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Abstract 

Palaeoenvironmental studies at high altitude in eastern Africa are rare. As a 

result, our understanding of contemporary climate change in the region is limited. 

This study presents high-resolution, multi-proxy (diatoms and core geochemistry) 

palaeolimnological reconstructions at sites located at contrasting altitudes: Garba 

Guracha a cirque lake >3950 m above sea level spanning the last 16,000 years, 

and since the mid-Holocene at Lake Babogaya a crater lake on the western 

escarpment of the Main Ethiopian Rift (1800 m above sea level).  

These palaeo-records broadly exhibit the same glacial-interglacial dynamics and 

sub-millennial shifts in climate found in other palaeolimnological records from 

across eastern Africa. However, these shifts are more muted at Garba Guracha. 

Furthermore, the precise timing and expression of these climatic events is not 

always synchronous between the Lake Babogaya and Garba Guracha records 

as well as other records across eastern Africa.  

The Garba Guracha sediment geochemistry and diatom record is typical of a dry, 

post-glacial and sparsely vegetated environment with the dominance of 

Fragilarioid taxa and high terrigenous input. Due to the poorly developed post-

glacial landscape at Garba Guracha, any Younger Dryas-like drying signal would 

have been superimposed on to high soil erosion and a poorly productive lake 

environment. The retreat of a nearby ice mass may also have over-ridden any 

catchment development related to the start of the African Humid Period. 

However, in response to increased moisture availability and warming at Garba 

Guracha after 10,250 cal BP, catchment productivity considerably increases with 

a large increase in diatom productivity and organic matter content and remains 



 

iv 
 

high for the majority of the remaining African Humid Period interval. The 

termination of the African Humid Period is clear in the Garba Guracha diatom 

record at around 5,500 cal BP, with a second phase of change to an environment 

similar to the modern day after 4,500 cal BP, potentially representing the 

Meghalayan. Drier conditions around the Meghalayan is also documented in the 

Lake Babogaya record with the deposition of a Gastropod shell layer. A reduction 

in organic matter content following the deposition of this layer likely represents 

reduced productivity and a destabilising catchment under a drier climate. These 

drier conditions culminate in the deposition of coarse grained, terrigenous 

material between 3,600 and 3,300 cal BP. Following high lake nutrient content 

and deepening of the lake between 3,300 cal BP and 1,750 cal BP, the Lake 

Babogaya record suggests a relatively stable, deep lake, with only brief intervals 

of shallower waters, until the top of the core (~600 cal BP). The diatom record 

after 560 cal BP at Garba Guracha is characterised by a dominance of 

aerophilous taxa such as Nitzschia amphibia and Cymbelloid taxa driven by an 

increased growing season and nutrient loading under a drier climate.  

These records further reinforce the reported heterogeneous pattern of climate 

across the region and the significance of site-specific dynamics in the responses 

of catchments to regional drivers. The data produced in this study may be used 

to inform future climate modelling and perform more complete regional 

downscaling, while also furthering our understanding of palaeoenvironmental 

change in eastern Africa, at a variety of altitudes.  

Key words: Ethiopia, Garba Guracha, Lake Babogaya, palaeolimnology, 

diatoms, XRF geochemistry. 
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Chapter 1 : 

Research Context & Aims 

This research aims to present detailed, long-term palaeoenvironmental 

reconstructions from a low and high-altitude site in eastern Africa to provide a 

perspective of change through time across altitude on the continent which is 

currently lacking in the wider literature. This chapter serves as an introduction to 

the main themes, topics and discussions of this thesis. Within this introduction the 

rationale, main aims and objectives of this research are outlined, with a summary 

of the thesis structure also provided. ‘BP’ throughout this thesis indicates calibrated 

years before 1950.  

1.1 | Contemporary climate change 

Increased environmental pollution, rising temperatures and associated climate 

change are now firmly established as a reality (IPCC, 2013). The consequences of 

recent change are already evident (Parmesan & Yohe, 2003). A variety of 

emergent challenges will face societies in the coming decades, with many 

suggesting multiple ‘planetary boundaries’ have already been traversed (Steffen et 

al., 2015). At least 0.5oC of warming has already been experienced across sub-

Saharan Africa in the past century (Niang et al., 2014), which is one of the regions 

most vulnerable to a changing climate as an estimated 386 million individuals live 

on less than US$1.25/day, with a mean poverty line of US$2.25/day (Ravallion, 

2012). In combination with this low capacity for adaptation, agriculture is a major 

economic sector in the region, and is projected to be severely impacted, with recent 



                                          Chapter 1: Research Context & Aims 

 
 

2  
 

estimates suggesting wheat yields across East Africa, for example, may decline by 

up to 72% as a result of a changing climate (Adhikari et al., 2015).  

Furthermore, the tropics play a key role in the global moisture and heat budget (Yin 

& Battisti, 2001; Weldeab et al., 2007), and in the stability of higher latitude ice 

masses both in the present (Ding et al., 2014) and the past (Trauth et al., 2003). 

Environmental and climatic change in the African tropics holds significant 

implications for the global system, as well as the inhabitants of the region, 

underlining the need to fully understand change in this region. However, despite 

an expansion of research teams and programmes such as the ‘PEP III Pole-

Equator-Pole transect through Europe and Africa’, generating a vast expansion of 

quantitative data regarding past hydrological and climatic change in the African 

tropics (see Chapter 2), the region remains under-represented due to the scarcity 

of long-term records, in comparison with higher-latitudes. As a result our current 

understanding of past and ongoing climatic change in the region remains uncertain 

(Giannini et al., 2008; Dosio & Panitz, 2016). For example, despite a gradual 

reduction in precipitation across the Horn of Africa, potentially as a consequence 

of recent anthropogenic climate change (Liebmann et al., 2014; Tierney et al., 

2015), recent modelling by Tierney et al. (2015) suggests the region will have 

become considerably wetter by the end of the 21st century. Conversely, 

precipitation across the more southerly countries of the eastern African tropics 

such as Mozambique and Malawi is projected to decline as a result of a changing 

climate (Niang et al., 2014). The production of further high-resolution, long-term 

records of environmental change is essential to fully understand how lower latitude 

atmospheric components respond to major forcing factors, and also the role of the 

tropics within the global climate system. 
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1.2 | Lake sediments as archives of palaeoenvironmental data 

Lakes accumulate sediments continually, an ongoing process since their 

formation, in many cases for thousands to millions of years. This accumulation 

archives numerous physical, chemical and biological proxies. Recent 

developments such as non-destructive x-ray fluorescence (XRF) scanning 

techniques, can combine to facilitate a multi-proxy, holistic approach to reconstruct 

past environmental conditions for an area. The sedimentary archives of the 

numerous lake basins across the African tropics offer the potential to produce long-

term records of environmental and climatic change over both spatial and temporal 

scales (Verschuren & Russell, 2009). 

The extensive research effort to reconstruct the past African climate has gradually 

produced a detailed outline of past hydrological change since the Last Glacial 

Maximum (LGM; 23,000-19,000 BP), which was characterised by arid conditions 

and low lake levels (Gasse, 2000). During the last glacial-interglacial transition 

conditions gradually became more humid, with a considerable shift to significantly 

humid conditions at the start of the so-called African humid period (AHP), 

associated with enhanced monsoonal activity, and marked by a widespread 

increase in lake levels across the continent and the ‘greening’ and populating of 

the Sahara (Tierney et al., 2011b; Manning & Timpson, 2014). This period of 

enhanced humidity terminated around 6,000-5,000 years ago, although the rapidity 

of this termination is uncertain with multiple contradictory records from archives 

across the region suggesting either an abrupt (deMenocal et al., 2000; Tierney et 

al., 2008; Marshall et al., 2009; Garcin et al., 2012; Tierney & deMenocal, 2013) or 
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gradual termination (Kröpelin et al., 2008; Marshall et al., 2011; Foerster et al., 

2012; Junginger & Trauth, 2013).   

As the number and resolution of palaeoenvironmental records from across the 

region has increased it has become clear that these millennial-scale variations in 

climate have been punctuated by abrupt climatic shifts towards dry conditions, 

which appear to be global in nature: Heinrich event 1 (H1; ~18,000-15,000 BP) and 

the Younger Dryas (YD; 12,700-11,500 BP). Present conditions in many parts of 

the African tropics are dry, however these conditions are relatively mild in 

comparison to the dry conditions experienced during H1. Multiple lake records 

across the region, such as lakes Victoria (Talbot & Lærdal, 2000; Stager et al., 

2002), Tanganyika (Tierney et al., 2008), Malawi (Brown et al., 2007), Bosumtwi, 

Ghana (Brooks et al., 2005; Shanahan et al., 2015), Tana, northern Ethiopia (Lamb 

et al., 2007; Marshall et al., 2011), suggest substantial lake level lowering or 

desiccation coinciding with the H1 event in the Northern Hemisphere (Hemming, 

2004). Similarly, the YD represents a brief return to arid conditions from the AHP, 

recorded in the sediments of multiple lakes such as Chew Bahir (Foerster et al., 

2012), Challa (Tierney et al., 2011b), Tanganyika (Tierney et al., 2008), Victoria 

(Stager et al., 2002) and Malawi (Barker et al., 2007). The exact timing of both the 

onset and termination of the YD is uncertain, with some studies displaying 

contradictory records (e.g. Lézine et al., 2005; Marshall et al., 2009; Ivory et al., 

2012; Tierney & deMenocal, 2013). Further abrupt, short-lived arid intervals have 

also been identified in multiple palaeoenvironmental reconstructions during the 

Holocene around 4,000 years BP and potentially around 8,200 years BP (e.g. 

Thompson et al., 2002; Powers et al., 2005; Tierney et al., 2011b; Marshall et al., 

2011).      
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The Milankovitch precessional cycle (19-23 ka) forcing of summer insolation is 

considered to be the dominant mechanism for these millennial-scale hydrological 

changes since the LGM (Kutzbach & Street-Perrott, 1985; Trauth et al., 2003). 

Multiple feedback processes are required to fully explain these non-linear climatic 

transitions in the last 20,000 years, including changes in vegetation cover, ice 

sheet dynamics and SSTs of the Atlantic and Pacific (Renssen et al., 2006; Tierney 

et al., 2008; Timm et al., 2010).  

Dearing (2013) highlights the potential for lacustrine archives to provide useful data 

for contemporary societies in facing future environmental change by producing 

highly resolved time-series of data, and also provide essential long-term 

perspectives for complex socio-ecological systems, especially at regional scales. 

For example, Dearing et al. (2008) argue multiple records of environmental change 

and human activity, including lake sedimentary records, in southwest China for the 

past ~9,000 years, provided valuable insights into the future resilience and 

sustainability of the modern agricultural system, by illustrating the importance of 

adapting local anthropogenic activities and anticipating the behaviour of the 

summer monsoon. Furthermore, palaeoclimate data obtained from lacustrine 

records may ultimately be used to constrain and calibrate model simulations of past 

and future climate (Anderson et al., 2006; Dearing, 2013). 

1.3 | Records of environmental change in Ethiopia  

Ethiopia is positioned between the climatic boundary of the humidity associated 

with the tropics and the semi-arid and arid climate of the eastern Sahel. This 

geographical positioning also places Ethiopia on the northernmost limit of the Inter 

Tropical Convergence Zone (ITCZ), where even a slight reduction of the northern 
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penetration of the ITCZ would lead to drastic reductions, and even failures, in 

rainfall. Furthermore, much of the country, like the rest of the Horn of Africa region, 

is sensitive to variations in moisture sources from the Indian Ocean, especially 

further east where little or moisture is received from the Congo Basin (Tierney et 

al., 2011b). 

The Main Ethiopian Rift (MER) Valley region has been a key point of focus for 

reconstructing past environmental conditions. However, long, high-resolution 

records in the Ethiopian rift are lacking, with many key studies relying on shorelines 

of former lakes (e.g. Gillespie et al., 1983; Johnson et al., 2001). Exploitation of 

Ethiopia’s sedimentary lake archives for long, continuous paleoenvironmental 

reconstructions has been increasing over the past couple of decades with studies 

at multiple sites including lakes Tilo (Telford & Lamb, 1999), Abiyata (Chalié & 

Gasse, 2002) and Chew Bahir (Foerster et al., 2012) in the very south of the MER.  

Crater lakes have small, well-defined catchments, simple basin morphologies, and 

are often associated with rapid rates of sediment accumulation making them able 

to provide some of the best sedimentary records of environmental change 

(Williams et al., 1993). The record from Lake Tilo (Telford et al., 1999) highlights 

the utility of crater lakes in studying palaeoenvironmental change in the MER 

region. North of Lake Tilo on the western escarpment of the rift, southeast of Addis 

Ababa, Lamb et al. (2002) demonstrate that the biochemical varves evident in the 

lake sediments of Lake Hora (and likely nearby Lake Babogaya), are deposited 

annually and are linked to the annual cycle of lake stratification and mixing. A high-

resolution record from these laminated sediments would contribute to the current 

understanding of environmental change across the MER region. 
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Recently, sedimentary archives in highland lakes in the north (Lamb et al., 2007; 

Marshall et al., 2009; 2011; Loakes et al., 2018) and south of Ethiopia (Umer et al., 

2007; Tiercelin et al., 2008; Gil-Romera et al., 2019) have also been used to 

reconstruct past environmental change. A limited amount of research had 

previously been done in eastern Africa, with higher altitude sites still rare (Figure 

1.1), despite their sensitivity to climatic change (e.g. Thompson et al., 2005; 

Camarero et al., 2015; Vanneste et al., 2017) and potential importance as refugia 

for early human populations (Ossendorf et al., 2019). Further comparisons can be 

made of the impacts of climatic changes between higher altitude sites and the 

plethora of sites at lower elevations. Inevitably the availability and accessibility of 

lower altitude sites has contributed to a greater wealth of studies at lower altitude 

sites in the region. These recent studies at higher altitudes in Ethiopia have been 

invaluable in offering perspectives on environmental change across altitudinal 

ranges in the region. 

Garba Guracha is a small cirque lake sitting above the afro-alpine zone in the Bale 

Mountains, southern Ethiopia, a region known to be occupied to some degree 

during the Middle Stone Age (47,000 to 31,000 BP) at the Fincha Habera rock 

shelter ~20 km to the north east (Ossendorf et al., 2019). Garba Guracha also 

represents a site on the eastern edge of Atlantic moisture sources and thus able 

to offer a perspective of a changing climatically driven hydrological cycle sourced 

by the Indian Ocean at high altitude. The site has previously been studied by Umer 

et al. (2007) and Tiercelin et al. (2008), but much of this focus was on catchment 

changes (i.e. the development of the post-glacial environment and vegetational 

change) as opposed to primarily understanding hydrological and limnological 

changes at Garba Guracha.  
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Figure 1.1: Number of studies at various sites with published lacustrine sediment records. 

Data was acquired using database searches for keywords for each site (e.g. “Lake 

Victoria” AND “sediment”) for sites listed in the NOAA and Neotama databases. Created 

using QGIS (v. 2.18.15). 

1.4 | Aims & Objectives 

The aim of this research is to provide detailed, long-term palaeoenvironmental 

reconstructions from eastern Africa. Sedimentary records from two sites are 

investigated utilising a multi-proxy approach: Lake Babogaya, a crater lake in 

Ethiopia 
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central Ethiopia (1800 m elevation) and Garba Guracha, a high-altitude (3950 m 

elevation), cirque lake in the Bale Mountains. Of particular interest in this work is 

to compare the expression of past climate change recorded at these two 

contrasting sites (in terms of elevation and environmental history) in order to further 

our limited understanding of past (as well as contemporary) climate change 

dynamics across a range of elevations. 

 

Specific research questions addressed in this thesis include: 

• Is there palaeolimnological evidence to suggest millennial scale 

hydrological changes since the last glaciation and significant hydrological 

changes during the Holocene? 

• How is the termination of the African Humid Period expressed at Garba 

Guracha and Lake Babogaya? 

▪ Was the termination abrupt or gradual? 

• How do the findings from the sites compare to other records from Ethiopia, 

the Horn of Africa and subtropical Africa? 

▪ Is there a difference in the expressions of climate change at the 

higher altitude site in comparison to the lower altitude site and others 

in the region? 

▪ What are the possible mechanisms controlling the expression of 

climatic events at Lake Babogaya and Garba Guracha? 

• Is there palaeolimnological evidence of anthropogenic impacts to the lake 

catchment? 

▪ To what extent have humans impacted the lake catchments through 

time? 
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1.5 | Thesis structure 

This thesis is divided into eight chapters. This first chapter has provided the context 

and main aims of this research. The issues and topics outlined in this chapter will 

then be addressed in Chapter 2, which provides a comprehensive review of the 

current literature regarding the past hydrological climate of the eastern African 

tropics since H1. Ultimately, this review aims to provide a regional context for the 

results of this study to be compared against.  

 

The climate and geology of Ethiopia is described in Chapter 3, with the specific 

climate, hydrochemistry and underlying geology of the study sites also presented 

within this national context. In Chapter 4 the methodological approach adopted in 

this study is discussed, with a context and rationale for these methods also 

provided. The results acquired through utilising these methods are presented and 

interpreted in Chapter 5 (Garba Guracha) and Chapter 6 (Lake Babogaya). Due to 

issues encountered in core retrieval and correlation, Chapter 7 provides an outline 

of the methodical approach taken to correlate the Lake Babogaya core. 

 

Results from both sites are discussed in reference to one another, as well as the 

wider literature in Chapter 8, with a consideration of methods used and further work 

also given. This thesis concludes in Chapter 9 by outlining the key findings of the 

research in reference to the original research questions posed and highlighting the 

contribution of this study to our understanding of the long-term climate history of 

Ethiopia.
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Chapter 2 :  

Hydrological Change in eastern Africa 

Since early work by researchers such as Livingstone (1967), Grove & Goudie 

(1971), and Gasse & Street (1978), understanding of the palaeoenvironment of 

eastern Africa continues to significantly improve. This chapter aims to review the 

current literature regarding our understanding of climatic variability across eastern 

Africa (see Figure 2.1), since the last glacial maximum. It builds upon the earlier 

reviews of Gasse (2000), Peyron et al. (2000), Marchant & Hooghiemstra (2004), 

Kiage & Liu (2006) and Nash et al. (2016). While these reviews provide extensive 

analyses, some are either spatially or temporally limited in their reviews, or 

concentrate on specific environmental proxies or conditions. This chapter builds on 

these earlier syntheses to reflect the latest methodological advancements in 

palaeoenvironmental reconstructions, and the considerable effort by multiple 

researchers at new sites, especially across Ethiopia and the Horn of Africa region 

over the past decade (Figure 2.1; Table 2.1). Since the earlier reviews of Gasse 

(2000) and Kiage & Liu (2006), there have been numerous methodological 

advances, including non-destructive XRF scanning facilitating extensive multi-

proxy approaches (see Davies et al., 2015). Calibration datasets have been 

developed, and continue to improve, to constrain the ecological indicator value of 

lacustrine biological proxies (e.g. Eggermont et al., 2006; 2010), and innovative 

organic biomarker proxies have been identified (e.g. δDwax, Tex86 and BIT-indices1) 

 
1 TEX86 is based on the degree of cyclisation of membrane lipids, specifically isoprenoid glycerol 

dialkyl glycerol tetraethers (GDGTs) from Thaumarchaeota in lake sediments with the BIT 
(Branched and Isoprenoid Tetraether) index reflecting the input of GDGTs from terrestrial soil 
bacteria (Powers et al., 2010). 
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which have begun to allow new temperature and moisture balance reconstructions 

(Verschuren & Russell, 2009).  

In combination with the chapter 3, this review of past hydrological change across 

East Africa since the end of the last glacial maximum ultimately provides a 

framework which facilitates the comparison and validation of the new findings of 

this research with other research from the region.   

2.1 | Reconstructing Palaeoenvironments in eastern Africa  
 

Traditionally, reconstructing past environmental change in tropical Africa was 

significantly hindered by the rarity of instrumental and documentary records prior 

to European colonisation in the 19th Century (Nash & Adamson, 2014). The 

opportunities to utilise longer-term, natural archives commonly used in the higher 

latitudes (e.g. tree ring and ice core records) are limited in tropical Africa 

(Verschuren, 2003), with a Holocene Kilimanjaro ice core record the sole example 

in this region (Thompson et al., 2002). Lake sedimentary archives have therefore 

long been recognised as “the principal source of information” in reconstructing the 

past climate and environments of tropical Africa (Verschuren, 2003: 315).  

Lacustrine records from multiple sites across eastern Africa have been analysed 

using a multitude of different proxies and have provided an environmental record 

for the past 17,000 years (Figure 2.2) and beyond. The focus of these 

reconstructions has varied from long-term glacial-interglacial dynamics through the 

Quaternary, to short-term centennial to inter-annual scales in order to understand 

the regional responses to natural shifts in climate; relevant to current 

anthropogenic climate change and the role of climate in the development and 

evolution of humans through time.  
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Figure 2.1: Eastern Africa and neighbouring countries, with major lakes in light blue. The 

boxed area forms the main focus of this review, with some relevant analogues from other 

regions also discussed where appropriate. The approximate coring locations of some of 

the main sites of discussion in the review are also numbered 1-16, and listed in Table 2.1.  

Ethiopia 
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Table 2.1: Main study sites discussed in this review with corresponding site numbers 

plotted in Figure 2.1. * - marine core record.  

 Site Elevation (m.a.s.l) Citation(s) 

1 Malawi 475 

(Powers et al., 2005; Brown et 
al., 2007; Barker et al., 2007; 

Castañeda et al., 2009; 
Woltering et al., 2011; Ivory et 

al., 2012) 

2 Masoko 840 
(Vincens et al., 2007; Garcin 

et al., 2007a; 2007b) 

3 Tanganyika 770 
(Stager et al., 2009; Tierney 

et al., 2008; 2010) 

4 Turkana 360 
(Garcin et al., 2012; van der 

Lubbe et al., 2017) 

5 Challa 880 
(Tierney et al., 2011b; 
Buckles et al., 2016) 

6 Naivasha 1880 (Verschuren et al., 2000) 

7 Victoria 1135 
(Talbot & Lærdal, 2000; 

Stager et al., 2002; 2005; 
Berke et al., 2012) 

8 Edward 910 
(Russell & Johnson, 2005; 

2007) 

9 Suguta 300 
(Garcin et al., 2009; Borchardt 
& Trauth, 2012; Junginger & 

Trauth, 2013) 

10 Chew Bahir 575 (Foerster et al., 2012; 2014) 

11 Garba Guracha 3950 
(Umer et al., 2007; Tiercelin 

et al., 2008 

12 Tilo 1545 (Lamb et al., 2000; 2004) 

13 Hayq 1905 
(Lamb et al., 2007a; Loakes, 

2015) 

14 Tana 1790 
(Lamb et al., 2007b; Marshall 

et al., 2011; Costa et al., 
2014; Loomis et al., 2015) 

15 Ashenge 2440 (Marshall et al., 2009) 

16 Site P178-15P* - 
(Tierney & deMenocal, 2013; 

Tierney et al., 2015) 
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Several authors have provided site locations and syntheses of hydrological change 

across the African continent in their reviews (e.g. Gasse, 2000). The Oxford Lake-

Level Database (OLLD; COHMAP members, 1988; Street-Perrott et al., 1989), 

recently updated by Tierney et al. (2011b), provides an extensive database of 

relative lake levels. These lake levels are categorised as ‘low’ when a lake is dry 

and/or at its most saline, and/or within 0–15% of its total altitudinal range of 

fluctuation; ‘intermediate’ when a lake is within 15–70% of its altitudinal range 

and/or ambiguously rising or falling, and ‘high’ when a lake is within 70–100% of 

its altitudinal range and/or overflowing, and/or at its deepest/freshest state. 

However, as Gasse (2000) highlights, the original papers used for each lake level 

status reconstruction should also be consulted as the term “lake status” is an 

interpretation which sometimes deviates from that in the original works.  

2.1.1 | Chronological controls 

 

Accurate and reliable chronologies are crucial in being able to interpret changes in 

a sedimentary record and relate these changes to those inferred elsewhere. 

Varves are defined as containing at least two or more seasonal laminae which 

distinctly contrast in properties such as colour, composition, texture, structure 

and/or thickness. Due to the manner of their seasonal deposition varved sediments 

can be used to construct high-resolution chronologies. Although the succession 

and characteristics of seasonally deposited laminae are varied across the globe, 

reflective of a repetitive, site specific, annual cycle, it is possible to broadly 

categorise laminae as clastic (physical), biogenic (biological) or endogenic 

(chemical), but are known to often be a combination of these components 

(O’Sullivan, 1983; Zolitschka et al., 2015; Figure 2.3). 
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Figure 2.2: Comparison of East African palaeoclimate, the Dongge cave (southeast Asia) and 

NGRIP records. Records (from top to bottom) include: δ18O data from the NGRIP (Andersen 

et al., 2004); δ18O data from Dongge cave (Dykoski et al., 2005; reverse scale); Chew Bahir 

potassium (K) record (Foerster et al., 2012; reverse scale); Lake Challa δDwax record (Tierney 

et al., 2011b; reverse scale); Lake Victoria CA2 record (shallow:deep water diatoms serving 

as a proxy for lake water depth; Stager et al., 2002); Gulf of Aden δDwax record (Tierney & 

deMenocal, 2013; reverse scale); mean average air temperature (MAAT) temperature records 

from Lake Tana (Loomis et al., 2015) and lake surface temperature (LST) records from Lake 

Tanganyika (Tierney et al., 2008) inferred from Tex86 and BIT-indices. Shading indicates the 

Younger Dryas (YD) and Heinrich 1 (H1), with dashed lines indicating approximate interval of 

the African Humid Period.  
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Figure 2.3: Simplified models for depositions of a calcareous organic (mixed) varve (left) 

and a clastic varve (right; Zolitschka et al., 2015).  

Due to this high-resolution, continuously varved sediments are the obvious 

preference for reconstructing climate variability at a century-decadal time scale. 

However, such continuous records in intertropical Africa are uncommon due to the 

complexity and variability of the seasonal monsoonal cycle and their preservation 

in sediments (Verschuren, 2003). Some rare examples of sites where truly annually 

laminated sediments have been found in eastern Africa include Lakes Malawi 

(Johnson et al. 2002), Hora (Lamb et al., 2002b) and Challa (Wolff et al., 2011).  

Lead-210 (210Pb) is a naturally-produced radionuclide, derived from atmospheric 

fallout (termed unsupported 210Pb). Caesium-137 (137Cs) and Americium-241 

(241Am) are artificially produced radionuclides, introduced to the environment by 

atmospheric fallout from nuclear weapons testing and nuclear reactor accidents 

(since 1954 AD, with known, pronounced peaks of 137Cs in the Northern 

Hemisphere at 1959 and 1963 AD). Due to the recent known anthropogenic 

emission of these radionuclides, they have been successfully utilised to produce 

high-resolution chronologies for sedimentary sequences, but their utility only 



                                          Chapter 2: Hydrological change in eastern Africa 

 

18 
 

extends to more-modern sediments (back ~150 years for 210Pb and ~50 years for 

137Cs and 241Am) due to the timing of these anthropogenic emissions (Appleby, 

2001). 

Producing core chronologies based on radiocarbon dates (14C) is the most 

common, and using terrestrial macrofossils (i.e. twigs, leaves needles of trees, 

charcoal from these materials and identifiably terrestrial insect parts) as material 

for 14C dating has long been recognised as key to establishing reliable and 

accurate chronologies in sedimentary archives. However, whilst macrofossils are 

considered the obvious, ‘gold-standard’ preference for 14C dating, it is common for 

lake sediments to be lacking sufficient macrofossil materials to be dated 

(Zimmerman & Myrbo, 2015).  

Bulk sediment samples, of organic matter or carbonates, can provide radiocarbon 

dates, but are not as reliable as dating macrofossil samples (Törnqvist et al., 1992). 

Generally, sources of error include: (i) contamination by younger carbon through 

root penetration and/or bioturbation; (ii) contamination by old ‘dead’ carbon; (iii) the 

lake reservoir effect and (iv) the hardwater reservoir effect (Björck & Wohlfarth, 

2001). Discrepancies in the accuracy between dating certain materials, as well as 

multiple sources of error and issues of contamination, has often made it necessary 

to re-date, or offset dates in, a sedimentary sequence to establish a more accurate 

chronology (Stager et al., 2003; Stager et al., 2009).  

2.1.2 | Issues with proxies 

 

An additional complicating factor in interpreting eastern African lacustrine records 

is the often uncertain relationship between sedimentary climate-proxy indicators 

(physical, chemical or biological), and the primary climate variables of temperature, 
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precipitation and wind (Verschuren, 2003). In contrast to lakes in the northern 

temperate regions, where a range of climate proxies can be assumed to be directly 

controlled by variations in temperature, a reliable proxy of temperature change in 

Africa has only recently been developed (Verschuren & Russell, 2009). Several 

eastern African lake temperature records have now been produced through the 

application of innovative new proxies such as TEX86 (e.g. Powers et al., 2005; 

Berke et al., 2012), but this may not be as reliable in small lakes where the signal 

may be compounded by substantial amounts of isoprenoid tetraether compounds 

derived from soil (Powers et al., 2010).  

Reconstructions of past climate therefore rely on inferring and calibrating the 

relationship between the sediment, water column and climate. For example, 

diatom-inferred conductivity based on such calibrations of this relationship has 

been used to infer past environmental conditions across eastern Africa (diatom-

based research in eastern Africa is discussed in greater detail than here in Chapter 

5). However, the robustness and sensitivity of calibrations and training sets 

remains disputed as the calculation of ecological optima sometimes gives results 

that are quite different for the same species, when derived from large local to 

regional datasets (Mills & Ryves, 2012). Furthermore, changes in lake sediment 

composition in eastern Africa is not necessarily predominantly driven by climatic 

change, with non-climatic factors (e.g. volcanism and human activity) a 

considerable influence, or in some cases overriding climate (Telford et al., 1999; 

Mills et al., 2014; Votava et al., 2017). Multi-proxy approaches are commonly used 

in palaeolimnology as they provide additional, independent lines of evidence, 

facilitating a more holistic and thorough investigation of lake-catchment system 
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responses to climate, and other potential external forces such as anthropogenic 

activities (e.g. agricultural practices and land clearance; Birks & Birks, 2006). 

2.2 | Overview of eastern African climatology  
 

The climate of eastern Africa is characterised by strong rainfall seasonality, heavily 

influenced by the annual migration of the Intertropical Convergence Zone (ITCZ) 

between 10o North and South, following the zenithal position of the sun (Figure 2.4; 

Nicholson, 1996). The Congo Air Boundary (CAB; Figure 2.4) is also highly 

influential in defining the climate of eastern Africa. The location of the CAB is partly 

determined by orographical constraints including the Ethiopian and Kenyan 

Highlands and marks the confluence of moisture derived from the Atlantic Ocean 

and the Indian Ocean. Recent isotope analyses and meteorological station data 

suggest that convergent, unstable air within the CAB serves as an important source 

of seasonal rainfall in, for example, Ethiopia (Levin et al., 2009) and Tanzania 

(Mapande & Reason, 2005).  

The Horn of Africa and coastal eastern Africa are orographically isolated from 

convergence along the CAB; as a result these regions experience more arid 

conditions. The aridity of eastern Africa can also be attributed to micro-orographical 

effects such as leeward rain shadows east of the topographical highs of Mt. Kenya 

and Mt. Kilimanjaro, and the influence of divergent, dry lower-level winds that move 

parallel to the eastern African shore from June–September and December–

February (Nicholson, 1996). 

The migration of the ITCZ and CAB throughout the year skews the seasonal 

distribution of precipitation in eastern Africa towards October–May. Most of the 

region experiences a well-pronounced dry season from June to August, followed 

http://www.sciencedirect.com/science/article/pii/S0012821X11002652#bb0185
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by either two rainy seasons for northern areas and areas close to the equator, with 

peak rains in November and April, or an extended rainy season from October–May 

for areas farther south of the equator (Tierney et al., 2011b; Figure 2.4). An 

exception to this rule, for example, is Ethiopia, which experiences slightly different 

seasonal shifts in climate than the rest of eastern Africa (Figure 2.4). Drier 

conditions prevail between October and May, with the wettest months between 

June and August. 

On an interannual timescale, variations in eastern African precipitation is sensitive 

to both Atlantic Ocean and Indian Ocean climate dynamics. For areas receiving 

precipitation from the CAB, interannual changes in Atlantic Ocean sea surface 

temperatures (SSTs) and SST gradients can modulate the strength of the trade 

winds and the advection of moisture into equatorial Africa (Tierney et al., 2011a). 

Furthermore, a flattening of the meridional gradient in Atlantic SSTs, such as 

warmer South Atlantic SSTs, typically results in anomalously high precipitation 

rates (Camberlin et al., 2001). Shifts in the Walker circulation over the Indian 

Ocean basin cause large interannual fluctuations in precipitation. A flattening of the 

zonal SST gradient in the Indian Ocean, and subsequent reversal of the Walker 

circulation, typically causes anomalous convergence and rainfall in the western 

Indian Ocean extending into eastern Africa (Tierney et al., 2011a). Such shifts in 

zonal circulation can be caused by anomalously warm SSTs in the western Indian 

Ocean (Ummenhofer et al., 2009), positive Indian Ocean Dipole events (IOD), and 

the El Niño-Southern Oscillation (ENSO; Camberlin et al., 2001; Diro et al., 2011). 

 

http://www.sciencedirect.com/science/article/pii/S0012821X11002652#bb0335
http://www.sciencedirect.com/science/article/pii/S0012821X11002652#bb0030
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Figure 2.4: Seasonal climatology (December, January and February; DJF, March, April 

and May; MAM, June, July and August; JJA and September, October and November; 

SON) for tropical Africa, including precipitation rates (Mitchell & Jones, 2005), surface wind 

(Kalnay et al., 1996), and the approximate locations of the ITCZ (solid line) and CAB 

(dotted line). Dashed red box corresponds to the boxed area in Figure 2.1. Adapted from 

Tierney et al. (2011b). 

2.2.1 | Long-term controls on eastern African climate 
 

The Milankovitch precessional cycles (23-19 ka) are the dominant control on long-

term variations in climate, and regulate moisture availability in Africa (Kutzbach & 

Street-Perrott, 1985; Trauth et al., 2003). The precessional control on tropical 

mm/month 
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moisture has been illustrated through the climate modelling undertaken by Clement 

et al. (2004) which showed that a 180o shift in precession out of phase with the 

modern could alter boreal summer precipitation in eastern Africa by 100-200 mm. 

Periods of increased humidity over the past 20,000 years have been linked to 

orbitally-forced radiation maxima, and as a result considerably influenced lake-

levels at various sites across eastern Africa (Gasse, 2000; Trauth et al., 2003; 

Barker et al., 2004; Figure 2.5).  

However, lacustrine records in the African tropics and recent simulations have also 

shown that climate does not respond linearly to precessional insolation change. 

The abruptness and onset of these climatic transitions can only be fully explained 

when climate-biophysical feedbacks are accounted for (Renssen et al., 2006; 

Timm et al., 2010). In conjunction with orbitally-forced variability, centennial-scale 

variations such as Heinrich events and the Younger Dryas are also considered a 

significant influence on climatic change. Changes in Atlantic and Indian Ocean 

SSTs, related to the thermohaline circulation and often associated with these 

events, also have a considerable influence on African climate (Gasse & van 

Campo, 1994; Gasse, 2000; Tierney et al., 2008).  

2.3 | Heinrich Stadial 1 (18,000 – 15,000 BP) and eastern Africa 
 

Heinrich events are generally associated with ice-rafted debris (IRD) archived in 

the sediments of North Atlantic marine cores dated between 70,000 BP and 14,000 

BP (Hemming, 2004). Heinrich event 1 (~18,000-15,000 BP; Heinrich, 1988; Bond 

et al., 1992; Broecker et al., 1992) is the most recent of these distinctive cold 

periods in the North Atlantic region. 
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Figure 2.5: Change in summer insolation for North Africa (20oN; top) and African lake level 

status from an updated OLLD (Tierney et al., 2011a; bottom). Adapted from deMenocal & 

Tierney (2012). 

Palaeoceanographic records suggest a connection between the abrupt climate 

changes towards cold, arid conditions during these events and variations in North 

Atlantic Deep Water (NADW) formation and the Atlantic Meridional Overturning 

Circulation (AMOC; McManus et al., 2004), following the abrupt input of freshwater 

associated with ice sheet instability and these ice-rafts (Hemming, 2004). Despite 

being largely associated with the North Atlantic, numerous studies suggest H1 had 

some impact on the hydrological climate of eastern Africa (e.g. Figure 2.2). For 

example, improved chronological controls and re-examination of records from 

widely distributed cores at Lake Victoria by Stager et al. (2002) suggests that the 

lake was desiccated at least once during this period. Seismic reflection data further 

north at Lake Tana shows that the lake was completely desiccated during H1 some 

time between 18,700 and 16,700 BP. Peaty sediments at the base of a core form 

the deepest part of the lake centre contain high concentrations of periphytic and 

planktonic diatoms and high concentrations of Poaceae and Cyperaceae pollen. 
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This sediment overlies the compacted silt sediment, the desiccation layer revealed 

by reflector data, which indicates that lake desiccation was followed by the 

development of shallow-water environments and papyrus swamp isolated in the 

lake centre between 16,700 and 15,100 BP (Lamb et al., 2007; Marshall et al., 

2011). 

2.4 | The African Humid Period (15,000 – 5,000 BP) 
 

The African Humid Period (AHP) began following the drier conditions associated 

with H1 (Hemming, 2004). The AHP has been strongly linked with the precessional 

increase in the Northern Hemisphere insolation during low eccentricity (deMenocal 

et al., 2000; Shanahan et al., 2015). By 11,000–10,000 BP, summer insolation in 

the northern hemisphere had risen to peak levels ~8% greater than today due to 

the Earth's orbital precession. This gradually aligned the boreal summer solstice 

with the perihelion, strengthening the summer monsoon systems and consequently 

increasing precipitation across much of Africa, by as much as 35–45% over North 

Africa (Prell & Kutzbach, 1987; Berger & Loutre, 1991; deMenocal & Rind, 1993; 

Figure 2.5). However, recent simulations suggest a more complex trigger for the 

onset of the AHP by showing that the magnitude and extent of reconstructed 

hydrological and ecological changes can only be reproduced when land surface 

and ocean feedbacks are included (Timm et al., 2010). 

Although the mechanism for the onset of the AHP remains unclear, the associated 

hydrological changes across Africa are evident in multiple palaeoenvironmental 

archives. Despite the lack of continuous local palaeoenvironmental data, Junginger 

& Trauth (2013) conclude from their hydro-balance model for palaeo-Lake Suguta 

that only an abrupt onset (~300 years) prior to 14,800 BP could have led to the 
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high lake levels recorded after ~14,000 BP. They find that the onset of the AHP 

must have significantly and abruptly increased local precipitation (+26% in 

comparison to the present day) to lead to the higher lake levels recorded. Marine 

δ18Oseawater records suggest that the outflow waters of the rivers Niger and Sanaga 

around the onset of the AHP sharply decrease in salinity (~0.8‰ change; Weldeab 

et al., 2005; Weldeab et al., 2007). Eastern African lacustrine records also 

document an abrupt shift in climate; for example, K content sharply reduces at 

Chew Bahir (~4000 to ~2000 cps at the onset of the AHP at ~15,000 BP), 

suggesting decreased aridity (Foerster et al., 2012). Diatom analyses on the 

northern basin of Lake Malawi by Gasse et al. (2002) similarly suggest more humid 

conditions and that the lake level was high from 15,700 to 13,000 BP and likely 

overflowed. Similarly, δ13C values decrease abruptly at ~15,000 BP at Lake 

Victoria, marking a shift to deeper-water conditions and algal-dominated lake 

production (Talbot & Lærdal, 2000). Temperature reconstructions  based on 

microbial membrane lipid structures at Lakes Tana (Loomis et al., 2015) and 

Malawi (Powers et al., 2005; Woltering et al., 2011) suggest an increase in 

temperature of ~3-4oC at ~15,000-14,000 BP. 

2.4.1 | The Younger Dryas (12,700 – 11,800 BP) 
 

Kiage & Liu (2006) highlight variations in vegetation across eastern Africa may 

indicate the presence of Younger Dryas (YD)-like conditions, but argue that further 

work was required before the occurrence of the YD in eastern Africa could be 

confirmed. However, the occurrence of the YD interval in eastern Africa is a 

research gap that has now largely been addressed. In eastern Africa, arid 

conditions of the YD punctuate the warm, wet AHP (Figure 2.2). Tex86 records at 
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Lake Malawi suggest an abrupt air temperature decrease of ~2oC (Powers et al., 

2005; Woltering et al., 2011) at ~12,500 BP. 

Arid conditions are represented by forest decline and increases in grasses inferred 

from lignin phenol records and δ13C values at Lake Malawi (Castañeda et al., 

2009), and from other terrestrial sedimentary archives across eastern Africa (e.g. 

Ryner et al., 2006; Rucina et al., 2009). This pattern is also represented in the 

highlands of Ethiopia in a pro-glacial lake in the Bale Mountains (Umer et al., 2007). 

δDwax records from Lakes Challa (Tierney et al., 2011b) and Tanganyika (Tierney 

et al., 2008) suggest decreased precipitation during this period, with the highest 

δ18Odiatom value (+39.7‰) recorded at ~12,000 BP in sediments from Lake Malawi 

(Barker et al., 2007), reflecting this period of aridity. Furthermore, peaks of K at 

Chew Bahir (Foerster et al., 2012) and increased Zr:Ti ratios at Lake Malawi 

(Brown et al., 2007), reflect dry windy conditions and increased soil erosion.  

However, some records suggest that environmental characteristics associated with 

the YD in the African tropics were not uniform across the continent. For example, 

a pollen record from Site GeoB 12624-1, off the Rufiji River delta, eastern Africa 

shows a heterogeneous vegetation pattern with alterations between dry and humid 

taxa presenting no clear climatic signal for the YD (Bouimetarhan et al., 2015). 

Similarly, in a clear contrast to the observed YD cooling observed elsewhere, 

pollen assemblages from Lake Masoko document an expansion of tropical 

seasonal forests during the YD period, representing more humid conditions (Garcin 

et al., 2007a; Vincens et al., 2007). However, recent pollen analyses at Lake 

Malawi  identify two phases of aridification where the expansion of these drought-

intolerant forest taxa were likely restricted to areas of favourable edaphic 

conditions along permanent waterways between 13,000 and 12,300 BP, before 
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being succeeded by grassland and woodland (12,300-11,800 BP) reflecting 

gradually increasing aridity across the YD (Ivory et al., 2012).  

Furthermore, the exact timing and duration of the YD across the African tropics 

may be more uncertain than previously thought. A stable isotope record from Lake 

Ashenge (Marshall et al., 2009) suggests an early initiation of the YD in the region 

roughly 900 years before it is identified in the Greenland ice cores (~12,700-11,500 

BP; Alley, 2000) and the start of the YD at other African sites (Figure 2.2; Figure 

2.6). A sedimentary hiatus from 11,760-7,560 BP impedes the full interpretation of 

the environmental characteristics of the YD and subsequent Pleistocene/Holocene 

transition. However, the lake experienced severely arid conditions from 13,600-

11,800 BP, evident from the highest, and sustained, δ18O and δ13C values 

throughout the core and enhanced precipitation of aragonite during this period (D 

in Figure 2.6).  

Uncertainties in the timing of the YD cooling in the eastern African tropics has also 

been identified in marine sediment records. DeMenocal et al. (2000) document 

increased terrigenous sedimentation at ODP Site 658C off Cap Blanc, Mauritania 

(20°45′N, 18°35′W) ~800 years before the YD identified in the Greenland ice cores 

(12,700-11,500 BP). They suggest this offset can be accounted for by marine 14C 

reservoir discrepancies due to changes in deep ocean circulation and related 

changes in ocean-atmosphere radiocarbon partitioning during this period. They 

argue that large increases in Globigerina bulloides abundances at their site during 

this interval would be consistent with increased regional upwelling and older 

apparent 14C ages at this time (deMenocal et al., 2000). However, microalgae and 

pollen records at Site KW31, in the Gulf of Guinea (3°31′1N, 05°34″1E), suggest 
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enhanced aridity between 13,400 to 12,100 BP, 700 years prior to the YD proper 

(Lézine et al., 2005).  

Leaf wax data by Tierney & deMenocal (2013) in marine sediments from Site P178-

15P in the Gulf of Aden also show a contrasting YD record. Their results show that 

the termination of the YD in the Gulf of Aden record occurs later in all iterations 

(median = 10,850 BP) than the YD proper documented in leaf wax records at other 

African sites such as Lake Challa (Tierney et al., 2011b) and Tanganyika (Tierney 

et al., 2008). Like DeMenocal et al. (2000), Tierney & DeMenocal (2013) suggest 

14C reservoir offsetting may be inaccurately representing this termination, but 

acknowledge they currently lack sufficient information to constrain how the Gulf of 

Aden 14C reservoir has evolved through time to fully address this. 

Marshall et al. (2009) speculate that, assuming that this early initiation is not a 

result of inaccurate 14C dates, the early initiation of the YD at sites north of ~10oN 

may be associated with a southerly suppression of the ITCZ. This suppression of 

the ITCZ is attributed to gradual cooling at high northerly latitudes prior to the onset 

of the established YD chronozone ~12,700 years ago (Alley, 2000). Loomis et al. 

(2015), upon identifying a lack of abrupt and significant YD cooling (between -0.3oC 

and +0.3oC change across 12.7-11.5 ka) at Lake Tana (Figure 2.2), suggest that 

climatic changes in northeast Africa during this period were more strongly 

influenced by large variations in atmospheric circulation such as the incursions of 

highly influential Congo Basin air masses, as opposed to changes in CO2 and 

insolation, than locations to the south and west. 

However, the aridification associated with the YD is evident in magnetic and 

geochemical core data from Lake Tana (Marshall et al., 2011), with no early onset 
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such as that at Ashenge despite a similar latitude (Figure 2.1). Furthermore, the 

hypotheses by Marshall et al. (2009) and Loomis et al. (2015) offer little explanation 

for sites further south such as KW31 (Lézine et al., 2005) or the potential late 

termination of the YD at another site laying north of 10oN: Site P178-15P (Tierney 

& deMenocal, 2013).  

Evidently, our understanding of the YD in eastern Africa has progressed since 

Kiage & Liu (2006). However, the exact timing and effects of the YD may be 

unclear, with varied responses from different sites. This may be attributed to 

inaccuracies in 14C chronologies, with reservoir discrepancies a prevalent issue in 

marine core records (e.g. Tierney & deMenocal, 2013) or that only bulk samples 

were used by Marshall et al. (2009), for example. However, it may also reflect the 

diverse location and topography of sites across the region, which may have created 

unique hydrological conditions, associated with variations in moisture sources, at 

some sites producing locally distinct/regionally contrasting expressions of the 

Younger Dryas.  

2.4.2 | Resumption of the AHP in the Early Holocene 
 

Despite some uncertainty regarding the exact timing of the YD, the abrupt 

resumption of the AHP is evident in multiple palaeoenvironmental records in the 

African tropics (e.g. Junginger & Trauth, 2013; Tierney & deMenocal, 2013).  As 

discussed previously, at around 11,000 to 10,000 BP insolation reached a 

maximum, influencing lake-levels at various sites across eastern Africa (Figure 

2.5). By 9,000 BP multiple lakes experienced higher water levels across most of 

the African continent as a result of this increased moisture availability, even in the 

now arid Sahara (A in Figure 2.7). 
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Figure 2.6: Comparison of some palaeoenvironmental records around the YD interval 

(yellow), with blue highlighting earlier/later changes in certain records. Late termination of 

the YD as identified at Site P178-15P (A) by Tierney & deMenocal (2013), Chew Bahir (B) 

by Foerster et al. (2012) and Lake Challa (C) by Tierney et al. (2011b) which display the 

YD proper (Figure 2.2), and the early initiation of the YD in Marshall et al. (2009) is also 

shown by sustained high stable isotope values at Lake Ashenge (D).  
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Figure 2.7: Proxy lake status reconstructions from the Oxford Lake Level Database 

(Street-Perrott et al., 1989), updated with more recent lake level reconstructions in Tierney 

et al. (2011b), for 9,000 BP (A) and 6,000 BP (B). Dashed red box corresponds to the 

boxed area in Figure 2.1. Adapted from Tierney et al. (2011b). 

