83*** -9.56*** 

   (1.94) (2.81) (1.87) (3.39) 

 SOI 0.36 0.21 0.58** 0.00 

   (0.27) (0.44) (0.27) (0.42) 

 USBubbles Positive 1.45*  1.50*  

   (0.79)  (0.81)  

 USBubbles Negative  1.89  2.05 

    (1.93)  (1.83) 

 Exchange Rate -1.64 6.50*** -2.33 5.30*** 

   (1.40) (1.71) (1.46) (1.54) 

 ECI 0.13*** -0.08*** 0.16*** -0.06* 

   (0.02) (0.03) (0.02) (0.03) 

 Shibor 1.13*** -0.87 1.27*** -0.87 

   (0.33) (0.67) (0.31) (0.67) 

 Lagged PPI -0.48*** 0.18 -0.66*** 0.16 

   (0.15) (0.15) (0.15) (0.15) 

 Gasoline 0.08 0.10 0.13** 0.09 

   (0.06) (0.09) (0.06) (0.09) 

 Q2 -3.08 1.27* -4.02 1.61** 

   (3.75) (0.75) (3.54) (0.77) 

 Q3 3.47*** 1.24 3.95*** 1.65* 

   (1.03) (0.88) (1.09) (0.95) 

 Q4 4.74*** -1.57 5.68*** -1.38 

   (0.98) (1.53) (1.1165) (1.52) 

Observations 2321 2321 2321 2321 

Standard errors are in parenthesis. *** p<0.01, ** p<0.05, * p<0.1 

Source: Own calculations with Stata 15. 
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Table 2.13 A-9: Individual Model for Penalized Maximum Likelihood Estimation: Corn (NPR) 

 Model 1 Model 2 

 Positive Negative Positive Negative 

Cons 268.25*** 
(59.97) 

1.17 
(12.11) 

255.84*** 
(32.11) 

3.13 
(12.17) 

Trade volume/100 -3.81*** 
(1.07) 

-0.02 
(0.06) 

  

Open Interest/100   -2.08*** 
(0.52) 

-0.03 
(0.04) 

China Stocks-to-use 4.87 
(6.25) 

-0.72 
(1.75) 

-1.04 
(5.79) 

-0.63 
(1.74) 

World Stocks-to-use 1.02 
(3.47) 

-0.75 
(1.42) 

5.34 
(4.85) 

-0.67 
(1.41) 

SOI 1.89*** 
(0.53) 

-0.33* 
(0.18) 

2.18*** 
(0.72) 

-0.33* 
(0.18) 

USBubbles Positive -0.93 
(1.53) 

-- -0.77 
(1.52) 

-- 

USBubbles Negative -- -0.38 
(1.46) 

-- -0.43 
(1.46) 

Exchange Rate -7.36*** 
(2.36) 

-1.21 
(0.85) 

-9.27*** 
(2.05) 

-1.35 
(0.85) 

ECI 0.13*** 
(0.05) 

0.01 
(0.02) 

0.16*** 
(0.04) 

0.01 
(0.02) 

Shibor 0.24 
(0.25) 

-0.06 
(0.19) 

0.59** 
(0.25) 

-0.05 
(0.19) 

PPI -2.14*** 
(0.45) 

0.07 
(0.08) 

-1.86*** 
(0.17) 

0.06 
(0.07) 

Gasoline 0.52*** 
(0.14) 

-0.14*** 
(0.03) 

0.28*** 
(0.08) 

-0.14*** 
(0.03) 

NPR -3.12* 
(1.74) 

0.544 
(0.64) 

-1.15 
(1.51) 

0.43 
(0.64) 

Quarter 2 -3.58* 
(1.92) 

3.89*** 
(1.44) 

-1.81 
(1.35) 

3.92*** 
(1.44) 

Quarter 3 -1.25 
(1.63) 

4.06*** 
(1.44) 

0.38 
(1.69) 

4.14*** 
(1.44) 

Quarter 4 1.82*** 
(0.71) 

4.87*** 
(1.42) 

2.95*** 
(0.67) 

4.87*** 
(1.42) 

Observations 2321 2321 2321 2321 

Notes: Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The variable of ‘NPR’ takes value 1 

when it belongs to the duration of National Provisional Reserve Program (2008.06-2016.03) and 0 otherwise. 

Source: Own calculations with Stata 15. 
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Table 2.14 A-10: Individual Model for Penalized Maximum Likelihood Estimation: Soybeans (TPP) 

 Model 1 Model 2 

 Positive Negative Positive Negative 

Cons 34.33 

(22.42) 

-65.18*** 

(25.45) 

48.64** 

(20.32) 

-58.06*** 

(21.44) 

Trade volume/100 0.29*** 

(0.09) 

0.13 

(0.23) 

  

Open Interest/100   0.93*** 

(0.24) 

-0.66 

(0.49) 

China Stocks-to-use 7.46** 

(3.02) 

3.75 

(3.82) 

6.10** 

(3.08) 

6.51 

(4.41) 

World Stocks-to-use 
-6.92*** 

(1.95) 

-8.04*** 

(3.02) 

-5.67*** 

(1.95) 

-9.39*** 

(3.35) 

SOI 0.41 

(0.29) 

0.09 

(0.46) 

0.65** 

(0.29) 

-0.03 

(0.43) 

USBubbles Positive 1.59** 

(0.81) 

-- 1.67** 

(0.81) 

-- 

USBubbles Negative -- 1.58 

(1.89) 

-- 1.86 

(1.80) 

Exchange Rate -0.83 

(1.54) 

6.47*** 

(2.02) 

-1.19 

(1.49) 

5.11*** 

(1.62) 

ECI 0.15*** 

(0.03) 

-0.06 

(0.07) 

0.18*** 

(0.03) 

-0.07 

(0.03) 

Shibor 0.96*** 

(0.23) 

-0.87 

(0.68) 

1.02*** 

(0.23) 

-0.80 

(0.64) 

PPI -0.48*** 

(0.14) 

0.09 

(0.21) 

-0.64*** 

(0.14) 

0.15 

(0.20) 

Gasoline 0.11 

(0.07) 

0.15 

(0.12) 

0.17** 

(0.07) 

0.08 

(0.12) 

TPP 0.88 

(1.52) 

0.73 

(1.66) 

1.36 

(1.34) 

-0.29 

(1.71) 

Quarter 2 -1.90 

(2.36) 

1.27 

(0.80) 

-2.08 

(2.56) 

1.59** 

(0.78) 

Quarter 3 3.39*** 

(1.03) 

1.29 

(1.00) 

3.79*** 

(1.10) 

1.57* 

(0.96) 

Quarter 4 4.67*** 

(0.97) 

-1.77 

(1.52) 

5.56*** 

(1.12) 

-1.58 

(1.51) 

Observations 2321 2321 2321 2321 

Notes: Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The variable of ‘TPP’ takes value 1 

when it belongs to the duration of Target Price Policy (2014.11-) and 0 otherwise. 

Source: Own calculations with Stata 15. 
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Table 2.15 A-11: Penalized Maximum Likelihood Estimation for the Multinomial Logistic Regression: Corn (without 

gasoline price) 

      Model 1   Model 2 

       Positive    Negative    Positive    Negative 

Cons 176.52*** 8.61 232.22*** 9.46 

   (17.20) (9.62) (13.40) (9.83) 

Trade volume/100 -1.83*** 0.01   

   (0.63) (0.05)   

Open Interests/100   -1.85*** -0.01 

     (0.45) (0.03) 

China Stocks-to-use -5.03 -2.26 -4.65 -1.95 

   (5.10) (1.48) (5.28) (1.54) 

World Stocks-to-use 3.37 -1.02 3.74 -1.04 

   (2.79) (1.31) (3.14) (1.31) 

SOI 1.29*** -0.25 1.50*** -0.23 

   (0.35) (0.17) (0.37) (0.17) 

USBubbles Positive -1.70 -0.71 -1.48 -0.71 

   (1.48) (0.87) (1.49) (0.87) 

USBubbles Negative 3.13 -1.21 4.38 -1.25 

   (2.19) (1.45) (2.22) (1.45) 

Exchange Rate -7.02*** -0.44 -9.69*** -0.47 

   (0.96) (0.64) (0.94) (0.65) 

ECI 0.16*** 0.02 0.19*** 0.02 

   (0.03) (0.01) (0.03) (0.01) 

Shibor 0.25 -0.04 0.44* -0.05 

   (0.24) (0.18) (0.23) (0.18) 

PPI -1.20*** -0.12 -1.53*** -0.12 

   (0.12) (0.05) (0.09) (0.05) 

Q2 -1.84 3.71*** -1.54 3.74*** 

   (1.50) (1.44) (1.56) (1.44) 

Q3 -0.91 4.00*** 0.28 4.04*** 

   (1.57) (1.43) (1.51) (1.43) 

Q4 2.48*** 4.82*** 2.91*** 4.82*** 

   (0.61) (1.43) (0.63) (1.43) 

Obs. 2321 2321 2321 2321 

 

Notes: Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: Own calculations with Stata 15. 
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Table 2.16 A-12: Penalized Maximum Likelihood Estimation for the Multinomial Logistic Regression: Soybeans (without 

gasoline price) 

      Model 1   Model 2 

       Positive    Negative    Positive    Negative 

Cons 38.81** -73.82*** 46.56** -65.55*** 

   (18.32) (22.26) (20.84) (21.53) 

Trade volume/100 0.25*** -0.09   

   (0.09) (0.31)   

Open Interests/100   0.60*** -0.70* 

     (0.22) (0.41) 

China Stocks-to-use 6.06** 4.73 5.23* 6.93* 

   (2.85) (3.45) (2.89) (4.12) 

World Stocks-to-use -5.59*** -7.07*** -4.15** -9.09*** 

   (1.79) (2.57) (1.90) (3.04) 

SOI 0.27 0.12 0.35 -0.06 

   (0.27) (0.42) (0.29) (0.42) 

USBubbles Positive 1.34* 1.39 1.36* 1.39 

   (0.77) (1.60) (0.77) (1.63) 

USBubbles Negative 3.07 2.52 2.63 2.29 

   (0.75) (1.78) (0.74) (1.84) 

Exchange Rate -2.09* 5.61*** -2.77* 4.62*** 

   (1.10) (1.61) (1.28) (1.55) 

ECI 0.14*** -0.09*** 0.15*** -0.07** 

   (0.02) (0.03) (0.03) (0.03) 

Shibor 0.95*** -0.85 0.99*** -0.85 

   (0.22) (0.67) (0.23) (0.66) 

PPI -0.38*** 0.31* -0.42*** 0.29 

   (0.11) (0.11) (0.12) (0.11) 

Q2 -1.65 1.38* -1.70 1.68** 

   (2.10) (0.76) (2.24) (0.78) 

Q3 3.17*** 1.18 3.52*** 1.56* 

   (1.06) (0.87) (1.15) (0.94) 

Q4 4.88*** -1.83 5.53*** -1.66 

   (0.99) (1.51) (1.15) (1.51) 

Obs. 2321 2321 2321 2321 

Notes: Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: Own calculations with Stata 15. 

Through uncentered VIF test, we find that there may be highly collinearity among exchange rate, PPI, 

and gasoline price (their VIF values are above 10). However, both economic theory and extant studies 

show that we cannot simply remove these three variables from the estimated equation (Castro Campos, 

2019; Li, et al., 2017; Etienne et al., 2015; Adämmer and Bohl, 2015; Wooldridge, 2005; Pindyck and 

Rotemberg, 1988), otherwise, it may lead to omitted variables in the error term. Meanwhile, the 

influence of multicollinearity would become very weak under relatively large sample observations 
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(Goldberger 1991, Wooldridge 2005). In our study, the number of sample observations is relatively 

large (2321), which could reduce the potential bias caused by multicollinearity.  

To examine whether multicollinearity affects our results, we also remove the variable of gasoline price 

from the estimated equation. As presented in Tables A-11 and A-12, the coefficients and significant 

levels for the variables remain, suggesting the robustness of our estimation with regard to 

multicollinearity. 
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Abstract 

Many studies have identified significant long-run and short-run relationships between 

commodity futures and spot prices; this article extends the analysis by investigating 

the price transmission across markets during bubble episodes. We find that bubbles 

seldom synchronise across futures and spot prices, even though the co-integration and 

Granger-causality relationships remain. Bubbles are more frequent in spot prices, 

while futures prices dominate the price discovery. Moreover, a non-linear 

transmission between futures and spot markets in the first and second moments of 

price returns is found through the Markov-switching error-correction model and the 

dynamic conditional correlation multivariate GARCH model. The lack of immediate 

and linear transmission between co-integrated prices inhibits the synchronisation of 

bubbles. During the regimes with most bubbles, spot prices adjust slowly toward the 

long-run equilibrium. Own lagged terms of spot price returns more likely drive the 

spot prices, which may lead to more frequent bubbles in spot markets. Policy makers 

should pay more attention on the structure of spot markets, rather than merely 

restricting the positions of speculation in commodity futures markets.  

 

JEL codes: D84, G12, G13, G14, Q13, Q41. 

Keywords: Price Bubbles; Agricultural Commodities; Futures Market; Spot Market 

 

  



Chapter 3 Agricultural Price Transmission between Futures and Spot Markets during Price Bubbles 

65 

 

3.1 Introduction  

Agricultural commodity prices have experienced rapid increases in the last decade. 

This has raised global concerns about bubbles of food price. Many people attribute the 

bubble phenomenon to aggressive financialization of agricultural futures markets 

(Master 2008, 2009, Basak and Pavlova 2016), arguing that too many institutional 

funds enter into futures contracts with long positions and drive the agricultural 

commodity prices up in the short run. This results in a wrong price expectation by 

commercial traders in futures markets, who aim to hedge against risk. Then, the 

mispricing effect in the futures market impacts spot markets and distorts physical 

trades and inventories. Although this argument is seemingly quite convincing, recent 

empirical studies find little evidence to support it (Sanders and Irwin 2017, Boyd et al. 

2018). Instead, increasing studies repeatedly find that the fundamental economic 

factors associated with price bubbles in various commodity (futures) markets are 

responsible (Gutierrez 2013, Etienne et al. 2014, 2015, Li et al. 2017). Despite the 

heated discussion on the role of the over-financialization of the commodity markets, 

the studies focusing on this only detect and analyse price bubbles for commodity 

futures price series. A particularly ignored issue is whether the spot market of a 

commodity shows similar and synchronous bubbles. If not, there may be different 

reasons or mechanisms behind the price bubbles in the futures and spot markets. This 

study seeks to close the research gap by identifying how futures prices affect spot 

prices during bubble periods. 

Futures markets serve important functions in price discovery and for hedging. Trading 

futures is supposed to speed up the homogenising process of traders’ common 

expectations of a future event. Evidence from experimental economics even shows 

that futures markets dampen, though do not eliminate, price bubbles (Porter and Smith 

2003). As for the relationship between futures and spot prices, the theory of storage 

by Kaldor (1939), Working (1948) and Telser (1958) predicts that the returns on 
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purchasing a commodity and selling it for delivery using futures contracts equals the 

interest forgone less the convenience yield net of the storage costs (Casassus et al. 

2013). Based on this theoretical framework and the present discounted value model 

(Campbell and Shiller 1987), Pindyck (1992) deduces a co-integration relationship 

between the futures and spot prices of a commodity. Using data from various 

commodity markets, numerous empirical studies have verified the long-run co-

integration relationship (Garbade and Silber 1983, Crain and Lee 1996, Mattos and 

Garcia 2004, Hernandez and Torero 2010). To date, this has become the common 

ground for studies on commodity markets; nearby futures prices are often used as a 

proxy for spot prices. Thus, in terms of the argument on commodity price bubbles, a 

seemingly plausible deduction is that bubbles would synchronise between the futures 

and spot markets. If bubbles are mainly caused by over-financialization in the futures 

market, these bubbles would be transmitted to the spot market almost simultaneously. 

However, there are two other points that call into question the direct transmission of 

bubbles across futures and spot markets. The first is the non-linearity of price 

transmission process across markets. Theoretically, the co-integration relationship 

indicates the underlying common stochastic trend between correlated price series 

(Engle and Granger 1987). If the commodity spot prices are regarded as lower (higher) 

than their expected future equilibrium, the futures prices are expected to increase 

(decrease) (Frankel 2014). This relationship is based on the hypothesis of linear 

transmission between futures and spot prices, but the immediate and linear 

transmission between co-integrated prices has long been challenged in real markets 

(Listorti and Esposti 2012; Loy et al. 2015, 2016).  

