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ABSTRACT 

Cancer arises from cells that acquire genetic and epigenetic changes during the course of a, 

sometimes decades-long, somatic evolutionary process. These changes result in deregulation 

of a multitude of cellular processes leading to novel capabilities, often referred to as hallmarks 

of cancer, and a strong selective advantage for these cells albeit at a dramatic cost to the 

organism as a whole. Both, gene expression but also turn-over of gene products can become 

deregulated. The ubiquitin-proteasome system is responsible for the targeted degradation of 

proteins, and components of this system are altered during cancer development. Target 

specificity of this system is largely attained through E3 ubiquitin ligases that mediate the 

covalent attachment of ubiquitin to their substrates. The largest group of E3s are cullin-RING 

domain ligases (CRLs) with SKP1-cullin1-F-box protein (SCF) E3 ligases, or CRL1, 

representing one of the best-characterised subgroups of CRLs. These SCF ligases are 

multiprotein complexes containing one of, in human cells, 69 F-box proteins which function 

as substrate-adaptor subunits. Collectively, the family of F-box proteins has been found to be 

critically involved in virtually all the cancer hallmarks. However, despite their important role 

in cancer development, only a handful of SCFs has been molecularly and functionally well-

characterised and detailed knowledge of how deregulation of specific SCF ligases and 

downstream substrate effectors impinges on cancer traits is lacking. 

One of the main aims of the work presented in this thesis is to find cellular vulnerabilities 

resulting from deregulation of F-box proteins in cancer. FBXW7 is the most commonly 

mutated F-box protein in human cancers. Its inactivation leads to upregulation of its substrates 

including cyclin E, MYC or SOX9 (paper IV) resulting in deregulated proliferation, increased 

metastasis and drug resistance but also replication stress. Cancer cells undergoing replication 

stress become more dependent on signalling pathways detecting and repairing damaged DNA 

(papers I and III) and are consequently more sensitive to therapies targeting checkpoint and 

repair proteins such as WEE1, ATR or DNA-PK kinases (paper II). 

In paper I we describe a novel function for the largely uncharacterised F-box protein FBXL12 

in regulating the response to oncogene-induced replication stress. FBXL12 complements the 

Fanconi anaemia (FA) DNA repair pathway by targeting its central component FANCD2 for 

proteasomal degradation. The FA pathway not only plays a crucial role in resilience to 

endogenous sources of replication stress but also to drug-induced stress. FBXL12 and cyclin E 

are upregulated and correlated in human cancers and depletion of FBXL12 results in increased 

sensitivity to replication stress which posits FBXL12 as a potential cancer drug target. Ablation 

or pharmacological inhibition of FBXL12 prevents degradation of FANCD2 and breast cancer 
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cells are sensitised to the adverse effects of drug- as well as oncogenic cyclin E-induced 

replication stress. 

In paper II we focus on exploring further ways of sensitising cancer cells to replication stress. 

We performed a screen to identify potential viability markers in response to replication stress 

induced by WEE1 inhibitor AZD1775 and discover novel synergistic combinations. 

Additionally, we determine a subset of basal-like breast cancer cells that responds to treatment 

initially but recovers after treatment cessation and identify PTEN as a novel predictive marker 

for such responses, with cells expressing low levels of PTEN being highly sensitive acutely 

and failing to recover. Furthermore, inactivation or genomic deletion of DNA-PK, an apical 

DNA damage kinase, attenuates recovery and sensitises basal-like breast cancer cells to 

AZD1775. Mechanistically, loss of PTEN or DNA-PK impair CHK1 activation and S-phase 

arrest in response to AZD1775 treatment, which finally ensues lethal replication stress and loss 

of survival. 

In paper III we concentrate on FBXO28, another poorly-studied member of the F-box family, 

which we find to degrade ARHGEF6 and ARHGEF7 activators of the Rho-type GTPase 

RAC1, involved in cell motility. Surprisingly, we identify a novel function for FBXO28 and 

ARHGEF6/7 in promoting the repair of breaks in heterochromatin DNA. Following DNA 

damage, tightly chromatin-bound FBXO28 is released and promotes degradation of 

nucleoplasmic ARHGEF6/7 to modulate activation and inactivation cycles of nuclear RAC1 

and allow for efficient resolution of H3K9me2/3-positive damaged sites. 

In paper IV we add a key oncogenic transcription factor to the growing list of FBXW7 

substrates; SOX9. FBXW7 ubiquitylates and degrades SOX9 upon phosphorylation by 

GSK3β. Mutation and inactivation of FBXW7 in medulloblastoma concurs with elevated 

SOX9 protein expression and poor patient outcome. In medulloblastoma cell line models we 

demonstrate increased cell motility, metastasis and increased resistance to cytostatic treatment 

after expression of a non-degradable SOX9 mutant. Conversely, inhibition of the 

PI3K/AKT/mTOR pathway promoted GSK3β-dependent SOX9 degradation and sensitised 

FBXW7-proficient medulloblastoma cells to cisplatin. 
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Fig. 1 Graphical abstract incorporating the main findings of the four constituent papers of this thesis. This figure 
and subsequent figures in this thesis have been generated using BioRender. 
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POPULAR SCIENCE SUMMARY 

The human genome contains around 20 000 genes, which are the blueprint for the production 

of some 100 000 different protein species. These proteins perform the actions cells need to 

carry out to collectively form an entire organism. Some proteins are only needed for seconds 

while others have to be present for a lifetime. The so-called ubiquitin-proteasome system 

determines the fate of proteins. First, they are earmarked by the attachment of a small protein 

called ubiquitin, then run through a molecular shredder, the proteasome. Within this system, F-

box proteins hold the power as they ultimately take the decision of which protein to mark for 

destruction. As one such F-box protein is responsible for controlling many different targets, 

which in turn may regulate additional proteins, the actions of F-box proteins can completely 

overturn the behaviour of a cell. This is why F-box proteins are frequently deregulated in 

cancer. The presence or absence of specific F-box proteins may, for example, decide if a cancer 

cell exposed to chemotherapy will repair the damage incurred from the drug and survive or fail 

to do so and die. 

During my PhD research presented here, I focused on three F-box proteins, which go by the 

names FBXW7, FBXL12 and FBXO28, and their target proteins. 

FBXW7 is among the infamous top 10 most frequently mutated cancer genes. It is a so-called 

tumour suppressor, which means losing it will promote the transition from a healthy cell to a 

cancer cell. Which molecular changes this entails in detail has been studied in a number of 

cancer types. We now focused on its role in the most common brain tumour in children, 

medulloblastoma. Most children survive this disease but have to live with severe long-term 

side effects of the treatment, such as reduced cognitive functions or secondary cancers later in 

life. Thus, therapy improvements are urgently needed. We show that FBXW7 destroys a stem 

cell protein called SOX9. If SOX9 cannot be degraded efficiently, cancer cells become less 

sensitive to chemotherapy and more prone to metastasise, forming new tumours elsewhere. 

Our study also identified drugs that enhance the destruction of SOX9 and thereby re-sensitised 

cancer cells with functional FBXW7 to chemotherapy, which may help to reduce 

chemotherapy drug concentrations and thereby the toxic side effects. 

In contrast to FBXW7, much less is known about the F-box proteins FBXL12 and FBXO28. 

They also differ from FBXW7 in that they act like oncogenes, which means that high levels of 

FBXL12 or FBXO28 favour the development of cancer. 

Oncogenes typically promote the rapid proliferation of cancer cells. However, at the same time, 

the fast-paced nature of most cancer cells means they are stressed and more likely to make 
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mistakes when copying their DNA. FBXL12, however, helps them cope with this particular 

stress known as replication stress. Healthy cells do not experience appreciable levels of 

replication stress which can thus be considered an Achilles’ heel of cancer. Based on our results 

it may be possible to exploit this weakness by pharmacologically targeting FBXL12 while 

avoiding effects on non-cancer cells tantamount to side effects. 

In addition, enhancing the level of replication stress through inhibition of control proteins, also 

known as checkpoint proteins, using compounds like AZD1775 could increase the dependence 

on FBXL12 further. Unfortunately, though, some cancer cells survive such treatment and grow 

back. Interestingly, we found that a highly frequent and, from the viewpoint of a cancer cell, 

highly beneficial mutation in a tumour suppressor gene known as PTEN renders aggressive 

cancer cells more sensitive to the replication stress-inducing drug AZD1775, potentially 

identifying patients whose cancers could be particularly sensitive to this agent. 

Often F-box proteins not only regulate one single process related to cancer but several. In the 

case of FBXO28, we found that its deregulation promotes both cell migration as well as DNA 

repair. Intriguingly, chemotherapy treatment has been found to promote metastasis that is 

driven by migratory cells, hinting at FBXO28 being a molecular link between these two 

seemingly disparate processes. 

Collectively, the results of this thesis emphasise the central role of F-box proteins and their 

targets in cancer-related pathways and pinpoint novel ways of intersecting them. 
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POPULÄRVETENSKAPLIG SAMMANFATTNING 

Det mänskliga genomet innehåller ungefär 20 000 gener som utgör ritningen för produktion av 

ca. 100 000 olika proteiner vilka tillsammans bidrar till uppbyggnaden av människokroppen. 

Vissa proteiner behövs endast under korta perioder medan andra måste vara närvarande under 

hela vår livstid. Mängden protein styrs av så kallade post-translationella modifieringar såsom 

fosforylering och ubiquitylering. Nedbrytning av proteiner sker när dessa öronmärkts med 

ett annat protein som kallas ubiquitin i cellens avfallskvarnar, proteasomerna. Det så kallade 

ubiquitin-proteasom-systemet styr således vilka proteiner som inte längre behövs. Inom detta 

system har F-box-proteiner en speciellt viktig funktion genom att i första hand, avgöra vilket 

protein som skall märkas in med ubiquitin och därmed brytas ner i proteasomerna. Eftersom 

F-box gener kontrollerar nedbrytningen av många olika proteiner, som i sin tur reglerar 

ytterligare proteiner, kan förändrad funktion av F-box proteiner få mycket stora effekter på 

cellernas beteende vilket är en orsak till att F-box proteiner ofta är muterade vid sjukdom såsom 

cancer. Närvaron eller frånvaron av ett specifikt F-box protein kan till exempel påverka hur en 

cancercell som utsätts för cytostatika kommer att reparera skador i DNA och överleva, eller 

inte och sålunda elimineras efter behandling. 

Under mitt doktorandarbete som presenteras i denna avhandling har jag fokuserat på tre F-box-

proteiner som kallas för FBXW7, FBXL12 och FBXO28. 

FBXW7 är en av de gener som oftast är muterad i cancerceller. Det är en så kallad tumör 

suppressor vilket innebär att förlust av FBXW7 kan leda till att en normal cell omvandlas till 

en cancercell. Vilka molekylära förändringar detta innebär i detalj har studerats vid flera typer 

av cancer. I mitt arbete har jag fokuserat på dess roll i den vanligaste hjärntumören hos barn, 

medulloblastom. De flesta barn överlever denna sjukdom men måste leva med allvarliga och 

långvariga biverkningar efter behandlingen såsom minskade kognitiva funktioner eller 

sekundär cancer senare i livet. Således är terapiförbättringar mycket angelägna. Vi fann att 

FBXW7 förstör ett stamcellsprotein som heter SOX9. Om SOX9 inte kan förstöras av FBXW7 

blir cancercellerna mindre känsliga för cytostatika vilket kan leda till spridning av cancerceller 

och utveckling av nya tumörer (metastaser). Våra studier visar även att specifika läkemedel 

som stimulerar nedbrytning av SOX9 i cancerceller med funktionellt FBXW7 protein kan göra 

cancerceller mer känsliga för kemoterapi. Detta arbete bidrar därmed till att öka vår kunskap 

kring hur cancerceller påverkas av cytostatikabehandling vilket i sin tur kan leda till minskade 

behandlingsbiverkningar hos patienter med medulloblastom. 
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Jämfört med FBXW7 är vår kunskap kring FBXL12 och FBXO28 mycket begränsad. Dessa 

F-box proteiner skiljer sig avsevärt från FBXW7 genom att de stimulerar cancercellernas 

tillväxt och överlevnad, i likhet med andra så kallade onkogener, vilket innebär att höga nivåer 

av FBXL12 och FBXO28 kan gynna utvecklingen av cancer. 

Onkogener främjar snabb celldelning hos cancerceller. Detta innebär samtidigt att 

cancercellerna blir mer benägna att göra misstag vid kopiering av DNA (replikationsprocessen) 

och celldelning. Mitt arbete har visat att FBXL12 hjälper cancercellerna att hantera den ökade 

stressen vid replikation, så kallad replikationsstress, och övervinna de skador som uppstår i 

DNA hos snabbt växande cancerceller. Friska celler upplever inte denna typ av 

replikationsstress vilket kan betraktas som en akilleshäl hos cancercellen. Vårt arbete tyder på 

att det kan vara möjligt att utnyttja denna svaghet hos cancercellerna genom att inaktivera 

FBXL12 och/eller stimulera celldelning ytterligare med hjälp av andra läkemedel som driver 

celldelning, tex AZD1775, och därmed öka beroendet av FBXL12 än mer.   

Tyvärr överlever och återväxer ofta cancerceller efter behandling med cancerläkemedel. Med 

hjälp av detaljerade molekylära analyser fann vi att en mycket frekvent och ur en cancercells 

synvinkel fördelaktig mutation i tumörsuppressorgenen PTEN visade sig påverka 

cancercellernas känslighet och förmåga att återväxa efter AZD1775 behandling. Detta arbete 

visar att cancerceller som inaktiverat PTEN är speciellt känsliga för AZD1775 vilket kan bidra 

till utveckling av mer individualiserad cancerbehandling.  

Ofta reglerar F-box-proteiner flera olika processer som påverkar tumörutveckling. När det 

gäller FBXO28 har vi visat att detta protein styr både cellernas förmåga att förflytta sig samt 

reparera skador i DNA. Tidigare studier tyder på att cytostatikabehandling även kan främja 

cancercellers förmåga att förflytta sig och metastasera. En fascinerande möjlighet är 

följaktligen att FBXO28 skulle kunna utgöra en molekylär länk mellan dessa till synes olika 

processer, DNA reparation och metastasering. 

Sammantaget understryker resultaten i denna avhandling F-box-proteiners centrala roll vid 

utveckling av cancer samt olika möjligheter att påverka cancercellers känslighet för 

cancerläkemedel. 
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POPULÄRWISSENSCHAFTLICHE ZUSAMMENFASSUNG 

Das menschliche Genom umfasst ca. 20.000 Gene, Baupläne für die Produktion 

hunderttausender Proteine in unseren Zellen. Diese Proteine haben wiederum spezifische 

Aufgaben und sorgen gemeinsam dafür, dass Zellen individuell und als Teileinheiten eines 

Organismus funktionieren. Manche Proteine werden nur für wenige Sekunden benötigt, 

während andere ein Leben lang eine bestimmte Funktion erfüllen. Das sogenannte Ubiquitin-

Proteasom-System kontrolliert dabei den Abbau von nicht mehr benötigten Proteinen. 

Zunächst werden sie durch einen Anhang in Form des kleinen Proteins Ubiquitin markiert, um 

daraufhin in einem molekularen Reißwolf, dem Proteasom, zerlegt zu werden. In diesem 

System kommt den F-Box-Proteinen eine besondere Rolle zu, da sie die Entscheidung treffen, 

welches Protein wann und wo markiert und damit abgebaut wird. Da ein solches F-Box-Protein 

viele weitere kontrolliert, die wiederum andere regulieren, können F-Box-Proteine das 

Verhalten einer Zelle ins Gegenteil verkehren. F-Box-Proteine wirken daher als 

Schaltzentralen und sind in Krebszellen häufig mutiert. 

Diese Doktorarbeit befasst sich insbesondere mit drei F-Box-Proteinen: FBXW7, FBXL12 und 

FBXO28 sowie den von ihnen regulierten Proteinen. 

FBXW7 ist unter jenen 10 Genen, die am häufigsten Mutationen in Tumoren aufweisen. Es ist 

ein sogenannter Tumorsuppressor, was bedeutet, dass sein Verlust die Tumorentwicklung 

fördert. Die molekularen Gründe dafür wurden in zahlreichen Krebsarten untersucht, aber diese 

Arbeit konzentriert sich diesbezüglich auf den bei Kindern häufigsten Gehirntumor, das 

Medulloblastom. Die meisten Patienten überleben diese Erkrankung, müssen allerdings mit 

lebenslangen Konsequenzen der Behandlung leben, unter anderem beeinträchtigte kognitive 

Funktionen oder sekundäre Tumore. Dementsprechend werden Behandlungsverbesserungen 

dringend gesucht. Wir zeigen hier, dass FBXW7 ein Stammzellprotein namens SOX9 abbaut. 

Funktioniert dieser Abbau nicht, werden Krebszellen weniger empfindlich gegenüber einer 

Chemotherapiebehandlung und metastasieren häufiger, formen also zusätzliche Tumoren an 

anderen Stellen im Körper. Allerdings konnten wir pharmakologische Inhibitoren 

identifizieren, die den FBXW7-abhängigen Abbau von SOX9 fördern und damit 

Medulloblastomzellen wieder für die Chemotherapie sensibilisieren. Daher könnte die 

Konzentration von Chemotherapiemedikamenten und damit Nebeneffekte basierend auf diesen 

Erkenntnissen reduziert werden. 

Im Gegensatz zu FBXW7 waren die Funktionen von FBXL12 und FBXO28 zu Beginn dieser 

Arbeit kaum erforscht. Ferner haben sie auch den gegenteiligen Effekt auf Krebszellen: Hohe 
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Konzentrationen unterstützen die Entwicklung von Krebs, sie fungieren daher wie sogenannte 

Onkogene. 

Onkogene fördern typischerweise die schnelle Proliferation von Krebszellen. Gleichzeitig 

bedeutet diese Geschwindigkeit jedoch einen Stressfaktor, der Fehler beim Replizieren der 

DNS bewirkt. FBXL12-abhängige Regulation von DNS-Reparaturfaktoren hilft mit diesem 

Replikationsstress umzugehen. Gesunde Zellen stehen hingegen kaum unter 

Replikationsstress. Basierend auf unseren Ergebnissen könnte es daher gelingen, durch 

Inhibition von FBXL12 diese spezifische Schwachstelle von Krebszellen auszunützen. 

