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“As many more individuals of each species 

are born than can possibly survive; and as, 

consequently, there is a frequently recurring 

struggle for existence, it follows that any 

being, if it vary however slightly in any 

manner profitable to itself, under the 

complex and sometimes varying conditions of 

life, will have a better chance of surviving, 

and thus be naturally selected. From the 

strong principle of inheritance, any selected 

variety will tend to propagate its new and 

modified form.” 

- Charles Darwin,

On the Origin of Species, 1859 

Introduction, page 5. 
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SUMMARY 

The wind is an important abiotic stress from an agronomic and economic point of view. While 

the response of plants to various abiotic stresses is intensively studied, there is relatively little 

research on wind stress (WS) and mechanical stress (MS) in plants, especially in the grasses. 

This study aims to provide information on how wind stress and mechanical stress affect the 

growth and development of the model grass Brachypodium distachyon.  

In particular, the study focussed on the consequences of WS and MS on cell wall composition 

and architectural features of the stems, as well as phenotypic, molecular and metabolic 

responses. The study includes a comparison of two genotypes of Brachypodium, Bd21 and 

ABR6. 

Phenotypic observation demonstrated a reduction in main stem length and delayed flowering, 

reduction in seed yield and aboveground biomass for the two genotypes. More detailed 

analysis, including histology, anatomy, and composition analysis of stem cell walls, showed 

differences in response to WS and MS and between both genotypes Bd21 and ABR6. 

Investigation showed alterations in cell wall thickness of particular stem tissues as well as the 

organisation of stem tissues. Immunolocalisation using a range of monoclonal antibodies 

against non-cellulosic cell wall glycans, revealed differences in the labelling pattern obtained 

with pectin-related antibodies between treatments and genotypes. Mechanical stimulation 

enhanced pectin methylesterase activity and an increase in lignin content localised mostly in 

the cortex and interfascicular tissue. Differences in cell wall monosaccharide content were also 

observed. Sugar release after enzymatic hydrolysis was significantly reduced after both stress 

treatments. Furthermore, three-point-bending tests showed differences in the mechanical 

properties of stems exposed to WS/MS compared with control. In an attempt to provide 

functional information on the responses to WS and MS molecular and metabolomic analysis 

were performed. Molecular analysis revealed alterations in cell wall-related, LOX, and PME 

genes expression in response to WS and MS in both genotypes. Metabolic analysis unravelled 

pathways involved in response to mechanical stimulation.  

The study showed that wind and mechanical stress induce significant architectural changes 

across multiple scales, from the whole plant to organ, tissue, cellular and molecular level 

highlighting the complex nature of how plants respond to mechanical stimulation. 

Keywords: • Brachypodium distachyon • cell wall • wind stress • mechanical stress • 

mechanical stimulation • immuno-localisation • RT-PCR • metabolite profiling 
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CHAPTER 1 :  GENERAL INTRODUCTION 
 

1.1. INTRODUCTION 

The Earths’ climate and the environment is constantly changing. Weather events such 

as droughts, heat, flooding, and storms, become more frequent and occur in places 

where not observed before. These events affect everyone and everything, including 

plants, which are unable to relocate if environmental conditions threaten their survival. 

Throughout the evolutionary process, plants had to evolve many adaptations, which 

help them to survive in various and changing conditions (Chehab et al., 2009).  

Plant response to abiotic stresses such as drought, flooding, cold, salt, heavy metals, 

light and air pollutants are extensively studied (Le Gall et al., 2015), while data regarding 

plant response to mechanical stimulation is very limited leaving several important 

questions to address. How do plants adapt to windy environments, what is changing in 

their phenotypic traits, mechanical properties, composition, and architecture of cell 

wall, and what genes are responsible for particular responses? 

Wind stress has a significant influence on phenotypic traits in plants such as architecture 

and morphology. The plant organ most affected by wind exposure is the stem, which 

gives the plant stability and provides a lever to hold the plant upright (Tripathi et al., 

2003). After wind exposure, stems usually become smaller, stiffer and wider (Onoda & 

Anten, 2011; Hamant, 2013), which completely change their mechanical properties. 

These changes in the stem are often accompanied by a reduction in leaf size, resulting 

in a decrease in total above-ground biomass (Kern et al., 2005). 

Plant cell walls are like to significantly contribute to the visible changes on the whole-

plant level. Grass cell walls can be thought of as a highly organised composite, 

comprised of cellulose embedded in a range of matrix polysaccharides belonging to the 

group of hemicelluloses and pectins, structural proteins and phenolic compounds. 

Plants cell walls protect plants from biotic and abiotic stresses such as wind. In order to 

adapt to particular environmental conditions, cell walls can change their biochemistry, 

reorganise components and hence, architecture (Sarkar et al., 2009). Moreover, they 

are responsible for the mechanical properties of the plant, such as strength and 
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extensibility (Ochoa-Villarreal et al., 2012). Unfortunately, the relationship between cell 

wall components and stem strength is still not clear (Wang et al., 2012).  

Society benefits greatly from grasses. They comprise one of the primary sources of food 

for people and also for feeding animals (Vogel et al., 2006). Additionally, grasses, 

including those classified as bioenergy plants, are a great biomass source for the 

production of renewable energy (Bevan et al., 2010). In recent years, winds and storms 

have become more frequent and intense, affecting plants directly. Strong winds are 

responsible for lodging, which is defined by the displacement of stems or roots from 

their vertical and proper placement (Le Gall et al., 2015). From an ecological, economic 

and agricultural point of view, this situation is alarming, especially with regard to cereal 

crops. It leads to a considerable reduction in yield, quality and harvesting efficiency 

(Kong et al., 2013). The most significant consequence is a deterioration in the quality of 

the grain (Winzeler et al., 1999). Cereal crops, including wheat, barley, triticale, and rice, 

represent the most important species in the grasses (Poaceae) for civilisation. The 

consequences of wind on cereal crops are therefore relevant to the issue of food 

security, one of the most important issues in this century mostly because of a constantly 

growing population in the world combined with projected climate changes.  

Sometimes it is challenging to study a particular issue in every single species. That is the 

main reason why researchers are looking for model plants. Because of the close relation 

to cereals and extensive research infrastructure, Brachypodium distachyon has become 

a model species in genetic, cytogenetic and, perhaps most importantly, in abiotic stress 

studies for grasses (Catalan et al., 2012).  

Thus, this thesis seeks to develop further understanding of the response of 

Brachypodium distachyon stems to wind and mechanical stress, identifying phenotypic, 

anatomical, compositional, molecular and metabolic alterations caused by such 

stresses. Identified traits connected with plant response upon mechanical stimulation 

will improve our capacity to evaluate and predict the performance of Brachypodium 

distachyon in response to extreme environments. This knowledge is essential, especially 

considering Brachypodium as a model plant for the grasses family.   



CHAPTER 1 

24 
 

1.2.  ABIOTIC STRESSES 

Plants experience constantly changing environmental conditions throughout their life. 

In some environments, changes are extreme and can occur periodically or permanently, 

which pressure plants to evolve some ability to perceive, respond, and adapt to their 

environment, and the associated stresses that environment generates (Priest et al., 

2014; Asensi-Fabado et al., 2017). Stress is defined by the altered physiological 

condition initiated by factors that tend to alter equilibrium. Environmental stresses 

elicit a wide variety of plant responses, ranging from altered gene expression and 

cellular metabolism to changes in growth rate and plant productivity (Shao et al., 2008). 

They are considered as the major cause of plant damage and reduced crop yield (Gupta, 

2014). Stresses can be divided into two major categories biotic and abiotic. Biotic 

stresses are caused by infectious living organisms such as bacteria, viruses, fungi, or 

nematodes, but also by pests and weeds (Le Gall et al., 2015). Abiotic stresses includes 

extreme levels of light (high and low), radiation (UV-B and UV-A), temperature [high 

and low (chilling, freezing)], water (drought, flooding, and submergence), chemical 

factors (heavy metals and pH), salinity due to excessive Na+, deficiency or excess of 

essential nutrients, gaseous pollutants (ozone, sulphur dioxide), and other less 

frequently occurring stressors (Pereira, 2016). While the above stresses are intensively 

studied, there is relatively little research on plants response to abiotic stress caused by- 

mechanical stimulation.  

1.2.1. THIGMOMORPHOGENESIS 

Plants cannot relocate if environmental condition threatens their survival, so 

throughout the evolution, they had to evolve many response mechanisms to 

environmental stresses such as mechanical stimulation (Chehab et al., 2009). 

Mechanical stimulation includes many factors including touching, rubbing by animals 

and plants, visitation of flowers by pollinators, vibrations, rain, trampling by people but 

also wind (Jaffe & Forbes, 1993). Plants respond to mechanical stimulation by modifying 

their growth, development and composition. This phenomenon is being recognised at 

least since Theophrastus (Jaffe & Forbes, 1993), and it is called thigmomorphogenesis 
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(thigma is the Greek word for touch) (Chehab et al., 2009). The first use of this term has 

been attributed to Mark Jaffe to describe mechanically-induced responses in plants 

(Jaffe, 1973). The response of plants to mechanical stimulation may differ significantly 

depending on species, but also within species between different populations (Jaffe & 

Telewski, 1984; Bossdorf & Pigliucci, 2009) which may be explained by different plant 

architectures (Speck & Rowe, 2003).  

Wind is perhaps the most common factor of mechanical stimulation throughout a 

plants' life. Wind can have substantial economic impacts on forests, urban trees and, 

perhaps most important, on crops. Extreme winds can lead to lodging in cereal crops 

and have become an important issue from the agronomical and economic point of view 

(Reynolds, 2008). Lodging is defined as the displacement of stems or roots from their 

vertical and proper placement (Le Gall et al., 2015). Losses in crop yield in the UK caused 

by lodging can reach 25% in some years, and the financial loses per year has been 

estimated at £105 million for wheat alone (Baker et al., 2014). Wind complexity makes 

it challenging to study; nevertheless, it is important to get a deeper insight into how 

plants react to such a factor. 

Although the response of plants to mechanical stimulation has been studied, this aspect 

remains poorly understood. Nevertheless, for now, it is known that the most dramatic 

changes are connected with phenotypic, anatomical, histological and molecular 

features. 

1.2.1.1. PHENOTYPIC RESPONSES 

Morphological changes are not rapid and usually, occur slowly over time. However, the 

responses can be substantial (Braam, 2005; Chehab et al., 2009). Plants exposed to 

mechanical stimulation display different growth compared with controls. The most 

visible effect of mechanical stimulation generated by brushing, flexing, vibrations, 

touching and wind is a reduction in size (Onoda & Anten, 2011), which was observed in 

many species including Arabidopsis thaliana (Chehab et al., 2009), papaya seedlings 

(Clemente, 2001), Liquidambar styraciflua, maize (Neel & Harris, 1971) and also in 

Arundo donax (Speck, 2003).  
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Reduction in size may be caused by many factors observed to change after mechanical 

stimulation. A decrease in aboveground biomass is a frequently noted response to 

mechanical stimulation (Retuerto & Woodward, 1992; Goodman & Ennos, 1996; Henry 

& Thomas, 2002; Anten et al., 2005, 2009; Kern et al., 2005; Murren & Pigliucci, 2005; 

Bossdorf & Pigliucci, 2009; Zhao et al., 2018). Moreover, mechanical stimulation 

significantly affects leaf morphology and anatomy. Leaves exposed to mechanical 

stimulation usually are shorter, narrower and became thicker (Grace & Russell, 1977; 

Niklas, 1996; Cleugh et al., 1998; Pruyn et al., 2000; Kern et al., 2005; McArthur et al., 

2010). There are also suggestions that petioles undergo changes after mechanical 

stimulation, resulting in shorter and more flexible petioles (Liu et al., 2007). Moreover, 

it was observed that mechanical stimulation affects photosynthesis. However, results 

are extremely variable. Generally, photosynthesis increases for plants exposed to low 

winds compared to plants growing in calm conditions (Smith & Ennos, 2003). 

Nevertheless, stronger winds may reduce photosynthesis. Furthermore, responses may 

be complex, for example, wind-exposure of Cecropia schreberiana has been reported 

to lead to a decrease of photosynthetic rate and respiration on an area basis, but not 

on a leaf-mass basis (Cordero, 1999).  

Mechanical stimulation also affects the development and growth of roots and shoots. 

Plants seem to allocate more biomass into roots than shoots (Crook & Ennos, 1994; 

Goodman & Ennos, 1996; Clemente, 2001; Marler, 2011), which indicates that larger 

root systems increase the anchorage strength of plants thus preventing plants from 

being uprooted under mechanical stress (Goodman & Ennos, 1996). The increase in root 

growth and alterations in mechanical properties after mechanical stimulation was 

observed in sunflower and maize (Goodman & Ennos, 1996), wheat (Crook & Ennos, 

1994) and papaya (Marler, 2011).  

Alterations in stem diameter are one of the most frequently observed features after 

mechanical stimulation. Nevertheless, no clear pattern of response was found across 

plants. A number of studies showed an increase in stem diameter (Biro et al., 1980; 

Hunt & Jaffe, 1980; Pruyn et al., 2000; Anten et al., 2005; Zhao et al., 2018), but also 

decrease in stem diameter (Henry & Thomas, 2002; Smith & Ennos, 2003; Paul-Victor & 
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Rowe, 2011). There are also reports that stem diameter is not affected by mechanical 

stimulation (Goodman & Ennos, 1996; Bossdorf & Pigliucci, 2009). Moreover, it is 

suggested that even within species, the response in stem diameter to wind stress can 

vary (Murren & Pigliucci, 2005). All changes in stem diameter may be connected with 

anatomical changes in internal tissues such as the cortex and vascular bundles (Jaffe, 

1973, 1980; Biro et al., 1980; Kern et al., 2005). 

It has also been demonstrated that exposure to mechanical stimulation significantly 

affects reproduction in plants. Mechanical stimulation considerably delayed the onset 

of flowering in tobacco (Anten et al., 2005), Capsella bursa-pastoris (Niklas, 1998), white 

mustard (Retuerto & Woodward, 1992), Brassica napus (Cipollini, 1999) and 

Arabidopsis thaliana (Bossdorf and Pigliucci, 2009; Johnson et al., 1998). Moreover, 

other processes involved in reproductive success were altered, such as delay in anthesis 

(Mitchell et al., 1975; Akers & Mitchell, 1983), reduction in number of flower buds 

(Jaffe, 1973), reduction in seed number, seed weight and thus total yield (Niklas, 1998; 

Bossdorf & Pigliucci, 2009; Zhang et al., 2013b). 

It was reported that wind-induced mechanical stimulation on bean resulted inincreased 

resistance to pests, and increased resistance to at least one arthropod herbivore and 

one leaf pathogen. The author suggested that exposure of plants to natural 

environmental stresses (e.g. wind) activate a generalised stress response can influence 

interactions of those plants with other environmental stimulations (Cipollini, 1997).  

Mechanical stimulation has a significant effect on the mechanical properties of the 

plant, primarily stems; however, no clear pattern in response was found. A majority of 

studies indicate that mechanical stimulation causes a reduction in stem stiffness (Pruyn 

et al., 2000; Henry & Thomas, 2002; Anten et al., 2009; Paul-Victor & Rowe, 2011), while 

others suggested that stems become more rigid (Goodman & Ennos, 1996). Thus, 

researchers created two theories presenting opposite plant response strategies, which 

both lead to an increase in the resistance of plants to mechanical failure. In the first one 

stems become either longer but more flexible (Cordero, 1999; Pruyn et al., 2000; Anten 

et al., 2005) while in the second strategy stems become shorter and more rigid and thus 

less prone to bending (Goodman & Ennos, 1996). 
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1.2.1.2. ANATOMICAL AND COMPOSITIONAL RESPONSES 

Stem anatomy and cell wall composition are well-studied areas, especially in the 

grasses. Nevertheless, in terms of wind or mechanical stress, the knowledge in these 

areas is very limited. However, from a scientific point of view, it comes as no surprise to 

find that morphological changes may be preceded by compositional and anatomical 

changes. Indeed some compositional and anatomical changes caused by mechanical 

stimulation have been noticed. 

Literature suggests that plants respond to wind by changing lignin accumulation; 

however, there is no clear consistency in the direction of the response. Increased lignin 

accumulation was observed in the wind stressed common beans compared with no 

controls (Cipollini, 1997). Moreover, an increase in lignin content and the number of 

lignified vessels was observed in Bryonia dioica internodes (De Jaegher et al., 1985). On 

the other hand, a reduction in the density of lignified cells was observed in wind-

exposed in Arabidopsis plants (Paul-Victor & Rowe, 2011). McArthur et al. noticed that 

total phenolic concentration was 7% higher in Eucalyptus tereticornis seedlings exposed 

to the chronic wind (McArthur et al., 2010). Moreover, pectins have been implicated in 

playing an essential role in response to mechanical stimulation in Arabidopsis 

(Verhertbruggen et al., 2013; Rigo, 2016). Researchers found that mechanical 

stimulation resulted in more abundant pectic galactan in the bottom part of the stem 

in the parenchyma cells of the pith (Rigo, 2016). Moreover, an increase in the 

abundance of unbranched (15)--L-arabinan epitopes was detected in the epidermis 

of stress-treated Arabidopsis plants (Verhertbruggen et al., 2013). It was also noted that 

homogalacturonan does not play a role in response to mechanical stress in Arabidopsis 

(Rigo, 2016). 

Mechanical stimulation also affects anatomical and histological features. In dicot plants, 

research in terms of the effect of mechanical stimulation on plant anatomy and 

histology is far more detailed compared with studies on monocots. Nevertheless, it was 

reported that mechanical stimulation has a substantial influence on stem anatomy and 

geometry. Arabidopsis stems responded to mechanical stimulation by developing a 

lower and more central area of lignified interfascicular tissue, smaller pith, larger cortex 
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and epidermal tissue (Paul-Victor & Rowe, 2011; Rigo, 2016). On the other hand, pith 

cells increased in size and number in perturbed bean plants (Biro et al., 1980). An 

increase in the diameter of cortical cells was also observed in runner bean (Phaseolus 

multiflora), broad bean (Vicia faba) (Bunning, 1941) and pea (Goeschl et al., 1966). 

Generally, changes in the diameter of the cortical parenchyma cells and secondary 

xylem production accounted for most of the mechanical stress-induced changes in stem 

diameter (Goeschl et al., 1966; Biro et al., 1980; Biddington, 1986). It has been 

suggested that mechanical stimulation is positively correlated with the number and 

amount of vascular bundles in oats (Jellum, 1962) and tall fescue (Grace & Russell, 1977) 

and rice (Zhang et al., 2013a). Additionally, the response to mechanical stimulation 

usually includes increased xylem production at the point of flexure (Jaffe, 1973, 1980; 

Hunt & Jaffe, 1980). Hepworth and Vincent suggested that the cylinder of xylem in the 

tobacco stems is the most important tissue which determines the stiffness of the whole 

plant; thus plants respond by increasing the thickness of the xylem tissue cylinder (Jaffe, 

1973, 1980; Hunt & Jaffe, 1980; Hepworth & Vincent, 1999). Moreover, it has been 

suggested that mechanical stimulation affects cell wall thickness; however, the 

outcome is not very clear. Studies on Arabidopsis showed opposite results, one study 

showed thickening of cell walls (Rigo, 2016), while another study showed thinning of 

cell walls (Paul-Victor & Rowe, 2011). Thickening of the cell wall was also observed in 

celery (Venning, 1949; Walker, 1957) and tamarack (Larix laricina) (Biddington, 1986), 

while mechanical stress had no impact on cell wall thickness in tobacco (Hepworth & 

Vincent, 1999). 

1.2.1.3. MOLECULAR RESPONSES 

Mechanical stimulation such as touch, rain and wind can rapidly alter gene expression 

(Braam & Davis, 1990; Lee et al., 2005). In Arabidopsis, touch-inducible genes (TCH) 

have been found to be elicited by the simple bending of the rosette leaves (Braam & 

Davis, 1990). Further studies on TCH genes in Arabidopsis showed that over 2.5% of 

genes are touch-inducible (Lee et al., 2005). They discovered that genes encoding for 

Ca2+-binding proteins and cell wall-associated proteins were the most highly 
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represented functional classes of the touch-regulated genes. Additionally, they 

identified genes encoding for other putative Ca2+-binding proteins, arabinogalactan 

proteins, pectin esterases, cellulose synthases, expansins but also genes implicated in 

disease resistance such as peroxidases, kinases, and transcription factors (Lee et al., 

2005). However, there are four main TCH genes: TCH1 encodes one of the Arabidopsis 

calmodulins (CaM2) (Braam & Davis, 1990); TCH2 and TCH3 encode calmodulin-like 

proteins (CML24 and CML12, respectively) (Braam & Davis, 1990; McCormack & Braam, 

2003), and TCH4 is a xyloglucan endotransglucosylase/hydrolase (XTH; XET) (Rose et al., 

2002). Unfortunately, little is known about TCH genes in grasses. Mauch et al. (1997) 

demonstrated that the wheat TaLOX1 gene, encoding a lipoxygenase, increases 

expression after mechanical and wind stimulation. The mechanical strain-regulated 

lipoxygenase might translate mechanical strain into lipoxygenase pathway-dependent 

growth responses (Mauch et al., 1997). 

  



CHAPTER 1 

31 
 

1.3.  THE GRASS CELL WALL 

Cell walls play a very important role in plant growth and development. They are 

composed of several polymers, which give the whole plant specific features (Carpita, 

1996). They determine the shapes of cells and organs and have remarkable mechanical 

properties to give plants strength and extensibility (Pilling & Höfte, 2003). Cell walls are 

involved in the response to biotic and abiotic stresses and play an essential role in stress 

sensing and signal transduction (Sarkar et al., 2009; Seifert & Blaukopf, 2010). 

Additionally, cell walls from plants growing in stress environment undergo biochemical 

changes and reorganisation of components and hence, architecture, which allows the 

cell walls to adapt to particular conditions (Sarkar et al., 2009). 

Cell walls undergo many changes during their development. All cell walls in plants have 

their origin in dividing cells during cytokinesis, which mainly takes place in specialised 

regions called meristems. The new-born cells are covered by primary cell walls, which 

are thin, extensible and mechanically stable. These features of primary cell walls allow 

cells to expand without rupture under cell turgor pressure (Reiter, 2002). When the cells 

reach their final shape and size, and the processes of growth are finished, the cell walls 

are no longer extensible. Secondary cell walls, which are deposited between the 

primary cell wall and the plasma membrane, are a key factor in stiffening. Secondary 

cell walls are thicker than primary cell walls, making cells more stable, stiff and strong 

(Burgert, 2006). 

1.3.1.  STRUCTURE OF THE GRASS CELL WALLS 

There is great diversity in the composition of cell walls depending on family, species, 

cell types or even over time during cellular differentiation (Carpita & Gibeaut, 1993). 

The main composition of all plant cell walls in flowering plants is similar, but they differ 

significantly in the number of particular polymers and their structural architecture 

(Fincher, 2009). Schematically, the construction of the cell wall can be visualised as an 

insoluble macromolecular network referred to as the wall matrix, comprising of 

cellulose and related polymers, of hemicelluloses, pectins, structural proteins and 

phenolic compounds (Rybka, 1993; Ochoa-Villarreal et al., 2012). 
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Primary cell walls are divided into two groups. Those from dicots, noncommelinid 

monocots, and gymnosperms belong to type I cell walls, and they are characterised by 

cellulose fibres which are surrounded by xyloglucan, pectin and structural proteins 

(McCann & Carpita, 2008). Type II cell walls are found only in commelinoid monocots 

(grasses), are composed of cellulose fibres encased in glucuronoarabinoxylans (GAX), 

high levels of hydroxycinnamates, and low levels of pectin and structural proteins 

(Vogel, 2008). Additionally and specifically for the Poales members of the commelinid 

monocots, cell walls contain a special type of glucan hemicellulose, (1→3, 1→4)-β-

glucan (MLG) (Carpita, 1996). 

Compared to primary cell walls, secondary cell walls of grasses differ significantly in the 

abundance of the above components. Secondary cell walls are composed mainly of 

cellulose, xylans and lignin, and the amount of other components decrease significantly 

(Vogel, 2008). The characteristic thickness of secondary cell walls is caused by the 

massive deposition of cellulose and hemicelluloses inside primary walls (Le Gall et al., 

2015). When the secondary cell wall is forming, monolignols, which are precursors of 

lignin, are secreted into the cell wall space and randomly cross-linked through oxidative 

polymerisation (Le Gall et al., 2015). The function of secondary cell walls is to provide 

structural support and integrity, to maintain the shape of the cell and to strengthen 

protection against biotic and abiotic factors (Pauly & Keegstra, 2010; Malinovsky et al., 

2014) (Table 1.1). 

Table 1.1. Cell wall composition in grasses and dicots. 

Approximate composition (% dry weight) of typical dicot and grass primary and secondary cell 

walls (Vogel, 2008). 

 Primary wall  Secondary wall 

 Grass Dicot  Grass Dicot 

Cellulose 20-30 15-30  35-45 45-50 

Xylans 20-40 5  40-50 20-30 

MLG 10-30 Absent  Minor Absent 

XyG 1-5 20-25  Minor Minor 

Mannans & glucomannans Minor 5-10  Minor 3-5 

Lignin Minor Minor  20 7-10 

Ferulic acid & p-Coumaric acid 1-5 Minor  0.5-1.5 Minor 

Pectins 5 20-35  0.1 0.1 

Structural proteins 1 10  Minor Minor 
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1.3.1.1. CELLULOSE 

Cellulose is an abundant plant polymer, which provides tensile strength to the cell walls, 

and as a result, give support to the plant (Carpita, 1996; Ochoa-Villarreal et al., 2012). 

This polymer is resistant to enzymatic attack, insoluble and highly crystalline (Ochoa-

Villarreal et al., 2012). Only small regions of cellulose are unorganised and create an 

amorphous form of cellulose, more susceptible to enzymatic degradation (Kumar et al., 

2009). A single cellulose chain has a linear structure built of repeated sequences of two 

glucose particles rotated relative to each other by 180° and stabilised by intramolecular 

hydrogen bonds and Van der Waals forces (Somerville, 2006). The chains of cellulose 

aggregate together to form bundles of about 40 cellulose chains, which are called 

microfibrils and have a tensile strength similar to steel. Microfibrils are organised in 

layers which are connected by polymers of hemicelluloses (Sarkar et al., 2009) (Figure 

1.1). 

Figure 1.1. Chemical structure of cellulose and cellulose microfibrils. 

Source: (Sarkar et al., 2009). 

1.3.1.2. HEMICELLULOSE 

Hemicelluloses are the second most abundant group of polymers in grass cell walls, and 

they create a set of short branched β-1,4-linked polysaccharides with a degree of 

polymerisation of around 500 to 3000. Typical hemicelluloses are composed of a 

heterogeneous mix of hexoses (D-glucose, D-galactose, D-mannose), pentoses (D-

xylose, L-arabinose) and sugar acids (D-glucuronic, D-galacturonic and 

methylgalacturonic acids) (Donohoe et al., 2008; Limayem & Ricke, 2012). In contrast 

to cellulose, hemicellulose polymers do not form crystalline structures, and they are 
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easily hydrolyzable (Kumar et al., 2009). In addition, they tend to form an association or 

strengthening network at specific junctions of the cellulose (Busse-Wicher et al., 2014; 

Park & Cosgrove, 2015). Hemicellulose has various side chains, for example, 

glucogalactomannan is a mixed backbone of β-1,4-linked glucose and mannose with 

galactosyl side chains that make up the major hemicellulose in softwood species such 

as pine (Willför et al., 2005).   

Xylans are the dominant group of polysaccharides in grass cell walls; they comprise 20%-

40% of the dry mass of the primary cell walls and 40%-50% of secondary cell walls 

(Vogel, 2008). Xylans are more complex than cellulose, as they consist of 

heteropolymers with (1→4)-β-xylan backbones substituted by arabinose (Ara) and 

glucuronic acid (GlcA) units, attached to some backbone xylose (Xyl) residues (Carpita, 

1996), and are therefore named: arabinoxylan (AX) and glucuronoarabinoxylan (GAX). 