Moreover, some studies have theoretically proven that the co-integration relationship 

between prices remains even for bubbles that occur within one of the co-integrated 

price series (Engsted 2006, Magdalinos and Phillips 2009, Nielsen 2010). Alexakis et 

al. (2017) are one of the first to doubt the direct transmission of price bubbles within 

the context of the hog supply chain (hog, corn and soybeans). Based on the co-
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integration residuals among these three commodity prices, they find that the bubbles 

in feed prices and lack of associated bubbles in hog prices do not affect the long-run 

co-integration relationship and that the hog prices will even drag the other explosive 

price episodes back to normal. Esposti and Listorti (2013) consider price bubbles as 

exogeneous structural breaks, finding that price bubbles only have very limited effects 

on the co-integrated international and Italy domestic grain prices. Therefore, the non-

linear transmission effect may imply that the co-integrated price series would deviate 

from each other in a short period, allowing bubbles to take place. This raises our 

suspicion about the synchronisation of bubbles across the futures and spot prices, 

which to our knowledge has not been tested in previous empirical analysis. 

Another point is that price bubbles do not necessarily imply price spikes or drastic 

price changes (Stiglitz 1990, Meltzer 2002). There is more to a bubble than a drastic 

price change. Some other characteristics are relevant such as the volatility of prices 

(Greenwood et al. 2019). Phillips et al. (2012; 2015) develop a new technique to date-

stamp price bubbles, which has been widely accepted to detect price bubbles in 

various markets (Gutierrez 2013, Etienne et al. 2015, Engsted et al. 2016, Tsvetanov 

et al. 2016, Caspi and Graham 2018). Based on this new bubble testing method, a 

bubble period marks a temporary episode in which prices demonstrates an explosive 

root. Most studies using this method find that price bubbles do not always coincide 

with price spikes and do not even translate into drastic price changes. In the contrary, 

a price series with a relatively low volatility tends to have a narrow confidence 

interval for testing explosive roots and is more likely to have bubbles (Etienne et al. 

2017).  

The two points described above increase our doubts regarding the synchronisation of 

price bubbles across futures and spot markets. Any price changes within a limited 

extent will not directly affect the other price series in the case of non-linear 

transmission, especially when some of these price changes could be identified as 

bubbles. 
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Our paper is the first study to empirically analyse agricultural price transmission 

between futures and spot markets during bubble episodes. It aims to provide new 

insights into the formation of bubbles. We first detect the bubble dates and measure 

the degree of the bubbles’ synchronisation across the futures and spot markets of corn 

and soybeans in China. We also use the Markov-switching error-correction model 

(MSECM) to estimate the non-linear transmission effect and identify the 

characteristics of the regime with the most bubbles. Finally, we use the dynamic 

conditional correlation–multivariate GARCH (DCC-MGARCH) model to measure 

the dynamic volatility interdependence between the futures and spot prices by 

analysing market interactions in terms of the conditional second moments during 

bubble periods. 

Our estimation results indicate a very limited synchronisation of bubbles, and most 

bubbles occur only within the spot price series. Further analysis suggests a significant 

non-linear transmission across futures and spot prices. The leading role of futures 

prices becomes weak during frequent spot price bubbles. We find a strong persistence 

of spot price returns and a loose dynamic volatility interdependence across the futures 

and spot markets. The lack of immediate, linear transmission of first and second 

moments of co-integrated prices supports the idea of non-linear transmission, which 

inhibits the synchronisation of bubbles across futures and spot prices. As opposed to 

spot prices, futures prices have fewer bubbles and function better than spot prices in 

aggregating market information. This has also been shown by Yang et al. (2001), Will 

et al. (2013), Etienne et al. (2015), Li, Chavas, et al. (2017) and Boyd et al. (2018). 

Bubbles are more likely to occur in spot markets caused by their own persistence of 

price returns and their irresponsiveness to new information from futures markets.  

The structure of the paper is as follows: Section 3.2 briefly introduces the bubble 

testing method. We use the MSECM model and the DCC-MGARCH model. Section 

3.3 describes the price data. Section 3.4 presents the main estimation results and 

section 3.5 summarises the paper and gives our conclusion. 
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3.2 Methodology 

3.2.1 Bubble Testing Method 

A price bubble conventionally defines a situation in which an asset price cannot be 

justified by its fundamental value derived from the discounted expected payoff stream. 

The price is in excess of its fundamentals because investors believe the selling price to 

be higher tomorrow (Stiglitz 1990). This notion is widely accepted in the literature 

and applies to the case where asset prices and commodity prices might deviate from 

their intrinsic values based on market fundamentals (Tirole 1982, 1985, De Long et al. 

1990, Gutierrez 2013). The present fundamental value of an asset equals the 

discounted expected future payoffs (Blanchard and Watson 1982, Campbell and 

Shiller 1987, Brunnermeier 2008, Gürkaynak 2008). Pindyck (1992) further develops 

the present value model of rational commodity pricing, which uses convenience yields 

as future payoffs for storable commodities. Specifically, the current and future 

changes of commodity supply and demand cause changes in current and expected 

convenience yields. Hence, the present value model of commodity pricing presents a 

highly reduced form of a dynamic supply and demand model. If investors already 

know that the present price of an asset or commodity deviates from its fundamental 

value and investors are still buying or holding commodities to acquire the benefits 

from future sales, price bubbles are rational. The intertemporal no arbitrage condition 

always holds in the case of rational price bubbles, which implies a bubble to grow at a 

risk-free rate and to result an explosive root in the price series. 

This definition of price bubbles provides the basis for the right-tailed unit root test to 

detect bubbles (Diba and Grossman 1988). Price bubbles induce a temporary 

explosive root in price series. When price bubbles occur, the rational bubble 

component of prices is an explosive process, while the remaining part is a stationary 

or integrated process of order one at the most. Phillips et al. (2011, 2009) develop the 

right-tailed unit root test into a new forward recursive right-tailed Augmented Dickey-
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Fuller test (SADF), which suggests implementing the right-tailed Augmented Dickey-

Fuller (ADF) test repeatedly on a forward expanding sample sequence and performing 

inference based on the supreme value of the corresponding ADF statistic sequence. 

A great advantage of the SADF test is that it can identify the beginning and end of a 

bubble. Homm and Breitung (2012) use extensive simulations to prove that the SADF 

test works satisfactorily for structural breaks by comparing with other bubble testing 

approaches (such as sequential Chow-tests and CUSUM tests), especially it can detect 

market exuberance induced by a variety of sources, such as speculation or the time-

varying discount factor. All of methods suffer from reduced power when detecting the 

periodically collapsing bubbles. To solve this problem, Phillips et al. (2012, 2015) 

propose an alternative approach named the generalized supreme ADF test (GSADF). 

Currently, the GASDF test has been widely accepted and used to detect bubbles in 

many markets, e.g. in stock markets (Caspi and Graham 2018, Hu and Oxley 2018), 

real estate markets (Anundsen et al. 2016, Engsted et al. 2016, Pavlidis et al. 2016), 

and energy markets (Tsvetanov et al. 2016, Caspi et al. 2018). Recently, many studies 

also try to apply this method to agricultural commodity markets (Gutierrez 2013, 

Etienne et al. 2015, Li, Li, et al. 2017). In the following, we give an introduction to 

the GSADF test. 

According to Phillips et al. (2015), the main idea of the GASDF method is to apply 

the ADF-test to sequential subsets (rolling window) of the whole sample. Suppose 

that the rolling window run from the 𝑟1
𝑡ℎ fraction of the total sample (T) to the 𝑟2

𝑡ℎ 

fractione, where 𝑟2 = 𝑟1 + 𝑟𝑤  and 𝑟𝑤 > 0  is the fractional window size of the 

regression. Equation (1) shows the empirical model: 

𝛥𝑃𝑡 = �̂�𝑟1,𝑟2 + �̂�𝑟1,𝑟2𝑃𝑡−1 + ∑ �̂�𝑖
𝑟1,𝑟2

𝛥𝑃𝑡−𝑖 + 휀�̂�
𝑘
𝑖=1                             (1)

 

k is the lag order. The number of observations in the model is 𝑇𝑊 = ⌊𝑇𝑟𝑤⌋, where⌊. ⌋ is 

the floor function (given the integer part of the argument). The ADF-statistic (t-ratio) 
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based on this regression is denoted as 𝐴𝐷𝐹𝑟1
𝑟2. The rolling regression of the repeated 

ADF-test is used for bubble detection using the subsamples of the data. The GSADF 

relies on the repeated estimation of the ADF model. It varies the endpoint of the ADF 

regression 𝑟2 from 𝑟0 (the minimum window width) to 1, and it allows the starting 

point 𝑟1 to change within a feasible range, that is, from 0 to 𝑟2−𝑟0. The GSADF-test 

statistic of 𝑟2 is then obtained as the supreme value of the corresponding ADF-statistic 

sequence (see Equation (2)). 

𝐺𝑆𝐴𝐷𝐹(𝑟0) = 𝑠𝑢𝑝𝑟1∈[0,𝑟0]
𝑟2∈[𝑟0,1]{ 𝐴𝐷𝐹𝑟1

𝑟2}                                              (2) 

The origination date of a bubble  ⌊𝑇𝑟𝑒⌋  is calculated as the first chronological 

observation with a GSADF-statistic above the critical value. The calculated 

origination date is denoted by ⌊𝑇𝑟�̂�⌋. The estimated termination date of a bubble ⌊𝑇𝑟�̂�⌋ 

is the first chronological observation after ⌊𝑇𝑟�̂�⌋ + 𝐿𝑇 with a GSADF-statistic below 

the critical value. The bubble duration must exceed the length of log(T). For the 

sample under study, we calculate log(460) = 2.66. Thus, the bubble duration should 

at least last 3 weeks.  

For the calculation of critical values for the GSADF method, Phillips et al. (2012) 

firstly propose to use the Monte Carlo simulations. However, Gutierrez (2013) and 

Harvey et al. (2016) find that the Monte Carlo method may incorrectly he potential 

structural breaks in the price series as price bubbles and the results of bubble detection 

will be quite severely over-sized. They propose to use the wild bootstrap method to 

calculate the critical values, which will consider the underlying structural break of the 

time series and thus find fewer but more accurate bubble days than the Monte Carlo 

method. In this paper, we adopt the wild bootstrap method. The number of iterations 

of wild bootstrapping is 2000 (Etienne et al. 2014, 2015, Phillips et al. 2015). 
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3.2.2 Vector Error Correction Models 

We proceed to test the co-integration relationship between the futures and spot price 

series for each commodity. When a co-integration relationship exists, the vector 

error-correction model (VECM) representation will be used to distinguish the long-

run and short-run interactions between the co-integrated price series. The VECM 

representation is listed as follows: 

△ 𝒑𝒕 = 𝜶𝜷′𝒑𝒕−𝟏 + ∑ 𝜞𝒊 △𝒑𝒕−𝒊 + 𝜺𝒕
𝑚−1
𝑖=1                          (3), 

where 𝒑𝒕 = [𝒑𝒕
𝒔 𝒑𝒕

𝒇]
′
 is the (2 × 1) vector containing the spot and futures prices at 

time t. 𝜷 is the co-integration vector containing the long-run coefficients, and 𝜷′𝒑𝒕−𝟏 

represents the error-correction term (ECT). 𝜶 is the loading matrix containing the 

long-run adjustment coefficients of the error-correction term. 𝜞𝒊  is the matrix 

containing the coefficients that account for the short-run adjustment coefficients, and 

𝑚 is the lag length of the underlying vector autoregressive (VAR) model. 𝜺𝒕 is the 

matrix of white noise errors. As long as the co-integration relationship is maintained, 

the VECM representation would allow for temporary explosive roots in one price 

series (Engsted 2006, Magdalinos and Phillips 2009, Nielsen 2010). Therefore, we 

can still use equation (3) to model the relationship between the futures and spot prices, 

even when bubbles occur. 

Markov-Switching Error-Correction Model (MSECM) 

Already knowing the applicability of the VECM representation, we can use the 

MSECM to analyse the non-linearity of price transmission across the futures and spot 

prices. The MSECM assumes that the data-generating process underlying the state 

variable follows a Markov chain: 

𝛥𝑝𝑡
𝑠 = 𝜐𝑠𝑡 + 𝛼𝑠𝑡(𝜷

′𝒑𝒕−𝟏) + ∑ 𝜞𝑖,𝑠𝑡
𝑚−1
𝑖=1 𝛥𝒑𝒕−𝒊 + 휀𝑡                    (4), 
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where 𝛥𝑝𝑡
𝑠 is the spot price returns and the state variable 𝑠𝑡 represents the underlying 

state of the observation at time t. For the MSECM, the intercept term 𝜐𝑠𝑡, the loading 

parameter 𝛼𝑠𝑡 , and the short-run adjustment parameter 𝛤𝑖,𝑠𝑡  are all state dependent. 

The probability of switching to a new state depends only on the state of the one-step 

proceeding period, and a switching matrix will control the whole evolving process. 

Through the MSECM, we can identify the characteristics of the state where bubbles 

occur the most frequently. Further details about the Markov-switching model can be 

found in Hamilton (1994). 

3.2.3 Dynamic Conditional Correlation Multivariate GARCH Model (DCC-

MGARCH) 

The dynamic conditional correlation multivariate GARCH model (DCC-MGARCH) 

measures the degree of volatility interdependence between futures and spot markets 

(Engle 2002). Through a dynamic conditional correlation matrix, it allows us to 

identify a time-varying volatility interdependence between the markets. Suppose that 

𝑯𝒕 is the conditional covariance matrix of 𝜺𝒕 in equation (3): 

𝑯𝒕 = Var (
휀1𝑡
휀2𝑡
) = (

𝜎11,𝑡
2 𝜎12,𝑡

2

𝜎21,𝑡
2 𝜎22,𝑡

2 )                                  (5), 

and 𝑯𝒕 could be decomposed into the following form: 

𝑯𝒕 = 𝑫𝒕

𝟏

𝟐𝑹𝒕𝑫𝒕

𝟏

𝟐                                                          (6), 

where 𝑫𝒕 = (
𝜎11,𝑡 0

0 𝜎22,𝑡
), and 𝑹𝒕 = (

1 𝜌12,𝑡
𝜌12,𝑡 1

). For i = 1 and 2,  

𝜎𝑖𝑖,𝑡
2 = 𝛾𝑖 + 𝑎𝑖휀𝑖,𝑡−1

2 + 𝑏𝑖𝜎𝑖𝑖.𝑡−1
2                                    (7), 

 𝜌12,𝑡 is determined by the geometrically weighted average of standardised residuals: 

𝜌12,𝑡 =
∑ 𝜆𝑠̃1,𝑡−𝑠̃2,𝑡−𝑠
𝑡−1
𝑠=1

√(∑ 𝜆𝑠̃1,𝑡−𝑠
𝑡−1
𝑠=1 )(∑ 𝜆𝑠̃2,𝑡−𝑠

𝑡−1
𝑠=1 )

                                    (8), 
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where 휀�̃�,𝑡−𝑠  is the standardised error term, and 𝜆𝑠  is the geometrical weight 

decreasing geometrically with time t. The dynamic process of 𝑹𝒕 is determined by the 

following two equations. 

𝑹𝒕 = 𝑑𝑖𝑎𝑔(𝑸𝒕)
−
1

2𝑸𝒕𝑑𝑖𝑎𝑔(𝑸𝒕)
−
1

2                                       (9) 

𝑸𝒕 = (1 − 𝜆1 − 𝜆2)𝑹 + 𝜆1휀�̃�−1휀�̃�−1
′ + 𝜆2𝑸𝒕−𝟏                     (10) 

𝑹 is the mean of 𝑹𝒕. Thus, the entire dynamic process is determined by the parameters 

𝜆1  and 𝜆2 . If 𝜆1 = 𝜆2 = 0 , the DCC model becomes the constant conditional 

correlation model (CCC-MGARCH), and we can use a joint test for model selection.  

3.3 Data 

The present paper concentrates on the price bubbles on corn and soybeans commodity 

markets in China. China has a large, rigid and lasting demand for agricultural 

commodities, which affects domestic and international markets. The rising food 

consumption has profound effects on the world food balance and trade patterns and is 

often taken as the main source of global commodity price spikes (Coxhead and 

Jayasuriya 2010). China is also a major producer of corn and soybeans. Hernandez et 

al. (2014) verified the dynamic international interlinkage between China and many 

international markets. It is important for China to maintain its food safety and stable 

agricultural commodity markets. 

Corn and soybeans show high trade volumes on international markets. We collect 

weekly price data (Monday) from two datasets. The sample period is from January 4th 

2009 to December 31st 2017, including 460 observations. We first obtain the National 

Wholesale Price Index of each commodity as the spot price. This index is compiled 

by the China Grain Reserves Group, Ltd., which collects the price data of agricultural 

commodities from major markets nationwide. The wholesale price mainly reflects 

large wholesalers’ trades. Large wholesalers may have strong market power that 

affects the supply chain and its price structures and relationships (Nakamura and 
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Zerom 2010). Futures prices come from the Dalian Commodity Exchange (DCE), 

which is the most important futures exchange for agricultural commodities in China. 

