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Chronic kidney disease (CKD) is a clinical model of premature ageing characterized by progressive vascular dis-
ease, systemic inflammation, muscle wasting and frailty. The predominant early vascular ageing (EVA) process
mediated by medial vascular calcification (VC) results in a marked discrepancy between chronological and bio-
logical vascular age in CKD. Though the exact underlying mechanisms of VC and EVA are not fully elucidated, ac-
cumulating evidence indicates that cellular senescence - and subsequent chronic inflammation through the
senescence-associated secretary phenotype (SASP) - plays a fundamental role in its initiation and progression.
In this review, we discuss the pathophysiological links between senescence and the EVA process in CKD, with
focus on cellular senescence and media VC, and potential anti-ageing therapeutic strategies of senolytic drugs
targeting cellular senescence and EVA in CKD.
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1. Introduction

Ageing - a universal finding in humans - is the leading risk factor
for deterioration of structure and function of tissues and organs in
most of the chronic conditions that limit lifespan and quality of life
[1]. As compared to the general population, patients with chronic
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http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2019.06.015
peter.stenvinkel@ki.se
Journal logo
https://doi.org/10.1016/j.csbj.2019.06.015
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2019.06.015&domain=pdf
www.elsevier.com/locate/csbj


722 L. Dai et al. / Computational and Structural Biotechnology Journal 17 (2019) 721–729
kidney disease (CKD) have a much accelerated ageing process char-
acterized by progressive vascular disease, persistent uremic inflam-
mation, muscle wasting, osteoporosis and frailty, even before the
onset of terminal renal failure necessitating renal replacement treat-
ment by dialysis or kidney transplantation [2–6]. Early vascular age-
ing (EVA) is an evolving construct that has been growing around
accumulating evidence showing arterial stiffness as an intermediate
end-point and independent predictor of mortality due to cardiovas-
cular disease (CVD) [7]. In CKD, the process of EVA is predominantly
characterized by media vascular calcification (VC), a cell-mediated
process primarily driven by alterations in vascular smooth muscle
cells (VSMCs), and the extent of VC may be used as a measure of bi-
ological vascular age [8,9]. In CKD, the arterial wall appears older
than its chronological age due to the impact of concomitant chronic
inflammatory status, reflecting premature adaptive changes as a re-
sult of persistent increase in allostatic load, repeated cellular insults,
and imbalance of pro-ageing and anti-ageing systems [5,6]. Al-
though the exact underlying mechanisms of EVA in CKD have as
yet not been fully elucidated, cellular senescence - and the subse-
quent senescence-associated secretary phenotype (SASP) causing
chronic inflammation - appears to play a fundamental role in its ini-
tiation and progression [10–13].

In this review, we discuss the pathophysiological links between se-
nescence and EVA in CKD, with a focus on cellular senescence and
media VC, and potential anti-ageing therapeutic strategies of senolytic
drugs targeting cellular senescence and EVA in CKD.
2. Cellular Senescence

Cellular senescence is referred to as the irreversible growth ar-
rest and apoptosis resistance occurring in response to oncogenic
mutations, metabolic insults and DNA damage [14–16]. In fact, the
concept of cellular senescence was discovered nearly 50 years ago
[17,18], and since then studies have associated cellular senescence
with pathological ageing mechanisms that may represent potential
therapeutic targets for delaying and attenuating age-related pheno-
types and organ dysfunction [19–25]. Similar to replication, differ-
entiation and apoptosis, senescence is a cell event that can occur
at any point of life [26]. While acute senescence in development, re-
generation and oncogene-activation is regarded as beneficial
[27–30], chronic senescence - due to a wide range of intra- and ex-
tracellular insults or combinations, including DNA damage and mu-
tations, oncogenic stimuli, reactive metabolites, proteotoxic stress
and pro-inflammatory mediators - is considered as detrimental
[31–34]. These inducers activate two main pathways governed by
the gatekeeper tumor suppressor proteins p53 and pRB (retinoblas-
toma protein), both of which are transcriptional regulators at the
heart of pathways that include a plethora of upstream regulators
and downstream effectors. These trigger a senescence response,
and depending on tissue and cell type diversity, it takes days to
weeks for senescent cells to become fully established and irrevers-
ible [11,35] (Fig. 1). Senescent cells are resistant to apoptosis and
potentially cleaned by the immune system. The excessive accumu-
lation of senescent cells in various tissues correlates well with
age-related metabolic disorders and the development of premature
chronic disease [35]. Of note, concomitant with cellular senescence,
another common feature of ageing-related conditions is persistent
low-grade sterile inflammation, “inflammaging” [36,37]. The sou-
rce(s) of chronic inflammation in premature ageing processes re-
mains to be determined, but one possible origin could be derived
from senescent cells that develop a senescence-associated secretory
phenotype (SASP), characterized by a secretion profile with excre-
tion of pro-inflammatory cytokines, growth factors and soluble re-
ceptors that poison the surrounding tissues and affect their
function [11,35,38].
2.1. The p53 Pathway