In combination with multiple sedimentary records of hydrological change from 

palaeo-Lake Suguta (e.g. Garcin et al., 2009; Junginger & Trauth, 2013), 

evapotranspiration estimates generated from remote sensing data and using the 

Surface Energy Balance Algorithm for Land for the Suguta basin suggest that the 

region during the AHP must have experienced ~20% more precipitation than today 

(Borchardt and Trauth, 2012). Similarly, hydrological modelling by Garcin et al. 

(2012) shows that the water level of Lake Turkana increased to the point of 

overflowing around the resumption of the AHP. 

In the Ethiopian highlands, clastic input at Lake Garba Guracha reduces after 

11,800 BP, to negligible and consistently low concentrations by 10,000 BP, 

corresponding to a sharp ~10% increase in TOC at 10,000 BP, reflecting the 

transition from a glacier-fed lake to an open lacustrine domain characterised by 

increased local precipitation, temperature and organic productivity (Tiercelin et al., 

2008). This was also represented by an increase in woody vegetation, soil 

A B 
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stabilisation, and increased leaf litter and soil humus content inferred from a pollen 

stratigraphy of the same core (Umer et al., 2007).   

In conjunction with these palaeoenvironmental records, occupation of the Sahara 

is evident from the various occurrences of rock art that are scattered throughout 

the upland regions of the desert, illustrating a lush environment with Sahelian and 

riverine fauna and scenes of large-game hunting, livestock herding and religious 

ceremony (e.g. di Lernia & Gallinaro, 2010). Archaeological evidence from past 

settlement sites across the region has shown evidence for intensive occupation, 

initially by pottery-using hunter-gatherers, and then by increasingly mobile 

pastoralists after the introduction of domestic livestock at ~8,000-7,500 BP (Kuper 

& Kröpelin, 2006; Dunne et al., 2012; Figure 2.8).  

 

Figure 2.8: Rolling 200 year mean of Manning & Timpson’s (2014) summed probability 

distribution analyses using all 14C dates in their three correlating regions (Eastern and 

Central Sahara and the ‘Atlas Hoggar’). Shading indicates general period of environmental 

degradation associated with the termination of the AHP as identified by the studies cited 

in this chapter. Redrawn from Manning & Timpson (2014). 

A detailed re-examination of the Chew Bahir K record between 11,000 BP and 

4,000 BP reveals a distinctive drought event at ∼8,150 BP (Trauth et al., 2015). 
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This drought event is the first of five events, as part of a stepwise increase in aridity. 

More stable, humid conditions re-establish between for ~600 years at 7,750 BP, 

before returning to a period of instability with abrupt wet-dry shifts, with a drought 

event at 7,150 BP. A one-thousand year long, gradual drying of the region, 

punctuated by extreme arid intervals, is also identifiable in the record after 5,950 

BP. In total, at least 19 events of extreme aridity are represented in the Chew Bahir 

K record between 8,200 BP and 5,000 BP, which were between 20 and 80 years 

long and recurring every 160 ± 40 years. (Trauth et al., 2015). However, despite 

some arid intervals during the AHP such as these, moisture availability presumably 

remained relatively high to at least 6,000 BP (Figure 2.5). 

2.4.3 | Termination of the AHP 
 

As highlighted by Claussen et al. (1999), the termination of the AHP and 

subsequent desertification of multiple regions of Africa, especially the Sahara, 

during the Holocene, was undeniably a crucial period for human society. This 

reversal of humid conditions, favourable for growth and expansion, has been the 

hypothesised predominant driving force behind large population declines across 

most of the Sahara (Figure 2.8), but may have also been the stimulus leading to 

the foundation of civilizations near relatively moist refugia such as the Nile valley 

(Kuper & Kröpelin, 2006; Manning & Timpson, 2014; Castañeda et al., 2016).  

Much like the YD, the termination of the AHP highlights the contradictory data from 

various sources regarding the dynamics of wet-dry cycles in Africa (Foerster et al., 

2012). The results of multiple studies suggest an abrupt termination to the AHP 

(within just two centuries in some cases; e.g. Marshall et al., 2009). Abrupt 

terminations have been documented in a variety of archives including: marine 
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sedimentary records off the west (deMenocal et al., 2000; Adkins et al., 2006; 

McGee et al., 2013) and east coasts (Tierney & deMenocal, 2013) of Africa; 

terrestrial sedimentary derived records of δDwax at Lakes Tanganyika and Tana 

(Tierney et al., 2008; Costa et al., 2014), palaeo-shoreline and strontium isotope 

records from Lake Turkana (Garcin et al., 2012; van der Lubbe et al., 2017), and a 

stable isotope record at Lake Ashenge (Marshall et al., 2009). Furthermore, a Lake 

Tana δDwax record also suggests an early, as well as abrupt, termination of the 

AHP around 8,000 BP (Costa et al., 2014). 

Conversely, Ethiopian speleothem records (Asrat et al., 2007; Baker et al., 2010) 

and records from Chew Bahir (Foerster et al., 2012; Trauth et al., 2015), palaeo-

lake Suguta (Junginger & Trauth, 2013), Lake Tilo (Lamb et al., 2004), Lake Yao 

and Lake Chad, the latter two on the peripheries of the Sahara (Kröpelin et al., 

2008; Amaral et al., 2013), suggest a more gradual transition to a more arid climate 

from the wet conditions of the AHP. 

Findings from multiple climate models similarly present a contradictory account 

with, for example, Renssen et al. (2006) and Hély et al. (2009) suggesting an 

abrupt transition in West Africa and a gradual termination of humid conditions in 

the east, or Liu et al. (2007) proposing an abrupt vegetation collapse followed by a 

gradual precipitation decline. In their synthesis of hydrological reconstructions 

across Africa, Shanahan et al. (2015) propose that the termination of the AHP was 

locally abrupt in some areas, such as at Lake Bosumtwi, Ghana, but occurred 

progressively later at other sites in lower latitudes (Figure 2.9). They argue that the 

time-transgressive termination of the AHP reflects declining rainfall intensity as a 

result of decreased summer insolation and the southward migration of the ITCZ 

during this period. 
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Figure 2.9: Comparison of the AHP represented in palaeoclimate records across Africa. 

Shown are: frequency histograms for included records indicate wet or moderate 

conditions, binned at 5o latitude intervals (in descending order; a) and the timing of 

changes in water balance at the beginning (b) and end (c) of wet, AHP-like conditions. 

Dashed red box corresponds to the boxed area in Figure 2.1. Adapted from Shanahan et 

al. (2015).  

Modelling past hydrological changes at palaeo-Lake Suguta (Junginger & Trauth, 

2013) show that the termination of the AHP was gradual, but after an abrupt rainfall 

decrease, which they, like many other studies (e.g. Tierney et al., 2011b; Costa et 

al., 2014; Liu et al., 2017) attribute to changes in the ITCZ, but also migration of 

the CAB (Figure 2.10). Further potential influences on AHP responses have also 

been highlighted.  
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Figure 2.10: Regional time slices of ΔDwax across eastern African sites between 14,000 

and 5,000 BP (Costa et al., 2014) showing the influence of the CAB in regional hydrological  

changes. Shading indicates the regions influenced by Congo Basin sourced precipitation, 

with the dotted line representing the CAB. The area shown largely corresponds to the 

boxed area in Figure 2.1, with Lake Tana to the north and the Zambezi fan the 

southernmost site. Adapted from Costa et al. (2014). 

These include changes in the intensity of the African Easterly Jet stream, Indian 

Ocean SSTs and feedbacks between coastal upwelling and the monsoons, as well 

as migrations of the ITCZ and the CAB (Tierney et al., 2008; 2011a; Liu et al., 

2017). Furthermore, changes in regional hydroclimates may also have been 

amplified by influences such as vegetation feedbacks (Renssen et al., 2006) and 

local groundwater conditions (Lézine et al., 2011).  

2.5 | The Meghalayan 
 

The final subdivision of the Holocene: the Meghalayan (Middle–Late Holocene 

Boundary), is based on the widespread 4.2 ka event (Walker et al., 2012). Various 

sedimentary records from across the region highlight a period of pronounced aridity 

from around 4,200 BP (Gasse, 2000). For example, partially laminated sediments 

        Wetter                            Drier 
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from the northern Red Sea suggest anomalous changes in evaporation and water 

salinity (Arz et al., 2006). This aridity is also reflected in dust records from 

Kilimanjaro ice cores (Thompson et al., 2002). However, an isotopic stalagmite 

record from Dante Cave in northeastern Namibia suggests a potentially more 

complex 4.2 ka event in Africa. Two pulses of wetter conditions between 4,150 and 

3,930 BP are represented by a ~2‰ decrease in δ18O values (Railsback et al., 

2018).  

Following the termination of the AHP, arid conditions were established and 

remained relatively stable, with some records and lake-level reconstructions 

largely suggesting prolonged periods of uninterrupted aridity until the present (e.g. 

Richardson & Dussinger, 1986; Tiercelin et al., 2008; Marshall et al., 2009). 

Millennial-scale aridity during these periods is also documented in the sediments 

of the Nile deep-sea fan (Blanchet et al., 2013; 2014) and speleothem records in 

southeastern Ethiopia (Asrat et al., 2007; Baker et al., 2010), with this aridification 

epitomised by the establishment of the modern Sahara around 2,700 BP (Kröpelin 

et al., 2008), illustrating the regional extent of this pronounced dry interval.  

However, instability and variations in this aridity throughout the Late Holocene have 

also been shown (Figure 2.11). Short-lived, abrupt reversals towards more humid 

conditions at ~3,000 BP are evident in records from Chew Bahir and Lake Challa 

(Tierney et al., 2011b; Foerster et al., 2012; Figure 2.11), with this reversal less 

short-lived, lasting ~1,000-1,500 years, for example, in the Ziway-Shala lake basin 

system (Gillespie et al., 1983). Such a reversal is also evident in leaf wax records 

from the Gulf of Aden from around 3,500 to 2,000 BP (Tierney & deMenocal, 2013) 

and records of increased convective precipitation inferred from 18Odiatom values from 
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2,900 to 1,900 BP at Small Hall Tarn and Simba Tarn, Mt. Kenya (Barker et al., 

2001).  

Furthermore, from 2,000 BP in many records this wet-dry variability increases 

(Figure 2.11). At Chew Bahir a humid interval began abruptly around 2,000 BP, 

with a sharp increase in inferred humidity at ~1,500 BP, before a rapid termination 

just a few centuries later (Foerster et al., 2012). Similarly, leaf wax records at Lakes 

Tana (Costa et al., 2014), Challa (Tierney et al., 2011) and Victoria (Berke et al., 

2012), and a BIT-index record at Lake Challa (Buckles et al., 2016), display similar 

increases in moisture availability beginning at around 2,000 BP. Leaf wax records 

from Lake Tanganyika displays a similar shift to more humid conditions at ~1,500 

BP (Tierney et al., 2010), following a period of abrupt wet-dry shifts. 

As the ENSO cycle has such an influential role in the climate of eastern Africa, 

many authors have speculated that changes in the ENSO cycle were likely a major 

influence on these marked perturbations in moisture availability at, and after, 4,000 

BP (Tierney et al., 2011a; Foerster et al., 2012). In their review, Donders et al. 

(2008) find that around 3,000 BP the ENSO-teleconnected regions were 

characterised by an increased impact of ENSO, comparable to the present-day 

high-amplitude fluctuations of ENSO, with multiple terrestrial archives around the 

Pacific Basin suggesting an increased frequency of ENSO events in the Late 

Holocene (e.g. Sandweiss et al., 1996; Rodbell et al., 1999; Donders et al., 2005; 

Conroy et al., 2008). 
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Figure 2.11: Comparison of climatic conditions 9000 BP to present in East Africa showing 

increased variability from the end of the AHP. Chew Bahir K record (A; Foerster et al., 

2012), palaeo-shoreline reconstructions of South Island, Lake Turkana (B; Garcin et al., 

2012; dashed lines and ‘?’ denote uncertainty in water-level reconstruction), leaf wax 

records from Lake Challa (C; Tierney et al., 2011b) and the palaeo-ENSO record from 

Laguna Pallcacocha, Ecuador (D; Moy et al., 2002).  
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For example, Moy et al. (2002) show, using sediments from Laguna Pallcacocha, 

southern Ecuador, increased frequency of ENSO events between 3,000 and 2,500 

BP and around 1,500 BP (Figure 2.11). It is important to note, that although fossil 

coral records from the Pacific do contradict these findings (see Cobb et al., 2013), 

they do still highlight periods of variability in ENSO frequency throughout the Late 

Holocene. 

2.6 | The Last Millennium 

 

Verschuren et al. (2000), from the partially submerged Crescent Island crater basin 

in Lake Naivasha, provide a high resolution record of the climate of equatorial 

eastern Africa for the past 1,100 years. A combination of sediment-inferred lake 

depth reconstructions and local ecological assemblage (diatoms and chironomids) 

compositions and distributions revealed considerable perturbations in local 

hydrological conditions over the past millennium (Figure 2.12). Local conditions 

were likely dry at Lake Naivasha with a persistent, saline lowstand from ~1000 to 

1270 AD, interrupted by only a brief (~50 years) freshwater interval at ~1220 AD.  

Conditions during this period have also been recorded using a variety of proxies 

across numerous other archives throughout eastern Africa in the Gulf of Aden 

(Tierney et al., 2015), several Ugandan maar lakes (Russell et al., 2007; Mills et 

al., 2014) and at Sacred Lake, Mt. Kenya (Konecky et al., 2014), Lakes Victoria 

(Stager et al., 2005), Edward (Russell & Johnson, 2005), Hayq (Lamb et al., 2007a; 

Loakes, 2015), Challa (Buckles et al., 2016) and Tanganyika (Stager et al., 2009). 

These conditions fall within the anomalously warm period across much of the globe 

(Mann et al., 2009) commonly known as the Medieval Climate Anomaly (MCA).  
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Figure 2.12: 1,100-year historical (1883 AD-present) and sedimentology-inferred lake 

level (arrow and dashed line indicate overflow period) and salinity (diatom-inferred 

conductivity) record for the Crescent Island crater basin in Lake Naivasha, Kenya, 

compared with a decadal record of atmospheric 14CO2 production as a proxy for solar 

radiation, with periods of solar minima also noted. The dashed bars represent known 

periods of severe aridity and societal change recorded through oral tradition: the Wamara 

(A), Nyarubanga (B), and Lapanarat-Mahlatule (C) droughts. Redrawn from Verschuren 

et al. (2000). 

For example, in easternmost equatorial eastern Africa, the Lake Challa BIT-index 

record suggests that abrupt aridification between 1150 CE and 1200 resulted in 

peak MCA drought, which was maintained until 1300 CE (Buckles et al., 2016). On 

the western edges of the eastern Africa region, an increased ratio of Mg to Ca in 
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authigenic calcite (%Mg) in Lake Edward’s sediments suggests the area 

experienced significantly arid periods between around 1050 to 1200 CE (Russell 

& Johnson, 2007). 

At Site P178-1, in northern eastern Africa, drier conditions were maintained from 

~950 to 1200 CE, culminating in abrupt, marked perturbations (leaf wax value 

change from -123 to -137 within 20 years) between wet and dry conditions centred 

around 1200 CE. The modern climate of eastern Africa is considerably dry, 

especially in comparison to the peak humid conditions of the AHP (Figure 2.13), 

with records from, for example, Lake Hayq (Lamb et al., 2007) and the Gulf of Aden 

(Tierney et al., 2015) suggesting even drier conditions than the MCA, with Lamb et 

al. (2007a) noting that the Hayq δ18O record only displays two periods with drier 

climate than present conditions centred at 800 AD and 1750–1880 AD.  

 

Figure 2.13: Qualitative comparison of African lake levels 9,000 BP vs. present levels. 

Reconstructed from the OLLD (COHMAP members, 1988; Street-Perrott et al., 1989) 

updated with lake-level data generated in the last twenty years by Tierney et al. (2011b). 

Adapted from deMenocal & Tierney (2012). Dashed red box corresponds to the boxed 

area in Figure 2.1. 
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The wettest period of the last 2,000 years in numerous records in eastern Africa 

occurred during the LIA (~1450-1800 AD). Following the drier conditions of the 

MCA, the Naivasha record, like many of the other records discussed above, 

suggests more humid conditions by displaying an establishment of freshwater 

conditions, highlighted by the gradual reduction and disappearance of more saline-

tolerant taxa (e.g. Craticula elkab, Kiefferulus disparillis) and the expansion of 

freshwater taxa (e.g. Psectrocladius viridescens). However, two brief (~40 year) 

intervals of drier conditions, represented by reductions in lake depth and increased 

salinity, which are also documented in local indigenous cultures as significant 

drought periods and cultural change, are also evident (Figure 2.12). The latter of 

these dry intervals are followed by a highstand (above the historical maximum of 

1894 AD) between 1670 and 1770 AD at which point the lake overflowed. Similar 

conditions during the LIA period have been reported from other records across 

eastern Africa (e.g. Ashley et al., 2004; Konecky et al., 2014; Tierney et al., 2015; 

Buckles et al., 2016). However, based on a synthesis of lacustrine proxy and 

instrumental climate data, and by applying Empirical Orthogonal Function 

approaches, Tierney et al. (2013) exhibits that the region of eastern Africa that may 

have experienced a predominantly wet rather than dry climate during the main 

phase of the LIA, extended along the eastern coast from 7°S northward to the Horn 

of Africa, and inland to ~35-34°E over northern Kenya and Ethiopia. This finding 

was recently reinforced by the leaf wax record of Tierney et al. (2015) which 

suggests wetter conditions peaked in the early 17th century as far along the 

eastern African coast north as the Gulf of Aden. 

Despite exhibiting a similar trend to eastern sites during the MCA, and post-MCA, 

palaeoenvironmental reconstructions at locations farther to the west, such as the 
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Ugandan crater lakes in Russell et al. (2007) and Mills et al. (2014), Lakes Edward 

(Russell & Johnson, 2007), Masoko (Garcin et al., 2007b) and Tanganyika (Tierney 

et al., 2010) have displayed a return to drier conditions during the LIA. For example, 

the increase in %Mg in the Lake Edward record suggests that regional aridity 

during this period was comparable to that experienced during the MCA (Russell & 

Johnson, 2007). However, lacustrine records at some sites, such as at Lakes 

Victoria (Stager et al., 2005) and Hayq (Lamb et al., 2007a), seem to present an 

intermediate pattern between these ‘eastern’ and ‘western’ histories. During the 

main-phase LIA the climate at these sites was drier than during the early LIA, but 

still wetter than both peak MCA drought or the 20th century average. For example, 

the percentage change in shallow water diatoms at Lake Victoria, positioned 

geographically between eastern and western eastern Africa, suggests the lake 

reached its highest levels between 1400 and 1600 AD, followed by a decline and 

a more modest lake level at around 1700 AD (Stager et al., 2005).  

In their study, Tierney et al. (2013) demonstrated that the development of a coastal 

(eastern)-interior (western), wet-dry dipole was driven mainly by temporal 

variations in Indian Ocean SSTs, with the importance of Indian Ocean SSTs also 

demonstrated in simulations by Klein et al. (2016). Furthermore, Nash et al. (2016) 

highlight the influence of variability in the ENSO cycle in the creation of this spatial 

dichotomy, as suggested by Russell & Johnson (2007), is not inconsistent with this 

mechanism. Additionally, the CAB may have also played an important role in LIA 

climate, with either a westward shift (Russell & Johnson, 2007), or a weakened 

convergence (Tierney et al., 2011a), during the main-phase LIA, which may have 

contributed towards the formation of this eastern-western dipole, and intermediate 
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responses at sites such as Lake Victoria (Stager et al., 2005) with influences from 

both the Indian and Atlantic oceans.  

2.7 | Summary 
 

The climate of eastern Africa has varied considerably, both temporally and 

spatially, over the past 15,000 years, driven by a complex interplay of orbitally-

forced variability, land surface changes, migration of the ITCZ and the CAB and 

changes in SSTs in the Atlantic, Pacific and Indian Oceans. Since the earlier 

reviews of Gasse (2000) and Kiage & Liu (2006), our knowledge of the eastern 

African hydroclimate has expanded considerably. Further research questions have 

developed regarding past hydrological change in eastern Africa, such as spatial 

extent of the LIA wet-dry dipole, the exact nature and timing of the YD, termination 

of the AHP and the cause of these changes/patterns. These past perturbations in 

climate significantly influenced the spatial distribution and development of early 

cultures and civilisations (e.g. Figure 2.8), underlining the importance of fully 

understanding the nature and timing of these wet-dry cycles and of identifying the 

underlying circulation patterns and feedbacks that respond to and amplify orbitally-

forced changes in eastern Africa. Further work with these questions in mind may 

provide useful insights into current and future environmental changes, both natural 

and anthropogenic, and the associated impacts and contemporary societies
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Chapter 3 :  

The Physical Environment of Ethiopia & Study 

Sites 

In this chapter, the geology and climate of Ethiopia are outlined, followed by a 

detailed description of the two study areas within this context. This includes 

seasonal variations in climate, underlying geology and hydrochemistry of the 

individual lakes sampled in this study. Previous palaeoenvironmental 

investigations in the vicinity of each study site are also discussed in the context 

of the broader review of palaeoclimatic research introduced in Chapter 2.  

3.1 | Geology of Ethiopia 
 

The geodynamic and geomorphic processes since the Oligocene have produced 

the diverse Ethiopian landscape. The south-eastern section of the territory is 

largely homogenous, mainly consisting of Late Palaeozoic, Mesozoic and 

Cenozoic continental and marine sediments. Due to sustained tectonic action for 

millions of years associated with the position of the region on the Somali and 

Nubian minor plates, illustrated by the abundance of geological faults, volcanic 

rocks are common across the country (Tadesse et al., 2003; Figure 3.1). 

The main Ethiopian rift (MER) is a central valley connected to the southern corner 

of the Afar Triple Junction, and is a predominant feature of the Ethiopian 

landscape. The MER is roughly 80 km in width and ~330 km long, bisecting the 

country from northeast to southwest. It continues to widen since the initial rifting 

in the southern and central MER between 18 and 15 Ma; extension in the northern 

Main Ethiopian rift commenced after 11 Ma, at a rate of about 2.5 mm/yr 

(Wolfenden et al., 2004; Chorowicz, 2005).  
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Figure 3.1: Simplified geological map of Ethiopia redrawn from Tadesse et al., (2003). 

3.2 | Ethiopian Climate 
 

The Ethiopian National Meteorology Agency (NMA 2013) highlights that from a 

meteorological point of view, there are three seasons in Ethiopia, with the monthly 

and seasonal rainfall outlined by Viste et al. (2013) in Figure 3.2:  

1) As the Arabian high weakens and moves toward the Indian Ocean, the 

ITCZ migrates northwards, causing a short rainy season from February to 

May (Belg) over much of the Belg-growing areas. In the south-western 
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areas of the country it denotes the beginning of the long rainy season, 

starting in March and peaking in April. For the western parts of the country, 

the rainy season starts during March/April. However, further north of the 

western section of the country, this season is predominantly dry except for 

the month of May.  

 
2) From June to September the main rainy season begins (Kiremt) 

associated with a movement of the ITCZ northwards, with a higher 

magnitude rainfall in comparison to the other seasons. This period of 

increased rainfall accounts for up to three quarters of the annual rainfall in 

the north-western highlands (Korecha & Barnston, 2007; Figure 3.2). 

However, the southern and south-eastern lowlands of Ethiopia receive 

very little rain during this period, with only a small amount of rain towards 

the end of the season.  

 
3) A dry season (Bega), associated with a southward migration of the ITCZ, 

characterised by cool nights and warm days, is experienced from October 

to December/January. However, short rains are experienced over some 

southern parts of the country, with occasional showers over central and 

northern regions of the country, depending on influences from mid-latitude 

rain-bearing systems.  
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Figure 3.2: The seasonal precipitation cycle in Ethiopian rainfall zones adapted from 

Viste et al., 2013). 1971–2000 monthly mean (mm/mn) and annual precipitation (mm/yr), 

and seasonal and monthly percentage of annual precipitation corresponding to their 

respective colour gradient bars. 

3.3 | The Bishoftu Crater Lakes 
 

The Bishoftu Crater Lakes (BCLs) lie in a group of maars on the western 

escarpment of the MER at Bishoftu† at an altitude of 1860 m above sea level, ~45 

km southeast of Addis Ababa, Ethiopia (Figure 3.3). The local bedrock is 

composed of 10-9 Ma-old basalts and 1-4 Ma-old acid volcanics. These 1-4 Ma 

eruptions led to the formation of the central volcanoes Yerer, Bede Gebabe and 

Zikwala. The maars, cinder cones and lava flows represent relatively more recent 

(10 ka) volcanic activity (Gasparon et al., 1993 in Kebede et al., 2002). The 

transmissivity of the older basaltic aquifers ranges between 389 and 21,600 

m2/day. The younger basic pyroclastic rocks, interbedded with minor acidic 

products, comprise the largest part of the local Bishoftu Crater Lakes area, with 

transmissivities of 1,100 up to 18,000 m2/day (Gasparon et al., 1993; Ali, 1999 in 

Kebede et al., 2002). The scoria cones and volcanic domes are believed to be 

the major zones of groundwater recharge, and as the static groundwater level is 

 
† Also known as Debre Zeit (or alternatively spelt Debre Zeyt/Zeyit). 
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above the local lake levels, the importance of groundwater inflow to the lakes is 

evident (Gasparon et al., 1993; Ali, 1999 in Kebede et al., 2002; Table 3.1). 

 

 

Figure 3.3: Bishoftu Crater Lakes location within Ethiopia (red point in inset map) and 

the Bishoftu area (black lines indicate roads). 

The local climate is monsoonal with distinct, pronounced wet and dry seasons, 

corresponding to the three seasons outlined above. Local rainfall is highest during 

the Kiremt with highest mean monthly rainfall in July and August (up to 300 mm 

in some years). 
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Table 3.1: Hydrological characteristics of Lake Hora (HO) and Lake Babogaya (BA; 

Lamb et al., 2002). Direct rainfall (DR), groundwater (GW), evaporation (Evap.) and 

chlorine (Cl). 

 
% inflow  % outflow  

Residence time 

(years) 

 DR Runoff GW  Evap. GW  Water Cl 

HO 47 10 43  97 3  6 500 

BA 38 6 56  79 21  10 81 

 

These humid conditions in the Kiremt contrasts the relative aridity experienced 

during the Bega with recorded monthly rainfall below 50 mm between October 

and January from 1951 to 2003. Seasonal variations in mean air temperature are 

low, with mean annual air temperature varying around 19oC by roughly ± 0.5oC. 

Lowest temperatures occur at night throughout the dry season, with the highest 

temperatures experienced through the Belg and the beginning of the wet season 

(Figure 3.4).  

The past natural vegetation of the area was likely Acacia albida savanna, with 

Juniperus procera forest at higher elevations. The contemporary landscape is 

increasingly urbanised and dominated by agriculture, principally the cultivation of 

tef. Trees and shrubs including: Eucalyptus, Casuarina equisetifolia, Schinus 

molle and Opuntia have been planted around the lakes (Lamb et al., 2002). 

Multiple researchers have conducted comprehensive investigations into the 

limnology of the BCLs (Baxter et al., 1965; Wood et al., 1976; Wood et al., 1984; 

Wood & Talling, 1988; Lamb et al., 2002; Lemma, 2009), and as a result the 

seasonal variations in lake characteristics are well understood.  
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Figure 3.4: Mean (± standard deviation) monthly rainfall (blue) and average air 

temperature (orange) data for 1951-2003 (missing 1991-1993) and 1952-2005, 

respectively, from the Debre Zeit Research Centre meteorological station in Awulachew 

et al. (2006).  

Carbonate laminations, alternating between isotopically different (more 18O and 

13C enriched light layers; Table 3.2) dark and light layers, are present in the 

stratigraphy of Lake Hora (Lamb et al., 2002; Figure 3.5). In contrast to the 

mechanisms controlling varve formation in temperate-zone lakes where seasonal 

changes in temperature controls stratification and productivity, the low variations 

in temperature at Bishoftu suggests rather different mechanisms of seasonal 

stratification and mixing as the dominant control on lake productivity and the 

formation of these laminae. Small amounts of aragonite are present in the dark 

organic layers, which suggests that aragonite deposition occurs throughout the 

year, but the rate of precipitation increases and/or deposition of organic material 

ceases during the stratification cycle.  

The lighter layers, composed of authigenic aragonite crystals, are precipitated 

during algal photosynthetic uptake of dissolved CO2 (Lamb et al., 2002). This 

occurs during the dry-season when lake waters are mixed due to reduced 
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insulative cloud cover. During the wet season the insulative cloud cover promotes 

thermal stratification. This mixing promotes algal photosynthesis and aragonite 

precipitation by bringing Ca and other nutrients from the hypolimnion to the 

surface. This mixing also potentially causes lighter algal detritus to be retained in 

suspension through the water column while the denser aragonite falls to the lake 

floor, which is supported by the higher densities of algal matter during the dry 

season (Lamb et al., 2002). Furthermore, in support of this mechanism, the 

isotopic composition of aragonite layers sampled by Lamb et al. (2002) at Lake 

Hora in the January dry season corresponds to the surface water samples taken 

simultaneously. Similarly, the isotopic depletion of dark layer aragonite 

laminations also supports a wet-season dark layer, dry season light layer model 

(Table 3.2). There is also a close similarity between the estimated sediment 

accumulation rates derived from lamina counts (2.9 mm/year) and from a 210Pb 

chronology (2.2-2.9 mm/year) confirming that these laminae are deposited 

annually, and highlighting their potential to reconstruct environmental change at 

a high resolution. 

The numerous detailed investigations and descriptions of the BCLs highlight 

similarities in limnological behaviour, and as Lamb et al. (2002) suggest, it is 

reasonable to assume that the BCLs share comparable seasonal dynamics. As 

a result, they suggest that the wet-dry cycle of aragonite deposition and laminae 

formation evident at Lake Hora may also be used to explain the light-dark laminae 

evident in the sediments of Lake Babogaya. In support of this hypothesis, for 

example, Mg plays an important role in the precipitation of calcium carbonates in 

water (Folk, 1974; Kelts & Hsü, 1978), and much like Lake Hora, the Mg:Ca ratio 
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of Lake Babogaya waters is greater than 3 (Table 3.3), conditions in which 

aragonite is typically precipitated by algal photosynthesis (Lamb et al., 2002). 

3.3.1 | Study Site 1: Lake Babogaya 
 

Lake Babogaya is the northern-most lake of the BCLs (Figure 3.2). The lake has 

a surface area of 0.58 km2, maximum and mean depth of 65 m and 38 m, 

respectively, with a volume of 0.022 km2 (Figure 3.6). Characteristic of many 

crater lakes, Lake Babogaya has steep slopes with a very small catchment area 

and no inflowing rivers or streams. During the rainy season, the lake is fed by a 

combination of rainfall, runoff and underground inflows (Table 3.1). A small 

submerged volcanic cone is also present in the lake (Wood & Talling, 1988; Lamb 

et al., 2002; Lemma, 2009). The modern lake environment is the site of multiple 

hotels.  

The lake develops thermal stratification during March through to November, 

leading to the formation of indistinct thermoclines at 11-16 m depth late in the 

summer wet season (Figure 3.7). The waters of Babogaya mix through November 

to February, during the dry season, associated with the evaporative and night-

time radiative cooling under conditions of low humidity and low cloud cover (Lamb 

et al., 2002). Oxygen supersaturation develops in the upper layer of the lake 

during the wet season, due to algal photosynthetic activity. Epilimnetic oxygen 

minima coincide with dry-season mixing, and occur occasionally during the wet 

season when the thermocline deepens (e.g. July-August 1966; Figure 3.7). 

Secchi disk measurements in March of 2001 and the end of February 2002 (both 

the Belg season) reveal the upper ~150-170 cm of lake waters are transparent 

(Lemma, 2009). 



                                          Chapter 3: Physical Environment of Ethiopia & Study Sites 

 

56 
 

 

 

Year 

Light layers Dark layers 

δ18O δ13C δ18O δ13C 

1997 6.54 10.30 - - 

1996 6.30 10.93 - - 

1995 6.37 10.53 - - 

1994 6.38 10.32 - - 

1993 6.06 10.41 - - 

1992 6.78 10.83 - - 

1991 7.01 10.70 - - 

1990 7.06 10.86 - - 

1989 7.26 10.71 - - 

1988 6.89 10.16 - - 

1987 7.09 10.70 5.9 9.3 

1986 6.49 10.73 - - 

1985 6.75 10.55 - - 

1984 6.65 10.87 - - 

1983 7.03 10.63 - - 

1982 7.42 10.65 - - 

1981 7.63 10.60 5.1 8.0 

1980 7.21 10.57 - - 

1979 7.23 10.12 5.1 7.5 

1978 6.87 10.41 - - 

1977 7.08 10.21 3.8 6.3 

1976 6.99 10.17 4.2 6.3 

1975 6.94 10.00 5.2 7.9 

1974 6.76 10.34 - - 

1973 6.65 10.36 - - 

1972 7.26 10.12 5.7 8.1 

1971 6.87 9.98 5.0 6.6 

1970 7.15 9.99 - - 

1969 6.87 9.82 - - 

1968 7.11 9.68 - - 

1967 7.15 9.73 3.5 0.8 

1966 6.99 9.72 3.8 5.5 

1965 6.87 9.51 2.7 0.7 

1964 6.72 9.66 3.3 -0.7 

1963 6.84 9.91 4.6 6.1 

1962 7.43 9.47 4.7 6.3 

 

 

 

Table 3.2: Oxygen and carbon isotope values (V-PDB) 

for aragonite from individual year-assigned laminae in 

the sediments of Lake Hora (Lamb et al. 2002). 

 

Figure 3.5: Aragonite laminations in 

freeze-dried section of Lake Hora core 

HG98-1 (top; scale in cm). Scanning 

electron microscope images of aragonite 

crystals (bottom; 5 μm scale) from (H. 

Lamb et al. 2002). 
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Table 3.3: Hydrochemistry of the Debre Zeit area groundwater (Gr) and Lake Babogaya (BA) surface water in 19981 from Lamb et al. (2002) 

and 20012 for Lake Babogaya surface waters to 50 m depth by Lemma (2009).  

 

 
Conductivity  

(k20 μS/cm) 
pH 

HCO3
- 

(meq/L) 

Cl-

(meq/L) 

SO4
2- 

(meq/L) 

CO3
- 

(meq/L) 

K+ 

(meq/L) 

Na+ 

(meq/L) 

Ca2+ 

(meg/L) 

Mg2+ 

(meq/L) 

Gr1 685 7.3 2.62 0.42 - - - 0.42 1.98 2.52 

BA1 776 8.7-9.2 7.67 0.69 - - - 3.74 0.22 3.74 

 0 m 850 (± 30) - 2.55 0.06 4.09 2.70 0.37 2.33 0.84 3.72 

 3 m 841 (± 28) - 4.20 0.11 3.51 3.00 0.72 4.97 0.80 3.92 

BA2 6 m 829 (± 15) - 4.30 0.11 2.28 2.90 0.76 4.97 0.60 4.64 

 16 m 859 (± 14) - 4.60 0.11 2.68 2.60 0.62 4.58 0.68 4.36 

 30 m 959 (± 12) - 5.99 0.10 2.79 1.90 0.45 2.84 0.68 4.72 

 50 m - - 5.49 0.10 2.08 1.70 0.42 2.52 0.60 4.52 
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Figure 3.6: Bathymetric scans and images of Lake Babogaya (Schaebitz unpubl. data). 

The photograph was taken by H. Lamb from the south-eastern shore of the lake. 

Conductivity is slightly higher at the surface (850 µS/cm), likely due to higher 

surface water temperatures, and remains around 830-860 µS/cm between 0 and 
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16 m, due to cooler and calmer waters. However, conductivity below 16 m is 

higher as substances slowly sink. Despite peak salinity at 40 m depth (~1000 

µS/cm) is significantly less than that of nearby Lake Hora (~2300 µS/cm; Lemma, 

2009). Surface pH usually varies between 8.7 and 9.2, decreasing with depth to 

pH 8.4 in stratified conditions. Calcium (Ca) concentration is higher in the 

epilimnion, associated with the photosynthetic precipitation of aragonite, with a 

negligible increase of magnesium (~1 meq/L) with depth (Lamb et al., 2002; 

Lemma, 2009; Table 3.3). 

Between 1963 and 1966, and in 1980, Wood & Talling (1988) report that the 

dominant algae at Lake Babogaya was Microcystis aeruginosa. However, little is 

known of the diatom communities at Lake Babogaya, with Lemma (2009: 232) 

simply stating “a few diatoms” are known to be present. Belay (2007) reported 

that between June 2006 and April 2007 the following diatoms species were 

present: Cyclotella planctonica, Cymbella cistula, Fragilaria capucina, Fragilaria 

ulna, Surirella linearis, Synedra dorsiventralis, Nitzschia nyassensis and 

Nitzschia vermicularis, with the latter two being the most dominant species. T. 

Pinches of Aberystwyth University (BSc student unpub. data.) describes the 

diatom stratigraphy of a 1.15 m core taken in 1998, which represents the past 

~400 years (assuming a similar sedimentation rate to that of nearby Lake Hora; 

Lamb et al., 2002). Thirty species were identified, however only a few of these 

were present above 2% of the entire core assemblage, leaving eight dominant 

species: Cymbella fonticola, Cymbella affinis, Cymbella microcephala, 

Achnanthes minutissima, Navicula cryptocephala, Nitzschia amphibia, Nitzschia 

palea and Nitzschia fonticola. 
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Figure 3.7: Seasonal characteristics of Lake Babogaya waters adapted from Lamb et al. (2002). Temperature profiles April 1964 - 

September 1966. All profiles are between 19
o
 and 20

o
C at 30 m depth, with vertical grids spaced at 1

o
C intervals (top). Dissolved oxygen 

content of Lake Babogaya to a depth of 60 m, May 1964 - October 1966 (bottom). Red line highlights the general level of lake anoxia. 
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3.4 | The Bale Mountains  
 

The Bale Mountains (between roughly 6o40’-7o10’ N and 39o30’-40o00’ E; Figure 

3.8), in the Oromia Region of southeast Ethiopia, belong to the Bale-Arsif massif 

that forms the western section of the south-eastern Ethiopian highlands and 

consists of Miocene basalt and trachyte lavas overlying Mesozoic marine 

sediments (GSE, 1996; Figure 3.1). The Sanetti Plateau is a major landform of 

the Bale Mountains with altitudes around 4000-4200. Multiple peaks above 4000 

m rise above the plateau including Mount Batu (4350 m) and Tullu Dimtu (~4400 

m), the latter being the second highest peak in Ethiopia.  

Vegetation across the plateau is mainly characterised by Afroalpine dwarf scrub 

and isolated Erica shrubs, which is surrounded by an Ericaceous belt (Figure 3.9; 

Umer et al., 2007). However, disturbance by cutting, burning and domestic stock 

grazing has increased over the last few decades with multiple grazing grounds 

and transhumant settlements scattered across the plateau.  

The alternating wet-dry cycle at the Bale Mountains, much like the rest of the 

Horn of Africa, corresponds to the movements of the ITCZ throughout the year. 

Average annual rainfall (1971-2000) from various stations from the surrounding 

region in Viste et al. (2013) indicates rainfall is highest through the Kiremt and 

Belg (42% and 39% of total annual rainfall, respectively), in contrast to the arid 

Bega season which experiences only 19% of total rainfall through the four months 

from October through to January (Figure 3.4). 
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Figure 3.8: Bale Mountains, and surrounding major towns, location within Ethiopia. 

Faded contour lines, between bold 1000 m lines, denote changes of 200 m. 

The effects of altitude are evident on the distribution of rainfall across the Bale 

Mountains, with rainfall generally higher on the northern slopes (~1000 mm) than 

the southern slopes (~800 mm; Figure 3.10). The effects of altitude also influence 

the diurnal variation in air temperature, with frost common at 4000-4200 m. 
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Figure 3.9: Schematic SW–NE profile of the Bale Mountains to show altitudinal zonation 

of regional vegetation by Umer et al. (2007). 

During the LGM, the most recent estimates suggest that around 180 km2 of ice 

covered the mountains with a central 30 km2 ice cap centered around Tullu Dimtu 

and multiple glaciated valleys in the north (Osmaston et al., 2005). The area 

contains numerous peat bogs and glacial lakes, some of which have been the 

focus of palaeoenvironmental studies (e.g. Umer & Bonnefille, 1998; Umer et al., 

2007; Tiercelin et al., 2008). 

3.4.1 | Study site 2: Garba Guracha  
 

Garba Guracha (6°52′ N, 39°49′ E) is a small (500 m length, 300 m width, 6 m 

deep) NNE-orientated rounded spearhead-shape lake lying in a cirque at the end 

of a side valley of the upper Togona valley at an altitude of ~3950 m (Figure 3.11). 

Preliminary depth measurements from 7 transects (February 2017) indicate that 

the lake floor gently slopes down from the margins, with the exception of the 

western margin bounded by a vertical slope, with waters of >5 m deep in the very 

centre. In comparison to the rift system lakes, few limnological studies have been 

conducted at Garba Guracha (Werdecker, 1962 and Löffler, 1978 are rare 

examples). 
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Figure 3.10: Rainfall (blue) and temperature (orange) of areas in, and around, the Bale 

Mountains. A – Dinsho, B – Rira (6°46.3'N, 39°43.5'E), C – Goba and D – Dola-Mena 

(for settlement locations see Figure 3.8). Created using weather data from 1982 to 2012 

and the Climate-Model available at Climate-data.org (2017). Note the different 

secondary Y-axis values for each graph.  

Palaeoenvironmental studies by Umer et al. (2007) and Tiercelin et al. (2008), 

and a single sample point for the East African diatom database presented in 

Gasse et al. (1983), providing the only further insights. This glacial cirque is 

bounded to the south by up to 140 m high cliffs and steep slopes, formed by 

basaltic lavas, overlying a thick trachytic tuff unit which forms a large part of the 

cirque base, and outcrops on the southern and southeastern slopes of the cirque 

(Tiercelin et al., 2008). As a result of these steep cliffs, the lake watershed is 

small (0.15 km2) with a lake/watershed ratio of 2. During periods of maximum lake 

level, a small outlet stream flows out over a partially boulder-covered rock bar on 

the northern-most edge of the lake which feeds the Togona River at an estimated 

few litres per second (Tiercelin et al., 2008). However, during the 2017 dry season 

(fieldwork) this outlet was dry (Figure 3.12).  
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Figure 3.11: Garba Guracha location within the Bale mountains (left) and cross-sectional view of basin characteristics (right; Tiercelin et 

al., 2008). Sample locations in Tiercelin et al. (2008) are shown. The locations of springs and inputs/outlet around the edges of the lake in 

February 2017, and the outlet stream to the Togona valley on the northern tip of the lake (arrows) are also shown. Thick label contour lines 

indicate changes of elevation of 1000 m, with faded lines denoting a 500 m change (in A and B). Dotted contours (in C) indicate 20 m 

changes in elevation.
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From an ecological perspective, the lake is situated on the boundary between the 

Ericaceous and Afroapline vegetation belts (Figure 3.8), with the surrounding 

land dominated by Alchemilla haumannii and Helichrysum splendidum scrub. The 

adjacent slopes are frequently burned to improve livestock pasturage, with these 

livestock also grazing in the marsh area adjacent to the lake. Additionally, Carex 

monostachya and Luzula johnstonni communities form a lake-shore marsh 

community (Umer et al., 2007).  

Multiple small streams and springs from the southern slopes around the lake 

merge to feed the lake and form a small meandering fluvial system through a 0.5 

km long marshy alluvial plain (Figure 3.11; 3.12). Coarse clastic material is 

adjacent to the steep western shoreline, likely related to the nearby scree slopes, 

with some of this material mixed in with well-sorted clean sands that characterise 

the lake shoreline. Wave action, generated by the strong northerly winds blowing 

into the cirque, is observable in the lake and is responsible for the sandy, 

rectilinear southern shoreline (Figure 3.11). Offshore lake sediments are 

composed of dark, organic-rich muds (total organic carbon (TOC) up to 11%; 

Tiercelin et al., 2008). 

Gasse et al. (1983) document that Garba Guracha’s water balance is 

predominantly determined by precipitation and lake inflow and outflow, however 

Umer et al. (2007) presume groundwater is an input to the lake, but this is yet to 

be determined. Lake water at the time of sampling by Tiercelin et al. (2008) was 

fresh, circum neutral (6.81-6.95 pH) and bicarbonate dominated (Table 3.4), 

slightly fresher and more acidic conditions to that in the 1970s presented in Gasse 

et al. (1983; 7.4 pH). 
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Figure 3.12: Outlet point from Garba Guracha into the Togona valley (arrow) overflowing 

in 2001 (Tiercelin et al., 2008; left) and desiccated in 2017 (right), with the lake level 

considerably lower than during overflow periods (red line indicates overflow shoreline 

level) and far from the outlet point (bottom). Sand is evident on the very outer lake edge, 

with organic-rich muds towards the centre. 

Tiercelin et al. (2008) found stable oxygen isotope values from the inflow stream 

(5 in Figure 3.11) of -2.2‰ (vs. SMOW) are similar to the modern water samples 

of the rift floor lakes, and the mean annual rainfall isotope contents recorded from 

the meteorological stations in Awassa and Addis Ababa (-2‰ vs. SMOW). The 
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ecology of Garba Guracha’s waters, however, remains relatively unclear. Umer 

et al. (2007) and Tiercelin et al. (2008) identify that much of their core contained 

some diatoms (abundance corresponding largely to the organic content of each 

lithostratgraphic unit), but no further identification was undertaken. Furthermore, 

one mud sample from the lake was included in the East African diatom dataset 

presented in Gasse et al. (1983), Gasse (1986) and Gasse et al. (1995). 

However, the usefulness of this is limited as the only information reported is that 

the sampled diatoms belong to the East African diatom assemblage II B (typically 

associated with low conductivity, medium pH and low-medium alkaline waters).  

3.4.1.1 | Environmental change at Garba Guracha since the Late 

Pleistocene 

 

Magnetic susceptibility, organic matter content and rates of sedimentation in a 

core retrieved from Garba Guracha allow Tiercelin et al. (2008) to interpret the 

glacial development of the lake environment (Figure 3.13) since 16,700 BP. They 

interpret high rates of large (>100 µm), inorganic sediment input between 16,700 

and 13,400 BP as the result of discharges of meltwater and glaciogenic sediment 

progressively filling the accommodation space (now Garba Guracha) created as 

the glacier retreated. During this period, pollen in the same core (Figure 3.13) 

shows that local vegetation was predominantly herbaceous, consisting of 

predominantly Poaceae, Amaranthaceae / Chenopodiaceae and Cyperaceae, 

with similar patterns of Artemisia pollen influx despite being present at a lower 

percentage in the core.
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Table 3.4: Lake Garba Guracha hydrochemistry in May 2001 from Tiercelin et al. (2008). Sampling locations in relation to Lake Garba 

Guracha are shown in Figure 3.8. Trace concentrations are represented by a ‘+’. 

 

 

 

 

 

 
Conductivity 

(µS/cm) 
pH 

HCO3
- 

(mg/L) 
Cl-

(mg/L) 
SO4

2- 
(mg/L) 

F− 
(mg/L) 

NO3
− 

(mg/L) 
K+ 

(mg/L) 
Na+ 

(mg/L) 
Ca2+ 

(mg/L) 
Mg2+ 

(mg/L) 

1 (river mouth) 57.8 6.77 29 1.63 1.64 + + 1.21 7.08 3.04 0.69 

2 (output) 56.7 6.95 27 0.49 0.45 + + 1.19 6.79 2.83 0.63 

3 (core site) 58.0 6.91 28 1.68 1.63 + + 1.21 6.92 3.09 0.67 

4 (south shore) 56.7 6.90 28 1.67 1.55 + + 1.15 7.07 2.90 0.62 

5 (input) 53.0 6.81 28 1.10 0.95 0.06 0.09 1.05 8.31 1.95 0.35 

6 (swamp) 62.2 6.84 27 1.84 2.48 0.10 3.41 0.87 8.06 2.88 0.59 
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The presence of this vegetation indicates the local environment was steppe-like, 

grass-dominated vegetation with dwarf shrubs (Chenopodiaceae, Artemisia) in a 

dry climate. However, pollen influx through this zone is low, indicative of a sparse 

vegetation cover (Umer et al., 2007).  