We use nearby futures contract prices. Specifically, each commodity has six futures 

contracts every year, namely the contracts starting in January, March, May, July, 

September and November. All futures contracts last for 12 months, not including the 

delivery month. The price series of the last two months for each contract build the 

nearby futures price. We use the logarithmic transformation of prices. 

3.4 Results 

3.4.1 Bubble Testing Results 

Table 3.1 presents the descriptive statistics of price returns (log(𝑃𝑡 𝑃𝑡−1⁄ )) . The 

futures price returns exhibit a higher absolute mean value for both commodities. The 

comparison of the maximum (minimum) values and standard deviations suggest that 

the futures price returns have a larger amplitude and volatility than spot prices. The 

kurtosis for all markets exceeds three, indicating a leptokurtic distribution. The results 

of the Jarque-Bera test further show that price returns do not follow a normal 

distribution. Given these results, a t-student distribution is considered for the 

estimation of the DCC-MGARCH model to solve the non-normality problem.  
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Table 3.1  Summary statistics for daily price returns 

 Corn  Soybeans  

 Futures Spot Futures Spot 

Statistics     

Mean*100a 0.0153 0.0148 -0.0156 0.0048 

Median*100a 0.0000 0.0550 0.0196 0.0139 

Maximum 0.0940 0.0091 0.0474 0.0405 

Minimum -0.0667 -0.0322 -0.0465 -0.0465 

Std. Dev. 0.0112 0.0040 0.0091 0.0062 

Skewness 0.2549 -2.4111 -0.1729 -0.3622 

Kurtosis 21.2756 15.7235 6.9729 22.0747 

Jarque-Bera 6392.6870 3540.8044 304.1487 6968.5786 

q-value 0.0000 0.0000 0.0000 0.0000 

Number of obs 460 460 460 460 

a Mean and median values are multiplied by 100.  

Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15. 

We proceed to use the GSADF method to detect bubbles in each price series. The 

futures and spot prices indicate different bubble episodes shown in Figures 3.1 and 

3.2, even though they are co-integrated with each other. Regardless of the commodity 

species, the spot price has more frequent and longer bubble episodes than the 

corresponding futures price. In the case of corn, 73 of 460 weeks (15.87 %) indicate 

bubbles for the spot price, while only 7 of 460 weeks (1.52 %) show bubbles for the 

futures price. Importantly, the corn futures price shows two short bubble episodes and 

only one of them coincides with a bubble episode of the spot price. In the case of 

soybeans, 54 of 460 weeks (11.73 %) show bubbles for the spot price, while only 10 
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of 460 weeks (2.17 %) for the futures price. Again, we only find one overlapping 

bubble episode. Table A-1 and A-2 in the Appendix present more details. 

 

Figure 3.1 Corn: Price Bubble Periods for the Futures and Spot Prices 

Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15. 

 

Figure 3.2 Soybeans: Price Bubble Periods for the Futures and Spot Prices 

Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15. 



Chapter 3 Agricultural Price Transmission between Futures and Spot Markets during Price Bubbles 

78 

 

We apply another measure to quantify the degree of bubble synchronisation across 

two price series. When estimating the degree of price synchronisation and staggering 

among different prices, prior studies compare the standard deviations of the actual 

proportion of price changes in each period with the standard deviations of perfect 

price synchronisation or staggering (Fisher and Konieczny 2000, Loy and Weiss 

2002). We use this method to measure the degree of bubble synchronisation and 

staggering across different price series. If the bubbles for futures and spot prices were 

perfectly staggered, we would expect the proportion of bubble occurrences in any 

period would be equal to the average proportion of bubbles over time. However, if the 

bubbles are perfectly synchronised, the proportion of bubbles in any period would be 

either 0 or 1. For instance, the number of corn (futures and spot) price bubbles is 76 

out of 460 observations. In this case, assuming perfect synchronisation, the standard 

deviation is computed from a series of 76 ones and 384 zeros. Table 3.2 shows the 

main result of the standard deviations for these three cases. The final row of 

‘differences from perfect staggering’ indicates the extent of deviation from perfect 

staggering. When this term is below 50 %, the actual data are closer to the perfect 

staggering situation.1 As will be seen in Table 3.2, even though there are no bubbles 

within most observations (384 weeks, 83.5 % of the sample observations) for both the 

corn futures and spot prices, we find that the deviation from perfect staggering is still 

below 50 %. The same applies to the case of soybeans. This further proves that the 

bubbles for futures and spot prices hardly synchronise with each other.  

                                                 

1  When more individual price series are available, a formal 𝜒2  test could be used to judge the 

significance level of the deviation from perfect staggering formally. 
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Table 3.2 Comparing standard deviations of different cases 

Standard Deviation Corn Soybeans 

In actual data 0.2009 0.1852 

Assuming perfect staggering a 0.1859 0.1686 

Assuming perfect synchronisation a 0.3718 0.3371 

Difference from perfect staggering b 8.0689% 9.8516% 

a The standard deviations are calculated from the actual number of bubbles for each commodity. 

b Calculated as (𝜎𝑠𝑡 − 𝜎𝑑) (𝜎𝑠𝑡 − 𝜎𝑠𝑦) ∗ 100%⁄ , where 𝜎𝑑 , 𝜎𝑠𝑡  and 𝜎𝑠𝑦  are the standard deviations in the data, the standard 

deviation under the assumption of perfect staggering, and the standard deviation under the assumption of perfect synchronisation, 

respectively.  

Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15. 

Spot prices have more frequent and persistent bubbles than the futures prices. The 

comparison between the bubble episodes of different prices indicates that the bubbles 

rarely synchronise across futures and spot prices. This is inconsistent with the 

intuition that co-integrated futures and spot prices should show similar bubble periods. 

We further explore the relationship between the futures and spot prices for 

agricultural commodities during the bubble periods. 

3.4.2 Price Transmission and Bubble Occurrences under Different Regimes  

We start with basic tests of time series properties for all price series. The results of the 

ADF-test and KPSS-test in Table 3.3 indicate that the price series are integrated of 

order one (I(1)) and become stationary after first differencing. Table 3.4 presents the 

estimation results of the co-integration and Granger-causality tests. Futures and spot 

prices are co-integrated for both commodities, indicating a long-run equilibrium 

relationship. Based on the results of the Granger-causality tests, the null hypothesis 

that futures price returns do not Granger-cause spot price returns is rejected for corn 

and soybeans. The lagged values of futures price returns predict spot price returns. 

Thus, information and shocks move from the futures to the spot markets. These 
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results are consistent with previous studies (Garbade and Silber 1983, Crain and Lee 

1996, Mattos and Garcia 2004, Hernandez and Torero 2010). The futures market 

discovers prices and transmits to the sport markets. These results, however, contradict 

the finding that spot markets indicate a much higher rate of bubbles compared to the 

futures markets. 

Table 3.3 Unit Root Tests 

 Corn:  Soybeans: 

  Futures Price: Spot Price:  Futures Price: Spot Price: 

ADF 

Test 
-2.0840 -1.7720 

 
-1.5140 -1.9610 

P-value 0.2510 0.3945  0.5263 0.3037 

KPSS 

Test a 1..94 2.0000 
 

1.7 1.78 

P-value 0.0100 0.0100  0.0100 0.0100 

 
Futures Price Returns: Spot Price Returns:  Futures Price Returns: Spot Price Returns: 

ADF 

Test 
-26.8850 -15.8580 

 
-20.9910 -24.1340 

P-value 0.0000 0.0000  0.0000 0.0000 

KPSS 

Test 
0.0543 0.0953 

 
0.0335 0.0806 

P-value 0.1000 0.1000  0.1000 0.1000 

a The autocovariance function is to be weighted by the quadratic spectral kernel. Automatic bandwidth selection procedure 

proposed by Newey and West (Newey and West 1994) is applied here.  

Source: Own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15.  
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Table 3.4 Co-integration Test and Granger Causality Test 

  
  Trace Test 

Johansen Co-integration Test: 

(5% critical values in the parentheses) 
   

r0 r1 

Corn: Futures and Spot Prices 
   

83.2115 

(15.4100) 

3.4488a 

(3.7600) 

Soybeans: Futures and Spot Prices 
   

25.1818 

(15.4100) 

 1.2377a 

(3.7600) 

      
Granger-causality tests: 

H0 is the null hypothesis. (P-value in the parentheses) 
    

F-statistics 

H0: Corn Spot Price Returns do not Granger-cause Futures Price Returns 

 

0.8302 

(0.5496) 

H0: Corn Futures Price Returns do not Granger-cause Spot Price Returns 

 

9.9131*** 

(0.0000) 

H0: Soybean Spot Price Returns do not Granger-cause Futures Price Returns 

 

0.0972 

(0.9926) 

H0: Soybean Futures Price Returns do not Granger-cause Spot Price Returns 
  

2.5440** 

(0.0276) 

a indicates the accepted rank by Johansen Test. 

*** statistically significant at 1% confidence level; **statistically significant at 5% confidence level; * statistically significant at 

10% confidence level. 

Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15.  

We adopt the MSECM to estimate the state where bubbles are most likely to occur. If 

bubbles are mainly attributed to the futures market, more bubbles would occur during 

the state where the futures price has strong and significant adjustment effects on the 

spot price. We document the estimated results of the model in Table 3.5. 

In the case of corn, three regimes are identified based on Akaike’s information criteria 

(AIC) and could be named as the ‘normal’, ‘adjustment’ and ‘no adjustment’ states, 

contingent on the degree of adjustment effect of the error-correction term in each 

regime. Moreover, concerning the distribution of bubbles among these three states, 71 

of 73 spot price bubble days (97.2603%) are within the ‘normal’ (45, 61.6438%) and 
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‘no adjustment’ (26, 35.6164%) states. In other words, the ‘normal’ state and ‘no 

adjustment’ state could also be named as the ‘bubble’ state. 

Specifically, the ‘normal’ state is characterised by a relatively small though 

significant coefficient value (-0.0462) of the error-correction term. This suggests that 

the spot price adjusts slowly to the long-term equilibrium in this state. Meanwhile, the 

average value of the error-correction term during this state is -0.0004, and its absolute 

value is the lowest when compared with the other two states, indicating a small 

deviation (on average) from the equilibrium. More importantly, the sum of the 

coefficients on the lagged spot price returns is 0.4695, implying a strong persistence 

of the spot price returns during the ‘normal’ state.  

Compared with the ‘normal’ state, the ‘adjustment’ state is characterised by almost a 

three-fold increase in the coefficient value (-0.1655) of the error-correction term. It 

also corresponds to the largest average error-correction value (0.0088), indicating that 

the adjustment effect of the corn spot price toward the long-run equilibrium is the 

strongest in this regime. Meanwhile, both the coefficients of the lagged futures price 

returns and lagged spot price returns are significant, suggesting strong short-run 

effects of futures price returns on spot price returns. 

Finally, the ‘no adjustment’ state is characterised by the insignificant coefficient value 

(-0.0277) of the error-correction term. The effects of lagged futures price returns on 

spot price returns are also insignificant. Thus, the futures price has lost the leadership 

in this regime, and the spot price returns are mainly affected by their own lagged 

terms. 

As for the estimated results for soybeans, we find almost the same long-run and short-

run effects as corn. Fifty-one of 54 (94.4444%) spot price bubble days are within the 

‘normal’ (50, 92.5926%) and ‘no adjustment’ (1, 0.0002%) states. These results 

indicate that the adjustment effect of spot prices toward the long-run equilibrium 

becomes weak when spot price bubbles occur the most frequently. The bubbles in the 
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spot price are not mainly caused by shocks from the futures market. Instead, the spot 

price returns have shown significant persistence in their own lagged terms. This 

implies that the spot price can hardly adjust to a new market clear price level when 

responding to changes in the futures price. Once a trend is established, it is more 

likely to continue in that direction than to move against or opposite the trend. This is 

consistent with previous studies that find a difference between the commodity spot 

and futures markets in the ability to incorporate relevant price information (Crain and 

Lee 1996, Yang and Leatham 1999, Yang et al. 2001). The stronger self-persistence 

of price returns may have resulted in more bubbles for the spot price series. 

Another possible explanation for the autocorrelated price returns in spot markets is the 

theory of informational cascades by Bikhchandani et al. (1992) and Welch (1992). 

The core idea of the informational cascades is similar to price bubbles. Specifically, 

the current traders in a market obtain information by observing their previous traders’ 

decisions to the point where they optimally and rationally ignore their own private 

information (Devenow and Welch 1996). In this case, current traders rationally herd 

after observing previous traders’ actions. The self-persistence observed in the spot 

price returns could be partly explained by this herding behaviour. Traders in the spot 

market rationally herd to expect a future sale to their ensuing traders. In this case, spot 

markets are less efficient compared with futures markets. 
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Table 3.5 Results of Markov-switching Error Correction Model (3 states) 

  Corn    Soybeans  

 𝛥𝑝𝑠 Regime:   𝛥𝑝𝑠 Regime:  

 Normal Adjustment No 

adjustment 

 Normal Adjustment No 

adjustment 

N a 330(45) 16(2) 111(26)  400(50) 25(3) 31(1) 

Average ECT b -0.0004 

(0.0172) 

0.0088 

(0.0319) 

-0.0017 

(0.0229) 

 -0.0004 

(0.0201) 

-0.0168 

(0.0239) 

-0.0117 

(0.0490) 

Constant  0.0002 

(0.0002) 

-0.0100*** 

(0.0008) 

0.0022*** 

(0.0004) 

 0.0002* 

(0.0002) 

-0.0014*** 

(0.0001) 

-0.0069** 

(0.0032) 

𝐸𝐶𝑇𝑡−1  -0.0462***  

(0.0155) 

-0.1655*** 

(0.0238) 

-0.0277 

(0.0228) 

 -0.0215*** 

(0.0084) 

-0.1009*** 

(0.0045) 

-0.1950 

(0.1255) 

𝛥𝑝𝑡−1
𝑠   0.2092*** 

(0.0604) 

-0.3821*** 

(0.0964) 

-0.1356** 

(0.0642) 

 -0.0522 

(0.0389) 

0.5613*** 

(0.0122) 

-0.5682*** 

(0.2102) 

𝛥𝑝𝑡−2
𝑠  0.2603*** 

(0.0687) 

-1.4504*** 

(0.2068) 

-0.0060 

(0.0500) 

 -0.0118 

(0.0347) 

0.0186** 

(0.0089) 

-0.2205 

(0.1821) 

𝛥𝑝𝑡−3
𝑠  -- -- --  0.1019*** 

(0.0363) 

-0.7734*** 

(0.0072) 

-0.3287** 

(0.1820) 

𝛥𝑝𝑡−1
𝑓

 0.0025 

(0.0204) 

0.1549** 

(0.0658) 

-0.0144 

(0.0229) 

 -0.0003 

(0.0175) 

0.1299*** 

(0.0068) 

-0.8036** 

(0.3767) 

𝛥𝑝𝑡−2
𝑓

 0.0502*** 

(0.0186) 

1.0489*** 

(0.1727) 

-0.0039 

(0.0198) 

 -0.0128 

(0.0177) 

-0.1032*** 

(0.0081) 

-0.1361 

(0.2587) 

𝛥𝑝𝑡−3
𝑓

 -- -- --  -0.0073 

(0.0172) 

0.2713*** 

(0.0102) 

-0.5331** 

(0.2659) 
a the number of bubbles are included in the parentheses. 

b the standard deviations are included in the parentheses. 

*** statistically significant at 1% confidence level; **statistically significant at 5% confidence level; * statistically significant at 

10% confidence level. The number of states and lags of price returns are determined by information criteria (AIC). 

Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15. 
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3.4.3 DCC-MGARCH 

As Table 3.1 presents, the futures price is more volatile than the corresponding spot 

price. If the two price series are co-integrated, this difference in volatility may 

account for some differences in the frequencies of bubbles. Price volatility is also 

important for the GSADF method of bubble detection, and different volatilities could 

result in different bubble episodes, even for price series with similar movement. We 

then use the dynamic conditional correlation multivariate GARCH model (DCC-

MGARCH) to investigate the dynamic volatility interdependence between futures and 

spot prices.  

In Table 3.6, for both corn and soybeans, the spot price shows a significant volatility 

clustering effect (significant ARCH 𝑎𝑖  and GARCH 𝑏𝑖  parameters), while the 

volatility of futures prices tends to be constant over the sample period. Regarding the 

dynamic volatility correlation, 𝜆1 and 𝜆2 can be interpreted as the ‘news’ and ‘decay’ 

parameters, which represent the effect of innovations on the conditional correlations 

over time and their persistence. For corn, 𝜆1 is small and not significant, while 𝜆2 is 

close to 1 and highly significant, suggesting a slow decaying rate. For soybeans, the 

Wald joint test shows that 𝜆1  and 𝜆2  jointly insignificantly differ from zero, 

suggesting a constant conditional correlation between soybeans futures and spot price 

volatilities. We then estimate a constant conditional correlation multivariate GARCH 

model (CCC-MGARCH), and the value of the constant conditional correlation is 

0.1304.  