Zugleich wären Auswirkungen auf gesunde Zellen, gleichbedeutend mit Nebenwirkungen, 

gering. 

Ein neuartiges Medikament, AZD1775, das sich derzeit in klinischen Studien befindet, 

eliminiert einen Proliferationskontrollpunkt, sodass im Falle von Krebszellen eine kritische 

Schwelle der Proliferationsgeschwindigkeit überschritten wird, was mit irreparablen Fehlern 

in der DNS-Replikation und meist dem Zelltod einhergeht. Problematischerweise überleben 

einige wenige Krebszellen diese Therapie dennoch und beginnen danach wieder sich zu teilen. 

Der Verlust von FBXL12 erhöht die Empfindlichkeit gegen AZD1775. Weil FBXL12 aber 

von Krebszellen benötigt wird, um ihre grundsätzlich erhöhten Stressniveaus zu überleben, 

sind solche Mutationen sehr selten. Überraschenderweise konnten wir allerdings feststellen, 

dass eine sehr häufige und aus Sicht einer Krebszelle äußerst vorteilhafte Mutation in dem 

Tumorsuppressorgen PTEN dazu führt, dass sich solch mutierte Zellen nicht von einer 

AZD1775-Behandlung erholen können. Diese Erkenntnis könnte helfen, diejenigen Patienten 

im Vorhinein zu identifizieren, welche den größten Nutzen von einer solchen Behandlung 

hätten. 

Häufig regulieren F-Box-Proteine nicht nur einen einzelnen, sondern mehrere ansonsten 

scheinbar unabhängige Prozesse, welche an der Entwicklung von Tumoren beteiligt sind. Im 

Falle von FBXO28 fanden wir heraus, dass dessen Deregulierung sowohl die Zellmigration als 

auch die DNS-Reparatur fördert. Chemotherapie, welche hauptsächlich die DNS von 

Krebszellen beschädigen und diese damit abtöten soll, kann in bestimmten Fällen auch die 

Metastasenbildung, bedingt durch migrierende Zellen, fördern. Eine faszinierende Möglichkeit 

wäre daher, dass FBXO28 eine molekulare Verbindung zwischen diesen beiden Prozessen und 

ein potenzielles Ziel für pharmakologische Intervention darstellt. 

Insgesamt unterstreichen die Ergebnisse dieser Arbeit die zentrale Rolle von F-Box-Proteinen 

in der Krebsentstehung und zeigen neue Wege auf, diese Funktionen zu unterbinden. 
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1 INTRODUCTION 

1.1 THE UBIQUITIN-PROTEASOME SYSTEM 

The human genome contains approximately 20 000 protein-coding genes which once 

transcribed can be differentially spliced and translated into a manifold higher number of protein 

isoforms. Additionally, post-translational modifications (PTMs) lead to further diversification 

adding another layer of proteome complexity. With the exception of some chromatin 

modifications, PTMs are typically of a more transient nature allowing for rapid adjustment to 

changes in the cell’s environment or in response to physiological processes. 

Ubiquitylation, the covalent attachment of the small 8.5kDa protein ubiquitin to the ε-amino 

group of lysines is one such PTM. Since its discovery, ubiquitylation has mostly been regarded 

as a regulatory mechanism in the context of proteasomal degradation, but in recent years, non-

proteolytic functions have been demonstrated, highlighting its diverse effects on various 

biological processes. The ubiquitin-proteasome system (UPS) is a highly conserved ATP-

driven process executed by a cascade of three key enzymes, E1, E2 and E3, that together 

catalyse ubiquitylation of specific target proteins. The E1 enzyme or ubiquitin-activating 

enzyme catalyses the first step of this multistep cascade. By hydrolysing ATP and adenylating 

the C-terminal glycine of ubiquitin, the E1 enzyme activates ubiquitin and allows it to bind to 

a cysteine within its active site. The activated ubiquitin is then passed on to an E2-conjugating 

enzyme which in a concerted reaction together with an E3 ubiquitin ligase catalyses the 

covalent attachment of ubiquitin through formation of an isopeptide bond between a lysine of 

the substrate protein and the glycine residue of ubiquitin. The respective E3 ligase involved 

largely conveys the high specificity of this system[1]. Ubiquitin is typically attached to a lysine 

via its carboxy terminus resulting in an initial monoubiquitylation, or if multiple ubiquitylation 

reactions occur at distinct sites, multi-monoubiquitylation. However, additional ubiquitin 

molecules can also be attached to the first one, yielding a polyubiquitin chain on substrates. 

Ubiquitin itself contains 7 lysines (K6, K11, K27, K29, K33, K48 and K63) which can be used 

to extend the polyubiquitin chain, resulting in structural diversity with multiple potential 

ubiquitin chain combinations (the “ubiquitin code”). The significance of most of these 

variations is not yet fully understood, but the attachment of for example K48-linked or mixed 

K48/K11 polyubiquitin chain has been shown to target proteins for degradation in the 26S 

proteasome, while K63 linkages typically are involved in autophagic protein quality control[2]. 

Proteins ubiquitylated and targeted for proteasomal degradation finally interact with the 26S 

proteasome which consists of a central barrel-shaped unit, the 20S core particle, and a cap, the 

19S regulatory particle, on one or both ends of the barrel[3]. The latter is responsible for 
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selectively interacting with substrates, deubiquitylating and transferring them to the core[3]. 

The 20S unit comprises four ring-shaped heptamers stacked on top of each other with the 

central two rings containing subunits with proteolytic activity[3]. Much like phosphorylation 

which can be reversed by phosphatases, ubiquitylation is not an irreversible process and more 

than 100 proteases known as deubiquitylating enzymes (DUBs) can cleave off ubiquitin from 

substrates and replenish the pool of free ubiquitin molecules, thus introducing another layer of 

regulation of the UPS[4].  

In general, the UPS is highly active in cancer cells, particularly in hematologic malignancies. 

Bortezomib (Velcade), the first approved drug targeting the 26S proteasome by reversibly 

binding one of the catalytic core subunits, is exploiting this circumstance and has proven 

efficient for the treatment of multiple myelomas and mantle cell lymphomas[5]. However, 

patients frequently relapse and bortezomib is less effective in solid tumours[5]. This has been 

suggested to be due to residual activity of the proteasome in the presence of bortezomib being 

sufficient in these tumours[6]. Although second-generation proteasome inhibitors are under 

development, targeting other components of the UPS such as E3 ligases or DUBs could prove 

more successful due to the greater specificity of such inhibitors as compared to general UPS 

shut-down[5]. However, potential redundancies may play a greater role for the occurrence of 

treatment resistance when targeting specific upstream UPS components which should be taken 

into account. 

 

1.2 THE SCF UBIQUITIN LIGASE 

In human cells more than 600 putative E3 ubiquitin ligases are carrying out the final step of the 

ubiquitylation cascade, while the number of E2 enzymes is much lower and there are even 

fewer, only two known, E1 enzymes[7, 8]. E3s can be classified into three families, HECT 

(homologous to E6-AP carboxyl terminus) domain ligases, really interesting new gene (RING) 

finger domain containing ligases and RING-in-between-RING (RBR) ligases with the RING-

type ligases containing the largest group, Cullin-RING E3s (CRL). CRL ligases are multi-

protein complexes consisting of a Cullin backbone subunit, a RING domain-containing protein 

responsible for binding the E2 enzyme, and an adaptor protein linking the core ligase to a 

substrate receptor subunit responsible for the specificity of the E3 ligase complex. Of eight 

such complexes, the CRL1 also known as the S-phase kinase-associated protein 1 (SKP1)-

Cullin1-F-box protein (SCF) complex, is the best-characterised CRL E3 ligase[9]. The F-box 

protein, named after the first discovered family member cyclin F, is the variable component of 

the SCF ligase with an F-box domain binding SKP1 that links to the remainder of the complex. 
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There are at least 69 F-box genes in human cells, some with a well-defined set of substrates 

and functions, such as FBXW7 (also known as hCDC4), SKP2 or β-transducin repeat-

containing protein 1 and 2 (βTRCP1/2), many, however, still without known functions or 

established substrates[1]. F-box proteins are themselves sub-divided into three classes 

according to their domain structure, one class containing all those with WD40 domains 

(FBXW), the second class containing those featuring leucine-rich repeat (LRR) domains 

(FBXL) and the last one containing all other F-box proteins with other domains or without any 

identified additional domains (FBXO) (Fig. 2)[10]. 

Due to their critical regulatory function of developmental transcription factors and master 

repair factors, SCF ligases can be viewed as molecular ¨hubs¨ of various biological processes 

and thus impact multiple hallmarks of cancer when deregulated[11–15]. 

 

 
Fig. 2 Schematic representation of the components of the SCF E3 ligase complex interacting with a ubiquitin 
(Ub)-bound E2 enzyme and a phosphorylated substrate (left), as well as the three classes of F-box proteins 
(FBPs) containing either WD40, LRR or various other domains (right). 

 

1.2.1 FBXW7 – master suppressor of oncoproteins 

 

One of the best-characterised F-box proteins, FBXW7, is not co-incidentally encoded by one 

of the top 10 most frequently mutated genes across human cancers[16, 17]. An alternative name 

for this highly evolutionarily conserved F-box gene is human cell division control protein 4 

(hCDC4), referring to its paralogue CDC4 in the yeast S. cerevisiae[11]. Hitherto identified 

substrates of FBXW7 include an array of transcription factors and potent oncoproteins such as 

cyclin E (CCNE), MYC, myeloid cell leukaemia 1 (MCL-1), NOTCH or SRY-box 

transcription factor 9 (SOX9) (paper IV), thus establishing FBXW7 as a general tumour-

suppressor[11, 13, 26, 27, 18–25]. Typically, F-box proteins recognise their substrates after 

phosphorylation at specific recognition motifs known as phosphodegrons. In the case of 

FBXW7 the consensus recognition sequence is S/T-P-P-X-S/T/E/D, with X being any amino 

acid[28, 29]. This specific degron motif, denominated the CDC4 phospho-degron (CPD), is 
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typically phosphorylated by GSK3 at the first serine/threonine residue, after being primed by a 

phosphorylation at the “+4” position, and subsequently bound by FBXW7[30]. Many FBXW7 

substrates contain more than one CPD, while not all match the consensus precisely, some being 

high- and others low-affinity degrons. The presence of degrons with different affinities may 

represent a mechanism to balance the threshold of kinase activities required for degradation of 

different substrates[29, 31]. Additionally, in order to efficiently degrade low-affinity substrates 

FBXW7 has been proposed to form homo-dimers and bind two low-affinity degrons at the 

same time[32]. Binding to the substrate is mediated by the eight WD40 domains in FBXW7 

that form a β-propeller structure with arginines 465, 479 and 505 playing a central role in 

formation of a binding pocket for the negatively charged phosphodegron[29, 33]. Intriguingly, 

these arginines have been found to be mutation hot spots in many malignancies including T-

ALL, ovarian or colorectal carcinoma highlighting substrate stabilisation as an important 

outcome of FBXW7 mutation or down-regulation in different cancers[17, 33, 34]. The FBXW7 

gene encodes three isoforms α, β and γ with distinct sub-cellular localisations[33, 35]. FBXW7 

isoforms only differ in the choice of the first exon and therefore all isoforms are affected by 

the arginine mutations mentioned above. Interestingly, the nucleoplasmic FBXW7α isoform 

appears to target most of the hitherto identified substrates, although both FBXW7α and 

FBXW7γ are for example required for efficient degradation of cyclin E[33, 35–37]. The 

FBXW7β isoform resides in the cytosol while FBXW7γ is enriched in the nucleoli[33]. 

In line with its extensive repertoire of substrates and involvement in a multitude of pathways 

the FBXW7 gene itself is regulated transcriptionally, translationally and post-translationally by 

a number of factors. For instance, p53 signalling results in increased expression of FBXW7 

triggering degradation of cyclin E and MYC[38]. Recently, with the discovery of p53 as a novel 

target of FBXW7 degraded in response to DNA damage, another aspect was added to this 

regulatory network[39–41]. At the translational level miR-27a has been identified as a regulator 

of FBXW7 throughout the cell cycle up until the G1/S transition when repression is relieved to 

allow for timely degradation of cyclin E[42]. Additionally, like many F-box proteins, FBXW7 

regulates its own stability through autoubiquitylation[43]. After phosphorylation of FBXW7 

on threonine 205 by extracellular-regulated kinase (ERK), peptidyl-prolyl cis-trans isomerase 

NIMA-interacting 1 (PIN1) disrupts FBXW7 dimerization and enhances 

autoubiquitylation[43, 44]. Interestingly, PIN1 and FBW7α have also been reported to 

isomerize a noncanonical proline-proline bond in the CPD of cyclin E promoting efficient 

ubiquitylation of cyclin E by the SCF-FBW7γ complex[37]. More work is needed to 

understand how PTMs of FBW7 influence substrate degradation. 



 

 5 

Ubiquitylation of its proteolytic substrates does not necessarily lead to proteasomal 

degradation. For instance, the DUB USP28 removes ubiquitin chains on specific FBXW7 

substrates MYC, c-JUN, NOTCH1 as well as FBXW7 itself[45, 46], and K63-linked 

ubiquitylation of X-ray repair cross-complementing protein 4 (XRCC4) by FBXW7, rather 

than resulting in degradation, facilitates interaction with KU70/80 and promotes DNA damage 

repair[47]. 

 

1.2.2 FBXL12 – novel regulator of the replication stress response 

Compared to well-characterised F-box proteins like FBXW7, βTRCP or SKP2 relatively little 

is known about other F-box proteins including FBXL12. 

In human tissues while being ubiquitously expressed FBXL12 mRNA levels are highest in 

thymus, bone marrow and immune cells[48]. Accordingly, Zhao et al. showed that FBXL12 is 

crucial for proliferation of CD4-/CD8- double-negative (DN) thymocytes after T-cell receptor 

(TCR) β rearrangement and selection[49]. FBXL12 was shown to be up-regulated in response 

to pre-TCR activation and in collaboration with SKP2 ubiquitylate and promote the 

degradation of CDK inhibitor p27[49]. Conversely, in mouse lung epithelial cells an anti-

proliferative function of FBXL12 and an indirect effect on p27 activity has been shown, as 

FBXL12 promotes degradation of calcium/calmodulin-dependent kinase 1 (CaMKI)[50]. 

CaMKI in turn regulates cyclin D1-CDK4 assembly but also phosphorylates p27 to allow 

translocation to the cytoplasm and cell cycle progression[50]. Interestingly, within the F-box 

protein family, FBXL12 is most closely related to SKP2 with 64% amino acid similarity (45% 

identity, as compared to 33% to the next-closely related leucine rich repeat F-box protein 

FBXL6) in their F-box domains and high similarity in the overall domain composition[10]. 

Even though, apart from a few cell-type specific exceptions, no SCFFBXL12 substrates have been 

firmly established, there is remarkable overlap between their (putative) targets besides p27, as 

both also mediate ubiquitylation of the CDK inhibitors p21 and p57 under certain conditions 

(Fig. 3) [51–55]. However, SKP2 appears to be the primary ligase for these shared substrates 

in most adult tissues, while regulation by FBXL12 has so far mainly been reported to be 

important during developmental stages or in specific cell lineages[49, 51–54]. Kim et al. 

showed that FBXL12 levels in osteoblasts are elevated in response to transforming growth 

factor (TGFβ1) signalling where it promotes proteasomal p57 degradation to maintain the 

osteoblast identity, while depletion of FBXL12 results in differentiation[52]. Despite 
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differential regulation of FBXL12 and SKP2, both require phosphorylation of Thr-310 in p57 

by CDK2-cyclin E for efficient binding and ubiquitylation[51, 52]. 

Furthermore, homozygous FBXL12 knock-out (KO) mice have been generated which revealed 

embryonal growth retardation and intercrossing of FBXL12+/- mice resulted in a reduced ratio 

of homozygous KO mice as expected by Mendelian inheritance suggesting increased 

embryonal lethality[56]. While FBXL12-/- mice also had a lower rate of survival within 48h of 

birth and lower weights later on, adult mice neither exhibited any further abnormalities nor 

premature death[56]. The molecular basis of these phenotypes remains largely unclear. 

In the same study, Nishiyama et al. also reported that cancer incidence was not increased in 

homozygous FBXL12 knock-out mice[55]. Apart from this notion, potential roles of FBXL12 

in cancer have not been explored previously. However, embryonal lethality without defects in 

adult mice and no increased cancer incidence are well in line with a role of FBXL12 in 

alleviating replication stress in highly proliferative cells (see paper I of this thesis). 

To date, one study implicates FBXL12 in the maintenance of genome integrity. Postow et al. 

employed a cell free frog egg extract system and showed binding of FBXL12 to linearized 

plasmid DNA, modelling double-strand breaks, but not circular DNA[57]. Furthermore, they 

demonstrated FBXL12-dependent polyubiquitylation of the non-homologous end joining 

(NHEJ) DNA repair factor Ku80 in response to DSB binding, proposing an involvement of 

FBXL12 in removal of Ku80 upon repair completion or prevention of excessive Ku80 binding 

to DSBs[57]. The NHEJ pathway repairs DSBs by re-ligating adjacent blunt DNA ends without 

the need for a homologous template[58]. A complex of Ku80/Ku70 rapidly binds to DSBs and 

guides repair towards NHEJ by recruiting downstream factors including DNA-PK and 

Artemis[58]. However, depending on factors such as cell cycle phase or chromatin context cells 

might employ the other prevalent DSB repair mechanism, homologous recombination (HR) 

repair, or choose alternative pathways[58]. It is tempting to speculate that FBXL12-induced 

degradation of DSB-bound Ku80 may shift repair towards other pathways such as HR repair, 

depending on cell cycle phase or chromatin context. In mammalian cells, RNF8, an E3 

ubiquitin ligase recruited to DNA damage sites, has been shown to be required for K48-linked 

ubiquitylation and degradation of Ku80, while in its absence Ku80 is stabilised on 

chromatin[59]. The process of V(D)J recombination, whereby NHEJ is required to diversify 

the antigen receptor pool during thymocyte maturation, may be another potential link to 

FBXL12[60]. Upregulation of the Rag1 gene involved in the initiating step of V(D)J 

recombination occurs at the DN2 stage and, as discussed above, FBXL12 is expressed in DN 
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thymocytes with expression levels peaking later at the β-selection stage in response to pre-TCR 

signalling[49, 61, 62]. 