A sharp decrease in the abundance of Amaranthaceae / Chenopodiaceae pollen 

is observed at 13,400 to ~12,500 BP, with an increase in Cyperaceae. Additionally, 

pollen influx, TOC and the sedimentation rate rise, with a corresponding decrease 

in magnetic susceptibility, inferred to represent the increase of vegetation cover 

and acceleration of ice melting, and related meltwater/sediment discharge, in 

response to wetter climatic conditions. During this period, Ericaceae, Podocarpus 

and Juniperus pollen also increases slightly, which may indicate a rise in the 

altitude of the forest limit on the lower slopes of the surrounding Bale Mountains. 

This interval is short-lived however with a return to drier conditions from 12,550 BP 

to the start of the Holocene, potentially corresponding to the Younger Dryas 

(12,700-11,800 BP), represented by reduced Cyperaceae and equivalent large 

increases in the dry, steppe-like vegetation, with Poaceae dominating this period 

(~45-60% abundance). At this time, sedimentation becomes fine-grained without a 

major change in lithological/geochemical characteristics. This suggests a decrease 

in the influx of melt-water, which can be explained by the colder, arid conditions at 

the time slowing glacier retreat or the persistence of a lobe of dead ice restricted 

to the sheltered, southern end of the cirque, with outwash streams transporting 

smaller quantities of water and finer-grained sediment to Garba Guracha. 

From the start of the Holocene (11,800 BP) the Garba Guracha core records the 

establishment of the contemporary, post-glacial lake environment with an abrupt 

reduction and disappearance of clastic input, which is replaced by organic–rich 
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sediments. Local vegetation was dominated by Poaceae (~50-65%) and 

Cyperaceae (10-20%), with the highest abundance of Ericaceae (10-20%). Taxa 

such as Podocarpus and Juniperus remain low throughout the zone, indicating that 

dry Afromontane forests at lower altitudes were not extensive during the early to 

mid-Holocene, being restricted to lower altitudes. Increased TOC and HI values, 

as a result of a greater abundance of Botryococcus braunii and high OM preservation 

under a permanent water body suggests wetter, more productive conditions. 

Furthermore. Tiercelin et al. (2008) suggest that, based on higher abundances of 

Botryococcus braunii, the lake was oligohaline during this period. After 4,500 BP 

drier conditions, characteristic of the late Holocene (see chapter 2), are 

represented by decreases in lake and vegetation organic matter production (5-10% 

decrease in TOC).  

The pollen records also suggests a reduction in rainfall with an expansion of dry 

Afromontane forest from 4,500 BP with large, correlated increases in Juniperus 

(+10-35%), Podocarpus (+15-25%) and Olea (+2-3%), with Juniperus dominating 

after 2,500 BP. Podocarpus declined from 2,000 BP (-10%), while Juniperus 

increases to maximum abundance in the core (~40%) following a brief interval of 

decreased abundance. This may reflect continued climate drying, or the 

preferential use and selective clearance of Podocarpus by an increasing human 

population. Anthropogenic disturbance of the natural, local vegetation is also 

inferred from increases in Plantago and Dodonaea over the last 1,500-2,000 years, 

with anthropogenic burning potentially represented in the last ~500 years by 

increases in Hagenia abyssinica. 
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Figure 3.13: Environmental proxies from Garba Guracha in Umer et al. (2007) and Tiercelin et al. (2008).
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Chapter 4 : 

Study methods  

This chapter outlines the field sampling strategies during the 2017 field campaign 

at Garba Guracha (as part of the DFG Mountain Exile Hypothesis (MEH) project) 

and in 2011 at Lake Babogaya. Cores from these locations represent a higher 

and lower altitude site. The aim of this study was to compare these records to 

further understand the dynamics of past climatic change between altitudinal 

scales as well as through time in eastern Africa. It was anticipated that the basal 

dates of both sites would be broadly similar to allow comparisons to be made for 

the last ~16,000 years. However, following the chronological controls outlined in 

this chapter it was revealed that this is not the case thus comparisons are made 

later in this thesis where possible between the two sites as well as the wider 

literature as a whole.  

The procedures for core analysis, including sampling/analysis of proxies and 

chronological controls, are presented together with any differences outlined 

where appropriate. An introduction to the methods applied is also provided where 

appropriate, with focus placed on diatoms as they are the main proxy of this 

study. A detailed description of the process to correlate the overlapping sections 

extracted from Lake Babogaya is provided following this chapter. Plotting of data 

was performed in R (v. 3.5.1; R Core Team, 2018) with the rioja (v. 0.9-14.1; 

Juggins, 2017), ggpalaeo (Telford, 2018), ggplot2 (Wickham, 2016) and cowplot 

(v. 0.9.3; Wilke, 2018) packages. R was also utilised for the statistical analyses 

of data, with the packages used in this study stated where appropriate in this 

chapter.   
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4.1 | Field sampling 
 

Samples were collected from the field at the end of the dry season (mid-February 

2017). Two water samples from each sample location around the Garba Guracha 

area (Figure 4.1) were collected in Nalgene bottles to determine the anion, cation 

and trace element concentrations. Field measurements of water conductivity and 

pH were also made using a Hanna HI98129 meter, with care taken to calibrate 

before each sample was taken with known standards. However, due to meter 

malfunctions (infinite increasing of measurements) these data were discarded, 

and were acquired in the lab upon return (see section 4.2.2).  

In conjunction with these water samples, diatom samples were taken from 

sediment from sites around the lake basin. A total of 9 diatom samples were taken 

from the shoreline (mud, sand and rock), spring 4 (mix of mud/vegetation), the 

lake outlet (mud), the swamp (mix of mud/vegetation) and inputs 1, 2 and 3 (mud) 

in Figure 4.1. To ensure diatom remains were preserved, a few drops of alcohol 

were added to each sample. All water and diatom samples were stored in cool 

environments wherever possible while in the field and returning from the field, 

and stored in a cold store maintained at 4oC upon returning to Aberystwyth. 

4.1.1 | Core retrieval 
 

The Lake Babogaya core was extracted in October 2011 by a team led by Prof. 

Frank Schäbitz, and the Garba Guracha core taken on the February 2017 field 

campaign. Core sampling reached depths of ~16 m (below sediment surface) in 

both lakes, with a surface core taken at Garba Guracha and several overlapping 

sections extracted from Lake Babogaya. 



                                                                                         Chapter 4: Study methods 

 

75 
 

 

Figure 4.1: Sample locations around Garba Guracha in the 2001 field campaign (in 

Tiercelin et al., 2008), with sample and spring locations in 2017 also shown (this study). 

Due to the small size of springs 2 and 3, possibly due to the dry conditions, a small pool 

where both streams merged downstream was sampled. The location of the coring raft 

(star) indicates the point at which surface water and sediment samples were taken. 

A single long core, comprised of multiple overlapping 1 m drives, was collected 

from Lake Babogaya (BA-LC-2011) using a UWITEC piston corer between the 
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28th and 31st of October 2011. Each section was extracted in a 2 m liner, and cut 

into an upper and lower half (labelled A and B, respectively) following coring 

(Figure 4.2). However, issues with depth control and estimation were 

encountered during fieldwork, especially in the upper half of the core. Despite the 

best efforts to estimate the depth of each section in the field, the position of 

sections within the overall lake stratigraphy was uncertain (Schäbitz pers comm.; 

see Chapter 5 for discussion of core correlation in this study).    

Numerous short cores were also collected from within Lake Babogaya using the 

UWITEC corer (Figure 4.2), ranging from 52 to 114 cm in length. However, these 

cores were not sub-sampled in the field, and due to their high water content and 

unconsolidated nature, the sediment of these cores was highly disturbed and 

rendered unreliable following coring/during transit. Consequently, these cores 

were not considered for analysis in this study.  

At Garba Guracha, coring was undertaken on a specifically designed raft, 

anchored from each corner by heavy weights, and supported by two securely 

fastened dinghies. The sediment-water interface was sampled to a depth of ~50 

cm using a piston equipped plastic tube (Wright et al., 1984) with a 4.5 cm 

diameter and 1 m long barrel. This was sampled in the field by pushing the core 

from the bottom and sampling in 1 cm intervals. Additionally, from this sediment-

water interface core, a water sample was taken to represent deeper lake water 

(estimated 5 m depth). Two overlapping cores of 15 and 16 m length were taken 

in successive 1 m drives of this Livingstone piston corer. These 1 m sections 

were transferred to labelled plastic tubing and wrapped in cling-film on-site.  
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Figure 4.2: Bathymetry of Lake Babogaya, with core sample locations during the 2011 

coring campaign (Schäbitz, unpublished data.).        

4.2 | Laboratory methods 

4.2.1 | Core lithology and chronology  

(i) Sediment preparation and storage 

After being transported to Aberystwyth University, Wales (Lake Babogaya cores) 

and the Instituto Pirenaico de Ecología (IPE), Zaragosa, Spain (Garba Guracha 

cores), the cores were kept chilled in a cold store maintained at 4oC. The Lake 

Babogaya cores were opened from the thick plastic tubing using a mechanical 

core splitter and a circular saw. After being opened, these sediment cores were 

split in half lengthways, using wire and metal wedge plates. As the Garba 
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Guracha cores were kept in two separate halves of plastic tubing, only metal 

wedge plates were used to split these cores in half lengthways. All care was taken 

to avoid contamination during core opening and splitting. After being split, one 

half of each section was kept as an archive half and the other to be sampled as 

the replicate working half. These cores were returned to the cold store wrapped 

in cling-film and were only taken out of this chilled environment to be sampled.  

In the summer of 2016, prior to the start of this PhD, the working half of the 

Babogaya core was sub-sampled by S. Grunhut at Aberystwyth University using 

a brass sub-sampler to take a 1 cm3 sample of sediment at ~4 cm intervals. These 

samples, and others taken later by the author, were used in this study. Similarly, 

sub-samples of sediment (1 cm3) to use in this study were extracted at ~10 cm 

intervals in the Garba Guracha core, using a cut syringe, by the author at the IPE. 

These sub-samples for further analyses (diatoms/bulk organic matter analysis; 

see below) were stored in sealed plastic tubes kept in sealed clip bags in the cold 

store with the original sediment cores. 

(iia) Sediment description 

The core sections were initially divided into sub-units depending on visual 

changes in sediment type. The composition of these units in the Lake Babogaya 

composite core were then recorded using smear slides, prepared according to 

Myrbo (2007), and a James Swift polarizing microscope. To accurately 

characterise and identify the sedimentary units the Limnological Research Centre 

(LRC) classification framework (Schnurrenberger et al., 2003) was used. The 

sedimentary sequence was then divided into lithostratigraphic units based on 

these smear slides and visual changes in sediment type. These preliminary 
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analyses also provided a first insight into the structure of the core (e.g. volcanic 

glasses, microfossil occurrences and laminae composition). The composition of 

the Garba Guracha core was described in a similar way to the Babogaya core, 

conducted by G. Gil-Romera and A. Moreno at the IPE, with further investigation 

by D. Grady and G. Gil-Romera at Aberystwyth University. Core lithologies were 

plotted in SedLog (v.3.1; Zervas et al., 2009). 

(iib) Thin section preparation and analysis  

Thin sections were prepared from laminated sections, and diatoms counted from 

individual lamina (see below), in the Babogaya core to further understand their 

formation through time. Samples were taken in a kubiena tin, transferred to fine 

mesh ‘boats’ and freeze dried following the methods outlined in LacCore (2015). 

It was intended to acquire backscatter electron imagery (BSEI) for this study as 

can be useful for determining differences in discrete layers of predominantly 

organic/minerogenic components (Kemp et al., 1999). However, following resin 

impregnation, blocks could not be reduced to an adequately thin sample to use 

with the SEM at Aberystwyth University without destroying the sample, therefore 

this avenue of research was abandoned for this PhD study. 

(iii) Babogaya 14C chronology 

As discussed in chapter 3, terrestrial macrofossils of plants are considered the 

most reliable material for radiocarbon dating compared to bulk samples 

(Zimmerman & Myrbo, 2015). This is especially true for constructing a reliable 

chronology at Lake Babogaya; crater lakes may experience contamination from 

groundwater and geothermal sources introducing ‘old’ 14C at different stages. The 

utility of charcoal in radiocarbon dating sedimentary sequences, especially in 
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African crater lakes, is evident (e.g. Telford, 1998; Blauuw et al., 2011). However, 

it is important to note that wood charcoal may provide less accurate dates due to 

the longevity of trees (Oswald et al., 2005; Grimm, 2011), in contrast to charred 

cuticles from grasses which have a comparatively shorter lifespan. Deposition of 

‘old’ carbon stored in catchment soils can also lead to inaccurate dates. To 

minimise the likelihood of eroded material being dated, samples were selected 

where possible from sections of core with comparatively lower rates of 

terrigenous input (as identified from XRF-derived Ti data) where possible. 

Previous smear slide analyses identified potential macrofossil layers in one 

section of the core and that micro- and macro-charcoal was present throughout 

the core in varying quantities. Prior to sending bulk samples for analysis, 

sediments were sampled for dating using terrestrial macrofossils (e.g. twigs, 

leaves of deciduous trees and insect remains) or charcoal. Multiple 1 cm thick 

sediment samples were taken from various depths from the working core halves, 

with care taken to avoid contamination by potentially younger material from the 

outer edges of the core, and transferred to individual, labelled sample bags. 

These sub-samples were then individually sieved through a 150 μm mesh with 

distilled water. Sieving residues were transferred to petri-dishes and observed 

under a Meiji Techno RZ dissecting microscope (x7.5-75 magnification) to 

accurately identify potential plant macrofossils and charcoal fragments to be used 

for obtaining radiocarbon dates. Charcoal fragments were identified based on 

optical properties (Enache & Cumming, 2006): black colour, opacity, light 

reflective surface, visible cell lumina and brittle texture. Any relevant material was 

handpicked from these residues and transferred to sealed glass vials filled with 

distilled water. 
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In total, 9 accelerator mass spectrometry (AMS) 14C dates were obtained from 

the Lake Babogaya core. These were analysed at the Oxford Radiocarbon 

Accelerator Unit (ORAU). Chemical pre-treatment, target preparation and AMS 

measurements follow Bronk Ramsey et al. (2004) and Brock et al. (2010). All 14C 

dates were calibrated using CALIB 7.1 (Stuiver & Reimer, 1993), using the 

IntCal13 calibration curve (Reimer et al., 2013). For each date obtained the 

conventional radiocarbon age, the calibrated age range at the 2-σ level, and the 

calibrated age (central point estimate; rounded to the nearest 10) are presented 

in this thesis. When estimates of the sediment accumulation rate are made, the 

central point estimate of the calibrated age is used and the reader is referred to 

the table of dates (for the respective cores in those sections) for the full range of 

associated errors. Bayesian modelling of radiocarbon dates was performed with 

the rbacon (Blauuw & Christen, 2018) R package. 

(iv) Garba Guracha chronological controls 

A chronology for the surface core of Garba Guracha was produced by analysing 

these sediments for 210Pb, 226Ra, 137Cs and 241Am. The 1 cm samples extracted 

in the field were dried and sent for analysis by direct gamma assay in the 

Environmental Radiometric Facility at University College London, using an 

ORTEC HPGe GWL series well-type coaxial low background intrinsic germanium 

detector. The long core, GGU-17-1AB was dated by AMS dating bulk sediments 

and charcoal fragments at Bern which were used as a control for replicate 14C 

dating of bulk n-alkane samples at Halle. Dating techniques were applied by L. 

Bittner, as part of the MEH project. 
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4.2.2 | Water chemistry 

Water samples from Garba Guracha were chilled in the cold store at 4oC upon 

arrival at Aberystwyth University. Before analysis, these samples were filtered by 

forcing them through 0.45 μm thick filter paper with a syringe, as particles larger 

than this may damage the analytical instruments. Samples were transferred to 

standard 5 ml polypropylene vials and analysed for chloride (Cl-), sulphate (SO4
2), 

fluoride (F-), nitrate (NO3
-) and phosphate (PO4

3-) using a Dionex DX 120 ion 

chromatograph. Bicarbonate (HCO3
-) content was determined through simple 

acid-based titrimetric analysis, using sodium tetraborate (Na2B4O7) to determine 

the normality of the hydrochloric acid (HCl) to be used in the titrimetry.  

Water samples for cation analysis were acidified with 70% HNO3, mixed and left 

for 24 hours, to re-solubilise carbonates and bicarbonates that may have formed 

during storage. Following this process, samples were transferred to 10 ml plastic 

test tubes and analysed for sodium (Na+), potassium (K+), calcium (Ca+2) and 

magnesium (Mg+2) using a Perkin Elmer AAnalyst 400 atomic absorption 

spectrometer. The analytical precision of the equipment used to determine both 

anion and cation concentration was 3%. 

4.2.3 | X-ray fluorescence (XRF) scanning  

Unlike more traditional methods (e.g. wet chemical digestion), XRF scanning is a 

non-destructive method of providing high-resolution, geochemical data. Due to 

the high-resolution of XRF scanning, and the ability to perform subsequent, 

additional analyses as the sediment remains intact, its use in understanding past 

changes archived in sediment cores has significantly increased since its 

development (Rothwell & Croudace, 2015).  
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XRF analysis for both cores was performed at Aberystwyth University using the 

Itrax™ core scanner. Scanning for the Babogaya core was performed by the 

author, with the Garba Guracha cores scanned by G. Gil-Romera and H. Lamb. 

Standard scanning procedure for an Itrax scanner was undertaken (Itrax scanner 

specifications and procedures outlined in Croudace et al. (2006)). Scan settings 

were calibrated to 30 kV, 45 mA, with a stepsize of 200 μm for each scan of the 

Babogaya core and 30 kV, 45 mA and a stepsize of 500 μm for the Garba 

Guracha cores. XRF and X-ray exposure times were set to 15 seconds and 200 

milliseconds, respectively, for both cores. Fine tuning of the detector parameters 

was performed before each scan to match the actual and fitted spectra and 

minimise the mean square error (MSE) value. As a result, MSE values were 

maintained below 2 for both the Babogaya (mean = 1.62 ± 0.16 MSE) and Garba 

Guracha (mean = 1.56 ± 0.27 MSE) master cores. Following the calibration of 

scanner settings, a layer of 1.5 μm thick film was used to cover the core to 

minimise moisture loss during scanning.  

Significant changes in water and organic content may lead to inaccurate detection 

of some elements, resulting in down core changes in raw element profiles 

unrelated to sediment geochemistry (Tjallingii et al., 2007; Löwemark et al., 

2011). Consequently, to minimise the effects of sediment water and organic 

content, normalisation of raw element data by the total scatter (both the 

incoherent and coherent data, equivalent to Compton and Rayleigh scattering, 

respectively) is commonly used (e.g. Kylander et al., 2011; Chawchai et al., 

2013). The raw XRF-derived element data for both cores in this study was 

similarly normalised by the total scatter by D. Grady. Correlation matrices were 
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produced using the PerformanceAnalytics (v. 1.5.2; Peterson & Carl, 2018) R 

package. 

4.2.4 | Isotopic analysis of bulk organic material  

Sub-samples from the working halves of the Babogaya core were analysed for 

total organic carbon (TOC), including δ13Corg, and total nitrogen (TN). The C:N 

ratio provides information related to the origin of organic matter within lake 

sediments, related to the protein-rich, lignin poor nature of algal material (C:N 

ratio of 3-9) and relatively protein poor, lignin rich terrestrial biomass (C:N ratio of 

>20). Similarly, the δ13C is broadly used as an indicator for carbon sources in 

plants and can be used to differentiate between C3 (δ13C ≈−22 to −35‰) and C4 

vegetation (δ13C ≈−6 to −15‰) (Brodie et al., 2011).  

Sediment was placed in individual 250 ml beakers with 100 ml of 5% HCl, to 

remove any inorganic carbon present. The sample was left to react for 24 hours 

before the supernatant was decanted and the remaining sample washed with 

distilled water. This process was repeated 4 times at 24 hour intervals. Following 

this procedure, samples were dried at 40oC overnight, before being ground to a 

fine powder in an agate pestle and mortar to homogenise the sample. These 

powders were then stored in sealed glass vials prior to further use. Samples were 

analysed using an Elementar GeovisION with a vario-PYRO-cube EA (elemental 

analyser) and visION MS (mass spectrometer). 

4.3 | Diatoms 

Classified as algae (Division Bacillariophyta), diatoms are unicellular, eukaryotic 

organisms characterised by their siliceous cell walls and yellow-brown 

pigmentation. Generally, according to Julius & Theriot (2010), diatoms are 
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classified as one of two biological orders: the Centrales (commonly referred to as 

centrics) and the Pennales (also known as the pennates, both raphid and araphid; 

Figure 4.3). Diatoms vary considerably in cell size (typically 20-200 μm), frustule 

shape, striae and punctae density/pattern and the form of raphe ends (Mann & 

Droop, 1996). These multiple distinctive morphological features are key to 

accurately describing and identifying diatoms to variety, species or sub-species 

level in palaeoenvironmental research, without the need to extract DNA.  

 

Figure 4.3: Diatom morphology of three example species from the centrics (left) and 

both araphid (middle) and raphid pennates (right). Diatom images include those taken 

under a light microscope (top) and a scanning electron microscope (bottom). Scale bars 

at 10 μm. Created using images from the respective pages on the Diatoms of the United 

States database (https://westerndiatoms.colorado.edu/). 

The abundance of diatom cells, even in a small lake body, is considerable; a 

species occurring at a density of 1 cell m-2 of lake surface would be essentially 

undetectable in most circumstances, yet there would still be 104 per hectare 

(Mann & Droop, 1996). Diatoms are largely restricted to the photic zone, but can 

occupy a diversity of habitats found within that region where there is sufficient 

light.  
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Planktonic diatoms spend their entire life cycle suspended in the water column, 

whilst benthic diatoms are found attached to some form of substrate around the 

margins of lakes. Epilithic, epiphytic, epipelic and epipsammic refers to the habitat 

type of diatoms found on stones, aquatic vegetation, mud and sand, respectively. 

Diatoms referred to as facultatively planktonic includes taxa which spend part of 

their life cycle both floating free in the water column or attached to substrates. 

Similarly, tychoplanktonic diatoms are those that have been detached from their 

benthic habitat and resuspended into the water column through a disturbance. 

Species of diatoms often found in subaerial environments, such as bogs and 

marshes, are referred to as aerophilous. However, the ecology of some species 

is not known in detail, and so continued monitoring and research is necessary to 

inform understanding of species’ ‘optimum’ conditions (Battarbee et al., 2001). 

While the known habitat preferences of taxa can be used to infer habitat 

distributions in an environment, species can often be found in more than one 

habitat (Battarbee et al. 2001). This can lead to confusion over the habitat 

preferences of taxa and be problematic in inferring past habitat change through 

fossil assemblages (e.g. Barker et al., 1994). 

4.3.1 | Diatoms and environmental change 

Several characteristics of diatoms make them particularly useful 

palaeoenvironmental proxies and an extensive research effort (e.g. CASPIA 

project; Juggins et al., 1994), has elucidated their utility in understanding and 

reconstructing environmental conditions. The amorphous silica frustules of a 

diatom are usually well preserved in lake sediments, and as discussed above can 

be identified to a species level (Round et al., 1990; Compton, 2011). Most 

importantly, their short life-cycles, rapid dispersal and colonisation mean that the 
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composition of diatom communities changes rapidly in response to environmental 

change. Numerous studies, from a range of environments, have established that 

the optima of many taxa fall within a well-defined hydrochemical range for certain 

species to thrive (e.g. Figure 4.5), making them highly sensitive to fluctuations in 

their local environment.  

After understanding a species’ range of optimal conditions within a range of 

environments (e.g. Figure 4.4), it is possible to begin inferring the characteristics 

of a specific habitat based upon the composition of the diatom assemblage. This 

approach has been utilised successfully in, for example, analyses in hydrological, 

climatological and environmental monitoring applications (Smol & Stoermer, 

2010). The analysis of diatom assemblages within sedimentary records facilitates 

direct and indirect inferences about environmental conditions in specific habitats 

through time. For example, broad changes in past water depth of a lake can be 

qualitatively inferred based on the relative abundance of planktonic (deeper-

water conditions) vs. benthic diatoms (shallower-water conditions; Wolin & Stone, 

2010). Prior to the early work of researchers such as Imbrie & Kipp (1971) 

environmental reconstructions were primarily qualitative and presented as, for 

example, ‘acid’, ‘mildly basic’, ‘cool’ or ‘dry’. Imbrie & Kipp (1971) modernised 

Quaternary paleoecology by presenting a procedure for the quantitative 

reconstruction of past environmental variables from biostratigraphical fossil 

assemblages involving predictive models or so-called ‘transfer functions’ 

(Juggins & Birks, 2012; Figure 4.6).  
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Figure 4.4: Simplified diagram showing the influence of changing precipitation and evaporation on the physical and chemical characteristics 

of a lake, and the effect this has on the diatom assemblage of that lake. Redrawn from Fritz et al. (2010).
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Figure 4.5: The salinity ranges (horizontal line) and salinity optima (circle) of selected 

diatom species from the Northern Great Plains, North America, generated from a survey 

of water chemistry and diatoms in the surface sediments of 55 regional lakes. Species 

are arranged in descending according to increasing salinity optima. Redrawn from Fritz 

et al. (1993). 
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Figure 4.6: Simplified diagram pf the process of deriving quantitative reconstructions of 

past lake characteristics from biostratigraphical palaeolimnological data using transfer 

functions by Juggins & Birks (2012). 

Diatom-based predictive models, using weighted-averaging (WA), partial least 

squares (PLS) and/or weighted-averaging partial least squares (WA-PLS) 

regression and calibration, have been developed for a whole range of 

environmental variables across the globe (see Juggins, 2013). The identification 

of fossil diatom assemblages and the use of these transfer functions has 

facilitated the reconstruction of past hydrological conditions, such as pH and 

conductivity, at numerous sites across a range of environments, which have been 

be used to infer past changes in climate and human impacts (Fritz et al., 2010). 

The relationship between diatoms and water conductivity is well understood (e.g. 

Figure 4.5), as is the response of lakes to climate variability, expressed through 

changes in water volume and ionic concentration (Gasse et al., 1997). As such, 

diatom-based conductivity transfer functions can be used to infer hydrological 

change.  
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An illustrative example of the early use of diatom-based conductivity transfer 

functions in effectively reconstructing past environments comes from Laird et al. 

(1998). They compare a ~100 year diatom record to a Bhalme-Mooley Drought 

Index (BMDI) at Moon Lake, Northern Great Plains, USA. They demonstrate a 

highly significant (p = < 0.01) correlation between their diatom log salinity record 

with a three-year lag and summer (April-September) BMDI (r = 0.49; Figure 4.7), 

with a similarly high correlation between their log salinity record and the annual 

BMDI based on precipitation (r = 0.45, p = < 0.01).  

 

Figure 4.7: Changes in Moon Lake log diatom-inferred salinity estimates (g/L; solid line) 

redrawn from Laird et al. (1998). This diatom-inferred salinity record is compared with a 

Bhalme-Mooley Drought Index (BMDI; dotted) based on Oladipo (1986) BMDI equation 
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for the Great Plains region and monthly summer (April–September) precipitation records 

from nearby climate stations.  

4.3.2 | Diatom-based research in eastern Africa 

Extensive studies investigating the diatom ecology of water bodies across 

eastern Africa have been carried out since the start of the 20th Century. The first 

of these intensive diatom-based studies was carried out at the start of the 20th 

Century (1900-1925 AD) in African lakes by Otto Müller, G.S. West, A. Forti and 

Friedrich Hustedt. Furthermore, the first work to characterise eastern African 

waters according to their diatom flora was undertaken by Hustedt (1949). 

Few of the diatom-based works following these early investigations included 

quantitative analyses regarding the composition of local diatom assemblages in 

relation to their corresponding environments. The most extensive quantitative 

survey of the diatom species of eastern Africa, following the early investigations 

at the start of the 20th Century, was undertaken by Gasse et al. (1983) based on 

210 diatom samples from 98 different hydrological localities containing a total of 

579 taxa. This dataset has since been merged with existing regional datasets 

from North Africa and Niger (Gasse et al., 1995), increasing the number of diatom 

sample data to 282 and number of identified taxa to 664. However, the number 

of taxa used in subsequent analyses reduced to 389 following the removal of 

species only present in one sample or with a low relative abundance (<1%). By 

examining the relationships between diatom species distributions and 

hydrochemistry using Canonical Correspondence Analysis (CCA) and partial 

CCA, this study developed predictive models using WA (weighted averaging) for 

conductivity (r2=0.87), pH (r2=0.77), and ratios between alkali and alkaline earth 
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metals (r2=0.81), and carbonate-bicarbonate and sulphate + chloride ions 

(r2=0.82).  

This transfer function facilitated the quantitative reconstruction of past 

hydrochemistry from fossil diatom assemblages in Africa. Subsequent diatom-

based quantitative reconstructions have been key in inferring long-term 

(millennial to sub-millennial scale) Quaternary climate-driven changes in 

hydrology (e.g. Owen et al., 2012), to short-term, abrupt regional climatic 

perturbations (century to decadal scale). Environmental change associated with 

anthropogenic activity, as part of these investigations into abrupt, regional 

change, have also been a focus of research (e.g. Marshall et al., 2009; Mills et 

al., 2014). 

4.3.2.1 | Understanding transfer functions in eastern Africa 

Despite their utility, it is important to recognise that, fundamentally like all 

predictive models, these African transfer functions are based on several 

assumptions:  

(1) the taxa in the modern training set are related in some way to the 

conditions of their environment; 

(2) the taxa in the modern calibration set are, biologically, the same taxa 

present in a fossil assemblage, and that the ecological response of the 

taxa to environmental variable(s) has not changed over time;  

(3) the environmental variable(s) to be reconstructed is an ecologically 

important determinant in the system of interest;  
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(4) the application of mathematical methods accurately models the 

biological response of the taxa to the environmental variable(s) of 

interest, whilst also ensuring unbiased reconstructions; 

(5) that other environmental variables, other than the variable of interest, 

have a negligible influence, or their joint distribution remains constant 

over time (Juggins, 2013; Figure 4.5).  

Assumptions 3 and 5 are critical to the credibility of environmental reconstructions 

using transfer functions, but as Juggins (2013) suggests, are rarely appreciated.  

As discussed above, diatoms are sensitive to changes in their local environment 

with multiple environmental secondary, or ‘nuisance’, variables influencing the 

composition of an assemblage (Figure 4.4; Juggins, 2013), with the relative 

importance of certain parameters also varying along latitudinal and trophic 

gradients (Blanco, 2014). Furthermore, changes in the environmental variable 

over time, in this example conductivity, may not always be climate-driven, 

especially for lakes in volcanically active regions. For example, Telford et al., 

(1999) speculate that changes in diatom-inferred conductivity at Lake Awassa, 

Ethiopia, unlike other local sedimentary records in the mid-Holocene (e.g. 

Gillespie et al., 1983), indicate that inputs of saline groundwater, via magma 

degassing events under the Awassa Caldera, were responsible for changes in 

water salinity and the resulting diatom assemblage, as opposed to climate. It is 

also important to recognise that many lakes in eastern Africa have experienced 

significant anthropogenic impacts over the last ~100 years. As a result, 

anthropogenically-driven changes in nutrient concentration and turbidity, for 

example, may override conductivity as a key determinant in the diatom ecology 

of these lakes (Mills & Ryves, 2012).   
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Telford & Birks (2011) find that uneven sampling of an environmental gradient 

can considerably bias transfer function performance, as the estimation of a 

species’ optimal conditions will be more precise in the section of the gradient with 

more observations, in contrast to the part of the gradient with fewer samples. 

Statistical analyses, such as weighted averaging (WA) or weighted averaging 

partial least squares (WA-PLS), during the development of a training set 

introduces bias towards the environmental niches if a few sites have a 

disproportionately high abundance of species. For example, Thalassiosira faurii 

is comparatively abundant in samples from the Guidimouni salt swamp, Niger in 

the African training set (8, 14.3 and 26.4% in three samples compared to 0.2-

4.4% in the other eighteen), where conductivity measured 13,500 μS cm−1 

(European Diatom Database; EDDI, 2017b). A recent study measuring the 

growth response rate of Thalassiosira faurii, taken from Lake Langano, Ethiopia, 

to various controlled, laboratory salinity conditions find a conductivity optimum of 

~400 μS cm−1 for the species, with no growth observed, despite the survival of 

some cells, at 2,000 μS cm−1 (Roubeix et al., 2014). This highlights a significant 

discrepancy between the empirical conductivity optimum determined in the 

African training set (~9,000 μS cm−1) by Gasse et al. (1995) and the experimental 

optimum and tolerance range (Roubeix et al., 2014), with the highly saline 

Guidimouni samples responsible for the overestimation of the optima of 

Thalassiosira faurii. Roubeix et al. (2014) suggest that a re-evaluation of 

sedimentary sequences using T. faurii as an indicator of saline, dry periods 

(Telford et al., 1999; Chalié & Gasse, 2002) may be required. Similarly, Lindavia 

ocellata (formerly Cyclotella ocellata) is poorly represented in the African training 

set (reaching an abundance of ~8.5% in only two, comparatively, hypersaline 
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samples; EDDI, 2017a). This has also been identified as a potential issue in 

accurately inferring past conductivity in sedimentary records where Lindavia 

ocellata is abundant (>30% and 40% in some parts of cores analysed by Chalié 

& Gasse (2002) and Marshall et al. (2009), respectively).  

It is clear from these selected examples that quantitative reconstructions must be 

integrated with the qualitative understanding of an individual species’ ecological 

preferences, the fossil diatom assemblage as a whole and the lake system. In 

Telford (1998), a good understanding of the hydrological system of Lake Awassa, 

as well as of the fossil assemblage, facilitated a more robust interpretation of 

ecological changes that seemed out of sync with multiple other local records. This 

illustrates the need to acknowledge all possible variables and reiterates the 

discussion in Chapter 3 of the utility of a multi-proxy approach to provide 

additional independent lines of evidence to support diatoms. 

4.3.3 | Diatom sample preparation and analysis 

(i) Fossil samples  

Diatom analysis was performed on sub-samples taken from each section (see 

above) at 32 cm intervals from the Babogaya core and at 30 cm intervals from 

the Garba Guracha core as a preliminary count. Following this initial count, further 

samples were taken at a higher resolution where appropriate across intervals of 

interest. Individual lamina were sampled along the same interval covered by thin 

section analysis (see above) for diatom composition by carefully scraping through 

them with a needle. These samples were prepared in the same way as other 

fossil samples. 
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From the 1 cm3 sub-samples, 0.05-0.1 g (dry weight) of sediment was taken. The 

known weight of the sample facilitates the concentration of diatoms per gram of 

dry sediment to be calculated (see Appendix 1 for full equation). These samples 

were then transferred to Fisherbrand™ 50 ml polypropylene centrifuge tube along 

with 10 ml of 10% HCl and heated in a water bath to ~80oC to remove any 

carbonate content. Samples were then centrifuged at 1500 RPM for 15 minutes, 

decanted and washed three times with distilled water to remove any spent acid 

and soluble carbonates. Clay rich samples were deflocculated with ~30 ml of 5% 

sodium pyrophosphate in a water bath at 80oC for 30 minutes, following three 

water washes to remove any clay particles. After the final wash, 10 ml of H2O2 

(100 vols.) was added to each sample, until the reaction ceased, in order to 

remove any organic matter content present. Once the reaction had ceased a final 

round of three washes was undertaken with distilled water and mixing the 

samples in a centrifuge at 1500 RPM for 15 minutes. These washed samples 

were then transferred to a 50 ml stoppered, graduated measuring cylinder to the 

30 ml level. With the cylinder stopper securely fastened, the samples were 

homogenised by shaking the cylinder vigorously and with the sample still in 

suspension, ~14 ml was transferred into individual small, labelled glass vials with 

a snap-on plastic closure to safely store the samples for further analyses. 

Slide preparation first involved placing a 500 μl aliquot, from each sample glass 

vial, on to a circular methanol-washed microscope coverslip and allowing it to dry 

overnight in a dust-free environment. Microscope slides, pre-washed with 

methanol, were placed on a hotplate set to ~100oC, and once warm, 2-3 drops of 

Naphrax® was released on to the centre of the slide. Dried coverslips were 

inverted and placed on to this Naphrax with all care taken to remove trapped air 
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bubbles. A preliminary analysis of each slide using a HM-Lux 3 microscope at 

x40 magnification was performed to determine the suitability of the slide for 

counting and if any dilution was required. Relevant samples were diluted 

accordingly with the steps above retaken until an adequate level of dilution had 

been achieved to produce a countable slide. In slides where considerable diatom 

clumping was observed and dilution was required, a few drops of ammonia were 

added to the diluted sample. These diluted samples were also used for SEM 

photography (see below). 

(ii) Modern samples 

The modern diatom samples from the Garba Guracha basin were large and 

presumed very organic, therefore samples were transferred to individual 250 ml 

beakers along with approximately 50 ml of H2O2 (100 vols.) and left to stand in a 

fume cupboard overnight. Sample bottles were washed down thoroughly with 

distilled water to ensure diatom samples were fully transferred to their individual 

labelled beakers. 

After the samples were reduced to under 50 ml and transferred to individual, 

labelled centrifuge tubes, the preparation methods used to prepare fossil diatom 

samples, as described above, was also used in preparing modern diatom 

samples for counting.  

4.3.3.1 | Diatom identification and taxonomy  

The identification of diatoms was undertaken with reference to the works of 

Gasse (1980; 1986), Krammer & Lange-Bertalot (1986, 1988, 1991a, 1991b), 

and references therein. The online databases: EDDI and Diatoms of the United 

States were also used for their detailed image catalogues and explanations of 
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species and their differences. A list of synonyms is included with the full list of 

diatom taxa identified in this study (Appendix I) to address these taxonomic 

revisions. Diatom taxonomy has undergone numerous changes through time. 

Consequently, these changes have led to multiple re-classifications of some 

species within new genera (Williams & Kociolek, 2007). A full list of diatom names 

used in this thesis and their other names are available in Appendix 2. 

4.3.3.2 | Microscopy and photography 

Diatom counting was performed under x1000 magnification with immersion oil 

using an Olympus BX 51 microscope. Battarbee (1986) illustrated that counting 

at least 300 valves will provide an accurate representation of the diatom 

assemblage in the sample in routine analyses. However, Battarbee et al. (2001) 

note that often a greater count is required to fully represent the assemblage 

should a species dominate. The DARES protocol (2004; Figure 4.8) suggests 

that if one taxon represents more than one third of the total number of valves, 

then the sample size should be increased until at least 200 valves of other taxa 

have been counted. This method may be time consuming, and as illustrated by 

Loakes (2015) may not significantly impact the representation of species in a 

sample. Through 21 random samples, Loakes (2015) found that 21.1% of their 

samples had no change from 300 to 500 valves counted, with only 1 and 2 extra 

species identified in 26.3 and 47.4% of the samples. Furthermore, increased 

diversity through the identification of additional taxa accounted for only 0.2-0.8% 

of a 500 valve count.  

In general, during this study, a minimum of 400 valves were counted per sample 

(modern and fossil) from both sites. A traverse was made of the diameter of a 
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coverslip and all the diatoms in the field of view were counted in order to estimate 

changes in diatom abundance. As a known dry weight of core sample was used, 

and the dilution also known, the number of valves per gram of dry sediment could 

be calculated. Taxa were grouped according to their habitat preference as; 

planktonic, facultatively planktonic (incl. tychoplanktonic), aerophilous and 

benthic species (including epiphytic, epilithic, epipelic, and epipsammic species). 

The number of other siliceous microfossils present (e.g. phytoliths) was also 

recorded as their presence/abundance may provide additional ecological 

information.  

Diatom species and other siliceous microfossils were digitally photographed 

using a CANON EOS 5D camera, with the CANON EOS utility (v. 3) and Digital 

Photo Professional (v. 4) software. Problematic species to identify under the light 

microscope were examined further under SEM using a Hitachi S-4700 FESEM in 

the Advanced Microscopy and Bio-imaging Laboratory in the Institute of 

Biological, Environmental & Rural Sciences (IBERS) at Aberystwyth University. 

Samples were diluted and evaporated on to 13 mm diameter coverslips in a dust 

free environment. These were mounted on to SEM stubs using a carbon coated 

adhesive, then sputter coated with gold using an Agar high-resolution sputter 

coater.  



                                                                                         Chapter 4: Study methods 

 

101 
 

                    

Figure 4.8: DARES protocol for counting broken valves. ‘A’ shows a broken valve with 

one pole and a central area, which should  be included in a count; whilst ‘B’ should not 

be counted as only one pole is present with no central area. ‘C’ and ‘D’ show an example 

of specimens with no obvious central area: comparison with intact valves will indicate 

that ‘C’, and not ‘D’, should be included in the count (DARES, 2004). 

4.3.3.3 | Taxonomy of problematic species 

4.3.3.3.1 | Nitzschia Hassall 

Nitzschia Hassall is a widely distributed, diverse genus of diatoms. However, the 

size of the genus (>1,100 species ‘acceptable’ and ‘unacceptable’ names; 

Trobajo et al., 2013) and the close similarity in morphological characteristics of 

species makes them hard to identify accurately under a light microscope (LM). 

Typically, Nitzschia species have finely structured valves with parallel striae, an 

almost invisible raphe and a limited variation in valve outline. The difficulty in the 

identification of Nitzschia section Lanceolate Grunow has been recognised, 

especially when considering the diversity of forms within a species (e.g. Coquyt 

et al., 2012; Trobajo et al., 2013). Most species are characterised as small-

medium sized (~5-40 μm length, 2-6 μm width), and finely striated (>20 striae/10 

μm). For example, mating tests and morphological and genetic diversity 

investigations by Trobajo et al. (2009) on clones emphasises the taxonomic 

  A                 B                 C                  D 
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difficulties associated with the Nitzschia palea (Kützing) W.Smith complex. Their 

work highlights that Nitzschia palea is not a homogenous taxon, and that further 

splits into up to 3 distinct species is likely necessary.   

(i) Nitzschia lancettula O.Müller 

Such an issue was encountered when trying to identify the species recognised in 

this research as Nitzschia lancettula, which is dominant in much of the core. In 

an attempt to establish the taxonomy of the species, 50 valves were measured 

from a sample where the taxon in its many observed forms was abundant. Valves 

varied from 10-19 μm in length, with a width of 4-6 μm. Striae and fibulae density 

were 17-22 and 7-11 in 10 μm, respectively (Table 4.1). Less common, Nitzschia 

sp. ‘type 1 long’ (20-25 μm) have been counted separately, although are likely a 

larger form of the Nitzschia lancettula, as their width, fibulae/striae density are 

similar. 

Based on the width of valves, lack of a central gap in fibulae and the coarseness 

of striae, Nitzschia lancettula is unlikely to be Nitzschia frustulum (Kützing) 

Grunow or Nitzschia fonticola (Grunow) Grunow. Similarly, Nitzschia lancettula 

cannot be classified as Nitzschia amphibia f. rostrata Hustedt, despite a similar 

morphology, due to the incompatibility of the two species’ striae density (Table 

4.1). Furthermore, the information for Nitzschia amphibia f. rostrata in Krammer 

& Lange-Bertalot (1988) comes from observations made at two lakes in Austria 

by Hustedt (1959), and Krammer & Lange-Bertalot (1988:108) do highlight that 

the species “remains to be clarified more precisely”.  

Gasse (1986) notes that Nitzschia vanoyei Cholnoky was only found in one 

sample (Lake Edward) in association with Nitzschia lancettula. Due to this close 
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association, and the rarity of data for Nitzschia vanoyei in the EDDI database, it 

was merged under Nitzschia lancettula for the reconstructions of Stager et al. 

(2011). These species are morphologically similar to the forms of Nitzschia 

lancettula and Nitzschia sp. ‘type 1 long’, leading to the tentative classification of 

these species as Nitzschia lancettula and Nitzschia vanoyei. However, further 

work is required to accurately determine the exact taxonomy of Nitzschia 

lancettula. 

The difficulty in the identification of valves morphologically similar to Nitzschia 

lancettula is also evident in other eastern African lakes. For example, a pictured 

valve with similar visual characteristics to Nitzschia lancettula in Telford (1998: 

pl. 3.5, fig. 19) was identified as Nitzschia amphibia Grunow, with the longer form 

(similar to longer Nitzschia lancettula valves) noted as Nitzschia lancettula (pl. 

3.5, fig. 14). However, Loakes (2015: pl. 6, fig. 2) and Mills (2009: pl. 4. fig. F) 

identifies a species very similar in morphology to Nitzschia lancettula, and 

Nitzschia amphibia in Telford (1998), as Nitzschia lancettula. Gasse (1986) notes 

that Nitzschia vanoyei was only found in one sample (Lake Edward) in 

association with Nitzschia lancettula. Due to this close association, and the rarity 

of data for Nitzschia vanoyei in the EDDI database, it was merged under Nitzschia 

lancettula for the reconstructions of Stager et al. (2011). The same approach has 

been applied here. 

(ii) Nitzschia fenestralis sp. nov. Grady, Mann & Trobajo 

To establish the taxonomy of this problematic taxon with precision, metrics such 

as valve length, width at mid–valve and fibulae density were taken from LM 

digitised images calibrated against a slide micrometer using the public domain 

Fiji (ImageJ distribution package) software (Schindelin et al. 2012; Rueden et al. 
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2017). 200 valves were imaged and measured in total from 4 samples spread ~1-

1.5 m apart through parts of the core where the taxon was abundant (57.9-

62.6%). Following further investigation it was established that this taxon is new 

to science, was described and named (Nitzschia fenestralis). Full details are 

available in Grady et al. (2020; see Appendix 1), with some information from this 

paper given below. 

Valves are linear-lanceolate with parallel sides and acutely rounded ends with 

sometimes small, pimple-like subrostrate poles. Fibulae are rounded-square 

shaped and irregularly spaced along the keel, but the central pair of fibulae are 

no more widely spaced than the others. The keel can often be seen to curve 

slightly towards the valve apices and appear to give a slightly hooked shape to 

the valve ends. Transapical striae are very fine to irresolvable under LM, with 

SEM analysis revealing a fine striation of small round areolae. A small 

helictoglossa is present at the inside of poles (n= 20).  

Nitzschia fenestralis are comparable in valve outline to Nitzschia abonuensis 

Foged and Nitzschia etoshensis Cholnoky. An illustration of a specimen with a 

similar morphology to Nitzschia fenestralis has also been placed in the broad 

Nitzschia palea complex by Gasse (1986; Fig. 13, Pl. XXXV), despite the taxa of 

this complex normally associated with rostrate apices (e.g. Krammer & Lange-

Bertalot, 1988; Morales & Hamilton, 2002; Taylor et al., 2007; Figure 4.11). The 

specimens encountered during this study fit the lower end of the broad 

measurements of the Nitzschia palea complex described from Europe and Africa 

(Table 4.2). 
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Table 4.1: Range (mean ± s.d) of Nitzschia lancettula measurements (under LM; in μm) 

of 50 valves in a sample dominated by the species compared to similar looking species. 

* - Measurements of Nitzschia amphibia used, as source: Hustedt (1959) is currently 

unavailable. ** - Based on his own observations, Hustedt (1949) argues this is not the 

full size range of the species and that Nitzschia lancettula forma minor (bracketed 

measurements) described by Müller (1905) are incorrect. Numbers next to species 

names correspond to the images in Figure 4.9. 

