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AN ABSTRACT OF THE THESIS OF  

Indira Pokhrel, for the Master of Science degree in Civil Engineering, presented on September 

24, 2020, at Southern Illinois University Carbondale.  

TITLE: ANALYZING THE STREAMFLOW FOR FUTURE FLOODING AND RISK 

ASSESSMENT UNDER CMIP6 CLIMATE PROJECTION 

MAJOR PROFESSOR:  Dr. Ajay Kalra 

Hydrological extremes associated with climate change are becoming an increasing 

concern all over the world. Frequent flooding, one of the extremes, needs to be analyzed while 

considering climate change to mitigate flood risk. This study forecasted streamflow and 

evaluated the risk of flooding in the Neuse River, North Carolina considering future climatic 

scenarios, and comparing them with an existing Federal Emergency Management Agency 

(FEMA) flood insurance study (FIS) report. The cumulative distribution function transformation 

(CDF-t) method was adopted for bias correction to reduce the uncertainty present in the Coupled 

Model Intercomparison Project Phase 6 (CMIP6) streamflow data. To calculate 100-year and 

500-year flood discharges, the Generalized Extreme Value (GEV) (L-Moment) was utilized on 

bias-corrected multimodel ensemble data with different climate projections. The delta change 

method was applied for the quantification of flows, utilizing the future 100-year peak flow and 

FEMA 100-year peak flows.  

Out of all projections, shared socio-economic pathways (SSP)5-8.5 exhibited the 

maximum design streamflow, which was routed through a hydraulic model, the Hydrological 

Engineering Center’s River Analysis System (HEC-RAS), to generate flood inundation and risk 

maps. The result indicates an increase in flood inundation extent compared to the existing study, 

depicting a higher flood hazard and risk in the future. This study highlights the importance of 
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forecasting future flood risk and utilizing the projected climate data to obtain essential 

information to determine effective strategic plans for future floodplain management. 
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CHAPTER 1 

INTRODUCTION 

1.1  Background 

Water is important for the survival of every living being in the world. For the proper 

allocation of water resources in a sustainable way, water resources management is considered as 

an important factor. The availability and accessibility of water resources can directly affect the 

quality of life as well as the economy all around the world. The World Bank estimated that 40% 

of the world’s population will face the scarcity of water by the end of 2030, which is predicted to 

challenge one-fourth of the world economy. Additionally, flooding will result in the loss of 

billions of dollars as well as cause life threats (World Bank, 2017). This will pose an adverse 

environmental effect leading to threats to human life, food security, and energy production 

(Hirpa et al., 2019). Therefore, water resources should be managed properly to minimize the 

various environmental impact that can occur in the future (Joshi et al., 2020a; Rahaman et al., 

2019). However, the sustainable management of water resources is being difficult due to natural 

drivers such as climate change and anthropogenic factors such as population growth and 

urbanization (Chattopadhyay & Jha, 2016; Middlekoop et al., 2001; Duran-Encalada et al., 2017) 

Climate change is an alarming topic that is posing many extreme hydrological events 

such as floods, heatwaves, and droughts, all over the world. The International Panel on Climate 

Change (IPCC) projected an increase of 1.5- 2 degrees centigrade of temperature between 2030 

to 2052 (Allen et al., 2018). Rising temperature could lead to the changes in hydrological cycles 

(Griffin et al., 2013;Joshi et al., 2020c Nyaupane et al., 2018a), along with changing 

precipitation which could eventually impact the variability of streamflow (Bhandari et al., 2020; 

Basheer et al., 2016; Koirala et al., 2014; Anjum et al., 2019). Also, due to anthropogenic factors 
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such as urbanization, impervious area is increasing day by day causing several flash floods (Joshi 

et al., 2019a; Maheshwari et al., 2016, Shrestha et al. 2020a).  

One of the hydroclimatic variables, streamflow, also known as channel discharge, can be 

used to predict long-term change (Hirabayashi et al., 2008; Chen et al., 2018). Streamflow 

quantity is considered critical, as it can cause disastrous flooding when flow is high, on the other 

hand whereas the water ecosystem can be affected severely with decreasing flow. Since 

streamflow is interconnected with the weather parameters such as air temperature, precipitation, 

and relative humidity, climate change can have an adverse effect on streamflow with the 

alteration of these parameters (Bhandari et al., 2020). Both high and low flow effects i.e., floods 

and droughts, are likely to occur more frequently across the globe with increased intensity (Roy 

et al., 2001; Arnell and Gosling, 2016). These increases in both high and low flow extremes have 

already occurred in some parts of the world and are making societal infrastructure more sensitive 

to climate change (Easterling et al., 2000). Moreover, extreme events are becoming more 

frequent and are anticipated to continue at the same frequency or even faster in the future. Such 

an increase in frequent extreme events drives researchers toward analyzing the hydrological 

component and its forecasting methods.  

Many researchers have emphasized the use of different climate models, considering 

different hydro-climatic variables, to evaluate the future streamflow and its impact (Qi et al., 

2009; Neff et al., 2000; Li et al., 2007; Mukundan et al., 2019). For the evaluation of future 

streamflow, different climate agencies are continuously working to provide future climate 

projections that can give more accurate estimation of future weather conditions. However, the 

uncertainties involved with the climate model are hard to remove. Consequently, multi-model 

ensemble method and bias-correction techniques are introduced to remove or minimize model 
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biases (Eyring et al., 2016). In this study, bias-corrected multimodel ensemble streamflow 

projection was utilized which were then routed in the hydraulic modeling software HEC-RAS to 

generate floodplain inundation maps. With the help of floodplain inundation maps, hazard, 

vulnerability, and risk assessments were performed to understand the severity of flooding and its 

impact on different land use.  

1.2  Problem Statement and Objectives 

Flooding is one of the most frequently occurring natural hazards in the world, along with 

droughts and heatwaves (Stefanidis & Stathis., 2013; O’Cornor & Costa., 2003, Nyaupane et al., 

2018c). Due to the changing intensity and frequency of extreme rainfall, different parts of the 

world are facing deadly flood events causing a significant loss of life and property (De Paola et 

al., 2018). Some studies (Alfieri et al., 2015; Arnell, 1999) analyze the potential impact of 

climate change and flood risk on a global scale, where they discuss the change in flood 

frequency and its impact on the populated area in different parts of the world. In the United 

States, various studies (Bhandari et al., 2020; Chattopadhyay & Jha, 2016; Johnson et al., 2015) 

evaluated the change in regional streamflow due to the changes in climate. Arnell et al. (1999) 

showed that the alterations in annual precipitation distribution in North Carolina with the 

warming climate might increase extreme flooding events and water quality problems in the 

future. Moreover, global warming is a threat for a coastal state like North Carolina. As per the 

IPCC, rising sea levels due to global climate change pose a high risk for coastal communities and 

low-lying areas, as there will be a higher possibility of consequences such as high tides, storms, 

and flooding. Johnson et al. (2015) predicted, under different future climate change scenarios, 

that the Neuse River Basin (NRB) in North Carolina will experience an increase in streamflow 

due to increases in rainfall intensity. In recent years, NRB has endured deadly flood hazards due 
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to heavy rainfall from tropical storms and hurricanes (Ana in 2015, Matthew in 2016 and 

Florence in 2018). Hall (2019) estimated annual losses of $54 billion across the United States 

due to extreme flooding events induced by tropical storms and hurricane. 

The objective of the current study is to forecast the future design discharge and floodplain 

inundation extent to assess the future flood risk imposed upon the Neuse River in North 

Carolina. The novelty of the study is forecasting the extent of the floodplain and assessment of 

the risk of flooding using future and historical streamflow projections made available through 

Coupled Model Intercomparison Project Phase 6 (CMIP6). This study also compared the future 

and existing Federal Emergency Management Agency (FEMA) flooding scenarios with the 

calculated future design discharge to understand the increased severity of flooding in future 

years. Two design discharges, a 100-year return period and a 500-year return period were used in 

the one dimensional (1D) hydraulic modeling simulation using HEC-RAS to produce flood 

inundation maps. Moreover, this study evaluates the difference in the extent of historic flooding 

with projected future flooding under a changing global climate. Hazard assessment and 

vulnerability assessment were employed to analyze the anticipated flood risk and help shed light 

on the severity of risk within the study area. Finally, the risk zone mapping was performed using 

the projected design discharges. In so doing, this study forecasted the future floodplain 

inundation area. It also assessed the future flood risk to determine the extent of flood-affected 

urban and agricultural areas due to increasing streamflow. The outcome of this study will enable 

policymakers to employ better water resources management measures and lower the risk under 

the future climate. 

Research Question #1: What would be the impact of climate change on future streamflow, and 

how will it affect the flood frequency for Neuse River, North Carolina? 
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Assumption #1: The impact of climate change is explicitly depicted, with the use of CMIP6 

streamflow projection. 

Hypothesis #1: With the change in climate, frequency, and magnitude of peak streamflow is 

increasing in Neuse River, North Carolina. 

Research Question #2: Under the projected design streamflow, what would be the future change 

in flood extent and patterns? 

Assumption #2: Different climate models depict the future change in flood characteristics mainly, 

the flood extent. 