We further measure the extent to which the conditional volatilities correlate in time, 

especially during bubble episodes. From Figures 3.3 and 3.4, we can see that the 

predicted conditional variance of the corn spot price is always lower than the variance 

of futures prices. The time-variant volatility correlation is between -0.02 and 0.02. 

The spot price has shown to be relatively independent and with a lower volatility. The 

degree of volatility interdependence across the markets does not increase during 
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bubble episodes. Particularly, there is a negative conditional correlation during the 

overlapped bubble episode. Similar results apply to the case of soybeans, as shown in 

Figure 3.5 and 3.6, except that the soybeans spot price volatility becomes higher 

around July 2015.2 However, this does not result in a tighter correlation between 

volatilities during that period.  

Therefore, the volatility interdependency between futures and spot markets is very 

limited. Combined with the results of the MSECM, bubbles occur more easily within 

the price series with a higher self-persistence of returns and lower volatility. This may 

imply that spot prices have a lower capacity to aggregate and respond to new 

information. Nonetheless, this does not mean that a higher volatility is desirable for 

commodity markets. Instead, our estimation results, which are based on weekly data, 

show that when information is efficiently incorporated into the price, a certain degree 

of volatility should reflect market efficiency to some extent, and much lower volatility 

may reflect the market inability to respond to new information quickly. In our case, 

this means an incomplete response of the spot market to changes in futures prices.  

                                                 

2 To keep consistency and comparability, we continue to use the estimation results from the DCC-

MAGRCH model for soybeans for Figures 3.5 and 3.6. 
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Table 3.6 Results of DCC-MGARCH 

 Corn 

(DCC) 

 Soybeans 

(DCC) 

 Soybeans 

(CCC) 

 

 Futures(i=1) Spot(i=2) Futures(i=1) Spot(i=2) Futures(i=1) Spot(i=2) 

𝑐𝑜𝑛𝑠 ∗ 100 0.0170 

(0.0116) 

0.0014** 

(0.0000) 

0.0000 

(0.0007) 

0.0013** 

(0.0000) 

0.0000 

(0.0007) 

-0.0013** 

(0.0006) 

𝑎𝑖 0.5791* 

(0.3020) 

0.25778* 

(0.1400) 

0.0268* 

(0.0161) 

0.3921*** 

(0.1520) 

0.0266* 

(0.0162) 

0.3928** 

(0.1537) 

𝑏𝑖(1) 0.3504 

(0.2842) 

0.6241*** 

(0.1431) 

0.0163 

(0.0415) 

0.2674 

(0.1837) 

0.0163 

(0.0418) 

0.2700 

(0.1839) 

𝑏𝑖(2) -- -- 0.9638*** 

(0.0484) 

0.3018* 

(0.1816) 

0.09638*** 

(0.0488) 

0.2969* 

(0.1824) 

𝜆1 0.0017 

(0.0081) 

 0.0221 

(0.0570) 

   

𝜆2 0.9888*** 

(0.0139) 

 0.1876 

(0.9956) 

   

df 3.0377*** 

(0.37617) 

 3.8692*** 

(0.5752) 

 3.8689*** 

(0.5749) 

 

Wald joint test for adjustment coefficients (𝐻0: 𝜆1 = 𝜆2 = 0)   

Chi-squared 5577.5500  0.2100  --  

p-value 0.0000  0.9002  --  

𝑎𝑖 stands for the arch term and 𝑏𝑖 stands for the garch term. Lagged terms are selected based on AIC. 

*** statistically significant at 1% confidence level; **statistically significant at 5% confidence level; * statistically significant at 

10% confidence level. 

Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15. 
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Figure 3.3 Variance Prediction for Futures Price and Spot Price (Corn) 

 Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15. 

 

Figure 3.4 Dynamic Conditional Correlation Between Futures Price and Spot 

Price (Corn) 

Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15. 
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Figure 3.5 Variance Prediction for Futures Price and Spot Price (Soybeans) 

Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15. 

 

 

Figure 3.6 Dynamic Conditional Correlation Between Futures Price and Spot 

Price (Soybeans) 

Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15. 

 



Chapter 3 Agricultural Price Transmission between Futures and Spot Markets during Price Bubbles 

90 

 

3.5 Conclusions 

In this paper, we first identify the bubble dates for the two highly traded agricultural 

commodities in China, corn and soybeans. Bubble episodes in the futures and spot 

price series are compared with each other. We do not find significant transmission or 

synchronisation of bubbles across the two markets. The spot price series shows more 

frequent and durable bubbles than the futures prices. This is contrary to the inference 

that price bubbles are caused by over-financialization in agricultural futures markets 

and then are transmitted to spot markets. 

We proceed to use the MSECM method to capture the nonlinear price transmission 

across the futures and spot markets, identifying the regime where spot price bubbles 

are most likely to occur. There is a weak adjustment effect of the spot price towards 

the long-run equilibrium during that regime. Meanwhile, the spot price indicates a 

strong self-persistence of its returns. We further adopt the DCC-MGARCH model to 

analyse the volatility interdependence, the estimation results of which indicate that the 

futures and spot prices have a very loose dynamic volatility interdependence. 

Therefore, bubbles occur more easily for the price series with a higher self-persistence 

of returns and lower volatility. This further implies a poor ability of the spot market to 

adjust itself to a new equilibrium.  

Our results help in understanding the formation of price bubbles in agricultural 

commodity markets, highlighting the nonlinear transmission across futures and spot 

markets in the first and second moments of price returns. Previous studies on 

agricultural price bubbles have mostly ignored spot market factors and agricultural 

commodity futures markets have been blamed for the potentially negative effects of 

over-financialization. Our findings are remarkable considering the limited 

synchronisation of bubbles across agricultural futures and spot markets. The self-

persistence of spot price returns during certain regimes may have resulted in more 

frequent and durable bubble episodes for spot prices. Instead of merely focusing on 



Chapter 3 Agricultural Price Transmission between Futures and Spot Markets during Price Bubbles 

91 

 

the over-financialization or speculation in futures markets, the current paper has 

suggested that the factors with the potential to contribute to the persistence of price 

returns in the spot market, such as information cascades and market power, should be 

considered in future relevant studies. 
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Appendix 

Table 3.7 A-1: Summary of Price Bubbles for Corn 

 

   Bubbles for Spot Price   Bubbles for Futures Price 

Bubble Periods Length(weeks) Start Peak(Trough) End 

%Price 

Change(Start to 

Peak or Trough) 

%Price Change 

(Peak or Trough 

to End) 

 Start Peak(Trough) End 

%Price 

Change(Start 

to Peak or 

Trough) 

%Price 

Change (Peak 

or Trough to 

End) 

2009/07/05-2009/10/04 14 106.51 115.06 115.06 8.03% 0.00%       

2010/01/03-2010/01/17 3       112.69 113 112.97 0.28% -0.03% 

2010/05/09-2010/06/13 6 121.7 127.02 126.1 4.37% -0.72%       

2011/05/11-2011/10/09 24 137.88 155.55 155.55 12.82% 0.00%       

2012/03/25-2012/05/20 9 149.14 154.07 154.07 3.31% 0.00%       

2014/06/29-2014/09/14 12 157.18 167.02 166.91 6.26% -0.07%       

2014/08/03-2014/08/24 4       161.97 165.88 165.88 2.41% 0.00% 

2015/09/20-2015/10/18 5 140.9 129.11 129.11 -8.37% 0.00%       

2017/02/12-2017/02/26 3 98.42 97.19 97.19 -1.25% 0.00%       

Sum 73 weeks(15.87%)       7 weeks(1.52%)    

Maximum Single Bubble  24  weeks             4 weeks         
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Table 3.8 A-2: Summary of Price Bubbles for Soybeans 

 

   Bubbles for Spot Price   Bubbles for Futures Price 

Bubble Periods Length(weeks) Start Peak(Trough) End 

%Price 

Change(Start to 

Peak or Trough) 

%Price Change 

(Peak or Trough to 

End) 

 Start Peak(Trough) End 

%Price 

Change(Start to 

Peak or Trough) 

%Price Change 

(Peak or Trough 

to End) 

2009/12/27-2010/01/10 3       4054 4162 4162 2.66% 0.00% 

2010/06/20-2010/07/18 5 95.57 94.87 94.99 -0.73% 0.13%             

2010/10/31-2010/11/14 3             4092 4244 4164 3.71% -1.89% 

2012/05/27-2012/06/10 3 107.97 108.15 108.01 0.17% -0.13%             

2012/07/29-2012/09/16 8 111.38 116.96 116.96 5.01% 0.00%             

2012/09/30-2012/11/11 7 116.94 120.59 120.59 3.12% 0.00%             

2012/12/02-2013/05/19 23 120.61 124.5 125.15 3.23% 0.52%             

2013/03/31-2013/04/21 4             4996 5032 5004 0.72% -0.56% 

2015/03/22-2015/05/24 8 104.74 90.62 90.62 -13.48% 0.00%       

Sum 54 weeks (11.73%)       10 weeks(2.17%)    

Maximum Single Bubble 

Duration 
23 weeks     

  

 

 

      4 weeks         
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For the corn, 73 of 460 weeks (15.87 %) indicate bubbles for the spot price, while only 7 of 

460 weeks (1.52 %) show bubbles for the futures price. The overlapped episode between corn 

futures and spot price bubbles is from 08th August 2014 to 24th August 2014 (four weeks). For 

the soybeans, 54 of 460 weeks (11.73 %) show bubbles for the spot price, while only 10 of 

460 weeks (2.17 %) for the futures price. The overlapped episode between soybean futures 

and spot price bubbles is from 31st March 2013 to 21st April 2013 (four weeks). Regardless of 

the commodity species, the futures and spot price bubbles seldom synchronise, neither do they 

indicate a significant lead-lag relationship.  
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Abstract 

By introducing a bubbly factor into the growth process of firms, this paper constructs a 

theoretical model to explain the effect of bubbles on the economy. Our model indicates that, 

in the presence of financial frictions and productivity differentials, bubbles can act as a 

financial intermediation to transfer money from investors to productive firms. Hence, the 

productive firms can expand production and the output of the economy would grow through 

bubble trades. Moreover, in comparison with previous models based on the framework of 

overlapping-generations, our model relaxes the assumption of agents’ finite survival periods 

and is useful to interpret the effects of bubbles on the economy in terms of calendar time. 

Infinitely lived agents rationally hold bubbles in their portfolios because holding the bubbles 

issued by productive firms could give them higher expected returns. 

JEL: E32, E37, G12, G17 

Key words: Economic Growth; Bubbles; Firm Size, Yule-Simon distribution  
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4.1 Introduction 

Bubbles have long been considered as the hallmark of market failure (Brunnermeier and 

Oehmke 2013). During the bubble periods, many countries have witnessed dramatic 

fluctuations in asset prices and economic output (Jordà et al. 2015, Miao et al. 2015). The 

origin of bubbles and their effects on economic development have long been discussed and no 

consensus has been reached. Scholars feel the need to develop new models to explain what 

drives asset price bubbles and how they affect the macroeconomy (Martin and Ventura 2018).  

In this paper, we ask the same questions as previous studies. What is the origin of bubbles? 

Why they raise the output of the economy? How do they collapse and affect the economy? 

Current discussions concerning these questions mainly focus on the theoretical model of 

rational bubbles (Blanchard and Watson 1982, Tirole 1982, 1985, Olivier 2000, Abreu and 

Brunnermeier 2003, Martin and Ventura 2012, Miao and Wang 2018, Martin and Ventura 

2018). Although these models have incorporated many important insights of bubbles and 

explained possible effects of bubbles on the economy, there are some unsolved issues on the 

theoretical modelling of bubbles, one of which is the infinite lived periods for agents (Miao 

2014).  

Our study builds on a series of studies that assume financial frictions and productivity 

differentials in the economy (Kocherlakota 2009, 2008; Martin and Ventura 2012; Miao and 

Wang 2012; Miao, Wang, and Zhou 2015; Miao and Wang 2018). In comparison with 

previous models, our model aims to relax the assumption of finite survival periods for agents, 

which is commonly shared by the overlapping-generations (OLG) models for bubbles. Our 

model might also provide a framework for empirical tests of bubbles’ origin and their effects 

on the economy, due to that agents in our model correspond to the investors and firms in the 

economy. Meanwhile, the introduction of stochastic process could relax the propositions of 

bubble collapse. This enables us to avoid the criticism of periodically collapsing bubbles by 

Evans (1991). 

In what follows, we provide a literature review on the theoretical models of bubbles in 

Section 4.2. Section 4.3 gives a brief introduction on the stochastic process of firm growth. In 

Section 4.4, we present our model of bubbles and explain the dynamic process of bubble 

trades. We further make a simulation of our model in Section 4.5. Conclusions are 

summarized in Section 4.6.  
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4.2 Literature Review 

We first make a brief review on the theoretical models of bubbles and then summarize the 

studies on the effects of bubbles. We confine our attention to the models based on rational 

bubbles. By using the term of ‘rational’, we mean agents have rational expectations and 

maximize their expected revenues by holding bubbles in their portfolios.  

The deduction of rational bubbles starts with the present discounted value (PDV) model 

(Blanchard and Watson 1982, Kamihigashi 2006, Gürkaynak 2008, Miao 2014). The asset 

price is derived from the customers’ dynamic optimization process. In an intertemporal 

competitive equilibrium without market frictions, the asset price bubbles are ruled out by the 

Euler equation and transversality condition. The Euler equation means no deviation from the 

optimal price path at any single period and the transversality condition means that the 

terminal point of the optimal price path is fixed. In the case of infinite lived agents, any 

violation of these two conditions would allow the occurrence of bubbles. Detailed 

mathematical expression of Euler equation and transversality condition is available in the 

study of Kamihigashi (2006) and Gürkaynak (2008). 

Nevertheless, for finite lived agents, scholars use the framework of OLG model and find that 

bubbles are likely to occur in both exchange economy and production economy (Samuelson 

1958, Diamond 1965, Tirole 1985). For instance, the existence of fiat money can be well 

explained by the OLG model in a pure exchange economy. Fiat money without intrinsic value 

can be considered as bubbles to store value across overlapping generations. The main 

advantage of the OLG model is the relax of transversality condition. The finite survival 

periods of agents fail to eliminate the arbitrage opportunity of bubble holders. Moreover, for a 

production economy with overlapping generations, Diamond (1965) and Tirole (1985) show 

that when inefficient investment caused by over capital cumulation occurs, bubbles would 

absorb the inefficient investment and improve the dynamic efficiency of the economy.  

In addition, if the hypotheses of market frictions and/or incomplete markets are incorporated 

into the model setting, it would be optimal for rational agents to hold bubbles in their 

portfolios. Santos and Woodford (1997) establish market conditions for pure exchange 

economy under which asset bubbles cannot exist. These conditions are summarized by Miao 

(2014) as follows: Each agent is subject to borrowing constraints such that he cannot borrow 

more than the present value of his future endowments; The present value of aggregate 

endowments is finite; The asset is either of finite maturity or in positive net supply. If any of 
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these three conditions is violated, an asset bubble might arise in the economy with rational 

agents.   

The economic consequence of bubbles is also critical. Bubbles are often considered as market 

failure and distort normal market trades and resource allocations (Stiglitz 1990). The models 

mentioned above show that bubbles could act as a tool of storing value, when there is an 

inefficient investment chain in the economy (Samuelson 1958, Diamond 1965, Tirole 1985). 

This means that the implicit interest rate in the bubbleless equilibrium is less than the rate of 

economic growth, or the bubbleless equilibrium is dynamically inefficient (Gale 1973). 

Nonetheless, these models cannot explain the associated fluctuations of output and investment 

with bubbles (Brunnermeier and Oehmke 2013). 

More recent theoretical studies on bubbles show that incomplete markets with bubbles could 

have various effects on the economic output and capital accumulation. Binswanger (1999) 

proposes a new role of speculative bubbles in the stock market: provided they are sustainable, 

bubbles may have a positive effect on the market. According to the bubble equivalence 

theorem proposed by Kocherlakota (2008; 2009), the introduction of a bubble gives agents a 

windfall, proportional to their initial holdings of the asset, which can lead to a more efficient 

allocation of physical capital among firms with good projects. Under the assumption of 

borrowing constraints, Oliver (2000), Martin and Ventura (2012) use the OLG framework to 

construct new models and explain the bubbles’ potential effect on the economic growth.   