 Length Width 
Striae 

(/10 μm) 

Fibulae 

(/10 μm) 
Source 

Nitzschia 
amphibia 

f. 
rostrata*  

(A) 

6-50 4-6 13-18 7-9 

Krammer 
& Lange-
Bertalot 
(1988) 

Nitzschia 
lancettula 

(B) 

36-48  

(15-20) 

6-7  

(5-6) 
12-13 6-7 

Müller 
(1905)** 

Smallest 
observed:  

7 

Smallest 
observed: 

4.5 

16-20 - 
Hustedt 
(1949) 

 10-36 3-10 

12-15 
(larger) 
18-20 

(smaller 
specimens) 

7-10  

Nitzschia 
vanoyei  

(C) 

10-25 4.5-4.5 18-20 7-9 
Cholnoky 

(1954) 

11-13 4-5 20-21 9 
Gasse 
(1986) 

Nitzschia 
sp (Plate) 

10-19  

(12.92 ± 2.54) 

4-6 

(4.68 ± 
0.5) 

17-22 

(19.9 ± 1.42) 

7-11 

(8.82 ± 1.04) 
This study 
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Figure 4.9: Images of similar diatoms in the literature. Nitzschia amphibia. f. rostrata (left; A), Nitzschia lancettula (middle; B) and Nitzschia 

vanoyei (right; C). Images taken from Krammer & Lange-Bertalot (1988: 373, pl. 78, figs. 22-23), Hustedt (1949: pl. 13, figs. 39-47) and 

Cholnoky (1954: 421, pl. 2, figs. 75-81), respectively.

A 
B C 
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However, Nitzschia fenestralis are starkly different in valve outline, notably when 

comparing valve ends. Conversely, while the slender outline and ends of 

Nitzschia fenestralis valves broadly resemble that of Nitzschia abonuensis and 

Nitzschia etoshensis, also to some degree Nitzschia mediocris Hustedt although 

the ends of this taxa are described more as “spiky” (Hustedt, 1949), these taxa 

differ from Nitzschia fenestralis, however, with respect to size range and density 

of fibulae. To the authors’ knowledge, descriptions of the latter two taxa are rare, 

with SEM analyses not recorded making it difficult (if not impossible in the case 

of Nitzschia abonuensis) to further differentiate Nitzschia fenestralis from these 

two taxa based on density of striae.   

4.3.3.3.2 | Fragilaria Lyngbye  

The Fragilarioids are a large, taxonomically complex and morphologically 

variable group of benthic and tychoplanktonic diatoms incorporating multiple 

genera. Taxa of this genus are normally small (<20 μm) and occur in similar 

times/places due to their similar ecological preferences (e.g. Schmidt et al., 2004; 

Karst-Riddoch et al., 2009), as is the case with the problematic species below. 

SEM analyses was originally required to revise the Fragilaria genus initially by 

Williams & Round (1987). The morphology of small Fragilarioid taxa remains 

notoriously similar and difficult to distinguish from each other (e.g. Edlund et al., 

2006), especially in LM, with Morales et al. (2001) noting the necessity of SEM in 

the identification of Fragilairoid taxa.  
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Table 4.2: Range (1 d.p; mean ± s.d: 2 d.p) of Nitzschia fenestralis measurements (under LM and SEM; in μm) of 200 valves (10 in SEM) 

in samples dominated by the species, compared to morphologically similar species. All measurements are given in μm. * n = the 10 samples 

measured under SEM. nd = not determined/documented. Images of each species can be found in Figure 5.11 and 5.12. 

Taxon 
Nitzschia 

abonuensis 

Nitzschia 

mediocris 

Nitzschia 

etoshensis 

Nitzschia 

fabiennejansseniana 
Nitzschia palea 

Nitzschia 

paleacea 

Nitzschia 

aequalis 

Nitzschia 

fenestralis 

Length 25-30 40-50 20-60 32-88 24-48.5 15-70 25-60 8-55(80) 80-130 

20-70.2 

(40.65 ± 9.38) 

Width 2.5-3 1.5-2 4-5.5 4-4.5 2.1-2.8 2.5-5 3-4 1.5-3(3.5) 3 
1.9-3.3 

(2.46 ± 0.29) 

Striae 

(/10 μm) 
Nd nd >40 nd 32-35 28-40 34-40 44-55 34-40 

32-36* 

(34 ± 1.15) 

Fibulae 

(/10 μm) 
9-10 

14-17  

(mostly 
16) 

15-18 15-19 
11-13 

(commonly 12) 
9-17 10-14 (12)14-19 

12-14 
(mostly 12) 

10-14 

(12.09 ± 0.72) 

Central 
fibulae gap? 

No no No yes no yes no no 

Source 
Foged 

(1966) 

Hustedt 

(1949) 

Taylor  

et al. 

(2007) 

Gasse 

(1986) 

Cocquyt & Ryken 

(2017) 

Lange-

Bertalot 

& 

Krammer 

(1988) 

Gasse 

(1986) 

Lange-

Bertalot 

& 

Krammer 

(1988) 

Hustedt 

(1949) 
This study 
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Figure 4.10: Common forms of Nitzschia abonuensis (A), Nitzschia mediocris (B), 

Nitzschia etoshensis (C), Nitzschia palea (D) and Nitzschia paleacea (E). Images from 

sources cited in Table 4.2. Scale bars = 10 μm. No scale given in Hustedt (1949) and 

Krammer & Lange-Bertalot (1988) for B and E. 

C A 

E 

D 

B 
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Figure 4.11: Nitzschia fabiennejansseniana under LM. 2-15 = valve view, 16-18 = girdle 

view. 27a = zoomed view of the valve (accompanying scale bar for this figure is 5 μm) to 

illustrate the central gap between fibulae (arrow). From Cocquyt & Ryken (2017). 

 (i) Small (<10 μm) Fragilarioid taxa  

Staurosira construens var. venter (Ehrenberg) P.B.Hamilton, Staurosirella 

pinnata (Ehrenberg) D.M.Williams & Round and Fragilaria elliptica (Schumann 

sensu Lange-Bertalot) are similar in appearance under LM, often making it 

difficult to distinguish between these taxa (Morales et al., 2001; Paull et al., 2008), 

especially when lying in girdle view. For example, ongoing debate continues as 

to the exact taxonomy of such small Fragilaria (e.g. Pseudostaurosira elliptica 

(Schumann) Edlund, Morales & Spaulding; Edlund et al., 2006; Morales et al., 

2010). This issue was encountered during parts of this study at Garba Guracha 
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where both Staurosira construens var. venter and Staurosirella pinnata co-

occurred at high abundances.  

Furthermore, exploratory SEM revealed some morphs of Staurosira construes 

var. venter with small, rounder areolae resembling those of Fragilaria elliptica; a 

common issue in diagnosis even under SEM (Morales et al., 2001; Morales, 

2001; Plate IV-V). Consequently, it is assumed that at least some Fragilaria 

elliptica morphs have been counted under LM as Staurosira contruens var. 

venter. Every effort was made by the author to correctly differentiate species 

based on their distinguishing features (e.g. number and shape of striae) under 

LM during counting. However, due to their similarities, especially in girdle view, 

there may be some overlap between these taxa.  

During SEM analysis, species of the genus Punctastriata were also identified 

alongside the taxa mentioned above (for example, all taxa are present to some 

degree at 740 cm in GGU-1B under SEM; Plate IV-V). The most common 

Punctastriata taxon (hereafter Punctastriata sp. 1) encountered are similar in 

valve outline and striae structure to Punctastriata discoidea Flower (Flower, 

2005) and Punctastriata glubokoensis D.M.Williams, Chudaev & Gololobova 

(Williams et al., 2009), with a ‘transitional’, mallet-shaped spine structure between 

the more simple spines of Punctastriata glubokoensis and complex, cruciate 

spine structure of Punctastriata discoidea. It is important to note that Williams et 

al. (2009) highlight the possibility that Punctastriata glubokoensis and 

Punctastriata discoidea may be the same species, with only spine structure used 

to differentiate these taxa. Less commonly identified was (only 2 observations in 

SEM) Punctastriata cf. lancettula.  
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With no obvious diagnostic features under LM, SEM is required to differentiate 

Staurosira/Staurosirella and Punctastriata based on striae structure (areolae 

lineolate in the striae of Staurosirella pinnata and ‘net-like’, striae composed of 

rows of small, round areolae in Punctastriata; Williams & Round, 1987). As a 

result, studies describing new species of Punctastriata have noted that it is highly 

likely that the taxa have been previously counted as other small Fragilaria such 

as Staurosirella pinnata under LM (e.g. Punctastriata discoidea; Flower, 2005 

and Punctastriata glubokoensis; Williams et al., 2009; Vélez-Agudelo et al., 

2017), with Morales (2005) noting such an occurrence in National Water-Quality 

Assessment (NAWQA) with Punctastriata mimetica E.A.Morales. Consequently, 

due to this likely inadvertent ‘lumping’ of taxa over time, the ecological information 

of Punctastriata spp. has also been ‘lumped’ with that of Staurosirella pinnata and 

other small Fragilaria.  

Currently, due to the difficulty in observing Punctastriata spp. little is known of 

their individual autoecology, with only their common co-occurrence with small 

other small Fragilaria taxa (e.g. Schmidt et al., 2004; Morales, 2005; Panizzo et 

al., 2013; Vélez-Agudelo et al., 2017), still providing one of the only insights. An 

isolated example includes Morales (2005) speculating that Punctastriata 

mimetica, at least, grows optimally in fresh, alkaline waters (179 μS/cm and 8.2 

pH) with low to moderate nutrient content (orthophosphate = 0.129 mg/L and total 

N = 0.437 mg/L), based on their samples from Dismal River, Nebraska, USA 

(where a fair amount of the taxon was located; 5-22%). Vélez-Agudelo et al. 

(2017) report similar autoecological affinities (estimated by WA and weighted 

standard deviation) for Punctastriata glubokoensis and Punctastriata lancettula 

from 15 samples along the Colorado River, Patagonia, Argentina.  
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In this study, the Punctastriata spp. observed under SEM for the Garba Guracha 

core were merged with Staurosirella pinnata for the purposes of environmental 

interpretations due to difficulties in reliably identifying Punctastriata spp. under 

LM and the currently limited usefulness of ecological information gained from 

separating both taxa. However, further work would be useful in describing the 

taxonomy and autoecology of these taxa in the Bale Mountains for future work in 

the region and abroad. 

(ii) Staurosira construens & Pseudostaurosira pseudoconstruens 

As Krammer & Lange-Bertalot (1986) note, these taxa are similar in their 

distinctive cruciform outline. Despite this, some small differences are identifiable: 

Pseudostaurosira pseudoconstruens (Marciniak) D.M.Williams & Round has 

visible punctae (~2/μm; Marciniak, 1982) and a larger gap in the valve central 

area between striae than Staurosira construens Ehrenberg (Finkelstein & 

Gajewski, 2008). SEM imagery was used confirm that striae are composed of 

large, rounded areolae, restricted to the margins, that can sometimes be seen in 

LM. However, these distinguishing features are of limited use with valves lying in 

girdle view. Due to these difficulties there may some overlap between these taxa 

in this study, thus have been merged under Staurosira construens for quantitative 

reconstructions.   

4.4 | Numerical methods  

Diatom species were transformed into percentage abundances and taxa with 

<3% relative abundance in the record were omitted for further analyses. Diatom 

assemblage zones were generated in rioja (v. 0.9-14.1; Juggins, 2017) using 

stratigraphically constrained incremental sum-of-squares cluster analysis 
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(CONISS; Grimm, 1987), applied to the stratigraphic distribution of all taxa 

included in plots. A broken stick model (Bennett, 1996) was used to determine 

the number of significant groups and inform the optimal number of zones to 

include. Hill’s N2 (a measure of species diversity used to calculate the “effective” 

number of species) and rates of ecological change (RoC; Ureggo et al., 2009) 

were also calculated using the rioja and paleoMAS (v. 2.0.1; Correa-Metrio et al., 

2012) packages in R to estimate magnitude, rate and timing of ecological change. 

(i) Ordination techniques 

Ordination techniques are commonly used to summarise fossil data obtained 

from sedimentary records. By reducing the multidimensionality of these data, 

these techniques offer the possibility of easier interpretation and inference of 

potential environmental changes reflected in the assemblage (Birks & Gordon, 

1985; Legendre & Legendre, 1998; Orlóci et al., 2006). Correspondence analysis 

(CA) and principal components analysis (PCA) are multidimensional-rescaling 

techniques that have been routinely applied in paleoecological studies (Birks & 

Gordon, 1985).  

The first axis scores of a PCA or a CA (including detrended correspondence 

analysis (DCA): a technique used to suppress arch effect of the latter two; Hill & 

Gauch, 1980) have often been utilised to summarise spatial and/or temporal 

ecological change. However, the first axis of a PCA or CA often struggles to fully 

capture a long or dominant gradient, such as might be expected in temporally-

ordered data with progressive change in abundance or composition of organisms. 

Consequently, scores of the first axis through time may be a poor summary of 

compositional change (Simpson & Birks, 2012).  
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Principal curves (PrC; Hastie & Stuetzle, 1989) are a non/semi-parametric 

alternative to the multivariate analyses above for (palaeo)ecological data 

(De’eath, 1999; Simpson & Birks, 2012), that is particularly suited to the 

identification of single or dominant gradients within a sequence. Principal curves 

are particularly useful as compositional change in time is combined into a single 

measure as opposed to interpreting variance across multiple axes of a CA or PCA 

(Figure 4.12). For example, in the Abernethy pollen dataset only interpreting the 

first PCA axis would represent the change in data between A and B in Figure 4.12 

well, but would struggle with B to C, and vice versa for the second PCA axis. 

However, a principal curve reveals a gradient through the data to effectively 

represent the compositional change through the dataset (Figure 4.12). Recent 

palaeoecological applications of a PrC has proven their ability to perform well in 

summarising change through time as well as outperforming more traditional 

multivariate analyses (e.g. PCA) in terms of variance of data explained (Simpson 

& Birks, 2012; Bennion et al., 2015a & 2015b, Wiik et al., 2015).  

Principal curves were determined for this study using the analogue (v. 0.17-0; 

Simpson, 2007; Simpson & Okansen, 2016) R package. The complexity of 

smoothing splines were allowed to vary between species, with a penalty 

(argument controlling df in GCV calculations) of 1.4 assigned, following Simpson 

& Birks (2012). The vegan (v. 2.5-2; Okansen et al., 2018) package was utilised 

for comparative PCA and CA analyses. All ordinations were fitted with square-

root transformed assemblage data. The data were merged from the floating and 

composite cores for the purposes of fitting ordinations on the Babogaya diatom 

data.  
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Figure 4.12: Example principal curve through the Abernethy pollen dataset (Birks & 

Mathewes, 1978), as in Simpson & Birks (2012), created in R. 

For both datasets the first CA axis was used as a starting curve to fit the principal 

curve. The PrC converged after five iterations for Lake Babogaya and ten for 

Garba Guracha. As in Bennion et al. (2015b), the PrC method utilised in this study 

explains more than both ordination axes which may normally be employed. This 

gain is marginal for the Garba Guracha dataset. However, for the Babogaya 

dataset three PCA axes would have to be used to explain a similar variance to 

distance along the PrC (Table 4.3). 
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Table 4.3: Variance explained by the PrC compared with PCA/CA axes 1 and 2 for both 

Lake Babogaya and Garba Guracha. All data have been rounded to 3 decimal places. 

 Lake Babogaya Garba Guracha 

PrC 0.548 0.671 

PCA Axis 1 / 2 

(cumulative) 

0.286 / 0.152 

(0.439) 

0.485 / 0.145 

(0.630) 

CA Axis 1 / 2 

(cumulative) 

0.193 / 0.142 

(0.335) 

0.279 / 0.151 

(0.430) 

 

(ii) Quantitative reconstructions using diatoms 

In order to quantitatively interpret the diatom record from Garba Guracha the 

EDDI combined African dataset (East Africa, Niger and North Africa; Gasse et 

al., 1995) was used in the R package rioja (Juggins, 2017) to reconstruct past 

conductivity. Reconstructions were not performed for the Lake Babogaya fossil 

dataset due to the abundance (>50% relative abundance in multiple samples) of 

the newly discovered (thus currently lacking modern analogue data) taxon 

Nitzschia fenestralis.  

Classical and inverse deshrinking WA (both with tolerance downweighting also 

applied) and WA-PLS models (cross-validated with 10,000 bootstrap samples) 

were created to compare and evaluate their performance. Although the WA 

model with the greatest predictive power (inverse deshrinking) performed well (r2 

= 0.792 and RMSEP = 0.410; Table 4.4), the WA-PLS model increased this 

predictive power with an additional component (p value after randomisation t test 

= 0.003), and was applied to the Garba Guracha fossil dataset to reconstruct past 
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conductivity. The standard error for bootstrap estimates for each new sample in 

the WA-PLS model was low between 1.180 and 1.714 μS/cm. 

Further reconstruction diagnostics were performed to evaluate fit of the model to 

the Garba Guracha fossil data. The minimum distance to the closest modern 

analogue averaged 31.981 μS/cm, with the maximum sum of taxa in the fossil 

data not present in the modern data low at 5.21 μS/cm, indicating a good degree 

of matching between the fossil and modern datasets. If the minimum distance 

between the fossil assemblage and the modern assemblages is typical of 

distances between similar assemblages in the calibration set, then the analogue 

match is considered good.  

Although only the usual ‘rule of thumb’ (see Simpson, 2012 for minor issues when 

distributions are strongly skewed), the distances shorter than the 5th percentile, 

and longer than the 10th percentile, of all distances between calibration set 

assemblages, defines the thresholds between good analogue and no analogue 

assemblages, respectively (Juggins & Birks, 2012). Similarly, fossil assemblages 

with a squared residual length compared with the distribution of those of the 

calibration set against the environmental variable of interest of >90% and >95% 

may be poorly or very poorly fitted, respectively (Juggins & Birks, 2012). 



                                                                                         Chapter 4: Study methods 

 

119 
 

Table 4.4: Performance statistics for WA and WA-PLS models for conductivity transfer functions using the Garba Guracha fossil diatom 

data. Units of error/bias are μS/cm. toldDW = tolerance down-weighted. 

 RMSE r2 
Average 

bias 

Maximum 

bias 

r2 

(bootstrap) 

Average bias 

(bootstrap) 

Maximum bias 

(bootstrap) 
RMSEP P-value 

WA (inverse) 0.352 0.846 -1.110 0.381 0.791 0.016 1.082 0.410 - 

WA (classical) 0.382 0.846 -1.074 0.254 0.791 0.019 0.821 0.428 - 

WA (tolDW, inverse) 0.320 0.872 -4.193 0.692 0.742 0.035 1.258 0.456 0.920 

WA (tolDW, classical) 0.343 0.872 -2.220 0.429 0.743 0.040 1.075 0.473 0.852 

WA-PLS 1 Component 0.353 0.846 0.011 0.324 0.791 0.277 1.045 0.411 0.001 

WA-PLS 2 Component 0.264 0.913 -0.012 0.179 0.828 0.014 1.150 0.372 0.003 

WA-PLS 3 Component 0.214 0.943 0.002 0.136 0.810 0.020 1.080 0.394 0.973 

WA-PLS 4 Component 0.182 0.959 -0.004 0.108 0.790 0.180 1.105 0.418 0.997 
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For this study, the squared residual lengths of the fossil data suggest that only 

six samples may be poorly fitted to conductivity, with only one considered to be 

very poorly fitted (Figure 4.13). However, the squared chord distance between 

fossil and calibration samples suggests multiple samples between 1,000 to 750 

cm and 400 cm to 0 cm may lack ‘good’ modern analogues in the African 

calibration set, with one no analogue situation observable (Figure 4.14). 

Therefore, additional caution (on top of caution that should be taken with transfer 

function models; Juggins, 2013) should be taken when interpreting the 

conductivity estimates in these sections of core. 

 

Figure 4.13: Squared residual length for the fossil assemblages down the Garba 

Guracha core. The solid line marks the 90% limit of the calibration set residual lengths 

(poorly fitted) and the dotted line marks the 95% limit (very poorly fitted). 
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Figure 4.14: Squared chord distance for the fossil assemblages down the Garba 

Guracha core. The solid line marks the 5th percentile of all distances between calibration 

set assemblages represent (above this line are poor analogues), and distances greater 

than the 10th percentile (dotted line) represent no-analogue assemblages.
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Chapter 5 : 

Constructing the Babogaya composite core depth 

model 

This chapter documents the process of constructing a master splice or composite  

core from drive sections taken with the UWITEC system (see Chapter 4) by 

Schäbitz, Lamb et al. Due to issues encountered during core retrieval in 2011, 

the field-estimated depth remained uncertain (see Chapter 4). The author was 

absent during this field campaign and therefore calculated core depths and 

descriptions of the issues encountered while coring are based on the field notes 

of Prof. Schäbitz (University of Cologne). Figure 5.1 summarises the stages in 

composite correlation. By expanding on the stages of this process, the rationale 

for the rejection or acceptance of core sections is given in this chapter. Each 

section of this chapter is divided into the main steps of the procedure and are as 

follows: (i) initial core description and (ii) XRF-derived geochemistry based on 

field depths; (iii) using stratigraphic markers and XRF data disregarding field 

depths; (iv) statistical analyses of XRF data. Through this process field depths 

were rejected, allowing data from individual core sections to be re-interpreted 

and overlaps uncovered. This resulted in a composite core stratigraphy, and a 

floating composite core. As a result, as opposed to field depths, composite 

depths or meters composite depth (mcd) are given.  
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Figure 5.1: Flowchart of determining final core stratigraphy for analysis of the Lake 

Babogaya core. Dotted boxes/lines represent stages performed during the 2011 

fieldwork campaign.  

5.1 | Initial core description and section correlation 

Cores were first described by changes in colour and through wet smear slide 

analysis (Aaby & Berglund, 1986) which highlighted stratigraphic markers used 

to identify section overlaps (e.g. laminae and visible tephra layers). This 

information was plotted by field depth, to visually display each section within the 

stratigraphy to aid in correlation (Figure 5.2), and thus to identify potential core 

overlaps. For example, the patterns of laminated-non-laminated sediments and 

thick layers of algal matter in sections 1B and 2A highlight a possible overlap. 

However, despite numerous useful stratigraphic markers, such as the laminated 
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sections of core (Figure 5.2), complete core correlation based on the field 

measurements at this stage remained challenging. 

 

Figure 5.2: Stratigraphy of core BA-LC-2011 plotted against field depth.  
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5.2 | Section correlation by XRF data  

These preliminary attempts at section correlation were aided by XRF-derived 

geochemical data. Scanning methods  can be found in Chapter 4 (Section 4.2.3). 

An application of a 25-point smoothing of this raw data was used to reduce data 

noise and to more effectively visualise geochemical trends. Ca and Zr were used 

at first to visualise changes in the presence of calcium-rich laminae and tephras. 

Optical and radiograph images were used to identify section overlaps (see 

below). Magnetic susceptibility measurements, although useful in core 

correlation, were not obtained, due to malfunctions of the magnetic sensor in the 

Itrax scanner.  

5.3 | Section correlation using visual stratigraphic markers  

The CoreWall software suite is an invaluable tool for core stratigraphic correlation 

and visualisation. In particular, Corelyzer (2.0.4) allows images of core sections 

to be plotted and compared to other sections in the core (for further software 

information see Grivna, 2012). This software was used to identify possible 

overlapping areas based on tephra layers, laminae pattern and sediment colour. 

However, due to issues reading the dpi of individual core images from the Itrax 

scanner, the software struggled to accurately display the dimensions of each 

section, and so was limited to a visualisation tool. 

5.3.1 | Matching core stratigraphy to XRF data 

Issues with depth control during coring of such a deep lake  made it possible that 

field depths were so inaccurate that field-measured sections were entirely out of 

sequence. To test this, the field depths were temporarily disregarded, and 
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section overlaps were sought independent of field depth. Potential tie points were 

identified by physically comparing possible overlaps based on changes in 

stratigraphy. Multiple tie points were identified from sections 1A to 8B, based on 

the presence of distinctive patterns in the laminae, tephras and diatom-rich 

layers. This revealed that numerous sections towards the top of the core (e.g. 

Sections 5 and 6) were indeed likely to be considerably out of field order. The 

XRF data were useful in validating these tie points (e.g. Figure 5.3).  

Core overlaps were visually determined from the top of the core to the base of 

section 8B. Sections 9, 10 and 11 are uniformly brown with no distinguishing 

visual features.  The high-resolution XRF data proved to be useful to validate 

visual tie points (Figure 5.3), and thus to identify section overlaps for the 

homogenous, brown sediments. Peaks in the XRF-derived Ti data were 

especially useful in identifying overlaps between section 8B and 9A (Figure 5.4). 

Although a composite core sequence (Sections 1 to 9) was made using initial 

core descriptions and identifying overlaps in the XRF data, no overlaps were 

uncovered using these methods between the brown, massive sections 9B and 

10A. Furthermore, no overlaps could be found between section 10 and 11, or 

between the composite core and section 11 leaving a ‘floating composite’ core 

(sections 11 to 13) below the composite core and a missing section (section 10) 

between the two.  
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Figure 5.3: Use of XRF in supporting visual core features. Core images (top) and raw, 25-point smoothed XRF-derived trends in Ca (cps; 

bottom) for section 1B, 2A and 5A. Circles are used to highlight the Ca data associated with the laminated and non-laminated (line), 

sequences. Squares are used to highlight the abrupt end to laminae. Some data from 2A is unavailable in the XRF record due to an uneven 

surface. 
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Figure 5.4: Marked peaks in 

Ti are used to identify an 

overlap between sections 8B 

and 9A, following carbonate 

rich sediments in 8B (blue 

arrow), in the absence of 

apparent visual tie points. 
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5.3.2 | Core section correlation using Dynamic Time Warping 

In an attempt to link the composite core, the missing section and the floating core 

and form a single continuous core Dynamic Time Warping methods (DTW) were 

used. DTW essentially stretches two time series to determine a common set of 

points in time such that the sum of the Euclidean distances between 

corresponding points is as small as possible (Sakoe & Chiba 1978; Müller, 2007). 

Normally, the DTW function is implemented as a global alignment between time 

series, i.e. queries the entire series. Sub-sequence matching, also called ‘open-

begin-end DTW’, is achieved by relaxing both the start-point and end-point 

constraints in a DTW algorithm. As a result, sub-sequence matching determines 

the contiguous part of a reference time series which optimally fits a query time 

series, as opposed to assuming all elements must be matched in a global 

alignment (Sakoe & Chiba 1978; Müller, 2007; Figure 5.5). DTW has been 

applied in numerous fields (see Giorgino, 2009) including the correlation of 

multiple overlapping sedimentary sequences to fill gaps in an XRF time series 

(Trauth et al., 2018). 

The implementation of DTW algorithms, including sub-sequence matching, can 

be achieved in R (R Core Team, 2018) through the dtw package (Giorgino 2009; 

Tormene et al., 2009). DTW was used to align the normalised Ti records from 

the base of the composite (section 9B) and the top of the floating core (section 

11A) with the missing section of core (section 10) in order to create a full 

composite BA-LC-2011 core. Potential overlaps between sections 9 and 11 were 

also tested to explore the possibility that they are contiguous. 
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Figure 5.5: Concept of DTW functions for various time series, with dotted and solid lines 

representing reference and query time series, respectively. (A) Global alignment; (B) 

sub-sequence DTW between time series. The ideal scenario for this study would be that 

an overhang of data overlaps with the end of the core can be identified, but without 

assuming that the entirety of the query must fit a part of the reference series which is 

generally more uncommon (C). Arrows denote aligned points. Adapted from Müller 

(2007). 

Fundamentally, a sub-sequence DTW will determine the optimal path for the 

entire query sequence within the reference series as shown in Figure 5.5. 

However, in the context of overlapping core sections it is assumed that some, if 

not most, of the query time series (section 10) does not overlap with the reference 

series (sections 9 and 11), similar to Figure 5.5c. To fully test for potential 

overlapping sections, the query time series was limited to the top of a section. 

Fundamentally, this method uses a cost-matrix to locate the most efficient path 

to determine the most similar points between two time series.  
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The DTW determined some matches between 9B and 10 (Figure 5.6a). The 

starting point of this match is most likely as a sub-set of the first 750 points of 

10A identified the same point as the most optimal match in the sequence (Figure 

5.6b). As section 10B immediately follows 10A, the initial DTW was extended to 

include the entirety of section 10 (Figure 5.6c) and finds a matching path between 

section 10 and 9B. Under the assumption that section 11A is below sections 9 

and 10, and overlaps with one of these sections, a DTW was run for the last 500 

points of sections 9B (Figure 5.6d) and 10B (Figure 5.6e) against 11A. However, 

this shows that any overlap would be in the lower half of section 11A, leaving the 

upper half of 11A uncorrelated. This leaves the original possibility of a gap 

between the composite and floating cores. Therefore, despite determining an 

optimal path and locating some similarities between sections, it is apparent that 

no meaningful overlaps between the composite and floating cores could be 

statistically determined with DTW techniques (Figure 5.6).  

5.4 | Conclusion: final composites   

Through a combination of identifying visual tie points and common geochemical 

patterns, sections 2 and 4 were omitted from the composite stratigraphy; these 

sections were badly preserved (e.g. section 2B; Figure 5.3) or damaged by the 

magnetic susceptibility sensor (section 4B) and were not needed given the 

evident overlaps in other sections. Sections 1A to 9B are treated in this study as 

the full composite core (Table 5.1; Figure 5.7). Despite overlaps through sections 

11 to 13B (floating core), no overlaps could be identified linking the floating 

composite with section 9 and thus the rest of the composite to a form a single, 

continuous core. 
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C B A 

D E Figure 5.6: Three-way DTW plots for 

potential overlaps between 9B and 

10A (first ‘missing’ section; A), 9B and 

a subset of 10A (B), 9B and section 10 

(C), 11A and 9B (D), 11A and 10B 

(second ‘missing’ section; E). Match 

indices between query and reference 

time series are shown by the dotted 

line. A diagonal line indicates a match 

between both series, with horizontal 

lines denoting no point to point match 

in the query series with the reference. 
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Table 5.1: Visual and geochemical tie points identified to create a composite. 

 

 Section 
Depth in 
section 

(cm) 

Composite 
depth (cm) 

Visual / 
stratigraphic 

marker 

Geochemical 
marker 

Tie 
point 

1 

1B 39.16 

205.915 

Laminated 
section and 
beginning of 
small non-
laminated, 

brown section 

Ti 

5A 21.30 

Tie 
point 

2 

5B 2.36 

252.975 

Black band 
adjacent to a 

laminated 
section 

Ti 

6A 11.52 

Tie 
point 

3 

6B 60.96 

368.815 

Black line 
between 

yellowy-green 
oozes 

Ti 

7A 79.60 

Tie 
point 

4 

7B 34.98 

410.985 Tephra K and Mn 

3A 54.26 

Tie 
point 

5 

3B 45.54 

491.265 

Bright white 
lamina between 
a dark line and 
green/orange 

coloured oozes 

Ca 

8A 13.88 

Tie 
point 

6 

8B 87.32 
639.025 - Ti 

9A 9.225 

Tie 
point 

7 

11B 90.66 
? 

Base of 
minerogenic 

unit 
Ti 

12A 12.82 

Tie 
point 

8 

12B 92.48 

? 

End of 
laminated 
section to 

brown 
sediments 

Ca 

13A 17.18 
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Figure 5.7: BA-LC-2011 sections (numbered in red) plotted by composite depth. Section 

overlaps are highlighted (blue) which led to the formation of the composite core, with 

sediment unused in the composite shown as grey. Section 10 is shown in red 

highlighting the uncertainty associated with the position of this section within the 

stratigraphy. Radiocarbon sample locations (and the calibrated results) are denoted by 

red circles (accepted dates in the age-depth model) and squares (dates omitted from 

the age-depth model).  
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Chapter 6 : 

Results - Lake Babogaya  

This chapter focuses on the palaeolimnological record from Lake Babogaya. All 

data are presented from the composite and floating composite cores (outlined in 

Chapter 5) separately. The lithological and chronological framework is 

presented, which facilitates the detailed description of the results of geochemical 

and diatom analyses. As discussed in Chapter 5, it is assumed that the floating 

composite continues below the composite core. Thus, the records from both 

these cores are then interpreted together to reconstruct changes at Lake 

Babogaya through the Holocene. 

6.1 | Core lithology 

Three main lithostratigraphical units are identified in BA-LC-2011 based on 

variations in composition and physical properties of the sediment layers (Figs. 

6.1 and 6.2).  

6.1.1 | Composite core (0.68 – 8.30 m) 
 

Unit I (830 cm – 650 cm) at the base of the composite core is characterised by 

minerogenic brown sediments comprising of predominantly clay (<4 μm)-silt (4-

62.5 μm) sized siliciclastic material. Carbonate material is also common in this 

unit mainly in the form of aragonite. Occasional circular, yellowish sediment 

clusters (~0.5 cm diameter), rich in diatoms, are present within this unit.  

Following an abrupt (~5 mm) transition from Unit I, the sediments of Unit II are 

diatom-rich, carbonate muds with pulpy laminae. Laminae consist of alternating 



                                                                                         Chapter 6: Results – Lake Babogaya 

 

136 
 

light white and darker, brown layers, with some pulpy. Lighter sediments are 

composed of microscopic (~5-10 μm), rice-grain shaped aragonite crystals, with 

diatoms common and calcite present but rare. Darker layers are more diverse in 

composition, with less aragonite and greater organic matter content and diatoms. 

However, it is important to note that non-laminated sections, similar in both colour 

and composition to the darker lamina described above, are present throughout 

the unit, varying in size with the largest non-laminated section ~50 cm thick 

towards the top of the core. The light-dark laminae of sub-unit IIa (650 – 330 cm) 

are frequently coupled with pulpy, yellow/green laminae, and are predominantly 

composed of Synedra.  

Between 3.30 m and the core top (0.68 m; Unit IIb), the white laminae are 

comparatively thinner and lack any obvious, accompanying pulpy laminae as are 

present in Unit IIa. Furthermore, the laminated sections are more fragmented by 

large non-laminated, brown sections of sediment than below (Figure 6.1). Silt-

sized siliciclastic material is observable throughout this unit but is rare, and only 

common in the darker coloured sediments, and composed of predominantly 

quartz. Indeterminate clay sized particles are present throughout, and are likely 

micro-carbonates based on the surrounding content and high birefringence 

properties.  

Multiple light grey tephra layers are present within this unit of predominantly silt 

(2.72-2.722 m; BAT-2), and silt to sand sized grains (5.735-5.745 m, 4.18-4.19 

m, 1.265-1.275 m; BAT-4, BAT-3 and BAT-1, respectively). Based on preliminary 

geochemical analyses by C. Martin-Jones at Cambridge University (unpub 

data.), the source of BAT-1, BAT-2 and BAT-4 can be tentatively correlated to 

the Boset volcanic complex, east of Bishoftu, with the BAT-1 tephra likely 
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associated with a large eruption leaving a deposit (known as the “Boset pumice”) 

as much as 20 cm thick in nearby Adama (Fontijn et al., 2018; Martin-Jones 

unpub. data). The provenance of BAT-2 remains unknown but with Corbetti as 

the likely source due to similar (in terms of colour, texture and geochemistry) 

tephra layers dated from lakes Chamo and Tilo (Martin-Jones et al., 2017; Martin-

Jones pers. comm.). 

 

Figure 6.1: Lake Babogaya composite core lithology. 
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6.1.2 | Floating core  

Unit A (470–199 cm) is composed of stiff, partially laminated sediments (Laminae 

Type 3), similar to the light-dark laminae in Unit II of the composite core with 

carbonates and diatoms abundant throughout. Occasionally light-dark layers are 

accompanied by pulpy, green-blue layers. In lighter layers, aragonite is the main 

form of carbonate, with sub-rounded, ellipsoid calcite grains and calcified loricae 

of the green algae Phacotus abundant, the laminae of the composite core, 

especially in greyer sediments where these forms of carbonates are common. 

Like the sediments of the composite core, indeterminate clay sized material are 

present throughout, and is also likely formed of micro-carbonates based on the 

surrounding high carbonate content and high birefringence properties. At a depth 

of 2.7 m, there is a gradual transition from laminated to non-laminated sediments. 

A distinct heliciform gastropod shell layer is present ~1-2 cm above this 

transition. Laminated sediments for 6 cm, similar in composition to laminae to 

Unit IIb of the composite core, mark the top of this unit. At the base of this 

laminated section (~185 cm) is a 6 cm light grey band rich in diatoms, Phacotus 

loricae and carbonates. One discrete tephra layer (<2 mm) was detected with the 

aid of XRF-derived Rb and Y data (see below) at ~366 cm depth. As this layer 

was only discovered following interrogation of the XRF data and could not be 

sampled along with the tephras in the composite core, the geochemistry of this 

layer is now currently being determined by C. Martin-Jones of Ghent University 

and Cambridge University. 

The brown minerogenic sediment described in Unit A of the composite core 

continues through the top ~2 m of the floating section (Unit B; Figure 6.2), 

following a sharp transition from Unit A (<1 mm). Small sections of sediment differ 



                                                                                         Chapter 6: Results – Lake Babogaya 

 

139 
 

from this with three small (1-3 cm) layers of yellow-brown and orange carbonate 

and diatom-rich sediment in BA-LC-2011 11A.  

 

Figure 6.2: Lake Babogaya floating composite core lithology. 

6.2 | Chronology   
 

Nine AMS 14C dates were obtained on micro-charcoal from the Babogaya core 

(Table 6.1). The stratigraphically conformable dates show that the core (including 

both composite and floating cores) covers the period from ~5,500-600 cal yr BP. 

P-45150 and P-45149 were omitted from the chronology as these dates are 

thought to be out of sequence. The alternative would be to reject P-46195, from 

the top of the floating composite core. However, P-46195 was sampled from 
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disturbed/reworked. The age/depth diagram using these dates for the composite 

and floating cores are show in Figure 6.3 and Figure 6.4, respectively. 

Table 6.1: AMS radiocarbon chronology for Lake Babogaya composite and floating 

cores (* omitted dates). Radiocarbon ages were calibrated in CALIB (v. 7.1; Stuiver & 

Reimer, 1993) using the IntCal13 calibration curve (Reimer et al., 2013).  

 Samples  14C age  Calibrated age (cal. BP) 

 
Depth in core 

(cm) 
Lab. Code 

13C/12C 
ratio 
 (‰) 

 

Conventional 
age  

(14C yrs BP) 

 
Calibrated age  

2-σ range 
(relative area 

under 
probability 

distribution) 

Calibrated 
age median 
probability 
(nearest 10 

years) 

C
o

m
p

o
s

it
e
 

68-73 P-44532 –16.25  620 ± 40  
545 – 662  

(100%) 
600 

358.9-366.9 P-46194 –13.95  1799 ± 27   
1692 – 1818  

(84%) 
1730 

632.7-637.7 P-44533 –14.70  3025 ± 70  
3020 – 3376 

(99.2%) 
3220 

652.8-658.8 P-44534 –23.89  3240 ± 180  
2985 – 3901 

(100%) 
3470 

814-824* P-45149 –17.9  3699 ± 33  
3964 – 4102 

(86%) 
4040* 

F
lo

a
ti

n
g

 

7-17* P-45150 –14.73  3356 ± 27  
3556 – 3646 

(87%) 
3600* 

197-202 P-46195 –14.11  3287 ± 28  
3542 – 3573 

(100%) 
3520 

329.5-334.5 P-46196 –15.12  4295 ± 60  
4802 – 5044 

(84.6%) 
4870 

462-467 P-44536 –14.19  4725 ± 50  
5441 – 5584 

(61.4%) 
5470 
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Figure 6.3: Bayesian age-depth model of four micro-charcoal AMS 14C dates from composite Babogaya core, constructed in BACON for 

R. Depth refers to depth below the start of the composite sequence. The individual age distribution for each date, as relative area under 

probability distribution, is shown in blue. The red dotted line shows the most likely age-depth distribution, whilst the grey envelope denotes 

the chronological uncertainty of the model. The upper panel shows the stability of the Markov Chain Monte Carlo runs (3500 iterations); the 

prior (thick line) and posterior (thin line) distribution for the accumulation rate (yr/cm), and; the prior (thick line) and posterior (thin line) for 

the dependence of accumulation rate between sections. 
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Figure 6.4: Bayesian age-depth model of three micro-charcoal AMS 14C dates from the floating composite Babogaya core, constructed in 

BACON for R. Depth refers to depth below the start of the floating composite sequence. The individual age distribution for each date, as 

relative area under probability distribution, is shown in blue. The red dotted line shows the most likely age-depth distribution, whilst the grey 

envelope denotes the chronological uncertainty of the model. The upper panel shows the stability of the Markov Chain Monte Carlo runs 

(3500 iterations); the prior (thick line) and posterior (thin line) distribution for the accumulation rate (yr/cm), and; the prior (thick line) and 

posterior (thin line) for the dependence of accumulation rate between sections. 
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6.3 | Core chemistry  

High-resolution plots of selected XRF-derived geochemistry and organic isotope 

data are shown in Figure 6.5 for the composite core and Figure 6.7 for the floating 

composite core. The plots are divided into 2 major zones in the composite core 

(BAXC-1, BAXC-2) and 2 major zones in the floating core (BAXF-1, BAXF-2) 

based on large changes in at least two elements. All units for XRF data are given 

as normalised peak area (hereafter simply peak area; /Mo Inc+Coh see Chapter 

4 for details on normalisation process), with the ratio plots dimensionless. The 

solid black line represents a 500-point smoothing of the data to highlight more 

general trends.  

Correlation matrices for the composite (Figure 6.6) and floating composite 

(Figure 6.8) cores show that lithogenic elements (Fe, Zr, K, Rb, Ti, Si) mostly 

correlate strongly, positively in both the composite (r = 0.69 to 0.99) and floating 

core (r = 0.76 to 1) and can be seen to covary in Figure 6.5 and Figure 6.6. The 

elements on the lower range of these correlations include Zr to Fe, Si, and Ti in 

the composite core and Si to Zr and Rb in the floating core (Figure 6.7; Figure 

6.8). This positive correlation amongst lithogenic elements also extends to Mn 

with r-values of >0.65 (up to r = 0.95; Figure 6.7; Figure 6.8). However, Ca is 

weakly, positively correlated to other lithogenic elements in the composite core 

(r = -0.01 to 0.25) and weakly, negatively correlated to these elements in the 

floating core (r = -0.24 to 0.02). Values of elements such as Rb (0-0.049 peak 

area across both cores) are low in comparison to elements such as Fe (0.011-

8.822 peak area). However, the high correlation of these lower value elements 

with other lithogenic elements indicate that the data are ‘real’. Distinct peaks of 
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elements such as Rb and to some extent Fe (others such as Y not shown in 

Figure 6.5 and Figure 6.7) correlate with visible tephra layers.  

Total organic carbon (TOC) through the entire core varies from 0.18 to 19.28 %. 

Low TOC (0.18-3.37 % in the composite core and 0.27-6.78 % in the floating 

core) occurs within the minerogenic sedimentary unit spanning from the base of 

the composite core through to 2 m depth into the floating core. The C:N ratios 

are generally around 13 to 14, but fall as low as a minimum of 5.13 and increase 

up to a maximum of 21.25, through the core. Similarly, δ13Corg varies between –

29.60 and –13.94 ‰. However, the higher end of this range is represented by 

the only sample above –20 ‰, with values generally between –23 to –26 ‰ 

through the core (Figure 6.5; Figure 6.7).  

6.3.1 | Composite core data 
 

BAXC-1: 828 – 646 cm (<3500 – 3260 cal. BP) 

As the high r2 values would suggest (Figure 6.7), Fe, Ti and Rb covary and are 

variable through this zone, with these elements on average at their highest 

throughout this zone (3.00, 0.09 and 0.02 respectively) with multiple peaks in 

peak area. This is especially true at the zone boundary where maximum values 

are reached for Fe (7.78) and Ti (0.26). Conversely, TOC is low BAXC-1 at an 

average of 1.72% ± 0.86, reaching the lowest TOC at the upper zone boundary 

(0.18%). However, the values of δ13Corg and C:N remain stable at –20 ‰ ± 0.83 

and 11.99 ± 1.90, respectively, for the entire zone. Similarly, logged ratio values 

remain low and stable in comparison to values up core in BAXC-2 for Fe:Mn 

(1.89 ± 9.52), Ca:Ti (0.69 ± 2.40), Zr:Rb (0.24 ± 0.56) and Si:Ti (-1.09 ± 0.02) for 

the entire zone. Interestingly, Ca also remains consistent and as a result, while 
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this zone does not have maximum Ca values for the composite core, Ca on 

average is higher in zone 1 (0.41 ± 0.15 peak area) than in zone 2 (see below). 

BAXC-2: 644 – 68 cm (3260 – 580 cal. BP) 

Terrigenous element content decreases sharply at the lower zone boundary. Fe, 

Ti and Rb continue to visibly covary but are now mostly low on average (Fe = 

1.505 ± 0.419, Ti = 0.011 ± 0.015, Rb = 0.004 ± 0.004) in comparison to the 

values in zone 1, with a few peaks covarying with visual tephra layers (127 cm, 

272 cm, 418 cm and 575 cm) which contain the highest Rb (and some of the 

highest values of Fe for example) in this zone, and the maximum peak area in 

the core (0.050 peak area).  

At the zone boundary, TOC sharply increases from 0.18% to 4.10% within 8 cm. 

TOC increases slightly to ~10%, and except for between 187 and 111 cm where 

TOC sharply decreases to low TOC (<7.5%, as low as 3.47%), the TOC 

fluctuates for the rest of the zone between around 16% to around 8%, normally 

within one or two samples. Similarly, δ13Corg fluctuates between –30‰ and –

20‰, with consistently higher values between 187 and 111 cm (–22.4‰ ± 0.87 

on average) one sample above –20‰ (–13.94‰) at 572 cm. Conversely, after 

decreasing to minimum values (5.13) on the zone boundary, C:N rapidly 

increases to 13.75 and then fluctuates minimally with the zone average value at 

15.18 ± 1.68, slightly higher than the C:N values in zone 1 (13.36 ± 1.78). 
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Figure 6.5: Organic carbon and XRF-derived peak area geochemical data for the Babogaya composite core. Solid black line denotes a 

500 point running mean.  
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Figure 6.6:  Pearson’s correlation matrix of selected elements in the Babogaya composite core derived from XRF scanning. Elements are 

selected based on those exhibiting clear trends in initial interrogation of the data and that are indicative of changing environmental conditions 

as discussed in Davies et al. (2015). The matrices of scatterplots (below histograms) indicate the association and correlation of each 

comparison (r-values above histograms; p=0.000 for each correlation except for “-“ where p=0.1 and “..” where p=1). 
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Despite highly variable log ratio values (between 0 and 2), after increasing from 

0.185 at the zone boundary to average values of ~7 by ~625 cm, Zr:Rb is stable 

at 0.717 ± 0.376 on average throughout the entire zone. Similarly, Si:Ti increases 

from -1 at the zone boundary to -0.8 at ~625 cm. These values return to those 

similar to zone BAXC-1. Despite some large isolated, sharp decreases in the log 

ratio values of Fe:Mn, these values remain largely stable only deviating from the 

mean (1.765) by ± 0.196. A small decrease in Fe:Mn is evident at ~127 cm 

following the tephra layer. As discussed above, although Ca is slightly lower than 

in zone 1, Ca is highly variable for much of the zone reaching high values 

(maximum = 2.273 peak area). Ca values are generally more stable in non-

laminated sections of core, with increased variability in the laminated sections.  

6.3.2 | Floating core data 

BAFX-1: 470 – 202 cm (5400 – 3360 cal. BP) 

As in zone 2 of the composite core, while Ca is highly variable during laminated 

sections, Ca in non-laminated sediments are generally more stable. For 

example, average Ca between 360 cm and 275 cm is 0.512 ± 0.240 peak area 

(maximum values of ~2.5 peak area), with the adjacent non-laminated sediments 

nearer the top of the zone (250-225 cm) exhibiting average Ca of 0.796 ± 0.134. 