Hypothesis #2: The Neuse River floodplain inundation area is increasing with the change in 

climate in the Kinston City 

1.3  Approach 

In this study, the impact of CMIP6 climate models on streamflow projection is analyzed 

in the Neuse River, NC near the city of Kinston. Four different future scenarios i.e. SSP1-2.6, 

SSP2-4.5, SSP3-7.0, and SSP5-8.5, are selected from the eight different future scenarios, along 

with the historical scenario where each of the scenarios includes at least two Global climate 

models (GCMs). Historical scenario ranges from 1950-2014 and future scenarios are extended 

from 2036-2100, where both the scenario share the same length of timeframe i.e. 65 years’ 

period. The annual peak streamflow obtain from the bias-corrected data of multimodel ensemble 

climatic projection scenarios are utilized for the prediction of future peak streamflow, that is 

routed in HEC-RAS for the hydraulic modeling. Based on the inundation maps and flood 

patterns obtain, the impact of climate change on the streamflow can be analyzed. Further, the 

inundation map is utilized for the flood risk analysis which would provide the future 

consequences of variability in streamflow. 
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1.4  Thesis Organization 

This thesis is composed of seven chapters. Chapter one encompasses the background of 

the study including the problem of statement and objective of the study. Also, it briefly describes 

the different approach used in this research. Further thesis organization is discussed in chapter 

one. Chapter two describes the literature review part where the previous research is reviewed and 

are correlated with the importance of current research. Also, the impact of climate change in the 

hydro-climatic variables is discussed in this chapter. Chapter three present the study area where 

the research is focused on. Also, this chapter further gives information on different types of data 

that are used in the study. The methods employed in this research work are discussed in chapter 

four. In chapter five, the prediction of streamflow, model calibration, inundation mapping, and 

flood risk assessment are presented. Also, the discussion of various uncertainties associated with 

the study is included in the same chapter. The conclusion and limitations associated with this 

research are concluded in chapter six. To extend this research for future researchers, the 

recommendation was provided in chapter seven. Lastly, the references and the appendices 

followed the chapters.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

According to the 2018 IPCC report, climate change is causing different extreme 

hydrological events that are having impacts on the hydrological cycle and human livelihoods all 

over the world (Allen et al., 2018). Also, climate change plays a vital role in the ecosystem shift, 

leading to an increase in global warming (Merz et al., 2014; Easterling et al., 2000; Joshi & 

Dongol., 2018; Joshi et al.,2020d). Moreover, greenhouse gas (GHG) emissions, induced by 

anthropogenic factors, are escalating the rate of global warming. If the rate of GHG emissions 

continues to increase at the same rate as today, global warming is predicted to increase from 1.5 

to 2 °C by 2052 (Allen et al., 2018). The rising trend in global warming maximizes the 

evaporation rate of surface water and soil moisture that will affect the amount of precipitation all 

around the globe (Griffin et al., 2013; Ford et al., 2018). This type of alteration in the hydrologic 

cycle will affect the runoff and availability of both the surface and subsurface water, which 

eventually impacts river streamflow (Middlekoop et al., 2001). Furthermore, the regional 

precipitation trend will be affected by the patterns of ocean currents and wind, which will 

ultimately result in a change in streamflow. So, different literature suggested analyzing the effect 

of climate change in the hydroclimatic variables for the proper management of water resources 

(Joshi et al., 2020b; Ngigi et al., 2009; Kalra et al., 2013).    

Various studies showed the importance of different climatic simulations and improved 

hydrologic/hydraulic simulation to analyze the effect of climate change in streamflow (Bai et al., 

2019; Nyaupane et al., 2018a; Thakali et al., 2016). Kalra et al. (2008) suggested the use of 

hydro-climatological data for the historical scenario for the estimation of future scenarios. In the 
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past studies, many researchers used different hydro-climatological variable such as streamflow, 

soil moisture, precipitation, groundwater that involved the projection of different climate 

variables such as precipitation temperature and humidity to access the impact of climate change 

(Setegn et al., 2011; Oguntude & Abiodum, 2013; Thomas & Nigam, 2018; Joshi et al., 2020b; 

Kalra et al., 2017). The variability in a climatic variable can have a great impact on water 

resource management, so the analysis should be performed considering the change in the 

climate. 

To assess the impact of climate change on hydro-climatological variables (i.e. 

precipitation, temperature, streamflow), CMIP was started in 1995 under the World Climate 

Research Program. CMIP is a skeleton for performing the comparison of GCMs using an 

atmospheric model coupled to the dynamic ocean, a simple land surface, and thermodynamic sea 

ice. It helps to study climate change from past to future in the multimodel context with the 

change in radioactive forcing and natural, unforced variability (Eyring et al., 2016; Meehl et al., 

2014).  

The sixth phase of CMIP, CMIP6, is focused on the intercomparison of different climate 

models and provides the result to the user community, especially to IPCC sixth assessment report 

working groups. In the fifth phase of CMIP, CMIP5, climate projection was primarily based on 

the GHG emission, land use, and air pollutant representing representative concentration 

pathways (RCPs). However, CMIP6 climate projections were driven by scenarios based on SSP 

which is also an updated and revised version of RCPs (Riahi et al., 2017).  In CMIP6, 

ScenarioMIP is a primary activity that provides climate model projection which is based on the 

different alternative scenarios that are related to the mitigation of climate change, adaption, and 

impact (O’Neil et al., 2016). ScenarioMIP is based on the multi-model climate projection, where 
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the new scenarios were that guided by new emission and land use scenario that represent the 

integrated assessment models (Riahi et al., 2017). Some literature suggested that the multimodel 

experimental design was of a dire need to build a scientific framework for understanding the 

climate systems as well as the change in climate, which highly influences the design of CMIP6 

that includes anthropogenic drivers such as future emission, land use along with socioeconomic 

developments (Stouffer et al., 2017; O’Neil et al., 2016). Also, in various literature, historical 

and future scenarios that are made available by CMIP6 were utilized to evaluate the impact of 

climate change. (Shrestha et al., 2020b; Chen et al., 2020; Cook et al., 2020)  

 GCMs are the primary tools for the simulation of the climate change projection in the 

future. It provides the resources to understand potential changes in regional and global climates 

(Joshi et al., 2020b; Moradkhani et al., 2010; Alfieri et al., 2017). Different studies have 

suggested the use of climate projection from various GCMs to understand the variability of a 

different climatic variable in the future (Gosling & Arnell, 2016; Diallo et al., 2012; Bosshard et 

al., 2014; Kendon et al., 2010; Khalyani et al., 2016; Reshmidevi et al., 2018). So, the GCMs 

outputs are the most efficient approach that can be used for the evaluation of the impact posed by 

climate change (Wilby & Harris, 2006). Past studies have suggested the use of two or more 

climate projection GCMs, rather than using one GCM, since using one GCM can misinterpret the 

analysis (Camici et al., 2014; Prudhomme et al., 2002). Since the GCMs were large scale climate 

projection data with coarse resolution, they were recommended to regionalized for the given 

study area (Bao et al., 2019; Gao et al. ,2016; Thakali et al., 2018).  

  GCMs climate projections encompass different systematic error and uncertainty factors 

within it, well known as bias (Christensen et al., 2008; Wang and Chen, 2014; Salvi et al., 2011). 

Several pieces of the literature suggested correcting the model biases present in the GCMs 
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climate projection to avoid over or under-estimated outputs that could provide misleading 

information in the study (Cannon et al., 2015; Mishra et al., 2020; Zhai et al., 2020; Gupta et al., 

2020; Gao et al., 2019). Different researchers used different bias correction techniques to reduce 

the model biases (Li et al., 2010; Michelangeli et al., 2009; Pierce et al., 2015; Yuan et al., 2016; 

Yang et al., 2018; Okkan & Kirdemir et al., 2016). 

Different GCMs were utilized by numerous studies (Kay et al., 2009; Roy et al., 2001; 

Arnell et al., 2016) to discuss the various climate change simulation considering the extreme 

daily precipitation. However, there are limited studies (Nyaupane et al., 2018a; Ali et al., 2018; 

Yuan et al., 2016; Hoan et al., 2020) related to the future projection of streamflow. Some studies 

analyzed the GCMs climate projection for different scenarios provided in the different phases of 

CMIP i.e. CMIP3 and CMIP5 (Perez et al., 2014; Hirabiyashi et al., 2008). Various studies have 

used the precipitation, temperature streamflow projected from GCMs for the quantification of 

future extremes (Nyaupane et al., 2018a; Thakali et al., 2016). Probability distributions such as 

GEV, Log-Pearson III, Gumbel were used in past studies to predict the extremes of 

hydroclimatic variables (Hamza et al., 2019; Teegavarapu & Pathak 2019; Ayuketang & Joseph, 

2016). Some studies used Delta Change Method (DCM) based on the Delta Change Factor 

(DCF) employing the historic peak to predict future extremes (Camici et al., 2014; Ruiter, 2012; 

Hay et al., 2000). The quantified extremes such as peak flows can be routed in the hydraulic and 

hydrologic models to generate flood inundation maps (Nyaupane et al., 2018a). 

In past studies, hydraulic modeling was performed using HEC-RAS to route the peak 

streamflow to analyze the different flooding events (Alaghmand et al., 2012; Pinos et al., 2019; 

Cook and Marwade, 2009; Kuntiyawichai et al., 2020). Many studies generated the floodplain 

inundation maps and analyzed different flood characteristics for the projected climate using 
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RAS-Mapper (Yonehara & Kawasaki, 2020; Batchabani et al., 2016; Selvanathan et al., 2018; 

Karamouz et al., 2015). Also, the result of HEC-RAS simulation can be used for floodplain 

inundation mapping, management, and insurance studies. Some researchers extended the study 

up to the hazard, vulnerability, and risk assessment of floodplain using geographic information 

systems concluding it as an important step for flood risk management (Bathi & Das, 2016; 

Tingsanchil & Karim, 2005). 

2.2 Climate Change 

Climate is the weather condition of a certain region of the earth for a long period. Climate 

change can be defined as the shift of weather patterns in large scale due to the rising temperature 

caused by the human since the industrial age. Both the natural and anthropogenic activities are 

responsible for the change in climate (Bjurström & Polk, 2011; Wilby et al., 2004; National 

Research Council, 1983; Kalra & Ahmad, 2009; Thakur et al., 2020a; Thakur et al.,2020b; 

Tamaddun et al., 2017). The anthropogenic activities were noticed from the onset of the 

industrial revolution that has been intensifying the greenhouse effect resulting in global warming 

(Wilby et al., 2004). It has been leading to an increase in temperature, with the alteration of the 

hydrological cycle resulting in the change in extreme events (López-Ballesteros et al., 2020; Qi 

et al., 2009; Kelly et al., 2016). 