For more details on the theoretical models of bubbles, Miao (2014) has made a 

comprehensive review of the models based on OLG framework. In summary, though a lot of 

insights can be derived from the OLG model with two-period lived agents (Tirole 1985, 

Olivier 2000, Martin and Ventura 2012), Miao (2014) points out that it is difficult to interpret 

the period in the OLG framework as calendar time and it is also difficult to do empirical tests 

with economic data.  

Therefore, if infinite-horizons are allowed for agents in the model of bubbles, many other 

insights can be available. In this paper, we construct a new theoretical model to explain the 

associated fluctuations of economic output with bubbles. We firstly assume productivity 

differentials among firms and financial frictions in the economy. Then, we use the stochastic 

process of firm growth to interpret the effects of bubbles on the economic output.  
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4.3 Setup 

We consider an economy with different industries and let the firm in an industry follow the 

Gibrat’s law, that is the expected value of the individual growth ratio for a firm is independent 

of the firm size (using output volume to measure firm size).1 Suppose there is a minimum size 

𝑆0, a firm below the size 𝑆0 has an increasing unit cost with its size (Simon and Bonini 1958). 

The size of firm 𝑖 at the end of the tth period is 𝑆𝑖𝑡. Following Ijiri and Simon (1967), we 

assume that there are N firms in an industry and firm i has a growing process:  

𝑆𝑖𝑡 = 𝜌𝑖𝑡 ∙ 𝜌�̅� ∙ 𝑆𝑖(𝑡−1), where 𝑟𝑖𝑡 = 𝜌𝑖𝑡 ∙ 𝜌�̅� 𝑎𝑛𝑑 𝑡 = 1, 2, 3, … , 𝑇               (1) 

The 𝑟𝑖𝑡 is called the growth rate of the ith firm in the tth period and can be decomposed into 

two factors: one is a growth factor applicable to firm i only (the individual growth factor), 𝜌𝑖𝑡; 

and the other one is a growth factor that affects equally all firms in the same industry (the 

industry growth factor), 𝜌�̅�. 𝜌𝑖𝑡 is the residual of the ith firm’s growth that has taken place in 

the tth period over and above the industry growth factor. Moreover, we define 𝜌�̅� =
∑ 𝑆𝑖𝑡𝑖

∑ 𝑆𝑖(𝑡−1)𝑖
, 

that is, the industry growth factor is equal to the ratio of the size of the industry in current 

period to its size in previous period. Then 𝜌𝑖𝑡 is a measure of the change in the ith firm’s share 

of market in the industry. 𝜌𝑖𝑡 = 1 means that the ith firm has grown just rapidly enough to 

retain its share of market. When the number of firms in the industry is relatively large, the 

statistical dependence of the average growth ratio on any individual growth factor will be too 

slight to bias significantly the estimates of parameters of the model. Equation (1) indicates 

that the individual growth factor is independent of the size of firm i or other firms, which 

means it follows the Gibrat’s law. 

Equation (1) iterates backward and the size of firm i at period t becomes: 

𝑆𝑖𝑡 = (∏ 𝜌𝑖𝜏
𝑡
𝜏=1 )(∏ 𝜌�̅�

𝑡
𝜏=1 )𝑆𝑖0                                                     (2) 

Both sides of equation (2) take logarithm: 

log𝑆𝑖𝑡 = ∑ 𝑙𝑜𝑔𝜌𝑖𝜏
𝑡
𝜏=1 + ∑ 𝑙𝑜𝑔𝜌�̅�

𝑡
𝜏=1 + 𝑙𝑜𝑔𝑆𝑖0                                     (3) 

From equation (3), the size of the firm i in an industry is decomposed into three sets of factors. 

The first term in the right hand of equation (3) reflects the history of individual growth rate 

                                                 

1 For the measure of firm size, the output, sales, assets, numbers of employees, value added, or profits could be 

used as indicators(Simon and Bonini 1958). 
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(idiosyncratic shocks) for firm i. The second term is the history of the industry’s growth rate 

and the final term is the initial size of firm i at t=0.  

Suppose that both the initial size 𝑆𝑖0  and the industry growth rate 𝜌�̅�  are given for τ =

1, 2, 3, … , t. Then the size of firm i is determined by the idiosyncratic changes of individual 

growth rate 𝜌𝑖𝜏 . The 𝜌𝑖𝜏  is further assumed to satisfy the Gibrats’ law and a single period 

Markov process, namely: 

𝜌𝑖𝑡 = 휀𝑖𝑡𝜌𝑖(𝑡−1)
𝛼                                                              (4) 

where α ∈ [0,1) is a constant and 

𝜌𝑖1 = 휀𝑖1                                                                       (5) 

The individual growth rate of firm i in the tth period is the product of some power of the 

growth ratio 𝜌𝑖(𝑡−1) of the same firm in the (t-1)th period and a random component 휀𝑖𝑡. 휀𝑖𝑡 

follows an independently and identically distribution in each period for firm i, and log휀𝑖𝑡 has 

zero mean and variance 𝜎2. In the same industry, 𝜌𝑖𝑡 is also determined independently from 

other firms. Other factors that commonly affect more than one firm are absorbed in the 

industry growth rate 𝜌�̅�. For the parameter α, it is assumed to be in the range [0,1), namely an 

individual growth rate in one period will have decaying effects on the individual growth rates 

in the subsequent periods.  

Substitute equation (4) and (5) into log𝜌𝑖𝑡, we have: 

log𝜌𝑖𝑡 = 𝑙𝑜𝑔휀𝑖𝑡 + 𝛼𝑙𝑜𝑔𝜌𝑖(𝑡−1)

= ∑ 𝛼𝑡−𝜏𝑙𝑜𝑔휀𝑖𝜏
𝑡
𝜏=1

                                                        (6)  

 and 

∑𝑙𝑜𝑔𝜌𝑖𝑡

𝑇

𝑡=1

=∑∑𝛼(𝑡−𝜏)
𝑡

𝜏=1

𝑇

𝑡=1

𝑙𝑜𝑔휀𝑖𝜏

= (1 + 𝛼 + 𝛼2⋯+ 𝛼𝑇−1)𝑙𝑜𝑔휀𝑖1 + (1 + 𝛼 + 𝛼
2⋯+ 𝛼𝑇−2)𝑙𝑜𝑔휀𝑖2

+⋯(1 + 𝛼 + 𝛼2⋯+ 𝛼𝑇−𝑘)𝑙𝑜𝑔휀𝑖𝑘 +⋯+ 𝑙𝑜𝑔휀𝑖𝑇

=∑
1− 𝛼𝑇−𝑡+1

1 − 𝛼

𝑇

𝑡=1

𝑙𝑜𝑔휀𝑖𝑡 

     (7) 

Thus, equation (3) becomes, 
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log𝑆𝑖𝑡 = ∑
1−𝛼𝑡−𝜏+1

1−𝛼

𝑡
𝜏=1 𝑙𝑜𝑔휀𝑖𝜏 + ∑ 𝑙𝑜𝑔𝜌�̅�

𝑡
𝜏=1 + 𝑙𝑜𝑔𝑆𝑖0                        (8) 

and let  

𝑥𝑖𝑡 = ∑
1−𝛼𝑡−𝜏+1

1−𝛼

𝑡
𝜏=1 𝑙𝑜𝑔휀𝑖𝜏                                                         (9) 

Thus, under the Gibrat’s law and a single period Markov process of individual growth rate, 

the size of firm i follows a random process and its growth rate is independent from its current 

size. In the next section, we would introduce the bubble trades between firms and investors in 

the economy. 

4.4 Economic Growth and Bubbles  

We first introduce the conventional form of rational bubbles and then introduce bubbles into 

the economy described above.  

4.4.1 Bubble Trades 

A bubble is a situation in which an asset price doesn’t reflect its fundamental value and the 

reason the price is high today is only because investors believe that they could resell at an 

even higher price tomorrow (Stiglitz 1990, Gürkaynak 2008). Bubbles are akin to pyramid 

schemes (Ponzi games) and could start randomly without cost, giving the bubble sellers a 

windfall (Kocherlakota 2008; Martin and Ventura 2012). The mathematical expression of 

rational bubbles proposed by Blanchard and Watson (1982) is: 

𝐸(𝐵𝑡+1) = (1 + 𝑟)𝐵𝑡                                                            (10) 

where r is the discount rate. The intertemporal no-arbitrage condition always holds for 

rational bubbles. Based on equation (10), Evan (1991) further developed a model of 

periodically collapsing bubbles,  

𝐵𝑡+1 = (1 + r)𝐵𝑡𝜗𝑡+1    𝑖𝑓 𝐵𝑡 ≤ 𝐵0                                             (11a) 

𝐵𝑡+1 = [𝛿 + 𝜋
−1(1 + 𝑟)𝜃𝑡+1(𝐵𝑡 − (1 + 𝑟)

−1𝛿)]𝜗𝑡+1  𝑖𝑓 𝐵𝑡 > 𝐵0        (11b) 

where  𝛿  and 𝐵0  are positive parameters with 0 < 𝛿 < (1 + r)𝐵0 , 𝜗𝑡+1  is an exogenous 

independently and identically distributed positive random variable with 𝐸𝑡(𝜗𝑡+1) = 1, and 

𝜃𝑡+1  is an independently and identically distributed Bernoulli process (independent of ϑ) 

which takes the value one with probability π and zero otherwise. The bubble would have a 
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fast growth rate of 𝜋−1(1 + 𝑟), when 𝐵𝑡 > 𝐵0 and 𝜃𝑡+1 = 1. If the 𝜃𝑡+1 takes the value of 

zero, the bubble would collapse. 

We assume that firms in the economy are confronted with borrowing constraints. The 

investors couldn’t achieve their optimal asset allocation under financial frictions, but they 

could earn a low return rate by self-investment on new firms, the size of which is below 𝑆0. 

Under this circumstance, the bubbles could serve as a financial intermediary to transfer the 

money from investors to firms.   

As aforementioned, there are two stages for a firm’s growth process. In the initial stage, firms 

with the size below the minimum size 𝑆0 are unproductive and have an increasing unit cost. 

However, for firms above the minimum size 𝑆0, the growth of them would follow the Gibrat’s 

law (equation (1)). The underlying stochastic growth model makes no reference to any feature 

of the cost curve, other than that unit cost is constant when the firm size is above some 

minimum point (Simon and Bonini 1958). This means that when obtaining new investments 

equally, firms below the minimum size tend to have lower expected output than those big 

firms (above the minimum size) and are at higher risk for investors.  

Therefore, investments on the firm with size above the minimum point are more likely to earn 

a relatively higher return. For a certain level of expected return rate by investors, the growth 

rate of firms with different sizes follows the binomial probability distribution: 

Pr(𝐷𝑡|𝐷𝑡 > 𝑟𝑡) = {
𝑃𝑠     𝑖𝑓 𝑆𝑖𝑡 < 𝑠0
𝑃𝑏     𝑖𝑓 𝑆𝑖𝑡 ≥ 𝑠0

                                           (12) 

where 𝑟𝑡  is the expected return rate required by investors at time t and 𝐷𝑡  is the expected 

return rate of investments on firms. It could be easily derived that 𝑃𝑠 < 𝑃𝑏 , due to that small 

and new firms are confronted with an increasing unit cost. For firms with different sizes, the 

probability of the growth rate being larger than the expected return rate 𝑟𝑡 is higher for the 

relatively big firms above the minimum size, as opposed to those small and new companies. 

For rational investors, they face up with this productivity and probability differentials when 

aiming to store value through their investments.   

Since bubbles start without costs, both big and small firms compete to create and sell bubbles, 

in order to obtain new investments. Moreover, the return rate of bubbles expected by investors 

would be linked to the expected growth rate of firms that sell the bubbles (Miao and Wang 

2012). As noted above, for a certain level of expected return rate required by investors, the big 

companies tend to achieve it with higher probability. Thus, the big companies would have an 
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advantage on issuing new bubbles. For instance, when a bubble 𝐵𝑡  is sold by firm i to 

investors, the firm will obtain new investment to expand its current size 𝑆𝑖𝑡, 

𝑆𝑖(𝑡+1) = 𝜌𝑖(𝑡+1)
𝐵 ∙ 𝜌𝑖(𝑡+1) ∙ 𝜌(𝑡+1)̅̅ ̅̅ ̅̅ ̅ ∙ 𝑆𝑖𝑡                                          (13) 

where new investments through bubble trades are considered as a new growth factor 𝜌𝑖(𝑡+1)
𝐵  

for firm i. It contributes to the firm growth and is independent from individual growth rate 

𝜌𝑖(𝑡+1) . We assume that 𝜌𝑖(𝑡+1)
𝐵  follows a single period Markov process with a stochastic 

component and a new carry-over effect λ, λ ∈ [0,1), where λ represents the decaying effect of 

the new growth factor caused by bubbles. Suppose that the new growth factor 𝜌𝑖𝑡
𝐵  and the 

bubble Β𝑡 share the same stochastic component 𝜈𝑡, 

𝜌𝑖𝑡
𝐵 = 𝜈𝑖𝑡 ∙ (𝜌𝑖(𝑡−1)

𝐵 )
𝜆
                                                           (14) 

Based on equation (8), we can derive that  

log𝑆𝑖𝑡 = ∑
1−𝜆𝑡−𝜏+1

1−𝜆

𝑡
𝜏=1 𝑙𝑜𝑔𝜈𝑖𝜏 +∑

1−𝛼𝑡−𝜏+1

1−𝛼

𝑡
𝜏=1 𝑙𝑜𝑔휀𝑖𝜏 +∑ 𝑙𝑜𝑔𝜌�̅�

𝑡
𝜏=1 + 𝑙𝑜𝑔𝑆𝑖0       (15) 

and let 

𝑦𝑖𝑡 = ∑
1−𝜆𝑡−𝜏+1

1−𝜆

𝑡
𝜏=1 𝑙𝑜𝑔𝜈𝑖𝜏                                                  (16) 

For an industry with N firms, we have: 

∑ log𝑆𝑖𝑡 = ∑ ∑
1−𝜆𝑡−𝜏+1

1−𝜆

𝑡
𝜏=1 𝑙𝑜𝑔𝜈𝑖𝜏

𝑁
𝑖=1 + ∑ ∑

1−𝛼𝑡−𝜏+1

1−𝛼

𝑡
𝜏=1 𝑙𝑜𝑔휀𝑖𝜏

𝑁
𝑖=1 + ∑ ∑ 𝑙𝑜𝑔𝜌�̅�

𝑡
𝜏=1

𝑁
𝑖=1 +𝑁

𝑖=1

∑ 𝑙𝑜𝑔𝑆𝑖0
𝑁
𝑖=1                                                                                                   (17) 

Based on equation (11), 𝜌𝑖𝑡
𝐵  would experience a periodically collapsing process. Then,  

log𝜌𝑖𝑡
𝐵 = 𝑙𝑜𝑔𝜐𝑖𝑡 + 𝜆𝑙𝑜𝑔𝜌𝑖(𝑡−1)

𝐵

= ∑ 𝜆𝑡−𝜏𝑙𝑜𝑔𝜐𝑖𝜏
𝑡
𝜏=1

= ∑ [ I(𝐵𝜏 ≤ 𝐵0) ∙  𝜆
𝑡−𝜏𝑙𝑜𝑔𝜐𝑖𝜏

𝑡
𝜏=1 + I(𝐵𝜏 > 𝐵0) ∙ 𝜆

𝑡−𝜏𝜋−1𝜃𝜏𝑙𝑜𝑔𝜐𝑖𝜏]

                   (18) 

where I(∙) is an indicator variable, and it equals to one if the condition is fulfilled, otherwise it 

would be zero. Substitute (18) into (15), we have 

log𝑆𝑖𝑇 =∑∑[ I(𝐵𝜏 ≤ 𝐵0) ∙  𝜆
𝑡−𝜏𝑙𝑜𝑔𝜐𝑖𝜏

𝑡

𝜏=1

+ I(𝐵𝜏 > 𝐵0) ∙ 𝜆
𝑡−𝜏𝜋−1𝜃𝜏𝑙𝑜𝑔𝜐𝑖𝜏]

𝑇

𝑡=1

 

+∑
1−𝛼𝑇−𝜏+1

1−𝛼
𝑇
𝜏=1 𝑙𝑜𝑔휀𝑖𝜏 +∑ 𝑙𝑜𝑔𝜌𝜏̅̅̅

𝑇
𝜏=1 + 𝑙𝑜𝑔𝑆𝑖0                                               (19) 



Chapter 4 Economic Growth, Bubbles, and Firm Size Distribution  

111 

 

For an industry with N firms, we have: 

∑ log𝑆𝑖𝑇 = ∑ ∑ ∑ [ I(𝐵𝜏 ≤ 𝐵0) ∙  𝜆
𝑡−𝜏𝑙𝑜𝑔𝜐𝑖𝜏

𝑡
𝜏=1 + I(𝐵𝜏 > 𝐵0) ∙ 𝜆

𝑡−𝜏𝜋−1𝜃𝜏𝑙𝑜𝑔𝜐𝑖𝜏]
𝑇
𝑡=1

𝑁
𝑖=1

𝑁
𝑖=1                                

+∑ ∑
1−𝛼𝑡−𝜏+1

1−𝛼
𝑇
𝜏=1 𝑙𝑜𝑔휀𝑖𝜏

𝑁
𝑖=1 + ∑ ∑ 𝑙𝑜𝑔𝜌𝜏̅̅̅

𝑇
𝜏=1

𝑁
𝑖=1 +∑ 𝑙𝑜𝑔𝑆𝑖0

𝑁
𝑖=1                (20) 

We can see that a possible result of bubble trades is that the relatively productive and big 

firms can relax their own borrowing constraints and get new investments through selling 

bubbles to investors. Meanwhile, the investors could get a higher expected return rate, 

compared with the return rate of the inefficient investments on small and new firms. 