After ~260 cm, both Ca and Ca:Ti values decline steadily through to the end of 

the zone. Lithogenic elements are very low through the entire zone with a few 

isolated peaks (e.g. four times higher Rb at ~366 cm depth corresponding to a 

discrete tephra layer previously unidentified during smear slide analyses). 
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Figure 6.7: Organic carbon and XRF-derived peak area geochemical data for the Babogaya floating core. Solid black line denotes a 500 

point running mean. 
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Figure 6.8: Pearson’s correlation matrix of selected elements in the Babogaya composite core derived from XRF scanning. Elements are 

selected based on those exhibiting clear trends in initial interrogation of the data and that are indicative of changing environmental conditions 

as discussed in Davies et al. (2015). The matrices of scatterplots (below histograms) indicate the association and correlation of each 

comparison (r-values above histograms; p=0.000 for each correlation except for “**”, “*” and “..” where p=0.001, 0.01 and 1, respectively).
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Fe:Mn increases from the base of the core up to ~2 at around 430 cm, then 

remains stable at around this value for the remainder of the zone. Zr:Rb despite 

highly variable raw data (0 to 2), the running mean through this zone is also 

stable around 0.5. The C:N ratio values and δ13Corg values through this zone are 

also consistent, whilst TOC shows a little more variation (values between 5 and 

10%). From ~340 to 202 cm TOC varies around 7% with only a small increase 

to higher values (~10%) at the upper zone boundary. 

BAFX-2: 202 – 0 cm (3360 – >3260 cal. BP) 

The beginning of this zone is marked by rapid change (up to 5 times increase in 

average peak area values within 10 cm) in Fe, Ti and Rb. Lithogenic elements 

are highly variable through much of this zone, similar to trends in zone 1 of the 

composite core. Average peak area of Fe, Ti and Rb are high and relatively 

stable between 200 and 170 cm before decreasing and fluctuating between 170 

and 100 cm. At 100 cm, Fe, Ti and Rb increase sharply to peak value for the 

floating core (8.522, 0.284 and 0.045, respectively) before sharply decreasing at 

~65 cm to comparatively lower peak area for the remainder of the zone. 

Corresponding to this increase in lithogenic element peak area, average TOC 

decreases by around 4 times that than in zone 1 (1.85% ± 1.60 compared to 

7.80% ± 1.65) with only two small, isolated increases to ~6% at 157 cm and 66 

cm. 

Additionally, at the zone boundary Ca:Ti, Zr:Rb and Si:Ti also exhibit sharp 

changes in values, with each decreasing by over half in value over ~10 cm, but 

then remain fairly consistent for the rest of the zone. Similarly, δ13Corg values 

exhibit minor fluctuations (–23.33‰ ± 0.41), with C:N only deviating from around 
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13-14 at 157 cm (increase to 18.66) and from 100 to 76 cm (decrease to as low 

as 6.66). Contrasting this trend at the lower zone boundary is Ca which simply 

continues to gradually decrease between zones 1 and 2 and for the remainder 

of the core.  

6.4 | The diatom record 
 

The detailed diatom record from the composite and floating cores, including valve 

concentration (valves x 103/g dry sediment) and diatom habitat group data (taxa 

<3% relative abundance in the core omitted), is shown in Figure 6.9 and Figure 

6.10, respectively. CONISS (Grimm, 1987) analysis, in the R package rioja (v. 

0.9-14.1; Juggins, 2017), divided the composite core diatom data into 3 major 

biozones, and 2 major biozones for the floating core, which are shown in Figures 

6.9-6.12.  

6.4.1 | Composite core data 

BACD-1: 828 – 650 cm (<3500 BP) 

This zone is populated primarily by Nitzschia fenestralis (sp. nov.) at relative 

abundances of between ~20% and 60%. Nitzschia lancettula O.Müller and 

Nitzschia paleacea are also present throughout the zone but at comparatively 

lower abundances (maximum abundances of up to 30-40% for both taxa). 

Nitzschia “groups latens” (sensu Gasse, 1986) increase in abundance up core 

from negligible abundances at 750 cm to 41% at 671 cm and above 3% until 640 

cm, before gradually disappearing in the record above this. 

Pseudostaurosira brevistriata (Grunow) D.M.Williams & Round is present 

throughout this zone but below 20%. Other taxa are present, but in small 
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amounts through the zone such as Nitzschia epiphytica O.Müller, Encyonema 

muelleri (Hustedt) D.G.Mann, Cymbella leptoceros (Ehrenberg) Kützing, 

Nitzschia amphibia Grunow and Sellaphora pupula (Kützing) Mereschkovsky. 

The unassigned Gomphonitzschia taxon (“sp 1.”) is also present through much 

of this zone, although at low abundances with only 3 samples where it forms >5% 

of the assemblage. As a result of numerous taxa being present, despite the low 

abundances, the Hill’s N2 for this zone is variable, but moderately high for the 

core (N2 = 10-20). 

Adjacent to the upper zone boundary, Ulnaria acus (Kützing) Aboal is co-

dominant with Nitzschia fenestralis, with Nitzschia gracilis (sensu Gasse, 1986) 

and Aulacoseira granulata var. angustissima (O.Müller) Simonsen also 

appearing in the record (~5%). At 638 cm Ulnaria acus almost exclusively 

populates the assemblage (81%) which is responsible for the sharp increase in 

rate of change (ROC) and decrease in species diversity. Valve concentrations 

are negligible values similar to valve concentration in the previous zone.  

BACD-2: 616 – 344 cm (3110-1710 BP) 

Aulacoseira granulata var. angustissima appears in the record and stays quite 

high for the first ~60 cm of the zone with Nitzschia fenestralis continuing to be 

abundant (>20 to around 60%). This abundance of Nitzschia fenestralis 

continues for the entire zone, and after around 550 cm the abundance of 

Aulacoseira granulata var. angustissima gradually declines to lower abundances 

by 538 cm (0-8.8%). Nitzschia lancettula returns at this time with occasional 

relatively high abundances (>40%). 
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Figure 6.9: Diatom diagram for the Lake Babogaya composite core by depth (age as secondary axis). Included are habitat groupings (*for 

taxa >3% relative abundance) and valve concentration data. Zones as determined by CONISS are also shown (BACD-1, BACD-2 and 

BACD-3). 
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Unlike Aulacoseira granulata var. angustissima that increases in abundance 

through the zone boundary, Nitzschia gracilis (sensu Gasse) is still present but 

at lower abundances (5-15%). However, one large peak (up to 76%) of Nitzschia 

gracilis is observable at 454 cm and isolated peaks of similar magnitudes (40-

45%) in Ulnaria acus at 373 cm and of Nitzschia “group latens” at 494 cm. 

Nitzschia lancettula abundances decrease after 425 cm to 0.7 to 7%, with parallel 

increases in Nitzschia paleacea, continued dominance of Nitzschia fenestralis 

and small amounts of Nitzschia “group latens”. 

Although valve concentration declines from the initial peak at the zone boundary 

values remain high, but variable, for the core. Conversely, due to the dominance 

of taxa such as Aulacoseria granulata var. angustissima and Nitzschia fenestralis 

species diversity is generally low through this zone. Species diversity, despite 

some small, short-lived increases to Hill’s N2 scores comparable to those in zone 

1, is generally lower through this zone than in zone 1 attributable to the 

dominance of Aulacoseira granulata var. angustissima, Nitzschia paleacea and 

Nitzschia fenestralis at different periods.  

BACD-3: 344 – 68 cm (1710-580 BP) 

Although at a low abundance at the start of this zone the main planktonic taxon 

is Nitzschia lancettula for this zone, with only small amounts of Lindavia ocellata 

(Pantocsek) T.Nakov et al. and Aulacoseria granulata var. angustissima. 

Nitzschia lancettula fluctuates with it being dominant or abundant through much 

of the zone, only reaching below 10% around 100 to 80 cm. This is normally due 

to increases in facultatively planktonic and benthic taxa. Although all at low 

abundances (~1-15%), this zone is diverse in the number of benthic taxa, 
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especially Cymbelloid lifeforms, including: Amphora libyca Ehrenberg, Cymbella 

fonticola Hustedt, Encyonema muelleri, Epithemia adnata (Kützing) Brébisson, 

Achnanthidium minutissimum (Kützing) Czarnecki, Cymbella affinis Kützing, 

Encyonopsis microcephala (Grunow) Krammer and Gomphonema pumilum 

(Grunow) E.Reichardt & Lange-Bertalot. Similarly, the aerophilous taxon 

Nitzschia amphibia (including at times the forma fraudenlii variety) continues to 

be present at a low relative abundance (up to 7%). However, despite this 

diversity, small increase at the start of the zone valve concentration decreases 

and remains low (comparable to valve concentration in zone 1) for the remainder 

of the zone. The increase in benthic taxa is accompanied by a decrease in 

Nitzschia fenestralis and Nitzschia paleacea. 

6.4.2 | Floating core data 

BAFD-1: 470 – 375 cm (5400 – 4865 BP) 

The base of the core is dominated by Staurosirella pinnata (Ehrenberg) 

D.M.Williams & Round and Pseudostaurosira brevistriata, which is driving 

species diversity down. Apart from at 359 cm and 391 cm, Staurosirella pinnata 

is below 10% abundance at around 5%, with values from 28% up to 65%. At the 

base of the core planktonic taxa are present at 0.5%, but by 414 cm Nitzschia 

lancettula occurs at higher abundances in the record in the record at >5%, 

reaching 45% at 391 cm. Benthic taxa are moderately abundant in this zone 

(~20% overall), with a large proportion of this taken up by Nitzschia epiphytica 

(abundance between 10 and 20%), with minor amounts of Encyonema muelleri 

and Epithemia adnata through the zone. One large peak of Nitzschia paleacea 

(58% relative abundance; the highest in the core) is observable at 430 cm. 
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BAFD-2: 300 – 210 cm (4370 – 3670 BP) 

Facultatively planktonic taxa are well represented in this zone with 

Pseudostaurosira brevistriata increasing in abundance at the expense of 

Staurosirella pinnata, which is virtually absent in the zone apart from 267 to 210 

cm at 5-15%. Interestingly, Lindavia ocellata appearances in this zone 

correspond to increased amounts of Pseudostaurosira brevistriata. Nitzschia 

lancettula remains abundant for most of this zone, only decreasing to <20%, but 

above 10%, with increased abundance of Pseudostaurosira brevistriata at 

around 360 to 315 cm. Generally, the abundance of benthic taxa decreases, but 

taxa such as Nitzschia epiphytica and Epithemia adnata are still present.  

BAFD-3: 210 – 0 cm (3670 - >3300 BP) 

The boundary between the two zones covering the floating composite is marked 

by a rate of change that is relatively large for the floating composite core. Species 

diversity also increases sharply at the zone boundary. Despite increased 

diversity, valve concentration is low at an average of 7.21 x 103 valves/g dry 

sediment. The general abundance of Pseudostaurosira brevistriata is generally 

lower in this zone than in zone 2, at more comparable abundances to those in 

zone 1. Generally, however, a high facultatively planktonic population is 

sustained throughout this zone with reduction in planktonic taxa, although 

Nitzschia lancettula is still fairly common (10-26%). A number of taxa appear at 

the lower zone boundary and are present, often at high abundances, through 

much of this zone including Nitzschia fenestralis (1-52%), Nitzschia paleacea (1-

19%), Nitzschia palea (Kützing) W.Smith (1-15%), Ulnaria acus (0-13%), 

Nitzschia epiphytica (0-10%) and Nitzschia amphibia (0-3%).  
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Figure 6.10: Diatom diagram for the Lake Babogaya floating core by depth (age as secondary axis). Included are habitat groupings (*for 

taxa >3% relative abundance) and valve concentration data. Zones as determined by CONISS are also shown (BAFD-1, BAFD-2 and 

BAFD-3).     
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6.4.3 | Laminae diatom counts 
 

The diatom counts of individual laminae from three laminated sections of core 

(two sections from the composite core and one from the floating composite core), 

and diatom habitat group data (taxa <3% relative abundance in the core omitted), 

is shown in figures 6.11, 6.12 and 6.13. The similarity of each lamina within a 

section is very close in terms of diatom ecology, with very little change between 

each layer, especially in Figure 6.12 for example. However, it is possible to 

identify small differences in 6.11 and 6.13. The seasonal lake stratification at 

Lake Babogaya (see Section 3.3)  which presumably leads to the darker, brown 

layers (Lamb et al., 2002) coincides with slightly increased abundance of the 

facultatively planktonic Navicula cryptotenella Lange-Bertalot, Nitzschia 

fenestralis and Nitzschia tropica Hustedt (Figure 6.11). Similarly, Nitzschia 

paleacea and Nitzschia fenestralis exhibit a similar pattern in Figure 6.13. In the 

laminated sections of the floating core some green-blue coloured layers 

occasionally couple the light-dark lamina and are slightly richer in Nitzschia 

lancettula and Pseudostaurosira brevistriata (Figure 6.13). 

6.4.4 | Diatom ordination 
 

Ordinations were determined separately for the composite and floating 

composite cores to explore the potential of different distributions of taxa in both 

halves of the record. However, the plotted principal curves behaved in similar 

ways irrespective of this split. Thus, diatom data from the composite and floating 

cores were plotted and interpreted together.   
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Figure 6.11: Diatom diagram for Lake Babogaya laminated section (89.7-90.8 cm 

composite depth) counts by depth. Included are habitat grouping data.  

 

Figure 6.12: Diatom diagram for Lake Babogaya laminated section (491.49-492.39 cm 

composite depth) counts by depth. Included are habitat grouping data. 
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Figure 6.13: Diatom diagram for Lake Babogaya laminated section (442.28-443.08 cm 

composite depth) counts by depth. Included are habitat grouping data. 

The principal curve through the Babogaya diatom data (Figure 6.14) is difficult to 

interpret however the main driver of change through the data seems to be 

changing nutrient requirements. The beginning of the curve is populated by 

Staurosirella pinnata and Pseudostaurosira brevistriata transitioning from 

oligotrophic taxa to those associated with more nutrient enriched waters. 

Towards the end (B in Figure 6.14), the curve is populated by taxa characteristic 

of meso- to eutrophic waters such as Ulnaria acus, Nitzschia paleacea and at 

the apex of the curve Aulacoseira granulata var. angustissima. However, other 

factors are likely influencing this ordination. This curve reflects (and simplifies on 

to one axis) major compositional shifts, the potential drivers of which are 

interpreted further below in text. PrC scores for each depth, as well as diatom 

inferred conductivity, rate of change and Hill’s N2 (discussed in Chapter 4) are 
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plotted alongside habitat percentages and core stratigraphy for both the 

composite (Figure 6.15) and floating (Figure 6.16) cores to more effectively 

summarise and quantify changes in the diatom record. 

 

Figure 6.14: Principal curve (blue) of the Babogaya diatom data. Taxa scores in (PCA) 

ordination space are denoted by red crosses, with the main taxa labelled. The start of 

the curve (A; 0 PrC score) and end of the curve (B; 1 PrC score) are also shown. 

A 

B 
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Figure 6.15: Quantitative diatom data for the Lake Babogaya composite core. Principal curve shown in Figure 6.14. Methods and packages 

used for computing these statistics are detailed in Chapter 4. Zones as determined by CONISS are also shown. 
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Figure 6.16: Quantitative diatom data for the Lake Babogaya floating core. Principal curve shown in Figure 6.14. Methods and packages 

used for computing these statistics are detailed in Chapter 4. Zones as determined by CONISS are also shown. 
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6.5 | Interpretation of the Babogaya sedimentary record  
 

All available data from the independent proxy records analysed from core BA-

LC-2011 (including both the composite and floating composite cores) are now 

interpreted in terms of limnetic and environmental changes that have taken place 

in the Lake Babogaya basin over the past ~5,400 to 600 cal. BP. For ease of 

interpretation, the record has been divided into 5 major time periods (BA-1 to BA-

5) based on significant changes in the palaeoenvironmental data, primarily in the 

diatom data, as this is the primary proxy in this research. Furthermore, the non-

laminated minerogenic units in both the composite and floating composite cores 

have been interpreted as one full unit as it is presumed that they are simply 

missing a section. As only each side of the unit is reliably dated, with mixing and 

reworking of sediments likely (e.g. old reworked charcoal carbon in radiocarbon 

dates) as a result of a much faster sedimentation rate of allochthonous material, 

the data can only be interpreted in general terms for that time period. For ease 

of interpretation, main environmental changes in both diatom and XRF data have 

been presented in Figure 6.17. The record has been divided into 5 major time 

periods (BA-1 to BA-5) based on significant changes in the palaeoenvironmental 

data.  

BA-1: 470 – 375 cm (floating composite depth; 5400 – 4865 BP) 

Many small Fragilaria are considered r-strategists (Lotter & Bigler, 2000), with 

low light and very low nutrient (such as N, P and Si) requirements (Michel et al., 

2006). Staurosirella pinnata and Pseudostaurosira brevistriata are known to 

colonise low-nutrient, cold and shallow waters where growth is inhibited for other 

taxa (Laird et al., 2010). 
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Figure 6.17: Synthesis of diatom, XRF-derived peak area and organic geochemical for the Lake Babogaya core. Interpretation zones 

referred to in-text are also shown. Solid black line denotes a 500-point running mean through XRF data. *Percentage of taxa included in 

habitat groupings at a relative abundance of >3%. 
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However, although small Fragilaria (such as Staurosirella pinnata) are often 

associated with benthic habitats in shallower, lower-light waters (e.g. Kingsbury 

et al., 2012), nutrient supply and light availability is known to be such dominant 

factors as to limit the expansion of planktonic taxa, even in deeper waters (Lotter 

& Bigler, 2000; Schmidt et al., 2004). It is also important to note that the term 

“shallow” in relation to habitat in which small Fragilaria (such as Staurosirella 

pinnata and Pseudostaurosira brevistriata) thrive can be waters up to 10 m depth 

(e.g. Lotter & Bigler, 2000; Laird et al., 2010), and even ~20 m in some studies 

(Cantonati et al., 2009). Waters were likely deep enough to sufficiently mix and 

stratify seasonally to allow laminae to form during this period. 

Periphytic, near-shore habitat was likely abundant during this period with 

Nitzschia epiphytica common in the record. The confusion regarding the precise 

taxonomy of Nitzschia epiphytica makes determining the exact ecology of the 

species difficult (Cocquyt et al., 2012). However, Gasse (1986) understood the 

taxon to be epiphytic and has been interpreted by others to favour shallower 

waters and increased littoral and benthic habitat at Lake Rukwa (Barker et al., 

2003) and Hayq (Loakes, 2016).  

It should first be noted that the large isolated peaks in Nitzschia paleacea may 

represent blooms of the species that may be ‘swamping’ the record as described 

by Woodbridge & Roberts (2010): the high abundance of short-lived, blooming 

diatoms reduces the chances of encountering rarer taxa in a sample, thus 

artificially reducing species diversity. Nevertheless, their presence (mostly in 

isolated peaks) likely indicates a period of increased nutrient input (Baier et al., 

2004), with moderate Si and P availability also likely key for the taxon to be able 

to outcompete others (Kilham et al., 1986; Woodbridge & Roberts, 2010).  
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Normalising Ca against a lithogenic element (e.g. Ti or Al) provides information 

for the possible source of carbonates to the lake. For example, low Ca:Ti values 

would indicate higher detrital input (associated with Ti or Al), with higher Ca:Ti 

values suggesting greater in-lake production of Ca. Autochthonous carbonate 

production may be associated with increased evaporative concentration, 

reflecting environmental changes (e.g. Jouve et al., 2013), but also with 

fluctuating biological productivity in the case of biogenic carbonates (e.g. März et 

al., 2011; Olsen et al., 2013), associated with lamina formation. 

At around ~5,150 BP average Fe:Mn values increase (Figure 6.7) which may be 

linked to changing redox conditions. The solubility of Fe and Mn are increased 

under reducing conditions, and as Mn is more readily affected under such 

conditions, increased Fe:Mn could indicate a reduction in water oxygen content 

during periods of stratification (Davies et al., 2015). This increase in Fe:Mn is also 

mirrored by an increased abundance in the planktonic Nitzschia lancettula 

(Figure 6.10). However, the autoecology of Nitzschia lancettula is unclear other 

than it is known to be a plankton optimally growing in the big lakes of Africa (lakes 

Victoria and Edward; Gasse, 1986). Based on the findings of Stager et al. (2005) 

that find the taxon in interpreted highstands of Lake Victoria, and with trends 

identified in their data, Mills et al. (2014; 2018), Loakes (2016) and Pasche et al. 

(2010) consider the increased abundance of Nitzschia lancettula to represent a 

deepening of lake waters. Furthermore, stratified conditions are optimal for 

Nitzschia, and Microcystis aeruginosa (a dominant algae in the modern-day lake) 

which Nitzschia are often associated with (Kilham et al., 1986). Therefore, their 

presence may also indicate waters became increasingly stratified at this time 

(Mills et al., 2014). 
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pH for this zone remains moderately high despite a shift from littoral/benthic to 

planktonic taxa. Based on their eastern African diatom dataset, Gasse & Tekaia 

(1983) suggest that Pseudostaurosira brevistriata and Nitzschia lancettula are 

indicator taxa for a lake pH of around 8 to 8.6. Indeed, the pH optima for these 

taxa in the combined African dataset are 7.82 ± 1.02 and 8.51 ± 0.76 pH for 

Pseudostaurosira brevistriata and Nitzschia lancettula, respectively (Gasse et al., 

1995). Similarly, the other abundant taxa for this period are Nitzschia epiphytica 

and Staurosirella pinnata which also have high pH optima (8.19 ± 1.80 and 8.17 

± 0.83, respectively; Gasse et al., 1995). 

The presence of the pelagic Phacotus through this zone is difficult to interpret in 

term of past environmental conditions such as nutrient availability or water depth 

as they are reportedly flexible with a broad tolerance (Gruenert & Raeder, 2014 

and references therein). However, fundamentally, Phacotus do require an 

accessible carbon source to build their thick loricae. Padisák et al. (2003) argue 

the dominant carbon source for Phacotus to build their lorica is HCO3
-, with 

supersaturation of CaCO3 also shown to promote their growth (Gruenert & 

Raeder, 2014), both of which are predominant in alkaline waters.  

Assuming pH remained high during this period (and at other periods in the record) 

rates of valve dissolution may have been elevated due to the disassociation of 

silicic acid at elevated pH (Barker et al., 1994). This would influence the counts 

and interpretations presented in this study as more slender, delicately structured 

valves (e.g. Nitzschia palea and Nitzschia dissipata; Barker et al., 1994) are lost 

in the record to dissolution rather than to changing environmental conditions. The 

F-index can be used to try and quantify the amount of dissolution present in 

samples (see Ryves et al., 2001). However the F-index relies on visual inspection 
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and qualitative assessments of dissolution (Ryves et al., 2001). As no significant 

valve breakage or dissolution could be observed in samples (even in species 

such as Nitzschia fenestralis, Nitzschia palea and Nitzschia paleacea) it was 

decided not to employ the F-index method and assume dissolution rates were 

minimal and not significantly impacting the record.  

Based on the African dataset conductivity optima for Staurosirella pinnata, 

Pseudostaurosira brevistriata and Nitzschia epiphytica, however, is very fresh in 

terms of conductivity (optima of 145, 580 and 275 µS/cm, respectively). Different 

optima have been determined from 76 Ugandan crater lakes by Mills & Ryves 

(2012) with a slightly higher optima calculated for Pseudostaurosira brevistriata 

(389 µS/cm optimum), a much higher optima for Nitzschia epiphytica (2630 ± 2 

µS/cm), but broadly a similar optimum for Staurosirella pinnata (166 ± 6 µS/cm). 

The optimum calculated for Nitzschia epiphytica is higher than in Gasse et al. 

(1995), however the low occurrences and abundance of this taxon in the dataset 

may imply the optimum of this taxon may be poorly defined (Mills & Ryves, 2012). 

Comparatively, Nitzschia lancettula, although indicative of deeper water, tends 

to prefer slightly more solute rich waters with an optimum of 1,905 µS/cm (Gasse 

et al., 1995). However, similarly, the conductivity optima determined from the 

Ugandan dataset for Nitzschia lancettula suggests a preference for fresher 

conditions of 512.86 µS/cm as opposed to 1,905 µS/cm (Gasse et al.,1995). This 

increase in Nitzschia lancettula at Lake Babogaya may represent a period of 

transition to slightly more concentrated (if comparing either the optima 

determined by Gasse et al., 1995 or by Mills & Ryves, 2012) but deeper, stratified 

waters, especially with the reduction of the fresher and shallow tolerant 

Staurosirella pinnata and periphytic Nitzschia epiphytica. One explanation for this 
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apparently contradictory scenario (a slightly higher conductivity would normally 

be related to increased evaporation and reduced lake level; Chapter 4) is overall 

deeper lake waters, but with increased seasonality and a more established period 

of stratification with drier or warmer conditions. 

BA-2: 375 – 202 cm (floating composite depth; 4865 – 3670 BP) 

Increased abundance of the deeper water taxon Nitzschia lancettula at the 

expense of benthic taxa and especially Staurosirella pinnata suggests a period 

of deeper, open waters at Lake Babogaya after 4,600 BP (Figure 6.10). However, 

shallower, marginal lake areas were still important with a vegetated littoral zone 

likely persisting indicated by the continued presence of Nitzschia epiphytica, 

Epithemia adnata, Encyonema muelleri and Pseudostaurosira brevistriata. The 

latter taxon is highly abundant to dominant through some parts of this record and 

as discussed above is known to proliferate in shallower, oligotrophic waters 

(Bigler et al., 2000; Laird et al., 2010). Furthermore, Pseudostaurosira brevistriata 

has a broad tolerance to increased conductivity (2.76 ± 0.80 µS/cm in Gasse et 

al., 1995 and 2.59 ± 0.45 µS/cm in Mills & Ryves, 2012), especially compared to 

Staurosirella pinnata abundant in BA-1, that may be associated with increased 

seasonality. Lake waters likely remained alkaline, with the presence of the above 

taxa and Phacotus lorica as in the previous zone. 

Often associated with littoral taxa such as Pseudostaurosira brevistriata is 

Lindavia ocellata (Chalié & Gasse, 2002; Marshall et al., 2009). This can be seen 

in the Babogaya record with the large increase in Pseudostaurosira brevistriata 

and appearance of Lindavia ocellata (e.g. between 4,700 and 4,500 BP; Figure 

6.10). Much of the autoecological affinities of the cosmopolitan and adaptable 
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Lindavia ocellata are uncertain (Malik & Saros, 2016). However, some useful 

palaeoenvironmental inferences can be made: the taxon has been shown to 

adapt well to lake stratification (Winder et al., 2009; Edlund et al., 2017) and is 

considered by some to be a ‘littoral plankton’. Studies have reported Lindavia 

ocellata, in Africa at least, in shallower waters in association with littoral taxa such 

as Pseudostaurosira brevistriata (Gasse, 1986; Chalié & Gasse, 2002; Marshall 

et al., 2009), with Stone et al. (2011) interpreting their presence to indicate 

shallower planktonic environments with increased proximity to the littoral zone in 

their record at Lake Malawi. Their presence, although at low abundances, 

together with increased abundance of Pseudostaurosira brevistriata (Figure 

6.10), present during this period further supports the inference of stratified, but 

slightly shallower, waters at Babogaya during this period. Similar peaks in 

Nitzschia paleacea abundance as in zone BA-1, and the newly described taxon 

Nitzschia fenestralis (Grady et al. 2020), may indicate brief intervals of nutrient-

rich waters. 

With a C:N value of ~14 the sources of organic carbon remained largely mixed 

between terrestrial and aquatic material (Figure 6.7). However, a small reduction 

to lower TOC can be observed after 4,800 BP, with a gradual decrease until 

~3,790 BP where a second decrease observable (also seen in Si:Ti; a proxy for 

biogenic silica; Davies et al., 2015) before the transition to the minerogenic 

sediments of the next unit (Figure 6.7). This may represent gradually reducing 

productivity for the area with increasingly poorer, drier conditions which may be 

represented by slightly increased terrigenous input at around 4,800 BP.  

Increased average Fe:Mn (Figure 6.7), although fluctuating considerably, 

indicates lake waters were oxygen-poor, likely as a result of stratification at least 
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seasonally which would be required for lamina formation. This would also 

continue to support the increased abundances of Nitzschia lancettula which, as 

discussed earlier, thrives in deeper, stratified waters (Mills et al., 2014; 2018).  

The presence of a heliciform gastropod shell layer at ~4,150 BP may indicate a 

lowering of lake level which was preceded by the step down in TOC. This shell 

layer is also accompanied by a decrease in diatom productivity with decreased 

valve concentration and Si:Ti (Figure 6.7). This period also sees the 

reappearance and increased abundance of Staurosirella pinnata and increased 

abundance of benthic and littoral taxa such as Nitzschia epiphytica, Epithemia 

adnata and Achnanthidium minutissimum attesting to a lowering of the lake level. 

However, the consistently high abundance of planktonic taxa during this period 

(>40%) with littoral and benthic water taxa could point to a fragmenting of the 

lake as opposed to complete desiccation. While this unlikely scenario is difficult 

to reconcile with such steep sides to most of the lake, the gradient on southern 

and northern edges of the basin are far more gradual, with more varied lake bed 

topography in comparison (Figure 6.18), and may have facilitated areas of 

shallower waters, but deeper in the central area of the lake.  

BA-3: 202 – 0 cm (floating composite core depth) and 828 – 616 cm 

(composite core depth; 3670 – 3110 BP) 

A rapid increase to high Ti, Fe and Rb (as well as other covarying lithogenic 

elements not shown in Figures 6.5 and 6.6) with consistently high peak area 

through this zone marks a period of considerable terrigenous input. Furthermore, 

lower Zr:Rb suggests that much of this is fine-grained material (Kylander et al., 

2011). Although changes within the unit could not be dated accurately, the overall 
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sedimentation rate must have been significantly high in order to supply >4 m 

worth of minerogenic sediment to the lake within the ages bracketing this 

lithological unit: 3,600 to 3,300 BP. 

 

Figure 6.18: Lake Babogaya bathymetry (left) and cross sections of three transects 

across this data (cross sections shown on the right). Created in the R package marmap 

(Pante & Simon-Bouhet, 2013) using unpublished data from Professor Frank Schäbitz 

taken in 2011. 

This increased terrigenous input may be associated with destabilisation of the 

local catchment caused by decreased vegetation cover (Davies et al., 2015), 

which may have been indicated earlier in the record by a reduction in TOC since 

4,800 BP in zone BA-2. It is highly likely that mass flow(s) of sediment from the 

steep crater lake sides are responsible for such a large volume of minerogenic 

material being deposited in a short space of time. Other than this period between 

3,600 BP to 3,300 BP, no clear evidence of turbidites could be observed through 

the core (e.g. sediment colour change or significant change in TOC, diatom or 
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grain size which may suggest turbidites (e.g. Moernaut et al., 2014) between 

laminated and non-laminated sections of core. 

Low TOC throughout BA-3 may represent lower overall productivity with similarly 

decreased with valve concentration, biogenic silica (Si:Ti) and presumably 

biogenic carbonate production (low Ca:Ti). However, this decrease in TOC, 

biogenic silica and carbonates, may also be attributed to dilution effects from 

increased catchment inputs. Interestingly, low C:N throughout this zone suggests 

that sources of the albeit decreased TOC remained mixed, but with low allogenic 

input. Furthermore, with a few samples a C:N ratio <10 organic at some points 

matter was primarily autochthonous algal material (Leng et al., 2010; Figure 6.5 

and Figure 6.7).   

The abundance of Nitzschia paleacea and Ulnaria acus during this period 

suggest that nutrient input (Si and P at least) must have been sufficiently high to 

support these taxa. Furthermore, the availability of these nutrients must have 

varied, at least seasonally, with differing Si:P requirements for these taxa (Kilham 

et al., 1986). Nutrient input during this period may be an inorganic fraction. P 

increases slightly (not shown in Figures 6.5-6.8), but only weakly, positively 

correlated with terrigenous elements such as Fe and Ti (r2 = 0.17-0.22, p = 

<0.001) during this zone. Therefore, some of these nutrients may be explained 

by in-washed material as in Corella et al. (2012) and Ma et al. (2016). However, 

with lower correlation indices than in those studies P may also be sourced from 

elsewhere. For example, anoxic conditions are related to releasing available P 

from the bottom sediments and with high Fe:Mn at Babogaya periods of anoxia 

may contribute to P availability in the lake (Burley et al., 2001; Selig & 

Schlungbaum, 2003). The consistent, increased abundance of Nitzschia palea in 
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this zone supports increasingly nutrient rich and turbid waters in which they can 

thrive (Tuchman et al., 2006; Salomoni et al., 2006) likely associated with 

increased minerogenic input at Babogaya at this time. 

The continued presence of deeper water taxon Nitzschia lancettula, as well other 

freshwater taxa, throughout this zone (Figure 6.9 and Figure 6.10) suggests that 

water levels remained at a high level and likely stratified to some degree. The 

decrease in the abundance of Nitzschia lancettula however through this zone 

may suggest a slight lowering from the previous zones, although this may also 

be attributed to the increased abundance of taxa such as Nitzschia paleacea and 

presumably Nitzschia fenestralis (see taxonomy and possible ecology of this 

taxon in Appendix 2) during this period of increased minerogenic and nutrient 

input.  

Shallow water and littoral taxa such as Staurosirella pinnata, Pseudostaurosira 

brevistriata and Nitzschia epiphytica attest to shallower waters persisting through 

this period (Figure 6.9 and Figure 6.10). Furthermore, the high abundance of the 

meso-hypersaline Nitzschia “group latens” (optimum of 5259.60 µS/cm; Gasse 

et al., 1995), despite the potentially ill-defined optima of this taxon (Barker, 1990), 

may suggest increasingly negative precipitation to evaporation ratios as lake 

level lowered and became increasingly saline. An explanation for this scenario is 

that the lake may have experienced some drying out. This period of drying was 

not sufficiently severe for the loss of habitat for deeper water taxa towards the 

middle of the lake, but sufficient to create other habitats of shallower water in 

other areas of the basin, potentially through fragmentation of habitat as before in 

zone BA-2. Although comparatively less abundant than other taxa, benthic and 

aerophilous taxa such as Nitzschia epiphytica, Encyonema muelleri and 
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Nitzschia amphibia are consistently present through this zone indicating at least 

some shallow, marshy, likely vegetated, areas persisted. 

Towards the top of the zone between 3,300 BP and 3,100 BP the assemblage 

becomes plankton dominated (up to almost 100% of included taxa in one isolated 

sample responsible for a sharp increase in ROC; Figure 6.15) primarily by Ulnaria 

acus, Synedra nana, Nitzschia gracilis, the presumed facultatively planktonic 

Nitzschia fenestralis and Nitzschia palea. Ulnaria acus and Synedra nana, like 

all Synedra (now split into Synedra and Ulnaria), are some of the best competitors 

for P, but are poor competitors for Si, thus requiring a high Si:P in comparison to 

Nitzschia for optimal growth (Kilham et al., 1986; Wang et al., 2012). Similarly, 

Aulacoseria granulata var. angustissima like all Aulacoseira (formerly Melosira) 

are characterised by heavily silicified frustules, often forming long, filamentous 

colonies which requires high Si content for maximum growth and some degree 

of mixing to maintain suspension in the water column (Kilham, 1971; Kilham et 

al., 1986). Furthermore, similar to Ulnaria acus, Aulacoseria granulata var. 

angustissima has been found to thrive in shallow waters across Africa (Gasse et 

al., 1983).  

The appearance of Aulacoseira granulata var. angustissima with high 

abundances of Ulnaria acus and increased Synedra nana abundance at the 

expense of taxa such as Nitzschia lancettula (Figure 6.9) suggests a niche 

environment of high Si content in mixed, turbid and shallower waters. During this 

period Nitzschia gracilis and Nitzschia palea, nitrogen heterotrophs (Gasse, 

1986), are present with Nitzschia fenestralis (co-dominant with Ulnaria acus), 

supporting an environment characterised by increased turbidity and nutrient 

input, at least seasonally, for these taxa to thrive.  
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BA-4: 616 – 344 cm (composite core depth; 3110 – 1710 BP) 

After 3110 BP the record is characterised by a moderately rapid rate of change 

(Figure 6.15) to an increased abundance of planktonic taxa, primarily Aulacoseria 

granulata var. angustissima, and subsequently reduced diversity (Figure 6.9). 

The shift from Synedra/Ulnaria to Aulacoseira dominated waters indicates 

continued fresh and nutrient rich conditions, but with a slight change that 

benefitted Aulacoseira. This taxon is normally associated with fresh, shallow, 

alkaline and productive waters (e.g. Bennion & Simpson, 2011) and in this case 

may represent a shift in the Si:P ratio of Lake Babogaya towards more P enriched 

waters with a higher requirement for this nutrient by Aulacoseria granulata and 

its varieties (Kilham et al., 1986; Cumming et al., 2015). Well-mixed waters, which 

as discussed above are conditions Aulacoseria species require, in shallower 

lakes is known to be good for nutrient recycling previously buried nutrients such 

as P (Bennion & Simpson, 2011). Despite the presence of Nitzschia lancettula, 

which indicates stratification may have occurred at least seasonally (required for 

the formation of lamina), the decreased abundance of this taxon may represent 

a reduction in lake level and increased mixing which would promote the 

proliferation of Aulacoseria granulata var. angustissima. 

This zone is also marked by a rapid and considerable increase in local 

productivity with increased TOC (from mostly mixed sources with a C:N ratio 

around 15), biogenic silica (increased Si:Ti and valve concentration) and 

presumably biogenic carbonates (increased Ca:Ti) following the sharp transition 

from minerogenic to partially laminated sediments (Figure 6.5). A combination of 

well-mixed, shallower lake waters and increased organic input likely created the 

optimal conditions for Aulacoseira granulata var. angustissima to thrive. The 
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sustained high abundance of Nitzschia fenestralis during this period strengthens 

the interpretation that this newly identified taxon prefers nutrient enriched lake 

waters (see Appendix 2 for discussion of taxonomy and ecology from Grady et 

al. 2020). 

After 2,750 BP the abundance of Nitzschia lancettula, Nitzschia fenestralis and 

Nitzschia paleacea increases, with the dominant taxa/taxon fluctuating between 

the latter two and Niztschia lancettula, at the expense of Aulacoseira granulata 

var. angustissima (Figure 6.9). This may represent increased stratification which 

reduces the competitiveness of Aulacoseira granulata var. angustissima which 

need to remain buoyant in the water column, despite increased nutrient input as 

inferred from the abundance of Nitzschia paleacea (Woodbridge & Roberts, 

2010), attributable to increasingly stratified, deeper waters (at least seasonally – 

required in the formation of lamina) associated with Nitzschia lancettula (Mills & 

Ryves, 2012). The continued presence (although low) of periphytic taxa such as 

Nitzschia epiphytica, with occasional reappearance of the meso-hypersaline 

Nitzscha “group latens”, suggests small areas of littoral habitat and shallower 

waters were still present in the lake basin during this period.  

After 2,100 BP a decrease to negligible amounts of Nitzschia lancettula (<1% to 

~14%), together with an increase in benthic (e.g. Encyonema muelleri and 

Cymbella leptoceros) and the aerophilous Nitzschia amphibia (Figure 6.9), may 

represent a period of lake level regression. Interpreting change through this 

period is challenging due to the indirect inferences of the ecology of Nitzschia 

fenestralis and with little change in other proxies analysed. While terrigenous 

input gradually increases at this point, which may point to increased catchment 

instability, TOC remains relatively high despite being variable with only a small 
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decrease in inferred biogenic carbonates (Ca:Ti) and silica (Si:Ti; Figure 6.5). 

One scenario is, as possible in previous zones, the increased abundance of 

Nitzschia fenestralis and Nitzschia paleacea (Figure 6.9) suggests a period of 

enhanced nutrient availability which may be masking other chemical or physical 

changes. Another possibility is the immediate influence of a tephra fall on the 

diatom community. However, it is unlikely that any possible deposition of material 

had a significant impact on the alkalinity and nutrient availability within the lake 

with the dominance of Nitzschia paleacea and Nitzschia fenestralis. Although 

Telford et al. (2004) find that the effects of tephra deposition can last several 

decades in a lake system, any potential benefits of this small layer in the Lake 

Babogaya record (~1 cm) such as direct nutrient input are highly unlikely to last 

for the full length of this period (Harper et al., 1986; Urrutia et al., 2007).  

BA-5: 344 – 68 cm (composite core depth; 1710 – 580 BP) 

As in previous zones, the reappearance of small Fragilarioid taxa, with similar 

parallel minor reappearances (~2-3%) of Lindavia ocellata, corresponding to 

decreased Nitzschia lancettula (Figure 6.9) abundance may indicate a slight 

lowering of lake level and expansion of fresh but shallower, littoral areas. This is 

further supported by a small reappearance of Aulacoseira granulata var. 

angustissima indicating sufficiently regular mixing of waters. Furthermore, the 

abundance of Nitzschia paleacea and Nitzschia fenestralis typical of nutrient-

enriched water decreases considerably to negligible relative abundance by 1,400 

BP (Figure 6.9). In their place, a benthic community establishes, especially the 

appearance and proliferation of a more diverse Cymbelloid community. By their 

nature of living on the end of mucilage stalks (e.g. Cymbella and Gomphonema), 

or within mucilage tubes (e.g. Encyonema), taxa belonging to the Cymbellales 
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order are generally periphytic. Taxa of this order abundant during this period at 

Babogaya are predominantly characteristic of fresh, well-lit, but shallower, 

nutrient-poor, marginal water bodies that are often vegetated (Gasse, 1986; 

Krammer & Lange-Bertlaot, 1988; Rimet & Bouchez, 2012). 

After ~1,600 BP, and for the remainder of the zone, Nitzschia lancettula recovers 

and increases again to higher abundances indicating deeper, stratified waters re-

established (Mills et al., 2014; Figure 6.9). However, the abundance of benthic, 

predominantly Cymbelloid, taxa remains high, with sustained presence of a small 

Nitzschia amphibia population as well through this zone attests to the 

continuation of shallower waters in the basin (Figure 6.9).  

This mixture of deeper-water taxa (Nitzschia lancettula) and shallower, periphytic 

taxa indicate lake waters were likely deep, but with a sufficiently large and 

potentially vegetated littoral zone. However, inferred algal productivity through 

this zone is poor with reduced deposition of diatom valves (low valve 

concentration), biogenic silica (Si:Ti) and carbonates (Ca:Ti) despite relatively 

high TOC from mixed sources (C:N ratio of ~15; Figure 6.5).  

These conditions, however, are punctuated by a repeated interval of Staurosirella 

pinnata, Pseudostaurosira brevistriata and corresponding abundance of Lindavia 

ocellata (although at a low abundance of ~4%), but at the expense of benthic 

taxa with the disappearance of Cymbella affinis and Encyonopsis microcephala, 

as opposed to Nitzschia lancettula as before (Figure 6.9). Sediments are non-

laminated with low inferred productivity: TOC decreases to values just higher 

than those recorded in zone BA-3 and similarly, deposition of biogenic silica and 

carbonates decreases to lowest average values since zone BA-3 (Figure 6.5). 
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Terrigenous input also increases during this period which may be attributed to 

instability of the surrounding, less-vegetated environment caused by drier 

conditions. Drier conditions may also explain the presence of shallower-water 

taxa with conditions such as these leading to a slight lowering in the lake level. 

6.6 | Summary of the palaeolimnological Lake Baboagaya record  
 

The interpretation of these limnetic and environmental changes inferred from the 

available data are summarised below. Discussion of these environmental and 

climatic inferences, and their implications within the wider context of this study, 

together with the equivalent for Garba Guracha (Chapter 7), can be found in 

Chapter 8. 

BA-1: 470 – 375 cm (floating composite depth; 5400 – 4865 BP) 

• Laminae formation evident despite presumably shallower waters indicated 

by small Fragilarioid taxa. 

• Extensive habitat for epiphytic taxa. 

• Gradual establishment of deeper waters. 

BA-2: 375 – 202 cm (floating composite depth; 4865 – 3670 BP) 

• Decrease and disappearance in Staurosirella pinnata and Nitzschia 

epiphytica suggest continued gradual increase in lake depth.  

• Littoral habitat still important with the abundance of Pseudostaurosira 

brevistriata and associated Lindavia ocellata. 

• Stratified conditions develop in parallel with deeper waters with the 

abundance of Nitzschia lancettula.  

• Reduced lake level and re-expansion of littoral habitat after 4,200 BP. 
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• Possible catchment instability following a decrease in productivity after 

4,200 BP with a decrease in TOC. 

• However, Ca remains high with laminae continuing to form in the lake. 

BA-3: 202 – 0 cm (floating composite core depth) and 828 – 616 cm 

(composite core depth; 3670 – 3110 BP) 

• High rates of terrigenous deposition (enhanced Fe and Ti), likely 

representing mass flow(s) of sediment from the crater lake sides, following 

drying and catchment instability after 4,200 BP. 

• Despite high Ca content (inferred from high Ca peak area) laminae did not 

form, presumably due to unstable lake waters. 

• Corresponding decrease in productivity with values of TOC, diatom valve 

concentration, biogenic silica and carbonates reduced. 

• Increasingly turbid and nutrient-rich waters with increased abundance of 

Nitzschia paleacea and Nitzschia palea.  

• Areas of deeper waters in the basin still present with the presence of 

Nitzschia lancettula, but also shallower waters especially with the 

appearance of the meso-hypersaline Nitzschia “group latens” 

• Periods of nutrient-rich waters.  

BA-4: 616 – 344 cm (composite core depth; 3110 – 1710 BP) 

• Increased overall productivity with higher TOC, biogenic silica, carbonates 

and greater concentration of diatom valves.  

• Lake waters were mixed and nutrient-rich between 3,300 and 2,700 BP 

with the abundance of Aulacoseira granulata var. angustissima, Nitzschia 
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gracilis and Nitzschia fenestralis. Accompanied by return of laminated 

sediments. 

• Presumed lower lake level with decreased Nitzschia lancettula population, 

but this signal may be obscured by other taxa thriving with increased 

nutrient input. 

• Interval of higher, stratified lake levels after 2,700 BP with increase of 

Nitzschia lancettula.  

• Return to lower lake level with decrease of Nitzschia lancettula, but 

nutrient input remains high with Nitzschia fenestralis and Nitzschia 

paleacea abundant.  

BA-5: 344 – 68 cm (composite core depth; 1710 – 580 BP) 

• Despite higher TOC, algal productivity is reduced (low valve 

concentration, biogenic silica and carbonates. 

• Increased abundance of benthic taxa, predominantly of the Cymbellales 

order suggestive of shallower, fresh marginal areas in the lake basin. 

• Continued lower levels between 1,250 and 750 BP and decreased nutrient 

input with re-appearance of small Fragilarioid taxa as in BA-1, replacing 

Nitzschia paleacea and Nitzschia fenestralis.  

• Gradual increase in lake level with increased abundance of Nitzschia 

lancettula after 750 BP.
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Chapter 7 : 

Results - Garba Guracha 

In this chapter, the modern limnology and environment of Garba Guracha is 

outlined, then the palaeolimnological record of past environmental change over 

the past ~16,000 years is discussed. The lithological and chronological 

framework is presented (as in Bittner et al. submitted), which provides the context 

for the results of detailed geochemical and diatom analyses. The results from this 

thesis are then also interpreted and synthesised with data produced by other 

members of the Bale Mountains research group including: biomarkers (Bittner et 

al., submitted) and pollen (Gil-Romera et al., 2019), facilitating a more detailed 

reconstruction of environmental change at Garba Guracha for the past 16,000 

years.  

7.1 | Modern aquatic environment 

 

The waters of the Garba Guracha catchment are largely similar in chemical 

composition, with few minor differences between sample points (Table 7.1). 

Water pH is circumneutral with a low conductivity (6.92-7.37 pH and 50-98 

µS/cm). The ionic composition is also largely uniform across each sampling site, 

with HCO3
- the dominant anionic component and little change with depth in the 

lake centre. Despite low concentrations across every sample point, anions such 

as NO3
− and HCO3

- are comparatively more concentrated at Input 1. Spring 

samples typically exhibit lower concentrations of ions, except for nitrate, in 

comparison with other samples (Table 7.1). 
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Table 7.1: Garba Guracha hydrochemistry in February 2017. Sampling locations around the lake are shown in Figure 4.1. 