The p53 pathway mediating senescence is mainly triggered by telo-
mere dysfunction, DNA damage and genotoxic stress [39–41]. p53 is a
crucial mediator of cellular responses to DNA damage that could prevent
cells from proliferating and induce permanent withdrawal from cell
cycle and cellular senescence [42]. Togetherwith a subsequent transcrip-
tion of the gene encoding p21, a downstream target for p53 transactiv-
ation and inhibitor of cell cycle progression, the triggered p53 signaling
causes cells to undergo senescence arrest [43]. It is well-established
that the inactivation of p53, or the gene encoding p21, can delay the rep-
licative senescence at least in diploid human fibroblasts cells [44].

2.2. The Retinoblastoma Protein (pRB) Pathway

The function of p53 is not sufficient to reverse senescence arrest in
all cell types; this will depend on whether and to what extent cells ex-
press the cell cycle inhibitor p16, a tumor suppressor and a positive reg-
ulator of the tumor suppressor protein pRB that prevents excessive cell
growth [45]. Though the exact role of the p16/pRB pathway in the se-
nescence growth arrest is not yet fully understood, one possible mech-
anism could be the consequent development of pRB-dependent
heterochromatic repression of genes encoding cyclins, many of which
are activation targets of E2F transcription factors [46]. Also, the engage-
ment of the p53 pathway could possibly interact with and induce the
pRB pathway, although the effects of pRB activation by p21 differ from
that of activation by p16, at least in some respects [45]. Interestingly,
once p16/pRB pathway is activated, the senescence arrest cannot be re-
versed by inactivation of p53, silencing of p16, or inhibition of pRB [44].
Thus, the activation p16/pRB pathway is essentially irreversible and it is
primarily triggered by oncogene mutations and various stress [47].

3. SASP

The SASP is a critical intrinsic characteristic of senescence programs
andwhile the composition of excretory products of SASP varies depend-
ing on the cell type of senescent cells, as well as the mechanisms by
which senescence is induced, SASP invariably contains a wide-range of
secreted inflammatory cytokines, chemokines, tissue-damaging prote-
ases, hemostatic and growth factors [33]. The concept of SASP is not un-
equivocal as it has both positive and negative effects on tissue and organ
function depending on the context of cellular senescence. In the chronic
senescence milieu, the abundant presence of SASP factors can induce
and advance both local and systemic pathogenic effects by altering
local tissue microenvironment, activating macrophage infiltration and
provoking nearby malignant cells [48–51]. By contrast, a time-limited
SASP profile is beneficial in healing or repairing responses. For instance,
in early stage of cutaneous wound healing, senescent cells could not
only stimulate myofibroblast differentiation and promote wound clo-
sure, but also prevent tissue fibrosis by secreting anti-fibrotic matrix
metalloproteinases [52,53]. Nevertheless, the dual role of senescence
and SASP in cancer development remains to be elucidated. Prototypic
SASP cytokines, such as interleukin (IL)-6 and IL-8 can augment the se-
nescence growth arrest at least in some senescent cells as a cancer-
protective defence [54]; on the other hand, malignant cancers exploit
the SASP factors to stimulate growth, angiogenesis, and epithelial-to-
mesenchymal transition (EMT) that further promote metastases and
cancer progression [55,56].