Consequently, the overall expected output of the economy would grow.   

4.4.2 Bubble Collapse and Economic Recession 

A key problem for the bubble process is to identify the conditions under which the bubble 

would boom and bust. For bubbles derived from equation (11), the parameter 𝜃 governs the 

state of bubble’s boom and bust. The bubble would increase at a faster rate continuously when 

𝜃 takes the value one, otherwise the bubble would collapse. Since the industry growth rate is 

more commonly known by the investors and bubbles usually occur within an industry 

(Greenwood et al. 2019), it is reasonable to assume that bubbles are attractive to investors 

when the expected industry growth rate E(𝜌(𝑡+1)̅̅ ̅̅ ̅̅ ̅) is higher than a certain level of return rate 

required by investors (𝜙),   

𝜃 = {
1, if E(𝜌(𝑡+1)̅̅ ̅̅ ̅̅ ̅) ≥ 𝜙

0, if E(𝜌(𝑡+1)̅̅ ̅̅ ̅̅ ̅) < 𝜙
                                                       (21) 

At the beginning, bubbles occur randomly among the firms in an industry with an upper limit 

𝐵0. Once the industry growth rate reaches a certain value (𝜙), the bubbles with size above the 

upper limit 𝐵0 would enter the stage of booming, namely 𝜃 = 1. The bubble would collapse 

when the expected industry growth rate falls short of 𝜙, namely 𝜃 = 0.  

Then, we explore the possible impact on the industry growth during this dynamic process of 

bubble trades. One direct result would be that the capital would gradually flow into those 

industries with higher industry growth rate. At the beginning, bubbles with an upper limit 𝐵0 

are created randomly and sold by firms to investors. The bubbles give the firms a windfall and 

expand their production. This further improves the industry growth rate and facilitates the 

booming of bubbles. During the booming stage of bubbles, increasing money flows into the 

industry through bubble trades. Meanwhile, the expected output of the firms in the industry 

also experience a rapid increase. However, due to the uncertain components of 휀𝑡 and 𝜗𝑡, the 
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industry growth rate also has a risk to slow down. The investors would exit the bubble trades, 

once the industry growth rate falls short of their expectations 𝜙. The overall output of the 

industry during this process would also experience a sudden decline after the bubble’s 

collapse.   

So far, the bubble trades we described above would transfer relatively inefficient investment 

to the productive firms with higher expected growth rate. For the investors, they would expect 

to receive a higher expected return rate from these productive firms. In this case, the whole 

efficiency of the economy would increase. However, when the investment becomes highly 

concentrated in those relatively productive firms of an industry, the risk would concentrate on 

them, too. Once the bubbles collapse and investments ran away from this industry, the output 

would also slump in the short term. Worse still, due to that investments are already highly 

concentrated in these firms, the collapse of the bubbles would result in a huge loss to the 

whole economy and cause sequent decrease in output in the long term.  

4.4.3 Further Discussions 

Our model has shown that, during the initial stage of bubbles, the transfer of the investment 

from investors to the (productive) firms through bubble trading tends to improve the average 

investment efficiency and increase the average growth rate of output in an economy. 

Nevertheless, with the concentration of investments on an industry, the whole economy would 

be in a high risk of bubble collapse. This may further lead to a sudden reduction of the 

economic output. 

Another important implication of our model is that based on the equation (8), the firm sizes in 

an industry wound follow a highly right skewed distribution, namely the log normal 

distribution (Ijiri and Simon 1967). The number or frequency of bigger firms decreases with 

their size class. Simon et. al (1958; 1955) have proven that under the Gibrat’s law and 

meanwhile introducing some new-born firms at the minimum size 𝑆0, the final equilibrium of 

firm size distribution would be the Yule-Simon distribution. It is also a highly right skewed 

distribution. The decrease in the birth rate of new companies would lower the left tail and 

lengthen the right tail of Yule-Simon distribution.  

Therefore, when allowing new firms to generate at the minimum size 𝑆0, one possible result 

of bubble trading is that, the ‘birth rate’ of new firms whose size just transcend the minimum 

size 𝑆0  would decrease and few new companies arise in the economy. This is because 

investors’ money mostly flows into those productive firms above the minimum size and less 
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likely to do venture capital investment. This reduction of the new-born firms in the left tail of 

Yule-Simon distribution would further increase the risk concentration of the economy. In an 

extreme situation where no new firms are introduced into an industry, a log-normal 

distribution of firms will form (Simon 1955).  

It is noticeable that an underlying hypothesis of our analysis is that bubble’s evolvement is 

linked with the bubble buyer’s (investors) expectation on the industry growth rate of the 

bubble seller (firms). This hypothesis is consistent with recent studies that find positive 

correlations between fundamental economic factors and bubbles (Frankel 2014, Etienne et al. 

2015, Sockin and Xiong 2015b, Sanders and Irwin 2017, Lian et al. 2018). Although the 

bubbles reflect overpricing phenomenon in the economy, they are associated with 

fundamental factors to some extent. In this case, the bubble’s evolvement is correlated with 

the performance of corresponding firms in an industry, and bubbles in our model would show 

a periodically collapsing process. This is often the case in the real economy, compared with 

those models where bubbles are only allowed to occur from the beginning period and cannot 

collapse (Evans 1991).  

Moreover, the periodically collapsing bubbles and investment flows in our model indicate a 

possible mechanism of business cycles for the economy. The prosperity of the economy 

originates from investor’ rational expectations on the ongoing development of firms in an 

industry. They invest in the productive firms through bubble trades, in order to store value and 

obtain higher return in the future. Along with this process of investment concentration, the 

risk of the whole industry and economy also increases. Once the industry growth fails to meet 

the expected return rate required by investors, the economy would face up with a high risk of 

bubble collapses.  

In comparison with Martin and Ventura’s model (2012), we can see that a significant 

distinction is that our model uses the stochastic model of Yule-Simon distribution to replace 

the absolute productivity differentials and OLG framework in their analysis. We let the firms 

above the minimum size be the productive agents. This assumption is more realistic, based on 

the empirical studies on the distribution of firm sizes in the economy (Simon and Bonini 1958, 

Ijiri and Simon 1967, Stanley et al. 1995, 1996).2 More importantly, since we don’t assume a 

                                                 

2  The difference with previous studies that assuming competitive economy is that under the Gibrat’s law, the final 

equilibrium distribution of firm sizes is highly right skewed. This has been empirically verified by many studies (Simon 1955, 

Bain 1956, Simon and Bonini 1958, Ijiri and Simon 1967, Singh and Whittington 1975, Stanley et al. 1995, 1996, Axtell 

2001). In the contrast, based on the assumption of perfect competitive economy, distribution of firm sizes in an economy 
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two-period lived agents, our model allows the investors and firms to survive for infinite 

periods with a certain probability. Thereby, it would be much easier to implement the 

empirical test of the bubble’s effect on the economic development or business cycles, relative 

to the OLG framework with the two-period lived agents. In addition, we replace the investors’ 

sentiment shocks with their rational expectations on the industry growth, making the boom 

and bust of price bubbles depend on the investors’ rational expectations.  

At last, an expansion of our model is to introduce many industries’ (idiosyncratic) growth 

factors and an average growth rate for the economy. Based on Ijiri and Simon (1967), the firm 

growth rate can be decomposed into three components, 𝑟𝑖𝑗𝑡 = 𝜌𝑖𝑗𝑡 ∙ 𝜌𝑗𝑡 ∙ 𝜌�̅�, where 𝜌�̅� is the 

average growth rate of the economy, 𝜌𝑗𝑡 is the idiosyncratic growth factor attributable to the 

jth industry, and 𝜌𝑖𝑗𝑡 is the idiosyncratic growth rate of firm i in the jth industry. Through this 

generalization of the model, we could further apply the model to the case of international 

economy and allow bubbles to trade among different countries. 

4.5 A Simulation of Bubbles 

To illustrate the impact of bubbles on the firm sizes or output in the economy, a simulation of 

the bubble and output growth is given in Figure 4.1 below. The growth path of firms and 

bubbles follows the equations as described above3. In the beginning, the economy is in the 

fundamental steady state and the bubble does not enter the stage of booming. In period 4, the 

bubble starts to boom, and the output of the economy measured by the firm sizes increases, 

too. The economy then enters a bubbly state. In period 8, shocks to the firms’ growth rate end 

this bubbly episode and the total output suffers a subsequent sharp reduction. In the following 

periods, the economy would experience a recession. This simulation clearly shows that 

introducing periodically collapsing bubbles into firm growth’s model is a promising strategy 

to explain the possible effects of bubbles on the economy during a dynamic process.  

                                                                                                                                                         
should be uniform; however, this is not the reality of the economy (Simon 2009). 

3 To produce Figure I, we assume that N = 2, ε~𝑁(1, 0.1), 𝛼 = 0.8, 𝛽 = 0.5, 𝑆𝑖1 = 1,𝜔𝑡~𝑁(0, 0.2), 𝜗𝑡 = exp (𝜔𝑡 −
2

2
) ,

휁2 = 0.2, 𝜙 = 0.02,  𝐵0 = 1.2, 𝛿 = 0.8, 𝑟 = 0.  
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Figure 4.1 Simulated Bubbles and Economy 

Source: Own calculations. 

4.6 Conclusions 

This paper proposes to use the stochastic model of the Yule-Simon distribution to describe the 

process of firm growth and productivity differentials in the economy. Compared with the 

model of bubbles based on the OLG framework, the assumptions for the stochastic model of 

Yule-Simon distribution are relatively weak and allow for a more general analysis of the 

bubbles and their effects on the economic output in terms of the calendar time. 

The assumption of financial frictions is another critical premise for the existence of bubbles in 

our model. Under the circumstances of productivity differentials and financial frictions, the 

economy with rational agents could experience periodically collapsing bubbles. As shown 

above, this could have complicated effects on the economic output.  

Our model provides a feasible framework for empirical studies on the bubble’s effect on 

economic output. For example, one possible application is that we can use our framework to 

analyse the real estate market in China. The over-prosperity of the real estate market in China 

has raised concerns about its negative effect on other industries and the economic 

development. The long lasting and increasing housing price has raised public worries that too 

much money has flown into the real estate industry, while the money ought to have flown into 

other industries. Although the real estate industry has contributed a lot to China’s economic 

success during the last decades, it is now a highly risk factor for China’ economic 

development.  
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Abstract 

The Red Fuji apple futures contracts introduced in China at the end of 2017 marked the first 

fresh fruit trade at a futures exchange. This paper models the relationship between the futures 

and spot prices for apples. Evidence based on daily price data reveals that apple futures 

contracts function poorly in terms of price discovery and spot prices show no improvements 

in synchronisation among major apple spot markets. The volatility analyses from GARCH 

and BEKK-MGARCH models indicate that futures markets do not lead to higher spot price 

volatility and even reduce the spot price volatility in the short term. The findings of this study 

question the efficiency of the Red Fuji apple futures market. In order to facilitate the 

exchange of information between the futures and spot markets, regulators should consider 

measures to attract more commercial traders into the futures market. 

Key words：apple; futures market; price discovery; volatility 

JEL Codes: G13 Q11 Q13 P22 
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5.1 Introduction 

Agricultural commodity futures markets have become increasingly important for price 

discovery, hedging and risk transfer (Hernandez & Torero, 2010; Yang et al., 2001). At the 

end of 2017, the trade of fresh Red Fuji apple futures contracts started at the Zhengzhou 

Commodity Exchange (ZCE) in China. In this paper we analyse the main function of the new 

futures market, which is the first futures market for fresh fruits worldwide. 

The law of one price and no-arbitrage opportunities suggests a long-run equilibrium price for 

the futures and spot markets of one commodity (Listorti & Esposti, 2012). Every trader can 

hedge against or speculate on the price provided by the apple futures market if the futures 

price is an unbiased predictor for spot price at the time of maturity. To test this connection, a 

linear co-integration relationship has to be observed between apple futures and spot prices at 

the time of maturity (Brenner & Kroner, 1995). Meanwhile, in a market where no one has all 

the information on supply and demand, auction theory implies that a trader would adjust his 

or her price expectation based on others’ quotations (Milgrom, 2017). Thus, the basis between 

the futures price and each regional market’s spot price may motivate local traders to access 

new information and adjust their price expectations accordingly. This would improve the 

synchronisation level of spot price changes among different regions if nationwide apple 

traders became actively involved in the futures trade and shared their private information 

through futures markets.  

Moreover, traders’ disagreements on the same market information and their heterogeneous 

priors could result in high price volatility (Hong & Stein, 2007; Gizatulina & Hellman, 2019). 

The futures market is expected to reduce spot price volatility because it could speed up the 

homogenisation of traders’ common expectations (Porter & Smith, 2003). Nevertheless, the 

public tends to believe that the apple futures market has led to higher volatility because it 

attracts too many speculators into the market who distort price formation. 

Following the discussion above, the primary function of the apple futures market is to 

facilitate information exchange and price formation. This study investigates three different 

aspects of the operation of this new futures market for fresh fruit. (1) We check whether 

futures prices can predict spot prices at the time of maturity. The futures price is expected to 

provide an unbiased predictor for the spot price, so this is a precondition of the futures market. 

(2) We check whether the operation of the futures market improves the synchronisation level 

of price changes among major apple spot markets. If nationwide commercial traders obtain 
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more information through futures trade, the timing of individual spot price changes across 

different markets tends to synchronise. (3) Finally, we test whether the apple futures market 

increases its spot price volatility. A detailed empirical analysis of the effects of the apple 

futures market is important not only for the market under study but also for establishing 

futures market contracts for other fresh fruits. 

In the following analysis, we first describe the data source of apple futures and spot prices in 

Section 5.2. Then, in Section 5.3, we implement the co-integration tests to analyse the long 

run equilibrium relationship between apple futures and spot prices. Moreover, we test the 

synchronisation degree of price changes among major apple markets before and after the 

introduction of the apple futures market. At last, the change of spot price volatility and the 

volatility spillovers effects are investigated. Section 5.5 summarises the paper and gives our 

conclusions. 

5.2 Data and Methodology 

Being the largest producer, consumer, and exporter of apples worldwide, China produced 57% 

of the global apple harvest (43.88 million tons) in 2016 (ZCE, 2018). The main apple species 

in China is the Red Fuji, with a harvest of more than 70% of the country’s total apple 

production. Therefore, it is reasonable that China established a futures market for Red Fuji 

apples. After the harvest season, which occurs around October, some of the apples will enter 

the market for consumption and the rest will be stored in cooling warehouses for consumption 

over the year. Correspondingly, the futures contract offers seven delivery months, namely 

January, March, May, July, October, November, and December. The trading unit of an apple 

futures contract is 10 metric tons/lot, which is physically delivered. The quality of apple 

should meet the Chinese national standard ‘GB/T 10651-2008’: fresh apples with fruit width 

greater than or equal to 80mm, a fruit width tolerance no greater than 5% and quality 

tolerance no greater than 10% (ZCE, 2018). 

For the futures price of apples, we use the nearby futures contract price obtained from ZCE, 

which covers the period from 22nd December, 2017 to 12th December, 2019. The daily open 

interest data from ZCE serves as an indicator of speculative activity. For the spot price, since 

the futures price aggregates the information from traders nationwide, we use the Qianhai 
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wholesale price index (QW index) for Red Fuji apples1. China’s Ministry of Commerce uses 

this index as an official price indicator for Red Fuji apples because it captures the trend of 

apple prices in major markets nationwide. The sample period of the QW index is from 1st 

January, 2016 to 12th December, 2019; both the periods before and after the introduction of 

futures markets are around two years. We also use the individual price components contained 

in the QW index to calculate the degree of synchronisation of the price changes across major 

apple markets. These individual price series, representing thirty-five large wholesale markets 

across eighteen Chinese provinces, keep constant for some periods and often change by 

discrete amounts. We take the logarithms of all price series under study. 