 

 

Fig. 3 Selected common and distinct ubiquitylation targets of FBXL12 and SKP2 and their respective functional 
affiliations. References: ALDH3[62]; CaMKI[50]; Chromatin licensing and DNA replication factor 1 - 
CDT1[63]; Cyclin E[64]; E2A[65];  FANCD2 (paper I); Ku80[57]; MYC[66]; Origin recognition complex 1 - 
ORC1[67]; p21[54, 55]; p27[49, 53, 68, 69]; p57[51, 52]; Recombination activating gene 2 - RAG2[70]. 

 

1.2.3 FBXO28 – emerging link between cancer hallmarks 

FBXO28 is another poorly studied F-box protein, but in contrast to FBXL12 a link to cancer 

progression has previously been demonstrated[71–73]. Phosphorylation of FBXO28 on 

serine 344 by cyclin-dependent kinase 1/2 (CDK1/2) triggers non-proteolytic ubiquitylation 

of MYC, which increases MYC-regulated transcription[73]. Thus FBXO28 provides a link 

between CDK activity and cell cycle-regulated transcription of MYC target genes[73]. 

Interestingly, a SNP in close proximity to the FBXO28 promoter and highly correlated with 

its expression has been linked to poor outcome in ER-positive TP53-mutated breast 

cancers[74]. 

To date no proteolytic substrates of FBXO28 have been published. However, we and others 

have shown that FBXO28 is tightly bound to chromatin and interacts with topoisomerase 2α 

(TOPO2α), an essential enzyme which among other functions catalyses the separation of 
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replicated DNA strands (Paper III)[73, 75]. Depletion of FBXO28 promoted TOPO2α 

activity in vitro, delayed mitotic progression and resulted in formation of multinucleated 

cells[75]. The precise nature of this proposed regulatory mechanism remains unclear, 

however, as FBXO28 depletion did not alter TOPO2α stability or ubiquitylation patterns[75]. 

FBXO28 is highly conserved between different species and represented by two homologues 

in Drosophila, pallbearer (pall) and dampened (dpmd)[76, 77]. SCFpall targets the ribosomal 

protein RpS6 for proteasomal degradation to regulate phagocytosis in Drosophila S2 

cells[76]. As ablation of pall or RpS6 had opposing effects on RAC activity and cell motility, 

increased in the absence of RpS6 and decreased upon pall depletion, pall was proposed to 

regulate RAC via degradation of RpS6[76]. Consistently, in paper III of this thesis, we find 

that FBXO28 regulates RAC activity, however, by degrading the Rho guanine nucleotide 

exchange factors 6 and 7 (ARHGEF6/7), resulting in modulation of its downstream effectors. 

Collectively, while we likely have an incomplete picture of its substrates to date, studies so 

far support an oncogenic role of FBXO28 whose functions may be linked to a multitude of 

cancer hallmarks including genomic instability, migration or the maintenance of 

proliferation. 

 

1.3 THE HALLMARKS OF CANCER FROM AN F-BOX PERSPECTIVE 

In 2000 Hanahan and Weinberg summarised the unifying features present in cancer in a 

landmark review which they updated 11 years later and expanded their initial set of 

hallmarks[15, 78]. The original six hallmarks are sustaining proliferative signalling, evading 

growth suppression, activating invasion and metastasis, enabling replicative immortality, 

inducing angiogenesis and resisting cell death[78]. The original hallmarks were subsequently 

joined by avoidance of immune destruction, deregulated cellular energetics, tumour-promoting 

inflammation and genomic instability[15]. All these hallmarks are intricately linked due to 

overlapping networks of regulatory proteins. Below, I will provide an overview of F-box 

proteins contributing to the development of selected cancer hallmarks in relation to the 

pathways immediately relevant to the studies presented in this thesis. 
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1.3.1 Deregulated proliferation 

1.3.1.1 Cell cycle regulation 

The two central processes of the cell cycle are DNA duplication and cell division. In order to 

maintain the cell’s DNA content and genomic integrity, these processes need to be tightly 

regulated and carried out in a sequential order. Cyclin-CDK complexes, the drivers of the cell 

cycle and phase transitions orchestrate their own inactivation through proteasomal degradation 

of the cyclin component, which is essentially an irreversible process and thus crucial for the 

unidirectionality of the cell cycle[79]. Furthermore, the ubiquitin-proteasome system in general 

and the SCF ligase in particular are responsible for degradation of a multitude of additional cell 

cycle regulatory proteins [79]. These regulatory mechanisms often are part of feedback loops, 

positive or negative, to for example promote switching from one cell cycle phase to the next or 

to more rapidly approach a steady state[80]. 

 

The cell cycle of proliferating cells is subdivided into four distinct phases, G1, S-phase, G2 and 

mitosis. Cells in a resting, non-dividing phase outside of the cell cycle exist in a quiescent state 

termed G0. Commitment to cell division involves the activation of cyclins that drive the events 

of the cell cycle through binding to their partner CDKs. In G1 cyclin Ds activate CDK4/6 that 

in turn phosphorylate, among others, the retinoblastoma-associated protein (RB), which is 

instrumental for the commitment of cells to enter S-phase[81]. 

Once RB becomes hyperphosphorylated the cell passes the restriction point to commit to 

another round of the cell cycle and the binding partners of RB, E2F pocket proteins, are released 

to drive expression of genes promoting S-phase transition including CCNE (Cyclin E) and 

marking the onset of DNA replication[81]. However, recently the ubiquitin ligase APC/C has 

been proposed to be the ultimate point of no return since cells start replicating only minutes 

after APC/CCdh1 inactivation while they can return to a quiescent state even after RB 

hyperphosphorylation but not once APC/CCdh1 has been inactivated[82]. 

Cyclin E-CDK2 activity starts to rise before the restriction point resulting in inactivation of 

APC/C and continues to do so after this point to drive DNA replication[82, 83]. In addition to 

cyclins, CDK activity is regulated by binding of CDK inhibitors (CKI) and through 

phosphorylation[83]. CKIs are classed into INK4 and CIP families with INK4 members (p15, 

p15, p18, p19) inhibiting CDK4/6 by preventing their association with cyclin D while the 

CIP/KIP (p21, p27, p57) family inhibits G1/S and S-phase CDK-cyclin complexes and 

activates CDK4/6-complexes [81]. As mentioned earlier all members of the CIP/KIP family 

are targeted by the SCF ligase containing SKP2[49, 51, 54, 68, 84]. 
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Cyclin E-CDK2 complexes also phosphorylate the transcription factor MYC, a central 

promoter of cell growth and proliferation which is frequently deregulated in human 

cancers[85]. Importantly, MYC drives the expression of critical cell cycle factors including 

cyclins, E2F proteins but also CUL1 or SKP2[85]. MYC is a very short-lived protein targeted 

by several E3 ubiquitin ligases. While its ubiquitylation by FBXW7 results in proteasomal 

degradation, FBXO28-mediated ubiquitylation supports MYC transcriptional activity, as 

mentioned earlier[13, 21, 73]. Interestingly, SKP2 also mediates destruction of MYC protein 

but at the same time stimulates MYC-induced G1/S transition[66, 86]. 

 

As mentioned, APC/C, the other major cell-cycle regulatory ubiquitin ligase besides the SCF 

ligase, has to be inactivated at the restriction point. APC/C forms a complex with either one of 

two substrate receptors, CDH1 or CDC20. The APC/CCDH1 complex is crucial for the 

establishment of G1 or G0 phases by degrading mitotic cyclins A and B along with mitotic 

kinases Aurora A and B, and PLK1 on the one hand, but also targeting proteins, such as SKP2 

and CDC25A, responsible for G1/S-transition on the other[87–92]. One mechanism of 

APC/CCDH1 inactivation is based on the binding of FBXO5/EMI1 which acts as a 

pseudosubstrate for APC/CCDH1, rather than forming an SCF complex[93, 94]. Other 

inactivation modes include a feedback loop based on autoregulation of CDH1 and its E2 

UBCH10 through ubiquitylation and degradation[95, 96], phosphorylation of CDH1 by 

CDKs[97], as well as CDH1 ubiquitylation and degradation by SCFβTRCP[98]. 

 

Similarly to RB, the prototype of a tumour suppressor, phosphatase and tensin homolog 

(PTEN), another antagonist to mitogenic signals, is one of the most frequently lost tumour 

suppressors[99]. PTEN is a negative regulator of phosphatidylinositol-3-kinase 

(PI3K)/AKT/mammalian target of rapamycin (mTOR) signalling and is mutated, deleted or 

post-translationally deregulated in many human cancers[100, 101]. Besides dephosphorylating 

phosphatidylinositol-3,4,5-trisphosphate (PIP3) to counteract PI3K at the membrane, PTEN 

also has functions in the nucleus where it exerts its antitumorigenic effects phosphatase-

independently as a scaffold protein by promoting association between APC/C and CDH1 

ensuring establishment of G1 or G0[102]. To relieve PTEN-mediated inhibition its nuclear 

pool is targeted for proteasomal degradation by SCFFBXO22[103]. 

 

The actual start of DNA replication forks from origins of replication, termed origin firing, is 

strictly separated from the preceding process: origin licensing. Licensing is the binding of the 

replicative helicase minichromosome maintenance 2-7 (MCM) complex along with CDC6, 
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CDT1 and ORC1-6 co-factors to form the pre-replicative complex (pre-RC) at several thousand 

sites along the genome[104, 105]. This step only occurs in G1 phase to prevent re-licensing of 

the same origins and thus re-replication within the S-phase of the same cycle [83]. To achieve 

this clear separation, several components of the pre-RC are degraded outside of late G1 phase. 

While ORC1 and CDT1 are targeted by SCFSKP2, CDC6 is ubiquitylated by the actions of 

SCFFBXO1/cyclin F and APCCDH1[67, 106–108]. Deregulation resulting in overexpression of CDT1 

or CDC6 results in re-replication, activated DNA damage signalling and promotes malignant 

transformation[109]. In S-phase, cyclin D, too, is degraded by SCFFBXO4-αB Crystallin after 

phosphorylation by glycogen synthase kinase 3β (GSK3β)[110]. Replication starts with the 

activation of MCM helicase by CDK and DBF4-dependent kinase (DDK) which is 

accompanied by the association of CDC45 and the GINS complex to form bidirectional 

replisomes at a subset of the previously licensed origins[111, 112]. Analogously to cyclin D, 

cyclin E is degraded during S-phase by the SCFFBXW7 ligase upon phosphorylation by GSK3β, 

and autophosphorylation by CDK2 on threonine 380 in a negative feedback loop[11, 19, 20]. 

 

In order to suppress early mitotic events in G2, WEE1 and MYT1 kinases prevent activation 

of CDK1 through inhibitory phosphorylations on tyrosine 15 and threonine 14, 

respectively[113–115]. WEE1 also phosphorylates tyrosine 15 of CDK2 at the G1/S border 

and early in S-phase to prevent excessive dormant origin firing and pre-mature replication 

onset[116, 117]. Upon cyclins reaching a critical level, cyclin E-CDK2 or cyclin A-CDK1 

promote activation of the CDC25 phosphatases which in turn inactivate WEE1 and MYT1 to 

promote cell cycle progression[118]. Fine-tuning and correct timing of WEE1 activity are 

achieved by gradual increases of CDC25 activities, while WEE1 activity remains largely 

unaltered until a threshold is reached at which WEE1 activity is completely overridden[116]. 

Additionally, two SCF ubiquitin ligases target WEE1 for proteasomal degradation, SCFβTRCP 

and SCFTOME-1, the latter one containing an F-box like protein[119, 120]. Phosphorylation of 

degron motifs in WEE1 by CDK1 and polo-like kinase 1 (PLK1), another crucial mitotic 

kinase, are a prerequisite for ubiquitylation by SCFβTRCP, and likely SCFTOME-1, thus creating a 

positive feedback loop to guarantee timely and complete activation of CDK1[119, 120]. 

 

Once the bulk of the genome has been replicated successfully these regulatory mechanisms 

result in activation of CDK1 and PLK1 to orchestrate processes related to cell division[83]. 

In early mitosis these two kinases phosphorylate APC/C inhibitor EMI1 which in turn results 

in its by recognition by SCFβTRCP, ubiquitylation and proteasomal degradation[121, 122]. This 

allows for APC/C reactivation which regulates a multitude of mitotic processes[121, 122]. 
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However, to delay APC/C activation from the onset of mitosis until attachment of all 

kinetochores, its substrate receptor subunit CDC20 is sequestered within the mitotic checkpoint 

complex consisting of BUBR1, BUB3, MAD2 and CDC20[123]. 

While APC/C is the central E3 ligase throughout mitosis, SCFβTRCP targets Bora, yet another 

mitotic kinase that regulates microtubule polymerisation and kinetochores, for proteasomal 

degradation in response to PLK1-dependent phosphorylation[124]. 

Once cyclin B is degraded by APCCDC20 and CDK1 activity drops upon metaphase to anaphase 

transition, CDH1 becomes dephosphorylated enabling it to gradually replace CDC20 in the 

complex with APC/C, promote degradation of CDC20, mitotic exit and establishment of G1 

phase once again[125]. 

 

 
Fig. 4 Schematic representation of the SCF ligases and other central cell cycle regulators mentioned in the text 
and their regulatory functions throughout the cell cycle. Apart from cyclin-CDK complexes, proteins promoting 
cell cycle progression are depicted in orange, while proteins predominantly delaying progression are 
represented by dark blue symbols. 

 

As alluded to throughout this section, deregulation of cell cycle regulators is a common theme 

in cancers resulting in uncurbed proliferation. Inactivation or loss of F-box genes like FBXW7 

critically contributes to this process, while others such as FBXL12 (paper I) or FBXO28 

(paper III) are involved in the aftermath, coping with excessive DNA damage and maintaining 

genomic integrity. 
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1.3.2 Maintaining genomic integrity 

Tumorigenesis is regarded as a multi-step process in which, due to genetic or epigenetic 

changes, cells may acquire a selective advantage at every step of the way, resulting in their 

clonal expansion. Accordingly, genomic instability has been described as an enabling 

characteristic of cancer that provides the initial pool of different mutant genotypes[15]. Despite 

the actions of cell cycle-associated DNA damage checkpoints to safeguard genomic integrity 

of healthy cells, the vast majority of genomic changes is introduced through endogenous 

processes, mostly due to DNA repair defects, telomere erosion and/or replication stress[126]. 

The genome is constantly surveyed for alterations and depending on cell cycle context and type 

of damage specialised DNA repair pathways, including homologous recombination (HR) 

repair,  non-homologous end joining (NHEJ) repair, base-excision repair (BER), nucleotide 

excision repair (NER), mismatch repair (MMR), break-induced replication (BIR) and inter-

strand crosslink (ICL) repair, are employed to correct lesions[127, 128].  If damage is beyond 

repair, cells will be purged from the cell pool by committing to programmed cell death or 

senescence[129]. Cancer cells need to circumvent these mechanisms to survive and continue 

to proliferate, while still maintaining a functionally required level of genome integrity to avoid 

more severe consequences such as replication or mitotic catastrophe where the genome may be 

“pulverised”[130]. 

1.3.2.1 Oncogene-induced replication stress 

Very early on the path to becoming a cancer cell, in precancerous lesions, markers of an active 

DNA damage response (DDR) are visible, such as H2AX phosphorylated on serine 139 

(γH2AX), CHK2 phosphorylated on threonine 68 or p53 phosphorylated on serines 15 and 20 

[131–133]. This has been demonstrated to be a consequence of deregulation of oncogenes 

involved in cell proliferation such as cyclin E, RAS, MYC or MOS[132, 134, 135]. 

Overexpression of oncogenes induces replication fork slowing and stalling, phenomena 

collectively referred to as “replication stress”. Crucially, replication stress leads to failure to 

duplicate DNA in a timely manner, under-replicated genomic regions persisting all the way 

into mitosis and ultimately resulting in double-stranded DNA breaks (DSBs). 

However, differences in the landscapes of fragile sites induced by oncogenes (e.g. cyclin E, 

MYC or RAS) or treatment with aphidicolin, a DNA polymerase α and δ inhibitor, suggest that 

different oncogenes induce replication stress through distinct mechanisms[136]. 
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Arguably, one of the most thoroughly studied oncogenes in the context of oncogene-induced 

replication stress is cyclin E which, as a crucial regulator of G1/S transition, derails various 

aspects of the replication programme upon its overexpression. On the one hand, pre-mature 

entry into S-phase results in a shortened time window for the licensing of replication origins, 

while overly active CDK2 at the same time results in firing of a greater proportion of licensed 

origins with two major consequences: The available pool of dormant origins is dramatically 

decreased and due to an increased number of active replication forks conflicts with the 

transcription machinery, either through direct collisions or increased torsional stress, occur 

more frequently[137]. Thus, the possibility to rescue stalled replication forks by dormant 

origins in their vicinity is drastically reduced[137]. Additionally, the increased number of 

active replication forks results in depletion of available dNTP thereby contributing to reduced 

replication fork speed[138]. While these mechanisms have been elucidated largely using a 

U2OS cell line model featuring inducible overexpression of cyclin E[132, 137], frequent 

amplification or overexpression of cyclin E in human cancers, in triple-negative breast cancers 

in particular, indeed results in high levels of replication stress[139]. 

RAS overexpression or expression of the oncogenic HRASV12 mutant potently induces 

replication stress in cell line models[140]. While RAS indirectly induces cyclin E expression 

through its regulatory role in the cell cycle and on D-type cyclins, RAS also promotes 

replication stress through upregulation of overall transcription[126]. Kotsantis et al. showed 

that this is mainly due to increased expression of the general transcription factor TATA-box 

binding protein (TBP) and ensuing elevated formation of R-loops, hybrids between RNA and 

single-stranded DNA, a considerable roadblock for replication forks[140]. 