2.3 Climate Projection 

From the starting of 21st century, climate change has been a critical issue as the earth is 

warming up each day. So, different climate projection was introduced by different climatic 

model institutes, which consists of various hydroclimatic variables that are useful to access the 

impact of climate change in the future (Bai et al., 2019). Various research communities are 
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working continuously to provide more realistic models with minimum uncertainty factors so that 

the future scenario obtained from different climate projections can be more accurate.  

2.3.1 GCMs for Climate Projection  

GCM is a type of climate model that represents climate in a mathematical way utilizing 

the general circulation of the ocean or atmosphere. GCMs are used for the analysis of climate 

change and forecasting of weather integrating the different components of the earth i.e. land 

surface, atmosphere, and sea ice (Block et al., 2009). The increasing emission of GHG resulting 

the global warming is predicted with the utilization of different climatic projections of GCMs 

(Easterling et al., 2000). GCMs uses different emission scenario as their model output to 

understand the effect of climate change in the future. 

2.3.2 Climate Scenarios 

Different phase of CMIP coordinates with the present to future climate design and 

distribution to understand the impact of climate change that are anticipated in the near to far 

future or long period. In the fourth and fifth IPCC assessment reports, CMIP3 and CMIP5 

models were developed respectively, including various GCMs (Solomon et al., 2007; Wilby et 

al., 2004; Bjurström & Polk, 2011). However, according to Stouffer et al. 2015, the 

quantification of radioactive forcing was distinguished from other external forcing factors such 

as GHG, in the CMIP5 scenarios that had proven it to be superior to the previous phase of CMIP 

i.e. CMIP3. Further, IPCC updated the forcing levels that were represented by RCPs in CMIP5 

by combining it with SSPs to make it more robust in CMIP6. Figure 1 shows the detailed picture 

of scenario formation in CMIP6 through the integration of climate forcing level and SSPs, where 

SSP2-4.5 was given as an example scenario. 
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Figure 1: Illustrative figure showing the scenario formation in CMIP6  

Source: O’Neil et al. 2016 

The scenarios in CMIP6 shared the matrix of SSP and RCP so that it can better answer 

the question of earth forcing components and its responses (Riahi et al, Eyring et al. 2016).   

These scenarios will help in quantifying the impact of climate change and its uncertainties. Table 

2 present the detailed description of tier 1 scenarios in CMIP6 that was abstracted from (O’Neil 

et al. 2016). Table 1 provides information on climate forcing levels and pathways of given 

scenarios.  
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Table 1: Scenarios in CMIP6 with their forcing level and SSPs  

Scenario Name Forcing Category SSP 2100 Forcing (W/m2) 

SSP1-2.6 Low 1 2.6 

SSP2-4.5 Medium 2 4.5 

SSP3-7.0 High 3 7.0 

SSP5-8.0 High 5 8.5 

 

2.3.3 Bias Correction of GCMs 

The Climate projection of various GCMs consists of model biases that need to be 

rectified. Various bias correction techniques were adopted by different studies to rectify the 

model biases (Pierce et al., 2015; Wilby et al., 2004, Shrestha et al., 2020c). Statistical and 

dynamic downscaling are the two different approaches for bias correction of large-scale climate 

projection GCMs. In the statistical approach, the relationship between the GCMs and local 

climate data is developed. It depends more on the historical data and involves less computation 

that makes it easier to implement and interpret as well (Wilby et al., 1998 & 2004; Huang et al., 

2011). For the statistically meaningful and stable relation between historic and future scenarios, 

Huang et al. (2011) suggested the use of the time series of at least 30 years for the bias 

correction. 

CDF-t is one of the statistical methods of bias correction that can be useful for analyzing 

the uncertainty in the various hydroclimatic variable (Vrac et al., 2016; Famien et al., 2018; 

Yuan et al., 2012; Guo et al., 2020). CDF-t was developed by Michelangeli as the extension of 

quantile matching which provides and deals with CDFs. It assumes the translation of CDF of 

GCMs variables is only possible where the transformation function exists (Michelangeli et al., 
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2009). Many studies (Pierce et al., 2015; Guo et al. 2018) have concluded the use of CDF-t as an 

effective bias correction method as it reduced or rectified biases from large-scale climatic data.  

So, this study also used CDF-t to minimize the biases of CMIP6 based streamflow data before 

the hydraulic simulation. 

2.4 Flood Frequency Analysis 

To evaluate the peak discharge, the flow was calculated for different year return period 

interval. Different probability distributions were utilized in past studies, where GEV was found 

to be a more efficient and better fit for the streamflow and other hydroclimatic variable 

distributions (Hamzah et al., 2019; Nyaupane et al., 2018a). So, GEV was recommended as a 

statistical best fit distribution to predict future extremes (Kalra et al., 2020b), especially for 

hydroclimatic variables (Santos et al., 2016; Kasiviswanathan et al., 2017). GEV is a parametric 

distribution, which utilizes shape, location, and scale parameters to find the cumulative 

probability for the given event (Hosking et al., 1985). Previous study by Hosking and Wallis 

(2005) suggested L-moment as one of the methods that were widely used for the estimation of 

the three parameters used in this distribution. GEV was previously used in the streamflow 

distribution of the humid subtropical regions (Re & Barros, 2009; Santos et al., 2016). It can be 

employed for the estimation of design flows at different recurrence intervals.  

For the prediction of future peak flows, the DCM can be used. DCM utilizes the historic 

and future peak flows to get DCF. The DCF as the ratio of future and historic flow need to be 

further utilized with the existing scenarios to get design flow for the future designed scenario. 

Past studies have suggested DCM as one of the effective ways to predict future extremes (Hay et 

al., 2000; Nyaupane et al., 2018a). The equation involved in DCM for the future flow estimation 

is given below: 
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DCF =
Future Design Flows

Historical design Flows
 (1)  

Peak future design year flow = DCF ∗ Existing design year flows (2)  

According to FEMA, the design year for the flood analysis can be taken as 

2,5,10,25,50,100 and 500 years. The Flood Insurance Report (FIS) generated by FEMA 

considers 100-year peak flow as the design peak flow (FIS, 2013). 

2.5 HEC-RAS Model 

HEC-RAS, a hydraulic analysis program, was developed by the US Army Corps of 

Engineers in 1995 to work in a network that would support multi-user and multi-tasking 

environments. HEC-RAS helps to simulate water surface profiles for steady and unsteady flow, 

water quality analysis, and sediment transport computation, utilizing a graphical User Interface 

for interaction with the system (Brunner, 2016; Joshi et al., 2019a; Kalra et al., 2020a). The 

model can perform both 1D and two-dimensional simulation. It requires digital elevation models 

cross-section, land use, and slope of terrain to simulate the model.  

1D modeling can be done for both the steady and unsteady flow of the river. Many 

researchers have applied the HEC-RAS 1D steady analysis for the simulation of a floodplain 

flows and to understand the characteristics of the flood (Yang et al., 2006; Lim, 2011; 

ShahiriParsa et al., 2016; Mehta et al., 2013; Peng & Liu, 2020). Further, the FEMA 

recommended the use of the HEC-RAS steady model for the modeling and remodeling of 

different streamflow to make the FIS more effective (FEMA, 2018). The 1D steady model used 

the steady discharge data at the upstream cross-section of the reach as input data to calculate the 

water surface profile (Ahamad et al., 2016; Kumar et al., 2017; Kalra et al., 2020b). Other inputs 

such as geometric, land use, and elevation data were also employed in the study. For the defined 

cross-sections, water surface elevation levels (WSEL) are the main output along with the flood 
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extent, channel velocity, and top width. During the simulation, the conservation of energy was 

applied from cross-section to cross-section throughout the length of the stream channel (Brunner, 

2016). Also, the streamflow discharge is constant over time in the stream. 

Additionally, using the RAS Mapper, HEC-RAS can generate inundation maps and 

analyze flood patterns. The outcome of HEC-RAS simulation can be used for floodplain 

inundation mapping, risk assessment, management, and insurance studies (Mihu-Pintilie et al., 

2019; Tingsanchil & Karim., 2010).  

2.6 Floodplains Inundation Mapping and Risk Assessment 

 

Figure 2: Description of Cross-section in the main channel  

Source: NFIP Guidebook (2009), FEMA  

Floodplains are the land area adjacent to the river or streams that extend from the bank of 

the river to the valley edges that experience flooding when discharge gets high. Floodplain 

consists of two parts i.e. floodway and flood fringe. The floodway is the main channel whereas 

the flood fringe is the outer bank of the river extending to the valley. Figure 2 gives a detailed 

picture of the characteristics of floodplains. 
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When the river/stream experience high discharge, then it can cause risk to human life and 

the infrastructure located in the floodplains, which can result in loss of life and property. FEMA 

has classified the floodplains into different zones based on the severity of the risk. Also, FEMA 

administered the NFIP to provide insurance in case of flooding hazards. NFIP also encourages 

the regulation of flood management at the community level to mitigate the effects of flooding in 

inundated areas (FEMA, 2018 & 2019)  

Tingsanchali and Karim (2010) deduced that the impact of future flooding could be 

identified using a hazard, vulnerability, and risk assessment to mitigate human losses and 

attenuate economic as well as environmental losses. Thus, flood hazards, vulnerability, and risk 

assessments provide a framework for the management of flood risk. Furthermore, Noren et al. 

(2016) suggested that a risk assessment is a vital step in effective flood risk management for 

sustainable livelihood and agricultural system management. The risk zone maps can be used as 

source information to prepare emergency response plans, flood management and prevention 

programs, and infrastructure design. This study provides risk analysis and mapping to improve 

early responses to future floods. 
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CHAPTER 3 

STUDY AREA AND DATA 

3.1 Study Area 

The study area was selected in a reach of Neuse River that originates from the confluence 

Eno and Flat River at Durham County, NC. The Neuse River flows toward the southeast United 

States in between the piedmont and Pamlico Sound (“Neuse River”, 2019; “NEUSE: River of 

Peace”, 2019). The study reach is 32 km long and extends from a latitude and longitude of 

35.23° N, 77.77° W at the river’s upstream with an elevation of 10.73 m to latitude and longitude 

of 35.25° N, 77.58° W at the river’s downstream with an elevation of 4.15 m. The United States 

geological survey (USGS) gauge station at Neuse River, Kinston (Station ID 02089500) is 

located 1.2 km upstream from the downstream end of the study reach at the elevation of 3.3 m 

above NGVD29. The agricultural land, residential area, and wetlands dominate the study reach. 