We first conduct a co-integration analysis by applying Johansen’s test, then gauge the 

synchronisation level of spot price changes. Specifically, we compare the standard deviation 

of the actual proportion of price changes in each period with the standard deviations of perfect 

synchronisation and/or staggering (Loy & Weiss, 2002). If prices are perfectly staggered, the 

proportion of price changes in any period would be equal to the average proportion of price 

changes over time and the standard deviation should be close to zero. If prices were perfectly 

synchronized, the proportion of price series in any period would be either 0 or 1 and the 

standard deviation should be close to 0.5. We then compare the synchronisation levels before 

and after the establishment of the apple futures market. 

We further estimate volatility spillovers between apple futures and spot market prices. Engle 

and Kroner (1995) present a detailed introduction about GARCH and BEKK-MGARCH 

model, so we use the GARCH model with additional exogeneous variables to gauge whether 

there is a structural break of price volatilities after introducing the futures market. Finally, we 

use the BEKK-MGARCH model to analyse spillovers across futures and spot markets. 

5.3 Estimation results 

5.3.1 Co-integration Analysis 

The difference of the log prices is stationary, though the log price series shows non-stationary 

results (See Table 5.1). The QW index has a common trend with futures prices, but there is no 

tight correlation between them (see Figure 5.1). After an initial period that features price 

divergence, the futures and spot prices tend to have a common process; however, around 1st 

July, 2019, these two prices deviate from each other again. The futures price jumped down on 

                                                 

1 Another prosaic reason for the usage of the QW index is that it is the only time-variant price series available to 

us. Other price series all present discrete changing behaviour, which is not suitable for volatility analysis. 
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1st July, 2019, while the spot price continued to increase. This price divergence reflects that 

the apple contracts from July to October correspond to different harvests and the inventory 

was running out during this period. The July contract corresponds to apples harvested in 2018 

and the October contract corresponds to apples harvested in 2019. The harvest reduction 

caused by poor weather in 2018 resulted in an inventory shortage between July and October 

2019. With this low inventory, arbitrage may not work effectively and there is no other force 

that links futures and spot prices together (Yang et al., 2001). Once inventories run out, no 

stocks can be released into the market to dampen the soaring price. Analysing the Johansen 

test in Table 5.1, no co-integration relationship is found between apple futures and spot prices, 

suggesting that futures prices have no long-run adjustments on spot prices and cannot be 

considered as unbiased predictors for spot price.2 Thus, the futures market functions poorly in 

discovering spot prices. 

Table 5.1 ADF and Johansen tests 

  Futures Price: Spot Price (QW): 

ADF Test -1.68 -1.54 

P-value 0.44 0.52 

 

Futures Price Returns: Spot Price Returns (QW): 

ADF Test -21.21 -38.73 

P-value 0.00 0.00 

Johansen test: 𝑅0 𝑅1 

 23.60 4.65 

 (15.41) (3.76) 

Source: personal calculations with Stata 15. 

  

                                                 

2 We further use separate co-integration tests before and after 1st July, ,2019 and find no cointegrated relationship 

between apple futures and spot prices. 
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Figure 5.1 Futures price and QW index 

Source: personal calculations based on data from ZCE and China’s Ministry of Commerce using Stata 15. 

5.3.2 The Synchronisation Level of Price Changes 

One of the main purposes for establishing apple futures market is to provide a unified 

platform for traders from different regions. However, if the fresh apple market is segmented 

into many regional markets, price changes tend to be staggering among different regions. This 

is due to that each local market has its own specific conditions and prevents the spatial 

arbitrage. The synchronisation degree of price changes should increase if the apple futures 

market has functioned well as the role of price discovery and gathering information for all 

traders from different regions.  

We use the individual wholesale price series from QW index. They are collected from 35 

important wholesale markets for apples around China. We then estimate the synchronisation 

level of price changes among different regions. Results in Table 5.2 show that the actual 

standard deviations before and after the introduction of futures markets are much closer to 

that obtained under the assumption of price staggering. The standard deviation even decreases 

from 0.06 to 0.05 after the introduction of apple futures markets. The futures market hasn’t 

significantly improved the synchronisation level of apple price changes nationwide, further 
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suggesting that more commercial traders need to be involved in the futures market. 

Segmented markets of apple trades remain even after the introduction of futures market. 

Table 5.2 Comparing the mean and standard deviations of different cases 

Standard Deviation Before 

(01Jan2016-21Dec2017) 

After 

(22Dec2017-20Dec2019) 

In actual data 0.06 

 

 

() 

0.05 

Assuming perfect staggering a 0.04 0.04 

Assuming perfect synchronisation 0.34 0.32 

Difference from perfect staggering b 6.67% 3.57% 

Observations 709 688 

a The standard deviations are calculated from the actual number of price changes. 
b Calculated as (𝜎𝑠𝑡 − 𝜎𝑑) (𝜎𝑠𝑡 − 𝜎𝑠𝑦) ∗ 100%⁄ , where 𝜎𝑑, 𝜎𝑠𝑡 and 𝜎𝑠𝑦 are the standard deviations in the data, the standard 

deviation under the assumption of perfect staggering, and the standard deviation under the assumption of perfect 

synchronisation, respectively. 

Source: personal calculations with Stata 15. 

So far, we have found limited effects of the fresh apple futures market on its spot market. 

Neither can it act as an unbiased price predictor, nor improve the synchronisation level of 

price changes among major apple markets. One possible reason is that not enough commercial 

traders have participated in the futures trade or hedged their risks through futures trade. This 

may result in the disconnection between the apple futures and spot prices. Another possible 

reason is the difference between commodity cash and futures markets in the ability of 

incorporating relevant price information (Crain and Lee 1996, Yang and Leatham 1999). The 

commodity spot market is for immediate delivery, traders in which may not have time to 

respond to new information. The results of price synchronisation further prove that different 

spot markets fail to respond to the information simultaneously. Some of them react to the 

information shocks and some not, exhibiting a sluggish movement for price changes.  

5.3.3 Price Volatility Spillovers Effect 

The spot price volatility changes before and after the introduction of the apple futures market 

is investigated using the GARCH model with exogeneous variable. Afterwards, the volatility 

spillovers across the apple futures and spot prices is analysed through a BEKK-MGARCH 

model.  
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The estimated results of GARCH-model with exogeneous variables are shown in the second 

and third columns of Table 5.3. The significant Arch and GARCH-coefficients in both 

specifications suggest a volatility cluster effect for the spot price series. In the second column, 

we use a dummy variable, ‘Futures’, to indicate the period when the apple futures market has 

been operating. The coefficient value of the dummy variable is 1.04 and highly significant 

because it means the apple spot price has become more volatile since the introduction of the 

futures market. However, this cannot directly prove that it is the futures market that caused 

the more volatile spot price. In the third column of Table 5.3, we use the daily open interest to 

represent the impact of speculation from the futures market and find significant negative 

effects from the open interest on the spot price volatility.  

Table 5.3 GARCH model with dummy variable or open interest 

  Apple Spot Price (01Jul2016 – 12Dec2019) 

  GARCH with a Dummy Variable ‘Futures’ GARCH with ‘Open Interest’ 

Cons -10.28 

(0.57) 

-10.16*** 

(0.41) 

Arch (1) 0.23*** 

(0.06) 

0.27*** 

(0.06) 

Garch (1) 0 .61*** 

(0.11) 

0.54*** 

(0.09) 

Futures 1.04*** 

(0.34) 

1.73*** 

(0.41) 

Open Interest -- -0.17*** 

(0.05) 

Quarter 2 0 .44 

(0.61) 

0.22 

(0.53) 

Quarter 3 0.23 

(0.46) 

0.71* 

(0.42) 

Quarter 4 -0.80 

(0.49) 

-1.17*** 

(0.43) 

obs 967 967 

Standard errors are in parenthesis. *** p<0.01, ** p<0.05, * p<0.1  

Source: personal calculations with Stata 15. 

We proceed to analyse the volatility spillovers between these two markets through the BEKK-

MGARCH model. The results are listed in Table 5.4.3  The coefficient 𝑎𝑖𝑗 measures the direct 

effect of lagged innovations originating in market i on the conditional return volatility in 

market j in the current period, whereas the 𝑏𝑖𝑗  captures the direct dependence of the 

conditional volatility in market j on that of market i. When only considering these direct cross 

effects, the innovations in the futures market tend to have a negative effect on the conditional 

                                                 

3 Treating the price jump-down as missing in July 1st, 2019 has virtually no impact on the estimation results of 

BEKK-MGARCH model. 
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volatility in the spot market (𝑎21 = −0.15), while the volatility dependence of the spot 

market on the futures market reveals a limited positive effect (𝑏21 = 0.07). 

Table 5.4 The results of BEKK-Mgarch Model 

  Apple (01jul2018 – 01jul2019) 

  Spot (i=1) Futures (i=2) 

𝑐𝑖1*100 0.48*** 

(0.15) 

0.01 

(0.25) 

𝑐𝑖2*100 —— 0.83*** 

(0.16) 

𝑎𝑖1 (arch) 0.37*** 

(0.05) 

-0.15*** 

(0.04) 

𝑎𝑖2 (arch) 0.43*** 

(0.07) 

0.27*** 

(0.10) 

𝑏𝑖1 (garch) 0.85*** 

(0.03) 

0.07* 

(0.09) 

𝑏𝑖2 (garch) -0.16** 

(0.08) 

0.76*** 

(0.10) 

Log likelihood function:  2388.94   

Obs. 479 479 

Standard errors are in parenthesis. *** p<0.01, ** p<0.05, * p<0.1  

Source: personal calculations with Stata 15. 

 

5.5 Conclusions 

This paper investigates the operation of the newly established fresh Red Fuji apple futures 

market. Futures markets are supposed to facilitate information exchange and price formation. 

Based on the law of one price and no-arbitrage conditions, the efficiency of the futures market 

suggests a long-run equilibrium price for futures and spot markets; however, through various 

tests, we find limited effects from the apple futures market on its spot market. The futures 

price can neither act as an unbiased price predictor nor does it improve the synchronisation 

level of price changes among major apple spot markets. The inventory shortages and limited 

information exchange across the futures and spot markets may result in a disconnection 

between apple futures and spot prices. Commercial traders may not have fully participated in 

the futures market or revealed their own information on supply and demand through futures 

trading. The fresh apple market is more likely to be locally oriented than nationally. We find 

that the apple futures price tends to alleviate its spot price volatility in the short term, which 
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illustrates that the futures market accelerates the homogenisation of traders’ common 

expectations to some extent. Our study suggests that the regulators should take measures to 

attract more commercial traders from different regions in China into the futures market in 

order to improve the efficiency of the new fresh Red Fuji apple futures market.     
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Chapter 6  Further Introductions of the Methods and Theories 

 

In this chapter, we make a detailed introduction on the theories and methods which are used 

but are not fully explained in previous chapters.  

6.1 Rational Bubbles under the OLG Framework  

We use the theoretical model of bubbles proposed by Martin and Ventura (2012) as an 

example. The core idea of their model is that under the assumption of rationality and financial 

frictions, productive investors would sell bubbles to the unproductive investors. This trade 

transfers the money from the unproductive agents to the productive agents and raises the 

average productivity of the whole economy. In this case, the inefficient investment chain will 

be replaced by a more efficient investment chain, which thus enhance the overall output of the 

economy.  

They base their analysis on the OLG model and consider a production economy. In the model, 

each agent only survives two periods: the youth and the old. For the young agents, they can 

use their human capital to produce and earn wages. Part of the wages will be consumed during 

their young period, and the rest will be saved or invested for future consumption. For the old 

agents, they can only consume what they obtain from their savings or investment income 

during their youth. 

Specifically, the production economy in their model is consisted of an OLG model and a 

Cobb-Douglas production function: 𝐹(𝑙𝑡, 𝑘𝑡) = 𝑙𝑡
1−𝛼 ∙ 𝑘𝑡

𝛼 with α ∈ (0,1), where 𝑙𝑡 and 𝑘𝑡 are 

the labor force and capital stock, respectively. Assuming that only young agents have one unit 

of labor (𝑙𝑡 = 1) in the economy, markets are competitive, and factors of production are paid 

the value of their marginal product,  

               𝑤𝑡 = (1 − 𝛼) ∙ 𝑘𝑡
𝛼   and    𝑟𝑡 = α ∙ 𝑘𝑡

𝛼−1                                              (1)   

where 𝑤𝑡 and 𝑟𝑡 are the wage and the rental rate, respectively. 
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The stock of capital in period 𝑡 + 1 depends on the investment made by young generation t 

during its youth. Martin and Ventura (2012) assume that some individuals are better at 

investing than others, whose fraction of the whole investors is 휀 ∈[0, 1]. They can produce 

one unit of output with one unit of capital (productive investors), while the rest can only 

produce 𝛿<1 units of output (unproductive investors). Assuming that the young use all their 

savings to invest, and the savings consist of their labor income, whose fraction is 𝑠≡1−𝛼 of 

output. If financial markets worked well, productive investors would borrow money from the 

unproductive ones and pay them reasonable returns. A key assumption of Martin and 

Ventura’s model is the financial frictions, which prevent this effective borrowing behavior 

and the unproductive investors have to make their own investments. Thus, the average 

investment efficiency is determined by the population weights of both types of investors and 

equals: 𝐴≡휀+(1−휀) ∙𝛿. Under these assumptions, the dynamics of the capital stock of the 

economy are given by 

                             𝑘𝑡+1 = A ∙ s ∙ 𝑘𝑡
𝛼                                                                  (2) 

namely, 𝑠 ≡ 1 − 𝛼 of output at time t is used to produce the new capital with efficiency of 

𝐴 ≡ 휀 + (1 − 휀) ∙ 𝛿. 

Martin and Ventura (2012) then pick a non-negative stochastic process for the bubbles and the 

bubbles have three forms: (i) 𝑏𝑡  is the market price of the portfolio that contains all old 

bubbles, i.e. already existing before period t or created by earlier generations; (ii) 𝑏𝑡
𝑃 is the 

market price of the portfolios that contains all new bubbles created by productive investors at 

time t; (iii) 𝑏𝑡
𝑈 is the market price of the portfolios that contains all new bubbles created by 

unproductive investors at time t. The process of these bubbles can be indicated by ℎ𝑡 =

{𝑏𝑡,  𝑏𝑡
𝑃, 𝑏𝑡

𝑈}
∞

𝑡 = 0
 . 

Under the setup described above, bubbles can be traded between different investors and result 

in different economic results. The process of bubbles’ trading is as below: 

𝐸𝑡 {
𝑏𝑡+1

𝑏𝑡+𝑏𝑡
𝑃+𝑏𝑡

𝑈}

{
 
 

 
 = 𝛿 ∙ 𝛼 ∙ 𝑘𝑡+1

𝛼−1                       𝑖𝑓 
𝑏𝑡+𝑏𝑡

𝑃

(1− )∙𝑠∙𝑘𝑡
𝛼 < 1

∈ [𝛿 ∙ 𝛼 ∙ 𝑘𝑡+1
𝛼−1, 𝛼 ∙ 𝑘𝑡+1

𝛼−1]   𝑖𝑓 
𝑏𝑡+𝑏𝑡

𝑃

(1− )∙𝑠∙𝑘𝑡
𝛼 = 1

= 𝛼 ∙ 𝑘𝑡+1
𝛼−1                            𝑖𝑓 

𝑏𝑡+𝑏𝑡
𝑃

(1− )∙𝑠∙𝑘𝑡
𝛼 > 1

                              (3) 

                            

0 ≤ 𝑏𝑡 ≤ 𝑠 ∙ 𝑘𝑡
𝛼                                                                 (4) 
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where the left hand of equation (3) is the growth (return) rate of bubbles at t+1 and the right 

hand is the rental rate of capital for unproductive investors and productive investors. 