The SASP is primarily mediated by nuclear factor (NF)-кB, p38
mitogen-activated protein kinases (p38 MAPK) and the inflammasome
signaling, and is largely maintained through autocrine mechanisms by
SASP factor IL-1, an upstream modulator of NF-кB signaling [57,58]. In
addition, IL-1 and transforming growth factor-β (TGF-β) act together
to mediate senescence and accounts for components of a positive feed-
back loop that regulates the SASP [59]. A recent study showed that SASP
factors, such as IL-6, IL-8, osteoprotegerin (OPG), bone morphogenetic
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protein 2 (BMP-2), monocyte chemoattractant protein-1 and the prote-
ase inhibitors metalloproteinase-1 and -2 were highly expressed, both
on mRNA and protein levels, by VSMCs from dialyzed children com-
pared to control VSMCs [60]. Moreover, inhibition targeting ataxia-
telangiectasia mutated (ATM) kinases reduced the accelerated VC
observed in VSMCs from children on dialysis, which was mirrored by
the reduced expression of SASP factors BMP-2, IL-6 and OPG [60].

4. SCAPs (Fig. 1)

Senescent cell anti-apoptotic pathways (SCAPs) shield senescent cells
from apoptosis and may therefore be a critical key for targeting senes-
cent cells and developing senolytic agents, including peptides [61].
The SCAPs required for senescent cells viability were identified as the
Achilles' heel of senescent cells, and it has been verified in various
RNA interference studies that knocking down expression of proteins in-
volved in SCAPs could predispose senescent cells to death but not non-
senescent cells [22]. Among agents with such properties, dasatinib, a
synthesized dual Src/Abl family tyrosine kinase inhibitor, and quercetin,
a plant pigment and a potent antioxidant bioflavonoid that could be
found in various fruits and vegetables, were the first two senolytic
agents discovered using this approach. Both agents were shown to
induce apoptosis in senescent cells with dasatinib targeting the depen-
dence receptors/tyrosine kinase SCAP and quercetin targeting the BCL-
2/BCL-XL, PI3K/AKT, and p53/ p21/serpine SCAPs [22,62,63]. Since
then, a growing number of senolytics, including natural products, syn-
thetic small molecules, and peptides targeting the SCAPs have been
identified [22,61,64–66]. Interestingly, since itwas reported thatmuscle
extracts from fish with negligible senescence, such as sturgeon, protect
from senescence induced by oxidative stress [67], natural senolytics
may be found in many parts of nature.

Notably, the SCAPs required for senescent cell resistance to apopto-
sis vary with cell type or cell strain specificity. For instance, navitoclax,
targeting the B-cell lymphoma (Bcl-2) family of proteins, is effective
as a senolytic in human umbilical vein endothelial and lung fibroblast-
like cell strains but not in primary human fat cell progenitors nor pri-
mary human lung fibroblasts [24,68]. Also, since some senolytics can
act synergistically in certain cell types, combinations of different
senolytics can strengthen the effect as well as broaden the range of se-
nescent cell types targeted [22,69].
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5. Identification of Senescent Cells

Nouniversal standard evidence or unequivocal criterion for identify-
ing senescent cells has been established so far. Potential markers in-
clude an increase in cell size; high expression of p16INK4A and p21CIP1;
elevated cellular senescence-associated β-galactosidase (SA-β-Gal) en-
zymatic activity; positive telomere-associated DNAdamage foci and ex-
pression of SASP factors [70]. However, none of these markers are fully
sensitive nor specific. Therefore, testing a combination of markers is
highly recommended to identify the potential existence of senescent
cells in vitro or in vivo, as well as to evaluate the therapeutic effect of
senolytics on senescence [35].