 

 

 

 
Conductivity 

(µS/cm) 
pH 

HCO3
- 

(mg/L) 
Cl-

(mg/L) 
SO4

2- 
(mg/L) 

F− 
(mg/L) 

NO3
− 

(mg/L) 
K+ 

(mg/L) 
Na+ 

(mg/L) 
Ca2+ 

(mg/L) 
Mg2+ 

(mg/L) 

Spring 1 75 7.37 36.12 3.30 13.81 0 9.20 1.27 12.05 3.06 0.27 

Spring 2 & 3 
(Pool) 

73 7.02 38.90 3.47 14.11 0 8.87 1.78 10.63 3.59 0.43 

Spring 4 50 7.13 30.56 2.87 13.84 + 6.56 0.84 5.98 2.88 0.47 

Outlet 71 7.04 50.01 3.53 13.66 0 + 1.58 8.86 6.50 0.75 

Lake waters 
(Surface) 

75 6.98 39.73 3.60 13.65 0 + 1.87 9.36 5.88 0.78 

Lake waters     
(5 m depth) 

88 7.00 44.45 3.75 14.34 0 + 2.65 9.49 6.44 0.83 

Shoreline 71 7.08 52.79 3.75 13.64 0 + 1.59 8.91 4.45 0.75 

Input 1 83 7.27 77.79 3.05 15.50 0.25 7.12 1.91 13.40 4.25 0.21 

Input 2 70 7.29 41.68 3.52 13.89 0 + 1.55 8.94 5.16 0.71 

Input 3 98 6.92 50.57 4.79 13.09 0 + 3.14 13.57 4.89 0.71 

Swamp 85 7.07 50.01 4.31 13.45 0 + 3.12 13.74 4.91 0.66 
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7.2 | Modern diatom ecology 
 

The results of each sample and total site abundance are presented in Figure 7.1, 

with the abundance values written here expressed as a percentage of all samples 

taken, unless stated otherwise. Small, pennate Fragilarioid taxa are the most 

dominant (71.4%; Figure 7.1), with Staurosirella pinnata and Staurosira 

construens var. venter varieties making up >87% of this. This dominance of 

Fragilarioid taxa is illustrated by the composition of a littoral sample taken at Input 

2, with >97% being Fragilarioid taxa. Naviculoid and Cymbelloid species were 

uncommon across the site (9.3%, 5.6%, 4.5% and 3.1%, respectively). However, 

the total abundance of these taxa are biased by the relatively high abundance of 

Encyonopsis microcephela and Cymbella gracilis in a single epiphytic sample 

(Spring 4; 23.4%), and Navicula minima in the swamp sample (18.8%). Without 

these samples the relative total abundance of these taxa would be <0.5% and 

<2.5%, respectively. 

Comparatively, epiphytic samples are the most diverse, despite still being 

dominated by Fragilarioid taxa, with a greater abundance of other taxa. For 

example, Achnanthidium (predominantly Achnanthidium minutissima) are the 

second most common taxa encountered across all samples, but most abundant 

in 3 samples 2 of which contain vegetation, highest in the swamp (21%). Similarly, 

Gomphonema (predominantly Gomphonema parvulum) are most common in 

epiphytic samples. Amphora pediculus (the only Amphora species observed) is 

only present in a few samples, with a relatively high abundance in the shoreline 

littoral sample (11.2%). Multiple, small Nitzschia species (mainly Nitzschia palea 

and Nitzschia epiphytica) are rare across the site (0.3-6.2% across samples; 2% 

total).  
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Figure 7.1: Composition of the Garba Guracha diatom flora around the lake (left), with sample locations also shown (right). Taxa above 3% 

relative abundance are included.  
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7.3 | Master core creation and lithology 
 

A master core (BAL-GGU17-1AB) of the overlapping BAL-GGU17-1A and 1B 

cores (included material shown in Figure 7.2) was created by visual correlation 

of core lithology and several XRF elements (Ti, Fe, Rb, and K) using the Excel 

software Stratfit (Sagnotti & Caricchi, 2018). Master core creation was performed 

by L. Bittner, the author of this thesis and G. Gil-Romera.  

Four major lithostratigraphic units in BAL-GGU17-1AB are defined based on 

variations in colour, texture and composition as identified by smear slide analysis 

(Figure 7.2). The sedimentary sequence of BAL-GGU17-1AB consists of green 

banded siliciclastic fine material interbedded with layers of coarser material and 

even gravel in the lower part (Figure 7.2). It can be divided into 4 lithostratigraphic 

units: 

Unit 1 (1552-1476 cm) contains greenish banded siliciclastic coarse sand.  

Unit 2 (1476 – 1276 cm) is composed of two meters of highly coarse silt and 

gravel.  

Unit 3 (1276-838 cm) consists predominantly of green banded siliciclastic 

material mostly coarse silt with amorphous organic matter (OM) intersected by 

one layer of fine silt between 1219-1166 cm and a layer of coarse sand at 1031-

966 cm.  

Unit 4 (838-70 cm) consists of nearly 8 m of dark brown massive organic mud 

with varying diatom content. This unit is intersected by a small layer of green-

greyish massive siliciclastic fine silt at 828 cm and two layers of organic poor, 

finer sediments at 496 cm and 505 cm. 
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Three tephra layers have been identified at 129 cm (GGT-1), 604 cm (GGT-2), 

and 1198 cm (GGT-3) depth, respectively. The latter through XRF-derived trends 

(see below for detail). Geochemical analyses of tephra glass shards by C. Martin-

Jones (Cambridge University; as part of Bittner et al. in prep) finds that GGT-1 

correlates best with tephras TT-2 from Lake Tilo and CHT-1 from Lake Chamo 

and GGT-2 with Tilo tephra TT-13 (see Martin-Jones et al., 2017), which have 

been linked to Corbetti (Fontijn et al., 2018). Analyses are ongoing for GGT-3. 

 

Figure 7.2: Garba Guracha master core (BAL-GGU17-1AB) lithostratigraphy (Bittner et 

al., submitted.). 
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7.4 | Core chronology 
 

7.4.1 | Sediment-water interface 
 

Total 210Pb activity reaches equilibrium depth with supported 210Pb at ~52 cm of 

the core. Unsupported 210Pb activities, calculated by subtracting 226Ra activity (as 

supported 210Pb) from total 210Pb activity, decline overall irregularly with depth 

(Figure 7.3b). The unsupported 210Pb activity profile shows two different sections: 

the top 19 cm and the rest of the core. Within each individual section, 

unsupported 210Pb activities decline more or less exponentially with depth, 

suggesting relatively uniform sedimentation rate within the sections. However, 

sedimentation rates might have changed at 19 cm (Yang, pers. comm.).  

The 137Cs activity versus depth profile (Figure 7.3c) shows a well-resolved peak 

at 7.5 cm. This peak is most likely derived from the 1963 AD fallout maximum of 

the atmospheric testing of nuclear weapons. The anthropogenic radionuclide 

Americium-241 is considered rare (~0.5% of the 137Cs inventory) in the 

environment, but stable in lake sediments (Appleby et al., 1991; Appleby, 2001). 

Although one data point is insufficient for dating, 241Am activity of any kind at 7.5 

cm supports the 1963 fallout of nuclear weapon testing represented by 137Cs 

trends.  

Use of the CIC (constant initial concentration) dating model was precluded by the 

variability in the unsupported 210Pb profile. 210Pb dates were calculated using the 

CRS (constant rate of 210Pb supply) dating model (Appleby & Oldfield, 1978). The 

CRS dating model places 1963 depth at 14.5 cm, which is considerably deeper 

than the depth suggested by the 137Cs and 241Am records. The corrected CRS 

chronologies and sediment accumulation rates were calculated by using the 
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sediments at 7.5 cm as formed in 1963. 210Pb sedimentation rates show similar 

levels before 1963, while there is a small peak in the 1930s (~19 cm; Table 7.2; 

Figure 7.3).  

Table 7.2:  210Pb chronology of Garba Guracha sediment-water interface core. 

Depth 

(cm) 

Drymass 

(g cm-2) 

Chronology 

Sedimentation Rate 
Date 

(AD) 

Age 

(yr) g cm-2 yr-1 cm yr-1 ± % 

0 0 2017 0 - - - 

1.5 0.0661 2014 3 ± 2 0.0242 0.248 3.3 

4.5 0.4389 1997 20 ± 2 0.0181 0.129 4.3 

6.5 0.7642 1976 41 ± 3 0.0138 0.086 5.4 

7.5 0.9188 1963 54 ± 5 0.0096 0.062 5.7 

8.5 1.0774 1960 57 ± 5 0.066 0.4 6.8 

9.5 1.2495 1958 59 ± 5 0.086 0.5 6.3 

10.5 1.4216 1956 61 ± 5 0.0799 0.429 9 

12.5 1.8091 1951 66 ± 5 0.0762 0.4 8.3 

14.5 2.184 1946 71 ± 5 0.0768 0.444 10.7 

16.5 2.5007 1942 75 ± 6 0.0782 0.444 12.8 

18.5 2.8881 1937 80 ± 6  0.0984 0.444 19 

20.5 3.3863 1933 84 ± 6  0.1255 0.5 16.2 

22.5 3.8918 1929 88 ± 7 0.108 0.444 21.3 

24.5 4.3597 1924 93 ± 7 0.084 0.4 24.8 

26.5 4.7295 1919 98 ± 8 0.082 0.5 28.9 

28.5 5.017 1916 101 ± 9 0.089 0.556 26 

31.5 5.5316 1910 107 ± 10 0.085 0.5 40.8 

34.5 6.0403 1904 113 ± 11 0.076 0.437 30.7 

38.5 6.742 1894 123 ± 13 0.064 0.364 71.8 

42.5 7.4532 1882 135 ± 14 0.0655 0.364 51.4 

46.5 8.1826 1872 145 ± 15 0.064 0.346 76.2 

51.5 9.1197 1856 161 ± 18 0.058 0.313 86.6 
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Figure 7.3: Fallout radionuclide concentrations in short core taken from Garba Guracha 

showing (a) total 210Pb, (b) unsupported 210Pb, and (c) 137Cs and 241Am concentrations 

versus depth (top). Radiometric chronology showing the CRS model 210Pb dates and 

sedimentation rates for the Garba Guracha short core (bottom). 

7.4.2 | Main core 
 

A total of 25 14C dates from three different materials (Table 7.3) was merged with 

data from the surface core to give a full composite chronology created using a 

Bayesian age-depth model (Figure 7.4). The stratigraphically consistent 

radiocarbon dates indicate the long core covers from 15930 to 325 cal yr BP, with 

the surface core extending to the present based on the 210Pb chronology with a 

small gap of ~70 years between the long core and surface core.  
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The mean sedimentation rate (MSR) for the BAL-GGU17-AB core is 1.25 mm per 

year. The sedimentation rate of the core is relatively constant. The highest 

average values of 2.90 mm per year are recorded between 1,110-990 cm with 

maximum values of 5 mm per year. A second maximum is present from 900 to 

720 cm with a sedimentation rate of 1.26 mm per year. In between these maxima, 

a marked sedimentation minimum with decreased rates by up to 80% 

characterizes the time period from 12,800 BP to 11,300 BP. From 720 cm the 

sedimentation rate decreases constantly until the present day with a mean 

sedimentation rate of 0.70 mm per year. 

7.5 | Core geochemistry 
 

Selected high-resolution geochemical elements plots are shown in Figure 7.5, 

which is divided into zones based on large changes in at least two elements plots. 

All units are given as normalised (/Mo Inc+Coh see Chapter 4 for details on 

normalisation process) peak area, with the ratio plots dimensionless. The solid 

black line represents a 500-point smoothing of the data to highlight more general 

trends. Lithogenic elements strongly, positively correlate (r = 0.89 to 0.97; Figure 

7.6) and can be seen to covary in Figure 7.5. This positive correlation amongst 

lithogenic elements also extends to Mn, Ca and Y with r-values of >0.8, 0.93-0.97 

and >0.75, respectively (Figure 7.6). Values of elements such as Rb (0-0.076 

peak area) are low in comparison to elements such as Fe (0.126-2.712 peak 

area) but co-vary with the more common lithogenic elements indicating that the 

trends are reliable. 
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Table 7.3: AMS radiocarbon dates in order of depth for the Garba Guracha core. 

 Samples 
14C age  

(yrs BP) 

Calibrated age (cal. BP) 

 Code Depth (cm) Material 

2-σ range (relative area 

under probability 

distribution) 

U
n

iv
e

rs
it

ä
t 

B
e

rn
 

7931.1.1 105 Bulk 935 ± 118 662-1081 (99.6%) 

8273.1.1 105 n-alkane 1076 ± 79 796-875 (87.2%) 

8282.1.1 185 Charcoal 2124 ± 129 1779-2366 (99.5%) 

7930.1.1 205 Bulk 2323 ± 111 2110-2722 (99.4%) 

8272.1.1 205 n-alkane 2399 ± 101 2302-2743 (95.4%) 

8271.1.1 303 n-alkane 3476 ± 89 3556-3979 (98.5%) 

7929.1.1 303 Bulk 3517 ± 111 3555-4091 (98.2%) 

8270.1.1 503 n-alkane 5789 ± 109 6391-6804 (94.5%) 

7928.1.1 503 Bulk 5794 ± 135 6305-6903 (100%) 

8269.1.1 602 n-alkane 6967 ± 123 6391-6804 (100%) 

7927.1.1 602 Bulk 7320 ± 144 7922-8404 (98.0%) 

8268.1.1 700 n-alkane 8753 ± 156 9516-10201 (99.7%) 

7926.1.1 705 Bulk 8753 ± 162 9496-10206 (100%) 

8279.1.1 794 Charcoal 10214 ± 203 11267-12531 (100%) 

7925.1.1 794 Bulk 9301 ± 273 9740-11235 (100%) 

8267.1.1 898 n-alkane 9650 ± 155 10545-11368 (99.2%) 

8266.1.1 898 n-alkane 9706 ± 175 10563-11640 (99.4%) 

7924.1.1 998 Bulk 11110 ± 48 12828- 13082 (100%) 

D
ir

e
c

t 
A

M
S

 

D-AMS 
029493 

1108 Bulk 11377 ± 50 13102- 13313 (100%) 

D-AMS 
029494 

1218 Bulk 12181 ± 51 1390-14230 (98.7%) 

D-AMS 
029495 

1493 Bulk 12977 ± 53 15291-15740 (100%) 

D-AMS 
027899 

1528 Bulk 12997 ± 57 15304-15772 (100%) 

D-AMS 
029496 

1548 Bulk 13294 ± 59 15772-16193 (100%) 
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Figure 7.4: Bayesian age-depth model of fourteen bulk AMS 14C dates from core BAL-GGU17, constructed in Bittner et al. (submitted) 

using BACON for R. Depth refers to depth below the sediment surface. The individual age distribution for each date, as relative area under 

probability distribution, is shown in blue. The red dotted line shows the most likely age-depth distribution, whilst the grey envelope denotes 

the chronological uncertainty of the model. The upper panel shows the stability of the Markov Chain Monte Carlo runs (3500 iterations); the 

prior (thick line) and posterior (thin line) distribution for the accumulation rate (yr/cm), and; the prior (thick line) and posterior (thin line) for 

the dependence of accumulation rate between sections.
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The ratio of the incoherent scatter against the coherent scatter (Inc:Coh) can be 

used as an approximation of the atomic number of the average matrix 

composition. The number of incoherent scattering between electrons is theorised 

to be higher for elements with a low atomic mass (Guyard et al., 2007).  Since 

organic carbon has a lower average atomic number than inorganic materials (i.e. 

silica, carbonates or any clastic materials), increased Inc:Coh ratio values have 

been used successfully qualitatively to infer higher sediment organic content (e.g. 

Guyard et al., 2007; Burnett et al., 2011; Chawchai et al., 2013). Strong negative 

correlation of Inc:Coh with major lithogenic elements (r = -0.90 to -0.97) confirms 

Inc:Coh is a useful proxy for increased organic content. Distinct and co-varying 

peaks of Fe, Y (not shown), Rb, K and Zr shown in Figure 7.5 also correlate with 

the location of visible tephra layers, and were thus useful in identifying a tephra 

horizon not detected in the lithological analyses.  

GGX-1: 1,548 – 1,200 cm (15,950 – 13,950 cal BP) 

Iron, Zr, Rb, K covary and are variable, but peak area values are on average at 

their highest throughout this zone (around 1.5, 0.15, 0.075 and 0.045, 

respectively) especially at the zone boundary between 1,211 and 1,240 cm. At 

this point, maximum peak area is reached in Zr (0.31), K (0.14) and Rb (0.07). 

Similarly, Mn is relatively stable at around 0.05 peak area, before reaching peak 

values (0.227 peak area) at the zone boundary with an average peak area of 

0.102 ± 0.041 between 1,211 and 1,240 cm. In a negative correlation with 

lithogenic elements (Figure 7.5), ratio values of Inc:Coh, and Fe:Mn, are low (~4 

and ~30, respectively) with a decrease to three times lower Fe:Mn values at the 

zone boundary over 30 cm. Zr:Rb values are consistently low at around 3 

throughout this zone. The gap in data in this zone (1,237-1,540 cm) corresponds 
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to the lithostratigraphic unit II (Figure 7.3), composed of coarse sands and gravel, 

as the uneven surface of this unit could not be accurately scanned by the XRF. 

GGX-2: 1,200 – 793 cm (13,950 – 10,630 cal BP) 

This zone is characterised by decreased lithogenic element (including Mn) values 

following the highs of zone boundary, that slowly decreases with depth (e.g. K = 

~0.050 peak area at 1,200 cm to ~0.025 peak area at 800 cm), despite some 

brief, moderate increases (e.g. around 1,200-1,100 cm and 1,000-900 cm) to 

slightly higher peak area values. The decrease throughout the zone, with 

moderate fluctuations, are more pronounced in K peak area, with this also true of 

Rb and Mn at ~1,000-900 cm, in comparison to other lithogenic elements.  

Conversely, following the sharp increase at the boundary of zones 1 and 2, 

comparatively higher and constant values Fe:Mn are evident through this zone 

(average = 32.14 ± 5.38), with Inc:Coh steadily increasing from ~4 at 1,200 cm 

to 5.5-6 by 800 cm. Zr:Rb remains negligible at ~3. A previously unidentified 

tephra horizon was observed in the XRF at 1,199 cm depth by the highest Fe 

values in the core (2.71 peak area), and confirmed with high, covarying Y (not 

shown in Figure 7.4), Zr, K and Rb peak area (Figure 7.4).  

GGX-3: 793 – 20 cm (10,630 – 80 cal BP) 

Two distinct and co-varying peaks in Zr, Fe, Rb and K (with a corresponding 

sharp decrease in Inc:Coh) correlate with the visible tephra layers identified in 

lithological analyses at 604 cm and 129 cm. Apart from at these tephras, 

lithogenic elements are at their lowest throughout this zone after declining from 

the GGX-2. Despite some small increases (e.g. 500 cm), lithogenic elements 

continue to slowly decline from 793 to 20 cm. Similarly, Mn steadily decreases 
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throughout the zone, despite small, isolated peaks in peak area (e.g. 720 m and 

530 cm), to reach the lowest values in the core after 180 cm with an average 

peak area of 0.006 to the top of the core. Inc:Coh continue to steadily rise in this 

zone, with average values not falling below 5.5, to peak values of around 6 

towards the top of the core. In comparison to zones GGX-1 and GGX-2, Zr:Rb 

values increase through GGX-3 (~4-5 on average) with multiple large peaks in 

Zr:Rb (>40-88, but with two peaks of 147 and 224 not shown in Figure 7.5) after 

350 cm.  

Values of Fe:Mn are the most variable throughout this zone after 740 cm with 

values between 10 and 80 until 375 cm. After a comparatively large decrease 

starting at 375 cm (with average values from ~50 to ~30 at 325 cm) Fe:Mn 

continues to fluctuate at higher values, with a sharp increase at 175 cm to 

average values of >50 after 140 cm, with values of >100 reached toward the top 

of the core.  

7.6 | The diatom record 
 

GGD-1: 1547.5-774.5 cm (15,930-10,460 BP) 

Diatom abundance throughout this zone is very low (6.5-30 x 103/g; average 17.5 

x 103/g), with the lowest concentrations in the core (0.8-4.9 x 103/g) leading to 

incomplete counts, and thus a lack of data, between 1540 and 1120 cm (15,850-

13,040 BP). It is important to note however, that a large portion of this gap in data 

also corresponds to the lithostratigraphic unit II (1,237-1,540 cm; Figure 7.7) 

composed of coarse sands and gravels, and thus could not be properly sampled 

for diatom analyses.  
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Figure 7.5: XRF-derived peak area geochemical data for the Garba Guracha core. Solid black line denotes a 500-point running mean. Stars 

denote position of tephra layers. 
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Figure 7.6: Pearson’s correlation matrix of selected elements in the Garba Guracha core derived from XRF scanning. The first five elements, 

and all ratios, are shown in Figure 7.5. The matrices of scatterplots (below histograms) indicate the association and correlation of each 

comparison (r-values above histograms; p=0.000 for each correlation).
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Facultatively planktonic Fragilarioid taxa are abundant through this zone. 

Staurosirella pinnata (Ehrenberg) D.M.Williams & Round constitute up 20-40% of 

the assemblage in this zone, with Pseudostaurosira pseudoconstruens 

(Marciniak) D.M.Williams & Round abundance also relatively high, especially 

toward the base of the core (~40% relative abundance). Benthic taxa also 

represent up 30-40% of the assemblage in GGD-1, with low abundances of 

multiple taxa, mostly the epiphytic Achnanthidium minutissimum (Kützing) 

Czarnecki and Gomphonema parvulum (Kützing) Kützing. Taxa that are 

sometimes considered aerophilous (e.g. Nitzschia amphibia Grunow) also 

present at low abundances (<10%) in this zone after 1120 cm. The planktonic 

Discostella stelligera (Cleve & Grunow) Houk & Klee occurs between 918-867 

cm, peaking at a relative abundance of 42.1% at 877.5 cm.  

GGD-2: 764.5-680.5 cm (10,360-9,200 BP) 

Fragilarioid taxa dominate this zone with the relative abundance of facultatively 

planktonic taxa consistently above 80% and reaching as high as 95% at ~740 

cm. Staurosirella pinnata increase from ~20 to 40% relative abundance from the 

previous zone to 43.7 at the base of this zone (764.5 cm), varying above 43% 

with a peak as high as 89.4% relative abundance (highest abundance through 

the core) at ~740 cm. Interestingly, valve concentration also rapidly increases at 

the start of the zone to reach high concentrations (201 ± 111 x 103/g average 

between 764 and 680 cm). 
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Figure 7.7: Diatom diagram for the Garba Guracha core by depth (age as secondary axis). Included are habitat groupings and valve 

concentration data. Zones as determined by CONISS are also shown (GGD-1, GGD-2, GGD-3, GGD-4, GGD-5).
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After the peak abundance at 740 cm Staurosirella pinnata remains dominant at 

slightly lower abundances (50.5% on average), with a small secondary peak of 

~65% at 690.5 cm, for the remainder of the zone. Similarly, valve concentration 

decreases slightly after ~740 cm, before rising in a similar trend to Staurosirella 

pinnata abundance.  

After this small decrease in valve concentration/S. pinnata abundance at ~740 

cm, Staurosira construens var. venter (Ehrenberg) P.B.Hamilton reaches an 

average abundance of 23.17% from 730 to 680 cm. Furthermore, a small, 

isolated increase in Pseudostaurosira pseudoconstruens abundance occurs (3-

12% between 740 and 720 cm). Pseudostaurosira brevistriata (Grunow) 

D.M.Williams & Round comprises on average 17.97% of the assemblage 

throughout most of GGD-2, except for a small reduction to ~7% around 700 cm. 

Benthic taxa are present in GGD-2, but at considerably low relative abundances 

(<2%) for multiple individual taxa, with only isolated samples with taxa such as 

Achnanthidium minutissimum and Gomphonema pumilum (Grunow) E.Reichardt 

& Lange-Bertalot reaching relative abundances of >5%. A small isolated peak of 

Aulacoseira granulata (Ehrenberg) Simonsen (~15.56% relative abundance) is 

present at 720 cm.   

GGD-3: 680.5-368.5 cm (9,200-4,700 BP) 

The relative abundance of facultatively planktonic taxa remains >90% throughout 

this zone, reaching their highest relative abundance (99.7%) at 437.5 cm. 

However, despite this high relative abundance, species diversity is low with 

Staurosirella pinnata and Staurosira construens var. venter, along with 
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comparatively small amounts of Pseudostaurosira brevistriata, are the only taxa 

present (Figure 7.7).  

The relative abundance of Staurosira construens var. venter increases sharply at 

the zone boundary (15.6% at the upper boundary of GGD-2 to 73.7% at the lower 

boundary of GGD-3) and remains high (average 53.8% between 670.5 and 437.5 

cm), with small decreases (by ~25%) at 602.5 and 503.5 cm. It is important to 

note that decreases such as these of Staurosira construens var. venter are 

largely mirrored by corresponding increases in Staurosirella pinnata and vice 

versa. Valve concentration remains relatively high between 670.5 and 437.5 cm, 

at an average of 137.1 ± 93.6 x 103/g, with peaks almost triple the average at 

652.5 and 437.5 cm. However, between 437.5 and 368.5 cm (5,730-4,700 BP) 

valve concentration drastically decreases to an average of 14.4 ± 9 x 103/g, 

reaching as low as 2.4 x 103/g at 407.5 cm. However, Staurosira construens var. 

venter/Staurosirella pinnata relative abundance remains high. Isolated peaks of 

Pseudostaurosira brevistriata, namely at 602.5, 503.5 and 397.5 cm of 45.2%, 

20.6% and 24% relative abundance, respectively, can also be observed in GGD-

3. 

GGD-4: 368.5-85.5 cm (4,700-590 BP) 

Valve concentration sharply increases from the upper boundary of GGD-3 to the 

lower boundary of GGD-4 by 189 x 103/g. Furthermore, this transition from zone 

GGD-3 to GGD-4 is also marked by a sudden, decline in Staurosira construens 

var. venter (4.1%) and S. pinnata (1.4%), a roughly 20 and 30% reduction, 

respectively. The dominance of facultatively planktonic Fragilarioid taxa is 

gradually reduced by increases in the abundance of benthic/aerophilous taxa.  
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Amphora pediculus (Kützing) Grunow and Gomphonema parvulum and 

Gomphonema pumilum are present throughout most of zone, but at low 

abundances (6%, 4% and 2.7% on average). Similarly, Nitzschia amphibia is 

observable throughout this zone with small peaks of ~25% and 15% at 323.5 and 

145.5 cm, respectively. Navicula radiosa Kützing appears in the assemblage and 

reaches an average abundance of 10.68% between 353.5 and 283.5.5 cm. After 

303.5 cm, the abundance of Navicula radiosa declines and remains negligible 

throughout GGD-4. Interestingly, at this point the abundance of Cymbella 

leptoceros (Ehrenberg) Kützing increases and the taxon remains abundant 

(16.1% relative abundance on average) between 303.5 and 185.5 cm, despite 

some isolated troughs (e.g. ~8% relative abundance between 255.5 and 245.5 

cm).  

However, it is important to note that facultatively planktonic taxa still represent a 

large percentage of the assemblage throughout parts of this zone this zone (9.8-

92.7% through GGD-4). Pseudostaurosira pseudoconstruens is the most 

common facultatively planktonic taxon in GGD-4, with its relative abundance 

fluctuating multiple times between 0.5 and 64% through the zone (20.1 ± 15.9 % 

on average through GGD-4). Pseudostaurosira brevistriata is also sporadically 

present with a large peak at the lower zone boundary. Facultatively planktonic 

Fragilarioid taxa re-establish dominance after 155 cm with a gradual increase in 

the abundance of Staurosirella pinnata, small increases in Staurosira construens 

var. venter abundance. These increases correspond with gradual decreases in 

the abundance of taxa such as Cymbella leptoceros and Nitzschia amphibia. A 

large increase in valve concentration (61 to 378 x 103/g; peak valve concentration 

for the core) marks the upper boundary of this zone. 
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GGD-5: 85.5-0.5 cm (590 BP-present day) 

Following the peak in valve concentration at 85.5 cm GGD-5 begins with a sharp 

decrease to ~13 x 103/g and remains comparatively low (31.2 ± 15.3 x 103/g on 

average) with valve concentration only reaching >50 x 103/g once (20.5 cm). The 

abundance of facultatively planktonic also decreases to ~20% at this point, with 

a corresponding rise in benthic/aerophilous taxa. Cymbella leptoceros is 

abundant during this period, with Amphora pediculus (4.3-19%), Nitzschia 

amphibia (3.8-12.4; max 24.2% at 75.5 cm), Achnanthidium Minutissimum (2.6-

12.9%) also common. the relative abundance of Cymbella leptoceros (with similar 

trends in Cymbella hustedtii Krasske abundance) gradually increases and 

dominates the total counts (>38%; >46% when including Cymbella hustedtii) by 

20.5 cm. Numerous other benthic species are present during this interval (e.g. 

Navicula radiosa and Gomphonema parvulum) but are rarer (<5% each).  

A decrease in the relative abundance of Nitzschia amphibia corresponding to the 

gradual increase in Cymbella leptoceros abundance is observable. However, 

after 20.5 cm the relative abundance of Nitzschia amphibia beings to rapidly 

increase to ~40% at the top of the core. This rise is coupled with a corresponding 

decrease in the abundance of epiphytic taxa such as Cymbella leptoceros. 

Additionally, small increases in Staurosirella pinnata and Pseudostaurosira 

pseudoconstruens (~20% for each) are evident at ~20 cm, although the relative 

dominance of Nitzschia amphibia also replaces these toward the top of the core. 

7.6.1 | Garba Guracha diatom principal curve and quantitative data 
 

The principal curve through the Garba Guracha diatom data is shown in Figure 

7.8. The start of the gradient is populated by facultatively planktonic species, 
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mirrored by largely benthic/aerophilous taxa towards the end. The main trend 

along the gradient follows Staurosira construens var. venter through to 

Staurosirella pinnata (dominant to largely exclusive in GGD-5 and GGD-4). This 

is followed by an area populated by Pseudostaurosira brevistriata and 

Pseudostaurosira pseudoconstruens (common in many zones, but most 

prevalent through GGD-4 to GGD-2 and GGD-2, respectively), with a gradual 

transition to a large cluster of the remaining taxa which are benthic/aerophilous 

that are common in GGD-2, and dominate GGD-1, such as Cymbella leptoceros, 

Amphora pediculus and Nitzschia amphibia. This curve reflects (and simplifies on 

to one axis) major compositional shifts, the potential drivers of which are 

interpreted further below in text. PrC scores for each depth, as well as diatom 

inferred conductivity, rate of change and Hill’s N2 (discussed in Chapter 4) are 

plotted alongside habitat percentages and core stratigraphy from Figure 7.9 to 

more effectively summarise and quantify changes in the diatom record.  

 

Figure 7.8: Principal curve (blue) of the Garba Guracha diatom data. Taxa scores in 

(PCA) ordination space are denoted by red crosses, with the main taxa labelled. ‘A’ 

denotes the beginning of the curve (i.e. lowest principal curve scores) and ‘B’ 

representing the end of the curve (i.e. highest principal curve scores).
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Figure 7.9: Quantitative diatom data for the Garba Guracha core. Principal curve shown in Figure 7.8. Methods and packages used for computing 

these statistics are detailed in Chapter 4. Zones as determined by CONISS are also shown (GGD-1, GGD-2, GGD-3, GGD-4 and GGD-5). 
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7.7 | Interpretation of the Garba Guracha sedimentary record  
 

All data from the Garba Guracha core presented in this study are now interpreted 

in terms of environmental changes in the lake basin over the past ~16,000 years. 

Additionally, pollen and stable isotope data produced by other members of the 

research team (Gil-Romera et al., in prep; Bittner et al., in prep) are also referred 

to in this section, to aid interpretation of specific trends. For ease of interpretation, 

main environmental changes in both diatom and XRF data are summarised in 

Figure 7.10. The record has been divided into 4 major time periods (GGU-1 to 

GGU-4) based on significant changes in the palaeoenvironmental data.  

GGU-1 (15,930-10,430 BP; 1548-774 cm) 

The duration and extent of ice cover exerts an overriding influence on habitat 

availability, amongst other things; it is a key factor in determining the development 

and diversity of a diatom community (Smol & Douglas 2010). For example, 

sediment trap experiments in the Swiss Alps and ten High Arctic lakes 

demonstrate that longer periods of colder water and ice-cover inhibit the 

development of a planktonic community and more complex growth forms (e.g. 

motile, stalked or tube dwelling), known to favour the proliferation of Fragilarioid  

species (Lotter & Bigler, 2000; Griffiths et al., 2017). Many small Fragilarioid are 

considered r-strategists (Lotter & Bigler, 2000), with low light and very low nutrient 

(such as N, P and Si) requirements (Michel et al. 2006). As a result, Fragilarioid 

taxa can exploit the harsh environments that are characterised by prolonged cold 

waters and ice cover: low light, low nutrients and a lack of aquatic macrophytes, 

which might exclude other taxa.
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Figure 7.10: Synthesis of both XRF-derived peak area geochemical and diatom data for the Garba Guracha core. Interpretation zones 

referred to in-text are also shown. Solid black line denotes a 500-point running mean through XRF data.
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Thin layers of ice have been observed to form on the modern-day lake surface at 

night (personal observation by the author), but not to the extent of developing a 

thick ice cover for extended periods as seen in the European Alps. Nevertheless, 

the dominance of small, Fragilarioid in the Garba Guracha core between 16,000 

and 10,500 BP implies cold, niche conditions where generalists can thrive.  

High Poaceae, Artemisia and Amaranthaceae/Chenopodiaceae percentages (but 

with a low pollen influx; Umer et al., 2007; Figure 7.11) indicates a local 

environment characterised by a sparse cover of steppe-like, grasses and dwarf 

shrubs under a dry and cold climate. This is further evidenced by relatively high 

diatom inferred conductivity (Figure 7.10), although this may represent poor 

representation of the high altitude assemblage in the low altitude dominated 

African dataset (Gasse et al., 1995). Low valve concentrations suggest that 

despite the dominance of Fragilarioid (Figure 7.9), unfavourable conditions 

severely restricted their growth. Although, the large input of minerogenic matter 

may be ‘diluting’ the concentration of diatom valves during this period. 

Achnanthidium minutissimum is a pioneer taxon that prefers fresh, clean waters, 

but is tolerant of heavy disturbance/pollution (Peterson & Stevenson, 1992). 

Consequently, it is dominant in the fresh, glacial streams of the Himalayas, 

Canada and European Alps (Cantonati et al., 2009; Gesierich & Rott, 2012).  The 

presence of benthic taxa (Figure 7.7), such as Achnanthidium minutissimum, 

suggests that glacial meltwater may have been a key source for Garba Guracha 

and that these streams may have served as one of the isolated corridors of habitat 

for more motile diatoms.
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Figure 7.11: Pollen diagram from Garba Guracha from Umer et al. (2007). Percentages are calculated from the sum of all pollen grains and fern 

spores counted. The red line denotes the increase in Ericaceous vegetation cover.  
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High lithogenic element values (Figure 7.5) are indicative of high allochthonous 

inputs, likely associated with the adjacent glacier, to the core site and lake during 

this period. The highly minerogenic sediment that was delivered to the lake was 

composed of grains of multiple sizes due to the increased peak area of both Zr 

and Rb, associated with coarser and fine grain factions, respectively (Davies et 

al., 2015; Figure 7.5). However, low Zr:Rb suggests that the majority of 

minerogenic material is fine, likely associated with retreat of the nearby glacier. It 

is also likely that the retreat of the glacier delivered large volumes of minerogenic 

matter (such as those cores that could not be split between 1476 to 1276 cm) as 

sudden mass flows of material. The identification of turbidites through the 

remainder of the core however is problematic with no significant changes in 

sediment colour (unlike at Lake Babogaya with clear breaks in laminated 

sections) or grain size observable. Further, more detailed grain size work may aid 

in the identification of possible layers, but such analyses were not performed in 

this study. Consequently, it is not possible to accurately discern the impact, if any, 

of turbidites on the ecological and geochemical record.  

The dominance of Fragilarioid taxa may also be in response to increased turbidity 

(therefore light availability) and Al content (Tiercelin et al., 2008 and XRF data in 

this study (not shown in Figure 7.5)), normally associated with glacial flour, the 

latter influencing P bioavailability availability (see Norton et al., 2011; Burpee et 

al., 2018). For example, Burpee et al. (2018) highlight the higher turbidity in 

Greenland glacier-fed lakes as one of the key factors influencing the dominance 

of Fragilarioid taxa in these lakes. Furthermore, they tentatively link increased Al 

input with reduced mobility of P as a factor in determining ecology of these lakes.  
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Continued autoecological studies have illustrated some subtle differences exist 

between Fragilarioid taxa in terms of preferred habitats and environmental optima 

(e.g. Schmidt et al., 2004; Karst-Riddoch et al., 2009; Griffiths et al., 2017). For 

example, in comparison to other Pseudostaurosira brevistriata and 

Pseudostaurosira pseudoconstruens (more common above 10oC), across 49 

Icelandic lakes that Staurosirella pinnata and Staurosira construens var. venter 

were more common in colder waters (<10oC), with the latter being marginally 

more competitive in water colder than 8oC (Karst-Riddoch et al., 2009). 

Similarly, in sedimentary records from the Arctic, different taxa within the 

Fragilarioid group exhibit dissimilar responses to Holocene climatic changes (e.g. 

Cremer et al., 2001; Podritske & Gajewski, 2007; Finkelstein & Gajewski, 2008). 

At Garba Guracha the dominance of Fragilarioid taxa, especially Staurosirella 

pinnata, reaffirm that cold and oligotrophic waters likely prevailed during zone 

GGU-1. Pseudostaurosira brevistriata and Pseudostaurosira pseudoconstruens 

are also known to be competitive in cold, shallow waters. However, their 

presence, although in smaller abundances, may represent additional 

environmental gradients such as changes in seasonal temperatures, as they are 

known to be more successful in slightly warmer waters (e.g. Schmidt et al., 2004; 

Karst-Riddoch et al., 2009). These small seasonal differences in temperature may 

be driving the clear differentiation between Pseudostaurosira brevistriata/ 

Pseudostaurosira pseudoconstruens and Staurosirella pinnata/Staurosira 

construens var. venter towards the end of the principal curve (Figure 7.8; Figure 

7.9). Between 11,500 and 11,000 BP, the planktonic Discostella stelligera briefly 

appears in the record (Figure 7.7). Discostella stelligera require a N-rich 

environment (especially when P is limited) and thermal stratification of the water 
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column to proliferate in a system (Saros et al. 2014). As this taxon is present in a 

presumably nutrient limited system (low TOC and high Fragilarioid taxa 

abundance), it is possible that Discostella stelligera during this interval is 

responding to a change in the mixing regime of the lake. In this case either: (i) 

larger areas of the lake became completely ice-free for entire diurnal cycles or (ii) 

waters became deeper and warmer, and as a result experienced a sustained, 

albeit short-lived period of stratification and thermal stability where Discostella 

stelligera thrived. However, it is important to note that the clearest signals of 

changing lake stratification patterns inferred from Discostella stelligera 

abundance occurs when N:P supply ratios are at a sustained higher level (Saros 

et al., 2014). Thus, a brief interval of increased nutrient content cannot be 

completely ruled out. 

GGU-2 (10,430-4,440 BP; 774-353 cm) 

After 10,425 BP (774 cm), significantly higher valve concentrations in the core are 

evident (Figure 7.10). Valve dissolution undoubtedly influences diatom valve 

concentration in a record, however as this was not observed to a significant 

degree in this core, increased primary productivity after 10,425 BP is inferred as 

the cause of increased valve concentration. However, it is important to note that 

diatom valve concentration as a direct proxy for productivity as concentrations 

may be heavily influenced by changes in the sediment accumulation rate. 

Consequently, another explanation for this change may be that previously high 

rates of allochthonous material deposition may have diluted the concentration of 

diatom valves per gram of dry sediment, with an increase in concentration 

following reduced terrigenous input reflecting reduced dilution of the diatom 

valves.  
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After ~10,500 BP diatom inferred conductivity decreases slightly suggesting a 

shift to slightly wetter conditions. Increases in the abundance of woody Erica, 

imply increased terrestrial productivity in the basin and therefore nutrient loading 

potential, during an expansion of the Ericaceous belt in a presumably wetter 

climate (Umer et al., 2007; Figure 7.11) Continually decreasing lithogenic element 

peak area through this zone (Figure 7.5) also suggests reduced rates of erosion, 

likely reflecting the more humid climate and the impact of increased soil 

stabilisation as a result of expansion of Erica forest/shrubland and associated 

increased leaf litter, herb/bryophyte layer and soil humus content (Umer et al., 

2007; Lamb & Gil-Romera, pers comm.).  

However, despite increased algal productivity, likely in response to wetter but also 

warmer environmental conditions, limited diatom diversity reduces further in this 

zone with only two taxa practically exclusively representing the community (Figure 

7.7). This would suggest niche habitats composed of oligotrophic and cold waters, 

which may have experienced some ice-cover for sustained periods, similar to 

those present between 16,000 and 10,500 BP. Subtle changes between 

Staurosirella pinnata and Staurosira construens var. venter abundance (Figure 

7.7) may represent slightly fluctuating cold temperatures, although these 

differences uncovered in other lakes is minor (e.g. Karst-Riddoch et al., 2009). 

Furthermore, after ~8,500 BP diatom productivity (inferred from valve 

concentrations) decreases and begins to vary at lower concentrations for ~3000 

years. Although after a small increase at ~9,000 diatom inferred conductivity data 

remains at some of the lowest values observed in the core indicative of fresher 

waters as a result of increased moisture availability. 
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At first the interpretation of wetter, deeper lake conditions seems to contradict the 

diatom data. Small Fragilarioid taxa (such as Staurosirella pinnata) are often 

associated with benthic habitats in shallower waters (e.g. Lotter & Biggler, 2000), 

water temperature and duration of ice cover, as well as nutrient supply, are known 

to be such dominant factors as to limit the expansion of planktonic taxa, even in 

deeper waters (Lotter & Bigler, 2000; Schmidt et al., 2004). Despite possible 

deeper lake waters, cold waters during this period are likely inhibiting the 

expansion of a diverse diatom community. It is also important to briefly note that 

the term “shallow” in relation to habitat in which Fragilarioid taxa thrive can be 

waters up to 10 m depth (e.g. Lotter & Bigler, 2000; Laird et al., 2010). The 

morphology of Garba Guracha currently allows for approximatley 5 to 6 m of water 

(at the time of sampling in this study and in 2001; Tiercelin et al., 2008). However, 

the maximum depth may have extended down to ~12 m prior to sediment in-filling.  

Between 5,500 and 4,500 BP (427-368 cm) Staurosira construens var. venter and 

Staurosirella pinnata continue to dominate the diatom assemblage (Figure 7.7). 

However, a 5% decrease in TOC and a ~140 103/g decrease in average valve 

concentration reveals that the sustained, higher aquatic and terrestrial 

productivity at Garba Guracha was temporarily interrupted. Based on these 

multiple proxies, the environment of the Garba Guracha basin likely returned to 

habitat and nutrient limited as in GGU-1. Interestingly, lithogenic element content 

remains consistently low during this interval (Figure 7.5), despite being linked to 

increased detrital input (Davies et al., 2015), which may be instigated by 

enhanced catchment instability as a result of drier conditions. However, this may 

be attributed to soil stabilisation and the vegetation layers discussed above which 

persisted through this period. 
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GGU-3 (4,440-560 BP; 353-85 cm) 

After ~4,500 BP, these drier conditions continue, but with slightly increased 

diatom productivity with changes in the terrestrial and aquatic ecology. 

Pseudostaurosira pseudoconstruens is the dominant Fragilarioid taxon (Figure 

7.7) with pollen data showing an expansion of the dry Afromontane Juniperus and 

Podocarpus forests (Gil-Romera et al., in prep.). Despite similarities to 

Staurosirella pinnata and Staurosira construens var. venter, Pseudostaurosira 

pseudoconstruens are more common in slightly warmer waters (e.g. Finklestein 

& Gajewski, 2008; Karst-Riddoch et al., 2009), with Perren et al. (2003)  placing 

them on the gradient between colder (Staurosirella pinnata dominated) and 

slightly warmer (more motile/complex, periphytic life forms) conditions. 

In addition to slightly warmer waters, an increasingly diverse diatom assemblage, 

with an increased abundance of more motile, periphytic diatom taxa imply an 

expansion of favourable habitat, with a developing aquatic macrophyte 

community. Community shifts such as this are attributed to increased nutrient 

supply and subsequent increased growing season (Smol et al. 2005) and is 

represented on the opposite side of the principal curve to the small Fragilarioid 

taxa (Figure 7.8). Cymbella leptoceros (and the morphologically similar Cymbella 

hustedtii), which is common throughout this zone, is known in Europe to be 

abundant in alpine/sub-alpine regions, rarely found at lower altitude sites, but are 

mainly associated with fresh, oligotrophic waters (Krammer & Lange-Bertalot, 

1988).  

However, while Gomphonema parvulum, Nitzschia amphibia, Amphora pediculus 

and Navicula radiosa are sometimes associated with fresh, alkaline and 
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oligotrophic waters, they are also reported as eutraphents, especially regarding 

N, with Nitzschia amphibia is known to be a facultatively nitrogen-heterotrophic 

taxon. (van Dam et al., 1994; Gasse et al., 1995; Potapova & Charles, 2007; 

Besse-Lototskaya et al., 2011; Pérez et al., 2013), suggesting an increase in 

nutrient supply to Garba Guracha at this time. Increased vegetation in and around 

Garba Guracha, likely increased nutrient supply, as well as provided periphytic 

habitat, for a more diverse community. It is important to note that anthropogenic 

indicators are evident in the pollen and fungal spore record after 2,300 BP (Gil-

Romera et al., in prep.). Initially at the start of the Late Holocene, the influence of 

anthropogenic activities on environmental conditions, such as nutrient content, is 

likely to be limited. Nevertheless, with the introduction of livestock and the 

contemporary increase in atmospheric N, impacting the natural N cycle (Glibert 

et al., 2006), caution must be taken when interpreting biochemical changes due 

to disruptions of the natural cycle at Garba Guracha by anthropogenic activities. 

Variable environmental conditions (reflected by fluctuating Pseudostaurosira 

pseudoconstruens abundance; Figure 7.7) in a less nutrient limited environment 

may also play a role in the composition of the diatom community at Garba 

Guracha. Nitzschia amphibia is placed in the midpoint of the 1-5 gradient of 

moisture conditions by van Dam et al. (1994), meaning this taxon mainly occurs 

in water bodies, but can often be located on “moist/wet places”. Indeed, they can 

often be found in, but not exclusive to, damp and periodically dry areas 

characteristic of aerophilous habitats (Grunow, 1862), ie. habitats characterised 

by low moisture or periodic drying. Furthermore, Navicula radiosa (briefly 

common after 4,500 BP) can also be found on “moist/wet places” according to 

van Dam’s (1994) moisture scale, and may be a ‘pioneer’ taxon at Garba Guracha 
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after the dry conditions of the 5,500-4,500 BP interval when lake levels may have 

decreased and aerophilous habitats expanded.  

After ~1,700 BP the gradual increase in Staurosirella pinnata (Figure 7.7), 

peaking at 550 BP, together with the re-appearance of Staurosira construens var. 

venter (although in small abundances) and coupled to the decline in periphytic 

taxon abundance may reflect a decrease in aerophilous habitat in response to 

increased lake level and wetter conditions.  