In contrast to RAS overexpression which initially results in a burst of cell proliferation and 

increased replication fork progression to reduce fork speed only later on, elevated MYC levels 

rapidly trigger replication stress[141]. In both cases metabolic rewiring has been attributed to 

partially account for the induction of replication stress[141], notwithstanding mechanisms 

mentioned above. In addition, MYC has been demonstrated to induce replication stress through 

increased origin density and premature origin firing[142, 143]. 

While amplification or transcriptional deregulation of oncogenes inducing replication stress are 

frequent events across a variety of human malignancies, perturbances of their post-translational 

control likewise are frequently encountered. As mentioned above, one such mechanism is the 

mutation or loss of the tumour suppressor gene FBXW7 which negatively regulates both cyclin 

E and MYC and which is deleted in over 30% of human cancers[34, 35]. Another F-box 

protein, βTRCP with both oncogenic and tumour suppressive properties attributed to its diverse 
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range of substrates, regulates among many others CDC25A shown to induce replication 

stress[144, 145]. Accordingly, βTRCP somatic mutations observed in certain human cancers 

including gastric cancer may also contribute to replication stress due to aberrantly increased 

CDK activity[146]. A third example of an F-box protein impinging on replication stress 

through regulation of an oncogene with potential implications to human cancers is cyclin 

F/FBXO1 which is downregulated in hepatocellular carcinoma and whose low expression 

associated with poor patient survival and advanced clinical stage[147]. Importantly, SCFCyclin 

F targets ribonucleotide reductase M2 (RRM2) on the one hand involved in the production of 

dNTPs to alleviate replication stress and the origin licensing factor CDC6 on the other whose 

deregulation contributes to replication stress[108, 148, 149]. 

Increased origin density and ensuing reduced replication fork processivity results in long 

stretches of single-stranded DNA (ssDNA), due to uncoupling of MCM helicase and 

polymerases[150], which renders these stretches prone to formation of secondary structures 

and processing by endonucleases[104]. In order to prevent these events, the heterotrimeric 

replication protein A (RPA) complex binds ssDNA and subsequently recruits the apical DDR 

kinase ATM- and Rad3-related (ATR) through direct binding of its coactivator ATR-

interacting protein (ATRIP)[151, 152]. ATR activates CHK1 through phosphorylation of 

serines 317 and 345, and jointly a multitude of factors to globally install a replication 

checkpoint, also referred to as S-phase checkpoint, and prevent cell cycle progression and 

locally to prevent fork collapse and promote stalled fork restart. 

Globally, the ATR/ATRIP-CHK1 axis suppresses CDK activity by promoting proteasomal 

degradation of CDC25A and consequential upregulated CDK phosphorylation by WEE1. 

While APC/CCDH1 targets CDC25A in mitosis and G1[89], SCFβTRCP mediates CDC25A 

degradation after a concerted CHK1 and NIMA (never in mitosis gene A)-related kinase 11 

(NEK11) phosphorylation signal[153]. Moreover, during recovery from the S-phase 

checkpoint, Claspin, a large scaffold protein binding to stalled replication forks and promoting 

CHK1 activation[154], is degraded by the proteasome after being ubiquitylated by 

SCFβTRCP[155, 156]. 

Locally, molecular targets of ATR and CHK1 signalling include fork remodellers, DNA repair 

factors, helicases, nucleases and proteins involved in chromatin assembly[157]. Suppression 

of ATR-mediated phosphorylation of the helicase Werner syndrome RecQ-like helicase 

(WRN), which is involved in stabilising stalled forks and resolving replication 

intermediates[158], impairs WRN foci formation at stalled forks resulting in fork 

breakage[159]. Furthermore, MCM components are phosphorylated by ATR to modulate its 
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interaction with members of the Fanconi anaemia (FA) pathway[160, 161], which will be 

described in detail below. Several FA proteins are themselves direct phosphorylation targets of 

either ATR or CHK1, or both [162]. Additionally, the HR repair pathway is tightly linked to 

the activity of ATR which phosphorylates BRCA1 and PALB2 to modulate their 

interaction[163, 164], while CHK1 phosphorylates the ssDNA-binding and central HR protein 

RAD51[165] to mediate its interaction with BRCA2[166] which is required to protect stalled 

forks from aberrant resection by exonucleases EXO1 and DNA2[167], themselves targets of 

S-phase checkpoint signalling involved in preventing fork reversal[168, 169]. RAD51 is kept 

in check by EMI1/FBXO5-mediated degradation[170]. Upon DNA damage, CHK1 

phosphorylation of RAD51 on Thr309 counteracts this event, allowing RAD51 accumulation 

and HR repair[170]. 

1.3.2.2 The Fanconi anaemia DNA repair pathway 

The FA pathway is a crucial DNA repair pathway that promotes recovery of stalled replication 

forks and balances dormant origin firing in response to replication stress, mainly through its 

central proteins FANCD2 and FANCI (Fanconi anaemia complementation group D2 and 

I)[171]. However, the classical, best-understood function of the FA pathway is removal of 

DNA ICLs. Until now, 31 proteins have been identified to be involved in this repair pathway, 

22 of which carry causative mutations in patients with FA and are considered bona fide FA 

genes (Tab. 1)[172]. Characteristics of this rare disease, affecting 1/100 000 births, are bone 

marrow failure and a predisposition to develop cancer, both solid cancers and acute myeloid 

leukaemia (AML)[173]. Activation of ATR in response to genotoxic stress or during normal S 

phase leads to multiple phosphorylations of FANCI at S/TQ sites proximal to a lysine in 

position 523[174, 175]. FANCI forms a heterodimer with FANCD2, the ID2 complex, which 

too becomes phosphorylated in response to ATR activation[176]. As a result of these 

phosphorylations, the FA core complex, consisting of the E3 ubiquitin ligase FANCL, eight 

additional FA proteins and five accessory proteins (FANCA, FANCB, FANCC, FANCE, 

FANCF, FANCG, FANCM, FANCT, FAAP100, MHF1, MHF2, FAAP20 and FAAP24), 

monoubiquitylates both FANCI and FANCD2 at K523 and K561, respectively[171]. The FA 

core component FANCM along with MHF1, MHF2 and FAAP24 ensures general anchoring 

of the entire complex to chromatin during S-phase while ID2 monoubiquitylation leads to its 

dissociation into monomers and binding to DNA adjacent to ICLs or stalled replication 

forks[171, 175, 177]. Interestingly, components of the FA core complex are also required for 

efficient ATR-CHK1 activation in response to replication stress and depletion of FANCM, 

itself a phosphorylation target of ATR at serine 1045[178], has been shown to impair ATR 
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signalling and ensuing replication fork restart[179]. The monoubiquitylated ID2 complex is 

believed to serve as binding platform for DNA repair nucleases SLX4, also known as FANCP, 

and FA-associated nuclease 1 (FAN1)[180, 181]. Additional structure-specific nuclease 

complexes MUS81-EME1 and XPF-ERCC1 as well as SLX1 bind and become activated by 

SLX4 and finally mediate incision and unhooking of the DNA lesion[171, 175]. At stalled 

replication forks this step results in a DSB in one of the newly synthesised double-strands and 

an oligonucleotide crosslinked to the other one[175]. At this stage three different DNA repair 

pathways need to be coordinated to resolve the situation: Firstly, the translesion synthesis 

(TLS) polymerase ζ incorporates nucleotides opposite of the crosslinked nucleotide, secondly 

HR repair uses this template to repair the DSB, and thirdly, NER removes the remaining 

crosslink adduct[175]. After the remaining gap has been filled by polymerases, ubiquitin-

specific protease 1 (USP1) together with its co-factor USP1-associated factor 1 (UAF1) 

deubiquitylates ID2 which has been proposed to result in its release and deactivation of the 

pathway[182]. Indeed, monoubiquitylation of FANCD2 has been shown to be crucial for 

binding to and stabilisation of ID2 on dsDNA but intriguingly not to any of its binding partners 

in vitro[183]. In the free ID2 complex, monoubiquitylation sites are buried at the surface 

between FANCD2 and FANCI and are likely not readily accessible to ubiquitylation or 

deubiquitylation[184]. However, upon dsDNA binding the ID2 dimer forms a clamp around 

DNA and the FANCD2 monoubiquitylation site becomes exposed and can be ubiquitylated by 

FANCL to stabilise ID2:dsDNA interaction[185]. 

Additionally, the ID2 dimer has been shown to undergo sumoylation, the post-translational 

covalent attachment of small ubiquitin-like modifier (SUMO) proteins, similar to 

ubiquitylation, upon replication fork stalling[186]. This modification is mediated by protein 

inhibitor of activated STAT 1 (PIAS1) and PIAS4 and thereafter leads to polyubiquitylation 

by RING finger protein 4 (RNF4)[186]. In this case polyubiquitylation triggers extraction from 

chromatin via VCP/p97 segregase rather than proteasomal degradation[186]. Sumoylation has 

been proposed to balance recruitment and release of ID2 at repair sites[186]. 

Extensive resection at DSBs is a prerequisite for HR repair to occur. FANCD2 in complex with 

BRCA1 mediates recruitment of CtBP-interacting protein (CtIP), an end resection factor, to 

ICLs[187]. Additionally, the MRN (MRE11-RAD50-NBS1) complex which also processes 

DSBs interacts with and stabilises FANCD2 on ssDNA repair intermediates[188]. 

Subsequently, the BRCA2-PALB2 complex catalyses binding of recombinase RAD51 to 

resected ssDNA which in turn mediates strand invasion of the homologous template. 

Unscheduled RAD51 loading is prevented by F-box DNA helicase (FBH1/FBXO18) through 
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both direct displacement of RAD51 and polyubiquitylation followed by degradation[189]. 

However, correctly timed RAD51 association and strand invasion are finally followed by repair 

synthesis, D-loop resolution and ligation yielding a complete dsDNA molecule[171]. 

 
Tab. 1 Components of the FA pathway and their respective functions. 

 

As mentioned, the FA pathway gets activated and the ID2 dimer monoubiquitylated not only 

in response to genotoxic stress but also during an unperturbed S-phase[175]. Interestingly, 

FAN1 recruitment by monoubiquitylated ID2 is crucial to prevent chromosomal abnormalities 

upon hydroxyurea (HU) treatment but not treatment with ICL-inducing agent MMC[190]. 

Furthermore, FANCD2 is associated to nascent DNA and binds to the DNA replication clamp 

proliferating cell nuclear antigen (PCNA), as well as to the replicative helicase MCM2-7 in 

response to replication stress, consistent with a role in the response to replication stress[160, 

191]. The association between FANCD2 and MCM2-7 is promoted by ATR but is independent 
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of ubiquitylation by the FA core complex[160]. Furthermore, FANCI has been demonstrated 

to colocalise with MCM2-7 at dormant origins and promote dormant origin firing in a 

monoubiquitylation-independent manner[161]. This has been suggested to occur mainly under 

conditions of mild replication stress which can be overcome by firing of additional origins 

while more severe stress triggers phosphorylation of FANCI by ATR which inhibits firing and 

promotes stabilisation and re-start of stalled replication forks, thus retaining potential back-up 

origins[161]. While FANCI depletion at low concentrations of HU leads to reduced dormant 

origin firing, FANCD2 depletion increases firing of origins in a FANCI-dependent fashion, 

suggesting a mechanism where FANCD2 directly inhibits or balances FANCI-mediated 

dormant origin firing[161]. 

One of the consequences of replication stress is the persistence of under-replicated regions in 

mitotic cells. Upon chromosome condensation and cytokinesis these under-replicated stretches 

can be visualised as ultra-fine anaphase bridges (UFBs) which are nearly devoid of proteins 

and cannot be detected with conventional DNA dyes such as DAPI[192]. However, depending 

on their origin, UFBs are associated with specific factors. Under unperturbed conditions UFBs 

can be found mostly in centromeric regions due to catenated DNA[192]. However, replication 

stress promotes the occurrence of UFBs associated with regions with inherent replication 

difficulties prone to being under-replicated, in particular common fragile sites (CFSs) [192]. 

Intriguingly, upon replication stress CFSs also become sites of DNA synthesis in mitosis which 

is likely a form of BIR acting to rescue under-replicated regions[193, 194]. Such sites 

colocalise with UFBs which are typically marked by twin foci of FANCD2 at either end of the 

bridge and associated with PLK1-interacting checkpoint helicase (PICH) as well as RPA along 

their length but also with the RECQ family helicase BLM, defective in Bloom’s syndrome[192, 

195]. FANCD2 is involved in the stability of CFSs and both FANCD2 and FANCI have been 

demonstrated to localise to the two CFSs most frequently associated with chromosome breaks, 

FRA3B and FRA16D[195, 196]. Accordingly, FA pathway proteins have been demonstrated 

to collaborate with BLM and promote efficient chromosome segregation after aphidicolin-

induced DNA damage[195, 197]. Intriguingly, FANCM is degraded by SCFβTRCP in mitosis 

thereby releasing the FA core complex from chromatin and preventing its erroneous activation 

which at the same time indicates that mitotic functions of FANCD2 and FANCI are 

monoubiquitylation-independent[198]. 

Finally, FA proteins, in particular FANCM through its DNA translocase activity, also resolve 

DNA:RNA hybrids impairing replication fork progression, such as those occurring as a 
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consequence of collisions between transcription and replication machineries due to cyclin E 

overexpression[199]. 

1.3.2.3 Faithful heterochromatin repair and damage site motility 

The choice of DNA repair pathways deployed depends on the type of detected lesion as well 

as on cell cycle phase. On top of those factors genomic context is decisive not only for 

sensitivity to damaging agents, such as in the case of replication stress and CFSs mentioned 

above, but also for repair pathway choice[58]. While many DNA damaging agents are biased 

towards inducing damage within highly transcribed parts of the genome, heterochromatic 

regions present exquisite challenges to faithful repair. As soon as a homologous template 

becomes available, typically on the sister chromatid as a result of replication, HR repair is often 

the pathway of choice in response to DSBs as opposed to NHEJ, the other major DSB repair 

pathway which is more error-prone but likely faster and independent of extensive homologous 

templates[58]. While the HR repair process itself is well understood, much of the research 

around this crucial pathway has been focused solely on euchromatic regions. However, 

heterochromatic DNA is highly repetitive and thus, identification of the correct template is 

difficult with potentially catastrophic consequences such as translocations, insertions or 

deletions[200]. Additionally, access of repair proteins to heterochromatic DSBs can be 

compromised due to densely packed chromatin[200]. Collectively, these properties might be 

the underlying cause for significantly higher mutation rates of cancer cells observed in 

heterochromatic regions, particularly those marked by H3K9me3[201]. 

Heterochromatin contains both constitutively silenced regions, comprising centromeres, 

pericentromeric regions, telomeres and highly repetitive sequences, but also facultative 

regions, transiently silenced or developmental genes[200]. Histones within the former are 

generally deacetylated and hypermethylated, specifically histone H3 lysine 9 (H3K9me2/3) 

and lysine 27 (H3K27me3), as well as histone H4 lysine 20 (H4K20me2/3)[200]. Factors 

maintaining the heterochromatin state and establishing these modifications include histone 

deacetylases (HDACs), histone modifier SET domain bifurcated 1 (SETDB1) and 

methyltransferase suppressor of variegation 3–9 (SUV39)[202]. F-box proteins regulate this 

chromatin architecture directly and indirectly. FBXL10 (KDM2B) and FBXL11 (KDM2A) 

assemble functional SCF complexes but also act as histone demethylases on methyl groups 

from lysines 4, 9, 27, 36 and 79 of histone H3[203]. Another histone demethylase, lysine-

specific demethylase 4A (KDM4A), which specifically removes di- and trimethylations from 

histone H3 lysines 9 and 36, is targeted for proteasomal degradation by SCFFBXL4 and 
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SCFFBXO22[204, 205]. Additionally, FBXO44 was recently shown to, selectively in cancer 

cells, function as an essential repressor of repetitive elements, which are transcriptionally 

silenced and compose about 50% of the human genome[206]. Mechanistically, FBXO44 binds 

H3K9me3-modified nucleosomes at the replication fork and recruits SUV39H1, the CRL4 

ubiquitin ligase, and the Mi-2ß/NuRD complex to maintain repetitive element silencing after 

DNA replication[206]. 

Interestingly, heterochromatin protein 1 (HP1) which is also associated with constitutive 

heterochromatin and interacts with H3K9me3, rapidly accumulates at sites of laser- or UV-

induced damage in both hetero- and euchromatin, and promotes HR repair[207, 208]. This may 

prevent further DNA damage by restricting access and processing by nucleases or through 

stabilisation of DNA ends and thereby keeping sister chromatids within close proximity[200, 

209]. Furthermore, a complex containing SUV39 is recruited to DSBs upon DNA damage 

where its activity results in transient peaks of H3K9me3 which in turn promotes ataxia 

telangiectasia-mutated (ATM) kinase DNA repair signalling[210]. KDM4B counteracts 

SUV39 to prevent aberrant H3K9-hypermethylation of regions surrounding breaks[211]. 

Surprisingly, accumulation of oncometabolites, 2-hydroxy-glutarate, succinate and fumarate 

which accumulate in human malignancies due to mutations of isocitrate dehydrogenase-1 or -

2 (IDH1/2), act as inhibitors of KDM4B which subsequently results in masking of local 

methylation signals and accordingly hindrance of efficient DSB repair[211]. 

In Drosophila cells, unlike human cells, heterochromatin domains can be visualised as 

brightly-stained areas using DNA dyes[212]. Chiolo et al. used this property to demonstrate 

that DSBs within these domains in fact move to areas outside the heterochromatin domains to 

be repaired by HR only after their translocation, while the molecular mechanism behind this 

DNA break mobility remained largely unclear[213]. Recently, however, it was revealed that 

nuclear actin filaments and myosins mediate nucleation of actin at DNA damage sites involving 

the actin related protein 2/3 (ARP2/3) complex[214, 215]. ARP2/3 and its activator Wiskott-

Aldrich syndrome protein (WASP) specifically participate in the repair of DSBs via HR but 

not NHEJ supporting the necessity of repair site mobility to promote faithful homology-

dependent repair[215]. 