In the grasses, the major xylans are glucuronoarabinoxylan (GAX), which occupy a 

similar role in cell wall type II as xyloglucan (XyG) in cell wall type-I (Vogel, 2008). GAX 

is composed of a 1,4-linked xylose backbone with single arabinose and glucuronic acid 

side chains primarily attached at the O-3 and O-2 positions, respectively (Ebringerova 

et al., 2005) and cross-links cellulose microfibrils and is therefore considered a linkage 

structure in cell walls architecture (McCann & Carpita, 2008). Additionally, Ferulic acid 

(FA) is attached to the arabinose side chains through various linkages (Vogel, 2008) 

(Figure 1.2). 

 

Figure 1.2. Chemical structure of glucuronoarabinoxylan (GAX). 

Source: (Vogel, 2008). 
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Mixed-linkage glucan (MLG) is a linear polymer exclusive only for grasses cell walls, 

(Carpita et al., 2001) which comprise of 20%-40% of the dry weight of primary cell walls 

(Vogel, 2008). MLG is an unbranched polymer of glucose, but its mixed linkage 

effectively results in distinct domains within the molecule composed of β- 

glucopyranosyl monomers linked by β-glycosidic linkages where most of these linkages 

are (1,4) and only one third are (1,3) (Gibeaut et al., 2005; Kiemle et al., 2014) (Figure 

1.3). The structure, architecture and role of MLG are still poorly understood. However, 

it was suggested that MLG is linked to cellulose and arabinoxylan, forming a gel-like filler 

structure between cellulose and GAX (Kozlova et al., 2014). Additionally, Kiemle et al. 

proposed that MLG acts as a gel-like matrix forming a thick hydrogel onto amorphous 

regenerated cellulose (Kiemle et al., 2014). That formation provides flexibility, 

meanwhile strengthening the cell wall in growing tissues such as seedlings (Buckeridge 

et al. 2004; Vega-Sánchez et al. 2012). Moreover, MLG in the grasses is also thought to 

act also as storage carbohydrate because of its high concentration in the endosperm of 

grains (Buckeridge et al., 2004) such as barley and Brachypodium (Roulin et al., 2002; 

Wilson et al., 2006; Guillon et al., 2012).   

 

Figure 1.3. A gel-like matrix of MLG, cellulose and GAX. 

Glucuronoarabinoxylan structure (top) and its arrangement in the cell walls in relation to mixed-

linkage glucan and cellulose at different stages of cell development (Kozlova et al., 2014). 
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XyG is much less abundant in grass cell walls than in dicots, comprise only 1-5% of grass 

cell walls (Vogel, 2008). XyG contains a (1,4) linked glucose backbone substituted in a 

repeating pattern of four glucose units (Wilder & Albersheim, 1973). Up to 75% of these 

glucose residues are substituted at O6 with mono-, di-, or triglycosyl side chains, with 

xylose directly linked to glucose molecules (Carpita, 1996). 

1.3.1.3. LIGNIN 

Lignin is the most abundant component after cellulose in the plants (Boerjan et al., 

2003). In the primary cell walls of grasses, lignin is present in very low concentrations, 

but in secondary cell walls, it comprises approximately 20% of the dry mass (Vogel, 

2008). Composition and content of lignin vary among plants and during development 

and growth (Chen et al., 2002; Grabber et al., 2004; Mattinen et al., 2008). This polymer 

is essential for the structural integrity of cell walls (Boerjan et al., 2003). Even though 

this polymer is much weaker than cellulose, lignin provides additional reinforcement 

resulting in increased tensile strength (Gibson, 2012; Barros et al., 2015). Additionally, 

lignin is involved in defence reactions, e.g. during insect and microorganism attack, and 

water transport by crosslinking with cellulose and hemicellulose and increasing 

hydrophobicity (Holladay et al., 2007).  

Lignin is a polyaromatic and amorphous polymer with a complex chemical structure  

(Jongerius, 2013). Lignin at its most basic level is composed mostly of three phenolic 

monomers called monolignols: non-methoxylated p-coumaryl, monomethoxylated 

coniferyl alcohol and dimethoxylated sinapyl alcohol which respectively form H-

(hydroxyphenyl), G-(guaicyl) and S-(syringyl) units in the lignin polymer (Limayem & 

Ricke, 2012; Barros et al., 2015). The most common form of lignin in grasses is 

composed of G-(guaicyl) and S-(syringyl) while H-(hydroxyphenyl) units occur as a minor 

component of lignin (Grabber et al., 2004; Sarkar et al., 2009) (Figure 1.4). The 

monomers are linked by several types of linkages β-O-4, 5-5, β-5, 4-O-5, β-1, α-O-4 and 

β-β linkages, but linkage β-O-4 comprises more than half of all linkages which makes it 

the most abundant (Pandey & Kim, 2011). Aggregates of monolignols are created by 

several chemical bonds including ether, ester, phenyl and covalent bonds which gives 
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lignin rigidity, compactness but also fill the gaps in the cellulose-hemicellulose matrix 

(Boerjan et al., 2003). 

 

 

 

 

 

 

 

Figure 1.4. Lignin composition. 

A. The three monolignols-lignin precursors: p-coumaryl alcohol, coniferyl alcohol and sinapyl 

alcohol (Jongerius, 2013); B. Lignin composed of G-(guaicyl) (black) and S-(syringyl) units (grey) 

(Sarkar et al., 2009). 

1.3.1.4. CELL WALL-BOUND HYDROXYCINNAMIC ACIDS 

The grass cell walls contain two phenolic acids, both being hydroxycinnamates: ferulic 

acid (FA) and p-coumaric acid (p-CA) (Vogel, 2008). Interestingly, these two compounds 

probably play entirely different roles in grass cell walls. Arabinoxylans mainly attach FA 

in grasses by an ester linkage to the C5 carbon of arabinofuranosyl branches to the main 

xylan backbone. The dimerisation of such ferulate esters provides a pathway for cross-

linking polysaccharide chains (Ralph et al., 1994). Moreover, FA also binds to 

monolignols of the lignin polymer. This results in a highly cross-linked matrix involving 

both carbohydrates and lignin (Grabber et al., 2004; Hatfield & Marita, 2010), which 

means that FA is involved in mechanical properties of cell walls such as giving strength 

to plants (Hatfield & Marita, 2010). Casler and Jung demonstrated that reduced content 

of FA in cell walls increased the digestibility of cell wall polysaccharides (Casler & Jung, 

A B 
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1999). Though present in substantial amounts, the function of p-CA in grass cell walls is 

less clear (Hatfield & Marita, 2010). It is proposed that p-CA remains unincorporated 

other than its attachment to monolignols via an ester linkage. Therefore, p-CA does not 

function as a cross-linking agent between wall matrix polymers, at least between 

different lignin polymers or between lignin and polysaccharides. It has been suggested 

that p-CA may function as a radical transfer agent to aid in the formation of sinapyl 

alcohol (SA) and lignin radicals so it may be involved in the lignification process (Hatfield 

et al., 2008, 2009; Hatfield & Marita, 2010). 

1.3.1.5. PECTINS 

Although pectins are more abundant in type I cell walls; they are also found in grass cell 

walls (approximately 5% of the cell wall) (Carpita, 1996; Vogel, 2008). Pectins are the 

polysaccharides which are rich in α-galacturonate and mainly consist of three 

interconnected domains linked together by glycosidic bonds: homogalacturonan (HG), 

rhamnogalacturonan I (RG-I) and rhamnogalacturonan II (RG-II) (Caffall & Mohnen, 

2009). Homogalacturonan (HG) frequently makes up the major portion of cell wall 

pectins (up to 60%) and is comprised of α-1,4-linked-D-galacturonic acid units (Caffall & 

Mohnen, 2009). HG is usually synthesised in a largely methyl-esterified form and 

regulation of methyl-esterification status is controlled by pectin methylesterases 

(PMEs), which catalyses the de-methyl esterification of the C6 linked methyl ester group 

of HG (Clausen et al., 2003; Pelloux et al., 2007; Mohnen, 2008; Verhertbruggen et al., 

2009a; Volpi et al., 2011). Rhamnogalacturonan I (RG-I) is a heteropolymer of repeating 

(1→2)-α-L-rhamnosyl-(1→4)-α-D-GalA disaccharide units (Carpita, 1996). The structure 

of rhamnogalacturonan II (RG-II) is highly complex with 12 different types of glycosyl 

residues, including the rare sugar species 2-O-methyl xylose, 2-O-methyl fucose, 32 

aceric acid, 33 2-keto-3-deoxy-D-lyxo heptulosaric acid (Dha), 34 and 2-keto-3-deoxy-D-

manno octulosonic acid (Caffall & Mohnen, 2009) (Figure 1.5). These pectins are 

covalently crosslinked until digestion by pectin-degrading enzymes, which are required 

to isolate HG, RG-I, and RG-II from each other and cell walls (Mohnen, 2008). Pectins 

optimise the matrix for deposition, slippage and extension of the cellulosic-glycan 

network (Willats et al., 2001). 
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Figure 1.5. Schematic illustration of the primary structure of pectins. 

Homogalacturonan (HG), Rhamnogalacturonan I (RG-I) and Rhamnogalacturonan II (RG-II) 

(Pérez et al., 2003). 

Pectins play a number of very important roles in growth, development, and structure of 

cell walls (Mohnen, 2008). Although they are structurally diverse, they contribute to 

primary wall functions with regard to cell strength, cell adhesion, stomatal function, and 

defence response (Caffall & Mohnen, 2009), wall porosity, binding of ions, growth 

factors and enzymes, pollen tube growth, seed hydration, leaf abscission, and fruit 

development (Mohnen, 2008). Additionally, it was reported that pectins play a 

significant role in response to stresses such as drought, cold, salt and heavy metals (Le 

Gall et al., 2015). 

1.3.1.6. STRUCTURAL PROTEINS 

Cell wall proteins (CWP) are most abundant in type I cell walls, but they comprise about 

1% of grasses cell walls (Vogel, 2008). They are mainly localised in specialised cells in 

the plants, e.g. in the xylem, epidermis, phloem (Showalter, 1993). Most of them are 

attached to polysaccharides, but they can also occur independently (Zhu et al., 2006). 



CHAPTER 1 

40 
 

Grass structural proteins are divided into four main groups, hydroxyproline-rich 

glycoproteins (HRGPs), proline-rich proteins (PRP), glycine-rich proteins (GRPs) and 

arabinogalactan proteins (AGPs) (Carpita, 1996; Pilling & Höfte, 2003; Deepak et al., 

2010). HRGPs, due to their oxidative cross-linking property play an essential role in 

responses biotic and abiotic stress such as cold stress (Deepak et al., 2010; Le Gall et al., 

2015). Glycine-rich proteins (GRPs) are a group of proteins which have cytosolic and 

cell-wall functions (Showalter, 1993). Arabinogalactan proteins (AGPs), seem to be a 

mediator in the interactions between cells and are also important in cell growth and 

development, cell division and differentiation and also in the strengthening of the cell 

wall (Majewska-Sawka & Nothnagel, 2000; Deepak et al., 2010; Le Gall et al., 2015). 

They are involved in preventing water loss during desiccation and response to cold 

stress and together with PRP and GPP are involved in salt tolerance.  
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1.4. BRACHYPODIUM DISTACHYON 

Brachypodium distachyon, commonly called purple false brome, belongs to the tribe 

Brachypodieae, which consists solely of the genus Brachypodium (Bevan et al., 2010). 

Various molecular phylogenetic analyses have demonstrated that the genus 

Brachypodium diverged from the ancestral stock of Pooideae immediately prior to the 

radiation of the modern “core pooids” (Triticeae, Bromeae, Poeae, and Aveneae); which 

includes the majority of important temperate cereals and forage grasses including 

wheat (Triticum aestivum), barley (Hordeum vulgare), rye (Secale cereale), triticale 

(Triticosecale) and oats (Avena sativa) (Draper et al., 2001).  

 

Figure 1.6. Schematic phylogenetic relationship of Brachypodium distachyon to 
other Poaceae. 

Source: (Draper et al., 2001). 

The grass family (Poaceae) is one of the most important taxonomic groups within the 

kingdom of flowering plants with over 10,000 species (Kellogg, 1998). Representatives 

of this family are distributed on all continents and occupy nearly 1/3 of the Earth's 

surface creating a variety of vegetation formations, such as grasslands, savannahs, 

prairies and pampas (Frey, 2007). Due to the phenomenon of gene collinearity (synteny) 

in species closely related, there has been the possibility to introduce model organisms 
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with a relatively small genome and qualities conducive to research and breeding in the 

laboratory environment (Feuillet & Keller, 2002). The international scientific community 

currently accepts Brachypodium distachyon as a model for temperate cereals and 

forage grasses (Draper et al., 2001; Hasterok et al., 2004; Garvin et al., 2008; Mur et al., 

2011). Brachypodium distachyon has been demonstrated to bea perfect model plant for 

studying abiotic and biotic stresses (Catalan et al., 2014) such as cold, heat, salt, drought 

and flooding (Priest et al., 2014). Brachypodium distachyon has also been used to study 

responses to pathogen attack in the Poaceae. The growing importance of renewable 

energy has led researches to learn more about genetic and molecular mechanisms 

which control traits such as cell wall composition and biomass yield (Bevan et al., 2010).  

The geographic range of natural occurrence of Brachypodium distachyon ranges in the 

circum-Mediterranean region, from the Macaronesian islands to central Asia, and from 

southern Europe to northern Africa and Ethiopia. It has been introduced and distributed 

in areas of central Europe, North and South America, Australia and South Africa (Garvin 

et al., 2008; Catalan et al., 2012). Brachypodium is widely adapted to many habitats, 

being able to survive at both high and low altitudes, explaining its tolerance to varying 

environmental conditions. However, most ecotypes prefer a dry environment, and they 

often grow in open areas, pastures and mountain regions, at an altitude of 300 to 1700 

m above sea level (Catalan et al., 2012).  

1.4.1. MORPHOLOGY 

Brachypodium distachyon is a monocotyledon plant. Depending on genotype, mature 

individuals are small-sized, mostly about 20 to 50 cm high and develop 1-8 reproductive 

tillers (Hong et al., 2011). Brachypodium distachyon has two or three anthers. The 

number of flowers per spikelet also varies in B. distachyon. Although most spikelets 

have seven flowers, the number can be as few as five or as many as nine. There is a 

variation in the number of seeds per spikelet, although it typically contains around 7-10 

seeds (Catalan et al., 2012). Brachypodium distachyon grain is typical of the Poaceae 

family with a caryopsis size of 8mm by 2mm, and there is a lack of seed shattering 

(Draper et al., 2001; Garvin et al., 2008; Opanowicz et al., 2008). Many accessions 
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require an extended period of cold (at least six weeks) to saturate their vernalisation 

requirement (Woods et al., 2016). 

1.4.2. LIFE CYCLE 

Brachypodium distachyon is an annual plant with a short life cycle lasting from 7 to 12 

weeks (Filiz et al., 2014) and requires simple growing conditions (Draper et al., 2001). 

Brachypodium distachyon initiates flowering around 35 days after sowing, and 

physiologically mature seeds are harvested at 70 days after sowing. The chronological 

progression of Brachypodium distachyon growth is split into 48 discrete growth stages. 

However, ten principal stages occur throughout plant development (Hong et al., 2011) 

(Figure 1.7). Also, a very important feature is self-fertilisation, which allows the 

transmission of homozygosity to future generations (Draper et al., 2001). 

 

Figure 1.7.  Brachypodium distachyon growth stages. 

Scheme of the chronological progression of principal growth stages in Brachypodium 

distachyon. Horizontal bars indicate the periods of individual growth stages (Hong et al., 2011). 
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1.4.3. CELL WALL COMPOSITION 

The overall organ-specific cell wall composition of Brachypodium distachyon is similar 

in composition to other agronomical important species which belong to the C3 forage 

grass group including tall fescue (Festuca arundinacea), bromegrass (Bromus inermis), 

orchardgrass (Dactylis glomerata), reed canarygrass (Phalaris arundinacea), winter 

wheat (Triticum aestivum), and oats (Avena sativa) (Hatfield et al., 2009; Rancour et al., 

2012). The difference in cell wall composition between Brachypodium distachyon and 

these species was found only in lignin and glucose concentration. More mature 

Brachypodium stem cell walls show a relative increase in glucose of 48% and a decrease 

in lignin of 36% compared to other grasses in this C3 group. This discrepancy may be 

explained by the relative small Brachypodium structure compared with other C3 

grasses. As a result, Brachypodium may not need lignin to the same extent as the larger 

C3 grasses for structural support. Therefore, carbohydrate polymer replacement for 

lignin might be sufficient for it to reach its full developmental stature (Opanowicz et al., 

2008; Christensen et al., 2010; Guillon et al., 2012; Rancour et al., 2012). 

Generally, cell wall composition differs throughout development in all grasses, including 

Brachypodium distachyon. The difference can be found either between developmental 

stages, but also between plant organs (Carpita, 1996; Hatfield et al., 2009). The overall 

characteristic of the cell wall in Brachypodium distachyon showed that on average (all 

developmental stages) cell walls are composed of about 52% of neutral sugars, 5.9% of 

uronosyls, 1.7% Phenolics, 11.2% lignin and 14.4% protein. The detailed analysis is 

shown in (Figure 1.8) based on (Rancour et al., 2012). Neutral sugars in Brachypodium 

are divided in major sugars – glucose, xylose, arabinose and galactose, and minor sugars 

are rhamnose, mannose and fucose. The content of both major and minor sugars differs 

between developmental stage and organs (Table 1.2). 
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Figure 1.8. Contribution of Brachypodium distachyon cell wall components to the total cell wall composition. 

The consolidation of cell wall weight percentages of neutral sugars (light blue), uronosyls (red), phenolics (yellow), lignin (purple), protein (green), and other 

(tan) to equal 100% is given for each tissue from each developmental stage. Numbers in table are in the units of mg/g cell wall. Source (Rancour et al., 2012). 

 Mature Expanding Seedling 
 Leaves Sheath Stem Flower/seed Leaves Sheath Stem Leaves Sheath/Stem Root 

Other  176.7 127.8 76.1 89.8 182.7 109 56.2 94.5 279.6 266.8 

Protein  318.2 98.4 82.7 123.8 297.4 104.4 106.9 304.7 0 0 

Lignin  64.8 132.9 157.6 110.7 62.5 132.9 127.8 79.2 122.6 124.6 

Phenolics  8 16.8 24 24.1 7.7 16.9 22.5 12.5 17.6 19.4 

Uronosyls  63.7 63.5 57.7 50.1 60.3 60.1 60.3 66.2 58.6 49.3 

Neutral sugars  368.6 560.6 602 601.3 389.3 576.7 626.3 442.9 521.7 539.8 
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Table 1.2. The neutral sugar content of Brachypodium distachyon cell walls. 

Neutral sugar content given in mg/g of cell wall ± standard deviation; averaged over two replicates, adapted from (Rancour et al., 2012). 

 Organ Rhamnose Fucose Mannose Galactose Arabinose Xylose Glucose 

Mature 

Leaves 2.9 ± 0.3 0.6 ± 0.2 1.4 ± 0.2 6.1 ± 1.1 20.2 ± 2.4 96.9 ± 3.2 240.4 ± 15.8 

Sheath 2.9 ± 0 0.6 ± 0.1 2 ± 0.1 6.5 ± 0.8 33.5 ± 0.8 204 ± 1.3 311.1 ± 3.4 

Stem 2.7 ± 0.1 1.2 ± 0.1 1.8 ± 0.2 4.9 ± 0.3 24.7 ± 1.2 212.4 ± 6.3 354.3 ± 17.2 

Flowers/Seed 2.4 ± 0 0.6 ± 0.1 1.5 ± 0.2 5.4 ± 0.3 30.6 ± 0.6 245 ± 2.6 315.8 ± 9.4 

Expanding 

Leaves 2.8 ± 0.3 0.4 ± 0 1.5 ± 0.2 4.9 ± 0.4 20.8 ± 5.8 103.7 ± 33.8 255.2 ± 43.9 

Sheath 2.7 ± 0.1 0.6 ± 0.3 2.1 ± 0.3 6.9 ± 1.7 33.4 ± 4.6 213.7 ± 30.2 317.2 ± 35.5 

Stem 2.8 ± 0 0.7 ± 0.7 2.4 ± 0 6.3 ± 0.7 30.4 ± 1.4 236.1 ± 24.2 347.6 ± 22.1 

Seedling 

Leaves 2.9 ± 0 0.3 ± 0 2 ± 0.1 6 ± 1.8 29 ± 2.4 11.9 ± 7.2 293.8 ± 4.5 

Sheath/Seed 2.7 ± 0.1 0.4 ± 0 3.4 ± 0.1 15.7 ± 3.4 42.9 ± 0.4 159.5 ± 3 297 ± 4 

Root 2.7 ± 0.2 0.6 ± 0.1 4.1 ± 0.3 34.3 ± 1.8 46.2 ± 2.5 160.4 ± 2.7 291.6 ± 5 
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1.4.4.  GENETICS 

Brachypodium distachyon has one of the smallest grass nuclear genomes 272 Mbp/1C 

DNA, comprising mostly single- or low-copy repetitive DNA  (Shi et al., 1993; Garvin et 

al., 2008; The International Brachypodium Initiative, 2010). Brachypodium distachyon is 

a diploid species with chromosome numbers of 10, 20, and 30 depending on ecotype 

(Draper et al., 2001; Hasterok et al., 2004, 2006). It was initially thought that a simple 

polyploid series cause increased chromosome numbers. Nevertheless, both 2n = 10 and 

2n = 20 cytotypes appear to be diploids and the 2n = 30 cytotype seems to be an 

allotetraploid with genomes similar to those of the 2n = 10 and 2n = 20 cytotypes. As a 

model organism, 2n = 10 diploid cytotype is primarily being used (Hasterok et al., 2004, 

2006). 

The broad genetic infrastructure for Brachypodium distachyon has been developed 

including BAC libraries (Huo et al., 2006), BAC-end sequences (Huo et al., 2008), EST 

libraries and sequences (Vogel et al., 2006), physical maps (Gu et al., 2009), germplasm 

collections (Mur et al., 2011), genetic markers (Vogel et al., 2009), sequence-indexed T-

DNA populations, microarrays, conserved miRNAs and their targets (Unver & Budak, 

2009) and most importantly, the complete genome sequence (The International 

Brachypodium Initiative, 2010). 

 

 

  



  CHAPTER 1 

48 
 

1.5. AIMS AND OBJECTIVES 

Various abiotic stress affecting plants growth and development have been intensively 

studied in past years, but relatively little research has been done in terms of mechanical 

stimulation. Nevertheless, the literature suggests, that after mechanical stimulation, 

plants undergo significant architectural changes across multiple scales, from the whole 

plant to organ, tissue and cellular level (Chehab et al., 2009). Nonetheless, plant 

responses to mechanical stimulation focus on studies in dicots, while relatively little 

research has been done with monocots creating a gap in knowledge of how grasses 

respond to mechanical stimulation. Thus, this project aims to fulfil the lack of complete 

studies of the response to mechanical stimulation of the grasses family. This study 

presents the response to wind and mechanical stress of the model plant for grasses – 

Brachypodium distachyon. 

It has been suggested that wind and mechanical stress such as brushing can lead to 

different plant response, so this study aims to establish if the responses vary between 

wind and mechanical stress. Moreover, it has been implicated that response can be 

different between species, but more importantly within species. This study provides a 

comparison of response between two ecotypes of Brachypodium distachyon Bd21 and 

ABR6, as Aberystwyth University has a recombinant inbred line (RIL) populations of 

these parents. 

The main aim of this study is to characterise the response of Brachypodium distachyon 

stems to the wind and mechanical stress at various levels. In particular, this study 

focuses on the consequences of WS and MS on stem phenotypic traits, mechanical 

properties, cell wall composition and anatomy and molecular and metabolic responses. 

The first aim of this project is to determine if there are any differences in phenotypic 

traits between plants exposed to wind and mechanical stress compared with the control 

plant. Because of the importance of cell walls in response to abiotic stress, this project 

will also focus on the analysis of changes in cell wall composition and anatomy after 

WS/MS treatment. Modification in cell wall composition and anatomy may have a direct 

effect on stem mechanical properties; therefore, an attempt to provide reliable data in 

terms of how wind and mechanical stress influence mechanical properties will be made. 
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Collectively these experiments will help to characterise stem adaptations to mechanical 

stimulation and therefore will explain how the plant stem sustain their robustness to 

wind stress. Moreover, the knowledge gained on the effects of WS on stem cell wall 

composition and mechanical properties will apply to understand wind stress in an 

agricultural environment. The last part of this project will involve molecular analysis, 

including studies on changes of expression of potential TCH genes in grasses and cell 

wall-related genes upon WS/MS treatment. Moreover, the pathways involved in 

response to WS/MS will be identified. 

Ultimately, the data generated in this project will contribute to the identification of 

traits favourable for growing plants in environments subject to severe wind.  

The main objectives of this study are: 

 To characterise the response of Brachypodium distachyon plants (Bd21 and 

ABR6) to wind and mechanical stress assessing phenotypic features such as: 

reproduction, changes in biomass weight, stem length, number of leaf, tillers 

and nodes. 

 To asses mechanical properies of a stem after mechanical stimulation using the 

3 point-bending test for Young’s modulus calculations. 

 To identify histological, anatomical and composiotonal changes that may occur 

after mechanical stimulation in stem tissue. 

 To identify changes in cell wall composition of Brachypodium stems after 

mechanical stimulation including: lignin, monosaccharides, hydroxycinnamic 

acids content, and enzymatic sugar release. 

 To develop an understanding of molecular response to mechanical stimulation 

in Brachypodium distachyon. 

 To identify metabolite pathways involved in response to mechanical stimulation. 
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CHAPTER 2 :  MORPHOLOGICAL RESPONSE TO WIND AND 
MECHANICAL STRESS OF BRACHYPODIUM 
DISTACHYON STEMS  

2.1.  INTRODUCTION 

In a plant’s life, mechanical stimulation generated by direct interactions with animals, 

water, snow, insects, and flexure caused by wind is a very frequent event. To prevent 

potential damage caused by all these factors, plants have evolved many response 

mechanisms (Biddington, 1986; Bossdorf & Pigliucci, 2009). Developmental responses 

to mechanical stimulation have been termed thigmomorphogenesis (Jaffe, 1973). These 

morphogenetic changes occur slowly over time and are, therefore often not readily 

apparent; however, these responses can be quite dramatic (Braam, 2005). From an 

evolutionary point of view, thigmomorphogenesis is likely to have evolved as an 

adaptation for plants to survive in a windy environment and to cope with other forms 

of mechanical stress (Jaffe et al., 2002; Pigliucci, 2002). There are also suggestions that 

plants respond differently to wind stress and to mechanical stimulation such as brushing 

and flexing, and these two factors should be treated separately (Henry & Thomas, 2002; 

Smith & Ennos, 2003; Anten et al., 2010). Moreover, the differences in response could 

differ even within species (Bossdorf & Pigliucci, 2009), which is probably caused because 

of different mechanical plant architectures (Speck & Rowe, 2003). 

Nevertheless, the most typical features of thigmomorphogenesis include a decrease in 

shoot elongation and a general reduction in size, thereby decreasing in total 

aboveground biomass and yield (Jaffe & Forbes, 1993; Speck, 2003; Chehab et al., 2009; 

Onoda & Anten, 2011). Usually leaves become smaller and thinner (Grace & Russell, 

1977; Niklas, 1996; Cleugh et al., 1998; Telewski & Pruyn, 1998; McArthur et al., 2010), 

and plants seem to allocate more biomass into roots than shoots (Goodman & Ennos 

1996; Crook & Ennos 1994; Niklas 1996; Clemente 2001; Marler 2011; Niklas 1998), 

which indicates that larger root systems increase the anchorage strength of plants thus 

preventing plants from being uprooted under mechanical stress (Goodman & Ennos, 

1996). There is no other clear response to mechanical stimulation in plant morphology. 