GGU-4 (560 BP-present day; 85-0 cm) 

The relative absence of the ice and cold tolerant Fragilarioid taxa is combined 

here with the dominance of larger and more complex growth forms (e.g. Cymbella 

leptoceros and Cymbella hustedtii), suggestive of continued nutrient input, 

expansion of habitat and longer growing seasons with a reduced duration of ice-

covered water. However, after 560 BP Nitzschia amphibia becomes more 

common in the record, reaching high abundance (>35%) at ~10 BP, with rapid 

rates of change evident. This may reflect increased N input to the lake as 

discussed above. However, a caveat highlighted by Arnett et al. (2012) is that 

multiple gradients inevitably persist in this case making it difficult to attribute N 

enrichment as the primary driver of increased Nitzschia amphibia abundance. For 

example, the potential association with aerophilous habitat (discussed above), 

thus increased importance of marshy/boggy habitat in response to drier 

conditions (as discussed above) must also be considered.  

7.8 | Summary of the palaeolimnological record of BAL-GGU17-1AB 
 

The interpretation of these limnetic and environmental changes inferred from the 

available data are summarised below and in Figure 7.10. Discussion of these 
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environmental and climatic inferences, and their implications within the wider 

context of this study, together with the record from Lake Babogaya (Chapter 6), 

follows in Chapter 8. 

GGU-1: (15,930-10,430 BP; 1548-774 cm) 

• Cold and dry conditions, with high erosion rates following glacier retreat  

• Glacier fed oligotrophic, neutral-alkaline waters 

• Likely extended periods of ice cover restricting habitat availability 

• Negligible lake productivity 

• Colonisation of limited habitat by adaptable, pioneer taxa 

GGU-2: (10,430-4,440 BP; 774-353 cm) 

• Increased terrestrial and aquatic productivity.  

• Low diversity indicative of niche conditions. 

• Dominance of Staurosirella pinnata and Staurosira construens var. venter 

suggest cold water temperature, restricting habitat availability and 

inhibiting a stable stratification regime, despite wetter conditions. 

• Brief interval of negligible productivity between 5,500 and 4,500 BP, 

comparable to that between 16,000 and 10,500 BP. 

GGU-3: (4,440-560 BP; 353-85 cm) 

• Appearance of Psuedostaurosira pseudoconstruens a ‘transition’ taxon 

between colder and slightly warmer conditions 

• Expansion of habitats favourable for multiple taxa, including epiphytic life 

forms 

• Increased nutrient loading due to enhanced productivity around the basin 
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• Likely increase in water temperature and extended growing season 

• Aerophilous taxa common suggestive of moist boggy/marshy 

environments around the lake shore. 

• Brief interval of increased lake level between 1,690 and 560 BP 

GGU-4: (560 BP-present day; 85-0 cm) 

• Development of the conditions present in GGU-3, increased growing 

season facilitating the continued expansion of habitat and diversification of 

the diatom community 

• Increased nutrient loading 

• Enhanced importance of benthic/aerophilous habitat with drier conditions 

prevailing.
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Chapter 8 : 

Discussion  

In this chapter the results from the BA-LC-2011 (Lake Babogaya) and GGU-17-

1AB (Garba Guracha) sediment cores presented in Chapter 7 and Chapter 8 are 

synthesised and discussed with reference to the original research questions and 

objectives outlined in Chapter 1. An evaluation of the methods used forms part 

of this discussion. Furthermore, where possible (due to the difference in core 

basal ages), the degree of overlap between the two palaeolimnological records 

is discussed, while also framing the findings from these sites in the wider 

palaeoclimatic context of other published records from Ethiopia and eastern 

Africa as a whole.  

8.1 | Consideration of methods and avenues of further research 
 

The proxies used in this study have provided comprehensive palaeolimnological 

records at both Lake Babogaya and Garba Guracha with wide ranging 

implications. Significant changes have been identified in the biological and 

geochemical records, which with the use of quantitative analyses, have been 

interpreted in terms of past limnological variability in response to climatic change. 

This has provided a holistic, detailed record of the changes in climate and 

environment in the areas of both lakes. It is evident that different proxies have 

diverging responses to climatic variability. It has been noted in this study that the 

elemental profiles, at Garba Guracha at least, often indicate a climatic transition 

of different magnitude, duration and timing to the diatom records. For example, 

much of the Holocene change recorded by the diatom data at Garba Guracha is 
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virtually indistinguishable in the XRF-derived geochemical record. Such 

discrepancies between proxies are common in palaeolimnological research 

owing to varying sensitivity between proxies and the environmental changes that 

they primarily respond to. In this research, diatoms have been utilised as the 

primary proxy to interpret environmental change given their power as an 

ecological indicator (see Section 4.4.3). The multi-proxy approach in this study 

has provided additional, independent lines of evidence, and thereby has 

facilitated a more holistic and thorough investigation of the lake-catchment 

system responses to external perturbations through time. Future work could 

produce additional palaeo-records from the Bale Mountains and from the nearby 

Arsi Mountains to add to the small, but growing body of data at high altitude in 

south-central Ethiopia, and eastern Africa as a whole. 

  
Although the utility of diatoms as a proxy in this research has been hindered by 

the difficult taxonomy of certain taxa (e.g. Fragilarioid taxa at Garba Guracha and 

Nitzschioid taxa at Lake Babogaya), this issue is evident in many other studies 

and has been addressed where possible with uncertainties included in 

interpretations. Furthermore, the use of SEM in this study has facilitated the 

identification of certain taxa that would otherwise be ‘lumped’ into a single, large 

group (e.g. to identify the presence of Punctastriata spp. at Garba Guracha). The 

occurrence of a new taxon at Lake Babogaya (Nitzschia fenestralis nom prov.) 

initially limited the palaeoenvironmental interpretation of the diatom assemblage 

where this taxon was abundant (e.g. 3,300 to 1,750 BP). However, best 

inferences were made on the ecological tolerances of Nitzschia fenestralis based 

on the known autoecology of co-occurring taxa (e.g. Nitzschia paleacea) and by 

using other proxies, further illustrating the usefulness of a holistic, multi-proxy 
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approach. Furthermore, at the time of writing, dialogue is ongoing with diatomists 

working at multiple Ugandan crater lakes (Mills, K. & Driessen, T. at 

Loughborough University and the BGS) and Lake Challa (Heidi T; Universiteit 

Gent), two areas with strong modern ecological datasets (e.g. Mills & Ryves, 

2012; Wolff et al., 2014), with Lake Challa suspected to have an occurrence of 

Nitzschia fenestralis (H. Tantuu pers comm.), or at least a very similar 

morphotype, then we can further understand the autoecology of the taxon.  

The gap in the BA-LC-2011 core inhibits this study to provide a continuous record 

of environmental change at this site. However, this missing section is suspected 

to be a reworked unit of sediments and dating likely to be unreliable, hindering 

the usefulness of including this section as part of a continuous record in any case. 

Dates at both the beginning and end of interpretation unit BA-3 facilitate an 

effective and reliable interpretation of this event, and provides valuable insights 

into the past dynamics of the lake following climatic perturbations. If possible, a 

core from Lake Babogaya extending into the Late Pleistocene or further would 

offer further insights on environmental change in central Ethiopia. However, 

although the full utility of the individual laminae was not developed in this study 

as the priority was to examine the full sequence and they were not continually 

preserved through the entire core, further work could exploit them as a very 

powerful tool for reconstructing Late Holocene climate at a high resolution. 

8.2 | Late Pleistocene/Early Holocene environmental change at Garba Guracha 

The base of the palaeolimnological record at Garba Guracha presented in this 

study reflects the dry post-glacial conditions that must have prevailed after 

16,000 BP following the formation of the lake as ice retreated up the Togona 

valley: considerable erosion (high terrigenous input and deposition of large 
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grained material), low organic productivity (low organic matter content and 

negligible diatom valve concentrations) and likely a cold, nutrient-poor lake water 

environment (e.g. high abundance of r-strategist Fragilarioid taxa). However, it is 

difficult to compare the Garba Guracha record with other regional records due to 

the nature of the recently glaciated environment, which is rare in eastern Africa.  

Although the onset of aridification of eastern African sites in the LGM is linked to 

a combination of multiple triggers: migration of the ITCZ, changes in Hadley cell 

strength or in ocean upwelling and circulation (Denton et al., 2010; Stager et al., 

2011; Weldeab et al., 2014), drier conditions are evident at multiple sites (with a 

few exceptions: e.g. Tierney et al., 2011a) during the LGM and Heinrich 1 (H1; 

~16,000 BP). Lakes Tana and Victoria, large regional water bodies as the heads 

of the Nile were desiccated at this time (Lamb et al., 2007; Stager & Johnson, 

2008; Marshall et al., 2011). Further evidence of this aridity has been 

documented by increased δ13Cdiatom at Lake Challa (Barker et al., 2013), more 

positive δDleaf wax values at Lake Tanganyika (Tierney et al., 2008) and by 

increased Zr:Ti at Lake Malawi (Brown et al., 2007).  

Decreased precipitation at Garba Guracha would have undoubtedly impacted 

local organic productivity, however development of the catchment at this time is 

likely primarily reliant on deglaciation of the area. While reduced precipitation 

would have undoubtedly impacted the ablation rate of local ice masses, 

temperature increase is also likely key in driving local productivity (see below for 

further discussion related to the beginning of the Holocene). 

 

 



                                                                                         Chapter 8: Discussion 

 

228 
 

8.2.1 | Younger Dryas-type hydrological change at Garba Guracha? 

 

High terrigenous input, low organic matter and low diatom valve content 

continues through the record at Garba Guracha until ~10,500 BP. A trend of 

increased precipitation and productivity, following the general regional aridity of 

H1, is associated with the African Humid Period across multiple sites in eastern 

Africa (e.g. Gasse et al., 2002; Weldeab et al., 2005; Tierney et al., 2008; 

Foerster et al., 2012; Juninger & Trauth, 2013).  

As a consequence of the humid conditions and productivity associated with the 

AHP, a reversal to more arid conditions during the Younger Dryas interval is 

particularly prominent in multiple records and proxies across much of Africa (e.g. 

Stager et al., 2002; Castañeda et al., 2009; Tierney et al., 2008; 2011a; Foerster 

et al., 2012; Barker et al., 2013). This includes higher altitude sites (>2000 m) 

with aridity documented at Lake Ashenge (Marshall et al., 2009; albeit drier 

conditions established ~900 years prior to the YD proper), in the Burundi 

Highlands (Bonnefille et al., 1995), Aberdare Mountains (Street-Perrott & Perrott, 

1990) and possibly at Lake Dendi (Wagner et al., 2018; base of core half-way 

through YD). However, as the Garba Guracha catchment was likely a poorly 

developed post-glacial landscape prior to the YD, any dry conditions associated 

with the YD would have been superimposed on to high soil erosion due to the 

early development of local vegetation and soils leading to a muted response in 

the Ti record in contrast to records such as the K record at Chew Bahir (Foerster 

et al., 2012). Similarly, diatom productivity was low prior to the YD, thus further 

decreasing productivity would register only a slight signal in the record (in this 

case insufficient diatom concentrations leading to no counts in the record as 

opposed to negligible valve counts). YD-like drying is also not a clear, high 
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magnitude event in the Small Hall Tarn δ18O record, a similarly high altitude 

(>4,000 m) site, however this comparison is limited by a low sampling resolution 

(Barker et al., 2001). 

8.3 | Onset of humid conditions at Garba Guracha – delayed AHP? 

At around 10,250 BP diatom preservation and inferred conductivity increased 

with a corresponding decrease in terrigenous input. Although previous dilution of 

valves by high rates of allochthonous input may now artificially increase valve 

concentration as this terrigenous input reduces, isotope, biomarker and pollen 

data from the research group (L. Bittner and G. Gil-Romera) suggest more humid 

conditions and an increase in lake level at this time. Increased diatom productivity 

and the dominance of facultatively planktonic Fragilarioid taxa may be 

responding to an increased growing season and wetter conditions. 

The AHP resumes following the arid interval of the YD and by 9,000 BP increased 

precipitation and higher lake levels are documented across much of Africa 

(Figure 8.1). Furthermore, by the start of the Holocene temperature had 

increased considerably at lakes Tanganyika (Tierney et al., 2008), Victoria (Berke 

et al., 2012) and Tana (Loomis et al., 2015) compared to those inferred in the 

Late Pleistocene. Discrepancies in the timing of the start of the AHP reflect local 

variability in moisture availability over eastern Africa caused by shifts in the 

position of major convergence zones such as the Congo Air Boundary (Tierney 

et al., 2011a; Costa et al., 2014). 

Costa et al. (2014) discuss a time-transgressive change in atmospheric 

circulation potentially attributed to a north-south migration of the tropical rain belts 

and an east-west migration of the Congo Air Boundary. Although it is crucial to 
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recognise that these discrepancies may be as a result of chronological 

uncertainties, Costa et al. (2014) argue that this may be evidence for the gradual 

onset of the AHP at multiple sites in eastern Africa. However, such a discrepancy 

of >3,000-4,000 years for the onset of the AHP at 11,000-10,000 BP is unlikely 

to represent a change that gradual at Garba Guracha, especially since the area 

is presumably unaffected by migration of the CAB (Tierney et al., 2011a). 

 

Figure 8.1: Lake levels around Africa at 9,000 BP (redrawn from Tierney et al., 2011b). 

The red dashed box outlines the region of eastern Africa region as defined in Chapter 2, 

with the solid black circle the location of Garba Guracha. 

Diatom valve concentration, assuming this reflects productivity and not reduced 

dilution from allochthonous material (lower XRF-derived Ti), does not seem to 

increase in response to increased moisture availability at around 11,250 BP (brief 

interval of reduced δ18O values; Bittner et al., in prep.), but does correspond to 

warmer temperatures at 10,250 BP (~2oC MAT increase; Bittner et al., in prep.). 

Again, relevant analogues of ecological change during the deglaciation of an 

alpine environment are limited in eastern Africa. However, Wooller et al. (2003), 

while recognising the importance of precipitation, primarily attribute changing 

temperatures as well as changing CO2 concentrations as the main drivers of 
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increased grass productivity and diversity around Rutundu, Mt. Kenya. In other 

areas of the world modern-day increases in temperature in alpine areas, 

alongside increased moisture availability, have been linked with increased 

terrestrial productivity associated with lengthened and more productive growing 

seasons (Zha et al., 2005; Winkler et al., 2016). Furthermore, higher lake-water 

temperature has been linked with a longer aquatic growing season between 1980 

and 2009 at Lake George, NY (USA), attributable to increased organic 

mineralisation and productivity (e.g. Swinton et al., 2015), with warmer waters 

attributable to increased diatom productivity at Jinshahe Reservoir, Hubei (China) 

when interspecific interactions are not present (Zhang et al., 2018), which is the 

case at Garba Guracha with the dominance of Fragilarioid taxa at this time. 

Therefore, ecological change may be driven in the early Holocene by changes in 

temperature rather than by changes in moisture availability.  

8.4 | Abrupt changes in the Holocene? 
 

As discussed above, the Early Holocene is largely humid and productive at 

numerous sites in eastern Africa (Figure 8.1; Tierney et al., 2011b), including 

Garba Guracha in this study. However, potential arid intervals are identifiable in 

many records. The ‘8.2 cooling event’ as recorded in the Greenland GISP2 core 

(used for the definition of the Northgrippian stage of the Holocene; Walker et al. 

2018) is extensively documented as an abrupt event across Europe and North 

America (Alley, 2004), with aridity documented at some sites at lower latitudes 

(e.g. Cariaco basin; Haug et al., 2001), even potentially in Africa (e.g. Trauth et 

al., 2015). There is also some evidence for sites in eastern Africa experiencing 

some aridity around this time, but with some arguing that an arid ‘event’ unique 

to Africa occurred hundreds of years before the 8.2 event (Shanahan et al., 2006; 
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Tierney et al., 2010). For example, Thompson et al. (2002) observe a rapid 

fluctuation in F- and Na+ concentrations from the Kilimanjaro ice core record 

around 8,400 BP to 8,200 BP, suggesting a brief pulse of aridity, with a lowstand 

dated to 8,600 BP at Lake Bosumtwi by Shanahan et al. (2006).  

Such an abrupt, short-lived arid event is not clear in the Garba Guracha record, 

although this may reflect the sampling resolution used. Diatom valve 

concentration decreases considerably (Figure 7.7), remaining lower and variable 

for the next ~2,000 years, but there is no clear evidence for catchment changes 

in XRF-derived terrigenous content (Figure 7.5). However, the oxygen isotope 

values in the core do gradually increase from the lowest values recorded at 

around 8,500 (Bittner in prep.). This increase in δ18O coincides with a slight 

increase in diatom inferred conductivity, low diatom concentrations and lower, 

variable diatom abundance thereafter (Figure 7.10). Gradual drying and reduced 

productivity such as this have been noted at multiple other sites in eastern Africa 

after ~8,500 BP. For example, a drought event identified at 8,150 BP in the Chew 

Bahir K record marks a period of instability (Trauth et al., 2018). This event is one 

of 19 drought events identified between 8,200 BP and 5,000 BP. Furthermore, a 

planktic foraminifera Ba/Ca record from the eastern Mediterranean Sea suggests 

that while Nile runoff was still strong, 8,700 BP marks the onset of a 3,500 year 

period of progressive decline in runoff (Weldeab et al., 2014), with similarly 

gradual drying inferred at this time at lakes Tana and Victoria (Marshall et al., 

2011; Berke et al., 2012), the headwaters of the Blue Nile and White Nile. This 

may tentatively suggest a longer-term decline in moisture availability and stability, 

and therefore variability in lake level and productivity, at Garba Guracha from the 
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early to mid-Holocene, rather than a well-defined, abrupt shift centred around 

8,200 BP. 

8.4.1 | Termination of the African Humid Period  
 

Despite very few significant geochemical changes in the Garba Guracha 

sedimentary record, a significant decrease in diatom productivity occurs from 

5,720 to 5,585 BP (Figure 7.7), followed by increased diatom-inferred 

conductivity thereafter. Similar considerable shifts have been documented by 

various biological and geochemical proxies at multiple nearby sites (e.g. Marshall 

et al., 2009; Marshall et al., 2011; Tierney & deMenocal, 2013; Loakes et al., 

2018; Roubeix & Chalie, 2018) attributing this change to the end of the AHP. 

Tierney & deMenocal (2013) suggest an average timing of the termination of the 

AHP in eastern Africa to be around 4,960 ± 70 BP, based on records from Lakes 

Tanganyika, Challa and P178-15 from the Gulf of Aden. However, the timing of 

termination of the AHP varies considerably across the continent (Figure 8.2). 

Nevertheless, the considerable decline in productivity in the Garba Guracha 

diatom record falls within the broad age range of AHP termination across the 

continent, and close to the estimated mean age of termination (Figure 8.2). The 

basal age of the BA-LC-2011 core coincides with the termination of the AHP at 

some sites, which makes it difficult to interpret the termination of potential AHP-

like conditions at Lake Babogaya. No comparisons can be made between more 

humid conditions in the mid-early Holocene making it virtually impossible to 

detect a change to more arid conditions. Presumably the AHP had ended at the 

site, or was ending, at Lake Babogaya at ~5,400 BP due to the abundance of 

shallower water taxa such as Staurosirella pinnata and Pseudostaurosira 

brevistriata at the base of the core (Figure 6.10). An alternative hypothesis is that 
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the full termination of AHP-like conditions occurred later at Lake Babogaya 

similar to other sites in the region around 1,000 years later. However, this cannot 

be confirmed in this study. 

Identifying a geographic pattern in terms of climatic response to the often named 

‘time-transgressive’ termination of the AHP in sites across the continent is 

notoriously difficult (Shanahan et al., 2015; Figure 8.2), which can be attributed 

in part to complex interplays between moisture availability, vegetation cover and 

catchment morphology at each site. The north-south progressive onset of aridity 

associated with termination of the AHP as monsoon rains gradually reduced in 

response to decreasing summer insolation, as well as the southward migration 

of the tropical rain belts, has been discussed (e.g. deMenocal, 2015; Shanahan 

et al., 2015). However, the inferred termination of the AHP at Garba Guracha in 

this study may reflect an east-west divide across the region. Moisture from the 

Congo basin, and migration of the CAB, is important for multiple sites across the 

region (Costa et al., 2014), but less so for easternmost sites such as Lake Challa 

and those on the Horn of Africa which are reliant on the Indian Ocean for rainfall 

(Viste & Sorteberg, 2011; Tierney et al., 2011a; Costa et al., 2014). As well as a 

proposed southern migration of the rain belts, changes in moisture supply from 

the Indian Ocean would have impacted these sites further east (such as Garba 

Guracha; Figure 8.2) more than those further west that would still be supplied 

with moisture from the Congo basin (Tierney et al., 2011a). Nevertheless, the 

termination at Garba Guracha is neither significantly early nor late in comparison 

to other records in the region, but in combination with these other datasets, 

emphasises the largely heterogeneous pattern of regional response to this 

climatic event across the African continent. Further studies investigating the 
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termination of the AHP across these north-south and east-west gradients, with 

robust chronologies which may also be hindering current interpretations of 

synchronicity, will aid our understanding of the nature of the termination of the 

AHP.  

The rapidity of the AHP termination is a topic of much research and uncertainty 

(Tierney & deMenocal, 2013; Shanahan et al., 2015; Collins et al., 2017). 

However, before interpreting the rate of termination of the AHP at Garba Guracha 

and comparing to other sites it is first important to consider the uses of ‘abrupt’ 

and ‘gradual’ in previous palaeoenvironmental studies in Africa. deMenocal et al. 

(2000) describe geologically inferred terminations of the AHP over a millennia 

(from ~6,000 to 5,000 BP) as “relatively abrupt”, with the termination of the AHP 

recorded in their 658C core (~500 years transition) as “abrupt” and “very abrupt”. 

 
Figure 8.2: Termination of the AHP across multiple sites in much of Africa as determined 

by Shanahan et al. (2015), including the locations and timings of the termination of the 

AHP at the study sites included in this study. See text for discussion of two possible 

colours representing the termination at Garba Guracha at either around 5,500 BP or 

4,500 BP.  
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Similarly, Tierney & deMenocal (2013) describe the duration of the AHP 

termination (280–490 years), based on their δDwax record from the Gulf of Aden, 

in terms of being ‘abrupt’. Conversely, the 990-year transition (based on change-

point analyses) from the AHP recorded in the K record from Chew Bahir is 

considered ‘gradual’ by Trauth et al. (2018).  

Under one interpretation the clear change in diatom productivity (Figure 7.7) at 

Garba Guracha may be considered ‘very abrupt’, based on the broad use of 

‘abrupt’, occurring over decades to centuries rather than millennia. However, this 

event at 5,500 BP may represent the beginning of a transitional phase at Garba 

Guracha. At this time conditions became unsuitable for Fragilarioid productivity, 

and the lake gradually shifted to an environment optimal for the growth of a more 

diverse, periphytic community at 4,500 BP (see below for further discussion). 

Therefore, this change at 5,500 BP may represent the beginning of a gradual 

shift rather than an abrupt ‘event’ at Garba Guracha.  

Marshall et al. (2011) question whether the ‘4,200 BP event’ should mark the end 

of the AHP at Lake Tana. They argue that increased aridity began in northern 

Ethiopia around 8,500 BP which may in fact represent the start of a gradual, 

stepwise drying which reached its climax with an abrupt event around 4,200 BP. 

If earlier changes in the Garba Guracha record are taken into account then a 

similar consideration may be invoked: the 5,500 BP decrease in productivity (or 

even preceding change at 4,500 BP) may simply represent a threshold being 

exceeded following the gradual decline in moisture availability originating from 

8,500 BP. 
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8.4.2 | The Meghalayan (4,200 BP to present day) 
 

The most recent subdivision of the Holocene: the Meghalayan (Middle–Late 

Holocene Boundary), is based on the widespread ‘4.2 ka BP event’ (Walker et 

al., 2012). A period of pronounced aridity from around 4,200 BP is evident across 

Africa (Gasse, 2000) including in records from lacustrine sites in eastern Africa 

including: the Ziway-Shala lake basin system (Gillespie et al., 1983; Chalié & 

Gasse 2002a), Tana (Marshall et al., 2011), Awassa (Telford et al., 1999; Lamb 

et al., 2002a), Tilo (Telford & Lamb 1999; Lamb et al., 2000), and Victoria 

(Stanley et al., 2003), with this aridity also reflected in high-altitude sites with 

enhanced dust influx initiating at around 4,200 BP culminating in a significant 

peak at ~4,000 BP in the Mt. Kilimanjaro ice core record (Thompson et al., 2002). 

Despite increased diatom productivity, reorganisation of the diatom assemblage 

at Garba Guracha at ~4,500 BP likely represents a culmination of increasing 

aridity (see section 8.3.1) and suitable expansion and establishment of habitat 

optimal for the growth of a diverse, periphytic community. 

However, a change at around this time is less obvious in the Lake Babogaya 

diatom or geochemical record. It has been noted that the identification of an 

intense arid event such as the ‘4.2 ka BP event’ is notoriously difficult in lacustrine 

records as it is superimposed on already drier conditions following the breakdown 

of the AHP (Marshall et al., 2011). This difficulty in identifying a ‘4.2 ka event’ 

signature in a record may be apparent at Lake Babogaya. The deposition of a 

gastropod shell layer at the site implies lower lake levels at this time, with a 

decrease (albeit small) in TOC suggesting a less productive environment. 

Furthermore, the abundance of taxa indicative of shallower waters also attests to 

possible aridity at this time.  
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Earlier interpretations of potential considerable (>30 m) lake regression to allow 

shallower waters to pool on potential lake shelves at Lake Babogaya at this time 

(Section 6.5) are not incompatible with near desiccation of lakes documented 

elsewhere in the region, albeit at lakes with a significantly larger surface area. 

Lake lowstands were present by this time at Lake Turkana (Garcin et al., 2012; 

>100 m lake level decrease), in the Ziway-Shala basin (Gillespie et al., 1983; 

>100 m lake level decrease) and at palaeo-lake Suguta (Junginger et al., 2014; 

~300 m lake level decrease).  

At nearby Lake Tilo the 4,200 BP event is recorded by an abrupt 3-4‰ increase 

in δ18O, marking a fall in lake level (Lamb et al. 2000). However, a wetter period 

is then interpreted after this dry phase (from 3,700 to 3,400 BP), indicated by an 

increase in the freshwater Aulacoseira granulata and reduction in δ18O values 

(Telford et al. 1999; Lamb et al., 2000). Further south, a short-lived humid 

episode can also be seen at ~3,000 BP in a small peak in the K record at Chew 

Bahir (Foerster et al., 2012). Diatom productivity briefly increases within a 

laminated section of the Babogaya core at ~3,600 BP before the large section of 

minerogenic material between 3,600 and 3,300 BP. A humid period following a 

period of catchment instability and reduced lake level after 4,200 BP, may have 

triggered catchment disturbance or slumping at Lake Babogaya. Furthermore, at 

around 3,300 BP increased abundance of Aulacoseira granulata var. 

angustissima, comparable to that at Lake Tilo (Telford et al., 1999), reflects this 

period of increased rainfall, increased stability and lake infilling. However, it is 

important to note the possibility of anthropogenic disturbance causing such 

instability at this time at Lake Babogaya. For example, to the north of Lake 

Babogaya at Lake Ashenge the first evidence for human induced landscape 
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change is interpreted in the fossil pollen and geochemical record at around 3,900-

3,600 BP (Lamb unpub. data in Marshall, 2006; Marshall et al., 2009).  

8.5 | Post-4.2 ka BP event to present 
 

A variable climate following the end of AHP and ‘4.2 ka event’ is evident in many 

records across the region. Due to the influence of ENSO in eastern Africa, Stager 

et al. (2009), Tierney et al. (2011a) and Foerster et al. (2012) have speculated 

this increased variability in the Late Holocene may reflect more frequent ENSO 

events, as part of a fluctuating cycle, during this period (at least as recorded along 

the South American coast; Moy et al., 2002; Conroy et al., 2008and in Mexico; 

Jones et al., 2015) or increased dominance of ENSO variability as a result of 

reduced insolation following the mid-Holocene maxima (Lu et al. 2018). Such 

periods of enhanced ENSO activity are evident between 3,000 and 2,500 BP, 

and around 1,600 BP and 1,300 BP (Figure 8.3).  

Invoking a similar interpretation to Foerster et al. (2012), enhanced ENSO activity 

may have aided in the refilling of the lake, or at least the increased rainfall 

resulted in enhanced lake water mixing, required for the appearance and 

proliferation of Aulacoseira granulata var. angustissima between 3,000 and 2,500 

BP. Similarly, changes between Nitzschia lancettula and a Nitzschia paleacea: 

Nitzschia fenestralis complex at Lake Babogaya may reflect a fluctuating 

hydrological and mixing regime during a more variable ENSO cycle. The 

abundance of Cymbelloid taxa at Lake Babogaya after ~1,750 BP may represent 

a shift towards drier conditions during this more variable climate. However, some 

periods of increased planktonic abundance at around 1,300 BP and 1,600 BP 

may tentatively be ENSO-type variability associated with more frequent ENSO 
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activity and increased lake level and humidity (Figure 8.3). Variability in Fe:Mn 

and the diatom productivity and community composition in the Garba Guracha 

record is clear following the large scale reorganisation of the diatom community 

at 4,500 BP.  

The clear influence of increased ENSO-type variability is less apparent in the 

Garba Guracha record (Figure 8.4), despite being an area that receives a large 

proportion of its moisture from the Indian Ocean (Viste & Sorteberg, 2011). The 

most noticeable change coinciding with increased ENSO variability is the 

increased abundance of Fragilarioid taxa (Figure 7.7). This may be in response 

to their adaptability to wet-dry shifts and the increase in humidity leading to the 

decrease in aerophilous habitat, although there are no noticeable coincidences 

between ecological or environmental change at Garba Guracha and increased 

ENSO activity (Figure 8.4) as may be found at other sites (Figure 8.3). This may 

be associated with the high altitude of the Bale Mountains effectively blocking 

moisture transport from an ENSO event to the area. However, this is difficult to 

reconcile with increased moisture availability evident at another high altitude, 

albeit lower latitude, site with the Small Hall Tarn Lake, Mt. Kenya δ18O record 

consistent with more frequent ENSO events (Barker et al., 2001).  

At Lake Babogaya during this period, a small change may be detectable through 

the reappearance of Pseudostaurosira brevistriata and Staurosirella pinnata in 

the Lake Babogaya record between 780 to 1,115 BP, corresponding to an 

increase in terrigenous input (Ti XRF data in Figure 8.3) and decrease in TOC, 

which may indicate a period of aridity and lower lake level. 
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Figure 8.3: Comparison of Lake Babogaya records discussed in text with similar records 

from relatively nearby Lake Abiyata (Chalie & Gasse, 2018; note reverse scale) and 

Chew Bahir (Foerster et al., 2012; note reverse scale), with ENSO activity as recorded 

in the Laguna Pallacacocha red colour intensity record (Moy et al., 2002) also shown. 

Although wetter conditions may wash in marginal, shallower water taxa 

consistently low Ti suggests low rates of in-washing. This period of drier 

conditions broadly corresponds to the Northern Hemisphere ‘Medieval Climate 

Anomaly’ (MCA) or ‘Medieval Warm Period’ (Mann et al., 2009), which has also 

been documented in numerous sites across the region (e.g. Mills et al., 2014; 

Tierney et al., 2015; Buckles et al., 2016), including an intense, short-lived pulse 

of aridity around ~1,150 BP inferred from increased δ18O (average of +6.2 ‰; 
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Lamb et al., 2007) and lower lake levels (by ~8-9 m) between 950 and 650 BP 

(Ghinassi et al., 2012) at Lake Hayq to the north. 

 

Figure 8.4: Comparison of Garba Guracha records discussed in text with similar records 

from relatively close sites (the Gulf of Aden (Tierney et al., 2015) Chew Bahir (Foerster 

et al., 2012; note reverse scale) and Lake Challa (Tierney et al., 2011b) in easternmost 

areas where moisture from the Indian Ocean is important and ENSO activity as recorded 

in the Laguna Pallacacocha red colour intensity record (Moy et al., 2002). 

However, a ‘fingerprint’ of the MCA in the Garba Guracha record is unclear. An 

increase in Fragilarioid taxa, and reduction in aerophilous taxa, coincides with 

the broad timing of the MCA, especially the reappearance of Staurosira 

construens var. venter in the record (see higher principal curve scores in Figure 

8.4). However, the evidence from Garba Guracha is inconsistent with the drying 

trend exhibited at other sites in the region, with an increase in Fragilarioid taxa 

normally associated with, albeit shallower, more dilute waters, with reductions in 

aerophilous habitat presumably in response to a decrease in available habitat 

(Figure 8.4).  
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Unfortunately, the Lake Babogaya record ends shortly after the termination of 

MCA-like conditions, but the Garba Guracha extends into the present day offering 

further insights into the impacts of climatic perturbations on high altitude sites. A 

second perturbation punctuates the last ~1,000 years of eastern African climate 

in many records across the region: the Little Ice Age (LIA). The LIA in eastern 

Africa is a focus of debate with a west (dry)-east (wet) dichotomy (Tierney et al., 

2013; 2015), and therefore insights from a high altitude, eastern site would be 

invaluable in this discussion. However, interpretations from the Garba Guracha 

record are severely limited for the LIA as the gap between the surface core and 

long core almost exclusively covers this period. XRF data are present through 

this section of core, but only small increases in minerogenic input (Ti; Figure 8.4) 

are observable at this time which may indicate wet or dry conditions enhancing 

soil erosion. Potentially drier conditions are present before the LIA with high 

abundance of the aerophilous Nitzschia amphibia, with an increase in the 

abundance of periphytic Cymbelloid taxa, and corresponding decrease in 

conductivity immediately preceding this event suggestive of slightly wetter 

conditions (~80 BP). It is important to stress that other variables such as nutrient 

content and habitat availability (as previously discussed) potentially driving 

ecological change at Garba Guracha (cf. Juggins, 2013), not necessarily climate-

induced changes in salinity. Thus, the resolution through this period is simply 

inadequate to fully understand the dynamics of the diatom ecology and the 

impact of the LIA at this altitude at Garba Guracha. 

8.5.1 | Modern rapid change in eastern Africa 
 

Ecological instability, inferred through high rate of change values (Figure 7.9), is 

prominent in the Garba Guracha record in the late 19th Century and into the 
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present day, with the aerophilous Nitzschia amphibia dominant in the record after 

around 1970 CE. This likely reflects high magnitude variability in climate across 

the region with humid and arid periods, with the dominance of Nitzschia amphibia 

likely reflecting drying out of the environment and opening up aerophilous habitat. 

The onset of modern aridity has been dated in the δDwax record of P178-15, Gulf 

of Aden to the start of the 19th Century (Tierney et al., 2015), with arid conditions 

dated towards the end of the 19th Century at Lake Abiyata (Legesse et al., 2002). 

Even in a more remote site in Sacred Lake, Mt. Kenya pronounced drying is 

represented in the δDwax record presented by Konecky et al. (2014) at ~1870 CE 

(although their dating control precludes exact timing of this onset), which broadly 

corresponds to the timing of this change observed in the Garba Guracha diatom 

record. A period of high rainfall during the 1960s interrupted this general trend of 

aridity and led to peak discharges in many waterbodies in the region (Nash et al., 

2016). This may be represented by increase in Fragilarioid taxa at Garba 

Guracha at this time, despite being associated with shallower waters in this case 

it may be related to reduced aerophilous habitat and slight reduction in 

conductivity. The dominance of Nitzschia amphibia after 1970 CE may represent 

the considerably drier conditions present across much of the region (Nash et al., 

2016), with Tierney et al. (2015) suggesting current (late-20th Century-present) is 

some of the regions driest conditions documented in the last 2,000 years. 

8.6 | Anthropogenic impacts 
 

The anthropogenic impact on the Mid-Late Holocene eastern African 

environment is a known issue that complicates paleoenvironmental 

reconstructions by providing sometimes overlapping signals that are sometimes 

difficult to distinguish from the climate signals (Kiage & Liu, 2006). In Ethiopia the 



                                                                                         Chapter 8: Discussion 

 

245 
 

impact of anthropogenic activities is clear in the latter half of the Late Holocene, 

with forest clearance in the north of the country, for example, dated at around 

2,500-2,000 BP (Darbyshire et al., 2003) with ceramics and domestic animals 

appearing in archaeological records in the Kaffa province in the southwest of the 

country by ~2,000 BP (Hildebrand et al., 2010). A similar timing of anthropogenic 

modification of the Bale Mountain environment is recorded with the replacement 

of forest by Hagenia abyssinica and Dodonaea after 2,000-2,500 BP and minor 

abundances of Plantago after 1,300 BP (Umer & Bonnefille, 1998; Umer et al., 

2007). Recent counting of the dung-fungus sporormiella in the GGU-17-AB core 

by Gil-Romera (in prep.) suggests that the presence of livestock is only 

represented in the record through the last few millennia. Although a fire record is 

now available from Garba Guracha (Gil-Romera et al., 2019), it is difficult to 

untangle climatic and human factors in the origination of fire events and thus is 

of limited use to understand possible anthropogenic impacts on the waters and 

flora of the lake. 

Although no distinct indicators of anthropogenic activity are present in the Garba 

Guracha and Lake Babogaya records, it does not preclude the possibility of such 

influences being superimposed on climatic trends or vice versa. Anthropogenic 

clearance of forests, for example, destabilises soils in the catchment, thus 

potentially leading to increased erosion and minerogenic input unrelated to 

climatic changes. At Lake Babogaya, for example, the increase in Ti at around 

1,500 BP (Figure 6.5) may reflect anthropogenic induced catchment 

destabilisation and soil erosion, although this is not clear in the diatom records. 
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Chapter 9: 

Conclusions 

This research aimed to present a high-resolution, detailed reconstruction of 

palaeoenvironmental changes at two contrasting sites in Ethiopia, by applying a 

holistic, multi-proxy approach to sedimentary records from Garba Guracha (GGU-

17-1AB) and Lake Babogaya (BA-LC-2011). Based on the biological and 

geochemical proxies used, palaeolimnological evidence has been successfully 

utilised to infer changes in both complex lake systems. These records have not only 

provided reliable evidence of local changes to the environment and climate, but have 

allowed for wider comparison to records from Ethiopia, the Horn of Africa and 

eastern Africa since the late Pleistocene. The Garba Guracha record, covering the 

last 16,000 years, represents one of the longest continuous reconstructions of its 

kind from any site in Africa. Furthermore, the results obtained from Garba Guracha 

aid in our understanding of how long- and short-term climate trends have been 

expressed at different sites and altitudes since the Last Glacial Maximum. 

9.1 | Palaeolimnological change at Lake Babogaya and Garba Guracha 
 

Garba Guracha was a typical post-glacial environment from 16,000 BP (following 

the formation of the lake by the retreat of ice masses up valley) to around 10,500 

BP, characterised by poorly developed catchment soils and low organic productivity. 

Because of this poorly productive environment any enhanced aridity associated with 

the Younger Dryas interval, identified at multiple other sites in the region, is muted 

in the Garba Guracha record. A distinct increase in the abundance of facultatively 
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planktonic Fragilarioid taxa (and corresponding decrease in benthic/aerophilous 

taxa) is observed after 10,500 BP reflecting a fresher, deeper lake environment, 

presumably representing a lagged response to the AHP. The increase in humidity 

associated with the AHP did not seem to drive productivity and ecological change 

at Garba Guracha, with increased temperature in correspondence to peak insolation 

at 10,500 BP seemingly required, presumably in response to a longer growing 

season.  

Tentative evidence is presented for gradually drier and unstable conditions after 

8,500 BP, although this is difficult to identify based solely on diatom productivity in 

this study as interpreting based on ecological change is limited by factors nutrient 

availability and temperature leading to a virtually monospecific, Fragilarioid 

community. The termination of wetter AHP-like conditions is clear in the Garba 

Guracha diatom record at around 5,500 BP, with further change distinct in the record 

at around 4,500 BP (associated with the 4.2 ka BP event) with significant re-

organisation of the diatom community. The Garba Guracha record corroborates 

multiple other records from across Africa: there was no distinct geographic trend in 

the timing of the termination of the AHP, highlighting the heterogeneous pattern of 

regional response to this climatic event. Whether the change at 5,500 BP is abrupt 

(occurring over <200 years), or as part of a more gradual regime shift if the change 

at 4,500 BP is considered (thus occurring over ~1,000 years), is unclear due to the 

inconsistent use of ‘abrupt’ or ‘gradual’ in the wider literature. Unfortunately, it is 

virtually impossible to detect the termination of the AHP at Lake Babogaya as the 

base of the core is likely deposited following the end of the AHP or during it. 
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However, the 4.2 ka BP event is subtle but noticeable in the Lake Babogaya record 

with the deposition of a shell layer at 4,150 BP and presumably leading to a 300-

year, high magnitude deposition of inorganic materials either as a consequence of 

slumping or as a result of a destabilised catchment in response arid conditions.  

Generally drier conditions following the Meghalayan and into the late Holocene 

(seen at multiple other sites in Africa; Gasse, 2000) is represented at both sites by 

a clear, gradual increase in the abundance of benthic and aerophilous taxa 

presumably reflecting reduced lake levels under a drier climate following the AHP. 

Climatic change associated with the Medieval Climate Anomaly is clear in the Lake 

Babogaya and Garba Guracha records, although the latter appears to exhibit wetter 

rather than drier conditions during this period. The Lake Babogaya sediment record 

ends at ~600 BP. However, the Garba Guracha record continues to the present day 

and thus offers valuable insights into the Late Holocene climatic changes at high 

altitude areas in the Ethiopian Highlands. Contemporary post-industrial revolution 

drying identified in other less remote sites is prominent in the Garba Guracha diatom 

record. In the late Holocene it is less clear if enhanced ENSO activity is an influence 

on both of these catchments. Similarly, anthropogenic induced changes may be 

present and may be contributing to (or vice versa) climate driving ecological and 

catchment changes, but in these records it is difficult to tease apart these two 

drivers.  
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Appendix 1. Confirmation of accepted manuscript (online access as of 2020) by 

journal editor-in-chief (and full manuscript below) for the taxonomy of Nitzschia 

fenestralis sp. nov. (Grady et al. 2020). 
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Abstract 

Nitzschia is common in the phytoplankton of several East African lakes. A new species, 

Nitzschia fenestralis, sp. nov. D. GRADY, D.G. MANN & TROBAJO was encountered at 

numerous depths in a 16 m sediment core from Lake Babogaya, Ethiopia and is described 

using light and scanning electron microscopy. It is compared with several other 

morphologically similar taxa described from East and Central Africa (especially N. 

aequalis, N. mediocris, N. obsoleta and N. fabiennejansseniana), and from Europe (N. 

fruticosa). An unusual feature of some of these species (N. fenestralis, N. obsoleta and N. 

fabiennejansseniana) is that in the raphe canal each stria is represented by two narrower 

areolae (alternatively interpreted as a single subdivided areola). It is this feature that 

suggested the name of the new species (through the resemblance to a series of sash 

windows). Another characteristic of N. fenestralis and N. obsoleta, apparently never 

reported previously in any diatom, is that the more advalvar.bands end approximately 

halfway along the frustules, rather than at the poles. In most respects (shape and size, stria 

and fibula densities, valve and girdle structure), N. fenestralis and N. obsoleta are very 

similar, but confusion is unlikely because they differ in whether central raphe endings are 

present (N. fenestralis) or absent (N. obsoleta). In Nitzschia fenestralis, and perhaps to a 

lesser extent in N. obsoleta, the striae usually become strongly radiate towards the poles. A 
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preliminary assessment, based on the literature, suggests that N. fabiennejansseniana may 

be synonymous with N. obsoleta, which was described earlier. 

Key words: Africa, girdle structure, Lake Babogaya, morphology, new species, Nitzschia, 

plankton, taxonomy. 

 

Introduction 

Lake sedimentary archives have long been recognized, and regularly used, as the principal 

source of information in reconstructing the past climate and environments of tropical Africa 

(VERSCHUREN 2003). The focus of these reconstructions has varied from long-term glacial–

interglacial dynamics through the Quaternary, to short-term centennial to inter-annual 

scales in order to understand the regional responses to natural shifts in climate; these 

reconstructions are relevant to current anthropogenic climate change and the role of climate 

in the development and evolution of humans through time.  

Since it is not possible to make direct measurements of past environments, 

palaeoenvironmental proxies are needed and several characteristics of diatoms make them 

particularly useful. Their utility in understanding and reconstructing environmental 

conditions in arid and semi-arid environments has been outlined by GASSE et al. (1997). 

Warmer, tropical waters facilitate plankton communities rich in Nitzschia spp., unlike the 

waters of temperate and polar regions (RICHARDSON 1968; KILHAM et al. 1986). The 

abundance of Nitzschia in modern eastern African assemblages is well documented from 

surveys in lakes Kivu (SARMENTO et al. 2006), Victoria (KLING et al. 2001; STAGER et al. 

2009) and Tanganyika (COCQUYT & VYVERMAN 2005), and more generally across the 

continent (GASSE 1986; MILLS & RYVES 2012). Their importance has also been 

documented in fossil assemblages. For example, high abundances of Nitzschia spp. have 

been a feature in the flora of Lake Victoria for 10,000–11,400 years (STAGER et al. 1997; 

2003) and for the past 25,000 years in Lake Challa (MILNE 2007; WOLFF et al. 2014).  

Nitzschia generally lack many distinguishing features, with their close morphological 

similarities making them notoriously difficult to accurately identify under the light 

microscope (LM). However, extensive scanning electron microscope (SEM) work on many 



Appendices 

 

294 
 

taxa (e.g. references in TROBAJO et al. 2013) have revealed multiple delicate morphological 

features not visible under LM that are useful in identifying and categorizing Nitzschia 

species. Thus, for example, use of SEM has facilitated the descriptions of several new 

Nitzschia species from lakes Victoria (SITOKI et al. 2013) and Challa (COCQUYT & RYKEN 

2017).  

Recent palaeolimnological analyses conducted at an eastern African crater lake, Lake 

Babogaya (GRADY et al. in prep.), have revealed another example of Nitzschia dominance 

(100% of total diatom abundance in some samples) in assemblages through the last 5,000 

years of the Holocene. During these analyses, an abundant taxon (>50% abundance in 

several samples; see results) was observed throughout the record that does not exactly 

match any previously described Nitzschia species, though it resembles a number of species 

described from Africa and elsewhere by HUSTEDT (1949, 1957). In order to establish the 

taxonomy of the Babogaya specimens, they were studied in detail by light and scanning 

electron microscopy (LM and SEM) and compared with the type material of selected other, 

morphologically similar taxa. The aims of this paper are to: 1) describe a new species, 

Nitzschia fenestralis, from Lake Babogaya; (2) highlight how it differs from similar 

Nitzschia species; (3) comment on the temporal and spatial occurrence of N. fenestralis; 

and (4) highlight particularly unusual features of the new species, including any that may 

suggest which other species are its closest relatives. In order to help establish how N. 

fenestralis differs from other similar species, we borrowed type material of N. obsoleta 

HUSTEDT, N. aequalis HUSTEDT, N. mediocris HUSTEDT and N. fruticosa HUSTEDT. 

However, although the results of these analyses update the original works of HUSTEDT 

(1949) and SIMONSEN (1987) and may be useful for further studies related to the 

identification of problematic Nitzschia taxa, it was not our aim to make a full analysis of 

these species, which will require much further study. We give the formal description of N. 

fenestralis at the beginning of the Results and Discussion section, so that the name can be 

used throughout the remainder of the paper. 

 

Methods & materials 

Study site 
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The samples studied came from a core taken at Lake Babogaya, Ethiopia (Fig. 1). Lake 

Babogaya (also known as Bishoftu Guda or Pawlo), is a 65 m deep maar lake at an altitude 

of 1860 m above sea level, one of several crater lakes in Bishoftu, ~50 km SE of Addis 

Ababa. The local climate is monsoonal with distinct, pronounced wet and dry seasons 

(VISTE et al. 2013). Characteristic of many crater lakes, Lake Babogaya has steep slopes 

with a very small catchment area and no inflowing rivers or streams. Multiple researchers 

have conducted comprehensive investigations into the limnology of these crater lakes 

(BAXTER et al. 1965; WOOD et al. 1976, 1984; WOOD & TALLING 1988; LAMB et al. 2002; 

LEMMA 2009), and as a result the hydrochemistry and seasonal variations of the relatively 

fresh (ca. 750–900 µs cm–1), alkaline (8.7–9.2 pH) Lake Babogaya are well understood 

(Table 1). 