 

1.3.3 Cell migration and metastasis 

Metastasis accounts for more than 90% of cancer-related deaths in patients with solid 

tumours[216]. For cancer cells to dissociate from the original tumour, invade surrounding 
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tissues, eventually enter the bloodstream, exit at a distinct location with different 

microenvironmental characteristics and continue to proliferate to finally establish another 

tumour, many obstacles need to be overcome. Molecularly, the initial release of cancer cells 

from the primary tumour site is associated with a developmental programme known as the 

epithelial-to-mesenchymal transition (EMT) which is frequently hijacked by cancer cells to 

loosen contact with surrounding cells and adopt migratory characteristics[216]. In animal 

models for melanoma metastasis less than 0.1% of cells injected in the blood stream 

subsequently had the potential to form metastasis[217]. These rare tumour-initiating cells 

exhibit many of the characteristics of normal stem cells including the ability to divide 

asymmetrically and give rise to the heterogeneity present in the initial tumour and are thus 

referred to as cancer stem cells[218]. Due to their low proliferation rate as compared to the bulk 

tumour cells and ability to enter dormancy, they are less sensitive to standard chemotherapies 

and represent a major driver of drug resistance requiring targeted therapy approaches[218]. 

1.3.3.1 Epithelial-to-mesenchymal transition 

The loss of cell polarity within epithelial tissues and subsequent migration is required at several 

stages during normal development, perhaps most prominently during neural crest 

emigration[219]. Pleiotropically acting transcription factors SNAIL, SLUG, TWIST or 

ZEB1/2 orchestrate the required broad expression changes impinging on cell motility, 

cytoskeleton regulation, contact with neighbouring cells and the extracellular matrix as well as 

the release of proteases[220]. These transcriptional regulators are themselves regulated by a 

multitude of factors, including F-box proteins, underpinning their significance. SNAIL is 

phosphorylated by protein kinase D1 (PKD1) and subsequently targeted for proteasomal 

destruction by SCFFBXO11[221]. Additionally, SNAIL is phosphorylated by GSK3β, a 

downstream kinase within the PI3K/AKT signalling pathway which is a predominantly 

positive regulator of EMT and inhibitor of TGFβ-dependent apoptosis, with TGFβ being a 

potent inducer of EMT[220, 222]. However, in a negative feedback loop phosphorylation by 

GSK3β leads to recognition and ubiquitylation by SCFβTRCP, SNAIL degradation and inhibition 

of EMT[222]. Yet another F-box protein FBXL5 has been demonstrated to mediate SNAIL 

turnover by ubiquitylation and inhibition of DNA binding[223]. Intriguingly, FBXL5, 

originally identified as an iron-sensing protein and substrate receptor responsible for 

degradation of iron regulatory proteins[224], is downregulated in response to radiation-induced 

DNA damage which has been suggested to provide a link between radiotherapy and increased 

EMT[223]. In addition, FBXL14 acts as a key EMT repressor both during development and in 

human cancer cells by regulating protein stability of SLUG and TWIST1[225, 226], as well as 
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SNAIL under hypoxic conditions[227]. Another master transcription factor, SOX9, promotes 

EMT in gastric, lung and breast cancer and together with SLUG de-differentiates mammary 

epithelial cells to mammary stem cells while enhancing metastasis-forming capabilities[228–

230]. We and others demonstrated that SCFFBXW7 targets SOX9 for proteasomal degradation 

upon phosphorylation of a degron motif by GSK3β (paper IV)[26, 27]. Expression of a non-

degradable SOX9 mutant resulted in upregulation of the EMT signature[26]. Among others the 

ensuing transcriptional changes involve repression of E-cadherin which results in reduction of 

cell-cell contacts[228, 229]. Cancer cells activate the EMT programme in response to receptor 

tyrosine ligands activating TGFβ, SHH, NFκB or WNT/βCatenin signalling pathways which 

originate from tumour stroma and ultimately and crucially upregulate expression of key EMT 

transcription factors[220]. 

1.3.3.2 Cell migration and invasion 

Gene expression changes in response to EMT encompass a multitude of factors directly 

involved in switching to a more migratory cell phenotype, most prominently the Ras homolog 

(Rho) GTPase[220]. Rho is the founding member of a family of small GTPases which are 

shifting between a GTP-bound active state and, through hydrolysis of GTP and corresponding 

conformational changes, an inactive GDP-bound state[231]. They are activated by receptor 

tyrosine kinase signalling, such as through TGFβ or EGF receptors, and their activity is 

modulated positively by guanine exchange factors (GEFs) and negatively by GTPase-

activating proteins (GAPs)[231, 232]. Additionally, guanine-nucleotide dissociation inhibitors 

(GDIs) prevent release of GDP and sequester Rho-type GTPases in their inactive state in the 

cytosol[233]. Upon GTP binding Rho-type GTPases undergo conformational changes allowing 

them to bind to membranes and associate with their downstream effectors[231]. Post-

translational modifications by SCFFBXL19 provide another layer of regulation by mediating the 

proteasomal destruction of Rac1 following its phosphorylation by AKT, although the 

physiological significance of this mechanisms is less clear[234]. 

At the plasma membrane activities of Rho-type GTPases Rho and Rac1 promote the formation 

of protrusions called lamellipodia, while CDC42 is needed for forming filopodia. Crucially, 

Rho-GTPases Rac1 and CDC42 activate p21-activated kinases (PAKs) through direct binding 

and relieving an autoinhibitory mechanism resulting in PAK1, PAK2 and PAK3 

autophosphorylation and full activation[235]. Among the substrates of PAK kinases are 

ARHGEF6 also called αPIX (Pax-interacting exchange factor alpha) and ARHGEF7/βPIX, 

GEFs and thus activators of Rac1 and CDC42, mediating a positive feedback loop[236]. These 
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GEFs form pentameric complexes consisting out of ARHGEF trimers and G protein-coupled 

receptor kinase interactor (GIT) proteins, GAPs of Rac1 and CDC42, providing large 

regulatory units which themselves need to be tightly regulated[237]. In paper 3 (this thesis) 

we show that SCFFBXO28 targets ARHGEF6/7 to modulate the activity of both cell-membrane 

associated but also nuclear Rac1 impacting on cell migration as well as on a novel function in 

HR repair. ARHGEF and GIT proteins are recruited to the sites of interaction between the 

cytoskeleton and the extracellular matrix, so-called focal adhesions, by the scaffold protein 

paxillin which is binding with and regulated by the focal adhesion kinase (FAK), in turn another 

target of PAK phosphorylation highlighting the interconnected nature of Rho GTPase 

signalling[238]. Importantly, Rac1 and CDC42 also activate WASP and WASP family 

verprolin homologous protein (WAVE) which promote formation of actin filaments through 

the action of ARP2/3 complexes, as mentioned, and thereby modulate nuclear cytoskeleton 

remodelling[239]. 

Apart from the cell membrane, Rho-type GTPases also localise to other membrane-enclosed 

structures such as the Golgi apparatus or mitochondria to regulate vesicle trafficking, as well 

as to the nucleus, where Rac1 has previously been suggested to be involved in regulating 

nuclear shape and thereby promotes cancer cell invasion[231, 240]. Accordingly, nuclear Rac1 

levels are elevated in high grade human cancers[240]. 

1.3.3.3 The cancer stem cell concept and drug resistance 

In analogy to somatic stem cells which have the capacity to form entire tissues, human tumours 

contain a small proportion of cells that when transferred to a different site can give rise to 

another tumour and replicate the heterogeneity detected at the original site[218]. Additionally, 

these cells, like their normal counterparts, divide asymmetrically always maintaining a pool of 

stem-like cells[218]. Based on these properties they are referred to as cancer stem or stem-like 

cells (CSCs) [218]. However, whole-genome sequencing studies revealed that human tumours 

contain cell populations derived from several genetically distinct CSC clones which has 

profound implications for targeted treatments[241]. Consistent with a Darwinian model of 

cancer evolution, different cancer cell clones do not exhibit the same sensitivity to targeted 

treatments, which results in a therapy-induced selection process of resistant clones[242]. 

Additionally, CSCs can persist in a quiescent state and thereby be insensitive to conventional 

chemo- and radiotherapy regimens targeting predominantly highly proliferative cells[241]. 

While it is still controversially debated whether the cell of origin for many human cancers is in 

fact a stem cell, some of the common markers and signalling pathways identified in CSCs are 
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also required for pluripotency of embryonal stem cells. These also encompass the Yamanaka 

reprogramming factors c-Myc, Klf4, Oct3/4 and Sox2 which are sufficient to obtain induced 

pluripotent stem (iPS) cells in mice[243, 244]. Due to their highly oncogenic potential these 

master transcription factors are heavily regulated, not least by SCF ubiquitin ligases. MYC is 

ubiquitylated by at least 16 E3s with SCFFBXW7 mediating its proteasomal degradation and 

SCFβTRCP counteracting FBXW7-mediated ubiquitylation[13, 21, 66, 73, 86, 245, 246]. As 

mentioned, FBXO28-dependent ubiquitylation promotes MYC transcriptional activity in 

response to phosphorylation by CDK2[73]. Moreover, KLF4 which is believed to counteract 

the pro-apoptotic effects of MYC expression has been demonstrated to be targeted by 

SCFFBXO22[247]. 

Additional pathways that have been found to be specifically activated in CSCs in a range of 

human cancers include developmentally important NOTCH, WNT, Hedgehog, FGF and TGF-

β signalling[244]. Again, it is SCFFBXW7 that regulates the turn-over of NOTCH1 and whose 

mutation is instrumental in allowing cancer development as a result of NOTCH deregulation 

in T-cell acute lymphoblastic leukaemia (T-ALL)[248]. A model of brain tumour induction, 

based on expressing a mutant version of MYC resistant to FBXW7-mediated degradation in 

mouse neural stem cells, revealed that orthotopically engrafted mice developed either gliomas, 

medulloblastomas or primitive neuroectodermal tumours[249]. One of the key factors 

determining brain tumour type was SOX9 which we and others demonstrated to be a target 

substrate of SCFFBXW7 (paper IV), further highlighting the critical function of FBXW7 during 

cancerogenesis[26, 249]. 

As mentioned, therapeutical interventions may drive the evolution of CSC clones and thereby 

development of treatment resistance[242]. Increased efflux of drugs through upregulation of 

ATP-Binding Cassette (ABC) transporters represents one mechanism of drug resistance 

encountered in CSCs[241]. In glioma stem-like cells elevated expression of ABCG2 promoted 

resistance to temozolomide, a conventional drug used to treat gliomas[250]. ABCG2 

upregulation was associated with overly active PI3K/AKT signalling, particularly elevated 

AKT activity or PTEN loss[250]. Intriguingly, PI3K/AKT signalling also counteracts GSK3β-

dependent phosphorylation of SOX9 and recognition by FBXW7, thereby promoting resistance 

to cisplatin in medulloblastoma which we found to be associated with upregulation of the 

copper transporter ATP7A (paper IV) [26]. Similarly, depletion of SKP2 and ensuing 

stabilisation of p27 promoted overexpression of the drug efflux pump multi-drug resistance 

protein 1 (MRP1) and was linked to drug resistance in an AML cell line[251]. 
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Another common mechanism of drug resistance is upregulation of DDR components to 

increase the capacity for repairing DNA breaks in cancer cells[241]. For instance, the CD24-

/epithelial specific antigen (ESA)+ stem-like population of human triple-negative breast cancer 

MDA-MB-231 cells is enriched in S-phase and exhibits increased expression of RAD51 

associated with reduced DNA damage in response to irradiation[252]. Interestingly, while 

MDA-MB-231 cells respond to WEE1 inhibition through induction of replication stress in S-

phase and massive DNA damage, cells re-proliferate after drug removal, but fail to do so in the 

absence of a functional HR repair signalling pathway as demonstrated in paper II[253]. If this 

is linked to survival of a stem-like population is not known. Further, development of 

radioresistance is a common phenomenon in gliomas and precludes curative treatment[254]. In 

glioma mouse models, cells expressing the common stem cell marker CD133 survive radiation 

to a higher extent then CD133- cells which could be overcome by targeting DNA damage 

checkpoints via inhibition of CHK1 and CHK2[254]. Similarly, a report in non-small-cell lung 

cancer (NSCLC) based on NSCLC stem cells derived from patients concluded that CHK1 is 

activated and promotes resistance to chemotherapy but renders cells sensitive to combination 

therapy with CHK1 inhibitors which resulted in premature cell cycle progression and mitotic 

catastrophe[255]. Intriguingly, high levels of FBXO6, which negatively regulates CHK1 

through proteasomal degradation[256], are associated with favourable NSCLC patient 

outcome[257]. Furthermore, in cell lines FBXO6 depletion confers resistance to genotoxic 

cisplatin treatment[257]. In line with the significance of the DDR in CSC resistance, Zhang et 

al. characterised stem cells derived from mouse p53-null mammary gland tumours and detected 

elevated levels of genes involved in DNA repair including Brca1, Chk1, Ku80 or Rpa1[258]. 

Resistance mechanisms such as these, which distinguish CSCs and bulk tumour cells within 

the same clone and in the case of increased checkpoint activation would limit proliferation of 

bulk cells, may rely on epigenetic differences rather than genetic ones. Accordingly, negative 

regulators of DNA damage checkpoint signalling such as FBXO6, FBXO18, involved in 

degradation of RAD51, or βTRCP with a number of targets involved in DNA damage 

signalling have been found to be epigenetically silenced in different malignancies[14, 259–

261]. 

Of note, however, while several additional resistance mechanisms including upregulation of 

developmental pathways, autophagy or stimuli from the microenvironment have been 

proposed, not all CSCs are necessarily resistant to standard therapies and CSC populations have 

been shown to be eradicated by chemo- or radiotherapy[241]. 
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1.4 TARGETING THE SCF REGULATORY MACHINERY FOR CANCER 

THERAPY 

General inhibition of the UPS by bortezomib and subsequently developed proteasome 

inhibitors carfilzomib and ixazomib has proven highly effective in treating some 

haematological malignancies[6]. Unfortunately, however, these initial successes could not be 

replicated in solid tumours and to date no proteasome inhibitor is approved for the treatment of 

cancers other than multiple myeloma and mantle cell lymphoma[5, 6]. While it is unclear why 

patients with solid cancers do not benefit from proteasome inhibitors, it is intuitively less 

surprising that generally inhibiting the plethora of cellular pathways regulated by the UPS may 

result in different outcomes based on disease context. For instance, Weyburne et al. 

demonstrated that therapeutically achievable concentrations of bortezomib or carfilzomib 

which mostly inhibit the β5 subunit of the 26S proteasome did not result in any appreciable 

cytotoxicity in xenografted triple-negative breast cancer cells which they attributed to residual 

proteasome activity through other subunits and an ensuing rebound effect by upregulation of 

proteasomal genes via the transcription factor NRF1[262]. Encouragingly, combination of 

bortezomib or carfilzomib and specific inhibitors targeting the β2 proteasome subunit resulted 

in re-sensitisation of xenografted cells and exhibited synergy in vitro[262].  

Another feasible approach to overcoming resistance to inhibitors of the proteasome itself would 

be to target pathway components such as E3 ubiquitin ligases or DUBs with a select set of 

substrates. Accordingly, such inhibitors may be more tailored to specific disease context, 

limiting off-target effects. Indeed, more recently additional classes of putative pharmaceutical 

targets within the UPS have been investigated and specific inhibitors developed[263]. Due to 

their involvement in almost all aspects of cancer, their potential accessibility to pharmaceutical 

inhibition and their high substrate specificity the family of F-box proteins represents one such 

class of novel drug targets[264]. To facilitate rational drug development, detailed knowledge 

of the complete set of target substrates for distinct SCF ligases will be crucial. 

Below I will provide a summary of treatment options and some considerations in regard to F-

box proteins as therapy targets, focusing on the cancer types most relevant to the papers 

included in this thesis. 
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1.4.1 Targeting basal-like breast cancer 

With 355 000 newly diagnosed cases in the EU-27 breast cancer is the most common cancer 

overall (13.3% of all cancers) and predictions expect 95 800 women to have succumbed to it 

in the EU-27 during 2020[265, 266].  These numbers are based on trends from previous years, 

however, which may be inaccurate due to reduced screening activity in the wake of the 

COVID-19 pandemic[267]. In turn, delays in diagnosis and treatment are expected to 

contribute to additional cancer mortality in following years[267]. 

There are different systems to define breast cancer sub-groups, but commonly they are 

classified based on the expression of specific markers, including the estrogen receptor (ER), 

progesterone receptor (PR), and HER-2 (ERBB2), which can be detected by 

immunohistochemistry and inform choices of targeted treatments[268]. Tumours which 

express ER and PR at low levels or not at all and do not overexpress HER-2 receptor are 

classified as triple-negative breast cancer (TNBC) [268]. These cancers are clinically 

aggressive and cannot be treated by endocrine therapy or targeting of HER-2[268]. 

Additionally, based on microarray profiling and recapitulated by proteome analysis at least 5 

types of breast cancers with robust distinct molecular signatures are recognised today, basal-

like, luminal A, luminal B, HER-2 and normal-like[269, 270]. The basal-like breast cancer 

(BLBC) group largely overlaps with TNBCs, containing approximately 80% of TNBCs. Due 

to the lack of targeted therapies these cancers are systemically treated with chemotherapy 

which has improved the outcome of BLBC/TNBC patients more greatly as compared to other 

breast cancers, despite the overall outcome after treatment being worse, nonetheless[268]. 

There is no consensus on chemotherapy used in this group but typically a combination of 

cyclophosphamide, methotrexate, and fluorouracil, sometimes with the addition of 

anthracyclines which has been reported to improve outcome [268, 271]. Additionally, cisplatin 

has been used in BRCA1-mutated breast cancers, molecularly mostly belonging to the BLBC 

group, Nonetheless, due to high treatment resistance and recurrence, options are limited and 

the development of targeted therapies for BLBC/TNBC is highly warranted. 

Overexpression of cyclin E, e.g. epigenetically or through gene amplifications, is a frequently 

observed predictor of poor outcome in BLBC[272]. Furthermore, mutations of its negative 

regulator FBXW7, representing another mechanism of cyclin E upregulation, have been 

detected in breast cancer[17]. As discussed earlier, cyclin E overexpression causes severe 

replication stress which may represent a targetable vulnerability. Indeed, BLBC cell lines and 

patient-derived xenografts featuring cyclin E overexpression are highly sensitive to treatment 

with WEE1 inhibitor AZD1775[273]. We found that BLBC cell lines with low or no expression 
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of PTEN were hypersensitive and failed to recover following AZD1775 treatment [253]. 