The city of Kinston is the principal city within the study area, as shown in Figure 3a,b. This city 

has experienced numerous flooding events in the past due to extreme rainfall. The study area is a 

humid subtropical climate with the highest temperature in July and maximum rainfall in 

September with the average annual precipitation of 1235.96 mm (“US Climate Data”, 2019). 
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Figure 3: (a) States boundaries outlining counties of NC including Kinston City, (b) Lenoir 

county showing the Kinston City at downstream of the study reach, (c) existing information of 

the study area from a FEMA FIS report cross-sections and their labels along with their elevation. 

In the past, this region suffered many extreme flood events due to many disastrous 

tropical storms, and hurricanes causing heavy rainfall with abrupt increase in streamflow of 

rivers. The tropical storm causing heavy rainfall cause threat to the people living in both the 

coastal area and far away from shoreline. Ione, Hazel, Donna, Fran, Floyd, and Matthews were 

some of the hurricanes and tropical storm that cause disastrous flooding  with loss of lives and 

property in different part of North Carolina. In 2015, tropical storm Ana made 175 mm rainfall 

near Kinston resulting the freshwater flooding in Kinston and nearby area (NWS, 2020). 

Recently, in 2018 hurricane Florence made a devastating impact in the city of Kinston due to the 
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flooding resulted from the  storm surge in Pamlico sound causing significant inundation in Neuse 

River along with landfall in a different area of NC (Stewart & Berg, 2019). The Table 2 presents 

major flood events caused by the hurricanes in the Neuse River along with the abrupt increase in 

streamflow of the Neuse River and number of fatalities in the United States. 

Table 2: Major Hurricanes that cause flooding in the Neuse River and its fatalities inside the US 

S.N. Hurricane Date Discharge (m3/s) Fatalities in the 

US 

1 Donna 08/05/1960 342.63 8 

2 Fran 17/09/1996 761.72 22 

3 Floyd 23/09/1999 1013.74 57 

4 Mathew 10/15/2016 1061.88 28 

5 Florence 09/23/2018 863.66 43 

*The data are obtained from the USGS gage station 02089500 in Neuse River at City of Kinston. 

 The selected reach, Neuse River, along with the city of Kinston, is located in Lenoir 

County, NC, as shown in Figure 3b. This study used the existing information of the study area 

from a FEMA FIS report, hereafter referred to as FFR within this article (FIS, 2013). Figure 3c 

shows the digital elevation map (DEM) with the elevation information of the study reach along 

with the FFR assigned cross-sections. 

3.2 Input Data 

Using a single GCM can have more uncertainties in the results (Camici et al. 2014), so 

this study utilized scenarios of CMIP6 consisting of two or more GCMs. Specifically, this study 

used four scenarios among twelve available scenarios. Eight scenarios were eliminated due to 

having only one GCM, and daily streamflow data from selected scenarios were used to evaluate 
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the peak streamflow of the study reach. In CMIP6 Atmosphere-Ocean General Circulation 

Models, three GCMs for the historic year were available with several climatic projections which 

were obtained from the model institute named Centre National de Recherches 

Meteorologiques/Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique 

(CNRM-CERFACS). A long modeling period from 1950 to 2014 is taken as a historic period. 

For future streamflow datasets, four different scenarios i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0, and 

SSP5-8.5, each having two different GCMs from 2036 to 2100 were utilized to access the impact 

of a hydroclimatic variable in the future. These four different future scenarios include climate-

changing anthropogenic factors, along with the socio-economic developments (O’Neil et al., 

2016). Table 3 presents the scenarios used in this research along with the number of ensemble 

members.  

Table 3: GCMs climate projection for historical and future scenarios used in the study along with 

the number of ensemble members and modeling institute. 

Scenarios 

Model Name 

Modeling Institute 

CNRM-CM6  CNRM-ESM2 CNRM-CM6-HR 

Historical √ (24) √ (5) √ (1) CNRM-CFRFACS 

SSP5-8.5 √ (5) √ (6)  CNRM-CFRFACS 

SSP3-7.0 √ (5) √ (6)  CNRM-CFRFACS 

SSP2-4.5 √ (5) √ (6)  CNRM-CFRFACS 

SSP1-2.6 √ (5) √ (6)  CNRM-CFRFACS 

*Source: DOE, 2019  

The historical observation data were extracted from the USGS gauge station 02089500 

near the Neuse River of NC. The gage station is located downstream of the selected reach so that 
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it can be used for the calibration and validation of the HEC-RAS 1D model. The data were 

selected from 1950 to 2014. The gridded streamflow data from CMIP6 has centroid near this 

USGS gauge station.  

The USGS national map viewer provides the DEM 

(https://viewer.nationalmap.gov/basic/). For a model with higher accuracy, the literature 

suggested finer resolution DEM (Saksena & Merwade, 2015; Peng & Liu., 2019). However, due 

to the limitation of available data, this study used 10-m resolution DEM. Figure 3 shows the 

DEM of the study reach showing the elevation along with the FFR assigned cross-sections. The 

land use and land cover data were obtained from the website of Multi-Resolution Land 

Characteristics Consortium (MRLC) provided the land use and land cover data, which provides 

the Manning’s roughness coefficient of different land use (MRLC, 2016). In this study, the most 

recent National Land Cover Dataset (NLCD) 2016 data were used. Table 4 present the various 

land cover along with the Manning’s coefficient assigned for the land type by NLCD, 2016. 
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Table 4: Land Use and Land Cover 2016 with assigned Manning’s Coefficient 

S.N. Name Manning's value (n) 

1 no data   

2 barren land rock/sand/clay 0.04 

3 cultivated crops 0.06 

4 deciduous forest 0.1 

5 developed high intensity 0.15 

6 developed low intensity 0.1 

7 developed medium intensity 0.08 

8 developed open space 0.04 

9 emergent herbaceous wetlands 0.08 

10 evergreen forest 0.12 

11 grassland/herbaceous 0.045 

12 mixed forest 0.08 

13 open water 0.035 

14 pasture/hay 0.06 

15 shrub/scrub 0.08 

16 woody wetlands 0.12 

The location of the river cross-sections was selected in and between the cross-section 

assigned by FFR to aid in the calibration of the hydraulic model. Since the detail of structures 

like dams, the levee location elevations were not readily available, they were not considered in 

this study. Furthermore, Manning’s values were adopted from FFR for the selected reach length 

of the Neuse River. FEMA developed a hydraulic analysis flood along with the prediction of 
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different year recurrence flows. Since FEMA performs the flood frequency analysis based on a 

100-year and 500-year return period, this study followed the same course, i.e., 100-year (0.1% 

chance) and 500-year (0.2% chance) of annual occurrence of flooding events. Table 5 shows the 

extreme streamflow discharges obtained from FFR near Kinston City, NC for the Neuse River. 

Table 5: Summary of discharge (m3/s) at USGS gage site 02089500, downstream of study reach 

given by FFR. 

Flooding 

Source 

Location 

Drainage 

Area 

(Sq. Km) 

10% 

Annual 

Chance 

(m3/s) 

2% 

Annual 

Chance 

(m3/s) 

1% 

Annual 

Chance 

(m3/s) 

0.2% 

Annual 

Chance 

(m3/s)  

Neuse 

River 

Approximately 1.2 

km upstream of the 

confluence of 

Adkin branch 

6972.25 639.96 982.59 1146.83 1574.42 
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CHAPTER 4 

METHODOLOGY 

The methods section is divided into two sub-sections. First, it explains the statistical 

analysis to predict future design discharge. Secondly, it depicts a detailed guideline of hydraulic 

analysis to generate the flood inundation maps and further assessment of potential hazard, 

vulnerability, and risk. Figure 4 presents the steps involved in this study as the flowchart, which 

are further discussed below in a sequential manner. 

 

Figure 4: Schematic diagram showing the sequential steps followed to analyze flood frequency, 

predict the future streamflow, flow routing, floodplain mapping, and risk assessment. 
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4.1 Statistical Analysis 

The following two sub-subsections discuss the statistical analysis involves bias correction 

of CMIP6 streamflow data and quantification of the future design flows. 

4.1.1  Bias Correction 

The streamflow data obtained from CMIP6 consist of significant systematic biases, that 

requires bias correction before further application. Moreover, before bias correction, an ensemble 

of GCMs was performed for each of the scenarios, so that it would increase the robustness in 

predicting future change (Shrestha et al., 2020b; Nohara et al., 2006; Sillmann et al., 2013). In 

this study, the CDF-t method was chosen for the bias correction of multimodel ensemble CMIP6 

streamflow data (Guo et al., 2018; Pierce et al., 2015). The CDF-t method develops the 

relationship between modeled and observed CDF outputs, considering the transformation 

function “T”, where daily observed data were utilized (Michelangeli et al., 2009).  

The descriptive figure to describe the CDF-t methods is as shown in Figure 5, where the 

modeled future (Fgf) and historical climate data (Fgh) along with historical observed historical 

data (Fsh) have been used to obtain future bias-corrected data (Fsf). Figure 5 shows the Fsf as the 

green dotted line. The bias-corrected value of Fgh should fall within the range of Fsh.
 All three 

arrows, a, b, and c showed the sequential steps of bias correction. Since it is impossible to plot 

the future change beyond the maximum Fsh, arrow “b” moves right toward arrow “c” to intersect 

the green dot line, which finally generates the bias-corrected data.  
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Figure 5: Illustrative figure showing bias correction using CDF-t methods. 

The following develops the series of the equation used for the bias correction starting 

with: 

𝑇(𝐹𝐺ℎ(𝑥)) = 𝐹𝑠ℎ(𝑥)         (1) 

Let us consider, 𝑢 = 𝐹𝐺ℎ(𝑥), that gives us 𝑥 = 𝐹𝐺ℎ
−1(𝑢), where 𝑢 ∈ [0,1]. 