However, changes in traits such as stem diameter, tillering, and flowering time have 
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been mentioned (Retuerto & Woodward, 1992; Pruyn et al., 2000; Murren & Pigliucci, 

2005; Paul-Victor & Rowe, 2011). 

Modification of mechanical properties of plant material after mechanical stimulation 

have also been described; however, there is no clear pattern of response. Researchers 

created two theories presenting opposite plant responses, which both led to an 

increase in the resistance of plants to mechanical failure. The first one is connected with 

developing more flexible and less rigid stems (Cordero 1999; Anten et al. 2005; Pruyn 

et al. 2000) while for the second strategy stems become more rigid and thus less prone 

to bending (Goodman & Ennos, 1996). Nevertheless, even proven theories do have their 

exceptions. One of the best ways to determine the mechanical properties of plant 

material such as stems is the use of the three-point bending test. It provides values for 

the modulus of elasticity, breaking stress and tensile strength (Jin et al., 2009). 

It is worth mentioning that although the thigmomorphogenesis response has been 

described for various species in the literature including herbs (Anten et al., 2009), plants 

of medical importance (Anten et al., 2010), trees (Cleugh et al., 1998; Cordero, 1999; 

Kern et al., 2005) and vegetables such as common bean and broccoli  (Biro et al., 1980; 

Latimer, 1990), relatively little research has been done on grasses or crops especially 

(Biddington & Dearman, 1985; Garner & Björkman, 1996). Cereals are the most 

important from an economic point of view (Vogel et al., 2006; Bevan et al., 2010). 

Moreover, there is very limited and research on model plants for grasses, while for a 

model plant outside the grass family, response to mechanical stimulation is broadly 

studied (Bossdorf & Pigliucci, 2009). 

Therefore, the primary objective of this chapter was to compare phenotypic responses 

of Brachypodium distachyon to both wind stress and mechanical stimulation separately. 

Furthermore, the comparison of the reaction of two genotypes of Brachypodium (Bd21 

and ABR6) was also included as these represent the parents of a recombinant inbred 

line (RIL) population available within IBERS. The selection of stems as material in this 

research is dictated by the fact that stems represent the plant organs most affected by 

wind exposure, as they give plants their stability and provide a lever to hold the plant 

upright (Tripathi et al., 2003). Changes in the plants' phenotypic traits were assessed 

through a variety of physiological and growth measurements and observations taken 
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during a greenhouse experiment in which plants were exposed to controlled mechanical 

stimulation. Moreover, the mechanical properties of stems, as an important factor in 

plant responses to mechanical stimulation, were also considered in this chapter. 
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2.2.  MATERIALS AND METHODS 

2.2.1.  BRACHYPODIUM DISTACHYON CULTIVATION 

In this study, two accessions of Brachypodium distachyon were used: Bd21 and ABR6. 

Florets of both genotypes were peeled from the lemma and palea and transferred into 

6-cm diameter pots with a mixture of 20% grit sand and 80% Levington F2 compost. 

Individual seeds were placed in 1cm deep holes covered lightly with soil so that the seed 

lies just below the surface of the soil, and then watered with water containing insect 

pest control (GNAT OFF, Fungus). Plants were germinated in controlled greenhouse 

conditions operating at 16 h/8 h (day/night), 20-21C, (natural light supplemented with 

artificial light from 400-W sodium lamps) with 50%-60% relative humidity. Vernalisation 

was initiated 14 days after germination to synchronise plant development and to induce 

the flowering process. Plants were placed in a cold room set at 5C with 16 h day length 

for seven weeks. During this process, plants were covered with plastic lids to minimise 

exposure to air movement or mechanical stress. Soil moisture was monitored weekly, 

and plants were watered when needed. After vernalisation, plants were transferred to 

the greenhouse in a strictly controlled and monitored environment operated at 16 h/8 

h; 21-22C/18-20C day/night. To eliminate the influence of temperature and humidity 

on plant development between treatments, temperature and humidity were measured 

every five minutes throughout the experiment. Thirty or sixty plants (depending on the 

experiment, see details below) at a similar developmental stage for each genotype 

(Bd21, ABR6) were selected for the stress experiment. 

2.2.2.  STRESS EXPERIMENT DESIGN 

Five independent experiments (Pilot plus four proper experiments) were carried out in 

a similar manner. Around 100 plants of each genotype per each experiment were sown 

to select plants at the same developmental stage. For the Pilot and first experiment, 30 

from a total number of 100 plants from both genotypes were selected whereas for the 

rest of the experiments (second, third and fourth) 60 from 100 plants for both 

genotypes were selected. Three treatment groups were created for each experiment 
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for Bd21 and ABR6: control, wind stress (WS) and mechanical stress (MS). For the pilot 

and first experiment, groups were composed of 10 plants, whereas for the remaining 

experiments, groups were composed of 20 plants per treatment. 

Bd21 stress treatments were initiated one day after the vernalisation process, while the 

stress treatments for ABR6 were initiated three weeks after the vernalisation process. 

The reason for this was the difference in plant development between the two 

genotypes. ABR6 started growing stems only three weeks after the transfer from the 

cold room to the greenhouse environment, while stem elongation for Bd21 had already 

begun before the vernalisation process and started to flower quickly following transfer 

from the cold room to greenhouse conditions. During this three-week period, all ABR6 

plants were treated as control plants (described below). The duration of stress exposure 

was established at two weeks for all experiments. 

Control treated plants were kept in calm conditions. Air movement or mechanical stress 

were eliminated by placing these plants in the calmer area of the greenhouse room and 

by surrounding them with a plastic wall no higher than the plants' height. 

Wind stress was created by subjecting plants to the simulated wind produced by a 

velocity fan (Advent, AVAC 18x). Plants were placed in front of a fan at a mean distance 

of 1.5 m where wind speed reaches 2-3 m/s measured with an anemometer (Omega). 

In the natural environment, average wind speed 10-20 cm above the ground is 2-3 m/s 

(Bossdorf & Pigliucci, 2009), which would be relevant to small plants like Brachypodium 

distachyon. The wind exposure time was 8 h/day and plants were rotated daily to 

ensure that wind exposure was similar in all directions. 

Mechanical stress was created by brushing plants at ¾ of the mean plant height (making 

sure the stems were bent no further than 45° from the vertical stem position) by the 

rapid front to back movements all around each stem. Plants were brushed for two 

periods per day lasting for about 3 minutes (first at 8 am, second at 6 pm). Each period 

consisted of 40 flexures, so at the end of the day, the plants were brushed 80 times – 

40 times in each direction. This treatment was chosen as it simulates the mechanical 

effect of wind but with minimal air movement (Telewski & Pruyn, 1998; Paul-Victor & 
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Rowe, 2011). Between those two periods of stress induction, the mechanical stress 

group was treated the same as the control group. 

2.2.3.  PHENOTYPIC OBSERVATION 

To determine phenotypic changes and differences between treatments, plant 

development parameters were taken every two days. This process started before stress 

initiation to make sure that all plants were at the same developmental stage. At the end 

of the experiment (after 14 days), final more detailed measurements and photographic 

documentation were taken, including tiller number, leaf number, number of nodes, 

water consumption, flowering time, stem length, internode length, and stem diameter 

(Figure 2.1). 

After each experiment, stem material was collected for further analysis. Additionally, 

after the fourth greenhouse experiment, 5 plants per each treatment of both genotypes 

were left to reach full maturity, and measurements such as above-ground mass, yield, 

number and weight of seeds were noted and calculated. Seed weight measurements 

were determined for 25 seeds harvested from 5 plants (5 seeds from each replicate 

plant). Seeds were harvested from basal florets of spikelets from the main spike, and 

the lemma and palea were removed before weighing. For yield and a total number of 

seeds measurements, all seeds from the plant were collected (n=5) (Boden et al., 2013). 

Above-ground biomass was oven dried to constant mass at 70C. 
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Figure 2.1. Methods used for characterisation of observed phenotypic traits.  

 

• Measured at the end of the experiment.

• Measurements carried out on images taken
after the experiment with use of ImageJ
software. Stem length was measured from the
bottom of the stem to the base of the spikelet.

Main stem 
length

• Measured at the end of the experiment.

• Measurement was carried out for each
internode with use of digital callipers (Clarke).

• Data collected only from fourth greenhouse
experiment.

Internode 
length

• Counted every two days and at the end of the
experiment.

• Counted main stems and their tillers separately.
Tiller number

• Number of leaves on main stem counted every
two days and at the end of the experiment.

• Total number of leaves per plant counted at the
end of the experiment.

Leaf number

• Counted every two days and at the end of the
experiment.

• Number of nodes counted only on main stem,
begining from the bottom of a plant to the base
of the spikelet.

Node number

• Measured every day by pouring water into the
pot, till noticing moisture at the bottom of a pot.

• Data presented as total volume of water
consumed during 14 days of experiment.

Water 
consumption

• Observed every two days and at the end of the
experiment.

• Counting started from the first day of stress
induction.

Flowering time

• Measured at the end of the experiment,

• Measured in the middle of each internode with
use of digital callipers (Clarke).

Stem diameter
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2.2.4.  MECHANICAL MEASUREMENTS 

For the determination of mechanical properties of stems, the three-point bending test 

(3PBT) was selected following the procedure as described by (Anten et al., 2009; Jin et 

al., 2009) with some modifications. The three-point bending test was performed using 

a mechanical texture analyser (TA.XT plus, Stable Micro Systems) equipped with a 50N 

loading cell. 2.5cm long sections from the middle of the second and third internode 

were carefully cut with a razor blade without disruption of tissues. An internode section 

was placed horizontally over two supports positioned 2cm apart, and a vertical force 

was applied (Figure 2.2). For measurements on fresh tissue, ten plants from each 

treatment (control, WS, and MS) for both genotypes after the third greenhouse stress 

experiment were chosen. Measurements of senesced material were performed on five 

plants from each treatment (control, WS, and MS) after the third experiment. Second 

and third internode of the main stem (counted from the bottom) were selected as test 

material for 3PBT.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Stem under three-point bending test. 

The instrument applied the vertical force automatically, and loading pin was stopped after stem 

rupture. 
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The load cell was attached to a crosshead located at the midpoint between the two 

metal supports and moved down at a speed of 15 mm/min. A force (F) and deflection 

(δ) graph were simultaneously recorded during the bending test with the use of 

Exponent-TEE32 software. The Young’s modulus was calculated from initial linear slope 

of the force/deflection curve (Figure 2.3). 

 

 

Figure 2.3. A force (F) and deflection (δ) graph. 

Example of a graph generated by Exponent-TEE32 software showing stem rupture point (cross) 

and Force and deflection value.  

The elastic modulus – Young’s modulus (E) was determined from the force-

displacement (F–δ) curve as: 

 

 

 

Where L is the length between the supports (mm), and I is the second moment of area 

(m4). The cross-sectional dimensions of the stems were used to calculate I.  

 

𝐄 =
𝐅𝐋𝟑

𝟒𝟖𝛅𝐈
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mm2
= MPa] 
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Deflection [mm] 
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For senesced material the equation for the circle was used (Gere, 2004): 

  

 

 

For fresh material, we also used the equation taking into account the fact that stems 

are hollow (Gere, 2004): 

 

 

 

Where Rout is the outer radius of the stem and Rin is the radius of the internal hollow 

part. 

2.2.5.  STATISTICAL ANALYSIS 

Measurements and calculations were performed on all plants (20 plants per treatment 

for both genotypes; 10 plants (fresh) and 5 plants (senesced) per treatment for 3PBT). 

All values are expressed as mean ±SD. All analyses were performed using SPSS software 

(version 24). Statistical differences were determined from ANOVA tests at the 5% level 

(P ≤ 0.05) of significance, for all parameters evaluated. Where ANOVA indicated a 

significant difference, pair-wise comparison of means by Tukey's HSD (honestly 

significant difference) test was carried out at the 5% level (P ≤ 0.05) of significance. If 

data did not meet the assumptions of ANOVA, a non-parametric Kruskal-Wallis test was 

performed at 5% level (P ≤ 0.05) of significance. 
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2.3.  RESULTS 

The morphological measurements and the phenotypic and mechanical characterisation 

presented in this chapter are mostly analysed and described based on the results from 

the fourth greenhouse stress experiment. This is because experimental procedures 

have been further refined in the course of the different experiments; hence, experiment 

four represents the most robust dataset. There are also phenotypic traits such as 

internode length, total yield, aboveground mass, and seed weight for which data was 

collected and analysed only after the fourth greenhouse stress experiment. The three-

point bending test was only performed on the third greenhouse stress experiment 

(Table 2.1). However, it is important to note that the observed differences in phenotypic 

traits as a result of the stress treatments were consistent across the different 

experiments and, where available, the data from the other experiments are also 

presented. 

Table 2.1. Summary of all greenhouse stress experiments. 

 Indicate that analysis was done on a particular experiment. 

Trait #1 #2 #3 #4 

Tiller number     

Nodes number     

Leaves number     

Water consumption     

Flowering time     

Stem diameter     

Stem length     

Internode length     

Above-ground mass     

Yield     

Seed weight     

Seed number    

3PBT     

 

In the next subsections, results of phenotypic measurements and calculation taken 

during and after experiments will be presented.  
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2.3.1.  PILOT EXPERIMENT 

The purpose of the pilot experiment was to provide insight into the response of the 

Brachypodium plants to the wind and mechanical stress conditions for the chosen 

design of the greenhouse stress experiment. The knowledge gained from this 

experiment helped to improve the technical design and plant observation for the 

subsequent experiments. Furthermore, thanks to this experiment, I learned how to 

eliminate factors that can have a possible influence on plant development, such as 

temperature, air movement, sun exposition, etc. Treatments in this experiment were 

not appropriately separated; control plants experienced a little movement because of 

the closely placed fan. Moreover, control plants were placed near the heater, which 

could have an impact on the growth and development of the plants. Exposure to stress 

started for both genotypes one day after transferring plants from the vernalisation 

room to the greenhouse environment and lasted for two weeks. Plants were analysed 

in detail only after the experiment, which included tiller number, leaves on the main 

stem, the total number of leaves, number of nodes on the main stem, and stem length. 

Plants were also analysed before the experiment, which is essential for selecting plants 

for an experiment that are at the same developmental stage. Only flowering time was 

noted during the experiment. This experiment showed that ABR6 plants do not develop 

stems during vernalisation or ever during two weeks of treatment; thus, no data could 

be collected. I learned that ABR6 plants need precisely three weeks in the greenhouse 

environment to start producing stems after vernalisation, which helped me to design 

the next experiments. Treatments for Bd21 showed no significant difference in tiller 

number, leaves on the main stem, the total number of leaves, and the number of nodes 

on the main stem (P ≥ 0.05). However, both stress treatments resulted in a significant 

reduction in stem length (P ≤ 0.05) (Table 2.2) and flowering was delayed by two to four 

days (Figure 2.4). 
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Table 2.2. Phenotypic traits observed after a pilot experiment in Bd21 plants. 

Results are based on measurements on ten biological replicates per each treatment (C, WS, and 

MS). Data presented as a mean with standard deviation (±SD). * Statistically significant 

difference from control, (Kruskal-Wallis test (P ≤ 0.05); ANOVA test; P ≤ 0.05). 

Treatment 
Tiller 

number 

Leaves on the 

main stem 
Leaves - total 

Nodes on the 

main stem 

Stem length 

(cm) 

Control 4 ± 0.44 2.5 ± 0.5 12.4 ± 1.35 4.7 ± 0.46 21.61 ± 1.98 

WS 4.2 ± 0.4 2.5 ± 0.5 12.3 ± 1 4.6 ± 0.49 11.53 ± 1.46* 

MS 4 ± 0 2.4 ± 0.49 12.1 ± 0.83 4.6 ± 0.49 12.23 ± 1.02* 

 

 

 

 

 

 

Figure 2.4. Flowering time for Bd21 plants during the pilot experiment. 

2.3.2. TILLER NUMBER 

The tiller number was counted every two days during the experiments and at the very 

end of the experiments (after 14 days of stress treatment). The results in Table 2.3 show 

the tiller number at the end of eachexperiment. Wind and mechanical stimulation did 

not significantly affect the tiller number for both Bd21 (P = 0.580) and ABR6 (P = 0.899) 

after the fourth experiment. Nevertheless, it should be noted that after the first 

experiment, a statistically significant (P ≤ 0.05) increase in tiller number in WS treated 

plants were observed for Bd21 when compared with control plants. Furthermore, the 

second experiment revealed a significant (P ≤ 0.05) increase in Bd21 tillering after WS 

10

1

9

7

3

0

2

4

6

8

10

12

6 8 10

N
u

m
b

er
 o

f 
p

la
n

ts

Days after start of exposure to wind stress (WS) and mechanical stress (MS)

Control WS MS



CHAPTER 2 

64 
 

treatment compared with MS plants, while there was no difference compared with 

Bd21 control plants. Moreover, after the third experiment, opposite results were 

obtained, with WS Bd21 plants showing significantly (P ≤ 0.05) less tillers than MS 

treated plants, and no difference compared with control (Table 2.3). Summarising the 

results from all experiments, there is no consistency in the stress-induced changes in 

tiller number for Bd21 plants, while data collected for ABR6 consistently show no effect 

on tiller number across all experiments performed. 

Table 2.3. Tiller number after stress treatment for Bd21 and ABR6. 

Data represent mean tiller number with standard deviation (±SD) of the mean for the four 

experiments (#1 and #2 (n=10); #3 and #4 (n=20). For statistical significance, the ANOVA test (P 

≤ 0.05) was performed, and if the test showed a significant difference, a post-hoc Tukey’s test 

(P ≤ 0.05) was also performed. * Statistically significant difference from control; * Statistically 

significant difference between WS and MS. 

Genotype Treatment #1 #2 #3 #4 

Bd21 

Control 4.3 ± 0.46 6.6 ± 0.8 5.65 ± 1.24 3.25 ± 0.49 

WS 6.2 ± 0.75* 7.7 ± 1.01* 4.9 ± 1.09* 3.15 ± 0.48 

MS 5.4 ± 1.11 6.4 ± 0.66 6.35 ± 1.59 3.1 ± 0.43 

ABR6 

Control 7.7 ± 1.55 15.5 ± 5.46 11.9 ± 1.48 6.5 ± 1.19 

WS 8.8 ± 2.79 21.2 ± 3.89 11.4 ± 1.36 6.3 ± 1.53 

MS 7.9 ± 2.47 18.7 ± 4.73 11.4 ± 1.77 6.45 ± 1.41 

 

2.3.3.  LEAF NUMBER 

2.3.3.1.  NUMBER OF LEAVES ON THE MAIN STEM 

Since the stress treatments can affect the main stem development and growth process, 

the leaf number on the main stem was determined. Leaf numbers were counted every 

two days during the experiment and at the end of the experiment. Since the set of data 

is not normally distributed, a non-parametric Kruskal-Wallis test was conducted. No 

statistically significant difference between treatments was found for Bd21 (P = 0.465) 

and for ABR6 (P = 0.231). The average number of leaves in the fourth experiment for 
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Bd21 control was 4.1 ± 0.48, for WS 4.15 ± 0.57 and MS 4.1 ± 0.44. ABR6 control plants 

had 5.3 ± 0.46 leaves on average, WS 5.1 ± 0.3 and MS 5.3 ± 0.46 (Table 2.4). Considering 

the results from all experiments for both genotypes, the WS and MS treatments had no 

effect on the number of leaves on the main stem. 

Table 2.4. The number of leaves on the main stem for Bd21 and ABR6. 

Data represent mean number of leaves on main stem with standard deviation (±SD) of the mean 

(#1 and #2 (n=10); #3 and #4 (n=20). For statistical significance, the non-parametric Kruskal-

Wallis test (P ≤ 0.05) was performed. 

Genotype Treatment #1 #2 #3 #4 

Bd21 

Control 2.8 ± 0.6 2.1 ± 0.54 2.35 ± 0.47 4.1 ± 0.48 

WS 2.5 ± 0.5 2.1 ± 0.7 2.55 ± 0.36 4.15 ± 0.57 

MS 2.6 ± 0.66 2 ± 0.44 2.36 ± 0.79 4.1 ± 0.44 

ABR6 

Control 5.1 ± 0.3 6 ± 0 5 ± 0 5.3 ± 0.46 

WS 5 ± 0.45 5.9 ± 0.54 4.95 ± 0.49 5.1 ± 0.3 

MS 5.2 ± 0.4 5.6 ± 0.49 5.05 ± 0.22 5.3 ± 0.46 

 

2.3.3.2.  TOTAL NUMBER OF LEAVES 

The total number of leaves was counted after 14 days of stress treatment. Similar to the 

results for the number of leaves on the main stem, no statistically significant differences 

were found between treatments in Bd21 (P = 0.167) and ABR6 (P = 0.641) genotypes. A 

general observation is that ABR6 plants developed many more leaves than Bd21 in all 

treatments (Table 2.5). This is probably because ABR6 produces much more stems than 

Bd21. Considering the results from all experiments for both genotypes stress 

treatments do not affect the total number of leaves. 
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Table 2.5. The total number of leaves after stress treatment for Bd21 and ABR6. 

Data represent mean of total number of leaves with standard deviation (±SD) of the mean (#1 

and #2 (n=10); #3 and #4 (n=20). For statistical significance, the ANOVA test (P ≤ 0.05) was 

performed. 

Genotype Treatment #1 #2 #3 #4 

Bd21 

Control 14.3 ± 1.1 16.3 ± 1.68 15.5 ± 2.46 13.95 ± 2.67 

WS 15.9 ± 2.02 16.9 ± 1.58 14.15 ± 2.39 12.85 ± 1.9 

MS 15.8 ± 2.27 16.3 ± 1.27 16 ± 3.21 12.95 ± 1.63 

ABR6 

Control 62.6 ± 10.27 97.5 ± 27.22 73.45 ± 7.92 45.15 ± 6.2 

WS 63.1 ± 15.88 127.4 ± 21.7 67 ± 9.28 45.85 ± 8.36 

MS 60.8 ± 11.6 115.9 ± 26.03 66.5 ± 10.47 47.35 ± 7.79 

 

2.3.4.  NODE NUMBER 

The number of nodes was monitored every two days, and the results presented in Table 

2.6 shows the number of nodes at the end of the each greenhouse experiments. 

Because the data did not meet the assumption for a parametric test, a non-parametric 

Kruskal-Wallis test was performed. There was no statistically significant difference 

between treatments in Bd21 (P = 0.067) and in ABR6 (P = 0.112). Control Bd21 plants 

developed on average 5.25 ± 0.43 nodes, WS plants 5.2 ± 0.4 and MS plants 5.3 ± 0.55. 

ABR6 plants developed more nodes in general than Bd21 plants; control plants 

produced on average 5.9 ± 0.3 nodes, WS  5.8 ± 0.41 and MS 5.9 ± 0.2 (Table 2.6). In 

conclusion, none of the stress treatments affected the node number of the main stem. 
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Table 2.6. Node number after stress treatment for Bd21 and ABR6. 

Data represent mean node number on main stem with standard deviation (±SD) of the mean 

(#1 and #2 (n=10); #3 and #4 (n=20). For statistical significance, the non-parametric Kruskal-

Wallis test (P ≤ 0.05) was performed. 

Genotype Treatment #1 #2 #3 #4 

Bd21 

Control 5 ± 0 5 ± 0 4.9 ± 0.3 5.25 ± 0.43 

WS 4.9 ± 0.3 4.7 ± 0.46 4.8 ± 0.4 5.2 ± 0.4 

MS 4.8 ± 0.4 4.8 ± 0.4 4.7 ± 0.46 5.3 ± 0.55 

ABR6 

Control 5.7 ± 0.46 6.2 ± 0.4 5 ± 0 5.9 ± 0.3 

WS 5.3 ± 0.46 5.8 ± 0.4 5 ± 0 5.8 ± 0.41 

MS 5.6 ± 0.66 5.9 ± 0.3 5 ± 0 5.9 ± 0.2 

 

2.3.5.  WATER CONSUMPTION 

It is commonly believed that exposure to wind increases the transpiration rate from 

plant leaves (McVicar et al., 2012). Indeed, water consumption was significantly 

affected by wind stress, but not by mechanical stimulation. The same response pattern 

was observed in both genotypes, where plants exposed to wind stress consumed much 

more water than control and MS plants. The results were consistent for the four 

greenhouse experiments; thus, the analysis was done based on the results from the 

fourth experiment and results for the other experiments can be found in Appendix 1. 

WS plants consumed about 15 mL more water per day for Bd21 and about 10 mL for 

ABR6 when compared with control and MS plants (Figure 2.5A). Hence, the total volume 

of consumed water throughout the experiment was significantly higher in WS plants for 

both genotypes (Figure 2.5B). 
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Figure 2.5. Water consumption 

Figures present average of water intake (mL) per plant per day (A) and total water consumed 

per plant during the whole greenhouse stress experiment (14 days) (B). 

2.3.6.  FLOWERING TIME 

Flowering time was counted from the first day of stress treatment. Both genotypes 

showed a significant delay in flowering time by both stress treatments. The results 

described below are based on the fourth greenhouse experiment (Figure 2.6). The 

flowering time results of the other experiments can be found in Appendix 2; the 

response pattern is the same for all conducted experiments. For Bd21, flowering time 

was delayed two to four days in WS and MS treated plants compared with Bd21 control, 

which mostly started flowering at day six from the beginning of the stress treatment. 

Some of WS and MS plants started flowering at day eight, but the majority of plants at 

day ten after initiation of the stress treatment (Figure 2.6A). The response pattern for 

ABR6 was similar to that of Bd21; however, in general, ABR6 plants started flowering 

two days later than Bd21 plants. Most of the ABR6 control plants started flowering on 

day eight from the beginning of the stress treatment. There were two to six days of 

delay in WS plants, the majority of plants flowering on the 12th day and only two plants 

flowering on the 14th day. In MS plants, flowering was delayed by two to six days 

compared with control, the majority started flowering on the 12th, and few plants began 

flowering on the 14th day (Figure 2.6B). 
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Figure 2.6. Flowering time. 

Flowering time was monitored every other day during stress treatments. A. Bd21, B. ABR6. 
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2.3.7.   STEM LENGTH 

Stem length was measured at the end of the stress. The overall conclusion is that both 

stress treatments negatively affected stem elongation resulting in a shorter main stem 

when compared with control plants. Stem length measurements indicated a statistically 

significant reduction in WS and MS treated plants in both genotypes (P ≤ 0.05). Bd21 

plants exposed to WS and MS were about 17 cm shorter, reaching less than half the 

length of the control plants, which were 30.15 ± 1.88 cm long (Table 2.7, Figure 2.10A). 

Similar results were obtained for ABR6 plants, where WS plants were about 17 cm, and 

MS plants were 14.5 cm shorter than control plants which were 34.43 cm ± 1.09 long 

(Table 2.7, Figure 2.B). 

Table 2.7. Stem length. 

Data represent mean of stem length (cm) with standard deviation (±SD) of the mean for the 

four experiments (#1 and #2 (n=10); #3 and #4 (n=20). For statistical significance, the ANOVA 

test (P ≤ 0.05) was performed, and if the test showed a significant difference, a post-hoc Tukey’s 

test (P ≤ 0.05) was also performed. * Statistically significant difference from control. 