Interestingly, treatment with AZD1775 downregulated cyclin E more effectively in PTEN-

proficient BLBC cells, which was also associated with re-proliferation after treatment[253]. 

Currently, a phase II clinical trial is assessing the potential of AZD1775 in advanced solid 

tumours with cyclin E overexpression[273]. Furthermore, we and others found that the 

cytotoxic effects of AZD1775 could be potentiated by combination with ATR inhibitor 

AZD6738 regardless of PTEN levels, precluding regrowth of BLBC cell lines and xenografts 

and thereby broadening potential applications of AZD1775[253, 274–277]. 

Mutations in HR repair genes represent another Achilles’ heel of some breast cancers. Olaparib 

and talazoparib, inhibitors of the BER regulator poly(ADP-ribose) polymerases (PARPs), act 

synergistically with HR defects and have been approved as therapeutical agents for breast 

cancer patients with germline mutations in BRCA1/2[278–280]. The great majority of cancers 

with mutations, both hereditary and somatic, in these critical FA/HR and cancer susceptibility 

genes molecularly belong to the BLBC subgroup thus representing another avenue for targeted 

treatments. 

SCFEMI ligase modulates sensitivity of BRCA mutated cells to PARPi by targeting RAD51 for 

proteasomal degradation[170]. In response to DSBs, CHK1 is activated, phosphorylates 

RAD51 to promote interaction with BRCA2, which in turn results in stabilisation of 

RAD51[170]. In the absence of BRCA2 RAD51 is thus depleted below a critical threshold 

required for HR repair[170]. BRCA-mutated cancers develop resistance in many instances and 

downregulation of EMI1 might represent one such mechanism[170]. 

Furthermore, BLBCs typically express higher levels of SKP2 and accordingly low levels of its 

primary proteolytic target p27 than do other breast cancer subtypes[268]. These changes are 

associated with an increase of the S-phase population, accelerated proliferation and dampened 

apoptosis[281]. Due to its unambiguously oncogenic effects small molecules inhibitors of 

SKP2 have been developed which have shown promise in preclinical models. One such 

inhibitor, compound #25, was identified using an in silico screen and was reported to prevent 

interaction between SKP2 and SKP1 and thus formation of a functional SCF complex[282]. 

Inhibition of SKP2 resulted in accumulation of p27 and triggered p53-independent apoptosis 

in cell lines[282]. Furthermore, #25 exhibited synergistic cytotoxicity when combined with 

cyclophosphamide or doxorubicin[282]. Additional SKP2 inhibitors were developed using a 

similar in silico approach based on the crystal structure of the ternary SKP2-CKS1-p27 

complex, but in this case targeting a pocket at the interface between SKP2-CKS1 and p27[283]. 
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Similarly to #25, these inhibitors potently prevented degradation of p27 accompanied by G1 

arrest[283]. 

While a small number of other inhibitors targeting F-box proteins such as βTRCP have been 

reported with promising results in vitro, none have entered clinical trials so far[264, 284]. 

However, general inhibition of the SCF ligase by the neddylation inhibitor 

MLN4924/Pevonedistat, with neddylation of cullins being a prerequisite to SCF activation, has 

so far shown therapeutic potential in five completed phase I clinical trials of haematological 

and solid tumours and encouraged phase II and III trials currently recruiting patients[285]. 

 

1.4.2 Therapeutic options for medulloblastoma 

Medulloblastoma (MB) is the most common childhood brain tumour with the median age of 

diagnosis at around 6 years[286]. MBs do occur in adults but the incidence is about 10-fold 

lower[286]. It is a tumour of the cerebellum suspected to arise from neural stem or progenitor 

cell populations already during foetal development[286]. Based on molecular profiles 4 groups 

of MB with clinical relevance are being recognised: Wingless-related integration site (WNT)-

MB, sonic hedgehog (SHH)-MB, group 3 and group 4[287]. While WNT-MB has the most 

favourable prognosis and is typically non-metastatic at diagnosis, group 3 is the most 

aggressive with a <60% 5-year overall survival[286]. SHH-MB which is the most common 

type in infants and adults mostly has an intermediate prognosis[286]. Equally, Group 4 MB 

which is the most common type overall is associated with an intermediate prognosis[286]. 

Importantly, however, SHH-MB and groups 3 and 4 have recently been subdivided into 

additional groups with distinct clinical characteristics including patient survival[288]. 

MBs of all groups are treated by surgical resection of the tumour, removing a safe maximum 

of the tumour sparing healthy tissue[286]. This is in most cases followed by cranio-spinal 

irradiation, whose introduction resulted in great improvements in patient survival but also 

prompted serious side effects including permanent neurological damage associated with 

cognitive disabilities as well as secondary cancers[286]. Additionally, MB is treated with 

adjuvant multi-agent chemotherapy using cisplatin, carboplatin, vincristine, cyclophosphamide 

or lomustine[286]. Due to the severe and permanent side effects of current gold-standard MB 

treatment, development of targeted approaches is of utter importance. 

The SHH pathway overactive in SHH-MB consists of the patched (PCH) receptor which 

inhibits its cognate receptor smoothened (SMO) but releases this inhibition upon binding of its 
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ligand SHH[289]. This in turn activates a downstream cascade through inactivation of 

suppressor of fused (SUFU) and activation of MYCN[289]. A mechanism of SUFU 

inactivation involves FBXL17 which mediates proteasomal destruction of SUFU[290]. 

Inhibition or degradation of SUFU drives gene expression changes via release of glioma-

associated oncogene 1, 2 and 3 (GLI1/2/3) transcription factors[289]. All of these pathway 

components have been found to be mutated in SHH-MB with most activating mutations 

occurring upstream in PCH[286]. Interestingly mutations of S352 in SUFU present in MB 

patients result in increased proteasomal turn-over by SCFFBXL17 and accordingly pathway 

overactivation[290]. Such MB patients and others with an overly active SHH pathway could 

benefit from pharmacological inhibition of FBXL17. There are no such inhibitors but agents 

targeting SMO are available and are being investigated in clinical trials with promising first 

results indicating responses but at the same time revealing side effects in children pertaining to 

bone development associated with the physiological role of SHH signalling[291]. Downstream, 

another F-box protein, βTRCP, regulates the levels of GLI transcription factors after cAMP-

dependent protein kinase (PKA) and GSK3β-dependent phosphorylation[292, 293]. 

β-TRCP also plays an important role in WNT-MB through degradation of β-catenin, the central 

transcription factor coordinating downstream WNT signalling which carries activating 

mutations in 86% of WNT-MB[286, 294]. Additionally, β-catenin protein turn-over is 

dependent on the tumour suppressor adenomatous polyposis coli (APC) which forms a 

complex with the scaffolding protein Axin, casein kinase 1 (CK1) and GSK3β to promote β-

catenin phosphorylation and subsequent association with β-TRCP[295]. Intriguingly, a high 

proportion of β-catenin mutations in MB occur within these GSK3β phosphorylation sites and 

stabilise the protein[296, 297]. 

MYC is one of the most frequently altered oncogenes in MB and amplifications are associated 

with poor patient survival[286]. High-level amplifications are frequent in group 3 MB but less 

so in other groups, while amplifications of another MYC family member MYCN also 

commonly occur in SHH-MB and group 4 MB[298]. In line with its function as a crucial 

negative regulator of MYC protein stability, FBXW7 has been found to deleted, harbour 

recurrent mutations in its substrate interaction domains or be transcriptionally downregulated, 

particularly in SHH-MB but also group 3 MB (paper IV) [26]. Expression of CPD-mutated 

T58A n-myc, but not wildtype n-myc, in murine neural stem cells was sufficient to induce 

formation of different brain tumours upon orthotopic transplant[249]. Tumour type depended 

on the origin of the neural stem cell and activation of additional factors, whereby the FBXW7 

target SOX9 was specifically associated with the formation of SHH-MB[26, 249]. As 
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mentioned earlier, increased expression of SOX9 resulted in resistance to cisplatin in MB 

cells[26]. This could be rescued by concurrent inhibition of PI3K/AKT/mTOR signalling 

which increased turn-over of SOX9 and may provide a strategy for the treatment of wildtype 

FBXW7-expressing MB (paper IV)[26]. 

General UPS inhibition by bortezomib has been shown to inhibit MB cells in vitro and in 

xenografted mice due to potent induction of caspase cleavage and apoptosis[299, 300]. 

Intriguingly, MB cells exhibited reduced levels of phosphorylated mTOR and AKT upon 

bortezomib treatment[300], which may represent a feedback mechanism to rescue GSK3β-

dependent degradation. Despite its potency in vitro and in in vivo models, the clinical usability 

of bortezomib is limited as it does not readily cross the blood-brain barrier, a major obstacle 

for the development of targeted therapeutics for brain tumours[301, 302]. 

Analogously to other cancers G1/S transition is deregulated in MB. In some MBs, particularly 

group 4, CDK6 amplifications contribute to this phenotype[286]. The CDK4/6/cyclin D/RB 

pathway, however, is overly active also in the other non-WNT-MB and the application of 

CDK4/6 inhibitors aims at exploiting these alterations[303]. CDK4/6 inhibitors have shown 

great promise in patient-derived MB xenograft models and are now being investigated in 

clinical trials[286]. Besides CDKs, the critical S-phase onset promoter SKP2 is upregulated in 

MB coinciding with downregulation of its substrate p27[298, 304]. Deregulation of G1/S 

transition almost invariably results in replication stress. Indeed, MB have been demonstrated 

to be sensitive to WEE1 inhibition analogously to other cancers such as BLBC suffering from 

oncogene-induced replication stress, opening up yet another avenue for the development of 

novel targeted treatments[305]. 
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2 DOCTORAL THESIS 

2.1 AIMS 

Following the discovery of the SCF ubiquitin ligase and the first member of the F-box family 

FBXO1/cyclin F, the significance of this complex for literally all cellular functions has 

gradually been revealed. The implications of deregulation of these regulatory nodes for the 

development and progression of human cancers have subsequently sparked great interest and 

efforts to reveal and disentangle the complete, highly interwoven substrate network of at least 

69 human F-box proteins. Still, as of today only a handful of F-box proteins is well established 

as oncogenes or tumour suppressors, while the great majority remains minimally understood 

or incompletely characterised. 

 

This thesis aimed to functionally characterise specific SCF ligases that contribute to oncogenic 

processes and define potential cancer vulnerabilities, ultimately guiding the development of 

novel treatment strategies. 

 

Paper I aimed to identify F-box proteins regulating the response to oncogene-induced 

replication stress, an Achilles heel of cancer cells, and potential ways of targeting them. 

Paper II aimed to determine potential markers of response and pathways of resistance using 

the clinically relevant WEE1 inhibitor AZD1775. 

FBXO28 is among the most frequently altered F-box proteins across human cancers, yet no 

proteolytic targets had been identified until now. Paper III therefore aimed to discover 

unknown substrates of FBXO28 with implications for cancer development. 

Paper IV aimed to functionally explore novel and clinically relevant FBXW7 substrates in 

MB which may be amenable to pharmacological modulation to improve patient outcome. 
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2.2 SUMMARY OF RESEARCH PAPERS 

2.2.1 Paper I 

Cancer cells experience high levels of DNA replication stress as a result of deregulated 

proliferation. Accordingly, activation of pathways mitigating these adverse effects in human 

malignancies may represent a vulnerability amenable to therapeutical intervention. 

In paper I we initially focused on the FBXW7 target substrate cyclin E, which is a potent driver 

of replication stress and genetic instability when deregulated. To identify potential SCF ligases 

that support survival after cyclin E over-expression, we performed a loss-of-function screen 

individually depleting the majority of F-box genes by siRNAs and assessing their impact on 

the recovery from replication stress. Besides known regulators of linked processes such as 

FBXO18, which precludes unscheduled HR repair in response to hydroxyurea (HU) treatment, 

we identified FBXL12 as a novel putative regulator of replication re-start. Analysing the effect 

of FBXL12 knockdown at the level of individual replication forks by DNA fibre assays 

revealed that in the absence of FBXL12 a higher proportion of forks was stalling after release 

from an aphidicolin-induced replication block, which was accompanied by over-activation of 

dormant origins. Furthermore, induction of cyclin E over-expression in U2OS cells resulted in 

significantly reduced replication fork progression in the absence of FBXL12 while there was 

no clear difference at physiological levels of cyclin E, which supported the conclusion that 

FBXL12 is most relevant in response to oncogene-induced replication stress while it is less 

important in unchallenged cells. Intriguingly, cyclin E induction in this cell line model 

coincided with transcriptional upregulation of FBXL12. This relationship was corroborated by 

correlation of FBXL12 and cyclin E protein expression levels in breast cancer cell lines as well 

as enrichment of E2F pathway components in cell lines with FBXL12. 

In line with an effect on replication fork speed, ablation of FBXL12 reduced S-phase 

progression and resulted in diminished proliferation of BLBC cells but not in untransformed 

cells. Markers of replication stress including pan-γH2AX or CHK1 phosphorylation on serine 

345 were elevated in the absence of FBXL12, particularly in BLBCs with high cyclin E levels 

and already high levels of replication stress. Accordingly, we observed a high proportion of 

senescence markers and micronuclei indicative of mitotic problems in FBXL12-KO MDA-

MB-231 cells. 

To investigate the mechanism by which FBXL12 carries out its function, we immunopurified 

FBXL12 and interrogated its associated proteome of putative interactors. This resulted in the 

identification of interaction with FANCD2, as well as with its binding partner FANCI, which 
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was subsequently determined to occur primarily in the chromatin-associated cellular fraction. 

While binding of FANCI was dependent on the presence of FANCD2, that was not the case 

the other way around, suggesting that FANCD2 is the primary binding partner of FBXL12 in 

this complex. Importantly, we could show that this interaction results in polyubiquitylation and 

ensuing proteasomal degradation of chromatin-associated FANCD2. To our knowledge, this is 

the first demonstration of a ubiquitin ligase targeting FANCD2 for degradation. Intriguingly, 

activation of FA signalling by DNA damage-inducing agents such as mitomycin C (MMC) 

further increased the interaction and polyubiquitylation of FANCD2. Strikingly, we showed 

that FANCD2 could not be released from chromatin efficiently in the absence of FBXL12. 

Consequently, depletion of FBXL12 and trapping of FANCD2 on chromatin was accompanied 

by altered dynamics of the downstream FA effector RAD51. Furthermore, we tested whether 

FBXL12 and FANCD2 acted in the same pathway by combining siRNAs targeting both as 

compared to individual knock-down. Surprisingly, while FBXL12 or FANCD2 knockdown 

alone resulted in reduced replication fork speed accompanied by increased fork stalling and 

DNA damage signalling, combined knockdown restored these molecular phenotypes. The 

restored fork speed in FBXL12-FANCD2 co-depleted cells likely reflects residual FANCD2 

activity as a result of incomplete depletion of FANCD2 expression by siRNAs. However, we 

cannot rule out that other pathways may contribute to the resolution of replication stress 

resulting from residual FANCD2 trapped on chromatin. 

Mapping the FBXL12-interacting site of FANCD2 suggested that interaction occurs within the 

N-terminal region. Since SCF substrates are typically recognised and bound upon 

phosphorylation, and the N-terminus of FANCD2 contains predicted ATR, CHK1 and DNA-

PK motifs, we tested whether one of these three major DDR kinases is involved in FBXL12-

FANCD2 binding. Indeed, inhibition of both ATR as well as CHK1/CHK2 and subsequent 

mutagenesis of two potential CHK1 phosphorylation sites at serines 8 and 10 reduced 

FBXL12-FANCD2 interaction. Furthermore, FBXL12 efficiently promoted ubiquitylation of 

FANCD2 in vitro but failed to ubiquitylate a mutant in which serines 8 and 10 had been 

replaced by alanine, indicating that these sites are critical for interaction as well as 

ubiquitylation. 
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Fig. 5 Model summarising findings from paper I. SCFFBXL12 polyubiquitylates FANCD2 located at stalled 
replication forks resulting in its degradation, allowing access for downstream repair factors and efficient fork 
re-start. In the absence of FBXL12 under conditions of low replication stress in untransformed cells FANCD2 
remains bound to chromatin for an extended period which favours dormant origin firing to rescue stalled 
replication forks (left box). On the other hand, under conditions of severe replication stress, e.g. due to cyclin 
E over-expression, FBXL12 promotes timely replication fork re-start while its absence leads to failure to re-
start forks, exhaustion of dormant origins and either replication catastrophe or onset of mitosis with extensive 
under-replicated regions and ultimately cell death or senescence. 

 

Based on the role of FBXL12 responding to oncogene (cyclin E)-induced replication stress 

through regulation of FANCD2, we wondered if FBXL12 also protects against 

pharmacologically induced replication stress. To this end, we utilised the WEE1 inhibitor 

AZD1775 which induces overactivity of CDKs and thus mechanistically exhibits parallels to 

overexpression of cyclin E. Expectedly, knockout of FBXL12 sensitised MDA-MB-231 cells 

to AZD1775 and prevented recovery after drug washout. Moreover, clearance of replication 

stress-associated DNA damage as marked by pan-γH2AX was significantly delayed in 

FBXL12-KO cells. 

Based on sequence alignments of the F-box domain SKP2 is the most closely related paralogue 

of FBXL12. Due to its established role as an oncogene, small molecule compounds have been 

developed aiming to specifically inhibit SKP2. Chan et al. previously reported an inhibitor of 

SKP2, compound #25, that binds to its F-box domain and prevents formation of the SCFSKP2 

complex resulting in upregulation of its substrate p27[282]. Despite a lack of structure data for 

FBXL12, its similarity to SKP2, particularly within the F-box, prompted us to explore whether 

this inhibitor might also bind FBXL12. Using cellular thermal shift assays (CETSA), which 

utilise the fact that protein thermostability is increased upon ligand binding, we found that #25 

binds not only to SKP2 but also to FBXL12. Additionally, treatment with #25 increased 
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interaction between FBXL12 and FANCD2 suggesting reduced FBXL12-mediated FANCD2 

turn-over. Finally, #25 synergised with AZD1775 in MDA-MB-231 cells, collectively 

indicating that this compound acts as inhibitor not only for SKP2 but also its most similar 

paralogue FBXL12. 