6. Evidence for Senescence in CKD

CKD is characterized by an allostatic overload due to excessive oxi-
dative stress and systemic inflammation, defective anti-ageing (e.g. de-
creased Klotho expression and fetuin A) and active ageing-promoting
(e.g. hyperphosphatemia, angiotensin-2, inflammatory burden) sys-
tems, resulting in amarked discrepancy between biological and chrono-
logical age in CKD [5,6]. Indeed, patients with CKD are at high risk of
developing a number of age-related burden of life style pathologies
that occur in clusters [71], including EVA, muscle wasting, depression,
heart failure, bone mineral disorders and frailty [11,72]. EVA, as one of
the most typical premature ageing phenotypes in advanced CKD, con-
tributes to the high risk of cardiovascular morbidity and mortality in
the uremic milieu [7].

Persistent systemic inflammation is a cause aswell as a consequence
of premature ageing and senescence in CKD [37,73–75]. Telomere attri-
tion is prevalent in dialysis patients and positively correlated with the
inflammatory burden [76]. Oxidative stress, a main inducer of senes-
cence signaling, is commonly observed in patients with advanced CKD
and associatedwith its partner in crime – inflammation [77]. Inflamma-
tory molecules, such as IL-6 and tumor necrosis factor (TNF), activate
catabolism and block anabolic pathways via insulin-like growth factors
(IGFs) and themammalian target of rapamycin (mTOR) regulation [76].
In accordance with the role of SASP in the senescence process, systemic
inflammation accounts for dysfunction of the immune regulatory sys-
tem and reduced resilience to internal and external stressors, and also
acts as a catalyst for premature ageing and subsequent adverse clinical
outcomes in CKD [77].

The evidence of cellular senescence in CKD has been demonstrated
in various animal models. In rats with adenine-induced uremia, an in-
creased arterial mRNA expression of cyclin-dependent kinase inhibitor
2A (CDKN2A) was observed, and both p16Ink4a and Runt-related tran-
scription factor 2 (Runx2) protein expression were detected in and
around calcified areas of aortas [78]. Systemic bone marrow-derived
mesenchymal stem cells from rats with CKDwere also found to be pre-
maturely senescent [79]. Additionally, in a feline model of CKD, short-
ened telomeres and higher SA-β-gal activity were demonstrated in
proximal and distal tubules compared to young and biological-aged
cats [80].

We reported that shortened telomere length correlated with low
fetuin-A levels and high mortality in prevalent hemodialysis patients
[76].Moreover, in humanuremic arterial tissue, we found that indepen-
dent of chronological age, increased arterial expression of CDKN2A/
p16INK4a and the number of SA-β-Gal positive cells associated with the
extent of media VC in epigastric arteries [81]. In addition, emerging ev-
idence also suggests that processes involving Klotho could provide a di-
rect link between premature pathology and cellular senescence in CKD
[82,83]. Klotho is highly expressed in the kidney, and Klotho-knockout
mice develop progeria features with a shortened life span, extensive
vascular calcification and other tissue/organ specific defects [84]. Since
Klotho levels decrease with deterioration of renal function, CKD may
be considered as a clinical model of Klotho depletion [84]. A recent
study demonstrated that the antioxidant, anti-apoptotic and anti-
senescence effects of soluble Klotho in human VSMC was mediated by
an up-regulation of nuclear factor-erythroid related factor 2 (NRF2) sig-
naling and induction of antioxidant enzymes [85]. In addition, Gao et al.
[86] reported that the expression and activity of Sirtuin-1 (SIRT1) were
significantly decreased in aortic endothelial cells and VSMC of KL+/−
mice, suggesting that Klotho deficiency downregulates SIRT1. Accord-
ingly, treatment with a specific SIRT1 activator eliminated Klotho
deficiency-induced arterial stiffness and hypertension in this animal
model. These studies indicate that the downregulatedNRF2 and SIRT ac-
tivity could potentially be involved in the pathogenesis of Klotho
deficiency-related EVA and arterial stiffness. Further work is warranted
to clarify the key pathways of Klotho as a contributor to premature vas-
cular ageing in CKD.