Genotype Treatment #1 #2 #3 #4 

Bd21 

Control 22.19 ± 1.35 23.77 ± 2.55 27.34 ± 2.04 30.15 ± 1.88 

WS 16.93 ± 1.85* 16.39 ± 2.23* 17.36 ± 2.02* 12.93 ± 0.67* 

MS 16.87 ± 2.05* 15.84 ± 2.12* 15.97 ± 1.18* 13.41 ± 1.04* 

ABR6 

Control 13.03 ± 2.05 19.56 ± 2.48 31.28 ± 3.4 34.43 ± 1.09 

WS 9.67 ± 1.27* 14.18 ± 2.07* 18.07 ± 1.7* 17.73 ± 1.19* 

MS 8.91 ± 1.27* 12.64 ± 1.26* 17.85 ± 1.81* 19.97 ± 0.98* 
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Figure 2.7. Images of A. Bd21 and B. ABR6 plants after treatment. 

Images show representative plants for each treatment (control, WS, and MS) for both 

genotypes. Bar = 6 cm. 

2.3.8.  INTERNODE LENGTH 

To investigate aspects that relate to the length of stems in more detail, measurements 

of internode (IN) length were performed after the stress treatments. Internode 

shortening was observed in three internodes: IN3, IN4, IN5 in stress-treated plants (WS 

and MS) of Bd21 genotype (P ≤ 0.05), while no statistically significant differences in 

length of stems were observed in IN1 (P = 0.181) and IN2 (P = 0.082) between 

treatments. In ABR6 plants, a statistically significant reduction in internode length was 
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observed in all of the internodes in WS and MS plants compared with control (P ≤ 0.05). 

Moreover, a statistically significant difference was also found in IN3, and IN6 between 

MS and WS stressed plants, both internodes being significantly shorter for WS 

compared with MS (Table 2.8). In conclusion, reduction of plant height after stress 

treatment was caused by a reduction in length of particular internodes for Bd21 while 

all internodes contributed to the height reduction in ABR6. 

Table 2.8. Stress effect on internode length. 

Data represent mean of internode length (cm) with standard deviation (±SD) of the mean 

(n=20). For statistical significance the ANOVA test (P ≤ 0.05) was performed, and if the test 

showed a significant difference, a post-hoc Tukey’s test (P ≤ 0.05) was also performed. * 

Statistically significant difference from control; * Statistically significant difference between WS 

and MS. 

Genotype Internode Control WS MS 

Bd21 

IN1 0.53 ± 0.12 0.52 ± 0.09 0.46 ± 0.1 

IN2 1.33 ± 0.59 1.67 ± 0.26 1.26 ± 0.51 

IN3 4.55 ± 0.65 2.8 ± 0.31* 3.09 ± 0.48* 

IN4 6.75 ± 1.09 3.4 ± 0.31* 3.65 ± 0.48* 

IN5 11.83 ± 0.08 4.26 ± 0.49* 4.94 ± 0.83* 

ABR6 

IN1 2.56 ± 0.81 1.23 ± 0.75* 0.79 ± 0.25* 

IN2 6.14 ± 0.95 4.03 ± 0.58* 3.74 ± 0.86* 

IN3 6.73 ± 0.82 3.59 ± 0.53** 4.81 ± 0.44** 

IN4 6.54 ± 0.74 3.67 ± 0.48* 3.79 ± 0.42* 

IN5 6.91 ± 1.59 3.56 ± 0.56* 3.48 ± 0.49* 

IN6 6.13 ± 0.78 2.53 ± 0.3** 3.35 ± 0.98** 
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2.3.9.  STEM DIAMETER 

Stem diameter was measured in the middle of every internode at the end of every 

experiment in both genotypes. Analysis of data is based on all four experiments because 

data was inconsistent across all experiments performed. 

Stem diameter measurement in Bd21 revealed that there was no statistically significant 

difference (P ≥ 0.05) in stem diameter in IN1, IN2, and IN4 in all four experiments. A 

significant difference (P ≤ 0.05) was found in IN3 and IN5; however, that was observed 

only after the third greenhouse stress experiment, while in the other three experiments, 

no such change was found. Statistically significant (P ≤ 0.05) thinning was observed after 

WS and MS treatment in IN3 and after WS in IN5. There was no indication in other 

experiments suggesting such a tendency of change in IN3 diameter after stress 

treatments. Moreover, in the first two experiments, an opposite trend was observed 

showing thickening of internode diameter; however, the difference is to slight to be 

confirmed statistically. In contrast to IN3, the thinning tendency after stress treatment 

was observed in IN5 in the other three experiments. A statistically significant difference  

(P ≤ 0.05) was only observed after WS in the third experiment. 

Results for ABR6 genotype are much more complicated and showing no consistency in 

most of internodes diameter across four experiments performed. The difference in 

diameter of IN1 was found only after the third greenhouse experiment (P ≤ 0.05), and 

it showed thickening after MS treatment. No such trend was observed in other 

experiments. The diameter of the second internode and changes after stress treatments 

vary between all four experiments. Briefly, after the first and fourth experiment, stem 

thinning was observed in WS and MS plants, while after the second and third 

experiment, the opposite resulting in thickening of internode was observed. Data for 

IN3 and IN4 is more consistent across experiments performed compared with previous 

IN1 and IN2. Increase in IN3 diameter was observed almost in all experiments after WS 

and MS stress. Some of the differences are only a trend, but some are statistically 

significant (P ≤ 0.05). Data for IN4 showed thinning in diameter after MS treatment 

across all experiments, while after WS treatment, mostly thinning was noted. Increase 

in diameter was observed after WS and MS treatments in IN5 in three of four 

experiments. Only the third experiment revealed the opposite trend for both stress 
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treatments resulting in a statistically significant decrease (P ≤ 0.05) in diameter. In the 

last developed internode IN6, differences in diameter were also clearly visible. Plants 

during the third experiment did not grow IN6; therefore, analysis is based on data from 

only three other experiments. Results are consistent across all experiments performed 

and showed statistically significant (P ≤ 0.05) increases in diameter after both WS and 

MS treatments.
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  Bd21 ABR6 

  Control WS MS P value Control WS MS P value 

#1 

IN1 0.725 ± 0.017 0.721± 0.022 0.719 ± 0.041 0.227 0.812 ± 0.009 0.814 ± 0.016 0.809 ± 0.02 0.782 

IN2 0.794 ± 0.04 0.799 ± 0.072 0.823 ± 0.046 0.456 0.801 ± 0.023 0.732 ± 0.019** 0.791 ± 0.021* ≤ 0.05 

IN3 0.934 ± 0.03 1.008 ± 0.061 0.99 ± 0.01 0.063 0.754 ± 0.027 0.77 ± 0.016 0.778 ± 0.015* ≤ 0.05 

IN4 1.045 ± 0.066 1.03 ± 0.089 0.982 ± 0.152 0.413 0.71 ± 0.016 0.754 ± 0.021** 0.665 ± 0.018** ≤ 0.05 

IN5 0.969 ± 0.072 0.962 ± 0.072 0.966 ± 0.075 0.982 0.67 ± 0.018 0.704 ± 0.014* 0.71 ± 0.027* ≤ 0.05 

IN6     0.556 ± 0.025 0.64 ± 0.01* 0.647 ± 0.013* ≤ 0.05 

#2 

IN1 0.728 ± 0.022 0.735 ± 0.031 0.746 ± 0.022 0.269 0.823 ± 0.033 0.811 ± 0.039 0.822 ± 0.013 0.630 

IN2 0.82 ± 0.065 0.842 ± 0.08 0.862 ± 0.062 0.411 0.804 ± 0.049 0.841 ± 0.036 0.818 ± 0.033 0.129 

IN3 0.877 ± 0.058 0.925 ± 0.083 0.927 ± 0.088 0.283 0.755 ± 0.036 0.771± 0.039 0.788 ± 0.022 0.081 

IN4 0.89 ± 0.047 0.88 ± 0.035 0.882 ± 0.017 0.881 0.705 ± 0.05 0.759 ± 0.053** 0.675 ± 0.031* ≤ 0.05 

IN5 0.882 ± 0.041 0.852 ± 0.035 0.861 ± 0.05 0.222 0.676 ± 0.044 0.736 ± 0.076 0.712 ± 0.048 0.085 

IN6     0.565 ± 0.049 0.664 ± 0.05* 0.656 ± 0.013* ≤ 0.05 

#3 

IN1 0.784 ± 0.023 0.785 ± 0.048 0.773 ± 0.026 0.471 0.791 ± 0.033 0.807 ± 0.039 0.822 ± 0.013* ≤ 0.05 

IN2 0.861 ± 0.034 0.863 ± 0.054 0.853 ± 0.034 0.750 0.848 ± 0.058 0.881 ± 0.038 0.905 ± 0.033* ≤ 0.05 

IN3 0.94 ± 0.044 0.908 ± 0.027* 0.896 ± 0.048* ≤ 0.05 0.873 ± 0.043 0.853 ± 0.049 0.846 ± 0.036 0.142 

IN4 0.928 ± 0.068 0.894 ± 0.048 0.891 ± 0.053 0.079 0.851 ± 0.052 0.773 ± 0.064* 0.797 ± 0.02* ≤ 0.05 

IN5 0.906 ± 0.084 0.843 ± 0.054* 0.854 ± 0.035 ≤ 0.05 0.664 ± 0.047 0.66 ± 0.039 0.687 ± 0.048 0.127 

#4 

IN1 0.732 ± 0.005 0.736 ± 0.043 0.735 ± 0.035 0.124 0.812± 0.015 0.81 ± 0.018 0.813 ± 0.016 0.265 

IN2 0.833 ± 0.008 0.831 ± 0.007 0.833 ± 0.009 0.723 0.801 ± 0.014 0.812 ± 0.008 0.806 ± 0.012 0.247 

IN3 0.916 ± 0.017 0.919 ± 0.015 0.911 ± 0.014 0.255 0.760 ± 0.012 0.762 ± 0.012 0.77 ± 0.01* ≤ 0.05 

IN4 0.899 ± 0.016 0.901± 0.018 0.902 ± 0.016 0.856 0.708 ± 0.007 0.713 ± 0.011* 0.682 ± 0.017** ≤ 0.05 

IN5 0.853 ± 0.013 0.848 ± 0.01 0.851 ± 0.012 0.364 0.707 ± 0.018 0.728 ± 0.019* 0.733 ± 0.019* ≤ 0.05 

IN6     0.556 ± 0.015 0.642 ± 0.017** 0.652 ± 0.019** ≤ 0.05 

Table 2.9. Internode diameter 

Data represent mean of internode diameter (mm) IN1-IN6 with standard deviation (±SD) of the mean for both genotypes for all four experiments performed. 

For statistical significance ANOVA test (P ≤ 0.05) was performed, and if the test showed a significant difference, a post-hoc Tukey’s test (P ≤ 0.05) was also 

performed. * Statistically significant difference from control; * Statistically significant difference between WS and MS. 
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2.3.10.  ABOVEGROUND BIOMASS YIELD 

To determine the effect of the stress treatments on aboveground biomass, the weight 

of mature plants (leaf and stem material, without heads) was measured (Table 2.10; 

n=5 per each treatment, both genotypes). Bd21 and ABR6 showed the same response 

pattern resulting in a statistically significant (P ≤ 0.05) reduction of aboveground 

biomass after WS and MS treatment compared with control. In Bd21 the strongest 

response was caused by WS, where the WS weight (0.203 g ± 0.014) was reduced to 

almost half that of the control weight (0.371 g ± 0.022), and MS weight (0.224 g ± 0.011) 

was reduced by one-third that of the control weight. In ABR6, WS treatment similarly 

had the most potent effect (WS 0.429 g ± 0.013 versus control 0.655 ± 0.022); moreover, 

there was a statistically significant difference between the biomass yield in WS and MS 

treated ABR6 plants (0.429 ± 0.013 and 0.515 g ± 0.008, respectively) (Table 2.10). 

Table 2.10. Stress effect on aboveground mass. 

Data represent mean of aboveground biomass (g) with standard deviation (±SD) of the mean 

(n=5) for both genotypes. For statistical significance the ANOVA test (P ≤ 0.05)was performed, 

and if the test showed difference, a post-hoc Tukey’s test (P ≤ 0.05) was also performed. * 

Statistically significant difference from control; * Statistically significant difference between WS 

and MS. 

Treatment Bd21 ABR6 

Control 0.371 ± 0.022 0.655 ± 0.022 

WS 0.203 ± 0.014* 0.429 ± 0.013** 

MS 0.224 ± 0.011* 0.515 ± 0.008** 
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2.3.11.  SEED YIELD, NUMBER, AND WEIGHT 

To determine if seed yield, number, and weight were affected by WS and MS, five 

mature plants for each treatment after the fourth greenhouse experiment were 

analysed (Table 2.11). 

The same pattern of response for both genotypes in seed yield was observed: a 

significant reduction (P ≤ 0.05) after stress treatment (WS and MS) compared with 

control. In addition, a significant difference between WS and MS treatments was also 

observed (P ≤ 0.05), with WS plants showing the strongest response in seed yield 

decrease (Table 2.11). 

For seed weight, five seeds from the main tiller from five plants were weighed, and data 

was analysed (n=25). A significant decrease in seed weight in both genotypes was 

observed after both stress treatments compared with control (P ≤ 0.05; Table 2.11), 

except for Bd21 MS plants where the observed decrease in seed weight was not 

statistically significant. Similarly, as with seed yield, the most significant reduction in 

seed weight was observed in WS treated plants, which for both genotypes was 

significantly lower compared with MS treated plants (Table 2.11). 

Seed number was scored for five plants per each treatment; all seeds per plant were 

counted. Seed number was significantly reduced (P ≤ 0.05) by both stresses for both 

genotypes compared with control. Generally, the response of plants exposed to WS was 

the strongest, especially in ABR6, where there was a statistically significant difference 

(P ≤ 0.05) between WS and MS, while for Bd21 there was no significant difference 

between WS and MS (Table 2.11). 
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Table 2.11. Stress effect on yield, seed weight, and number 

Data represent mean of seed yield (g), seed weight (mg) and seed number with standard 

deviation (±SD) of the mean (n=5; n=25; n=5) for both genotypes. For statistical significance the 

ANOVA test (P ≤ 0.05) was performed, and if the test showed difference, a post-hoc Tukey’s test 

(P ≤ 0.05) was also performed. * Statistically significant difference from control; * Statistically 

significant difference between WS and MS. 

Genotype Treatment Yield (g) Seed weight (mg) Seed number 

Bd21 

Control 0.215 ± 0.008 3.74 ± 0.03 57.6 ± 2.3 

WS 0.168 ± 0.004** 3.36 ± 0.02** 50.2 ± 1.2* 

MS 0.194 ± 0.009** 3.61 ± 0.02* 53.8 ± 2.2* 

ABR6 

Control 0.559 ± 0.023 3.44 ± 0.02 161.8 ± 5.4 

WS 0.349 ± 0.006** 2.85 ± 0.02** 123.2 ± 2.9** 

MS 0.459 ± 0.011** 2.99 ± 0.03** 153.6 ± 3.4** 

 

2.3.12. MECHANICAL PROPERTIES 

The mechanical properties of stems exposed to the stress treatments were evaluated 

with the three-point bending test, which generates data suitable for calculating Young's 

modulus. Ten biological replicates for fresh material measurements of each treatment 

for both genotypes were selected for the analysis, with the three-point bending test 

performed on the second and third internode of the main stem. Selected internodes 

were vertically stable, and none of them showed observable deformation, creep or 

failure. Similarly, to previous analyses, the mechanical tests also revealed differences in 

the response between treatments as well as between genotypes. 

The analysis for Bd21 revealed that after stress treatments the second internode had a 

significantly (P ≤ 0.05) higher Young’s modulus compared with control plants (WS 1785 

MPa, MS 1586 MPa, and control 1295 MPa); thus, the stress treatments made the 

second internode stiffer. Moreover, the response was significantly stronger in WS plants 

than in MS plants, which means that internode 2 in WS plants are more rigid than those 

from plants exposed to MS (Figure 2.8A). Wind and mechanical stress had no effect on 
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Young’s modulus values of the third internode of Bd21 (P = 0.921) compared with 

control (Figure 2.8A).  

Analysis of the mechanical properties of ABR6 stem material showed a statistically 

significant difference (P ≤ 0.05) in Young's modulus in the second internode. Similarly, 

to Bd21, there was an increase in Young's modulus after WS (1739 MPa) and MS 

treatment (1867 MPa) compared with control (1560 MPa) (Figure 2.8B). Significant 

increase in Young’s modulus in internode 3 was observed only after WS treatment (1890 

MPa) compared with control (1691 MPa) with an upward tendency after MS (1765 MPa) 

(Figure 2.8B). 
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Figure 2.8. Mechanical properties of the stem – Young’s modulus. 

Data represent mean of Young’s modulus (MPa) of the second and third internode with 

standard deviation (±SD) of the mean (n=10) for Bd21 (A) and ABR6 (B). Values are based on 

measurements on fresh material. For statistical significance the ANOVA test (P ≤ 0.05) was 

performed, and if the test showed a significant difference, a post-hoc Tukey’s test (P ≤ 0.05) was 

also performed. * Statistically significant difference from control; * Statistically significant 

difference between WS and MS. 
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The mechanical properties of Brachypodium stems were also assessed on senesced 

material. Five biological replicates of each treatment for both genotypes were selected 

for the analysis, with the three-point bending test performed on the second and third 

internode of the main stem. Compared to results obtained after measurements 

performed on fresh material results obtained for senesced material were consistent 

across stress treatment but also genotype. Importantly all internodes ruptured during 

the 3PBT. 

The analysis of both (IN2 and IN3) for Bd21 revealed significant (P ≤ 0.05) increase in 

Young’s modulus after both stresses compared with control plants. Moreover, for IN2 

responses were stronger after MS; thus, the difference between WS and MS was noted 

(Table 2.12). 

Similar response pattern was recorded for ABR6 genotype. Plants exposed to WS and 

MS showed significantly (P ≤ 0.05) higher Young’s modulus value in IN2 and IN3 

compared with control. No differences between WS and MS was observed (Table 2.12). 

Table 2.12. Mechanical properties of the stem – Young’s modulus. 

Data represent mean of Young’s modulus (GPa) of the second and third internode with standard 

deviation (±SD) of the mean (n=5) for both genotypes. Values are based on measurements on 

senesced material. For statistical significance the ANOVA test (P ≤ 0.05) was performed, and if 

the test showed a significant difference, a post-hoc Tukey’s test (P ≤ 0.05) was also performed. 

* Statistically significant difference from control; * Statistically significant difference between 

WS and MS. 

Genotype Treatment IN2 IN3 

Bd21 

Control 8.67 ± 0.24 8.9 ± 0.53 

WS 9.91 ± 0.16** 10.2 ± 0.29* 

MS 10.29 ± 0.13** 9.96 ± 0.15* 

ABR6 

Control 10.38 ± 0.37 11.16 ± 0.1 

WS 11.36 ± 0.21* 12.05 ± 0.23* 

MS 11.8 ± 0.42* 12.04 ± 0.41* 
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2.4.  DISCUSSION 

Summarising the results obtained in this chapter, no profound differences between 

stress treatments (WS and MS) and genotypes (Bd21 and ABR6) at the phenotypic level 

was found. Such outcomes were expected based on the results presented by pioneers 

in this research area (Jaffe, 1980). Changes in growth and development allow plants to 

withstand and improve resistance to mechanical stimulation (Whitehead, 1963; Jaffe & 

Telewski, 1984; Biddington, 1986; Retuerto & Woodward, 1992). Despite that, there 

were also suggestions that WS and MS can have different effects on stems (Smith & 

Ennos, 2003) and leaves (Anten et al., 2010) of the same species. Taking these facts into 

consideration and the general lack in the literature on comparing the effect of both 

stresses independently on the same species, it was worth examination of both stresses 

separately. It was also proposed that plants within the same species may respond 

differently regarding some phenotypical aspects (Murren & Pigliucci, 2005; Bossdorf & 

Pigliucci, 2009). However, in this study, no such differences were found; both WS and 

MS affected all of the observed and measured morphological traits in the same manner. 

Mechanical stimulation through wind and brushing significantly delayed the onset of 

the flowering of plants, and it reduced their overall growth and reproduction. The main 

differences compared with control were found in stem length, internode length, seed 

yield, seed number and weight, aboveground biomass and flowering time and Young’s 

modulus. 

It is worth mentioning that plants’ phenotypic response to mechanical stimulation is 

broadly studied. However, there is very limited knowledge about the response of 

species that belong to the grass family. Moreover, research performed on such species 

is mostly very old, even in the review paper with the title “Direct mechanical effects of 

wind on crops” (Cleugh et al., 1998) the majority of examples are dicot plants. Currently, 

very extensive research is carried out on grasses resistance to lodging, which is defined 

as the displacement of stems or roots from their vertical and proper placement caused 

partially by the wind. The wind range of analyses due to lodging resistance was done on 

barley (Berry et al., 2006; Chen et al., 2014), Miscanthus (Kaack & Schwarz, 2001; Kaack 

et al., 2003), corn (Hondroyianni et al., 2000; Robertson et al., 2015), with the main 

focus on rice (Rani Sinniah et al., 2012; Zhang et al., 2016; Fan et al., 2017) and wheat 
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(Wang et al., 2012; Kong et al., 2013; Peng et al., 2014). Therefore, the discussion 

presented in this chapter is based on various species from different families response 

to wind and mechanical stimulation.  

Reduction in stem height was the most marked phenotypic change observed after 

mechanical stimulation in this research by WS and MS. This concurs well with previous 

findings after mechanical stress generated by brushing, flexing, vibrations and touching 

(Biro et al., 1980; Niklas, 1998; Telewski & Pruyn, 1998; Paul-Victor & Rowe, 2011; 

Verhertbruggen et al., 2013) and after wind stress (Hunt & Jaffe, 1980; Retuerto & 

Woodward, 1992; Bossdorf & Pigliucci, 2009; McArthur et al., 2010). Most importantly, 

reduction in stem height was observed in two varieties of wheat seedlings (Triticum 

aestivum) after mechanical stimulation. A variety with excellent resistance to lodging, 

responded to the treatment by a significant reduction, whereas a variety more 

susceptible to lodging, was not significantly reduced (Steucek & Gordon, 1975). 

Moreover, the same response was observed after stem rubbing of rice (Oryza sativa) 

(Zhao et al., 2018).  Even though most of the studies showed a  reduction in stem height 

similarly as reported in this chapter, there are also reports that mechanical stress leads 

to a decrease and wind stress to an increase in stem height (Smith & Ennos, 2003). 

Generally, a taller stature will lead to lower mechanical stability unless it is associated 

with a concomitant increase in stem diameter, tissue strength, or tissue rigidity (Niklas, 

1992). Also, a study performed on different species of Brassica led to the conclusion 

that wind stress affected each species differently, either resulting in an increase or 

decrease in stem length (Murren & Pigliucci, 2005). The difference in response may be 

caused by different growth pattern between species (Goodman & Ennos, 1996), but 

also wind speed is a very important factor with a direct phenotypic result. Such response 

after wind stress probably is connected with very low wind speed used in both studies, 

far below 2 m/s, which may not elicit a dramatic phenotypic response (Johnson et al., 

1998; Pigliucci, 2002; Retuerto and Woodward, 1992). Another interesting factor, which 

affects a plant’s response to mechanical stimulation is age. Specifically, young tissues 

show a stronger thigmomorpho-genetic response compared with older ones. The 

explanation for this is that young plants are more vulnerable to stresses, and thus, their 

response is more rapid and stronger for them to survive in tough environmental 
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conditions (Biddington, 1986). Generally, development of shorter stems is consistent 

with the concept that reduced height will limit the bending moment of the stem and 

lower the risk of a range of excessive mechanical strains, plastic deformation, uprooting, 

stem buckling and failure (Paul-Victor & Rowe, 2011). 

Reduction in stem height was in strong correlation with a decrease in particular 

internode lengths which is consistent with previously reported data (Biro et al., 1980; 

Cleugh et al., 1998; Anten et al., 2009). Moreover, the decrease in second internode 

length was observed after rubbing of rice stems; however, no differences were found 

in third and fourth internode compared with control (Zhao et al., 2018). Nevertheless, 

the response observed in this study revealed the small difference between genotypes. 

After WS and MS in Bd21, a reduction in length was found only in IN3, IN4 and IN5, 

while in ABR6 all internodes were reduced in size compared with control. This 

dissimilarity is probably caused by differences in the development process between 

genotypes. Bd21 starts to develop stems from the beginning of growth, while ABR6 

plants have a more ‘bushy' phenotype and need vernalisation and then three weeks to 

start to develop stems. This means that Bd21 has more time to develop the first two 

internodes without the disruption caused by mechanical stimulation. ABR6 plants did 

not have this possibility, because the stress was applied just after stems started to 

develop. 

Grass stems are composed of internodes, which are separated by nodes. An important 

query in this study was to determine if a reduction in node number accompanied the 

stress-induced a reduction in stem height. However, this phenotypic trait was not 

affected in both genotypes after mechanical stimulation. There is not much evidence in 

the literature on mechanical stimulation inducing changes in the number of 

nodes/internodes and most of them performed on dicots. Stem anatomy in monocots 

and dicots differ significantly; however both are based on phytomers. Mechanical 

stimulation had significant effect on node and internodes in dicots, for instance, a study 

performed on Impatiens capensis (jewelweed) showed no change in node number, 

resulting in the conclusion that node number is not affected after mechanical 

stimulation (Anten et al., 2009). This is in contradiction to a very early study done on 

the tree Liquidambar (sweetgum), where a decrease in node number was observed 
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(Neel & Harris, 1971). Results presented in this study suggests that there is no 

correlation between a reduction in stem height and internodes length with node 

number. Unfortunately, no studies were done previously, including analysis of this trait 

in any species of the grass family. 

Measurements of stem diameter in this study revealed no clear pattern of response to 

mechanical stimulation. Generally, Bd21 showed no differences in stem diameter across 

all experiments performed, with minor variations. Whereas the response for ABR6 was 

variable depending on the experiment, treatment and internode; however, no 

conclusive pattern of decrease or increase in stem diameter could be observed. Only 

IN6 of ABR6 plant showed an increase in diameter across all experiments (when 

present) after WS as well as after MS. These results show many similarities with those 

from previous studies. No clear consistency of response pattern related to stem 

diameter was found for wind stress across various species, but responses observed after 

mechanical stress are mostly consistent. Thus, it seems that there could be a difference 

in response to wind and mechanical stress in what concerns stem diameter (Smith & 

Ennos, 2003), however, in this study no confirmation for that conclusion was found. A 

number of studies showed an increase in stem diameter after mechanical stress such as 

in rice (Zhao et al., 2018) and dicots plants (Biro et al., 1980; Telewski & Pruyn, 1998; 

Pruyn et al., 2000; Anten et al., 2005, 2009; Kern et al., 2005) or no difference (Goodman 

& Ennos, 1996), with little evidence for a decrease in stem diameter (Paul-Victor & 

Rowe, 2011). The stem diameter response to wind stress varies depending on species, 

a reduction in stem diameter was found in Abutilon theophrasti (velvetleaf) (Henry & 

Thomas, 2002) and Helianthus annuus (sunflower) (Smith & Ennos, 2003) and an 

increase in Phaseolus vulgaris (common bean) (Hunt & Jaffe, 1980), while no differences 

were found in Arabidopsis (Bossdorf & Pigliucci, 2009). Moreover, it is suggested that 

even within species, the response in stem diameter to wind stress can vary (Murren & 

Pigliucci, 2005). All changes in stem diameter may be connected with anatomical 

changes in internal tissues such as the cortex and vascular bundles (Jaffe, 1973, 1980; 

Biro et al., 1980; Kern et al., 2005) (see chapter 3). 