Underlining the potential significance of the cyclin E-FBXL12 axis in cancer both proteins 

were correlated in human breast tumours and were significantly associated with poor breast 

cancer patient survival. Intriguingly, combined high versus low cyclin E and FBXL12 

expression separated patient outcome more clearly than high and low expression of the cyclin 

E pathway alone. A trend which was also observed in other malignancies. 

 

2.2.2 Paper II 

AZD1775 potently induces replication stress resulting in DNA damage and cell death. 

Additionally, AZD1775 has shown great promise in clinical trials for the treatment of 

malignancies including breast cancer[273, 306] and as shown in paper I, inactivation of 

FBXL12 sensitises cells to AZD1775. While mutations or deletions of FBXL12 are rare in 

cancer, FBXL12 tends to be amplified and/or overexpressed in several malignancies. Although 

FBXL12 expression was found to correlate with cyclin E expression and high proliferation 

activity (paper I), a direct association between total FBXL12 expression levels and acute 

response to AZD1775 treatment was not evident in a panel of breast cancer cell lines profiled 

by transcriptomics and proteomics in the second paper. 

Initially, we performed an image-based high-content screen of 16 breast cancer cell lines to 

assess acute response to AZD1775 mono-therapy. This revealed that BLBC cell lines were 

exquisitely sensitive to WEE1 inhibition as compared to luminal breast cancer cell lines. 

However, we also identified a sub-set of cell lines with reduced sensitivity to AZD1775 within 

the group of BLBC cell lines that also recovered post AZD1775 treatment. 

Intriguingly, we found that AZD1775-sensitive cells continued to replicate DNA despite the 

presence of AZD1775-induced DNA damage, as revealed by EdU incorporation in γH2AX-

positive cells. To investigate the molecular mechanism behind this phenotype and divergent 

sensitivities we carried out whole-proteome analysis and identified low PTEN expression as a 

major determinant of AZD1775 sensitivity. CRISPR-Cas9-mediated knock-out of PTEN 

sensitised resistant MDA-MB-231 cells to AZD1775 and prohibited recovery. Conversely, 
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expression of PTEN in PTEN-negative HCC38 resulted in reduced sensitivity to AZD1775 

acutely and also allowed for recovery upon treatment wash-out. 

This prompted us to combine AZD1775 with a panel of additional targeted drugs aiming to 

overcome re-proliferation and achieve more long-lasting effects. Supported by other studies, 

[274–277], we found that the ATR inhibitor AZD6738 exhibits potent synergy with AZD1775 

while the PTEN low BLBCs, hypersensitive to AZD1775 did not exhibit any potentiating effect 

of combined treatment. AZD1775-resistant cells swiftly started to proliferate again and 

recovered following drug treatment and wash-out but completely failed to re-start upon 

AZD1775-AZD6738 combination treatment. This was supported by in vivo experiments which 

showed clear delay of tumour growth upon AZD1775-AZD6738 treatment as compared to 

either agent individually. Detailed analysis of the replicating cell population revealed severe 

replication stress resulting in an inability to clear DNA damage upon drug washout following 

combination treatment. 

In an effort to identify additional components of the DDR that may regulate the ability to 

recover following AZD1775-induced replication arrest, we performed an siRNA-based 

viability screen of 300 DDR genes. In line with synergy upon ATR inhibition, HR repair 

pathway genes were significantly enriched among genes affecting sensitivity to AZD1775. 

Intriguingly, however, we found that DNA-PK depletion, an important regulator of NHEJ 

repair, significantly decreased viability in response to AZD1775. Furthermore, DNA-PK 

inhibitor NU7441 exhibited synergy with AZD1775 in a panel of BLBC cell lines. 

Mechanistically, we demonstrated that DNA-PK becomes phosphorylated and activated upon 

AZD1775 treatment and in the absence of ATR activity promotes phosphorylation of central 

ATR substrates, including RPA-serine 33 and CHK1-serine 345. Similar to PTEN-KO cells, 

DNA-PK depleted MDA-MB-231 cells did not recover following AZD1775 treatment which 

was linked to a lack of CHK1 activation and increased DNA damage in the EdU-positive 

replicating cell population. 

Next, to investigate a possible link between AZD1775 hypersensitivity in PTEN- and DNA-

PK-deficient cells, we interrogated DNA-PK activity and CHK1-seine 345 phosphorylation in 

PTEN-negative HCC38 cells which revealed increased DNA-PK activation but markedly 

alleviated CHK1 phosphorylation upon AZD1775 single agent treatment. These results 

indicate that DNA-PK-dependent sensitivity is likely not directly linked to PTEN while 

downstream CHK1 activation may play a role in both contexts. While PTEN was expressed at 

low levels in the sensitive BLBC sub-group, notably, cyclin E was highly expressed. Strikingly, 

in resistant MDA-MB-231 cells cyclin E was potently and rapidly down-regulated in response 
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to AZD1775 treatment. In stark contrast, both DNA-PK-KO and PTEN-KO exhibited failure 

or delay in reducing cyclin E protein levels, which provides another putative connection 

between these two determinants and AZD1775 sensitivity. 

 

2.2.3 Paper III 

Our group previously demonstrated a link between FBXO28 and increased MYC 

transcriptional activity and provided evidence for an oncogenic function of FBXO28 in breast 

cancer[73]. However, to date the existence of proteolytic SCFFBXO28 substrates in mammalian 

cells remain unknown. The work presented in paper III of this thesis reveals a novel regulatory 

mechanism involving the release of chromatin-bound FBXO28 and targeted destruction of 

ARHGEF6 and ARHGEF7. 

Using affinity-purified FBXO28 and proteomics-based identification of interactors, we could 

show that while the majority of FBXO28 protein is restricted to chromatin, a small proportion 

of FBXO28 was found to interact with proteins not associated with chromatin. FBXO28 was 

also found to localise at distinct foci in the cell membrane where it colocalises with focal 

adhesion protein paxillin. Mass spectrometry analysis revealed interaction with several key 

cytoskeleton modulators including ARHGEF6 and ARHGEF7 as well as their interaction 

partners GIT1/2 and PAK1/2 proteins. 

In line with nuclear localisation of the majority of FBXO28 protein, we found that FBXO28 

binds tightly to chromatin, specifically chromatin enriched for histones with heterochromatin-

associated modifications such as H3K9me2/3 or H4K20me1/2 as well as HP1. To explore this 

heterochromatin connection, we generated deletion mutants and identified a specific motif in 

the C-terminus of FBXO28 mediating chromatin association, RKSKR. Deletion or 

mutagenesis of this motif resulted in loss of chromatin binding while nuclear localisation was 

maintained. Curiously, this mutated version of FBXO28, subsequently referred to as KRmt, 

exhibited markedly increased interaction with ARHGEF6/7 proteins as shown by additional 

mass spectrometry assays comparing interactomes of FBXO28-WT and KRmt. 

Next, we mapped the FBXO28 interaction sites of ARHGEF6/7 to their coiled-coil domains 

which are also responsible for binding to GIT proteins. Deletion of a short stretch within the 

coiled-coil domain, amino acids 768 to 776 in ARHGEF6, resulted in a complete loss of 

interaction with FBXO28.  
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Immunoprecipitation of FBXO28 revealed increased interaction with ARHGEF6/7 in the 

presence of MG-132 or MLN4924, specifically in the nucleoplasm but not on chromatin. In 

line with this observation, ARHGEF6/7 protein levels were almost completely abolished upon 

expression of the KRmt. While ARHGEF6/7 proteins were not degraded in the nucleoplasm 

of FBXO28-KO NIH3T3 cells, and minimally degraded after FBXO28-WT reconstitution, 

they were rapidly degraded upon FBXO28-KRmt expression. Accordingly, re-expression of 

FBXO28 in a HeLa FBXO28-KO model curtailed RAC1 activity in the nucleus and at the cell 

membrane through reduction of ARHGEF6/7 protein expression. While the major pool of 

ARHGEF6/7 proteins is located in the cytoplasm and at the cell membrane where they promote 

RAC1 and CDC42 activity, regulating cell motility and migration, the function of 

ARHGEF6/7-RAC1 in the nucleus is unknown. Collectively, our findings support a 

mechanism whereby FBXO28 bound to chromatin is unable to degrade ARHGEF6/7, while 

nucleoplasmic and membrane-bound ARHGEF6/7 is degraded when FBXO28 is released from 

chromatin. 

In the search for factors releasing FBXO28 from chromatin, we noticed that induction of DNA 

damage by agents including neocarzinostatin (NCS), doxorubicin and etoposide increased 

FBXO28 interaction with ARHGEF6/7 in cells co-treated with MG-132. Indeed, FBXO28 was 

released upon doxorubicin treatment in a dose-dependent manner. These intriguing 

observations prompted us to focus on nuclear ARHGEF6/7 and a putative function related to 

the DDR. Recently, the RAC1 effector ARP2/3 complex has been reported to mediate HR 

repair by nucleating formation of actin filaments adjacent to DSBs resulting in movement of 

these sites outside of heterochromatin domains[214, 215]. This mechanism precluded 

erroneous recombination within repetitive heterochromatic regions and promoted faithful HR 

repair[214, 215]. Using high-content imaging-based quantification of γH2AX foci within 

heterochromatin domains, we could demonstrate that depletion of FBXO28 caused a delay in 

the clearance of heterochromatic DNA damage which could be rescued by the additional 

pharmacological attenuation of RAC1 activity. Furthermore, both overexpression of FBXO28 

as well as siRNA-mediated depletion of ARHGEF7 resulted in reduced HR repair efficiency 

as assessed using the DR-GFP HR reporter assay. Equally, RAC1 and ARP2/3 inhibitors 

NSC23766 and CK-666, respectively, prohibited efficient HR repair. Finally, upon irradiation 

FBXO28-KO NIH3T3 cells exhibited an elevated number of 53BP1 foci, an NHEJ-promoting 

repair protein, as compared to FBXO28-WT reconstituted cells but still lower numbers than 

FBXO28-KRmt-expressing cells, which argued for a shift towards NHEJ in the absence of a 

functional FBXO28-ARHGEF6/7-RAC1-ARP2/3 axis. This interpretation was further 
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supported by the virtual absence of RAD51 foci in FBXO28-KRmt cells in response to 

irradiation. 

 

Fig. 6 Model summarising findings and conclusions from paper III. FBXO28 is tightly bound to 
heterochromatin where it cannot bind to its substrates. Upon release e.g. in response to induction of DSBs by 
IR or chemotherapy drugs, FBXO28 moves to the nucleoplasm and the membrane to ubiquitylate and degrade 
local ARHGEF6/7 pools. This in turn, results in reduced ARHGEF6/7-mediated RAC1 activation and allows 
for RAC1 inactivation-activation cycles that drive the dynamic assembly of actin filaments promoting DSB site 
relocation followed by HR repair in the nucleus and lamellipodia formation increasing migration at the cell 
membrane. 

 

2.2.4 Paper IV 

Despite the indisputable role of FBXW7 in carcinogenesis, detailed knowledge of how the 

FBXW7 pathway is altered in specific malignancies and in response to therapy is limited. 

A combined approach to identify novel substrates of FBXW7, based on protein expression in 

FBXW7-WT and KO HCT116 cells and prediction of GSK3β phosphorylation and CPD 

motifs, shortlisted SOX9 as a putative substrate[28]. Using immunoprecipitation assays, we 

confirmed that FBXW7 and SOX9 interact and that this interaction depends on an 

evolutionarily conserved CPD motif phosphorylated by GSK3β. Consistently, mutagenesis of 
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this CPD motif, resulted in loss of interaction with FBXW7 and stabilisation of SOX9. 

Furthermore, depletion of FBXW7α but not the other isoforms resulted in marked stabilisation 

of SOX9 protein while over-expression of FBXW7α promoted turn-over of SOX9 in a 

proteasome-dependent manner. Accordingly, FBXW7 ubiquitylated SOX9 in vitro and cell 

lysate-based ubiquitylation assays. In contrast, mutagenesis of the FBXW7 substrate 

recognition domain, in this case R465A, or deletion of the F-box abolished SOX9 

ubiquitylation. Regulation of SOX9 by FBXW7 was found in both untransformed cells and 

various cancer cell lines, including colorectal carcinoma, breast cancer, glioma and MB cell 

lines. 

As SOX9 has previously been shown to determine MB sub-type, promote neural stem cell 

renewal and tumour development[249], we wondered if deregulation of FBXW7-mediated 

degradation affects these processes in MB. Therefore, we re-analysed whole-exome 

sequencing data from 133 SHH-MB tumours and identified FBXW7 mutations in about 11% 

of this cohort[307]. Many of these mutations were situated within the WD40 domains affecting 

three arginines crucial for substrate interaction, which suggests deregulation of substrates as 

the mechanistic basis for the presence of FBXW7 mutations in MB. Additionally, FBXW7 

mRNA levels are low in MB, particularly in SHH-MB, as compared to normal cerebellum, and 

low expression levels are associated with poorer MB patient outcome. Although higher 

FBXW7 expression was linked to a significant survival advantage in group 3 MB, separation 

of low and high-risk groups based on FBXW7 expression was greatest in SHH-MB. In line 

with FBXW7-mediated SOX9 degradation as a putative determinant of MB malignancy, 

increased SOX9 protein levels were observed in tumours with lower FBXW7 mRNA 

expression and vice versa. 

To determine if indeed SOX9 was the decisive target for FBXW7 in MB, presumably 

explaining its effect on patient survival, we orthotopically transplanted the human MB cell line 

DAOY overexpressing SOX9 either alone or together with FBXW7α into athymic nude 

Foxn1nu mice and found that FBXW7α expression significantly prolonged survival and, 

strikingly, completely abolished metastasis formation. FBXW7 expression also reduced ability 

of DAOY cells to migrate in trans-well migration assays in vitro. The in vivo metastasis 

phenotype was reproduced using MB-inducing cells (MICs) isolated from the MYCNT58A 

model. In this case, overexpression of SOX9 resulted in markedly increased metastatic spread 

as compared to MIC control cells. Furthermore, MB patients were significantly more likely to 

present with metastasis when tumours expressed high SOX9 protein, further supporting a 

clinical significance of the discovered mechanism. 
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To explore differential gene regulation as a result of increased SOX9 stabilisation in greater 

detail, we stably expressed SOX9-WT or the SOX9-CPDmt (T236/240A) mutant in MB002 

cells, a human MB cell line, and profiled these cells by RNA sequencing. Among the gene sets 

most clearly upregulated in SOX9-WT as compared to control cells and further elevated upon 

expression of SOX9-CPDmt was the EMT gene set, encompassing upregulation of genes such 

as SLUG or vimentin. Gene set enrichment analysis further revealed that metastasis signatures 

were enriched upon induction of SOX9 overexpression, in line with clinical and in vitro 

migration and metastasis data above. 

Based on the link between EMT, metastasis and drug resistance, we next asked whether 

stabilisation of SOX9 confers resistance to cisplatin, commonly used for the treatment of MB. 

Overexpression of SOX9 in MB002, DAOY and MICs increased cell viability upon cisplatin 

exposure which could be reverted by additional FBXW7α induction. Moreover, mice engrafted 

with DAOY-SOX9-WT or SOX9-CPDmt did not respond to cisplatin therapy, in contrast to 

mice transplanted with DAOY cells featuring endogenous SOX9 expression. 

In the light of increased cisplatin resistance due to SOX9 upregulation, we reassessed our RNA 

sequencing datasets. We found DUSP2 and ATP7A, pointed out in previous reports as 

determinants of cisplatin resistance[308, 309], among the most differentially expressed genes 

between empty vector control and SOX9-CPDmt. Thus, these genes may underly increased 

cisplatin resistance in response to SOX9 overexpression. 

These findings prompted us to explore ways to sensitise MBs exhibiting high SOX9 levels. 

Intriguingly, hyperactivation of PI3K/AKT/mTOR signalling in human MB is associated with 

poor survival[307] and AKT phosphorylates and inhibits GSK3[310], which in turn may 

mitigate SOX9 degradation. We hypothesized that pharmacological inhibition of 

PI3K/AKT/mTOR signalling might promote SOX9 turn-over. Indeed, treatment with 

AZD2014, AZD5363 or AZD8186 inhibiting mTOR, AKT and PI3K, respectively, enhanced 

FBXW7α-dependent turn-over of SOX9. Furthermore, AZD2014 and cisplatin synergistically 

reduced viability in MB cell lines but not upon expression of SOX9-CPDmt, which supports 

the idea that targeting SOX9 through pharmacological upregulation of GSK3β-FBXW7α-

dependent degradation sensitises MBs to cisplatin chemotherapy. 
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2.3 DISCUSSION AND IMPLICATIONS 

The papers presented in this thesis uncover novel ways of how the SCF ubiquitin ligase 

regulates pathways central to cancer hallmarks through its F-box protein subunits FBXL12, 

FBXO28 and FBXW7. Among these, FBXW7 is most frequently altered in human 

malignancies, either through deletions, mutations or epigenetic silencing, which via 

deregulation of its key proteolytic substrates cyclin E and MYC leads to hyperproliferation and 

the simultaneous onset of replication stress[34, 311–313]. 

In paper I we identified FBXL12-mediated degradation of FANCD2 as a crucial mechanism 

involved in counteracting such oncogene-induced replication stress. Depletion of FBXL12 

resulted in failure to efficiently re-start replication under these conditions. This may be 

explained either by direct effects on factors involved in replication fork protection and re-start 

and/or more indirectly through deregulation of G1/S progression. The latter would be in line 

with previous studies implicating FBXL12 in the regulation of CDK inhibitors p21, p27 and 

p57[49, 52, 55]. However, FBXL12-dependent inhibition of p27 and p57 was shown to occur 

during thymocyte and osteoblast development, respectively, and their upregulation as a result 

of FBXL12 depletion would rather prevent G1/S transition[49, 52]. On the other hand, 

FBXL12 has been suggested to promote expression of p21 via the proteasome activator 

PA28γ[55]. In stark contrast, while we did observe interaction with PA28γ as well, we found 

p21 to rather be upregulated in the absence of FBXL12 which was associated with increased 

cellular senescence. Additionally, while progression within S-phase was markedly delayed, 

overall cell cycle profiles were only moderately affected by FBXL12 depletion, exhibiting a 

moderate increase in S-phase cells. Thus, CDK inhibitor-mediated deregulation of G1/S 

transition likely does not account for replication re-start problems. 