Of note, apart from the data of ageing and senescence in CKD from
in vitro, in vivo animal models and clinical investigations of adult pa-
tients, studying arteries of children with CKD should potentially high-
light the accelerated EVA process and senescence in the context of
renal dysfunction without confounding by the classical Framingham
risk factors [60,87–89]. Indeed, data from pediatric arterial biopsies sug-
gest that EVAwithVSMC osteogenesis appears to occur already before it
is possible to detect it by ‘gold standard’ clinical measurements, such as
pulsewave velocity and computed tomography scans; only the children
with themost highly calcified arteries had signs of increased aortic stiff-
ness and elevated Agatston score [89]. The presence of EVA and VSMC
dysfunction in childrenwith CKD -with absence ofmost traditional car-
diovascular risk factors - support the notion that that senescence and
EVA are related to kidney dysfunction per se.

7. Senescence, Media VC and EVA

7.1. VSMC Calcification in CKD

Though VSMC calcification shares similarities with developmental
osteogenesis and chondrogenesis, it is a distinct pathological and active
alteration rather than a physiological process. Under normal physiolog-
ical conditions, a competent defensive pathway would protect VSMCs
from phenotypic differentiation and ectopic calcification. Accumulating
evidence indicates that the uremic milieu (accumulation of uremic
toxins and other factors inducing cellular oxidative stress) evokes the
key pathways of VSMCs calcification and initiates tissue damage by in-
ducing modifications in proteins and DNA [90–93]. The inhibitory
defence systems in CKD tends to be overwhelmed by hyperphosph-
atemia and hypercalcemia, which in combination with hyperparathy-
roidism and hypomagnesemia (and worsened by warfarin treatment),
further challenge the VC inhibitory mechanism [92,94]. For instance,
fetuin-A, a circulatingglycoprotein produced by liver and adipose tissue,
which is involved in insulin resistance and atherosclerosis, acts as a po-
tent inhibitor of ectopic calcification through the binding of calcium and
phosphate into calciprotein particles (CPPs) preventing its crystalliza-
tion [95,96]. A recent study further demonstrated that decreased
fetuin-A in extracellular vesicles (EVs) and CPPs from uremic serum
could promote VC in vitro [97]. Consequently, stressed VSMCs lose
their capacity to preserve a balanced level of VC inhibitors and are
predisposed to undergo phenotypic differentiation from a contractile
to synthetic VSMC phenotype. If this dysregulated signaling is not
compensated, the activation of essential osteogenic/chondrogenic tran-
scription factors such as Runx2, NF-κB, Msh homeobox 2 (MSX2), core-
binding factorα-1 (CBFA1), serum- and glucocorticoid-inducible kinase
1 (SGK1) or osterix and SRY-Box 9 (SOX9) further induce the expression
of osteogenic/chondrogenic proteins in VSMCs, such as osteocalcin,
BMP-2 and type I collagen, in the context of high circulating levels of cal-
cium and phosphate. Eventually this will promote uremic VSMCs to
undergo osteochondrocytic differentiation and vessel ossification
[47,98–104]. In fact, even in the absence of potent hyperphosphatemia
and hypercalcemia, the phosphate and calcium load drives VC in both
CKD and general population [105]. In accordance, a recent study in
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rats with adenine-induced CKD showed that protein-bound uremic
toxins, indoxyl sulfate and p-cresyl sulfate per se could promote VC in
the aorta and peripheral vessels via inflammatory and coagulation
pathways [106].