Tiller number is one of the phenotypic traits that can be affected by mechanical 

stimulation. Though in this study, this feature was not affected by stress treatment in 
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both genotypes. Depending on the experiment, some tendencies were visible; however, 

some of them were contradictory to each other. Interestingly, the most significant 

variation was observed after WS compared with control but also to MS. A study done in 

Arabidopsis showed an increase in the number of basal and lateral branches, but only 

at high wind speed above 5 m/s, however, responses varied depending on ecotype 

(Bossdorf & Pigliucci, 2009). In addition, an increase in basal branches in Arabidopsis 

was observed after an extended time of wind stress exposition to 16 h/day with a 

constant wind speed of 1.8 m/s. No differences were found after the shorter exposure 

(6 h/day) with the same wind speed (Pigliucci, 2002). This indicates that tillering after 

wind stress may be associated directly with wind speed but also with the exposure time 

(Pigliucci, 2002). The mechanical stress applied to Liquidambar trees resulted in a 

decrease in the number of lateral branches (Neel & Harris, 1971), while in rice increase 

of tiller number was observed (Zhao et al., 2018). Overall, the results obtained for tiller 

number was not affected by stress treatments; however, exposure time and wind speed 

may be the main factor responsible for such changes or lack of them. 

Numerous studies have shown that mechanical stimulation affects several leaf 

properties, including changes in shape, size, mechanical properties, but also 

photosynthesis (Anten et al., 2010). Nevertheless, the main focus of this research was 

on stems; thus, only stress-induced differences in leaf number was assessed. Results 

obtained after WS and MS in both genotypes revealed no significant differences when 

compared with their respective control plants, analogous to the results obtained in 

eucalyptus tree seedlings after WS (McArthur et al., 2010). However, these findings 

differ significantly from results observed in white mustard, where wind stress-induced 

a decrease in leaf number (Retuerto and Woodward, 1992). In contrast, wind stress 

affected various genotypes of the Arabidopsis and Brassica genus differently, resulting 

in an increase or decrease in leaf number. Similarly to findings with tillering, this may 

indicate that the type of responses to mechanical stimulation is species and genotype-

dependent (Murren & Pigliucci, 2005; Bossdorf & Pigliucci, 2009). 

The aboveground biomass of both genotypes analysed in this study showed a significant 

reduction after WS and MS, with the most substantial effect after WS. A decrease in 

biomass is consistent with findings from other species after wind stress (Retuerto & 
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Woodward, 1992; Goodman & Ennos, 1996; Henry & Thomas, 2002; Anten et al., 2005, 

2009; Kern et al., 2005) and also after mechanical stress (Murren & Pigliucci, 2005; 

Bossdorf & Pigliucci, 2009; Zhao et al., 2018). The observed reduction in biomass is likely 

associated with a reduction in stem height but may also be connected with a decrease 

in leaf size. Unfortunately, the leaf analysis in this study was limited only to leaf number; 

thus based on the literature, it may only be hypothesised that leaf size may contribute 

to the overall reduction in total aboveground biomass (Jaffe, 1973; Biddington & 

Dearman, 1985; Anten et al., 2010). 

Interestingly, both stresses significantly affected the reproduction of both genotypes, 

with the most substantial effect after WS. This is clearly expressed in the delay of 

flowering, but also a reduction of total seed yield, seed number and average seed 

weight. These findings are in agreement with the findings of most other studies. For 

instance, mechanical stimulation considerably delayed the onset of flowering in tobacco 

(Anten et al., 2005), Capsella bursa-pastoris (Niklas, 1998), white mustard (Retuerto & 

Woodward, 1992), Brassica napus (Cipollini, 1999) and Arabidopsis thaliana (Bossdorf 

and Pigliucci, 2009; Johnson et al., 1998). In contrast, Pigliucci did not observe a delay 

in flowering in Arabidopsis plants, possibly due to the very low wind speed used in this 

study. Also, it is suggested that the flowering response is connected with genotype 

(Pigliucci, 2002). Moreover, anthesis was significantly delayed in P. vulgaris (Jaffe, 

1976), marigold (Mitchell et al., 1975) and pea (Akers & Mitchell, 1983). Reproductive 

success not only depends on flowering time but also on developing reproductive 

structures such as flowering buds, which was significantly reduced after mechanical 

stimulation in Mimosa pudica (Jaffe, 1973). Reduction in seed number, seed weight and 

thus total yield after mechanical stimulation is also a widespread response to 

mechanical stimulation in plants (Niklas, 1998; Bossdorf & Pigliucci, 2009; Zhang et al., 

2013b). Surprisingly, no study on any species from Poaceae family was undertaken on 

the reproduction process. Taking into consideration all the above, there is an indication 

that mechanical stimulation may significantly reduce plant reproduction success and 

thus make it affect fitness. However, others have argued that it should not be 

considered as a deficit for the plants and the species, but rather as a necessary 

mechanism to ensure the continuation of the species in that environment, and 
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therefore, a beneficial adaptation. Plants are doing everything to stabilise their 

structure, and still, they reproduce (Jaffe & Forbes, 1993; Cipollini, 1999).  

Results from the calculation of the elastic modulus (Young's modulus) revealed that 

mechanical stimulation has a direct effect on mechanical properties of Brachypodium 

stems. Statistical analysis of fresh material showed an increase in Young’s modulus for 

IN2 after both stress tretaments in both genotypes. Results obtained for IN3 vary 

between stresses and genotypes. In Bd21 both WS and MS had no effect on Young’s 

modulus in IN3. In ABR6, WS significantly increased Young’s modulus, while after MS 

only increased trend was observed. Nonetheless, the obtained results do not give clear 

answer due to the mechanical properties of the stem. Probably performing a test with 

a higher number of replicates and extension of test for all internodes would give a better 

idea for this matter. Nevertheless, results obtained after measurements on senesced 

material revealed an increase in Young’s modulus, suggesting that stems are more rigid 

after WS and MS in both genotypes. Nevertheless, in this study, we mostly focus on 

plant response noted just after two weeks of stress exposition and fresh material. Thus, 

results obtained with senesced material may implicate that some processes need a 

longer time to develop. Generally, a lower elastic modulus of the tissues in stems might 

be linked to resistance to failure and lodging of stems (Niklas, 1992). A reduction in 

stiffness of the stem after mechanical stimulation was observed in various plants 

including conifers such as Abies fraseri (Telewski & Jaffe, 1986a) and Pinus (Telewski & 

Jaffe, 1986b), deciduous trees such as Populus (Pruyn et al., 2000) as well as herbaceous 

species such as Phaseolus (Jaffe & Telewski, 1984), Nicotiana tabacum (Hepworth & 

Vincent, 1999; Anten et al., 2005), Abutilon theophrasti (Henry & Thomas, 2002), 

Impatiens capensis (Anten et al., 2009), Helianthus annuus (Goodman & Ennos, 1996) 

and also Arabidopsis thaliana (Paul-Victor & Rowe, 2011). Nevertheless, none of those 

species belongs to grasses as Brachypodium distachyon does and therefore their stems 

do not have internodes. The detailed study performed on Zea mays, which belong to 

the Poaceae family showed the opposite reaction to mechanical stress resulting in a 

small increase in Young’s modulus (Goodman & Ennos, 1996). This may indicate that 

species, which belong to the grasses family, may have a different response method to 

mechanical stimulation, though it needs to be taken into account that data in this area 
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is very confined. Nonetheless, this is in agreement with results obtained for senesced 

material. Moreover, the literature showed limited data separating wind and mechanical 

stress in relation to stem mechanical properties. Nevertheless, Smith and Ennos (2003) 

suggested that wind stress and mechanical stress affect Helianthus differently. Wind 

stress caused a decrease in Young's modulus but also an increase in stem height was 

observed, while mechanical stress led to an increase in modulus and shortening of the 

stem. Such results are indicative of two different response strategies: stems become 

either longer but more flexible or shorter and more rigid (Smith & Ennos, 2003). Taking 

into account all the above results presented in this study partially may fit the suggestion 

that stems after mechanical stimulation become shorter and more rigid. That was 

visible in both internodes of ABR6 genotype and IN2 of Bd21 for measurements on fresh 

material and in both internodes in both genotypes for measurements of senesced 

material. Such results also match with the study performed on Zea mays, which is the 

closest related species to Brachypodium.  

In this research, WS plants consumed significantly more water compared with control 

and MS plants. Given that, my findings are based on a rather imprecise measurement 

system, the results from such analyses should, therefore, be treated with considerable 

caution. The higher water requirement undoubtedly is connected with higher water 

evaporation in a windy environment. There is surprisingly little evidence in the recent 

literature for differences in water usage after mechanical stimulation. However, almost 

100 years ago, Finnell found that wind stress increased water usage (Finnell, 1928). 

Morphological responses to wind and mechanical stress in this chapter mostly coincide 

with results presented in the literature. The plant morphology is significantly affected 

by both stress treatments with the biggest emphasis on reduction in plant height, size, 

plant reproduction as well as mechanical properties. Almost complete lack of evidence 

for morphological changes after mechanical stimulation in grasses makes this study 

more valuable, as performed on the model plant for grass crops. Thus, data presented 

in this chapter can be utilised as a good starting point for further analysis in grasses, 

such as maize, wheat or Miscanthus.
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CHAPTER 3 :  IMPACT OF WIND STRESS AND MECHANICAL 
STRESS ON THE HISTOLOGY, ANATOMY AND 
COMPOSITION OF BRACHYPODIUM 
DISTACHYON STEMS 

3.1.  INTRODUCTION 

While in the previous chapter, the main focus was on phenotypic changes occurring 

after mechanical stimulation, in this chapter, deeper insights into the effect of 

mechanical stimulation on plant growth and development are discussed. The previous 

chapter focuses on the phenotypic response of Brachypodium stems, while this chapter 

focusses on the influence of mechanical stress and wind stress on histological, 

anatomical, and compositional features of cell walls of two genotypes Bd21 and ABR6 

of Brachypodium distachyon stems.  

Cell walls play a very important role in plant growth and development. They are 

composed of several polymers, which give the whole plant specific features (Carpita, 

1996). They determine the shapes of plant cells and organs and have remarkable 

mechanical properties to give plants strength and extensibility (Pilling & Höfte, 2003). 

Cell walls are a physical barrier to biotic and abiotic stresses and play an essential role 

in stress sensing, and signal transduction (Sarkar et al., 2009; Seifert & Blaukopf, 2010). 

Additionally, in a stressed environment, cell walls incur biochemical changes such as a 

reorganization of components and hence, architecture, which allows the cell walls to 

adapt to particular conditions (Sarkar et al., 2009).  

While many studies in the area of mechanical stimulation have examined its effect on 

phenotypic traits, little attention has been given to how such mechanical stimulations 

may change anatomical and histological features of the cell wall. The structure and 

composition of cell walls in grasses significantly differ from cell walls of dicots with 

significant differences in their mechanical properties and development (McCann & 

Carpita, 2008). Research performed on grasses in terms of the impact of mechanical 

stimulation on histology and anatomy is very limited and often performed many years 

ago, when techniques and methodologies were limited. In addition, more recent studies 

focussing on the analysis of dicots plants such as Arabidopsis thaliana or beans. 
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Nevertheless, technologies available now such as immunological tests (e.g. ELISA) or 

immunolocalisations detecting specific cell wall components are of great value and can 

give deep insight into cell wall histology and anatomy. Generally, rearrangements in 

geometry, architecture and changes in the developed area of particular tissues were 

observed after mechanical stimulation (Biro et al., 1980; Hunt & Jaffe, 1980; Paul-Victor 

& Rowe, 2011; Rigo, 2016). Histological analysis performed on mechanically stressed 

rice stems revealed no differences in anatomical characteristics; however, the analysis 

included only cell area, stomatal conductance and vascular bundle area (Zhao et al., 

2018). While old studies performed on maize (Whitehead, 1963) and tall fescue (Grace 

& Russell, 1977) after mechanical stimulation showed significant histological and 

anatomical differences. 

There is extensive research and documented changes in the histology and anatomy of 

grasses after exposure to abiotic stresses such as drought (Mostajeran & Rahimi-Eichi, 

2008), water stress (Assem et al., 2017), and salt stress (Céccoli et al., 2011). Because of 

such noted changes in the histology and anatomy of plants in response to abiotic and 

biotic stresses, this could represent an important aspect when evaluating the response 

of Brachypodium growth and development to mechanical stimulation.  

Therefore, the primary aim of this chapter was to compare growth and developmental 

response to wind and mechanical stress of Brachypodium distachyon. The study 

involved histological, anatomical and compositional analysis of stems of two 

Brachypodium genotypes, Bd21 and ABR6. The study included tissue composition, cell 

size and cell wall thickness analysis. Moreover, immuno-localisation of cell-wall 

components with various monoclonal antibodies, histochemical localisation of lignin 

and analysis of pectin methylesterase activity was performed.  

  



CHAPTER 3 

93 
 

3.2.  MATERIALS AND METHODS 

3.2.1.  PREPARATION OF PLANT MATERIAL FOR IMMUNO-LOCALISATION 

The analysis was carried out only on plants after the first stress greenhouse experiment. 

Three plants from each treatment (control, WS, MS) for the two Brachypodium 

genotypes Bd21 and ABR6 were selected for the immuno-labelling experiment. All the 

analyses focused on main stem material obtained from the middle of the second 

internode, counting from the base. The procedure was carried out according to (Xue et 

al., 2013) with minor modification.  

3.2.1.1.  FIXATION  

Fixation was performed on 0.5 cm regions excised from the second internodes. 

Fragments were fixed in PEM buffer (50 mM piperazine-N,N'-bis[2-ethane-sulfonic acid] 

(PIPES), 5 mM methylene glycol bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid 

(EGTA), 5 mM MgSO4 (pH 6.9)) containing 4% paraformaldehyde and vacuum infiltrated 

using a vacuum pump for 3 h. 

3.2.1.2.  EMBEDDING 

The fixed internode material was dehydrated with a graded ethanol series starting from 

30% and followed by 50%, 70%, 90%, and 100%. Those steps were carried out at 4C for 

40 min each. Subsequently, stems were incubated at 37C overnight in 1:1 Steedman's 

wax and 100% ethanol and followed by two changes of 100% wax for 1 h at 37C. 

Steedman's wax was prepared by mixing 900 g of polyethylene glycol 400 distearate 

(Sigma 30, 541-3) with 100 g 1-hexadecanol (Sigma, C7882) and incubation at 65C until 

melted. A few drops of melted wax were poured into moulds, and internode fragments 

were placed on partially congealed wax. Wax was quickly poured over the sample until 

a convex surface was visible. Moulds were left to set for a few days at room 

temperature. 
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3.2.1.3.  SECTIONING 

Transverse cross-sections were cut to a thickness of 12 µm and placed onto glass slides 

coated with polylysine (Sigma-Aldrich) with the use of a microtome (Bright, NB500). 

Prepared samples were air-dried for at least 24 hours. Subsequently, slides were 

dewaxed in a graded ethanol series: 3x 97%, 90%, 70%, 50%, 30%, and 10% (each 

dilution – 20 min) and after the ethanol series dipped in water for a few seconds. Slides 

were allowed to dry for an hour before immuno-labelling procedures. 

3.2.1.4. IMMUNO-LOCALISATION PROCEDURE 

Cross-sections of stems adhering to microscope slides were incubated for 30 min with 

5% (w/v) MP/PBS (milk protein/1x phosphate-buffered saline) and then washed for 

5min with PBS. This step was carried out to prevent non-specific binding. Primary rat 

monoclonal antibodies (LM1, LM2, LM5, LM6, LM10, LM12, LM13, LM19, LM20, LM25, 

LM28, and JIM7) (Table 3.1) were used at 5-fold dilutions in 5% MP/PBS and incubated 

at room temperature for 90 min. Primary mouse antibody (BG1) was used at 5 µg/mL 

and incubated at the same time and conditions. On each cross-section, 20 µL of the 

prepared solution was added and incubated. Sections were then washed 3X with PBS 

for 5 min. The secondary antibodies anti-rat IgG-FITC (Sigma-Aldrich, UK) at a 100-fold 

dilution for the rat primary antibodies and anti-mouse IgG-FITC (Sigma-Aldrich, UK) at a 

50-fold dilution for the BG1 MLG primary antibody were added in 5% MP/PBS and 

incubated for 90 min in the dark. On each cross-section, 20 µL of the prepared solution 

was added and incubated. Subsequently, sections were washed 3X with PBS (each wash 

5 min) to remove unlabelled secondary antibodies. To diminish sample auto-

fluorescence, sections were stained with Toluidine blue (0.1% in 0.2 M phosphate pH 

5.5) for 5 min. The immuno-labelled sections were then washed thoroughly with 1X PBS 

to remove any excess toluidine blue stain. Samples were observed with a fluorescence 

microscope (Leica, DMi8) and images of at least three sections for each sample were 

captured with a High-end Scientific Fluorescence CCD Camera (Leica, DFC365 FX) using 

Leica Application Suite X software. The exposure time was set automatically. 
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Table 3.1. List of monoclonal antibodies used in the study 

Monoclonal Antibody Epitope 

Pectin - related 

LM5 (14)-β-D-galactans 

LM6 (15)--L-arabinans 

LM13 Linearised (15)--L-arabinan 

LM19 Un-esterified homogalacturonan 

LM20 Methyl-esterified homogalacturonan 

JIM7 Partially methyl-esterified homogalacturonan 

Hemicellulose - related 

LM25 XXXG/galactosylated xyloglucan 

LM28 Glucuronoxylan 

LM10 (14)--D-xylan 

Glycoprotein - related 

LM1 Extensin 

LM2 -linked-GlcA in AGP glycan 

Other 

BG1 Mixed-linked glucan 

LM12 Anti-feruloylated polymers 

 

3.2.1.5. CALCOFLUOR WHITE STAINING 

For cellulose visualisation, staining with Calcofluor White (CFW) was used (0.2mg/mL in 

PBS). A few drops of the solution were placed on each slide and incubated for 10min at 

room temperature. Slides were then washed 3X in PBS for 5min each wash and allowed 

to air dry. To prevent fluorescence fading one drop per section of anti-fade reagent 

Citifluor glycerol/PBS (Agar Scientific) was added on a microscopic slide before placing 

a coverslip. After mounting, the slides were stored in a microscope slide box at 4C in 

darkness until use. Samples were observed with a fluorescence microscope (Leica, 

DMi8) and images of at least three sections for each sample were captured with a High-

end Scientific Fluorescence CCD Camera (Leica, DFC365 FX) using Leica Application Suite 

X software. The exposure time was set automatically. 
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3.2.2.  ANATOMICAL AND MORPHOLOGICAL MEASUREMENTS BASED ON 

CALCOFLUOR STAINING 

Anatomical and morphological measurements were carried out according to (Matos et 

al., 2013) with minor modifications. Three cross-sections from three plants per each 

treatment for both genotypes Bd21 and ABR6 were analysed. ImageJ software was used 

to analyse images by automatically measuring selected areas of interest: outer vascular 

bundles, inner vascular bundles, interfascicular region, pith, cortex, and epidermis 

(Figure 3.1). Measured areas were presented as a percentage of the total area of cross-

section. Whole stem cross-section images were used for the inner, outer and total 

vascular bundle count. Additionally, measurement of cell wall thickness and cell wall 

size was performed. Similarly, for this analysis, three plants per each treatment of both 

genotypes were taken, and three sections for each plant were analysed. The area of 

interest for measuring cell size and cell wall thickness is localised above vascular 

bundles. In order to measure cell wall thickness, lines were drawn across the adjacent 

cell walls of the first four rows of cells above the bundle sheath of a vascular bundle 

(five cells per row). The same cells were also analysed for a proxy for cell size. 

All of the anatomical and morphological measurements were made based on cross-

sections stained with Calcofluor White (see 3.2.1.4.).  
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Figure 3.1. Brachypodium distachyon internal stem internode anatomy. 

(A) Cross-section of the whole stem and (B) higher magnification of the first stem internode. 

Red, inner vascular bundles; pink, outer vascular bundles; cyan, interfascicular region comprised 

mostly of sclerenchyma fibres; grey, pith; lime green, chlorenchyma and sclerenchyma cells 

comprise the cortex; brown, epidermis. (C) Vascular bundle illustration at high magnification. 

Green, bundle sheath (BS); purple, phloem (P); Vermilion, companion cells; tan, xylem vessels 

(XV); red, xylem tracheids (XT); white, lacuna (Lc); orange, xylem parenchyma cells (XP); gray, 

parenchyma cells (Py); blue, sclerenchyma fibers (SF). (A-B) Bar = 0.1 mm, (C) bar = 0.01 mm. 

Adapted from (Matos et al., 2013). 

3.2.3. SCANNING ELECTRON MICROSCOPY 

A middle part of the second internode from three biological replicates per each 

treatment after the second greenhouse experiment was taken for analysis. The stem 

pieces were cut to 1 mm in length and embedded in MEADE resin (Methacrylate 

Embedding & Acetone De-Embedding resin). The resin mixture consisted of 80% butyl-

methacrylate, 20% methyl methacrylate, 0.5% (w/v) benzoin ethyl ether (Agar Scientific 

Ltd). Stem pieces were first dehydrated in an aqueous alcohol series (30%, 50%, 70%, 

95% & 100%) for at least an hour in each mixture and left in 100% overnight at 4C. 

Subsequently, sections were passed through mixtures of MEADE resin and ethanol (1:2, 

1:1 and 2:1) for at least an hour in each mixture and 100% resin overnight at 4C. The 

stem pieces were transferred to BEEM capsule polyethylene moulds (Agar Scientific Ltd) 

in fresh resin and securely capped. The moulds were covered with six sheets of Parafilm 

M (Agar Scientific Ltd) to slow the polymerisation and discourage brittleness. The resin 

was polymerised overnight by a UV light source consisting of two 6W UV lamps at a 

distance of 10 cm. The resulting blocks were cut from the moulds with a single-bladed 

razor, rinsed in ethanol to remove any unpolymerised resin, aired in a fume hood and 
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labelled. Sections were cut at a 1-2 µm thickness on a Reichert-Jung Ultracut E 

Ultramicrotome with glass knives. The sections were collected in 100% acetone in glass 

vials to solubilise the resin, swirled regularly then left overnight to ensure that the resin 

was dissolved and removed from the section structure. They were then attached in a 

drop of acetone to 1" aluminium specimen stubs with 12 mm diameter carbon self-

adhesive pads (Agar Scientific, Stansted, UK). The mounted stem sections were gold-

coated for 5 min in a Polaron E5000 SEM Coating Unit and imaged using a Hitachi S-

4700 FESEM microscope using the Ultra-High-Resolution mode and an accelerating 

voltage of 3.0 kV at a working distance of 5.0 mm and images were captured at 2560 x 

1920 resolution. Areas above the vascular bundles were analysed in order to measure 

cell wall thickness.  

3.2.3.1. MEASUREMENTS BASED ON SEM IMAGES 

Based on SEM images, measurements of cell wall thickness were performed with the 

use of ImageJ software. Similarly, to measurements performed on sections stained with 

Calcofluor White, cell wall thickness was measured on cells in the area of interest 

localised above vascular bundles. In order to measure cell wall thickness, lines were 

drawn across the adjacent cell walls of the first four rows of cells above the bundle 

sheath of a vascular bundle (five cells per row). In some cases, a line was drawn on two 

cell walls, and the thickness obtained after measurement was divided to receive two 

single measurements. In addition to cell wall thickness measurements, SEM images 

were evaluated for apparent differences caused by the different treatments. 

3.2.4. HISTOCHEMICAL STAINING OF LIGNIN IN STEM TISSUE 

The second internode of the main stem from three Brachypodium plants (Bd21 and 

ABR6) per each treatment (control, WS, MS) were used as sectioning material. Plants 

from the second experiment were used in this analysis. Transverse stem cross-sections 

were hand-cut with a clean razor blade under microscope loupe to obtain good quality 

and similar thickness sections. Cross-sections were stained with 5% (w/v) phloroglucinol 

(1,3,5-trihydroxybenzene) (Sigma-Aldrich) in 75% EtOH for 5min in darkness. 
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Phloroglucinol stains lignified cell walls red-brown as a reaction with aldehyde end 

groups of lignin (Pomar et al., 2002). The stained sections were transferred onto glass 

slides and then flooded with a few drops of 12 N HCl. All stained transverse stem cross-

sections were mounted on glass slides with 30% glycerol. Immediately after staining 

samples were observed, and analysed under a bright-field light on a Leica LMD6000 

microscope. Images were taken with a Hitachi HV-D20 camera and captured with the 

Leica LMD V6.5 software. Three cross-sections for each plant were analysed.  

3.2.5.  ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) ASSAY PROCEDURE 

3.2.5.1. CELL WALL RESIDUE PREPARATION 

Stem material from three plants from the third greenhouse experiment per each 

treatment – control, WS, and MS (both genotypes) was harvested, and leaf/sheaths and 

seed heads were carefully removed and discarded. Lignocellulosic biomass was 

collected and frozen at -80C, and then freeze-dried. Dry biomass was then milled with 

use of biomass grinding and loading robot (Labman Automation Ltd.). Biomass material 

was then fractionated to an alcohol insoluble residue (AIR) according to a protocol 

adapted from (Foster et al., 2010; da Costa et al., 2014) with some modifications. For 

each sample, approximately 60-70 mg of dry biomass was weighted, and 1.5 mL of 70% 

aqueous ethanol was added. Samples were then incubated first for 12 h in a shaking 

incubator set at 25C and 150 rpm and then twice for 30 min at 40C. Subsequently, 

biomass was extracted three times with 1.5 mL of chloroform/methanol solution (1:1 

v/v) at 25C/ 150 rpm and finally twice with 500 L of acetone at 25C/ 150 rpm after 

which samples were air-dried for at least two days in a laminar fume hood at room 

temperature. Between each extraction, samples were thoroughly vortexed before 

incubation and centrifuged at 3,000 rpm for 10 min to aspirate the supernatant 

containing extractives. 

De-starching of extracted biomass was initiated by resuspending the samples in 1 mL of 

0.1 M sodium acetate buffer (pH 5) and heating them in a water bath at 80C for 20 min 

to induce starch gelatinisation. Samples were subsequently cooled to room 

temperature and centrifuged at 1000 rpm. After the supernatants were discarded, the 
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pellet was washed twice with 1.5 mL of deionised water with resuspension, 

centrifugation and supernatant discarding. To inhibit microbial growth sodium azide 

was added at 0.0002% (w/v) and starch was removed by incubation with a saturating 

amount of type-I porcine α-amylase (Sigma-Aldrich; 47 units per 100 mg cell wall) in 0.5 

mL of 0.1 M ammonium acetate buffer (pH 5). To ensure complete starch hydrolysis 

samples were then placed in a shaking incubator set at 25C (150 rpm) for an extended 

incubation period of 48 h. α-amylase digestion was terminated by heating samples in 

the water bath for 15 min at 95C and samples were cooled at room temperature. The 

supernatant containing solubilised starch was aspirated, and the pellet was then 

washed three times in 1.5 mL of deionised water and twice with 1.5 mL of acetone, with 

centrifugation, vortexing and supernatant removal between each step. De-starched AIR 

was air-dried in a laminar flow bench until moisture content was ≤10%. 

3.2.5.2. EXTRACTION OF MONOSACCHARIDES FOR ELISA ASSAY 

The extraction of monosaccharides for ELISA assays was performed on previously 

prepared cell wall biomass – AIR for three treatments and both genotypes based on the 

protocol described by (Pattathil et al., 2010, 2012) with modifications. Briefly, 10 mg of 

AIR sample was extracted with 1 mL of 4 M KOH containing 1% (w/v) NaBH4 for 24 h in 

shaking incubator set at 25C and 200 rpm. KOH extracts were neutralised on ice, using 

acetic acid. To prevent foaming, three drops of 2-octanol were added. All extracts were 

dialysed against distilled water with a sample: water ratio 1:60 for 48 h at room 

temperature (3.5 kDa molecular weight cut-off tubing, no. S632724; Spectrum 

Laboratories Inc., California, USA) and left at 4C until use.  