Instead, we found that FBXL12 mediates degradation of the chromatin-associated, active pool 

of FANCD2. The FA pathway has previously been implicated in tolerance to replication stress, 

specifically the ID2 complex, exhibiting both FA core-dependent and -independent functions 

at stalled replication forks[171]. 

While the FA core complex encompassing the E3 ligase FANCL is responsible for 

monoubiquitylating the ID2 complex, USP1/UAF1 mediates the removal of the monoubiquitin 

moiety on FANCD2 which is required for the repair of ICL-induced lesions[182, 314]. 

Accordingly, ablation of USP1 results in an increase of chromatin-associated FANCD2-Ub 

concomitant with reduced FANCD2 foci formation and MMC hypersensitivity[314]. 

However, it is unclear if elevated FANCD2-Ub levels on chromatin are toxic, for example by 
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precluding access of down-stream repair factors, or if deubiquitylation is a prerequisite for 

subsequent repair steps. Depletion of both USP1 and FANCD2 did not rescue the MMC 

sensitivity which argues against the former mechanism[314]. Conversely, in the case of 

oncogene-induced replication stress, combined FBXL12 and FANCD2 knock-down improved 

replication fork speed and alleviated DNA damage as compared to FBXL12 depletion alone, 

indicating that high levels of chromatin-bound FANCD2 are indeed toxic under these 

circumstances. 

How non-monoubiquitylated FANCD2 is being regulated has remained unclear and in the light 

of FA core-independent functions has become a more pressing question. To our knowledge, no 

E3 ligase targeting FANCD2 for proteasomal destruction has been reported to date. 

Intriguingly, non-ubiquitylated FANCD2 interacts with the MCM helicase to restrict 

replication fork progression in the presence of HU-induced replication stress[160]. 

Accordingly, we found that depletion of FBXL12 and concomitantly elevated FANCD2 levels 

lead to reduced replication fork speed. FANCI, on the other hand, prevents MCM activation at 

dormant origins during mild replication stress, which is counteracted by non-ubiquitylated 

FANCD2[161]. Of note, reduction of FANCD2 negatively affects FANCI levels and vice 

versa, which complicates interpretation of such data. Additionally, FANCD2 in concert with 

BRCA1 stabilises RAD51 filaments at stalled replication forks to protect ssDNA from 

excessive MRE11-dependent degradation[315, 316]. In line with this mechanism, increased 

FANCD2 due to loss of FBXL12 stabilised RAD51 foci, which were only temporally disrupted 

in response to induction of ICLs by MMC, possibly due to redistribution of RAD51 upon 

induction of additional DNA lesions. 

Based on our findings, FBXL12 might be a potential novel target in cancer cells exhibiting 

high levels of replication stress, but to date no specific inhibitors for FBXL12 are available. 

However, by taking advantage of the wealth of knowledge surrounding the most closely related 

F-box protein, SKP2, we were able to pinpoint a SKP2 inhibitor that acts on FBXL12 and 

likely binds to the F-box domain of both SKP2 and FBXL12, thereby precluding ubiquitylation 

of their substrates. Interestingly, FBXL12-KO cells were hypersensitive to AZD1775 and, 

accordingly, this compound potently synergised with AZD1775. While we cannot exclude the 

possibility that synergy was due to stabilisation of SKP2 substrates, it is unlikely as increasing 

p27, the main SKP2 target, hinders G1/S transition which rather counteract the effects of WEE1 

inhibition. 

Collectively, our data are in line with a model whereby loss or pharmacological inhibition of 

FBXL12 results in stabilisation and trapping of FANCD2 at stalled replication forks, analogous 
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to PARP trapping by inhibitors[317], preventing efficient recruitment of down-stream factors 

or the switch to alternative pathways, effectively blocking repair. Throughout paper I we 

focused on cyclin E-induced replication stress. Despite this focus, we also found MYC 

signalling factors to be enriched together with FBXL12 and while FBXL12 was correlated with 

cyclin E in breast cancer cell lines and patient tumour samples, not all tumours highly 

expressing FBXL12 did express high levels of cyclin E. Thus, it is likely that FBXL12-

dependent regulation of FANCD2 also impacts on the response to replication stress caused by 

additional oncogenes. 

In paper II we found cyclin E downregulation to be associated with resilience to AZD1775 and 

recovery of BLBC cell lines. Accordingly, a recent report highlights high cyclin E levels in 

TNBCs as a determinant for AZD1775 sensitivity[273]. Although we did not investigate the 

mechanism of this downregulation in detail, given its rapid timing and our finding that deletion 

or inactivation of PTEN prevented this decrease, it is tempting to speculate that FBXW7 

mediates cyclin E degradation in this context. Loss of PTEN results in overactivation of 

PI3K/AKT/mTOR signalling which in turn inhibits GSK3β activity and precludes recognition 

and degradation of many FBXW7 substrates including cyclin E[318, 319]. 

We sub-grouped BLBC cell lines into resistant and sensitive cell lines based on acute response 

to AZD1775. Global proteome and transcriptome analysis revealed low PTEN expression as 

one of the strongest predictors of AZD1775 sensitivity which was validated by PTEN knock-

out in breast cancer cell lines. Furthermore, PTEN loss prevented recovery following AZD1775 

wash-out, while re-expression in PTEN null cells promoted regrowth.   Accordingly, these data 

support AZD1775 treatment as a potential strategy of targeting tumours with PTEN-

inactivating mutations, which are exceedingly frequent in human malignancies and, 

importantly, endow cancers with increased resistance to other treatments including to targeted 

drugs such as PD-1 inhibitors or trastuzumab[320, 321]. Intriguingly, PTEN depletion results 

in increased levels of endogenous replication stress but promotes S-phase exit with under-

replicated DNA which is visible as FANCD2-associated UFBs in mitosis[322]. Additionally, 

PTEN physically interacts with RAD51 and CHK1 which was proposed to result in 

stabilisation of RAD51 filaments at stalled forks[322]. Accordingly, we found that low PTEN 

expressing BLBCs fail to activate CHK1 and shut down replication in the presence of 

AZD1775-induced DNA damage. 

Besides the dependency on PTEN, AZD1775 treatment potently induced replication stress in 

BLBCs and triggered activation of DNA-PK. DNA-PK was in turn required to activate CHK1 

and install the replication checkpoint in the absence of ATR activity, which was in line with a 
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previous report demonstrating a DNA-PK-dependent backup mechanism to prevent excessive 

dormant origin firing under conditions of replication stress which could be abrogated by CHK1 

inhibition[149]. Furthermore, we found that DNA-PK-dependent checkpoint activation also 

allowed for subsequent recovery and re-proliferation upon drug washout. Lastly, knock-out of 

DNA-PK prevented downregulation of cyclin E in response to AZD1775, analogously to 

PTEN ablation. 

DNA-PK is mostly known for its role in NHEJ repair by mediating synapsis of DNA ends at a 

break, which are first recognised by the KU70/80 heterodimer and subsequently joined by 

DNA-PK catalytic subunit (DNA-PKcs) to form the entire DNA-PK complex[323]. NHEJ is 

believed to be the first-choice pathway for the repair of DSBs, while HR repair is employed 

only if a homologous template becomes available, typically the sister chromatid from S-phase 

and onwards[324]. Replication fork collapse as a consequence of severe replication stress 

results in the formation of one-ended DSBs which are an ideal substrate for homology-directed 

repair but cannot be faithfully repaired by NHEJ[324]. On the other hand, DSBs in regions 

with densely packed or highly repetitive sequences, namely heterochromatin, present 

challenges to HR repair[325]. 

In paper III we discovered a surprising link between FBXO28, RAC1 signalling and DSB 

repair pathway choice. FBXO28 is a mostly nuclear F-box protein with the capacity to bind 

chromatin regulating MYC transcriptional activity through non-proteolytic ubiquitylation[57, 

73]. Querying the interactome of FBXO28 by mass spectrometry, we identified its first 

proteolytic substrates ARHGEF6 and ARHGEF7. These GEFs modulate RAC1 activity at the 

cell membrane to regulate cytoskeleton assembly and cell migration. Interestingly, we found 

FBXO28 to also be present outside of the nucleus and to colocalise with ARHGEFs at focal 

adhesions. In line with regulation of ARHGEF pools at the membrane, FBXO28 depletion 

impaired turn-over of focal adhesions and blocked migration. 

In the nucleus we found FBXO28 to be enriched within heterochromatic regions which was 

dependent on a basic chromatin association motif (bCHAM) in its C-terminus.  Moreover, a 

bCHAM mutant, referred to as KRmt above, unable to interact with heterochromatin was 

released, yet remained mostly nuclear and efficiently degraded nuclear ARHGEF6/7. A similar 

motif is present in the tail region of histone 3 and participates in the interaction with HP1 further 

supporting a function in tethering to heterochromatin[326]. 

Recently, ARP2/3 activity, a downstream mediator of RAC1 signalling, has been shown to be 

required for efficient HR-mediated repair of DSBs occurring in heterochromatin[214, 215]. 
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ARP2/3 is recruited to DSBs formed within heterochromatin and destined to be repaired by 

HR and mediates F-actin nucleation at these sites[214, 215]. In mouse and Drosophila cells 

such DSBs are then rapidly moved outside of the heterochromatin domain and only there 

allowed to bind RAD51 and undergo the subsequent steps of HR[213–215]. In this context, the 

Smc5/6 complex is involved in preventing premature RAD51 association through an unknown 

mechanism[213]. Additionally, Smc5/6 recruits the myosin activator UNC45 which is equally 

required for break mobility and thus efficient repair[214].  So far, any regulatory mechanisms 

and factors upstream of the ARP2/3 complex involved in the mobility of DSBs have not been 

addressed. However, interestingly, RAC1 inhibition has been found to reduce H2AX 

phosphorylation and damage in response to topoisomerase inhibitors[327]. This may be due 

either to more efficient actin polymerisation or to a switch to NHEJ repair which exhibits faster 

kinetics but may be error-prone depending on the nature of the specific damage site[324]. 

Furthermore, GIT2 is phosphorylated by ATM and relocalises to IR-induced DSBs where it is 

required for repair by an unidentified mechanism[328]. GIT1/2 proteins form multimeric 

complexes with ARHGEF6/7 and together modulate RAC1 activity to determine cell polarity 

and motility[237]. However, if and how this might be mechanistically linked to DSB repair 

was not known by the time the present work described in this thesis started. By complementing 

the current picture of heterochromatin DSB repair upstream of ARP2/3 with the FBXO28-

ARHGEF6/7-RAC1 axis, our data shed light on the underlying mechanisms behind these 

effects. 

Finally, revisiting FBXW7, which regulates substrates including cyclin E, MYC or XRCC4[11, 

13, 19–21, 47], an NHEJ protein, and thus impacts on all the cellular phenotypes investigated 

in the first three papers, we reported SOX9 as a novel substrate targeted for proteasomal 

degradation in paper IV. FBXW7 recognised SOX9 through a conserved CPD motif which 

required phosphorylation by GSK3β. Importantly, FBXW7 was mutated or downregulated in 

human MB which resulted in stabilisation of SOX9 and was associated with dismal patient 

prognosis. 

The clinical significance of additional FBXW7 targets in MB, MYC and MYCN, raises the 

question of the relative importance of SOX9 deregulation. In this regard, Swartling et al. 

demonstrated that while expression of a stable non-degradable N-myc mutant, but not its 

wildtype version, was sufficient for the development of MBs in an orthotopic xenograft mouse 

model, additional high SOX9 expression was critical for the development of the SHH-MB 

subtype[249]. Furthermore, we found that SOX9 protein levels were high concurrently with 

low FBXW7 mRNA expression across all MB subtypes. Importantly, SOX9 expression 
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correlated with poor MB outcome and metastasis at diagnosis and we demonstrated that 

overexpression of the SOX9-CPDmt not targeted by FBXW7 resulted in extensive gene 

expression changes consistent with an enhanced capacity to migrate and metastasise. Increased 

metastasis and a more aggressive phenotype of high SOX9 expressing MBs could also be 

recapitulated in the orthotopically engrafted mouse models mentioned above. 

Confirming our findings just weeks after paper IV was published, Hong et al. equally reported 

that SOX9 is targeted for degradation by FBXW7 in dependency of GSK3-mediated 

phosphorylation[27]. However, this study linked increased SOX9 turn-over to DNA damage 

through a mechanism surprisingly independent of the three apical DDR kinases ATM, ATR 

and DNA-PK or p53 status[27]. Appropriately, we showed that SOX9 degradation could be 

enhanced by pharmacological inhibition of the PI3K/AKT/mTOR signalling pathway, which 

in turn inhibits GSK3β, and thereby sensitise MB cells to cisplatin treatment. Collectively, this 

indicates that SOX9 mediates resistance to DNA-damaging agents that enhance its own 

FBXW7-dependent degradation. FBXW7 mutations have been implicated in both 

chemotherapy drug sensitivity and resistance depending on the type of agent employed[329]. 

The results above would be well in line with a treatment-induced strong selective pressure 

favouring the development of chemotherapy resistance based on mutations of FBXW7. 
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2.4 CONCLUDING REMARKS AND PERSPECTIVES 

The SCF ubiquitin ligase and its substrates collectively impinge on every cellular function. The 

work presented in this thesis aimed to complement the picture of this intricate regulatory 

network and its implications in cancer with the ultimate goal of guiding the development of 

novel targeted cancer therapies. 

We identified FBXL12-mediated degradation of FANCD2 as a targetable mechanism 

indispensable for cancer cells exhibiting high levels of oncogene-induced replication stress.  

While we used amplification and over-expression of cyclin E as a model oncogene to assess 

the replication stress response, the fact that high expression of FBXL12 and particularly 

FANCD2 correlates with markers of proliferation based on pan-cancer analysis and that high 

FBXL12 protein expressing tumours are also enriched for MYC signalling markers imply a 

more general involvement in oncogene-induced replication stress not restricted to activation of 

one particular oncogene. 

Trapping of FANCD2 through pharmacological inactivation of FBXL12 may be a strategy to 

selectively kill these cancer cells or to sensitise to chemotherapy treatment in the case of 

cancers without endogenously high replication stress. However, compound #25, used here to 

inhibit FBXL12, needs to be used at micromolar concentrations and has first and foremost been 

identified as a SKP2 inhibitor, which triggers the accumulation of p27 resulting in a G1/S 

block[282, 330]. Thereby, it is rather expected to counteract the occurrence of replication stress. 

Accordingly, it will be important to develop additional FBXL12-selective inhibitors with 

improved pharmacological properties. 

Intriguingly, an Fbxl12-/- mouse model has been reported and exhibits a similar phenotype as 

the Skp2-/- mouse in that both KO mice are born at a lower ratio than otherwise expected, 

indicating developmental problems, while mice that survive to term are smaller than their 

wildtype littermates but otherwise healthy[56, 331]. Furthermore, neither develop cancers 

spontaneously and Skp2 ablation in fact inhibited cancer development when crossed with 

Pten+/- mutants which is consistent with the oncogenic properties of Skp2[56, 331, 332]. Based 

on our findings, embryonal lethality of Fbxl12 deletion might be attributable to an inability to 

tackle replication stress in highly proliferative cells which remains to be determined in vivo. 

After completion of embryonal development replication stress is mostly restricted to malignant 

cells which can be exacerbated by certain drug treatments[333, 334]. In paper II we aimed to 

identify determinants of the response to such an agent, the WEE1 inhibitor AZD1775 which 

has shown great promise in some clinical trials both as monotherapy and in combination with 
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chemotherapy drugs despite a lack of predictive biomarkers[306]. We showed that AZD1775-

induced replication stress can be employed to target PTEN-null tumours which have proven to 

be clinically particularly challenging as they exhibit resistance to various other treatment 

strategies[320, 321]. BLBC cell lines expressing low levels of PTEN not only more strongly 

responded to AZD1775 treatment acutely but also failed to recover upon drug removal which 

was in contrast to PTEN-high BLBCs. Accordingly, these findings proffer PTEN as a 

predictive biomarker for AZD1775 treatment which could be incorporated into future clinical 

trials of BLBCs. Furthermore, remaining BLBCs, predicted to recur in response to AZD1775 

monotherapy based on our data and reports from another group, may benefit from combined 

AZD1775 and ATR inhibitor treatment[253, 274]. In the absence of ATR activity and 

functional HR repair, the central NHEJ protein DNA-PK promoted activation of a CHK1-

dependent replication checkpoint and, similarly to PTEN, DNA-PK status predicted sensitivity 

to AZD1775 alone. 

In most contexts, DSB repair pathway choice depends on the availability of a homologous 

template that may enable HR-mediated repair as opposed to NHEJ[324]. Surprisingly, 

depletion of FBXO28 resulted in a shift towards NHEJ repair. Moreover, in paper III we 

identified ARHGEF6/7 as the first proteolytic substrates for human FBXO28 and demonstrated 

that this regulatory mechanism impinges on RAC1/ARP2/3-dependent heterochromatin DSB 

mobility which is required for their repair by HR. DSB formation resulted in release of 

FBXO28 from heterochromatin and subsequent targeting of nuclear but also membrane-

associated ARHGEF6/7 which are implicated in cell migration[237]. Intriguingly, FBXO28 

thus provides a mechanistic link between DNA damage formation and cell migration. This 

connection may be highly relevant for the treatment of cancers as standard chemotherapy has 

been linked to increased metastasis formation[335]. If and how this might be linked to 

FBXO28-mediated degradation of ARHGEF6/7 remains to be investigated. 

Through its multitude of substrates FBXW7 links all the disparate functions discussed above 

and illustrates the significance of F-box genes in the regulation of cancer hallmarks. Adding to 

this complex network, we now identified SOX9 as a novel proteolytic FBXW7 target which is 

involved in MB malignancy promoting metastasis and drug resistance. Enhancing SOX9 turn-

over using PI3K/AKT/mTOR inhibitors may provide an avenue for improved MB treatment 

to mitigate detrimental side effects seen with current standard therapies. 
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