Lake Babogaya develops thermal stratification during March through to November, leading 

to the formation of indistinct thermoclines at 11–16 m depth late in the summer wet season. 

The waters of the lake mix from November to February, during the dry season, associated 

with the evaporative and night-time radiative cooling under conditions of low humidity and 

low cloud cover, which is balanced with solar inputs. This mixing likely promotes algal 

photosynthesis and increased aragonite precipitation by bringing Ca and other nutrients 

from the hypolimnion to the surface. Presumably, it is this seasonal change in aragonite 

precipitation that has led to the formation of dark–light laminae in Lake Babogaya, as 

observed at neighbouring Lake Hora (LAMB et al. 2002). These laminated sediments offer 

the ability to reconstruct past environmental change at a high resolution. They are currently 

the subject of ongoing research using diatoms and geochemical data to reconstruct past 

hydrological conditions (GRADY et al., in prep).  

Sample preparation and microscopy 

A ca. 16 m core (BA-LC-2011; with a basal 14C date of 5470 cal BP; Table S1) was 

extracted in October 2011 with a UWITEC corer by a team led by Prof. Frank SCHÄBITZ of 

Universität zu Köln. 

Small 1 cm3 sediment samples were taken from the Babogaya core where the problematic 

Nitzschia sp. was abundant (>50% of total counted valves) (Aberystwyth DGES 

palaeoecology sample codes: QDP 2000, QDP 2018, QDP 2056 and QDP 2075). Samples 
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were prepared for mounting with 70% nitric acid and rinsed (by decanting) with deionized 

water until samples were pH neutral. Aliquots of both Lake Babogaya sub-samples and 

type material were transferred to 21 mm and 13 mm coverslips and air-dried for LM and 

SEM analyses, respectively. Dried samples for SEM were fixed to aluminium stubs and 

sputtered with platinum for 70–80 s at 5 nm min–1 (at 25 mA) using an Emitech K575X 

peltier coater.  

LM observations and morphometric measurements were performed with a Zeiss Axio 

Imager M2 using a Plan-Apochromat ×100 objective (nominal numerical aperture: 1.4) 

with bright field and differential interference contrast optics; photographs were taken using 

an Axiocam HRc digital camera. Where it was important to obtain maximum resolution, 

especially to check the visibility of valve pores in LM, the condenser was oiled. 

Measurements were taken for N. fenestralis using the public domain Fiji (ImageJ 

distribution package) software (SCHINDELIN et al. 2012; RUEDEN et al. 2017).  

SEM work was undertaken using a LEO Supra 55 model at 5 kV and 4–5 mm working 

distance. All samples from Lake Babogaya used in this study, both LM slides and SEM 

stubs, have been archived at the Royal Botanic Garden Edinburgh (RBGE, herbarium code 

E).  

In order to check that N. fenestralis is distinct from species already published, type material 

(slide and unmounted material) of N. aequalis (slides 241/64 and 241/65 of sample A348 

and slide 241/74 of sample A354), N. mediocris (slide 243/6 and sample A409), and N. 

obsoleta (slides 242/21 and 242/22 and sample A382) was borrowed from the HUSTEDT 

collection in the Alfred Wegener Institute, Bremerhaven. 

 

Results and Discussion  

Nitzschia fenestralis D. Grady, D.G. Mann et Trobajo sp. nov. (Figs 2–20, 23, 26, 30, 

34, LM; 36–39, 41, 42, 45–49, SEM) 

LM description: Valves are narrow, 1.9–3.3 μm (average = 2.46 ± 0.29 μm), linear-

lanceolate with parallel sides centrally in longer valves (Figs 2–4) and acutely rounded, or 
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sometimes slightly subrostrate poles. The length of the valve is 20–70 μm, but with the 

mean valve length being 40.65 ± 9.38 μm (n = 210). Fibulae short and spaced regularly, 

with 12–14 in 10 μm; the central pair of fibulae are no more widely spaced than the others 

(n = 210). Striae (and even the areolae too: Figs 26, 30) are visible under LM with good 

optics, but counted in this study under SEM, numbering 32–35 in 10 μm (n = 60). All 

morphology metrics are available in Table 2.  

SEM observations: The fibulae are squarish and connected on each side of the raphe by a 

narrow longitudinal ridge (n = 60; Figs 46, S5, S6). The areolae adjacent to the raphe (i.e. 

on the raphe canal) are divided in two, parallel to the raphe (n = 60; Figs 45, 47, S1–4). The 

raphe is continuous from pole to pole (Figs 41, 42, 45, S2, S3), agreeing with the absence 

of a wider central fibula spacing (n = 32), and sits on a shallow keel at the junction between 

the mantle and the valve face (Figs 42, 45); it curves slightly at the poles (Fig. 47). The 

striae are uniseriate, composed of small round areolae (Figs 42, 45, 46, 49, S2–6). In all of 

the 60 samples examined by SEM, the areolae lacked hymenes (e.g. Figs 45–47). We 

interpret this as a consequence of dissolution and that hymenes are present in intact 

organisms and frustules (cf. N. obsoleta: Fig. 50). The striae continue on to the valve 

mantle but are interrupted by a small ridge on the junction between the mantle and valve 

face (Figs 49, S4). The striae are parallel for most of the valve but become strongly radiate 

at the poles (Figs 36–39, n = 45), this feature can also be seen in LM with good optics. 

There is often a fault in the striation near the centre of the valve (Fig. 36). A small 

helictoglossa is present at the ends of the raphe internally on the internal side of the valve 

(Fig. S5; n = 35). Many loose or attached girdle bands were observed during SEM, each 

possessing two rows of small areolae (Figs 48, 49, S7; n = 14). Unlike in most diatoms, the 

open ends of the first two bands were positioned approximately halfway along the side of 

the frustule, rather than at the poles (Fig. 49).  

Holotype: Slide E6092/1 Herbarium, Royal Botanic Garden Edinburgh, Scotland, from 596 

cm depth (~3,000 cal BP) in the BA-LC-2011 core. The holotype specimen is shown in Fig. 

9 and is located at England Finder J40, between centre and 2. See Fig. S9 for a context 

image. 

Isotype: Slide Zu11/26 Hustedt Collection, Bremerhaven, Germany. 
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Type locality: Lake Babogaya (08° 47′ 08″ N, 38° 59′ 38.5″ E), Ethiopia: sediment core 

sample (present throughout from ~5400 cal BP at the base of core to the core top at ~600 

cal BP). The species is also present at 14.7% relative abundance (slide number QDP 885: 

Aberystwyth University DGES collection) in the top 1 cm of a surface core taken in 1998 

(GRADY, unpublished data) suggesting the species is likely extant; however, further work is 

required to confirm this.  

Distribution: only reported from Lake Babogaya to the authors’ knowledge (but see our 

comments below on a similar diatom reported by GASSE). 

Etymology: the specific epithet given to this taxon refers to the resemblance of the divided 

areolae to small sash windows, with the pores lacking plates looking like multiple rows of 

the windows when open. 

 

Morphology of N. fenestralis and similar species 

The samples from the Lake Babogaya core were very rich in N. fenestralis and it seems 

there is a continuous series of valves illustrating what we think are the changes that occur 

during the life cycle (Figs 2–20). As has been found in many Nitzschia species (GEISSLER 

1970a, b; TROBAJO et al. 2011, 2013; ROVIRA et al. 2015) the length of N. fenestralis varies 

considerably due to the life cycle whereas the width alters much less (both relatively and 

absolutely; see Figs 2–15). Consequently, the shape of the cells is rather different at the two 

ends of the size reduction series and if either end was seen in isolation it would be easy to 

think they belong to different species.  

An unusual feature of N. fenestralis is that the striae are obviously oblique to the apical axis 

towards the poles (Figs 36–39; also detectable in Figs 2–15). This is something that we 

hadn’t noticed before in any other long, linear Nitzschia species. Interestingly, it is also 

present in N. obsoleta, though less strongly developed (Figs 40, 43), and perhaps also in the 

recently described N. fabiennejansseniana (COCQUYT & RYKEN 2017; figs 32, 33). 

Furthermore, in terms of morphometrics (length, width, stria and fibula density: Table 2, 

Fig. 51), as well as in valve outline, N. fenestralis, N. obsoleta and N. fabiennejansseniana 

are similar (Figs 34, 35; COCQUYT & RYKEN 2017, figs 2–29). However, they are clearly 
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separated by the presence (N. obsoleta and N. fabiennejansseniana) or absence (N. 

fenestralis) of central raphe endings (Figs 26, 27, 41–44, and see COCQUYT & RYKEN 2017, 

figs 30, 31). The taxonomic utility of this character was already recognized in the 

publication where N. obsoleta was first described (HUSTEDT 1949, p. 134) and often since 

(e.g. KRAMMER & LANGE-BERTALOT 1988; TROBAJO et al. 2004; TROBAJO et al. 2013). 

Interestingly, under SEM, these three taxa (N. fenestralis, N. obsoleta and N. 

fabiennejansseniana) also share the distinctive feature of having areolae in the raphe canal 

divided in two (Figs 42, 45 and 47 for fenestralis, Figs 44 and 50 for obsoleta and 

COCQUYT & RYKEN 2017, figs 30–33 for fabiennejansseniana). We also observed this 

feature for N. mediocris (not illustrated); however, this taxon, despite the absence of central 

raphe endings, is separated from N. fenestralis by its narrower valves and much higher stria 

density (Table 2, Figs 24, 25, 33). Although N. fenestralis can be separated from N. 

obsoleta and N. fabiennejansseniana by the absence of central raphe endings, it is less clear 

whether N. obsoleta and N. fabiennejansseniana can be separated from each other. There is 

no obvious difference between them in valve structure and, as Table 2 shows, these two 

species cannot be separated by length, width, and fibula and stria density. Comparisons 

between these two species were not included in COCQUYT & RYKEN’s (2017) paper 

describing N. fabiennejansseniana but it seems very likely to us that it is a later synonym of 

N. obsoleta. However, this issue was not the focus of our work and a final decision should 

await a more complete examination of both species. 

When considering general valve outline, N. aequalis and N. fruticosa are also very similar 

to N. fenestralis, and also have a continuous raphe, however N. aequalis (Figs 21, 22) has 

much longer valves than N. fenestralis. Despite measuring 210 valves of N. fenestralis and 

scanning slides for longer specimens, the longest valves we found were ca 70 µm whereas 

the range recorded for N. aequalis by HUSTEDT (1949) was 80–130 µm (Table 2); the two 

valves that we measured of N. aequalis were also more finely striated (37 or 38 striae in 10 

µm) than N. fenestralis, although HUSTEDT gave a wider range (Table 2). Nitzschia 

fruticosa has slightly wider valves and a higher fibula density than N. fenestralis (Table 2). 

The figures of N. fruticosa given by SIMONSEN (1987, pl. 661, figs 7–11) and KRAMMER & 
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LANGE-BERTALOT (1988, pl. 60, figs 8–12) show a diatom with more attenuated, narrower 

ends than N. fenestralis and striae that are parallel throughout. 

Other somewhat similar taxa are:  

In terms of valve outline, N. pseudoaequalis COCQUYT ET RYKEN, N. intermissa HUSTEDT, 

N. bacata HUSTEDT (especially N. bacata f. linearis HUSTEDT) are also similar to N. 

fenestralis. However, alongside morphometrics such as different stria density or valve 

width, critically all these taxa possess central raphe endings. Conversely, numerous taxa, 

such as N. abonuensis FOGED, N. etoshensis CHOLNOKY, N. asterionelloides O. MÜLLER, 

share the lack of central raphe endings with N. fenestralis and are also similar in terms of 

valve outline (FOGED 1966; CHOLNOKY 1966). However, the stria and fibula density of 

these taxa are finer (N. etoshensis and N. asterionelloides) or coarser (N. abonuensis) than 

those of N. fenestralis. Additionally, the widths of N. etoshensis (4–5.5 µm) and N. 

asterionelloides (1.6–1.8 µm) separate these species fromN. fenestralis (1.9–3.3 µm).  

In her seminal work on the diatoms of East Africa, GASSE (1986, pl. 35, fig. 13) illustrated 

a specimen with somewhat similar morphology to N. fenestralis which she placed in the 

broad N. palea complex as N. aff. palea, despite the taxa of this complex normally having 

rostrate apices (e.g. KRAMMER & LANGE-BERTALOT 1988; MORALES & HAMILTON 2002; 

TAYLOR et al. 2007, TROBAJO et al. 2009). Further work is needed to confirm whether N. 

aff. palea of GASSE is indeed N. fenestralis or not. 

 

Noteworthy morphological features of N. fenestralis 

As noted above, the radiate orientation of the striae towards the poles in N. fenestralis is 

apparently unusual in Nitzschia. However, it is possible that it has been overlooked 

elsewhere, especially in long delicate species. Whole valves are often illustrated only as 

LMs, while SEM images show only details of the ultrastructure (e.g. raphe structure, 

areolae, girdle bands). Thus, in the LMs of whole valves of N. fabiennejansseniana given 

by COCQUYT & RYKEN (2017) the striae are mostly invisible and the poles of this species 

are shown for only one valve in SEM (ibid., figs 32, 33); this particular valve had radiate 

polar striae like N fenestralis but it is unclear whether this is characteristic of N. 
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fabiennejansseniana or not and stria orientation is not mentioned in COCQUYT & RYKEN’s 

(2017) description of the species. 

The structure of the raphe canal is proving valuable for characterizing species of Nitzschia 

and related genera (e.g. TROBAJO et al. 2012, 2013). Several variants are known. In one, the 

raphe canal walls lack areolae altogether (e.g. in Pseudo-nitzschia and Fragilariopsis: e.g. 

MANN 1978). Elsewhere, there may be a single longitudinal row of areolae, one opposite 

each stria of the valve face (e.g. ROVIRA et al. 2015), several longitudinal rows (e.g. N. 

sigmoidea: MANN 1986, figs 3, 4), or a complex structure, in which each valve stria is 

represented within the raphe canal by a cluster of three or more small areolae (e.g. N. 

fonticola, N. soratensis: TROBAJO et al. 2006, 2013). The paired areolae in the raphe canal 

of N. fenestralis represent a further type, present also in N. obsoleta and N. 

fabiennejansseniana (if this is separate from N. obsoleta) and may perhaps be characteristic 

of a subgroup of Nitzschia that has not previously been recognized. 

A further interesting feature, which we have never seen reported before in any other 

diatom, is the presence of short bands in both N. fenestralis and N. obsoleta, each band 

reaching from the pole to approximately half way along the girdle on either side. The 

material of N. fenestralis was too fragmented for us to be able to determine how many such 

bands there are in a theca: there are at least two. In N. obsoleta there are four, arranged 

alternately; only the much narrower fifth band is of normal length, extending around the 

whole circumference of the cell and open at one pole (Figs 50, S8). 

 

Ecology and associated diatoms 

All samples of the core studied contained Nitzschia species (Fig. 52) and in most of them 

they represented >30% of the diatom community; indeed, in a few samples Nitzschia made 

up nearly 100% of the total community (Fig. 52). As discussed above, Nitzschia-dominated 

waterbodies are not as unusual in tropical Africa as elsewhere, with the early classification 

of African lakes (HUSTEDT 1949; TALLING & TALLING 1965; RICHARDSON 1968) 

containing a whole class and sub-class of lakes partially characterised by high abundances 

of Nitzschia taxa (class III and subclass IIb) and also by lake alkalinity.  
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Nitzschia fenestralis was observed throughout the core record but was most abundant 

(>35% relative abundance) in samples between 300 and 800 cm sediment depth (Figs 52, 

53) in association with the freshwater Nitzschia paleacea (GRUNOW) VAN HEURCK, 

Nitzschia lancettula O. MÜLLER and Nitzschia gracilis HANTZSCH sensu GASSE (1986). 

Among other species present with Nitzschia fenestralis in certain sections were 

predominantly freshwater taxa such as Nitzschia palea (KÜTZING) SMITH, N. “group latens” 

(sensu GASSE 1986), Aulacoseira granulata (EHRENBERG) SIMONSEN and Fragilaria-type 

taxa such as Pseudostaurosira brevistriata (GRUNOW) WILLIAMS & ROUND and Ulnaria 

ulna (KÜTZING) COMPÈRE.  

Although it is important to note the role of numerous other environmental factors (such as 

water salinity and turbidity to name a couple), the distribution of diatom taxa in Africa have 

been linked with hydrochemistry in terms of alkalinity and pH, especially Nitzschia spp. 

(e.g. class IIb lakes in RICHARDSON (1968)). For example, based on their eastern African 

diatom dataset (initial dataset consisting of 156 samples containing 579 taxa across 98 

sites), GASSE & TEKAIA (1983) suggest that Pseudostaurosira brevistriata and Nitzschia 

lancettula, taxa common alongside N. fenestralis in the Babogaya core, are indicator taxa 

for a lake pH of around 8 to 8.6, with the combined African dataset (GASSE et al. 1995; 282 

samples containing 665 taxa across 164 sites) suggesting pH optima of 7.82 ± 1.02 and 

8.51 ± 0.76 pH for P. brevistriata and N. lancettula, respectively. The same combined 

African dataset gives an optimum of ~7.6 pH for both N. palea and N. paleacea, species 

that are also common with N. fenestralis. However, the composition of a plankton 

community (including the abundance of Nitzschia species such as N. paleacea) is also 

influenced by nutrient availability (especially N, Si and P; e.g. KILHAM et al. 1986; VAN 

DAM et al. 1994; BAIER et al. 2004). Furthermore, factors such as lake water temperature 

and mixing are also important in controlling Nitzschia abundance (KILHAM et al. 1986; 

WOODBRIDGE & ROBERTS 2010), illustrating the complex, multifactorial influences on 

plankton composition and that further work is required to fully understand the ecology of 

N. fenestralis. 

The genus Nitzschia is widely distributed and abundant in several types of ecosystems but 

is taxonomically difficult. Nitzschia species often have very few distinguishing 
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morphological characters that can be seen in LM, making them notoriously difficult to 

accurately identify. Even in SEM, their recognition can be difficult; not surprisingly, 

therefore, Nitzschia studied under LM are often identified at genus level only (or with 

“aff.” to similar species) in (palaeo)ecological and taxonomic studies (e.g. GASSE 1986; 

LEGESSE et al. 2002; MORALES & HAMILTON 2002; KRSTIĆ et al. 2012). However, the 

ability to recognize and differentiate a species is a prerequisite to fully understand and 

utilise the ecology of that species. The present study, in which a hitherto unknown diatom 

has been found to dominate the diatom assemblage of a lake for a large part of its history, 

illustrates what would be missed by not recognizing it as different from other species such 

as N. obsoleta, N. aequalis, etc. Only now that we can discriminate N. fenestralis from 

morphologically similar taxa is it possible to study its ecology and distribution, and 

therefore its potential use for investigating environmental changes (past and present) in this 

crater lake and perhaps elsewhere.  
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Supplementary material 

The following supplementary material is available for this article: 

Figs S1–S8. Nitzschia fenestralis and N. obsoleta, extra SEM micrographs. 

Fig. S9. Context photograph for the holotype of N. fenestralis. 

Table S1. AMS radiocarbon dates for the Lake Babogaya core. 
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Table 1. Hydrochemistry of the Debre Zeit area groundwater (Gr) and Lake Babogaya (BA). 

 

 
Conductivity  

(k20 μS/cm) 
pH 

HCO3
–

– 

(meq/L) 

Cl– 

(meq/L) 

SO4
2– 

(meq/L) 

CO3
– 

(meq/L) 

K+ 

(meq/L) 

Na+ 

(meq/L) 

Ca2+ 

(meg/L) 

Mg2+ 

(meq/L) 

Gr1 685 7.3 2.62 0.42 – – – 0.42 1.98 2.52 

BA1 776 8.7–9.2 7.67 0.69 – – – 3.74 0.22 3.74 

 0 m 850 (± 30) – 2.55 0.06 4.09 2.70 0.37 2.33 0.84 3.72 

 3 m 841 (± 28) – 4.20 0.11 3.51 3.00 0.72 4.97 0.80 3.92 

BA2 6 m 829 (± 15) – 4.30 0.11 2.28 2.90 0.76 4.97 0.60 4.64 

 16 m 859 (± 14) – 4.60 0.11 2.68 2.60 0.62 4.58 0.68 4.36 

 30 m 959 (± 12) – 5.99 0.10 2.79 1.90 0.45 2.84 0.68 4.72 

 50 m – – 5.49 0.10 2.08 1.70 0.42 2.52 0.60 4.52 

 

1 Surface water in 1998, from LAMB et al. (2002). 

2 Surface waters to 50 m depth in 2001, from LEMMA (2009). 
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Table 2. Range (1 d.p; mean ± s.d: 2 d.p) of N. fenestralis measurements in samples dominated by the species, compared to 

morphologically similar Nitzschia species. All measurements are given in μm. nd = not determined/documented.  

Taxon mediocris fabiennejansseniana obsoleta fruticosa aequalis fenestralis 

Length 40–50  24–48.5 25–45 22.7–44.8 

(33.68 ± 4.83) 

38–83 80–130 20–70.2 

(40.65 ± 9.38) 

Width 1.5–2  2.1–2.8 2.5–3 2.1–3 

(2.58 ± 0.20) 

2.5–4 3 1.9–3.3 

(2.46 ± 0.29) 

Stria density 

(/10 μm) 

nd 57–61 

(58.36 ± 1.34) 

32–35 32–35 33–36 

(34.66 ± 0.72) 

341 34–40 32–35 

(33.25 ± 0.88; 

n = 60) 

Fibula density 

(/10 μm) 

14–17 

(mostly 16) 

 11–13 

(commonly 12) 

12–14 11–14 (12.66 ± 

0.75) 

16–18 12–14 (mostly 

12) 

10–14 

(12.09 ± 0.72) 

Gap in central 

fibulae? 

no no yes yes yes no no no 

Areolae near 

raphe 

divided? 

yes ? yes – yes ? ? yes 

n = – 14 – – 50 – ? 210 

Source HUSTEDT 

(1949) 

This study COCQUYT & RYKEN 

(2017) 

HUSTEDT 

(1949) 

This study HUSTEDT 

(1957), 

SIMONSEN 

(1987) 

HUSTEDT 

(1949) 

This study 

 

1 SIMONSEN (1987, p. 445) notes that, whereas HUSTEDT was apparently unable to resolve the striae of N. fruticosa, the striation 

is “comparatively coarse”, with c. 34 in 10 µm.  
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Figures 

 

Fig. 1. Location of the Bishoftu crater lakes within Ethiopia (red point in inset map) and 

the Bishoftu area (black lines indicate roads). 
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Figs 2–20. Nitzschia fenestralis sp. nov.: cleaned valves and frustules from Lake 

Babogaya: LM, DIC optics. Figs 2–15. Series of valves, interpreted as representing size 

reduction during the life cycle, in valve view (the holotype of N. fenestralis is shown in 

Fig. 9). Note the even spacing of all the fibulae. Fig. 16. A recently divided vegetative 

cell in girdle view, showing nitzschioid symmetry of both daughter frustules. Figs 17–

20. Frustules of various lengths in girdle view; all are nitzschioid. Scale bar 10 μm. 
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Figs 21–25. Comparison of valves of similar linear Nitzschia species lacking a central 

nodule from tropical African lakes, LM, DIC optics. Fig. 21. Paralectotype of N. 

aequalis (ringed specimen on Hustedt collection slide 241/65 from Lake Edward: this 

specimen was also photographed by SIMONSEN 1987, pl. 530, Figs 3, 4). Fig. 22. 

Another specimen of N. aequalis (on Hustedt collection slide 241/74, again from Lake 

Edward). Fig. 23. Long specimen of N. fenestralis (also shown in Fig. 1). Figs 24, 25. 

Nitzschia mediocris (Hustedt collection, slide 243/6, Nyamirundi, Lake Kivu). Scale bar 

10 μm. 
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Figs 26–35. Comparison of Nitzschia fenestralis, N. obsoleta, N. aequalis and N. 

mediocris, LM, DIC optics. Figs 26–29. Valve centres of N. fenestralis (Fig. 26), N. 

obsoleta (Fig. 27, from Hustedt collection slide 242/21, from off algae in Lake Edward), 

and N. aequalis (paralectotype shown in Fig. 28, a second valve in Fig. 29). Note that 

the striae are less dense in N. fenestralis and N. obsoleta (33 and 34.5 in 10 µm 

respectively) than in N. aequalis (38 and 37.5 in 10 µm); in addition, the areolae are 

resolved in N. fenestralis and N. obsoleta, but not N. aequalis. Figs 30–32. Valve ends 

of N. fenestralis, N. obsoleta and N. aequalis (paralectotype), respectively. Fig. 33. 

Centre of N. mediocris. Fig. 34. Nitzschia fenestralis: note the even spacing of all 

fibulae and the radiate orientation of the striae towards the poles. Fig. 35. Nitzschia 

obsoleta: the two central fibulae are more widely spaced and a central nodule can be 

detected between them (arrowhead). Scale bars 10 µm (in Fig. 33 for Figs 26–33, in 

Fig. 35 for Figs 34, 35). 

 

‘ 
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Figs 36–40. Nitzschia fenestralis and N. obsoleta, whole valves, SEM, all untitled and 

presented with the raphe system to the left. Here and in Figs 41–50 and S1–S8, N. 

fenestralis is illustrated from sample QDP 2000 and N. obsoleta from Hustedt sample 

A382 (which is the sample from which LM slide 242/21 in the Hustedt collection was 

prepared). Figs 36–38. Nitzschia fenestralis, internal views, showing more or less 

evenly spaced fibulae and striae that become strongly radiate towards the apices. Fig. 

39. Nitzschia fenestralis, external view. Fig. 40. Nitzschia obsoleta, external view. Scale 

bar 10 µm. 
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Figs 41–50. Nitzschia fenestralis and N. obsoleta, details of external frustule 

ultrastructure (except Fig. 46), SEM; all tilted 25°. Figs 41, 42. Whole valve context and 

centre of N. fenestralis: the raphe is continuous. Figs 43, 44. Whole valve context and 

centre of N. obsoleta: central raphe endings are present; this specimen is eroded and has 

lost its hymenes (contrast Fig. 50). Fig. 45. Nitzschia fenestralis, centre, showing 

continuous raphe , deep valve mantle, the double row of poroids on each side of the 

raphe within the raphe canal (see also Fig. 47), and a split in the girdle bands at the 

centre (arrow). Fig. 46. Nitzschia fenestralis, internal view. The bases of the fibulae are 

linked by a longitudinal ridge, creating elliptical portulae linking the raphe canal with 

the valve interior. The double poroids in the raphe canal are visible (e.g. arrows). Fig. 

47. Nitzschia fenestralis, valve pole, showing slightly bent terminal fissure and the 

double row of narrower areolae in the raphe canal. Figs 48, 49.  
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Figs 41-50 cont. Whole valve context and centre of a disassembled, incomplete theca of 

N. fenestralis, showing the open ends (at large arrow) of band 1 (b1) and band 2 (b2), 

which both bear two rows of closely spaced round poroids; the other end of band 2 is 

also visible, lying free on the stub (above arrow). Note also the deep valve mantle, 

where each stria is represented by four areolae, and the slight interruption of the striae at 

the valve face–mantle junction (narrow arrow). Fig. 50. Nitzschia obsoleta, centre of 

frustule in girdle view. Note the double row of areolae (black arrows) in the raphe canal, 

deep valve mantle with four areolae in each stria (cf. Fig. 49), open ends of bands 1–4 

(b1–b4), each with two rows of small round areolae, and the narrower, imperforate band 

5 (white arrow), which is not interrupted at the centre. Note also that each valve areola 

is occluded by a hymen close to its external aperture. Scale bars 2 µm (Figs 41–44, 48, 

49) or 500 nm (Figs 45–47, 50).
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Fig. 51. Width (A), striae (B) and fibulae (C) density of Nitzschia fenestralis and similar Nitzschia taxa. Box plots are included for metrics 

measured in this study, with whiskers only for morphometrics published elsewhere cited in text. 
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Fig. 52. Abundance of Nitzschia fenestralis, and Nitzschia in general, in samples taken 

through the Lake Babogaya core. 
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Fig. 53. Abundance of Nitzschia fenestralis and other Nitzschia taxa when N. fenestralis 

abundance was >35% in a sample. 
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Supplementary Figures 

 

Figs S1–S8. Nitzschia fenestralis and N. obsoleta, SEM, all tilted 25°. Figs S1, S2. 

Whole valve context and centre of N. fenestralis; note that in this specimen the 

arrangement of areolae in the raphe canal is somewhat irregular (contrast Fig. S3). Fig. 

S3. Nitzschia fenestralis, centre, showing the double row of narrower areolae in the 

raphe canal. Figs S4–S6. Nitzschia fenestralis, valve pole in external (Fig. S4) and 

internal views (Figs S5, 6). Note the slight marginal ridge (arrow, Fig. S4) at the 

junction of the valve face and mantle. Fig. S7. Theca of N. fenestralis. As well as the 

valvocopula with two rows of areolae (which comprises two half bands: cf. Fig. 49), 

lying adjacent to the valve, this theca possesses a more abvalvar band with two rows of 

small areolae, presumably equivalent to band b3 or b4 of N. obsoleta (cf. Fig. 50 and 

Fig. S8). Fig. S8. Nitzschia obsoleta: whole frustule in girdle view; this image provides 

context for Fig. 50. Scale bars 2 µm (Figs S1, S7, S8) or 500 nm (Figs S2–S6). 
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Fig. S9. Context photograph for the holotype (arrow) of N. fenestralis, illustrated in Fig. 

9. 
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Appendix 2. Taxonomic authorities for diatom taxa identified (continues over 8 pages). 

 

Name used in thesis Other name Authority Year 

Achnanthes conspicua Platessa conspicua A. Meyer 1919 

Achnanthes delicatula  (Kützing) Grunow 1880 

Achnanthes exigua Achnanthidium exiguum Grunow 1880 

Achnanthes exigua var. elliptica  Hustedt 1937 

Achnanthes exilis  Kützing 1833 

Achnanthes lanceolata Planothidium lanceolatum (Brébisson ex Kützing) Grunow 1880 

Achnanthes minutissima var. affinis Achnanthidium affine 
(Grunow) Lange-Bertalot in Lange-Bertalot & 

Krammer 
1989 

Achnanthes oblongella Platessa oblongella Østrup 1902 

Achnanthes reversa Psammothidium reversum Lange-Bertalot 1989 

Achnanthes rosenstockii Achnanthidium rosenstockii Lange-Bertalot in Lange-Bertalot & Krammer 1989 

Achnanthes sp.    

Achnanthes stewartii Platessa stewartii Patrick 1945 

Achnanthes ventralis Psammothidium ventrale 
(Krasske) Lange-Bertalot in Lange-Bertalot & 

Krammer 
1989 

Achnanthidium minutissimum Achnanthes minutissima (Kützing) Czarnecki 1994 

Amphora coffeaeformis Halamphora coffeaeformis (C.Agardh) Kützing 1844 

Amphora delicatissima  Krasske in Hustedt 1930 

Amphora inariensis  Krammer 1980 

Amphora libyca  Ehrenberg 1841 

Amphora ovalis  (Kützing) Kützing 1844 

Amphora pediculus  (Kützing) Grunow 1875 

Amphora veneta Halamphora veneta Kützing 1844 

Anomoneis sp.    

Anomoneis sphaerophora  Pfitzer 1871 

Anomoneis sphaerophora f. costata Anomoneis costata (Kützing) A.-M.Schmid 1977 
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Name used in thesis Other name Authority Year 

Anomoneis sphaerophora f. sculpta 
Anomoeoneis sphaerophora var. 

sculpta 
(Ehrenberg) Krammer in Krammer & Lange-Bertalot 1985 

Aulacoseira alpigena  (Grunow) Krammer 1991 

Aulacoseira ambigua  (Grunow) Simonsen 1979 

Aulacoseira distans  (Ehrenberg) Simonsen 1979 

Aulacoseira granulata  (Ehrenberg) Simonsen 1979 

Aulacoseira granulata var. 
angustissima 

 (O.Müller) Simonsen 1979 

Aulacoseira granulata var. valida  (Hustedt) Simonsen 1979 

Aulacoseira herzogii  (Lemmermann) Simonsen 1979 

Aulacoseira sp.    

Caloneis bacillum  (Grunow) Cleve 1894 

Caloneis silicula  (Ehrenberg) Cleve 1894 

Caloneis sp.    

Cocconeis microscopica Psammothidium microscopicum Cholnoky 1959 

Cocconeis placentula  Ehrenberg 1838 

Cocconeis placentula var. Euglypta  (Ehrenberg) Grunow 1884 

Cocconeis placentula var. lineata  (Ehrenberg) Van Heurck 1885 

Cyclotella caspia  Grunow 1878 

Cyclotella cf. kuetzinigia    

Cyclotella cyclopuncta Cyclotella cretica var. cyclopuncta Håkansson & J.R.Carter 1990 

Cyclotella meneghiniana  Kützing 1844 

Cymatopleura librile Surirella librile (Ehrenberg) Pantocsek 1902 

Cymbella affinis  Kützing 1844 

Cymbella cf. cistula    

Cymbella cistula  (Ehrenberg) O.Kirchner 1878 

Cymbella descripta Encyonopsis descripta (Hustedt) Krammer & Lange-Bertalot 1985 

Cymbella ehrenbergii Cymbopleura inaequalis Kützing 1844 

Cymbella fonticola Encyonopsis fonticola Hustedt 1937 
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Name used in thesis Other name Authority Year 

Cymbella gracilis Encyonema gracile (Rabenhorst) Cleve 1894 

Cymbella hungarica  (Grunow) Pantocsek 1902 

Cymbella hustedtii  Krasske 1923 

Cymbella leptoceros  (Ehrenberg) Kützing 1844 

Cymbella mesiana Encyonema mesianum Cholnoky 1955 

Cymbella minuta Encyonema minutum Hilse in Rabenhorst 1862 

Cymbella obscura Encyonema obscurum Krasske 1938 

Cymbella sinuata Reimeria sinuata W.Gregory 1856 

Cymbella sp.    

Cymbella tumida  (Brébisson) Van Heurck 1880 

Cymbella tumidula  Grunow in A.W.F.Schmidt 1875 

Denticula tenuis  Kützing 1844 

Diploneis oblongella  (Nägeli ex Kützing) Cleve-Euler 1922 

Diploneis subovalis  Cleve 1894 

Discostella stelligera Cyclotella stelligera (Cleve & Grunow) Houk & Klee 2004 

Encyonema muelleri Cymbella muelleri 
(Hustedt) D.G.Mann in Round, R.M.Crawford & 

D.G.Mann 
1990 

Encyonema silesiacum Cymbella silesiaca 
(Bleisch) D.G.Mann in Round, R.M.Crawford & 

D.G.Mann 
1990 

Encyonopsis microcephala Cymbella microcephala (Grunow) Krammer 1997 

Epithemia adnata  (Kützing) Brébisson 1838 

Epithemia argus  (Ehrenberg) Kützing 1844 

Epithemia hyndmanii  W.Smith 1850 

Epithemia smithii  Carruthers 1864 

Epithemia sorex  Kützing 1844 

Epithemia sorex var. gracilis  Hustedt 1922 

Epithemia sp.    

Epithemia turgida  (Ehrenberg) Kützing 1844 

Eunotia arcus  Ehrenberg 1837 
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Name used in thesis Other name Authority Year 

Eunotia minor  (Kützing) Grunow in Van Heurck 1881 

Eunotia praerupta  Ehrenberg 1843 

Fargilaria cf. parasitica    

Fragilaria berolinensis Belonastrum berolinense (Lemmermann) Lange-Bertalot 1993 

Fragilaria bidens  Heiberg 1863 

Fragilaria capucina sp.    

Fragilaria capucina var. mesolepta Fragilaria mesolepta (Rabenhorst) Rabenhorst 1864 

Fragilaria capucina var. rumpens Fragilaria capucina subsp. Rumpens (Kützing) Lange-Bertalot ex Bukhtiyarova 1995 

Fragilaria capucina var. vaucheriae Fragilaria vaucheriae (Kützing) Lange-Bertalot 1980 

Fragilaria exigua  Grunow in Cleve & Möller 1878 

Fragilaria famelica Synedra famelica (Kützing) Lange-Bertalot 1980 

Fragilaria fasciculata Tabularia fasciculata (C.Agardh) Lange-Bertalot 1980 

Fragilaria leptostauron var. martyi Martyana martyi (Héribaud-Joseph) Lange-Bertalot 1991 

Fragilaria nanana Synedra nana Lange-Bertalot 1993 

Fragilaria pinnata var. trigona Staurosirella pinnata var. trigona (Brun & Héribaud-Joseph) Hustedt in A.W.F.Schmidt 1913 

Fragilaria tenera  (W.Smith) Lange-Bertalot 1980 

Fragilaria zeilleri Pseudostaurosira zeilleri Héribaud-Joseph 1903 

Fragilaria zelleri var. elliptica Pseudostaurosira medliniae F.Gasse 1980 

Frustulia vulgaris  (Thwaites) De Toni 1891 

Gomphonema affine  Kützing 1844 

Gomphonema clavatum Gomphonema olivaceum Ehrenberg 1832 

Gomphonema clevei Gomphoneis clevei Frike 1902 

Gomphonema gracile  Ehrenberg 1838 

Gomphonema insigne  W.Gregory 1856 

Gomphonema intricatum var. pusilla  (Cleve-Euler) Mayer 1955 

Gomphonema lanceolatum  C.Agardh 1831 

Gomphonema minutum  (C.Agardh) C.Agardh 1831 

Gomphonema minutum f. syriacum  Lange-Bertalot & Reichardt  
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Name used in thesis Other name Authority Year 

Gomphonema parvulum  (Kützing) Kützing 1849 

Gomphonema pumilum  (Grunow) E.Reichardt & Lange-Bertalot 1991 

Gomphonema sp.    

Gomphonema truncatum  Ehrenberg 1832 

Gomphonema vibrio  Ehrenberg 1843 

Gomphonitzschia sp.    

Hantzschia amphixoys  (Ehrenberg) Grunow 1880 

Lindavia ocellata Cyclotella ocellata (Pantocsek) T.Nakov et al. 2015 

Mastogloia elliptica var.dansei  (C.Agardh) Grunow in van Heurck 1880 

Meridion circulare  (Greville) C.Agardh 1831 

Navicula cryptocephala  Kützing 1844 

Navicula cryptotenella  Lange-Bertalot in Krammer & Lange-Bertalot 1985 

Navicula cuspidate Craticula cuspidata (Kutzing) Kutzing 1844 

Navicula gastrum Placoneis gastrum (Ehrenberg) Kützing 1844 

Navicula helensis Fallacia helensis Schulz 1926 

Navicula microrhombus  (Cholnoky) Schoeman & Archibald  

Navicula minima  Grunow in Van Heurck 1880 

Navicula minus var. muralis Adlafia minuscula var. muralis 
(Grunow) Lange-Bertalot ex Lange-Bertalot & 

Rumrich 
1981 

Navicula monoculata Pseudofallacia monoculata Hustedt 1945 

Navicula mutica Luticola mutica Kützing 1844 

Navicula paramutica Luticola paramutica W.Bock 1963 

Navicula pelliculosa Fistulifera pelliculosa (Kützing) Hilse 1863 

Navicula pseudoscutiformis Cavinula pseudoscutiformis Hustedt 1930 

Navicula radiosa  Kützing 1844 

Navicula similis Placogeia similis Krasske 1929 

Navicula sp.    

Navicula tenera Pseudofallacia tenera Hustedt 1936 
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Name used in thesis Other name Authority Year 

Navicula viridula var. rosellatta  (Kützing) Cleve 1895 

Naviucla halophila  (Grunow) Cleve 1894 

Neidium alpinum  Hustedt 1943 

Neidium ampliatum  (Ehrenberg) Krammer in Krammer & Lange-Bertalot 1985 

Neidium dubium  (Ehenberg) Cleve 1894 

Nitzschia "group latens"  sensu Gasse 1986 

Nitzschia amphibia  Grunow 1862 

Nitzschia amphibia f. frauenfeldii  (Grunow) Lange-Bertalot in Lange-Bertalot & 
Krammer 

1987 

Nitzschia angustata  (W.Smith) Grunow 1880 

Nitzschia cf. acicularis    

Nitzschia cf. flexa    

Nitzschia dissipata  (Kützing) Rabenhorst 1860 

Nitzschia epiphytica  O.Müller 1905 

Nitzschia epiphyticoides  Hustedt 1949 

Nitzschia fenestralis  Grady, D.G.Mann & Trobajo 
in 

press 

Nitzschia fonticola  (Grunow) Grunow in Van Heurck 1881 

Nitzschia frustulum  (Kützing) Grunow 1880 

Nitzschia gracilis  sensu Gasse 1986 

Nitzschia inconspicua  Grunow 1862 

Nitzschia intermedia  Hantzsch in Grunow 1880 

Nitzschia lancettula  O.Müller 1905 

Nitzschia latens  Hustedt 1949 

Nitzschia linearis  W.Smith 1853 

Nitzschia palea  (Kützing) W.Smith 1856 

Nitzschia palea var. debilis  (Kützing) Grunow 1880 

Nitzschia paleacea  (Grunow) Grunow in Van Heurck 1881 

Nitzschia perminuta  Grunow in Van Heurck 1881 
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Nitzschia sinuata var. delognei  (Grunow) Lange-Bertalot 1980 

Nitzschia sinuata var. tabellaria  (Grunow) Grunow in Van Heurck 1881 

Nitzschia tropica  Hustedt 1949 

Nitzschia umbonata  (Ehrenberg) Lange-Bertalot 1978 

Nitzschia valdecostata  Lange-Bertalot & Simonsen 1978 

Opephora olsenii Opephora mutabilis M.Møller 1950 

Pinnularia borealis var. rectangularis  G.W.F.Carlson 1913 

Pinnularia brauniana  (Grunow) Studnicka 1888 

Pinnularia major  (Kützing) Rabenhorst 1853 

Pinnularia microstauron  (Ehrenberg) Cleve 1891 

Pinnularia obscura  Krasske 1932 

Pinnularia sp    

Pinnularia stomatophora  (Grunow) Cleve 1895 

Pinnularia viridis  (Nitzsch) Ehrenberg 1843 

Pseudostaurosira brevistriata Fragilaria brevistriata (Grunow) D.M.Williams & Round 1988 

Pseudostaurosira elliptica Fragilaria elliptica (Schumann) Edlund, Morales & Spaulding 2006 

Pseudostaurosira parasitica Fragilaria parasitica (W.Smith) E.Morales in E.Morales & Edlund 2003 

Pseudostaurosira pseudoconstruens Fragilaria pseudoconstruens (Marciniak) D.M.Williams & Round 1988 

Rhoicosphenia curvata  (Kützing) Grunow 1860 

Rhopalodia gibba Epithemia gibba (Ehrenberg) O.Müller 1895 

Rhopalodia gibba var. parallela Epithemia parallela (Grunow) Holmboe 1899 

Rhopalodia gibberula  (Ehrenberg) O.Müller 1895 

Rhopalodia gracilis  O.Müller 1895 

Rhopalodia operculata Epithemia operculata (C.Agardh) Håkanasson 1979 

Rhopalodia vermicularis  O.Müller 1895 

Sellaphora pupula Navicula pupula (Kützing) Mereschkovsky 1902 

Stauroneis phoenicenteron  (Nitzsch) Ehrenberg 1843 

Stauroneis smithii  Grunow 1860 

https://www.algaebase.org/search/species/detail/?species_id=138724
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Stauroneis sp.    

Staurosira construens Fragilaria construens Ehrenberg 1843 

Staurosira construens var. venter Fragilaria construens var. venter (Ehrenberg) P.B.Hamilton in Hamilton et al. 1992 

Staurosira construens var. binodis Neidiomorpha binodis (Ehrenberg) M.Cantonati, Lange-Bertalot & N.Angeli 2010 

Staurosirella pinnata Fragilaria pinnata (Ehrenberg) D.M.Williams & Round 1988 

Stephanodiscus hantzschii  Grunow in Cleve & Grunow 1880 

Stephanodiscus minutulus  (Kützing) Cleve & Möller 1882 

Stephanodiscus niagarae  Ehrenberg 1845 

Stephanodiscus sp.    

Surirella amphioxys  W.Smith 1856 

Surirella angusta  Kützing 1844 

Surirella engleri Iconella engleri O.Müller 1904 

Surirella nyassae  O.Müller 1904 

Surirella ovata Surirella minuta Kützing 1844 

Surirella venusta  Østrup 1910 

Tabellaria binalis var. elliptica Oxyneis binalis var. elliptica R.J.Flower 1986 

Thalassiosira faurii  (Gasse) Hasle 1978 

Ulnaria acus Synedra acus (Kützing) Aboal 2003 

Ulnaria oxyrhynchus Fragilaria ulna var. oxyrhynchus (Kützing) Aboal in Aboal et al. 2003 

Ulnaria ulna Syndera ulna (Nitzsch) Compère 2001 
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Plate I 

 

 

 

 

1. Achnanthidium exiguum (rapheless side of valve) 

2. Achnanthidium exiguum (side with raphe) 

3-4. Achnanthidium minutissimum 

5. Amphora libyca  

6. Amphora libyca (girdle view) 

7. Amphora pediculus (girdle view) 

8. Amphora pediculus  

9. Aulacoseira granulata var. angustissima (girdle view showing separation spine) 

10. Aulacoseira granulata var. angustissima (girdle view) 

11. Cymbella affinis 

12-14. Cymbella hustedtii 

15-16. Cymbella leptoceros 

17-18. Discostella stelligera 

 

 

 

All scale bars shown represent 10 µm unless stated otherwise 
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Plate II 

 

 

 

 

1. Encyonema muelleri 

2. Encyonema silesiacum 

3-4. Encyonopsis fonticola 

5-6. Encyonopsis microcephala 

7. Epithemia adnata 

8. Epithemia argus 

9. Epithemia sorex 

10. Fragilaria nanana (centre of valve) 

11. Fragilaria nanana (pole of valve) 

12. Gomphonema clevei  

13. Gomphonema intricatum var. pusilla  

14. Gomphonema parvulum 

15. Gomphonema pumilum 

 

 

 

All scale bars shown represent 10 µm unless stated otherwise 
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Plate III 

 

 

 

 

1. Lindavia ocellata 

2-3. Navicula cryptotenella 

4. Navicula radiosa 

5-6. Nitzschia amphibia 

7. Nitzschia cf. gracilis 

8-9. Nitzschia epiphytica 

10-12. Nitzschia “group latens”  

13-16. Nitzschia lancettula 

17. Nitzschia palea 

18-19. Nitzschia paleacea  

20. Nitzschia tropica 

21. Nitzschia tropica (girdle view) 

 

 

 

All scale bars shown represent 10 µm unless stated otherwise. 
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Plate IV 

 

 

 

 

1-4. Pseudostaurosira brevistriata 

5. Pseudostaurosira brevistriata (girdle view) 

6-8. Pseudostaurosira pseudoconstruens 

9-10. Pseudostaurosira pseudoconstruens (girdle view) 

11-12. Punctastriata sp. 

13. Sellaphora pupula 

14-16. Staurosira construens  

17-19. Staurosira construens var. venter 

20. Staurosira construens var. venter (girdle view) 

21. Morphotype between Staurosira construens var. venter and Fragilaria elliptica 

 

 

 

All scale bars shown represent 10 µm unless stated otherwise. 
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Plate V 

 

 

 

 

1-6. Staurosirella pinnata 

7-9. Staurosirella pinnata (girdle view) 

10. Comparison of the considerably similar Staurosirella pinnata (black arrow) and 

Punctastriata sp. (red arrow) 

9-10. Pseudostaurosira pseudoconstruens (girdle view) 

11. Ulnaria acus 

12. Comparison of the central areas of Ulnaria acus (upper valve) and Fragilaria 

nanana (lower valve) showing the similarity of these morphotypes 

13-14. Ulnaria ulna 

 

15. Phacotus sp. loricae (circled) in bright field 

16. Same Phacotus sp. loricae (circled) as 15 under polarised light microscope 

 

 

 

 

All scale bars shown represent 10 µm unless stated otherwise. 
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