3.2.5.3. PHENOL-SULPHURIC ACID METHOD FOR TOTAL CARBOHYDRATE 

ESTIMATION  

Total carbohydrate content was estimated using the phenol-sulphuric acid method in a 

96-well microplate format as described by (Masuko et al., 2005) with minor 

modifications. Briefly, assays were performed in triplicates in Eppendorf tubes. 
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Extracted carbohydrates were diluted 1:10 with distilled water. 50 μL of the diluted 

extract was pipetted into a 96-well microplate, and rapidly 150 μL of concentrated 

sulfuric acid was added. Immediately after that, 30 μL of 5% (w/v) phenol was added, 

and the plate was kept in a static water bath for 5 min at 90C. After cooling to room 

temperature, the microplate was wiped dry, and the absorbance at 490 nm was 

measured with a plate reader (μQuant; Bio-Tek Instruments, Winooski, Vermont, USA) 

using KC4 software (v. 3.3; Bio-Tek). A standard curve was prepared using solutions with 

varying glucose concentrations to determine glucose equivalents of the sugars in each 

extract. Negative controls without cell wall extract samples were included in all plates, 

and their absorbance at 490 nm was read.  

3.2.5.4. ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) 

Extracted samples for ELISA assay were diluted in PBS to a final carbohydrate 

concentration of 25 µg/mL or 50 µg/mL in PBS. Subsequently, ELISA microtitre plates 

(NUNC Maxisorp, Thermo Fisher Scientific) were coated with 100 µL of diluted sample 

and incubated overnight at 4C. Plates were then washed three times with distilled 

water. Non-specific binding sites in the previously coated plates were blocked with 200 

µL of 7% (w/v) milk powder in PBS for 3 h at room temperature. Plates were then 

washed 15 times by filling wells with distilled water, shaking and then forcibly throwing 

water out. Plates were then coated with 100 µL of primary antibody (LM1, LM2, LM5, 

LM6, LM10, LM12, LM13, LM19, LM20, LM25, LM28, JIM7) at 1:10 dilution in 7% milk 

powder/PBS and incubated for 90 min at room temperature. Plates were washed as 

described previously and then were incubated with 100 µL of secondary antibody anti-

rat IgG-HRP (A9542, Sigma-Aldrich) at a concentration of 1: 1000 in 7% milk powder/PBS 

for 1 h. Plates were shaken dry and 100 µL of a freshly prepared substrate composed of 

18 mL of water; 2 mL of 1 M sodium acetate buffer, pH 6.0; 200 µL of Tetramethyl 

Benzidine (10 mg/mL in DMSO) (3,3,5’5’-TetramethylBenzidine, Sigma T-2885); and 20 

µL of 6% (v/v) hydrogen peroxide was added to each well and left incubating for blue 

colour development. After 15 min, the reaction was terminated by the addition 50 µL 

of 2.5 M H2SO4. Immediately after, net OD values of the colour formation in the wells 
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were measured at 450 nm, subtracting a background reading at 655 nm. Additionally, 

negative controls consisting of water and the same primary and secondary antibodies 

were included in all assays, and their absorbance was subtracted from the readings. 

3.2.6. THE PECTIN METHYLESTERASE ACTIVITY GEL DIFFUSION ASSAY PROCEDURE 

Analysis of pectin methylesterase (PME) activity was performed for both Brachypodium 

genotypes Bd21 and ABR6 for all three treatments (control, WS and MS). The analysis 

was carried out on leaves and stems from a third greenhouse experiment.  

3.2.6.1. PROTEIN EXTRACTION FOR PME ASSAY 

Proteins were extracted from leaves and stem material. The procedure was performed 

as described by (Pinzon-Latorre & Deyholos, 2014) with modifications. Total protein 

extract was obtained by grinding tissue in liquid nitrogen and then transferred to 

extraction buffer, containing 1 M NaCl, 12.5 mM Citric Acid, 50 mM Na2HPO4 plus one 

tablet per 10 mL of cOmplete ULTRA protease inhibitor (Roche), pH 6.5 (1 mL of 

extraction buffer per 1 g of plant tissue). The homogenate was then shaken for 2 h at 

4C, subsequently centrifuged at 14,000 rpm for 15 min, and the supernatant was 

collected. Protein concentration was determined using the Bradford protein assay 

method (Biorad reagent) and bovine serum albumin as standard. For stem material, an 

additional step was introduced because of its low pectin concentration. Stem extract 

was transferred into Microcon Centrifugal Filter Device (Micon, YM-10) and centrifuged 

twice at 13,000 rpm for 30 min. Protein concentration was determined once again using 

the Bradford method based on a standard curve. 

3.2.6.2. RADIAL DIFFUSION ASSAY 

The PME activity was quantified by radial diffusion assay as described (Downie et al., 

1998), with modifications. Briefly, 2% (w/v) agarose gel containing 0.1% (w/v) of 85% 

methylesterified pectin from citrus fruit (P956, Sigma-Aldrich); 12.5 mM citric acid, and 

50 mM Na2HPO4, pH 6.5 was prepared. Approximately 25 mL of the mixture was poured 
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into square 90 mm Petri dishes and allowed to polymerise at room temperature. After 

cooling, wells with a diameter of 4 mm were obtained with a micropipette tip, and equal 

amounts of protein samples were dispensed into each well (50 g of total protein for 

leaves extract and 100 g for stem extract in 20 L). All samples were tested into three 

technical replicates. Plates were incubated at 30C for 16 h. The gel was stained with an 

aqueous solution of 0.05% (w/v) ruthenium red for 1 h and washed a few times with 

distilled water. The halo resulting from the hydrolysis of esterified pectin in the gel was 

photographed immediately, and the area of the halo was measured using ImageJ. A 

standard curve was prepared using commercial orange peel PME (Sigma-Aldrich) with 

activity range going from 0.005 units to 0.05 units (1 unit – 16.67 nanokatals). PME 

activity was calculated based on this standard curve. 

3.2.7. STATISTICAL ANALYSIS 

Values in this chapter are expressed as a mean ±SD. All analyses were performed using 

SPSS software (version 24). Statistical differences were estimated from ANOVA tests at 

the 5% level (P ≤ 0.05) of significance, for all parameters evaluated. Where ANOVA 

indicated a significant difference, pair-wise comparison of means by Tukey's HSD 

(honestly significant difference) test was carried out at the 5% (P ≤ 0.05) of significance.  
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3.3. RESULTS 

Results presented in this chapter are based on material collected after various 

greenhouse stress experiments (Table 3.2). The reason for that is a limited amount of 

plant material generated after each greenhouse experiment in which a maximal number 

of plants per each treatment was 20. Repeatability of phenotypic traits in each 

experiment (previous chapter) indicates that changes and differences between 

treatments are stable across experiments performed. Thus, further analysis of the 

morphological and anatomical level should be constant.  

Table 3.2. Summary of all analysis performed in this chapter. 

 Indicate that analysis was done on a particular experiment. 

 #1 #2 #3 #4 

Tissue area     

Vascular bundles     

Cell size     

Cell wall thickness (Calcofluor)     

Cell wall thickness (SEM)     

Cell walls distinguishability (SEM)     

Immuno-labelling     

ELISA     

PME assay     

Phloroglucinol staining     

 

3.3.1. TISSUE AREA 

Analysis of tissue area is based on stem material of Bd21, and ABR6 collected after the 

first greenhouse experiment. Likewise, for measurements of anatomical properties, the 

second internode (IN2) from the main stem was selected for evaluating possible 

differences between treatments (control, WS and MS). The analysis is based on cross-

sectional anatomy obtained from three plants for each treatment based on Calcofluor 

White staining. Obtained measurements of each particular tissue type are presented as 
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a percentage of the area of the whole cross-section. Results indicate that WS and MS 

treatment changed the anatomy of cross-sections. Moreover, there was a slight 

difference in the response between WS and MS treatment. The difference in response 

patterns to MS and WS treatment varies significantly within the genotypes used in this 

study (Table 3.3).
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Table 3.3. Cross-section anatomy. 

 

 

 

 

 

 

 

 

 

 

Stem cross-section anatomy (IN2) of Bd21 and ABR6 plants of all treatments (control, WS and MS) (3 cross-sections per plant; n=3). The Area of a particular 

tissue is presented as a percentage of the area of the whole cross-section with standard deviation (±SD). Data were normalised to a summative area closure 

of 100%. For statistical significance the ANOVA test (P ≤ 0.05) was performed, and if the test showed a significant difference, a post-hoc Tukey’s test (P ≤ 0.05) 

was also performed. * Statistically significant difference from control; * Statistically significant different between WS and MS. 

 Bd21 ABR6 

 Control WS MS Control WS MS 

Epidermis 6.75 ± 0.56 6.55 ± 0.27 7.45 ± 0.16 6.49 ± 0.71 4.86 ± 0.58* 4.84 ± 0.06* 

Cortex 13.82 ± 0.74 9.37 ± 0.19** 13.77 ± 0.45* 11.91 ± 0.89 10.62 ± 0.44* 12.48 ± 0.48* 

Vascular bundle 21.21 ± 0.22 19.39 ± 0.1** 16.92 ± 0.13** 14.84 ± 0.45 19.39 ± 0.1** 22.05 ± 0.73** 

Interfascicular region 32.42 ± 0.81 30.68 ± 0.44** 33.4 ± 0.76* 29.91 ± 0.78 30.25 ± 0.15* 28.25 ± 0.47* 

Pith 25.8 ± 1.33 34.01 ± 0.71* 28.46 ± 1.14 36.85 ± 1.78 34.13 ± 0.71 32.38 ± 0.14* 
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3.3.1.1. EPIDERMIS 

Bd21 genotype measurements showed that after both stress treatments, no difference 

in epidermis area was found (P = 0.054) compared with control. A slight increase was 

observed after MS; however, this was not statistically significant. ABR6 responded 

differently to the treatments compared to Bd21, with both WS and MS treatments 

resulting in a significant (P ≤ 0.05) decrease of about 25% in the epidermis area 

developed in ABR6 compared with controls (Table 3.3). 

3.3.1.2. CORTEX 

While MS treatment had no effect on the cortex area of Bd21 when compared with 

control, WS had a significant effect (P ≤ 0.05) with the cortex area being reduced by 

more than 30% compared with both control and MS treatment. ABR6 showed a 

different response, with a decrease after WS and increase after MS compared with 

control (both were not statistically significant). Because of these opposite tendencies, a 

significant difference was found between the cortex area after WS and MS in ABR6. 

3.3.1.3. VASCULAR BUNDLE 

A significant difference (P ≤ 0.05) was found in the percentage area of the inner, outer 

and total area of vascular bundles (VB) in Bd21 genotype (Table 3.4). MS treatment 

resulted in a decrease in the area of both inner and outer VB. After WS, a decrease in 

the area was found only for the outer VB, while no difference was found for the inner 

VB when compared with control plants. Taking the total developed area of both inner 

and outer VB into consideration, wind stress plants showed a significant decrease of 

about 8.5%, while after mechanical treatment the area decreased about 20% compared 

with control. Statistically, the difference in the VB area between WS and MS treatment 

is also significant (Table 3.4). ABR6 showed a very different response compared with 

that of Bd21. A significant difference (P ≤ 0.05) was found for the inner, outer and total 

area of VB; however, the response was in the opposite direction compared with that 

seen for Bd21. WS and MS plants showed an increase in the area of inner VB of 23% and 
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36%, respectively compared with control plants. The area of outer VB increased even 

more with 65% after WS and 78% after MS treatment compared with control. 

Therefore, as expected from the increases seen for inner and outer VB, the total area 

of VB was increased by 30% after WS and almost 50% after MS compared with control 

plants, and a significant difference between WS and MS treatment was also found. 

Needs to be mentioned that a big difference in the contribution of the VB between Bd21 

and ABR6 was observed (Table 3.4). 

Table 3.4. Vascular bundle area. 

Vascular bundle area (IN2) developed by Bd21 and ABR6 plants after stress treatments (control, 

WS and MS) (three cross-sections per plant; n=3). The area of a particular tissue is presented as 

a percentage of the area of the whole cross-section with standard deviation (±SD). For statistical 

significance the ANOVA test (P ≤ 0.05) was performed, and if the test showed a significant 

difference, a post-hoc Tukey’s test (P ≤ 0.05) was also performed. * Statistically significant from 

control; * Statistically significant difference between WS and MS. 

  Outer VB Inner VB Total VB 

Bd21 

Control 7.4 ± 0.57 13.81 ± 0.34 21.21 ± 0.22 

WS 5.93 ± 0.2* 13.46 ± 0.11* 19.39 ± 0.1** 

MS 5.18 ± 0.18* 11.75 ± 0.12** 16.92 ± 0.13** 

ABR6 

Control 4.4 ± 0.21 10.44 ± 0.43 14.84 ± 0.45 

WS 7.24 ± 0.11* 12.9 ± 0.63* 19.39 ± 0.1** 

MS 7.85 ± 0.09* 14.2 ± 0.71* 22.05 ± 0.73** 

 

3.3.1.4.  INTERFASCICULAR REGION 

The area of the interfascicular region was significantly reduced by 5% (P ≤ 0.05) in Bd21 

plants exposed to WS compared with control and to MS treated plants. Although a slight 

increase in the interfascicular area was observed after MS treatment, this was not 

statistically significant. The interfascicular area developed by ABR6 plants showed an 

increase after WS and a decrease after MS compared with control; however, a 

significant difference (P ≤ 0.05) was found only between WS and MS treatment (Table 

3.3). 
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3.3.1.5. PITH 

Bd21 plants exposed to WS developed significantly (P ≤ 0.05) more pith area than 

control plants but also more than MS plants. No significant differences between MS and 

control were found, although a slight increase after MS was observed. Measurements 

for ABR6 revealed an opposite response to the stress treatments compared with Bd21, 

with a decrease of the pith area after both MS and WS treatment, although this 

decrease was only significant (P ≤ 0.05) after MS treatment when compared with 

control. 

3.3.1.6.  VASCULAR BUNDLE NUMBER 

The number of vascular bundles was determined for three plants from each treatment 

for both genotypes. Bd21 analysis showed no significant difference in number of inner 

(P = 0.630), outer (P = 0.171), and total number of VB (P = 0.140). Similar to Bd21 there 

was no difference in inner (P = 0.959), outer (P = 0.142), and total (P = 0.194) number 

of VB in ABR6 plants (Table 3.5). 

Table 3.5. Number of vascular bundles after stress treatments of Bd21 and ABR6. 

Data represent mean of inner, outer and total vascular bundle number with standard deviation 

(±SD) of a mean (n=3). For statistical significance the ANOVA test (P ≤ 0.05) was performed.  

  Outer VB Inner VB Total VB 

Bd21 

Control 9.67 ± 1.53 7.67 ± 0.58 17.33 ± 1.15 

WS 9.67 ± 1.53 7.67 ± 0.58 17.33 ± 1.15 

MS 7.67 ± 0.58 8 ± 0 15.67 ± 0.58 

ABR6 

Control 9.33 ± 0.58 9 ± 0 18.33 ± 1.53 

WS 12 ± 3 9 ± 0 21 ± 2.65 

MS 13.67 ± 2.52 9 ± 1 22.67 ± 3.21 
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3.3.2. CELL WALL THICKNESS 

Considering the differences found in tissue distribution, the decision was made to 

undertake the further anatomical analysis. Also, based on the analysis of immuno-

labelling images (see section 3.3.6), there was an impression that cells above the 

vascular bundles in perturbed plants (WS and MS) had thicker cell walls. Because of this, 

the cell wall thickness in this particular region of interest (Figure 3.2) was measured.  

 

Figure 3.2. Area of cross-sections anatomy taken into consideration for cell wall 
thickness measurements.  

The black ellipse indicates the region of interest. Adapted from (Matos et al., 2013). 

First, measurements for cell wall thickness were performed on Calcofluor White stained 

cross-sections of all treatments (control, WS and MS) after the first greenhouse 

experiment. Both genotypes showed the same response pattern, namely an increase in 

cell wall thickness. Cell walls of WS and MS treated Bd21 plants were significantly (P ≤ 

0.05) thicker compared with control by 0.37 μm in WS plants and 0.04 μm in MS plants. 

Similarly, ABR6 WS cell walls were significantly (P ≤ 0.05) thicker by 0.35 μm and MS by 

0.14 μm compared with control. These results indicated that the response after WS was 

much stronger than MS (Table 3.6).  

To confirm these finding on mechanical stimulation induced increases in cell wall 

thickness, additional measurements were made using higher magnification images 
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produced after scanning electron microscopy (SEM). All measurements are based on 

cross-sections cut from IN2 after the second greenhouse experiment. The results differ 

significantly from those obtained from Calcofluor White stained cross-sections. 

Measurements on Bd21 (WS and MS) and ABR6 (WS) showed significant (P ≤ 0.05) 

thinning of the cell wall, and therefore, the opposite results compared with the 

measurements obtained based on Calcofluor White staining. For Bd21 WS and MS, cell 

walls were significantly (P ≤ 0.05) thinner compared with control by 0.142 μm and 0.264 

μm, respectively and in ABR6 WS by 0.2 μm. In contracts, the cell wall of the measured 

cells in ABR6 after MS treatment were on average 0.1 μm thicker, similar to the results 

based on Calcofluor White staining (Table 3.6).  

Table 3.6. Cell wall thickness. 

Data represent mean of the cell wall thickness (μm) measurements, based on Calcofluor White 

staining and SEM images, with standard deviation (±SD) of a mean (3 cross-sections per plant; 

n=3) after treatments (control, WS and MS) for both genotypes. For statistical significance the 

ANOVA test (P ≤ 0.05) was performed, and if the test showed a significant difference, a post-

hoc Tukey’s test (P ≤ 0.05) was also performed. * Statistically significant difference from control; 

* Statistically significant difference between WS and MS. 

  Calcofluor SEM 

Bd21 

Control 1.91 ± 0.11 2.04 ± 0.19 

WS 2.28 ± 0.13** 1.9 ± 0.17** 

MS 1.95 ± 0.12** 1.78 ± 0.17** 

ABR6 

Control 1.86 ± 0.13 2.06 ± 0.26 

WS 2.12 ± 0.15** 1.86 ± 0.26** 

MS 1.98 ± 0.11** 2.17 ± 0.22** 

 

3.3.3. CELL SIZE 

Cell size was measured on the same cells as those used for cell wall thickness 

measurements (see 3.3.3.) to preserve the continuity of anatomical analysis. Cell size 

measurements showed no statistical differences between treatments in Bd21 (P = 

0.157) and ABR6 (P = 0.223). This is probably related to the sizeable standard deviation 
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for all measurements. However, measurements showed a slightly different tendency in 

the response between genotypes. ABR6 plants after wind exposition developed smaller 

cells than in control or MS, while in Bd21 cells were smaller only in MS plants (Figure 

3.3).  

 

 

 

 

 

 

Figure 3.3. Cell size after WS and MS treatment. 

Data represent a mean cell size comparison with standard deviation (±SD) of the mean (3 cross-

sections per plant; n=3) for both genotypes. For statistical significance, ANOVA test, (P ≤ 0.05) 

was performed. 

3.3.4. CELL WALL ANALYSIS BY SEM  

Besides differences in cell wall thickness, the SEM images revealed one more interesting 

feature. In some of the cross-sections, cell walls were separated from each other and 

had a very sharp edge line, thus those were well defined. These cells were 

distinguishable from each other and obtaining results for cell wall thickness was very 

simple, allowing the measurement of the cell wall thickness for each cell separately. The 

visual effect of these type of cross-section may be compared with the effect of cutting 

metal. In the second category of cross-sections, cell walls were indistinguishable from 

each other, thus were nondefined. For sections in this category, the cell wall thickness 

was determined by measuring the thickness of the two cell walls of neighbouring cells 

and dividing the result by two. Generally, images make an impression that they are 

made from very soft material, like “cheese”. Lower magnification images of whole 

cross-section did not reveal any of these differences (Appendix 3). However, images 
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with higher magnification, which were used for cell wall thickness measurements 

showed that the difference is very noticeable in Bd21 (Figure 3.4) and ABR6 (Figure 3.5). 

It is also important to mention that the preparation of stem material for SEM was 

double-checked and could be eliminated from being the reason for the observed 

differences seen in the cross-section.
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Figure 3.4. SEM images of cell wall in Bd21. 

Scanning electron microscope images with various magnification factors showing the difference between well defined and nondefined cell walls 

of Bd21 cross-sections for all three treatments: control, WS, and MS.  
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Figure 3.5. SEM images of cell wall in ABR6. 

Scanning electron microscope images with 

various magnification factors showing the 

difference between well defined and nondefined 

cell walls of ABR6 cross-sections for all three 

treatments: control, WS, and MS.  
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Since it may have a significant impact on cell wall thickness measurements, the number 

of cross-sections having well defined cell walls were counted. For this analysis, three 

plants from each treatment (control, WS, and MS) for both genotypes were used. 

Moreover, for each plant, five cross-sections were analysed. The counts revealed that 

all (n=15) of the cross-sections of Bd21 control and WS plants were nondefined. Only 

five of the fifteen cross-sections after MS were well defined. In the control of the ABR6 

genotype, all of the cross-sections (n=15) were nondefined, while after WS and MS 

treatment only five out of fifteen not clear  (Figure 3.6). 

  

Figure 3.6. Cell wall analysis by SEM. 

Analysis of cell walls showing the difference in number of images in which cell walls were well 

defined and nondefined in cross-sections between treatments: control, WS and MS for both 

genotypes of Brachypodium distachyon; Bd21 and ABR6. Calculations based on three plants, 

and five sections per plant, thus 15 sections per each treatment. 

3.3.5. IMMUNO-LOCALISATION 

The effect of the wind and mechanical stress on hemicellulose, pectin, glycoprotein and 

other cell wall components was examined by immunofluorescence using a range of 

different monoclonal antibodies directed against different cell wall epitopes (listed in 

Table 3.1). The main differences between treatments and controls were found in the 
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distribution of epitopes related to pectins (LM5, LM13, JIM7, LM19). It is important to 

mention that staining patterns also differed between genotypes. 

The LM5 antibody recognises a linear tetra-saccharide in (1-4)-β-D-galactans, and it was 

strongly detected in bundle sheath cells under xylem cells in control Bd21 plants (Figure 

3.7A), while this was not the case for WS and MS treatment (Figure 3.7B-C). In ABR6 

plants LM5 showed a different labelling pattern, with a lack of signal in cortex cells in 

cross-sections of control plants (Figure 3.7D), while after WS and MS treatment there 

were only small regions with a lack of signal localised in cortical regions between 

vascular bundles (Figure 3.7E-F). For all samples, irrespective of the treatment, a strong 

signal was detected in phloem cells.  

Labelling with LM13, which binds to an unbranched (15)--L-arabinan only revealed 

subtle differences after WS treatment compared with control and MS in Bd21 (Figure 

3.8). In all of the three treatments, the LM13 epitope was detected in xylem tracheids, 

and xylem parenchyma cells localised close to xylem vessels (Figure 3.8A2, B2, C2). In 

control and MS plants, the LM13 epitope was also detected in cortex cells between VB 

while no such epitope was found in WS plants (Figure 3.8A1, B1, C1). No differences 

between treatments were found in ABR6, showing a similar distribution of the LM13 

epitope as observed for Bd21; visible in xylem tracheids, and xylem parenchyma cells 

localised close to xylem vessels (Appendix 4A). 

Labelling with JIM7, which bind to partially methyl-esterified homogalacturonan were 

detected in pith cells of Bd21 for each of the treatments (Figure 3.9). In control and WS 

plants, JIM7 signals covered all phloem and xylem cells in the VB, but there was no signal 

observed in these areas in MS plants. Moreover, signals in the cortical region between 

VB close to the epidermis was much stronger in control and WS treatments compared 

with MS treatment (Figure 3.9A-C). No differences in labelling pattern between 

treatments were found in ABR6, with JIM7 epitopes detected in pith and phloem cells 

(Appendix 4B). 

Additionally, some observations suggested a treatment-induced difference in the 

labelling pattern of the LM19 epitope in ABR6, which binds to un-esterified 

homogalacturonan. In two out of the three WS plants analysed, the LM19 epitope was 
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localised in parenchyma xylem cells next to xylem vessels, while no labelling was 

detected in control and MS plants (Figure 3.10). However, since not all of the analysed 

plants showed the same labelling pattern, these observations need to be treated with 

caution. In Bd21, no LM19 epitopes could be detected (Appendix 4C).
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 Figure 3.7. Comparison of immuno-localisation of LM5 epitope in Bd21 and ABR6 between treatments. 

Indirect immunofluorescence analysis of LM5 binding to transverse sections of Brachypodium distachyon second internode of Bd21 and ABR6 for three 

treatments control, WS and MS. Transverse cross-section visualising labelling pattern for LM5 epitope detection in a selected region of cross-sections with  

higher magnification images of the selected area in the rectangle: Bd21: control (A), WS (B), MS (C); ABR6: control (D), WS (E), MS (F). White arrows indicate 

the presence of a signal; blue arrows indicate lack of signal. Scale bar = 50 µm. 
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 Figure 3.8. Comparison of immuno-localisation of LM13 epitope in Bd21 
between treatments. 

Indirect immunofluorescence analysis of LM13 binding to transverse sections of Bd21 second 

internode for three treatments: control (A), WS (B), MS (C) with higher magnification inserts of 

the selected area in the rectangle: Cortex area – 1, inner vascular bundle area – 2. Scale bar = 

50 µm. 
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Figure 3.9. Comparison of immuno-localisation of JIM7 epitope in Bd21 between 
treatments. 

Indirect immunofluorescence analysis of JIM7 binding to transverse sections of Bd21 second 

internode for three treatments: control (A), WS (B), MS (C) with higher magnification inserts of 

the selected area in the rectangle. Blue arrows indicate cells with a difference in labelling 

pattern between treatment and control. White arrows indicate the presence of signal; blue 

arrows indicate lack of signal. Scale bar = 50 µm. 
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Figure 3.10. Comparison of immuno-localisation of LM19 epitope in ABR6 between 
treatments. 

Immunofluorescence analysis of LM19 binding to transverse sections of ABR6 second internode 

for three treatments control (A), WS (B), MS (C) with higher magnification inserts of the selected 

area in the rectangle. White arrows indicate the presence of signal; blue arrows indicate lack of 

signal. Scale bar = 50 µm. 
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The LM6 antibody, which binds to (15)--L-arabinan epitopes were detected in 

phloem and xylem cell walls in both genotypes in all of the treatments. There was a 

genotypic difference, as only in Bd21 a signal was detected in cortex cells between VB 

under the epidermis. No differences between treatments were detected (Appendix 4D).  

Labelling with LM20, which detects methyl-esterified homogalacturonan, revealed no 

differences between treatments in both genotypes. Epitopes were visible in the pith, 

and additionally in Bd21 in cortex cells between VB under the epidermis (Appendix 4E). 

No difference between treatments was found in the labelling pattern when using 

hemicellulose related antibodies (LM25, LM28, LM10). LM25 epitopes were detected in 

xylem tracheids, and xylem parenchyma cells localised close to xylem vessels. Also, very 

light signals were visible in phloem cells in both genotypes (Appendix 4F). LM28 which 

binds to glucuronoxylan was poorly detected in single cells in xylem tracheids, and 

xylem parenchyma cells localised close to xylem vessels and phloem in all treatments of 

both genotypes (Appendix 4G). LM10 ((14)--D-xylan) epitopes were not detected in 

Bd21, and not in ABR6 control and WS. Epitopes were detected in xylem parenchyma 

cell walls in only one of three ABR6 plants after MS (Appendix 4H). 

No differences between treatments in the labelling pattern were detected in 

glycoprotein related antibodies (LM1 and LM2). Labelling with LM1, which binds to 

extensin, was not detected in both genotypes (Appendix 4I). Signals of LM2, which 

detects -linked-GlcA in AGP glycan was localised in phloem cell walls, and single signals 

were observed in xylem cells around xylem vessels (Appendix 4J). 

LM12 which binds to ferulic acid showed very light signals in the phloem of Bd21 for all 

treatments, while no epitope was detected in ABR6 (Appendix 4K). 

Labelling with BG1 (mixed-linkage glucan) showed no differences between treatments, 

and also no differences between genotypes. Epitopes were localised in phloem and pith 

cell walls. In some of the vascular bundles, signals were also detected in xylem cells 

(Appendix 4L). 