Then, Equation (1) is transformed to  

𝑇(𝑢) = 𝐹𝑠ℎ(𝐹𝐺ℎ
−1(𝑢))         (2) 

where T represents the functional relationship between the modeled and observed CDF 

results concerning the historical period.  

Validating the Equation (2), the final CDF-t equation is: 

𝐹𝑠𝑓(𝑥) = 𝐹𝑠ℎ (𝐹𝐺ℎ
−1 (𝐹𝐺𝑓(𝑥)))       (3) 



29 

 

Here, the functional relation is established between observed and modeled streamflow for 

historical data to be utilized for future periods. Furthermore, the utilization of modeled projection 

and estimating the CDF of future climate projection is performed, and hence, the bias-corrected 

data is used for the prediction of future flow. 

4.1.2 Quantification of the Future Design Flow 

After the bias correction of streamflow data, the next step is to calculate future design 

flow. Annual peak streamflow is extracted from each multimodel ensemble scenario (SSP5-8.5, 

3-7.0, 2-4.5, 1-2.6) for future time series of 2036 to 2100. Annual peak flow is also calculated for 

the observed historical time series of 1950 to 2014, from the same USGS gauge station as an 

earlier step. Then GEV probability distribution is utilized to analyze the annual maximum flow 

for different recurrence intervals. The equation that was used by the GEV distribution for the 

annual maxima is given below. 

GEV(𝑥: 𝜇, 𝜎, 𝜅) =  
𝑒𝑥𝑝 { − 𝑒𝑥𝑝 [ − ( 

𝑥−𝜇

𝜎
 ) ] }       𝑖𝑓 𝜅=0

𝑒𝑥𝑝 { − [ 1 + 𝜅 ( 
𝑥−𝜇

𝜎
 ) ]

−1/𝜅
 }   𝑖𝑓 𝜅≠0

     (4) 

In this equation, μ, σ, and κ are GEV parameters respectively representing the location, 

scale, and shape of the data. Additionally, for shape parameter κ > 0, μ − σ/κ < x < ∞; κ = 0, −∞ ≤ 

x ≤ ∞; κ < 0, −∞ ≤ x ≤ μ − σ/κ (Hosking et al 1985). Using L-moments, location, scale, and shape 

parameters are calculated to fit the GEV distribution. Thus, the obtained peak flows for different 

year return periods are utilized for the estimation of future peak flow. Peak flow for 100 and 500-

years is calculated for both climate modeled and observed data with GEV for hydraulic analysis. 

After the GEV analysis, the DCM is used utilizing the ratio of future to historic peak discharge 

known as DCF. DCF helps to estimate different design flood events for evaluation of future peak 

flows (Nyaupane et al., 2018a). The main idea of using DCM is to match the currently observed 

gage streamflow data and FFR streamflow data. For individual scenarios (SSP5-8.5, 3-7.0, 2-4.5, 
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1-2.6), DCF is calculated and a scenario with higher DCF is chosen for further study. The 

selected scenario with higher DCF will exhibit an increase in future design flow in its maxima. 

Thus, GEV generated streamflow for a 100-years and 500-year return period is multiplied by the 

DCF to predict future design streamflow. 

4.2 Hydraulic Modeling  

The hydraulic modeling is performed using the 1D steady model on of HEC-RAS 

(version 5.0.7). Different studies have proven the HEC-RAS 1D steady model to be effective in 

analyzing the floodplain and hydraulic parameters (Yang et al., 2006; Lim, 2011; Mehta et al., 

2013). The model used DEM, land use data, FEMA cross-sections, and different design year 

streamflow for the simulation to generate the floodplain inundation in the study area. The HEC-

RAS model included a total of 95 cross-sections, including 30 existing from FFR to address the 

critical points along the reach. Manning’s roughness coefficient was assigned as suggested by the 

FFR. The analysis uses the FFR 100-year discharge to calibrate the model with the help of the 

known WSEL. The WSEL was given by FFR, 2016.  

The observed and simulated WSEL was used for the calibration of the simulated model. 

It will show the robustness of the model generated (Mehta et al., 2013; Kalra et al., 2020b). 

During the calibration, the FFR assigned 30 cross-sections were selected. The model 

performance was measured using different statistical measures such as Nash-Sutcliffe Efficiency 

(NSE), Root Mean Square Error (RMSE), Coefficient of Determination (R2), and Percent-Bias 

(PBIAS) (Joshi et al., 2019a). The NSE, RMSE, R2 and PBIAS were calculated utilizing the 

following equations:  

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖−𝑆𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑂𝑎𝑣𝑔)
2𝑛

𝑖=1

        (5) 
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𝑅𝑀𝑆𝐸 =  √
∑ (𝑂𝑖−𝑆𝑖)2𝑛

𝑖=1

𝑛
        (6) 

𝑅2 = (
∑ (𝑂𝑖−𝑂𝑎𝑣𝑔)(𝑆𝑖−𝑆𝑎𝑣𝑔)𝑛

𝑖=1

√∑ (𝑂𝑖−𝑂𝑎𝑣𝑔)
2𝑛

𝑖=1
√∑ (𝑆𝑖−𝑆𝑎𝑣𝑔)

2𝑛
𝑖=1

)

2

      (7) 

𝑃𝐵𝐼𝐴𝑆 =  
∑ (𝑂𝑖−𝑆𝑖)∗100𝑛

𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

        (8) 

Where, 

Oi :  the observed WSEL 

Si :  the simulated WSEL 

Oavg :  the average of WSEL 

Savg :  the average WSEL 

After the calibration, the model was routed for the future peak flow obtained for the 

“quantification of future design flow” step. In the study, four future scenarios were used to 

determine the peak design flows utilizing DCM. Among the four scenarios, the scenario with the 

maximum 100-year and 500-year design flow was selected for the generation of floodplain 

inundation maps. These flows were employed for both existing and future scenarios, and the 

floodplain inundation extent was developed in RAS-Mapper. The flood inundation area was 

mapped using the ArcGIS (Version 10.7.1, Environmental System Research Institute (Esri), 

Redlands, CA, USA) so that the hazard classification can be performed. Also, the selected future 

scenario was compared with the existing FEMA floodplain inundation areas so that it aids in 

understanding the increase of flood risk in future years.  

4.3 Hazard and Risk Classification 

Hazard and vulnerability assessments were considered as the vital steps in accessing the 

flood risk (Klijin et al., 2015). For the hazard assessment, different flood characteristics such as 
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water velocity, water depth, and flood extent can be considered as the indicators for hazard 

classification. This study used water depth for the hazard assessment and attempted to classify 

the water depth and distinguished the hazard of that area based on the threat posed by flooding 

on human life. For both extreme events, 100-year, and 500-year, four hazard categories are 

generated (Tingsanchali & Karim, 2005 & 2010). Hazard class was divided into a low hazard 

(H1), moderate hazard (H2), high hazard (H3), and severe hazard (H4) class based on the critical 

flood depth range from 0.8 m to 3.5 m. These hazard classes along with their description are 

presented in Table 3. In this study, 0.8 m was considered as the level above the ground floor 

level and 3.5 m was considered as the roof of a single-story building for residential. The human 

threat was set at the ease of wading at any flooding event. 
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Table 6: Flood hazard classification and its description considering water depth as an indicator of 

the degree of hazard. 

Hazards Class Flood Depth (m) Flood Hazard  Description of Hazard 

Low Hazard  <0.8 H1 

Poses less of a hazard to people, 

and on-foot evacuation can be 

done. 

Moderate Hazard  0.8–1 H2 

On-foot evacuation will be 

difficult and adult evacuation 

will be difficult. The infant will 

be at a serious threat. 

High Hazard  1–3.5 H3 

Hazard inside house and 

evacuation only possible from 

the roof. 

Severe Hazard  >3.5 H4 

All the structures will be 

underwater, evacuation from the 

roof will also be a threat as 

people may be drowned there 

too. 

The Floodplain area in the Neuse River is comprised of different land-use units, which 

are assigned by NLCD 2016, MRLC. Based on hazard threats on the landforms, risk analysis can 

be done by utilizing the vulnerability. Hence, as a part of vulnerability assessment, the landforms 

from NLCD 2016 were reclassified into residential, forest, agriculture, wetlands, and water 

bodies. The residential area was assigned a value of one (1) and water a value of five (5) 
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representing the flood risk which is lower in residential areas than in areas near the water bodies. 

Other classified areas such as forest, agricultural land, and wetland were assigned with values of 

2, 3, and 4 values, respectively. Table 7 and Figure 6 shows the land use reclassification along 

with the assigned value. Previous studies showed that the vulnerabilities were assigned based on 

the projected flooding and socioeconomic conditions (Bathi & Das, 2016). This study utilizes 

vulnerabilities based on flood hazard impact and topography for both existing and future 

scenarios. Furthermore, the future scenarios are comprised of socioeconomic pathways and 

emission scenarios, that would better depict the threat of expanding floodplains due to climate 

change.  

 

Figure 6: Reclassified NLCD map for the vulnerability assessment 
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Table 7: Reclassification of the land use data obtained from NLCD (2016) for the study area near 

Kinston with their assigned value for vulnerability assessment. 

Land Classification (NLCD 2016) Reclassification of Land Use  Score 

Developed High Intensity 

Urbanized Area 1 

Developed Low Intensity 

Developed Medium Intensity 

Developed Open Space 

Deciduous Forest 

Forest  2 

Evergreen Forest 

Mixed Forest 

Barren Land 

Grassland/Herbaceous 

Shrub/Scrub 

Cultivated Crops 

Agricultural Land 3 

Pasture/Hay 

Emergent Herbaceous Wetlands 

Wetlands  4 

Woody Wetlands 

Open Water River  5 

After that, a risk assessment was performed by utilizing classified flood hazards due to 

flooding, which evaluates the threat posed to different landforms based on floodplain depth. 

Therefore, the magnitude of flood risk was reckoned as a multiplying of the flood hazard and 

vulnerability, which is inferred physically by assigning values on the equal interval score- a scale 
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from 0 to 20. Scores of less than zero are defined as risk free zones.  The risk classification 

assigned with the interval of scores is presented in the Table 8 below.  