7.2. DNA Damage and VSMC Calcification

The predominant EVA pathology in CKD, manifested as media VC
and arterial stiffness, is to a large extent driven by VSMC osteogenic
differentiation due to excessive DNA damage [9]. During normal cell
proliferation, progressive telomere erosion exposes an uncapped free
double-stranded chromosome end, triggering a DNA damage response
(DDR) [107]. However, in the uremicmilieu, theDDR pathwaysmay be-
come deficient as a result of an allostatic overload (i.e., oxidative stress,
inflammation, glycation, carbamylation, accumulation of uremic toxins,
hypercalcemia and hyperphosphatemia), which, in combination with
hypomagnesemia, deficiency of fetuin-A and vitamin K, promote ure-
mic cells to undergo senescence and become apoptosis-resistant
[93,108]. VSMCs cultured by serial passaging acquire DNA damage fea-
tures, such as accumulation of γH2AX and 53BP1 foci, as well as an ele-
vated expression of p16INK4A [109,110]. In accordance, alkaline
phosphatase (ALP) activity and Runx2 expression increase, implying
that senescencemay induce a pro-calcific phenotype and drive calcifica-
tion in the vessel wall [110].

Another fact supporting the involvement of senescence in media VC
is that the activation of ATM and ataxia telangiectasia and Rad3-related
(ATR) kinases in DDR signaling acts as a key factor in osteogenic differ-
entiation and calcification of VSMCs; inhibition of this pathway pre-
vents osteogenesis of VSMCs in vitro [107]. In addition, co-culture
experiments with mesenchymal progenitor cells showed that the acti-
vation of osteogenic differentiation was possibly mediated by secretory
profiles of ageing VSMCs, i.e. SASP [33,110]. More importantly, several
SASP factors released by senescent VSMCs, such as IL-6, BMP-2 and os-
teoprotegerin, modulate calcification processes [110,111]. These find-
ings imply that the existence of senescent VSMCs may not only drive
osteogenic differentiation and calcification locally, but also induce
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VSMCs calcification at remote sites, triggering both local and systemic
stem cells to undergo osteogenic differentiation.

7.3. Nuclear Lamina and EVA

Recent studies revealed that VSMCs undergo nuclear defects and
accelerate senescent processes in ageing diseases [109]. One typical ex-
ample of this cellular change is observed in children with Hutchinson-
Gilford progeria syndrome (HGPS), which is most commonly caused
by mutations in the LMNA gene, encoding the nuclear lamina protein
lamin A, leading to the accumulation of its precursor protein, prelamin
A, particularly in VSMCs [112]. Similarly, accumulation of prelamin A
has been detected in arteries of children on dialysis with EVA and arte-
rial stiffening [110]. Studies have shown that the uremic toxin indoxyl
sulphate could reduce cleavage of prelamin A into mature lamin A by
endopeptidase FACE1 (also called Zmspte24), and thus cause the accu-
mulation of prelamin A in VSMCs [110,113]. This in turn interferes with
DNA repair by delaying the recruitment of key factors of DDR, resulting
in persistent DNA damage and subsequent p53 and pRB senescence sig-
naling [109]. Consequently, premature senescent VSMCs undergo fur-
ther osteogenic gene expression and VSMC calcification and attrition.
Although the role of prelamin A and lamin A in senescence and VSMC
calcification needs further investigations, the accumulation of these
proteins could be hypothesized as a potentialmechanismof EVA in CKD.

8. Targeting Senescence in Media VC and EVA (Fig. 2)

Currently, the treatment of EVA and premature senescence in CKD is
an unsolved issue. Potential intervention strategies include lowering
phosphate burden, activating SIRT and transcription factor NRF2, in-
creasing Klotho expression, inhibiting mTOR and reducing DNA dam-
age, as well as avoidance of life-style related stressors by dietary
phosphate and caloric restriction and physical exercise [114]. Addition-
ally, given the role of gut-microbiota-derived uremic toxins in VC, gut
microbiota modulation also represents a promising approach to allevi-
ate EVA [106,115]. However, it could be speculated that the therapeutic
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goals of treating CKD-related EVA could be achievedmore effectively by
targeting fundamentalmechanisms of ageing, such as processes leading
to cellular senescence. Based on the insights of cellular senescence, SASP
and SCAPs, potential strategies for alleviating the ageing effects of se-
nescent cells include: 1) inhibition of pathways leading to senescence-
associated growth arrest; 2) improving the clearance of senescent
cells, and 3) interference of SASP signaling factors [35]. Of note, the
first treatment strategy could be a double-edged sword and possibly
problematic. On the one hand, the inhibition of p16INK4a, pRB, p53 or
p21 tumor suppressor pathways could diminish the defensive effect of
senescent cells against cancer and increase the risk of cancer develop-
ment [116]. On the other hand, strategies that prevent senescent cell ac-
cumulation by reducing metabolic damage could limit ageing-related
tissue dysfunctions. For instance, caloric restriction, which delays cellu-
lar senescence, and slows down VC and ageing, was shown to be an ef-
fective approach to extend the lifespan in animals [114,117].