Calcofluor White staining showed more intense labelling of cellulose in pith cell walls 

and also in the cell walls of the phloem and xylem in both genotypes. No differences 

were found between treatments (Figure 3.11). 
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Figure 3.11. Comparison of Calcofluor White staining between treatments in Bd21 
and ABR6. 

Calcofluor White staining of cell walls of both genotypes in control, WS, and MS treatment. 

Scale bar = 100 µm. 
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3.3.6. ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA)  

All anti-hemicellulose, anti-pectin and anti-glycoprotein antibodies used for immuno-

localisations were also used for ELISA assays to verify the results and also to obtain 

quantitative data about the relative abundance of the different epitopes following the 

different treatments. Results from this assay confirm results obtained from immuno-

labelling. No differences were found for LM1, LM2, LM6, LM10, LM12, LM20, LM25, 

LM28, while a statistically significant difference was found in LM5, LM13, LM19 and 

JIM7 (Figure 3.12). The OD values of LM19 were significantly higher in ABR6 after WS 

treatment, which might confirm the additional signals observed in the immuno-

localisation study (Figure 3.10). The lower OD value obtained with JIM7 after MS 

treatment in Bd21 confirms the apparent lower abundance and distribution observed 

in JIM7 immuno-localisations for MS compared with control and WS treatment (Figure 

3.9). A clear labelling pattern for LM5 was observed in Bd21 control, that was absent in 

WS, and MS (Figure 3.7) and the lower OD value for WS and MS is in agreement with 

this observation. In ABR6 controls, a lack of signals close to the epidermis was observed 

(Figure 3.7), and the lower OD value for ABR6 control compared with those of WS and 

MS samples are in agreement. Moreover, the lower OD obtained for LM13 after WS 

treatment of Bd21 is in agreement with the lack of signals observed in some cells when 

compared with the labelling pattern observed for control and MS treatment (Figure 

3.8).  
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Figure 3.12. Heat map-presenting confirmation of immuno-localisation. 

Heat map showing the relative abundance of the particular antibody epitopes in cell wall extract of three treatments (control, WS and MS) for both Bd21 and 

ABR6. Relative intensity shading is applied separately for all antibodies. For the statistical significance of results and differences between treatments the 

ANOVA test (P ≤ 0.05) was performed, and if the test showed a significant difference, a post-hoc Tukey’s test (P ≤ 0.05) was also performed. * Statistically 

significant difference from control; * Statistically significant difference between WS and MS.

  
Homogalacturonan  

- related 
Rhamnogalacturonan I  

- related 
Hemicellulose - related 

Glycoprotein - 
related 

Other 

Genotype Treatment LM19 LM20 JIM7 LM5 LM6 LM13 LM25 LM10 LM28 LM2 LM1 LM12 

Bd21 

Control 0.24 0.31 0.72 0.25 0.46 0.24 0.91 0.91 1.09 0.15 0.22 0.51 

WS 0.24 0.31 0.72* 0.22* 0.47 0.17** 0.93 0.91 1.08 0.16 0.22 0.51 

MS 0.25 0.31 0.64** 0.22* 0.47 0.23* 0.89 0.92 1.08 0.15 0.23 0.53 

ABR6 

Control 0.26 0.34 0.65 0.23 0.51 0.10 0.94 0.87 1.06 0.18 0.25 0.52 

WS 0.28** 0.33 0.65 0.29* 0.52 0.10 0.94 0.89 1.08 0.17 0.24 0.52 

MS 0.24* 0.33 0.65 0.30* 0.51 0.11 0.94 0.87 1.08 0.17 0.24 0.53 
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3.3.7. PME ASSAY 

Radial gel diffusion assays were performed to quantify the pectin methylesterase 

activity in stems and leaves after both stress treatments in Bd21 and ABR6. Proteins 

extracted from plant material were allowed to radially diffuse from the well into an 

agarose gel rich in pectin. PME activity was detected by the development of fuchsia-

stained haloes, resulting from de-methylesterification of highly methylesterified pectin 

present in the gel. Measurement of the area of the halo allowed for a semi-quantitative 

estimate of PME activity (Pinzon-Latorre & Deyholos, 2014; Lionetti, 2015). Obtained 

results were calculated based on a standard curve and further transformed to the unit 

of catalytic activity – nkat.  

The area of the formed haloes was much greater after WS and MS in an extract from 

stems and leaves for both genotypes, compared with controls, which indicated higher 

PME activity after stress treatments (Figure 3.13). PME activity in Bd21 stems was 

significantly different between treatments (P ≤ 0.05). The lowest activity was observed 

in control – 0.347 nkat, while after WS treatment, the activity was 0.44 nkat, and the 

highest activity was measured after MS treatment – 0.629 nkat. In ABR6, the response 

pattern was the same, but generally, PME activity was lower than in Bd21. PME activity 

in ABR6 control was 0.282 nkat, increasing after WS treatment to 0.476, and the highest 

activity was again measured after MS treatment – 0.597 nkat (Figure 3.13A). 

Summarising the results, PME activity was the highest after MS treatment in both 

genotypes, and a significant difference between WS and MS was also found. Likewise, 

in the leaves, a statistically significant (P ≤ 0.05) increase after WS and MS treatment in 

both genotypes was observed. Bd21 control samples had a PME activity of 0.324 nkat, 

while for WS this was 0.476 nkat and for MS 0.473 nkat. In ABR6 control the activity was 

0.228 nkat, for WS 0.372 nkat, and for MS 0.381 nkat. For the leaf samples, no significant 

difference between WS and MS in PME activity in both genotypes was found (Figure 

3.13B). 
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Figure 3.13. PME activity in total protein extract for two genotypes Bd21 and ABR6 
of three treatments (control, WS, MS). 

A. Radial gel diffusion assay showing PME (halo) activities in protein extracts and quantification 

of PME activity in stems B. Radial gel diffusion assay showing PME activities and quantification 

of PME activity in leaves. Data are presented as a mean with standard deviation (±SD). For 

statistical significance the ANOVA test (P ≤ 0.05) was performed, and if the test ahowed a 

significant difference, a post-hoc Tukey’s test (P ≤ 0.05) was also performed. * Statistically 

significant difference from control; * Statistically significant difference between WS and MS. 

3.3.8.  PHLOROGLUCINOL STAINING OF STEM TISSUE 

Stem cross-sections were stained with phloroglucinol to determine the lignin 

distribution in stems of both Brachypodium genotypes and evaluate if these are different 

between treatments (control, WS and MS). The phloroglucinol staining clearly showed a 

more intense signal for stem sections after the WS and MS treatments compared with 

controls. The colour difference occurred mostly in the sclerenchyma cells below the 

epidermis (cortex) and in the interfascicular region between VB. The cells below the 
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epidermis and in the interfascicular region between VB in WS and MS treatment were 

red-stained, while in control plants appeared pink in both genotypes. Moreover, xylem 

tracheid's cells were stained brown in WS and MS plants, while in control, the colour 

was less intense and occurred dark red (Figure 3.14). To conclude, histochemical analysis 

for lignin showed a clear difference in colour distribution, suggesting that WS and MS 

stems were more lignified than control plants in both genotypes.  

 

 

 

 

 

 

 

 

Figure 3.14. Comparison of histochemical staining of lignin between treatments in 
Bd21 and ABR6 genotype. 

Representative images of hand-cut transverse cross-sections of stem second internode for 

lignin staining with phloroglucinol for all three treatments: control, WS and MS for both 

genotypes Bd21 and ABR6.  Scale bar = 100 µm. 
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3.4. DISCUSSION 

Results presented in this chapter indicate that wind stress and mechanical stress have 

a significant impact on anatomy, histology and composition of Brachypodium 

distachyon stems. The greater differences between treatments were noted in the 

localisation of pectic epitopes, PME activity, an organisation of tissues, as well as cell 

wall thickness and lignin distribution. 

Wind stress and mechanical stress induces changes in pectins 

Immuno-labelling with specific cell wall antibodies showed differences in the labelling 

pattern between treatments only with some of the used pectin-related antibodies. The 

substantial differences were found in the distribution of epitopes related to pectins. 

Alteration after stress treatments in labelling pattern with RG-I related antibodies (LM5: 

(14)-β-D-galactans, LM13: linearised (15)--L-arabinan), and HG related antibodies 

(JIM7: partially methyl-esterified homogalacturonan, LM19: un-esterified 

homogalacturonan) were observed. Differences were observed not only between 

control and stress treatment but also between the two stress treatments, indicating 

that WS and MS may affect plants differently. Although some differences between 

genotypes were also detected, generally the labelling pattern for most of the antibodies 

used in this study was very similar between Bd21 and ABR6. Pectins comprise only 5%  

of the cell wall content in grasses (Vogel, 2008); however, they play a very important 

part in the complex cell wall matrix. Pectins have been shown to be involved in many 

different processes, including in plant growth, development, morphogenesis, defence, 

cell-cell adhesion, wall structure, signalling, cell expansion, wall porosity, binding of 

ions, growth factors and enzymes, pollen tube growth, seed hydration, leaf abscission, 

and fruit development (Ridley et al., 2001; Mohnen, 2008). There are three main 

structural classes of pectins in cell walls, including those of grasses, namely 

homogalacturonan (HG), rhamnogalacturonan II (RG-II), and rhamnogalacturonan I (RG-

I). In functional terms, RG-I is not well defined, although both galactan and arabinan 

polymers are implicated in contributing to cell wall mechanical properties and to cell 

wall flexibility (Jones et al., 2003, 2005; Ulvskov et al., 2005; Moore et al., 2008).  
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(1-4)-β-D-galactans are abundant pectic polysaccharides in plant cell walls and are a 

significant part of RG-I side chains along with arabinans. The overall function of 

galactans is poorly understood; however, in the literature, a few possible functions are 

suggested. Hypotheses were made that galactans retain water and thus may have an 

impact on modulating the mechanical properties of cell walls (McCartney et al., 2000; 

Liwanag et al., 2012). Moreover, there are indications that (1-4)-β-D-galactan is 

essential for the mechanical properties in flax during the development of the fibres 

(Roach et al., 2011; Liwanag et al., 2012). Pectins are generally most abundant in 

primary cell walls of expanding cells, but in flax (1-4)-β-D-galactan is relatively abundant 

in secondary walls, especially in tension wood that forms in response to mechanical 

stress (Liwanag et al., 2012). Galactans were also found to take part in creating a 

contractile cell wall in flax by specific entrapment within cellulose microfibrils 

(Gorshkova et al., 2015). Moreover, galactans may play an important role during cell 

elongation in Arabidopsis seedlings (McCartney et al., 2003). Suggestions were made 

that (1-4)-β-D-galactan do not affect phenotype (Oxenboll Sorensen et al., 2000; Martín 

et al., 2005; Ulvskov et al., 2005), but on the other hand the galactan deficient potato 

tubers were found to be slightly more brittle, indicating that galactan may play a role in 

transmitting stresses to cellulose microfibrils (Ulvskov et al., 2005). Furthermore, in 

Arabidopsis plants with reduced galactan content, no strong difference in phenotype 

was noted; however, the stems were thinner compared with the wild type (Øbro et al., 

2009). 

LM5 antibodies were developed to detect the neutral side chains of RG-I and thus for a 

better understanding of the role of galactans associated with RG-I (Jones et al., 1997). 

In this study, LM5 epitopes were detected in the bundle sheath in control plants of 

Bd21, while no such signals were detected after WS and MS treatments. Moreover, 

ABR6 showed a different labelling pattern, with no signal in the cortex in control plants. 

In WS and MS treated plants, only small areas of sub-epidermal parenchyma regions of 

the cortex were not labelled. Mechanically stressed Arabidopsis plants showed that 

pectic galactan (using LM5) was found to be more abundant in the parenchyma – 

especially in the pith – of the stressed plant, but only in the bottom part of the stem, 

while the middle part showed no differences in labelling pattern compared with control 
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plants (Rigo, 2016). The author suggested that the higher LM5-binding in stressed plants 

is probably not the result of increased biosynthesis and deposition of galactan in the 

cell wall as a response to mechanical stress (which would imply a direct effect of 

mechanical stress), but rather a consequence of galactan not being redistributed in cell 

walls in stress conditions, because of inhibited cell elongation (Rigo, 2016). These results 

are different from those obtained for Brachypodium in this study, which showed a 

completely different labelling pattern of cross-sections. One of the reasons for that may 

be the different cell wall type between these two species. Nevertheless, lack of signals 

in ABR6 control plants may indicate that these suggestions may be correct indeed. On 

the other hand, the study performed on Arabidopsis seedlings indicated that galactan 

plays a critical role during the elongation process and as such remains abundant in the 

cell wall as long as the cell elongates (McCartney et al., 2003). In this study, mechanical 

stimulation inhibits the elongation of stems compared with control plants. 

Nevertheless, both studies are performed on different species, with the different cell 

wall construction and on different tissue type.  

Pectic arabinans are a complex set of cell wall polysaccharides in which the (15)--L-

arabinans backbones can variously be branched to RG-I at O-2 or O-3 by single 

arabinosyl residues or short side chains (Caffall & Mohnen, 2009; Verhertbruggen et al., 

2013). It is suggested that arabinans are highly developmentally regulated in terms of 

their fine structures but also have been shown to integrate within cell wall structures 

and thus participate in the mechanical and functional properties of plant cell walls 

(Jones et al., 2003; Ha et al., 2005; Verhertbruggen et al., 2013). Unfortunately, how 

arabinans act to modulate the mechanical properties and flexibility of cell walls is not 

understood (Verhertbruggen et al., 2013). LM13 is an antibody that detects unbranched 

(15)--L-arabinan epitopes and its binding is highly sensitive to arabinanase action, 

indicating the recognition of a longer linearised arabinan epitope (Verhertbruggen et 

al., 2009b, 2013). In Arabidopsis, the LM13 epitope is restricted to epidermal cell walls 

of inflorescence stem and its abundance is relatively stable during development 

(Verhertbruggen et al., 2013). After exposure to mechanical stress, an increase in the 

detection of LM13 epitopes in the epidermis was observed compared with Arabidopsis 

control plants (Verhertbruggen et al., 2013). In this study, the labelling pattern is 
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different from Arabidopsis; for all of the treatments, LM13 epitopes were detected in 

xylem tracheids, and xylem parenchyma cells localised close to xylem vessels. 

Additionally, in control and MS treatment of Bd21 LM13 epitopes were detected in 

cortex cells between VB while no such epitope was found in WS plants. No differences 

in LM13 labelling patterns were found for ABR6. It has been demonstrated that 

arabinans are extremely variable between species in terms of precise structure 

(Nakamura et al., 2002; Caffall & Mohnen, 2009). Moreover, there is evidence for 

heterogeneity of arabinans even between cell types from the same species (Guillemin 

et al., 2005; Verhertbruggen et al., 2009a). It was suggested that a reduction in the 

occurrence of the LM13 linear arabinan epitopes could be associated with increased 

stem stiffness (Verhertbruggen et al., 2013); nevertheless, this study cannot fully 

demonstrate that. Moreover, in Arabidopsis, the occurrence of the LM13 epitope is 

restricted to epidermal cell walls of younger, elongating regions of inflorescence stems 

and the authors have indicated that in these areas, greater organ flexibility is required. 

Additionally, the authors considered that there is a structural requirement for stretches 

of arabinan that can be acted upon by arabinanase enzymes during elongation growth 

(Verhertbruggen et al., 2013). The current hypothesis is that the arabinan side chains 

create highly flexible, space-filling structures that can intervene between nearby HG 

chains that otherwise would cross-link by means of calcium ions (Jones et al., 2003). 

Unfortunately, the structure of these arabinan side-chains is still poorly known and 

understood. Moreover, in the context of linking pectin arabinans, or other cell wall 

epitopes for that matter, it has been implicated that the key issue in understanding the 

biomechanical performance of plants from the cell to the tissue and to the organ level 

is to study the orientation of matrix polymers in relation to cellulose microfibrils or their 

interplay during mechanical deformation (Burgert, 2006; Thompson, 2008). 

Homogalacturonan is the most abundant pectic polysaccharide in cell walls and consists 

of 1,4-linked galacturonosyl residues. HG is a multifunctional domain of pectin and has 

many roles relating to primary cell wall assembly and cell extension, cell wall matrix 

porosity and plant defence responses (Mohnen, 2008; Verhertbruggen et al., 2009a). 

HG is usually synthesised in a largely methyl-esterified form and regulation of methyl-

esterification status is controlled by pectin methylesterases (PMEs), which catalyses the 
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de-methyl esterification of the C6 linked methyl ester group of HG (Clausen et al., 2003; 

Pelloux et al., 2007; Mohnen, 2008; Verhertbruggen et al., 2009a; Volpi et al., 2011). 

The pattern of methylation of HG affects the functional characteristics of the pectic 

polysaccharides (Caffall & Mohnen, 2009). A number of antibodies are available that 

can visualise the methyl-esterified and de-esterified forms of HG. In this study, JIM7 and 

LM20, which both detect methyl-esterified HG and LM19, which detects un-esterified 

HG were used (Verhertbruggen et al., 2009a). No differences in labelling pattern were 

found for LM20 between treatments in both genotypes, while JIM7 showed differences 

only between treatments in Bd21. Compared with WS and control, there was a little to 

no signal in the phloem and xylem after mechanical stress in Bd21. It is suggested that 

JIM7 can be used to give a view of the overall methyl-esterification status of HG, while 

LM20 gives more solid results (Verhertbruggen et al., 2009a) and detects high levels of 

methyl-esterification (Rigo, 2016). Thus, as no differences in LM20 labelling were found, 

this may indicate that the amount of methyl-esterified HG is not affected by stress 

treatments in Bd21 and ABR6. Moreover, labelling with LM19 (un-esterified HG) did not 

clearly alter in response to mechanical stimulation, suggesting that the treatments did 

not affect the abundance of pectic de-esterified homogalacturonan. This is in 

agreement with studies showing no differences in the pattern of LM19 labelling in stems 

of mechanically stressed Arabidopsis plants when compared with controls (Rigo, 2016). 

In this study, both WS and MS increased the PME activity in both genotypes, suggesting 

that HG in stress-treated plants contained a lower level of methyl-esterification than 

control plants. Nevertheless, WS and MS treated plants showed higher PME activity, 

which would suggest a lower abundance of JIM7/LM20 and higher abundance of LM19. 

ELISA assays showed no effect for LM20 in both genotypes, and localisation with JIM7 

showed only a decrease for MS in Bd21. LM19 was only increased for WS in Bd21 but 

not for MS. Therefore, ELISA assays could only partly confirm what would be expected 

based on the radial diffusion assays. 

It is known that HG with low levels of methyl-esterification takes part in creating 

calcium-mediated gels, causing cell wall stiffening and playing a role in regulating the 

porosity and mechanical properties of cell walls (Ridley et al., 2001; Willats et al., 2001; 

Hongo et al., 2012). In addition, it may affect intercellular adhesion via the middle 
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lamella between cell walls (Pelloux et al., 2007; Wolf et al., 2009). Moreover, the level 

of methyl esterification of cell wall pectin can have a great impact on several 

physiological processes including stem development (Hongo et al., 2012), cell adhesion 

(Willatts et al., 2001), fiber elongation (Pinzon-Latorre & Deyholos, 2014), pollen tube 

growth (Bosch et al., 2005) phyllotaxis (Peaucelle et al., 2008) and cell elongation 

(Pelletier et al., 2010), but can also influence plant response to fungal and bacterial 

pathogens (Lionetti et al., 2007; Volpi et al., 2011). Taking all the above into 

consideration, the results presented in this study suggest that PMEs are involved in the 

plant response to mechanical stimulation. 

The Enzyme-linked immunosorbent assay (ELISA) is a highly versatile and sensitive 

analytical test for the qualitative or quantitative determination of antibodies or virtually 

any kind of antigenically active molecule (Engvall & Perlmann, 1971). It has been widely 

used to detect structurally defined plant cell wall polysaccharide epitopes with use of 

cell wall antibodies (Verhertbruggen et al., 2009b; Andersen et al., 2016; Posé et al., 

2018). In this study, ELISA assays were performed with the same antibodies, which were 

used for immuno-localisation of cell-wall related antibodies. As the immuno-localisation 

gives only information about the distribution of the antibodies, ELISA assays were used 

for additional a semi-quantitative measure of the epitope abundance. In this study, 

differences found after the immuno-localisation experiment was confirmed by ELISA 

assays. The differences were found in RG-I related antibodies LM13 in Bd21 and LM5 in 

both genotypes. Differences were also observed in HG-related antibodies LM19 in ABR6 

and JIM7 in Bd21.  

Wind stress and mechanical stress induces anatomical and histological changes of 

stems  

Mechanically stimulated plants in this study differed significantly in terms of tissue 

organisation compared with controls. Moreover, the response differed between the 

two treatments as well as between the two genotypes. Bd21 WS treated plants 

developed proportionally more pith, while the area of the cortex, interfascicular region 

and vascular bundles was reduced. The area of vascular bundles was also reduced in 

response to MS treatments, but the area of cortex, interfascicular region and pith were 

similar compared with control. Whereas the area of the cortex and the interfascicular 
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region was not affected in ABR6, stress-treated plants developed a smaller area of the 

epidermis and bigger area of vascular bundles. The pith area decreased significantly 

after MS, with only a slight decrease upon WS treatment compared with controls. 

Despite these changes in tissue organisation, there was no difference in cell size and 

number of vascular bundles. Recent studies on Arabidopsis thaliana inflorescence 

showed that mechanical stress has a substantial influence on stem anatomy, resulting 

in a smaller and more central area of lignified interfascicular tissue. This may suggest a 

delay in procambial differentiation and expansion prior to the onset of lignification 

(Paul-Victor & Rowe, 2011; Rigo, 2016). The monocots stems, such as Brachypodium do 

not contain cambium, and their anatomy and development differ significantly. 

Moreover, during Brachypodium stem development, the most drastic changes are 

visible in the interfascicular region, with the area of this region increasing significantly 

over time (Matos et al., 2013). As no substantial differences between treatments in 

terms of area of the interfascicular region was found in both genotypes, this may 

indicate that plants are at similar development stages and therefore stem development 

is not affected by mechanical stimulation. Mechanical treatment resulted in a change 

in tissue geometry and a smaller pith in Arabidopsis (Paul-Victor & Rowe, 2011; Rigo, 

2016). On the other hand, pith cells increased in size and number in perturbed bean 

plants; however, this change only tends to fill in the hollow core of the stem and does 

not significantly contribute to the thickness of the stem and thus its mechanical 

properties (Biro et al., 1980). In this study, ABR6 and Bd21 responded differently in 

terms of developed pith area. Bd21 WS plants developed dramatically more pith 

compared with control and MS, while a small decrease in the pith area was observed 

after MS in ABR6 plants. Arabidopsis mechanical stress-treated plants developed larger 

cortex and epidermal tissue (Paul-Victor & Rowe, 2011; Rigo, 2016). Increase in the 

diameter of cortical cells was also observed in runner bean (Phaseolus multiflora), broad 

bean (Vicia faba) (Bunning, 1941) and pea (Goeschl et al., 1966). On the other hand, it 

was suggested that decreased elongation in common bean is due to reduced cell 

elongation in the outer tissues (epidermis and cortex) (Biro et al., 1980; Biddington, 

1986). Generally, changes in the diameter of the cortical parenchyma cells and 

secondary xylem production accounted for most of the mechanical stress-induced 
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changes in stem diameter (Goeschl et al., 1966; Biro et al., 1980; Biddington, 1986). In 

this study, no clear evidence for changes in stem diameter was obtained. On the other 

hand wind stress reduced the size of tall fescue (Festuca arundinacea) leaves, however 

epidermal cells of the leaves were of similar size compared with control, suggesting that 

wind reduced the number and not the size of the epidermal cells in the leaves (Grace & 

Russell, 1977; Biddington, 1986). For oats, the response to windy conditions may be 

positively correlated with the number and amount of vascular bundles (Jellum, 1962). 

Old studies on tall fescue showed that the vascular bundles of the control plants were 

larger but were spaced further apart than in the leaves of wind stressed plants (Grace 

& Russell, 1977). However, the most recent study on rice (genotype Shengbasimiao) 

revealed no significant difference in the area of vascular bundles in stem after rubbing 

(Zhao et al., 2018). In contrast to this finding, mechanically stressed rice stems of a 

different genotype (Simiaoxuan) developed greater areas of vascular bundles (Zhang et 

al., 2013a). All the above indicate that response may be connected with species, but 

also may differ within species between genotypes. This suggestion is in agreement with 

this study, as results showed a different response to stress treatments between 

genotypes. Thus Bd21 stressed plants reacted with decrease and ABR6 with an increase 

of vascular bundle area. All of the vascular bundles in Brachypodium distachyon are 

formed at or before the point of elongation, as the number and size do not significantly 

change over the time during development and growth (Matos et al., 2013); thus any 

changes in their area may suggest a direct effect of mechanical stimulation. In dicot 

plants, research in terms of the effect of mechanical stimulation on plants anatomy and 

histology is more detailed compared with studies on monocots. Hepworth and Vincent 

suggested that the cylinder of xylem in the tobacco stems is the most important tissue 

which determines the stiffness of the whole plant; thus plants respond by increasing 

the thickness of the xylem tissue cylinder (Jaffe, 1973, 1980; Hunt & Jaffe, 1980; 

Hepworth & Vincent, 1999). Although the reason for such anatomical structure changes 

of Brachypodium stems presented in this chapter in terms of vascular bundle area 

remains unknown, it is suggested that obtained results are caused by the direct impact 

of mechanical stimulation. 
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Cell wall thickness measurements of the particular region of interest (localised between 

inner vascular bundle and epidermis) performed in this study were not easy to interpret 

due to different results obtained by two different techniques used for sample 

preparation and visualisation. Analysis based on Calcofluor White staining revealed 

thickening of cell walls after both stresses (both genotypes), while analysis based on 

scanning electron microscopy (SEM) images showed the opposite. Thinning of cell walls 

was observed after wind stress in both genotypes and after MS in Bd21, while for ABR6 

thickening was observed after MS compared with control. Both procedures have their 

limitations and advantages. It is difficult to say clearly, which measurements are better 

and correct. Limited literature, especially for the grasses in terms of changes in cell wall 

thickness after mechanical stimulation, makes this even more difficult to interpret. 

Mechanically stressed Arabidopsis stems, on the one hand, showed thickening of cell 

walls of the interfascicular tissue (Rigo, 2016); however, another study showed thinning 

of the cell wall in the three outer cell layers of the interfascicular tissue (Paul-Victor & 

Rowe, 2011). It has been suggested that these contrasting findings may be caused by 

the fact that Paul-Victor and Rowe did not observe a difference in stem diameter and 

lignification and therefore compared absolute measurements, while in the Rigo study 

relative proportions were compared because of the varying diameters between 

stressed and non-stressed inflorescence stems (Rigo, 2016). Moreover, Rigo did not 

clearly explained which type of staining the cell wall thickness measurements was 

performed. An increase in cell wall thickness of collenchyma tissue in petioles was 

observed in mechanically-stressed and wind-stressed celery (Venning, 1949; Walker, 

1957). Thickening of cell walls of tracheids was also observed in wind-stressed tamarack 

(Larix laricina) (Biddington, 1986), while mechanical stress had no impact on cell wall 

thickness in tobacco (Hepworth & Vincent, 1999). Cell wall thickness and lignification of 

most of the tissues in developing Brachypodium distachyon plants increases 

dramatically over time (Matos et al., 2013). Thus the other aspect that may help with 

analysis of the cell wall thickness are results from Phloroglucinol – lignin staining. These 

clearly showed more intense staining in the interfascicular tissue and cortex of wind and 

mechanically stressed plants. Moreover, higher lignin content after wind and 

mechanical stress was confirmed by composition analysis (Chapter 4). Lignification is 
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often connected with thickening of cell walls (Matos et al., 2013), which was clearly 

observed in Arabidopsis stems (Rigo, 2016). This may indicate that measurements based 

on Calcofluor White staining more accurately reflect the true cell wall thickness 

compared with those based on SEM. In addition, a substantial part of cell walls in the 

SEM images was indistinguishable from each other. It might significantly affect 

measurements, making them less adequate and burdened of greater error compared 

with measurements based on Calcofluor White.  