Table 8: Zonal Classification of flood risk based on the severity 

Flood Risk Zone Score  

Risk Free Zone ≤ 0 

Low Risk Zone  0-5 

Moderate Risk Zone 5-10 

High Risk Zone 10-15 

Severe Risk Zone 15-20 

The classified risk zone was used to determine the severity of flood risk in different land 

types. The risk-map for both the 100 and 500-year design flood for future scenarios as well as the 

existing scenario was developed. The map portrays the risk that could happen in the future in that 

area. Moreover, the risk map for the existing FEMA study was compared to the risk projected in 

the future.  
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CHAPTER 5 

RESULT AND DISCUSSION 

The results are discussed in four ensuing sections. The first section discusses the bias 

correction results of GCMs obtained from CMIP6. This section also presents future flows that 

were calculated using bias-corrected data. The second section highlights the simulation results of 

calibrated hydraulic models that predict the extent of floodplain for different climate scenarios. 

The third section shows the evaluation of floodplain using classified hazard data. The final 

section presents the outcomes of risk analysis utilizing reclassified hazard and vulnerability data. 

5.1 Flood Frequency Analysis and Performance of Hydraulic Modeling 

This study uses daily streamflow data obtained from the climate model projection and 

USGS gage station, shown in subplots (a) and (b) of Figure 7. The data shows that the range of 

streamflow is increasing in the Neuse River. A total of 74 streamflow projections from 3 

different GCMs of different historical and future climate data were used for the analysis of 

annual peak flow. The historical data helped to bias-correct future projections for each scenario 

from the multi-model ensemble GCMs. Figure 7b shows the annual peak flows extracted from 

the bias-corrected daily streamflow data for each future scenario (i.e., SSP5-8.5, 3-7.0, 2-4.5, 1-

2.6). Since the study area is under the risk of catastrophic flooding, the maximum flows are 

analyzed in this study. Figure 7a,b shows the range of intense flows for future scenarios and 

historical data. The data in the different scenarios illustrate that the range of flow is greater for 

SSP3-7.0 and SSP5-8.5 since the projected GHG emissions are at a higher level for these 

scenarios in comparison to other scenarios.   
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Figure 7: Annual peak streamflow for (a) historical observation data and (b) different future scenarios 
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For the different scenarios representing the different emission pathways, GEV-Max (L-

Moments) was utilized to evaluate the design peak flows of different recurrence intervals for 

different future scenarios (2-year, 5-year, 10-year, 50-year, 100-year, 500-year). Considering the 

100-year return period flood, the historic and future scenarios, i.e., SSP1-2.6, SSP2-4.5, SSP5-

8.5 were utilized for the calculation of peak discharge, where the discharge was found to be 

939.58 m3/s, 1814.93 m3/s, 1780.34 m3/s, 1917.87 m3/s, and 1921.65 m3/s, respectively. Across 

all four future scenarios, SSP5-8.5 generated the maximum flows as the result of higher emission 

scenarios producing higher radioactive forcing (i.e., 8.5 W m-2) by 2100. For the same scenarios, 

the 500-year design flow was 1283.11 m3/s, 4062.07 m3/s, 3367.09 m3/s, 3698.73 m3/s, and 

3455.40 m3/s, respectively.  

 The DCF was calculated by utilizing the different return period discharge from GEV and 

FFR for the Neuse River. All future return flows were divided by respective discharges 

according to recurrence intervals from FFR to get DCF values. Figure 8 shows the distribution of 

DCF for individual scenarios. From Figure 8, it is inferred that the scenario SSP1-2.6 represents 

the lowest DCF, i.e., less than one, with the lowest median among all the scenarios. Moreover, 

scenarios SSP1-2.6, SSP2-4.5, and SSP3-7.0 have DCF values lower than the high emissions 

scenario SSP5-8.5. The increased value of DCF with increased emission scenarios implies that 

higher GHG emission, land-use change, and other integrated characteristics are likely to increase 

the extremes of future streamflow. Also, the DCF values for 100-year and 500-year return period 

for all four different scenarios are presented in tabular form in Table 9. The Scenario SSP5-8.5 

has a higher DCF of 2.045 and 2.69 for 100-year and 500-year design floods.  
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Figure 8: Box plot for the comparison of different future scenarios DCF using different 

recurrence intervals 

Table 9: DCF values for future scenarios with 100-year and 500-year return period 

Return Periods SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

100-years 1.931635 1.894823 2.041196 2.045215 

500-years 3.165798 2.624674 2.882623 2.692987 

Among all four scenarios, SSP5-8.5 based 100-year and 500-year design discharge were 

used to develop floodplain inundation maps. DCF value implies future design flows for 100-year 

and 500-year return periods at 2345.52 m3/s and 4239.88 m3/s, respectively. When comparing 

both the 100-year future and existing flow, the future flow is more than two times the existing 

flow. Similarly, in the case of a 500-year flow, future flow is nearly three times the existing flow. 
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The 100-year future flow even exceeds the existing 500-year flow, demonstrating the higher 

flood risk in the future.  

The 1D hydraulic model was developed and calibrated using the FFR 100-year design 

flood. The comparison of observed and simulated WSEL was performed for the calibration using 

different statistical parameters. Furthermore, the WSEL for all 30 existing cross-sections from 

the FFR was used in the process. The Manning’s “n” used were 0.05–0.06 and 0.12−0.19 for 

channel and floodplain respectively as suggested by FFR. Figure 9 shows the simulated and 

observed WSEL for the selected cross-sections. Statistical measures such as NSE, RMSE, R2, 

and PBIAS were used to calculate the robustness of the model by comparing the WSEL from the 

newly developed HEC-RAS model and FFR. The values of NSE, RMSE, R2, and PBIAS were 

0.82, 0.40, 0.98, and −2.64, respectively, and based upon the observed and simulated data. The 

NSE value closer to 1 suggested that the observed and simulated WSEL were closely fitted. 

Additionally, the RMSE value of 0.40 shows minimal error regarding observed and simulated 

WSEL have a close fit. The obtained R2 value signifies that the observed and simulated WSEL 

are closely matched with minimal dispersion. The negative value of PBIAS illustrates the 

overestimation of biases. All the calculated statistical parameters were within an acceptable 

range and illustrated the robustness of the calibrated hydraulic model, where the predicted WSEL 

can be utilized to develop a floodplain inundation map. 
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Figure 9: Calibration plot of FFR given WSEL versus Simulated WSEL 

5.2 Flood Inundation Mapping 

The calibrated hydraulic model was used to generate a flood inundation map. The model 

used DCF implied SSP5-8.5 based future design discharge for 100-year and 500-year return 

period. The estimated design flows are routed in the HEC-RAS model, and the floodplain 

inundation areas are mapped using RAS Mapper and ArcGIS. Figure 10 shows the comparison 

between the floodplain inundation extent generated using the existing FEMA flows and projected 

future flows. Both, 100-year and 500-year floodplains for future flows are much larger than 

existing FEMA studies. The floodplain inundation extent generated from the 100-year flood 

event based on future scenarios was 1.73 times higher than the FFR 100-year floodplain 

inundation extent. The 500-year floodplain inundation extent was 1.68 times higher than the 

existing 500-year floodplain extent given by FEMA. The increased floodplain inundation area 

due to future streamflow that might put Kinston City in a more vulnerable situation. As a coastal 

state, NC has plenty of low-lying areas used for agricultural purposes (Peng & Liu 2019). Those 

areas might be affected due to the future changing streamflow. Additionally, the selected future 

scenarios, SSP5-8.5, can be used in further studies to address the significant change in 
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streamflow linked with climate change and socio-economic change (O’Neil et al. 2016). It can 

make a significant difference in the field of future flood studies and emergency flood 

management efforts.  
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Figure 10: Comparison of flood extent map of Neuse River using the ArcMap (Version 10.7.1) between FEMA and future scenarios 

for (a) 100-year and (b) 500-year return period flood events, respectively. 

Source: Esri, HERE, Garmin, Intermap, increment P Crop., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, 

Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, © OpenStreetMap contributors, and the GIS User 

Community. 
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Many flood characteristics were obtained as an output when performing the modeling in 

HEC-RAS. When generating the floodplain inundation maps for different existing and future 

scenarios in the Neuse River top width, channel velocity, and flood extent were exported and 

presented in Figure 11. Figure 11 compares all the variables (top width, channel velocity, and 

flood extent) for the FEMA and design discharges for the existing 30 cross-sections, acquired 

from the FFR, along the reach are shown in Figure 11. The projected future 100-year maximum 

channel velocity, computed as 1.17 m/s, is higher than the maximum channel velocity. The flood 

extent area for the future scenario was more than double the area for most of the cross-section in 

a 100-year flood and more than three times the area for the 500-year projected floodplain when 

compared to FEMA events.  

Figure 11a shows the significant changes in the top width for the channel with cross-

sections B, C, D, E, F, and G for 100-year flood events. For the 500-year flood, as shown in 

Figure 11b, cross-sections D, E, and M showed a significant change in top width, which implies 

that the flood extent is higher in that area. Previous studies (Bathi & Das, 2016; Mihu-Pintilie et 

al., 2019; Nyaupane et al., 2018a) projected 100-year flood events; however, due to this 

significant change in these flood characteristics in this study, this study was extended up to 500-

year flood events. Including the 500-year flood events demonstrates the risk of future flooding 

and can improve hydraulic structure designs to mitigate flood risk while considering climate 

change. 
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Figure 11: Comparison of flood characteristics such as flood extent, channel velocity, and top 

width for different flooding scenarios considering (a) 100-year and (b) 500-year return period 

flood events, respectively. 

To assess the flood hazard, water depth was used as the quantifiable variable to study the 

potential threat caused due to existing FEMA and future flooding scenarios for both 100-year 



47 

 

and 500-year design floods. All four hazard types were classified for both existing FEMA and 

future flood scenarios. Table 10 outlined the flood extent covered by each hazard class for both 

existing and future scenarios.   