The second solution - improving the clearance of senescent cells
- may be more attractive, since it may not only alleviate tissue/
organ inflammation and dysfunction, but also potentially may help
to avoid cancer risk. The recent development of senolytic agents in-
terfering with SCAPs pathways to induce apoptosis of senescent
cells, is a promising approach [118]. Several senolytics, including
dasatinib, quercetin, navitoclax and peptides targeting BCL-2 and
p53-related SCAPs, have been shown to effectively eliminate senes-
cent cells in mice, and decrease senescent markers (e.g. SA-β-Gal ac-
tivity, p16INK4A, p21CIP1, and telomere-associated foci) [61,66].
Vasculature effects of senolytics achieved so far in the animal re-
search field are: improved cardiac ejection fraction in old mice, and
alleviated VC and increased vascular reactivity in hypercholesterol-
emic, high fat-fed apoE−/− mice [22,119]. Among the above-
mentioned senolytics, the combination of dasatinib and quercetin
turned out to be the most effective intervention in improving phys-
ical function and reducing VC in the aorta of aged and hypercholes-
terolemic mice [120]. Most notably, this combination therapy
extended the lifespan of naturally aged and senescent cell
transplanted young mice by 36% [120]. Also, the first-in-human
pilot clinical trial of senolytics in idiopathic pulmonary fibrosis
(IPF) further indicated that short-term, intermittent administration
of dasatinib and quercetin may alleviate the physical dysfunction
of IPF. These findings suggest that time may be ripe for randomized,
controlled trials evaluating the effects of dasatinib, quercetin and
other senolytics targeting cellular senescence-associated clinical
conditions [121].

The third alternative approach of targeting senescence, i.e., interfer-
ing with SASP signaling to limit the development of SASP, could be
achieved by inhibiting pro-inflammatory pathways, such as NF-кB, IL-
6 and p38 MAPK signaling [57,58]. Targeting SASP is a logical approach
since IL-6 sits at the “central hub” of factors involved in residual inflam-
matory risk, and has been proven to be effective as treatmentwith IL-1β
mAb (canakinumab) reduced the risk of major adverse cardiovascular
events with 30% in the CKD subgroup of the CANTOS study [122]. How-
ever, while SASP inhibitors would reduce the systemic burden of senes-
cent cell-associated inflammation without interfering with anti-
oncogenic pathways, this intervention may also act through other
drug-specific mechanisms that potentially could impair immune cell
clearance capacity, resulting in a risk of excessive accumulation of se-
nescent cells [123]. Thus, we need to improve our understanding of
how such unwarranted implications of SASP interventions, i.e.,
senescent-cell accumulation, could be avoided.

9. Conclusion

Several lines of new evidence have emerged recently, indicating that
cellular senescence plays an important role in CKD-associated EVA.
While more future work is warranted to identify and understand the
specific key factors and ageing pathways involved in EVA and cellular
senescence in CKD, interventions targeting the fundamental underlying
disorders of cellular senescence and the development of SASP - rather
than addressing specific risk factors, such as hyperphosphatemia and
uremic toxins one at a time – appear already today as feasible strategies
that could open new and effective therapeutic opportunities to prevent
uremic EVA. The results of a recent clinical trial of senolytics in
idiopathic pulmonary fibrosis indicate that interventions targeting se-
nescent cells in premature ageing diseases is a transformative and
promising strategy.
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