Specifically, (1 − 휀) ∙ 𝑠 ∙ 𝑘𝑡
𝛼  is the savings of unproductive investors at time t.  𝛿 ∙ 𝛼 ∙ 𝑘𝑡+1

𝛼−1 is 

the rental rate of unproductive investors’ savings at time t+1. When the bubble is small, the 

marginal buyer is an unproductive investors and the capital accumulation equals the savings 

of the productive investors times their efficiency (the value is one), i.e., 휀 ∙ 𝑠 ∙ 𝑘𝑡
𝛼 + 𝑏𝑡

𝑝
; plus 

the savings of the unproductive investors minus the value of the bubbles they purchase times 

their efficiency (the value is δ), i.e., 𝛿 ∙ [(1 − 휀) ∙ 𝑠 ∙ 𝑘𝑡
𝛼 + 𝑏𝑡

𝑈 − 𝑏𝑡 − 𝑏𝑡
𝑃 − 𝑏𝑡

𝑈] . When the 

bubble becomes large, the marginal buyer is a productive investor. Unproductive investors do 

not build capital and capital accumulation equals the savings of the productive ones, i.e., 휀 ∙ 𝑠 ∙

𝑘𝑡
𝛼 + 𝑏𝑡

𝑃  ; minus the bubbles they purchase, i.e., [𝑏𝑡 + 𝑏𝑡
𝑃 + 𝑏𝑡

𝑈 − (1 − 휀) ∙ 𝑠 ∙ 𝑘𝑡
𝛼 − 𝑏𝑡

𝑈] . 

More importantly, the dynamics of the capital stock in this case would be:  

𝑘𝑡+1 = {
𝐴 ∙ 𝑠 ∙ 𝑘𝑡

𝛼 + (1 − 𝛿) ∙ 𝑏𝑡
𝑃 − 𝛿 ∙ 𝑏𝑡      𝑖𝑓 

𝑏𝑡+𝑏𝑡
𝑃

(1− )∙𝑠∙𝑘𝑡
𝛼 < 1

𝑠 ∙ 𝑘𝑡
𝛼 − 𝑏𝑡                                            𝑖𝑓 

𝑏𝑡+𝑏𝑡
𝑃

(1− )∙𝑠∙𝑘𝑡
𝛼 ≥ 1

                      (5) 

Two possible outcomes of bubbles can be seen from equation (5). The first one is the classic 

crowding-out effect: when the old people sell bubbles to the young, consumption grows and 

investment falls. This is why 𝑏𝑡 slows down capital accumulation. It is worthy of attention 

that the unproductive investments are crowded out first. It is only when there are no 

unproductive investments, the bubble would start to crowd out productive investments. 

During this process, the average investment efficiency would improve. The second 

macroeconomic effect of bubbles is a new reallocation effect. The unproductive investments 

can be replaced by productive investments through bubbles’ trading between different 

investors. This further explain that why 𝑏𝑡
𝑃  speeds up capital accumulation. The relative 

magnitudes of these two effects determine the final effect of bubbles on the economy. 

Furthermore, Martin and Ventura (2012) contend that the ratio of bubbles over savings at each 

period should lay in the interval [0,1]. They deduce that the bubble occurrences are possible if 

and only if,   

                     

α < {
𝑠 ∙

𝐴

𝛿
                                            𝑖𝑓 𝐴 > 1 − 휀

𝑠 ∙
𝐴

𝛿
∙ 𝑚𝑎𝑥 {1,

1

4∙(1− )∙𝐴
}        𝑖𝑓 𝐴 > 1 − 휀

                             (6) 
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So far, we can see that the advantage of Martin and Ventura’s model is that it can explain the 

changes of output, consumption, and capital stock in the economy. The inefficient self-

investment of unproductive investors is replaced by the efficient investment of productive 

investors, so that the overall efficiency of the economy will improve through bubble trades. 

However, they still limit their model to the OLG framework, where agents could only survive 

for two periods. Moreover, in their simulated result of bubbles, the origin of bubbles is 

determined by the investors’ sentiment shock. This tends to be contradictory with their 

assumption of ration agents. 

6.2 Univariate GARCH Model 

We first introduce the autoregressive conditional heteroskedasticity model (ARCH) proposed 

by Engle (1982). Let 휀𝑡 be the innovations in a linear regression,  

휀𝑡 = 𝑦𝑡 − 𝑥𝑡
′𝑏                                                              (7) 

where 𝑦𝑡 is the dependent variable, 𝑥𝑡 is a vector of explanatory variables, and b is a vector of 

unknown parameters. Let 𝜓𝑡 be the information set (Sigma field) of all information through 

time t. The linear univariate ARCH model can be written as  

휀𝑡|𝜓𝑡−1~𝑁(0, ℎ𝑡)                                                          (8) 

ℎ𝑡 = 𝛼0 + 𝛼1휀𝑡−1
2 +⋯+ 𝛼𝑝휀𝑡−𝑝

2                                              (9) 

This model is called ARCH of order p, or ARCH(p). 

Bollerslev (1986) further generalized the ARCH model by allowing past conditional variances 

to appear in the current conditional variance equation, namely the general autoregressive 

conditional heteroskedasticity model (GARCH). The GARCH (p, q) process is given by 

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖휀𝑡−𝑖
2𝑝

𝑖=1 + ∑ 𝛽𝑗ℎ𝑡−𝑗
𝑞
𝑗=1                                    (10) 

where 𝑝 ≥ 0, 𝑞 > 0, 𝛼0 > 0, 𝛼𝑖 > 0, 𝑖 = 1, … , 𝑝, 𝛽𝑖 ≥ 0, 𝑗 = 1, … , 𝑞. Moreover, exogeneous 

variables could also be incorporated into the conditional variance equation of GARCH (p, q) 

process. 

6.3 BEKK Multivariate GARCH Model 

The BEKK Multivariate GARCH model (BEKK MGARCH) is proposed by Engle and 

Kroner (1995), which is used to estimate the volatility spillovers among different price series. 

The extension from a univariate GARCH model to an n-variate model requires allowing the 
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conditional variance-covariance matrix of the n-dimensional zero mean random variables to 

depend on elements of the information set Ψ𝑡. Letting 𝐻𝑡 be measurable with respect to Ψ𝑡−1, 

the BEKK MGARCH model can be written as  

𝜺𝑡|Ψ𝑡−1~𝑁(0,𝐻𝑡)                                                        (11) 

𝐻𝑡 = 𝐶 + ∑ 𝐴𝑖
′휀𝑡−𝑖휀𝑡−𝑖

′ 𝐴𝑖
𝑝
𝑖=1 + ∑ 𝐺𝑖

′𝐻𝑡−𝑖𝐺𝑖
𝑞
𝑗=1                                (12) 

where C, 𝐴𝑖 and 𝐺𝑖 are 𝑛 × 𝑛 parameter matrices.  

Take a bivariate GARCH (1,1) model as example, it becomes 

𝐻𝑡 = [
𝑐11 𝑐12
𝑐12 𝑐22

] + [
𝑎11 𝑎12
𝑎21 𝑎22

]
′

[
휀1,𝑡−1
2 휀1,𝑡−1휀2,𝑡−1

휀2,𝑡−1휀1,𝑡−1 휀2,𝑡−1
2 ] [

𝑎11 𝑎12
𝑎21 𝑎22

] +

[
𝑔11 𝑔12
𝑔21 𝑔22

]
′

𝐻𝑡−1 [
𝑔11 𝑔12
𝑔21 𝑔22

]                                                        (13) 

The coefficient 𝑎𝑖𝑗 measures the direct effect of lagged innovations originating in market i on 

the conditional return volatility in market j in the current period, whereas the 𝑔𝑖𝑗 captures the 

direct dependence of the conditional volatility in market j on that of market i.  
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Chapter 7  Conclusions 

 

The abnormal agricultural price movement and its impact on the livelihood of the poor have 

gained considerable public attention and research interests, since the food crisis around 

2007/08. As the most populous country, China would suffer welfare losses during the volatile 

food price period. To avoid the shock on the people’s livelihood, China has implemented 

many measures to stabilize its agricultural commodity markets. However, the mechanism 

behind the agricultural price bubbles is still under discussion among scholars and no 

consensus is achieved in this field. 

In order to enhance our understanding of the fundamental mechanism behind the agricultural 

price bubbles, this dissertation consisting of four contributions examines the origins of 

agricultural price bubbles and their possible effects in China, and further constructs a 

theoretical model to explain business cycles with price bubbles. These studies not only 

provide the empirical evidence for agricultural price bubbles, but also contribute to economic 

implications and recommendations for farmers, commodity traders, commodity exchange 

regulators and policy makers. Since each chapter focuses on a specific research issue 

regarding agricultural price bubbles, a comprehensive review is drawn in this chapter and 

each contribution is summarized separately as following. 

Price Bubbles in Agricultural Commodity Markets and Contributing Factors: 

Evidence for Corn and Soybeans in China 

Through a recently developed rolling window right-side augmented Dickey-Fuller (GSADF) 

test by Phillips et al.  (2012, 2015), this study first detects the exact dates of price bubbles in 

China’s two highly traded agricultural commodity markets, namely corn and soybeans. Then, 

we continue to use a penalized maximum likelihood estimation of a multinomial logistic 

model to estimate the contributing factors of price bubbles in each commodity futures market.  

The results of bubble detection illustrate that bubbles only occur in a very low proportion of 

our sample period (2006-2017), namely 5.48% for corn and 3.91% for soybeans. Negative 
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bubbles are most frequently observed in the corn market, while positive bubbles are more 

prominent in the soybeans market. The magnitudes of the price changes during these bubble 

periods are generally small and price bubbles usually do not coincide with price peaks or 

troughs. This is counterintuitive and bubbles often occur when prices suddenly increase or 

crash. 

The different dates and types of bubbles in the corn and soybeans futures markets suggest a 

separate investigation of the potential factors contributing to price bubbles for each 

commodity. The results of the multinomial logistic model show that higher market liquidity 

and speculation reduce the likelihood of positive bubbles for corn, while they increase the 

likelihood of positive bubbles for soybeans. This supports the idea that these two markets 

have different characteristics and may thus react differently to speculative attacks. The main 

difference between Chinese corn and soybeans markets is the self-sufficiency rate of domestic 

production/consumption. Chinese corn has a high self-sufficiency rate of over 95%, while 

soybean is the largest imported agricultural commodity with the self-sufficiency rate less than 

25% (Li, et al., 2017). The commodities with higher self-sufficiency rate have shown less 

volatile price movements in China, such as corn, rice and wheat (Li, et al., 2017; Yang et al., 

2008). In the contrary, Chinese soybeans market is often confronted with a tight balance of 

supply/demand and may thus become more sensitive to price fluctuations. This is consistent 

with our findings that Chinese soybeans market is more vulnerable to speculative attacks, 

while corn market is more stable under higher market liquidity and speculation. 

For the fundamental economic factors, domestic and world stocks-to-use, and external bubble 

shocks (from corresponding USA futures markets) exhibit different effects on these two 

commodity markets. Again, we find that Chinese corn market is relatively stable, while the 

soybeans price bubbles are more likely to be affected by its domestic and world stocks-to-use, 

and external bubble shocks. This may reflect the different levels of market openness for corn 

and soybeans. Unlike the corn market, Chinese soybeans market is highly connected with the 

international markets and imports more than half of its soybeans for domestic consumption. 

Moreover, higher exchange rate tends to reduce both types of bubbles for corn, while it 

increases the negative bubbles for soybeans. The weather shocks (SOI) and gasoline price are 

found to only affect the bubble occurrences in the corn market. The probability of positive 

(negative) bubbles increases when the weather condition is bad (good) for the growth of corn. 

Higher gasoline prices are associated with more (less) positive (negative) bubbles. This is 

consistent with previous studies that find increasing demand of corn for producing biofuels 
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leads to a higher corn price (Wu et al. 2011, Adämmer and Bohl 2015). Finally, positive 

bubbles for both corn and soybeans are more likely to occur in the presence of strong 

economic activity, high interest rates and low inflation level. 

In conclusion, we find complicated effects of specific factors that contribute to agricultural 

price bubbles. Unlike previous studies, we find crucial differences for bubbles of different 

commodities. This further suggests that policy makers should adopt commodity-specific 

measures to curb bubble occurrences in different commodity markets.  

Agricultural Price Transmission between Futures and Spot Markets during Price 

Bubbles 

In this chapter, we first examine the degree of bubble synchronisation between agricultural 

commodity futures and spot markets in China, using the weekly price data for corn and 

soybeans over the period 2009-2017. Afterwards, using the Markov Switching Error 

Correction Model (MSECM) and the Dynamic Conditional Correlation GARCH Model 

(DCC-MGARCH), we investigate the dynamic interdependence between futures and spot 

prices in terms of their first moments and second moments. Particularly, we concentrate on 

the price interdependence during the price bubble episodes. 

The results indicate that the bubble occurrences tend to be staggered between agricultural 

commodity futures and spot markets. This does not support the deduction from the hypothesis 

that the speculation in futures markets mainly contributes to price bubbles. Moreover, it is 

noticeable that we find only a few bubbles for futures prices, regardless of the commodity 

species, even though there is a co-integration relationship between agricultural futures and 

spot prices. This raises our suspect about the effectiveness of commodity spot markets and 

there may be a nonlinear transmission effect between agricultural futures and spot prices. 

We continue to use the MSECM and DCC-MGARCH methods to estimate the nonlinear 

transmission effect. The results of MSECM support that the co-integration relationship 

becomes weak and the adjustment effect of spot prices toward the long-run equilibrium is the 

lowest during the regime where bubble occurs the most frequently. The spot price returns are 

more likely to be affected by its own lagged terms. This suggest that the commodity spot 

markets may fail to respond to the new market information as effectively as futures markets. 

Meanwhile, we find a loose dynamic volatility interdependence between futures and spot 

prices. The lack of sensitivity to new market information may have resulted in more bubbles 

episodes of spot prices. 
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Economic Growth, Bubbles, and Firm Size Distribution 

Under the assumptions of productivity differentials and financial frictions, the economy with 

rational agents could experience periodically collapsing bubbles and business cycles (Santos 

and Woodford 1997, Martin and Ventura 2012). When the financial market is inefficient, 

bubbles could act as a tool for capital reallocation. Nevertheless, the instability of bubbles 

could result in huge economic losses.  

This study constructs a new theoretical framework for the economy with periodically 

collapsing bubbles. It attempts to incorporate rational bubbles into the stochastic model of 

firm growth behind the Yule-Simon distribution. The Yule-Simon distribution has been used 

to describe the distribution of firms in the economy and could be deduced from certain 

assumptions on the process of firm growth (Ijiri and Simon 1967, Simon and Bonini 1958, 

Simon 1955). Compared with previous models of bubbles embedded in the Overlapping 

Generations (OLG) framework, our model does not impose finite lived periods for agents and 

allows for infinitely lived agents. This enables a better interpretation and empirical 

examination on bubble’s effect on the economy in terms of the calendar time. Moreover, our 

model can be easily generalized into a model for many industries or many countries. 

Our model shows that bubbles could enhance the economic growth through transferring the 

money from the unproductive agents to the productive ones. As a result, the output, capital 

cumulation, and social welfare improve, as well. However, once there is a negative shock on 

the productivity of firms, the industry growth would fail to meet investors’ expected return 

rate and the economy faces a high risk of bubble collapses and recession.  

For policy implications, our model supports that the government should take measures to 

prevent hot money from overly flowing into the industries with high expected returns. 

Otherwise, the industry would absorb too much money and the whole economy would be in a 

danger of collapse.  

 

Price discovery and volatility spillovers in Chinese apple futures market 

The global first fresh fruit futures market for apple (Red Fuji) was established in the end of 

2017 in China. This paper examines the effects of apple futures market on its spot prices from 
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different perspectives. Based on daily price data from Zhengzhou Commodity Exchange 

(ZCE), we analyse the price discovery, synchronisation, and volatility spillover effects.  

Through the co-integration analysis, we find no long run equilibrium relationship between 

apple futures and spot prices. This reveals that apple futures market has a limited function for 

price discovery and cannot be considered as an unbiased predictor for its spot price. The 

failure of price discovery further undermines the hedging effectiveness of apple futures 

market for commercial traders.  

Furthermore, we adopt the method that gauge the synchronisation degree of price changes 

among different price series. We compare the standard deviations of the actual proportion of 

price changes in each period with the standard deviations of perfect synchronisation and/or 

staggering (Fisher and Konieczny, 2000; Loy and Weiss, 2002). The result indicates that the 

operation of apple futures market does not improve the price synchronisation among major 

apple markets in China.  

At last, we implement the volatility analyses through GARCH and BEKK-MGARCH models. 

The result of univariate GARCH model indicates that the apple spot price volatility has 

increased a lot in the last two years, but we find that the increase of spot price volatility 

cannot be attributable to the speculation in the apple futures market. The result of BEKK-

MGARCH even shows that futures price tends to reduce the spot price volatility in the short 

term.  

Our study reveals that apple futures market does not serve well for the price discovery and 

may reduce the spot price volatility to some extent. This causes a doubt about whether fresh 

fruit is suitable for futures trading. So far, the regulators of ZCE have taken measures to 

restrict the positions of speculators. Our results show that these measures may not be useful 

for a more effective futures market. To improve the efficiency of apple futures market, the 

regulators should consider measures to encourage more commercial traders from different 

regions in China into the futures trading.  
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