Table 10: Hazard extent for the 100-year and 500-year return period flood events for both 

existing FEMA and future scenarios, respectively. 

Hazard Class 

Existing Scenario (FEMA) 

(km2) 

Future Scenario (SSP5-8.5) (km2) 

100-year 500-year 100-year 500-yr 

Low Hazard 7,622.14 13,813.42 15,019.26 9,500.39 

Moderate Hazard 1,457.68 2,031.19 4,667.32 2,773.16 

High Hazard 16,355.02 17,497.64 27,006.62 43,377.19 

Severe Hazard 19,219.03 24,634.29 30,766.75 41,845.28 

Total 44,653.87 57,976.54 77,459.95 97,496.02 

Also, the flood hazard mapping was performed for the existing and future scenarios so 

that the increase in hazard extent can be analyzed in a detailed manner in further study. Figure 12 

and 13 present the extent of areas covered by each hazard classification for each scenario 

regarding 100-year and 500-year flood events. For the 100-year design flood, the future scenario 

has a higher flood hazard in comparison with the existing FEMA flooding (see Figure 12). 

Moreover, for this flooding event, the future scenario has a larger, severe hazard floodplain and 

smaller moderate hazard floodplain. For both FEMA and projected scenarios, the 100-year 

design flood event has a severe hazard classification with 43.04% (19,219.03 km2) and 39.72% 

(30,766.75 km2), respectively. Since the peak flow was maximum for SSP5-8.5, there could be 

an increase in the floodplain inundation area with possible hazard classification as low or severe. 



48 

 

Figure 13 shows the result from the analysis of a 500-year flood hazard assessment. It can 

be observed that the FEMA flood event has a lesser flood hazard extent than the future scenario 

(57,976.54 km2 compared with 97,496.02 km2) as shown in table 10. Comparing the existing 

flood scenario with the projected scenario for 100-year and 500-year flooding events shows the 

extent of hazard area increased by 1.68 to 1.73 times the existing condition, respectively. The 

extent of 100-year and 500-year flooding increases from existing to future scenarios, 

demonstrating there will be potential damage in the future. Thus, these hazard areas combine 

with a vulnerability factor to identify the degree of risk posed within the study area.  
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Figure 12: A Comparison of extent of flood hazard utilizing different flooding scenarios, i.e., 

FEMA and Future, respectively for 100 return period flood events. 

Source: Esri, HERE, Garmin, Intermap, increment P Crop., GEBCO, USGS, FAO, NPS, 

NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong 

Kong), swisstopo © OpenStreetMaps contributors, and the GIS User Community. 
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Figure 13: A Comparison of extent of flood hazard utilizing different flooding scenarios, i.e., 

FEMA and Future, respectively for 500-year return period flood events. 

Source: Esri, HERE, Garmin, Intermap, increment P Crop., GEBCO, USGS, FAO, NPS, 

NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong 

Kong), swisstopo © OpenStreetMaps contributors, and the GIS User Community.
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5.3 Risk Zone Assessment and Mapping 

From the intersection of hazard and vulnerability map of FEMA and future climatic 

scenario SSP5-8.5, risk zone maps were extracted for 100-year and 500-year flooding events. 

Table 11 summarizes the area covered by each risk zone. The Risk Zone map is comprised of an 

area under the threat of possible damage (Alfieri et al. 2015). For the FEMA 100-year and 500-

year risk maps, a greater extent of the floodplain is covered by a severe risk zone with the area 

coverage of 18,644.73 km2 and 23,330.17 km2. For the 100-year FEMA flood, a moderate risk 

zone has a lower area coverage among all four risk zone with an area of 6113.23 km2. 

Meanwhile, in the 500-year flooding event, the flood coverage with a high risk zone has a lower 

area coverage with a total area of 6044.54 km2. In the future scenario, the 500-year flood 

moderate risk zone covers an area of 38,869.48 km2 or 39.75% of the total risk area. For both the 

future 100-year and 500-year flooding zone, the high risk zone area covered 5211.76 km2 and 

8038.58 km2, respectively, of the floodplain area. Moreover, Table 11 shows the 100-year and 

500-year FEMA flood potential risk area to be 44,659.37 km2 and 57,979.73 km2, respectively. 

Similarly, Table 11 shows the future scenario revealed a moderate risk zone for the 100-year and 

500-year return periods at 77,462.86 km2, and 97,498.36 km2, respectively. Additionally, it can 

be inferred that in contrast with the FEMA flood event, the future scenarios have a significant 

difference in the moderate risk zone. Furthermore, on the evaluation of 100-year and 500-year 

flood events, the flood risk extent of future scenarios was 1.73 and 1.68 times the existing 

scenarios, respectively, that shows the increasing flood risk in the future. 
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Table 11: Flood risk extent based on the zonal risk classification for 100-year and 500-year 

return period flood event for existing and future scenarios, respectively. 

Risk Zone 

Existing Scenario (FEMA) 

(km2) 

Future Scenario (SSP5-8.5) 

(km2) 

100-year 500-year 100-year 500-year 

Low Risk Zone 10,468.76 18,101.99 23,773.57 21,904.91 

Moderate Risk Zone 6113.23 10,503.02 22,104.30 38,869.48 

High Risk Zone 9432.64 6044.54 5211.76 8038.58 

Severe Risk Zone 18,644.73 23,330.17 26,373.23 28,685.39 

Total 44,659.37 57,979.73 77,462.86 97,498.36 

Figure 14 shows the extent of the risk zone mapped in the study area. In this study, risk 

zone mapping is an important factor in distinguishing the potential threat for each land use. 

Figure 14a shows that FEMA 100-year has a minimal threat in urbanized areas and road 

networks, with a larger area in the risk-free zone. The water bodies, wetlands, and forests were 

completely in the severe to high risk zone, which will minimize the threat to human life. Some 

agricultural lands are also observed to be within the low to moderate risk zone, resulting in the 

potential for lower crop yield during flooding events. Due to the lower elevation in the upstream 

side of the study area, the risk is exhibited, in contrast to the downstream part. For the 100-year 

future scenario (Figure 14b), the extent of all risk zone was much larger compared to the FEMA 

100-year flood. For this scenario, the risk zone increased in the urbanized area and agricultural 

lands. Similarly, the wetlands were in a severe risk zone, whereas agricultural lands were in a 

low to high risk zone. More urbanized areas are located in the low risk zone, which includes 
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residential, industrial, and road networks, which was previously in the no risk zone for the 

FEMA 100-year flood event. Hence, the increase in low risk extent was higher for future 

scenarios, which suggests an increase in a potential threat to human settlement in the future. Due 

to this, there can be an increase in future streamflow that may lead to enlarged flood risk areas. It 

is necessary to analyze the risk for future and existing 100-year flood events since the events 

have a higher frequency in history and are likely to happen frequently in the future as well. 

Moreover, analyzing the future risk would indicate the relative change in socio-economic impact 

in the study area with the change in the flood hazard area.  
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Figure 14: Comparison of extent of risk for 100-year a) existing (FEMA) and b) future scenarios 

utilizing the risk zonal classifications 

Source: Esri, HERE, Garmin, Intermap, increment P Crop., GEBCO, USGS, FAO, NPS, 

NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong 

Kong), swisstopo © OpenStreetMaps contributors, and the GIS User Community. 



55 

 

The risk maps of the 500-year FEMA exhibit all classification of risk zones over the 

study area. The severe risk zone is larger, extending from waterbodies to the forest and some 

agricultural lands. The high risk zone covers some parts of the forest, agriculture, and water 

bodies (Figure 15a). The extent of the low risk zone was greater in an agricultural area near to 

upstream in the study area and lesser in urban areas, including road networks downstream. As 

the elevation of the city increases, the risk for the FEMA 500-year flood event decreases in the 

urbanized area. However, low-lying plain land used for farming purposes is under high risk. The 

500-year future scenario results showed that most of the urbanized area and agricultural lands 

were under the low to high risk zone (Figure 15b). Figure15b also reveals the risk of flood zone 

with much of that land subjected to a higher risk zone. Future climate scenarios increase the risk 

that potential floods may have on the urbanized areas of this floodplain. Local water managers 

can make new development policies to mitigate this risk.  
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Figure 15: Comparison of extent of risk for 500-year a) existing (FEMA) and b) future scenarios 

utilizing the risk zonal classifications. 

Source: Esri, HERE, Garmin, Intermap, increment P Crop., GEBCO, USGS, FAO, NPS, 

NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong 

Kong), swisstopo © OpenStreetMaps contributors, and the GIS User Community. 
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5.4 Discussion  

Flooding can cause colossal damage to human life, settlement, and key infrastructures, 

resulting in many environmental and socio-economic consequences. The highly urbanized areas 

located along the floodplain can be at higher risk, even they are highly regulated (Mihu-Pintilie 

et al., 2019). Moreover, since ancient times, human populations around the globe have 

predominately lived near water bodies such as seashores or riverbanks to increase the ease of 

their living. Around 40% of the world population is currently residing within the 100 km 

periphery of the coastal areas, which is vulnerable to the different water-related disasters such as 

sea-level rises and storm surges. The consequences related to these disasters would be more 

severe due to the highly concentrated population and low elevation in the coastal regions. 

Furthermore, due to the changes in future streamflow, flood-related hazards are likely to increase 

for coastal cities like Kinston. Likewise, the change in streamflow is inevitable in the future due 

to the sea level rises and increased global warming. Accordingly, flood protection planning 

ensuring minimal loss should be introduced in the future to mitigate flood risk effectively. This 

study utilized the streamflow projections of CMIP6 to analyze the increase in floodplain 

inundation due to climate change. Furthermore, different emission scenarios provided by CMIP6 

were employed to evaluate the future streamflow, including different forcing level and SSP’s. 

Hence, evaluating the future flow helps us analyze the impact of both climatic and societal 

change (O’Neil et al., 2016), allowing the acknowledgment of a broad range of future 

streamflow.  

For the flood frequency analysis, it is important to use appropriate probability distribution 

that would be further used to evaluate design floods. For sub-tropical humid climatic conditions, 

many previous studies suggested the use of GEV as a probability distribution that will likely fit 
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for the prediction of future streamflow (Re & Barros, 2009; Santos et al., 2016; Shi et al., 2010). 

Thus, the GEV-Max(L-Moments) was employed for the evaluation of peak flows with different 

year return period for both existing and future scenarios based on the fact that the climatic 

condition of a study reach was relevant to that of past research. Within the four different future 

scenarios, most of them had a DCF value greater than one while considering different return 

period flood events. These values suggest the future design flow is likely to be higher than the 

existing flows. The estimated DCF from the multimodel ensemble of four different individual 

future scenarios is greater than 1, based on the evaluation of the 100-year recurrence interval. 

The higher DCF generating scenario (SSP5-8.5) was used for this study for the convenience of 

analysis. For all four scenarios, the design 100-year flow would be nearly double the existing 

design 100-year flow. The result of the SSP5-8.5 scenario, with the higher DCF among all four 

scenarios, points to a higher design flow in the future than the existing condition. Moreover, as 

the DCF increases, the design flow also increases. The SSP5-8.5 scenario is likely to have a 

higher chance of flooding among all other scenarios, due to higher predicted design flow. Hence, 

in this study, future scenarios for both the 100-year and 500-year return period flows were 

analyzed. DCM was used for the estimation of future flows of different scenarios. Then, the 

design streamflow from selected future scenarios was routed through the HEC-RAS 1D model 

for the generation of the floodplain inundation maps to compare it with the existing ones.  

Since the DCF is higher for the future scenario SSP5-8.5, the increase in the future design 

flow is also at its maximum level. So, the maximum design flow from the SSP5-8.5 scenario was 

then employed in the HEC-RAS model for the generation of inundation maps of the study area, 

Neuse River, NC. The projected future flows were compared with the existing FEMA flows to 

analyze the impact of climate change in future streamflow. The future 100-year flow was found 
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to be higher than the existing 500-year flow calculated by FEMA. These results suggest an 

increase in flood extent in the city of Kinston and a higher possibility of a loss of public 

infrastructures and damage to human settlement. Previous studies suggested an increase in 

streamflow of the NRB, as the intensity of precipitation was projected to increases due to 

climatic scenarios (Arnell & Gosling, 2016; Johnson et al., 2015) For instance, in the last two 

decades, NC has faced more than three severe hurricanes, resulting in destructive flooding that 

submerged a portion of the City of Kinston. Previous studies have inferred that the impact of 

climate change and the change in land use can differ the result of risk analysis, due to change in 

the extent of the floodplain (Tingsanchali & Karim, 2010 & 2005). This study uses future flows 

incorporating climate, land use, and socio-economic changes. Most of the population of Kinston 

is residing on the bank of the Neuse River, which makes the area more vulnerable to flood 

hazards. The agricultural land near the riverbank is running through the existing floodplain. 

Future flooding risks not only affecting the settlement of Kinston city but is also predicted to 

produce a large impact on local agricultural land while causing loss of human life and economic 

harm. Thus, this study performed a zonal risk analysis based on flood hazard and land use, which 

has shown the severity of risk in land use. It can help local agencies to make a significant effort 

on the preparedness of those areas depending on the level of risk. Also, the assessment of flood 

hazards, vulnerability, and risk would lead to greater mitigation of the risk of future flooding. 

The current study managed to evaluate the flood hazard area as well as risk zoning so that 

the risk map can be prepared to depict all four risk zoning areas. Mapping can be a key factor in 

mitigating flood risk. Policymakers, engineers, and water resource managers can use the risk 

maps for the planning and constructing facilities that mitigate the risk of future flooding. The risk 

analysis showed the vulnerability of the community residing in the bank of the Neuse River and 



 

60 

 

 

the fertile land on the bank of the river. Thus, appropriate research is direly needed for the 

analysis of future flooding in this area. In this study, different historical and future scenarios 

hydroclimatic data were employed to predict the future streamflow, which incorporates climatic 

variability in the future. The future design streamflow was used for the assessment of risk, which 

can be considered during the planning and building the hydraulic structures so that it can 

minimize the flood risk incorporated with climate change and socio-economic pathways. 
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CHAPTER 6 

SUMMARY AND CONCLUSION 

6.1 Summary and Conclusion 

This study facilitates the use of different GCMs associated with historical and future 

scenarios of CMIP6 to estimate the increasing flood risk caused by the changes to streamflow in 

the future climate. It also shows floodplain changes due to existing and future climatic scenarios. 

The floodplain area generated using the future climatic scenarios, SSP5-8.5, resulted in nearly 

two times the floodplain area that is created by existing scenarios for 100-year flood events. This 

shows the likelihood of an increase in flooding threats under future climate conditions. As 

manifested by the current change in climate, it is anticipated to increase extreme hydrological 

events in the future. This will subsequently increase the risk associated with these extremes. The 

study purposed an approach using different climatic models and observation data that can 

minimize the adverse impact of change in streamflow in the future. The following points 

summarize the main conclusion of this study: 

a. Bias correction of different scenarios obtained from the multimodel ensemble with the 

historical data was performed using the CDF-t method. The CDF-t method increases the 

robustness in evaluating future change in streamflow. 

b. For the estimation of the design flow, GEV-Max (L-Moments) was utilized, where SSP5-

8.5 was found to have a maximum flow for the 100-year return period. 

c. The DCF for most future scenarios were found to be higher than 1, suggesting the 

increase in future streamflow in comparison with the existing (FEMA) flow. 

d. For the 100-year return period flood event, future scenario SSP5-8.5 predicted the 

maximum increase in the peak flow in Neuse River. 
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e. HEC-RAS 1D steady modeling was used to simulate the floodplain mapping extent of 

Neuse River, NC. The result showed a higher extent of flooding for the future 100-year 

scenario than for the existing FEMA 500-year peak flows. 

f. Reclassification and mapping of hazard, vulnerability, and risk were completed utilizing 

the SSP5-8.5 scenario for the assessment of risk. 

g. The extent of different flood risk zone of future flows for 100 and 500-year flood events 

highlights the increase in potential risk and their severity in the future.  

Overall, this research highlights the use of historical and future CMIP6 climate data to 

forecast the future streamflow for the different return periods. The calculated streamflow is then 

utilized to develop the future floodplains inundation maps. Using the information from the 

floodplain maps, a flood risk assessment in terms of a potential threat that can be posed in the 

study area is performed. As evidenced by the results, the higher GHG emission scenarios are 

associated with intense future flooding events. These events can pose an adverse effect on the 

socio-economic factors of the community. On average, flood management structures last for 

several decades. The structures that are designed using the historic climatic information may not 

endure future storm events. However, the design of these structures can be optimized by using 

the forecasted streamflow and by increasing sustainability for future climatic conditions. The 

forecasting and risk assessment of such catastrophic events helps policymakers to prepare flood 

risk mitigation plans and a skeleton for making key decisions in the field of water resource 

management. As an alternative approach, alteration of land use can be suggested to elevate the 

management of flood risks sustainably. 
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6.2 Limitations 

In this study, a detailed analysis of future flooding is performed that helps to fulfill the 

objective of the study. However, the limitations are inevitable regarding the current study. The 

study is performed using CMIP6 climate projections, where the limited number of projections 

that are made available to date. Since the sixth phase of CMIP6 is continuously working in 

producing different streamflow data for a different scenario, this study used the data that are 

updated till date to understand the future flooding in Neuse River, NC. Different scenarios give a 

varying range of design streamflow. The study utilizes streamflow data to forecast the design 

peak flow. Moreover, the period of 2036 to 2100 was taken as the study period, whereas further 

study can also be done using the near future and far future rather than taking the long-range of 

data so that it can help to provide another aspect on analyzing the flood events. 

This study used GCMs that were obtained from CNRM-CERFACS, since it is the only 

institute to develop the streamflow projection for different future scenarios in CMIP6. However, 

many studies (Brunner et al., 2020; Camici et al.,2014; Eyring et al., 2016) suggested the use of 

as many models from different modeling institute as the climate models from the same institution 

might share similar ideas, code or even sometime full component which might lead to biases in 

thus produced results. Thus, the study can be done using more GCMs obtained from different 

modeling center to reduce the biasness and help in generating more robust scenarios to analyze 

the future change in streamflow.  

Also, for the bias correction, the historical 65 year of duration was used where both 

observed and modeled historical climate data were utilized. Since the CDF-t was utilized to 

remove the biases in the future climate projection, the shift in extreme events due to climate 

change might not be included in the bias corrected future climate projection (Pierce et al. 2015). 
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CHAPTER 7 

RECOMMENDATION FOR FUTURE WORKS 

The current study is focused on analyzing the streamflow so that it can aid on understand 

the impact of climate change. Since the CMIP6 data are yet to be made available completely, in 

the future, different analysis regarding the streamflow projection can be performed using many 

streamflow data for different scenarios. Moreover, after the completion of phase 6 of CMIP, it is 

recommended to use the GCMs from different modeling institute in order to minimize the bias 

that can be generated due to the similarity in the models of same institute. Likewise, in future, 

decadal and multi-decadal time period can be used for the analysis so that the study can compare 

the long term impact presented in the study with the short term impact of climate change due to 

the variability of streamflow. Further, the analysis was performed for the SSP5-8.5 scenario, so 

for the future study it is suggested to utilize the future scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0 

so that it would be very helpful in forecasting the future variation of streamflow. 

In this study, the hazard classification was performed based on the United Nation 

Disaster Relief Organization classifications. Many agencies have their own set of standards to 

classify hazard, so it is recommended to adopt appropriate classification as per the study area 

location. Also, this study used land use as a factor for the analysis of flood hazard vulnerability 

in the study area, however, a lot of factors such as population density, societal factors, 

urbanization can be taken into account for the detailed study of vulnerability assessment. As this 

study is more focused on forecasting of flood for a different scenario, it can be suggested to have 

detail flood assessment using various factors, to make the study more precise. Moreover, for 

further study the detail assessment of flood hazard, vulnerability, and risk, can be done in 

separate studies. 
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