In conclusion, histological and anatomical features analysed in this chapter are 

significantly affected by both wind and mechanical stress. The greater changes were 

observed in tissue geometry, cell wall thickness, pectin polysaccharide distribution, as 

well as PME activity. Moreover, taking into account the very limited literature in terms 

of such changes, especially in grasses, makes these finding even more important. This 

study may be a good indicator for histological and anatomical research connected with 

lodging resistance in grasses as well as more detailed studies of the response of grasses 

to the wind and mechanical stress.
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CHAPTER 4 :    IMPACT OF WIND AND MECHANICAL STRESS ON 
THE CELL WALL COMPOSITION OF 
BRACHYPODIUM DISTACHYON STEMS 

4.1. INTRODUCTION 

Grasses are very important from an economic point of view; they provide the majority 

of calories consumed by humans either directly through the consumption of grains or 

indirectly through animals fed a diet of grains and forage (Vogel, 2008). Moreover, 

beyond providing calories, grass cell walls offer essential health benefits through a high 

content of dietary fibre (Harris & Smith, 2006). Furthermore, polysaccharides of grass 

cell walls are a significant source of renewable energy because they can be converted 

into liquid fuel (e.g. ethanol, butanol) and the entire cell wall can be burned to produce 

heat or electricity (Service, 2007; Vogel, 2008). 

The cell walls of monocotyledonous (monocot) plants such as grasses including 

Brachypodium distachyon differ from those of dicotyledonous (dicot) plants as 

represented by Arabidopsis thaliana. Generally, the overall construction of grass and 

dicot cell walls is alike; a matrix of non-cellulosic polysaccharides surrounds cellulose 

fibres; nevertheless, cell wall composition differs substantially (Wang et al., 2014). The 

typical monocot cell walls consist of the three main heterogeneous polymeric 

components: cellulose, hemicelluloses and lignin, but also other minor components 

such as pectins, proteins and hydroxycinnamic acids and hydrophobic compounds such 

as waxes, cutins, and suberins (Carpita, 1996; Rancour et al., 2012). The relative 

proportion of these chemical subgroups may vary within a single species throughout its 

development (Carpita, 1996; Fincher, 2009), but also differ substantially between 

various grass species (Hatfield et al., 2009).  

The plant cell walls are the most external layer of a plant cell, which gives shape, 

controlling growth, and also have remarkable mechanical properties to give plants 

strength and extensibility (Pilling & Höfte, 2003). Moreover, cell walls provide 

carbohydrate storage and are the basis for many fundamental functions such as 

creating defensive barriers for many environmental factors and also play an essential 
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role in stress sensing and signal transduction (Sarkar et al. 2009; Seifert & Blaukopf 

2010).  

Cell walls from plants growing in stress environment undergo biochemical changes and 

reorganisation of components and hence, architecture, which allows the cell walls to 

adapt to particular conditions (Sarkar et al., 2009). However, there is remarkably little 

knowledge of the effect of mechanical stimulation on cell wall composition. Cell wall 

composition is intensively studied in analyses with a focus on plants adaptation to a 

windy environment and in analyses of lodging resistance. Nevertheless, even in this area 

of research, the outcome is still not very well understood. Thus, this chapter presents 

results for compositional changes and alterations in monosaccharides, lignin and 

hydroxycinnamic acids content as well as differences in saccharification after wind and 

mechanical stress treatments in Brachypodium distachyon stems. Together with 

phenotypic, histological and anatomical changes, it gives a broader overview of the 

effect of mechanical stimulation on plants. 
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4.2. MATERIALS AND METHODS 

4.2.1. CELL WALL RESIDUE PREPARATION 

Stem material from five plants per each treatment (both genotypes) was harvested and 

pooled together, and leaf/sheaths and seed heads were carefully removed and 

discarded. For biological replicates material from first, a second and third experiment 

was selected (control, WS, and MS). Lignocellulosic biomass was prepared according to 

the NREL LAP ”Preparation of samples for compositional analysis” (Hames et al., 2008). 

Biomass preparation includes oven-drying biomass at 45C until moisture content was 

≤10%. Dry biomass was then milled with the use of a biomass grinding and loading robot 

(Labman Automation Ltd.). Biomass material was then fractionated to an alcohol 

insoluble residue (AIR) according to a protocol adapted from (Foster et al., 2010; da 

Costa et al., 2014) with some modifications. For each sample, approximately 60-70 mg 

of dry biomass was weighed, and 1.5 mL of 70% aqueous ethanol was added. Samples 

were then incubated first for 12 h in a shaking incubator set at 25C and 150 rpm and 

then twice for 30 min at 40C. Subsequently, biomass was extracted three times with 

1.5 mL of chloroform/methanol solution (1:1 v/v) at 25C/150 rpm and finally twice with 

500L of acetone at 25C/150 rpm after which samples were air-dried for at least two 

days in a laminar fume hood at room temperature. Between each of the extraction, step 

samples were thoroughly vortexed before incubation and centrifuged at 3000 rpm for 

10 min to aspirate the supernatant containing extractives. 

De-starching of extracted biomass was initiated by re-suspending samples in 1 mL of 0.1 

M sodium acetate buffer (pH 5) and heating samples in a water bath at 80C for 20 min 

to induce starch gelatinisation. After the samples were cooled down to room 

temperature, they were centrifuged at 1000 rpm, supernatants were discarded, and the 

pellet was washed twice with 1.5 mL of deionised water with resuspension, 

centrifugation and supernatant discarding. To inhibit microbial growth, sodium azide 

was added at 0.0002% (w/v), and starch was removed by incubation with a saturating 

amount of type-I porcine α-amylase (Sigma-Aldrich; 47 units per 100 mg cell wall) in 0.5 

mL of 0.1 M ammonium acetate buffer (pH 5). To ensure complete starch hydrolysis 

samples were then placed in a shaking incubator set at 25C (150 rpm) for an extended 
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incubation period of 48 h. α-amylase digestion was terminated by heating samples in a 

water bath for 15 min at 95C and samples were then cooled down at room 

temperature. The supernatant containing solubilised starch was aspirated, and the 

pellet was then washed three times in 1.5 mL of deionised water and twice with 1.5 mL 

of acetone, with centrifugation, vortexing and supernatant removal between each step. 

De-starched AIR was air-dried in a laminar flow bench until moisture content was ≤10%. 

4.2.2. DETERMINATION OF ACETYL BROMIDE SOLUBLE LIGNIN CONTENT 

The lignin content of de-starched AIR samples of both genotypes (Bd21, ABR6) was 

quantified as described by (da Costa et al., 2014) with some modifications. Acetyl 

bromide soluble lignin (ABSL) content was determined in three technical replicates for 

each biological replicate (first, second and third experiment) for all of the treatments 

(control, WS and MS) for both genotypes. Briefly, approximately 7 mg of previously 

prepared AIR was transferred into 10 mL Pyrex glass tubes, and 500 μL of freshly 

prepared 25% (v/v) acetyl bromide solution in glacial acetic acid was added to solubilise 

lignin. Samples were capped with polypropylene caps and placed in a heating block set 

at 50C for a total time of 3 h. During the third incubation hour, samples were vortexed 

thoroughly every 10 min. After incubation, samples were cooled down at room 

temperature and then diluted by the addition of 2 mL of 2 M NaOH and 350 μL of 0.5 M 

hydroxylamine hydrochloride and tubes were vortexed. The final volume was adjusted 

to 10 mL with glacial acetic acid and samples were mixed by inversion, followed by 

centrifuging at 5,000 rpm for 5 min to produce a particulate-free supernatant. 

Subsequently, 200 μL of each sample was transferred to UV transparent 96-well plates 

(UV-Star; Greiner Bio-One), and the absorbance at 280 nm was measured with a μQuant 

BioTEK plate reader using KC4 software version BioTEK 3.3. A negative control sample 

without AIR was included to subtract background readings, and a host lab control 

sample was included as an internal standard. ABSL was calculated using the equation 

outlined in (Foster et al., 2010). 

𝐴𝐵𝑆𝐿% = [(
𝐴280

𝐴𝐶 × 𝑃𝐿
) × (

𝑉𝑅

𝑊𝑆
)] × 100% 
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Where: ABSL% - acetyl bromide soluble lignin percentage content; A280 - absorption 

reading at 280 nm; PL - path length (0.556cm); VR - reaction volume (L); WS - sample 

weight (g); AC - specific absorption coefficient - 18.126 g-1 L cm-1. 

4.2.3. DETERMINATION OF MONOSACCHARIDE CONTENT 

Composition analysis of previously prepared AIR samples was based on the procedure 

described by (Sluiter et al., 2012). The analysis was performed on stem samples in two 

technical replicates for each biological replicate (first, second and third experiment) for 

all of the treatments (control, WS and MS) for both genotypes. All samples were 

analysed in duplicates. Briefly, 10 mg of AIR samples was weighed into 10 mL Pyrex glass 

tubes and 100 μL of 72% (w/w) H2SO4 was added. Tubes were capped with 

polypropylene caps and placed on a heating block set at 30C for 1 h. Samples were 

vortexed every 10 min. The acid hydrolysate was diluted to 4% (w/w) H2SO4 with 2.5 mL 

of deionised water and samples were mixed by inversion to eliminate phase separation. 

Subsequently, tubes were sealed and placed in an autoclave at 121C for 1 h and then 

cooled to room temperature and centrifuged to produce a particulate-free supernatant. 

Samples were diluted ten-fold (1:10) by mixing 100 μL of each sample with 900 μL of 

deionised water followed by a hundred-fold (1:100) dilution by mixing 50 μL of the 1:10-

diluted samples with 950 μL of a solution of 0.015 M KOH. Finally, 400 μL of the 1:100 

diluted samples were transferred into 0.45 μm nylon filter-vials (Thomson SINGLE StEP). 

Monosaccharide concentrations were determined using a Dionex ICS-5000 HPAEC 

system equipped with a pulsed amperometric detector (PAD) using a gold working 

electrode and an Ag/AgCl reference electrode. Monosaccharides were separated using 

the Dionex CarboPac SA10 column set at 45C and 1 mM KOH for isocratic elution, with 

a flow rate of 1.5 mL/min for 14 min and 25 μL injection volume. Sugar calibration 

standards for glucose, xylose, arabinose, galactose, mannose, fructose, sucrose, 

cellobiose, and fucose were run using serial dilution concentration ranges of 20 μg/mL, 

10 μg/mL, 5 μg/mL, 2.5 μg/mL and 1.25 μg/mL. A cellobiose standard was used as an 

indicator of incomplete hydrolysis. Chromeleon™ 7.2 Chromatography Data System 

(CDS) software was used for processing and analysing monosaccharide chromatograms. 
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Finally, the content of each component was estimated as a percentage of cell wall 

biomass dry weight (Mns%) according to: 

𝑀𝑛𝑠% =
𝐶𝑀𝑛𝑠 × 𝑉𝑅

𝑊𝑆
× 100% 

Where: CMns - supernatant concentration (g/L) of the corresponding monosaccharide; 

VR - reaction volume (L); WS - sample weight (g). 

4.3.4. ENZYMATIC CELL WALL HYDROLYSIS 

The cell wall digestibility was determined using previously prepared un-treated 

biomass, followed by HPAEC-PAD analysis for all three treatments for both genotypes. 

Analysis was performed in two technical replicates for each biological replicate (first, 

second and third experiment). An enzyme cocktail consisting of a mixture of Celluclast 

(NS 50013; cellulase) and Novozyme 188 (NS 50010; β-glucosidase) was added to 

approximately 10 mg of cell wall residue (AIR) at a 4:1 ratio. Per sample 997 μL of KOAc 

buffer at 0.025 M (pH=5.6), 2.4 μL of Celluclast, and 0.6 μL of Novozyme 188, with added 

sodium azide at 0.04% (w/v) to inhibit microbial growth was used. Samples were 

incubated for 48 h in a shaking incubator set at 50C and 150 rpm. After incubation, 

samples were diluted by adding 9 mL of deionised water (1:10), centrifuged and the 

supernatant was collected. Immediately before analysis samples were diluted one more 

time by taking 100 μL of 1:10 diluted samples and 900 μL of distilled water, which 

resulted in 1:100 dilution factor. Before analysis, 400 μL of diluted samples was 

transferred into 0.45 μm nylon filter-vials (Thomson, SINGLE StEP) and analysed by 

HPAEC-PAD on an ICS-5000 ion chromatography system. The analysis was performed 

with the Dionex CarboPac SA10 column set at 45C and 1 mM KOH for isocratic elution, 

with a flow rate of 1.5 mL/min for 14 min and 25 μL injection volume. Results were 

analysed based on a prepared standard curve with corresponding monosaccharides. 

From the amount of enzymatically released monosaccharides and the total amount of 

monosaccharides contained within the cell wall, the percentage of enzymatically 

released monosaccharides was calculated. All samples were analysed in duplicates. 
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑇𝑜𝑡𝑎𝑙 𝑀𝑛𝑠 =
𝐸𝑛𝑧. 𝑀𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑀𝑛𝑠
 × 100% 𝑇𝑜𝑡𝑎𝑙 𝑀𝑛𝑠 

Where: Enz. Mns is the amount of enzymatically released monosaccharide from the 

sample; Total Mns is the total amount of monosaccharide in the sample, previously 

determined by total acid hydrolysis of the cell wall (Section 4.2.3).  

4.2.5. DETERMINATION OF CELL WALL HYDROXYCINNAMOYL ESTERS 

The amount of hydroxycinnamic acid (HCA) derivatives p-coumaric acid (p-CA) and 

ferulic acid (FA) in AIR were determined using an alkaline saponification method. The 

analysis was performed in three technical replicates for each biological replicate (first, 

second and third experiment) for all of the treatments (control, WS and MS) for both 

genotypes. Approximately 10 mg of AIR was incubated in 500 μL of degassed 1 M NaOH 

extracting solution for 16 h in a shaking incubator set at 22C and 200 rpm. After 

incubation, 490 μL of 1 M hydrochloric acid was added to achieve a pH in the 3-8 range. 

Samples were then centrifuged, the supernatant was collected, and the pellet was 

washed with 1 mL of deionised water, and both supernatants were combined. HCAs 

were then recovered by reverse phase C18 solid-phase extraction (Sep-Pak C18 Vac RC 

cartridges, 500 mg, 3 cm3, 55-105 μm particle size, Waters Corporation, Milford, 

Massachusetts, USA), and the resulting samples were centrifugally evaporated at 65C. 

Subsequently, samples were reconstituted in 70 μL of 70% (v/v) methanol, and 20 μL 

were injected for analysis on an RP-HPLC-DAD system (Waters Corp.). For analysis, a 

radial compression column was used (8.0×100 mm Nova-Pak C18 Radial-Pak Cartridge, 

4 μm particle size, Waters Corp.), equipped with 100% methanol and 5% (v/v) acetic 

acid as eluents. Samples were run at 15% isocratic methanol gradient for 15 min, at a 

flow rate of 2 mL/min. Chromatograms were monitored using a diode array detector 

(Waters 996 PAD, Waters Corp.) collecting UV/visible spectra at 240 nm – 400 nm and 

linked to Empower Pro software (Waters Corp.). Amounts of p-CA and FA in samples 

were analysed based on a standard curve prepared with a concentration gradient of the 
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corresponding HCA. Results are expressed as a percentage of cell wall biomass dry 

weight. 

4.2.6. STATISTICAL ANALYSIS 

Values in this chapter are expressed as the mean ± SD. All analyses were performed 

using SPSS software (version 24). Statistical differences were determined from ANOVA 

tests at the 5% level (P ≤ 0.05) of significance, for all parameters evaluated. Where 

ANOVA indicated a significant difference, pair-wise comparison of means by Tukey's 

HSD (honestly significant difference) test was carried out at the 5% (P ≤ 0.05) of 

significance.  
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4.3. RESULTS 

Results presented in this chapter are based on material collected after three 

greenhouse stress experiments (Table 4.1). Each experiment represents a biological 

replicate of a particular treatment. Repeatability of phenotypic traits in each 

experiment indicates that changes and differences between treatments are stable 

across experiments performed, thus cell wall composition analysis should also be 

constant.  

Table 4.1. Summary of all analysis performed in this chapter. 

 Indicates that analysis was done on a particular experiment. 

 #1 #2 #3 

%ABSL    

Monosaccharide analysis    

Saccharification    

Cell wall-bound hydroxycinnamic acids    

 

4.3.1. LIGNIN CONTENT 

Results obtained with phloroglucinol lignin showed changes in staining intensity, 

indicating differences in lignin content between treatments (see Chapter 3, Figure 3.14). 

Thus, a more detailed examination of lignin content using the acetyl bromide method 

was undertaken. The study confirmed histochemical analysis as the lignin content was 

significantly higher (P ≤ 0.05) in WS and MS treated plants in both genotypes compared 

with control plants. For Bd21, WS and MS resulted in a 7.5% and 7.8% higher lignin 

content, respectively, compared with control plants, and in ABR6 WS plants showed an 

increase of 6.18% and MS 8.04% in lignin content compared with control plants (Figure 

4.1). 
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Figure 4.1. Acetyl bromide soluble lignin content. 

Comparison of lignin content between treatments (control, WS, MS) for both Bd21 and ABR6 

genotypes. Error bars represent standard deviation (SD±) of the mean (n=3). For statistical 

significance the ANOVA test (P ≤ 0.05) was performed, and if the test ahowed a significant 

difference, a post-hoc Tukey’s test (P ≤ 0.05) was also performed. * Statistically significant 

difference from control; * Statistically significant difference between WS and MS. 

4.3.2. CELL WALL MONOSACCHARIDE CONTENT 

Cell wall monosaccharide content was characterised for all three treatments (control, 

WS, and MS) for both genotypes through complete cell wall hydrolysis followed by 

HPAEC-PAD. Arabinose, galactose, glucose, mannose and xylose were identified and 

quantified (Table 4.2). The analysis revealed that significant differences (P ≤ 0.05) 

between treatments in the content of major cell wall monosaccharides occurred in both 

genotypes. Arabinose content after MS treatment was significantly lower in both 

genotypes, moreover, in Bd21, a significant difference between WS and MS was also 

observed. MS treated plants also showed lower galactose content in both genotypes, 

WS plants of ABR6 were not affected, while in Bd21 galactose content was significantly 

higher than control. Both stress treatments resulted in an increased glucose content for 

ABR6, while in Bd21, a significant increase occurred only after MS treatment. There was 

no statistically significant difference between treatments in xylose content in Bd21, 

whereas MS plants of ABR6 had less xylose compared with control and WS treatment. 

An increase of mannose content was observed in WS treatment in both genotypes, and 

the same effect was observed after MS treatment but only for ABR6 (Table 4.2).
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Table 4.2. Comparison of total monosaccharide content of the cell wall. 

Values are expressed as a percentage of cell wall material dry weight (% CWM) for three treatments (control, WS and MS) for each genotype and are presented 

as the mean (n=3) with standard deviation (SD±). For statistical significance the ANOVA test (P ≤ 0.05) was performed, and if the test showed a significant 

difference, a post-hoc Tukey’s test (P ≤ 0.05) was also performed. * Statistically significant difference from control; * Significantly significant difference 

between WS and MS. 

 

Genotype Treatment Arabinose Galactose Glucose Xylose Mannose 

Bd21 

Control 3.03 ± 0.1 0.63 ± 0.03 36.99 ± 0.87 22.98 ± 0.48 0.57 ± 0.04 

WS 2.99 ± 0.12* 0.72 ± 0.06** 37.20 ± 0.86* 22.42 ± 0.53 0.64 ± 0.04* 

MS 2.54 ± 0.14** 0.50 ± 0.05** 41.23 ± 1.87** 21.94 ± 1.14 0.60 ± 0.04 

ABR6 

Control 2.59 ± 0.09 0.55 ± 0.03 40.48 ± 0.4 21.46 ± 0.36 0.45 ± 0.02 

WS 2.47 ± 0.13 0.52 ± 0.04* 42.97 ± 1.07* 21.28 ± 0.74* 0.58 ± 0.06* 

MS 2.33 ± 0.11* 0.45 ± 0.03** 42.81 ± 0.68* 19.74 ± 0.32** 0.61 ± 0.03* 
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4.3.3. ENZYMATIC CELL WALL HYDROLYSIS 

Enzymatic saccharification of two Brachypodium genotypes for three treatments 

(control, WS, and MS) was assessed by extraction with enzymatic cocktail treatment 

followed by HPAEC-PAD. The analysis revealed that only three major cell wall 

monosaccharides (glucose, arabinose and xylose) could be detected at substantial 

amounts after enzymatic hydrolysis of the cell wall. A significant (P ≤ 0.05) decrease in 

arabinose and glucose release was observed after both stress treatments for the two 

genotypes. Arabinose release for Bd21 control was 17.28 ± 0.18, while values for WS 

and MS were noticeably lower: 14.58 ± 0.53 and 15.71 ± 0.64, respectively (Table 4.3). 

Similar results were obtained for ABR6 where control showed the highest level of 

arabinose release (16.04 ± 0.22), while values for WS and MS were lower (14.41 ± 0.81 

and 14.51 ± 0.27, respectively). Glucose release for Bd21 was significantly lower after 

MS treatment (25.81 ± 0.43) and WS treatment (25.87 ± 0.31) when compared with 

control plants (28.13± 0.59). A similar pattern was observed for ABR6 (WS 23.51 ± 0.49, 

MS 23.66 ± 0.8, and control 25.97 ± 0.46). The two genotypes showed an opposite 

response for xylose release: an increase in xylose release was observed for Bd21 plants 

after WS (18.3 ± 0.27) and MS (17.88 ± 0.63) treatment compared with control (15.89 ± 

0.78). While ABR6 plants showed a decrease in xylose release for both stress treatments 

(WS 14.09 ± 0.24), MS 15.35 ± 0.16) compared with control (16.46 ± 0.25) (Table 4.3).   
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Table 4.3. Comparison of sugar release after enzymatic hydrolysis. 

Values are expressed as a percentage of corresponding monosaccharide content for three 

treatments (control, WS and MS) for each genotype and are presented as the mean(n=3) with 

standard deviation (±SD). For statistical significance the ANOVA test (P ≤ 0.05) was performed, 

and if the test showed significance difference post-hoc Tukey’s test (P ≤ 0.05) was also 

performed. * Statistically significant difference from control; * Statistically significant difference 

between WS and MS. 

 

4.3.4. CELL WALL-BOUND HYDROXYCINNAMIC ACIDS  

Characterisation of the cell wall-bound hydroxycinnamic acids ferulic acid (FA) and p-

Coumaric acid (p-CA) was performed after extraction with 1 M KOH. The analysis 

revealed statistically significant (P ≤ 0.05) differences between treatments in Bd21 and 

ABR6 for both FA and p-CA. An increase in p-CA was observed after WS and MS in both 

genotypes. FA content decreased after both stress treatment in ABR6. The same pattern 

was observed after MS in Bd21, while after WS, an increase in FA content was noted 

(Table 4.4). 

 

 

 

 

 

Genotype Treatment Arabinose Glucose Xylose 

Bd21 

Control 17.28 ± 0.18 28.13± 0.59 15.89 ± 0.78 

WS 14.58 ± 0.53* 25.87 ± 0.31* 18.3 ± 0.27* 

MS 15.71 ± 0.64* 25.81 ± 0.43* 17.88 ± 0.63* 

ABR6 

Control 16.04 ± 0.22 25.97 ± 0.46 16.46 ± 0.25 

WS 14.41 ± 0.81* 23.51 ± 0.49* 14.09 ± 0.24** 

MS 14.51 ± 0.27* 23.66 ± 0.8* 15.35 ± 0.16** 
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Table 4.4. Comparison of cell wall-bound hydroxycinnamic acids. 

Values are expressed as a percentage of cell wall material dry weight (% CWM) for three 

treatments (control, WS and MS) for each genotype and are presented as the mean (n=3) with 

standard deviation (±SD). For statistical significance, ANOVA test (P ≤ 0.05) was performed, and 

if the test showed significance difference, post-hoc Tukey’s test (P ≤ 0.05) was also performed.  

* Statistically significant difference from control; * Statistically significant difference between 

WS and MS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genotype Treatment p-Coumaric acid Ferulic acid 

Bd21 

Control 0.336 ± 0.001 0.361 ± 0.002 

WS 0.343 ± 0.001** 0.399 ± 0.004** 

MS 0.364 ± 0.002** 0.321 ± 0.003** 

ABR6 

Control 0.501 ± 0.006 0.547 ± 0.004 

WS 0.58 ± 0.008** 0.541 ± 0.001* 

MS 0.553 ± 0.004** 0.532 ± 0.002** 
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4.4. DISCUSSION 

Cell wall composition and associated changes during plant growth and development  

have been well studied in dicots, in particular, Arabidopsis (Liepman et al., 2010). In 

addition, with the envisaged utilisation of biomass from grasses (e.g. cereals and 

dedicated energy grasses), a lot of knowledge has been gathered about cell wall 

composition in grasses over the last decade (Bhatia et al., 2017). However, knowledge 

about the impact of environmental stresses, and in particular wind or mechanical stress, 

on grasses is very limited. This chapter presents various results of changes in cell wall 

composition of Brachypodium distachyon stems after plants were exposed to wind and 

mechanical stress. In summary, significant stress-induced differences in lignin, 

monosaccharide content, and ferulic acid and p-Coumaric acid content, as well as in 

saccharification, were obtained.  

For quantification of the lignin content, the ABSL method was used. It is a widespread 

and rapid procedure, which allows determining lignin content in small samples (Hatfield 

et al., 1999). The extinction coefficients for lignin at a wavelength of 280nm, which is 

used for the estimation of total lignin content, are very similar for different grass species 

(Chang et al., 2008). It is known that lignin is essential for the structural integrity of cell 

walls (Boerjan et al., 2003). Even though this polymer is much weaker than cellulose, 

lignin provides additional reinforcement resulting in increased tensile strength (Gibson, 

2012; Barros et al., 2015). It has been shown that in Brachypodium distachyon Bd21 

lignin content increases from ~12.8 to 15.8% of the cell wall during the development 

from expanding to mature developmental stages (Rancour et al., 2012). In this study, 

lignin content for both Bd21 and ABR6 was significantly increased after plants were 

exposed to WS or MS with the most substantial effect after MS. There is some evidence 

in the literature that plants respond to wind by changing lignin accumulation; however, 

there is no clear consistency in the direction of the response. Wind stressed common 

bean showed a 25% increase in lignin accumulation compared with non-stressed plants 

(Cipollini, 1997). Moreover, mechanical stress induced an increase in lignin monomer 

(sinapylic, coniferylic and p-coumarylic alcohols) content and the number of lignifying 

vessels in young Bryonia dioica internodes (De Jaegher et al., 1985). It has been 

hypothesised that reduced elongation was related to cell wall rigidification as a result 



CHAPTER 4 

156 
 

of accelerated lignification. Authors also suggested that a comparison is possible 

between accelerated lignification by wind and mechanical stress and induced 

lignification as a mechanism of disease resistance (De Jaegher et al., 1985). The 

thigmomorphogenesis response in Bryonia dioica can be considered as a mechanism of 

resistance in order to withstand further environmental, mechanical perturbation (De 

Jaegher et al., 1985). On the other hand, a reduction in density of lignified cells was 

found in Arabidopsis thaliana plants exposed to wind (Paul-Victor & Rowe, 2011) and 

no differences in lignin was found in the wind stressed Abutilon theophrasti (Henry & 

Thomas, 2002). Even the relationship between lignin content and lodging resistance is 

not clear at all. Some studies showed that lignin accumulation is positively correlated 

with lodging resistance and its higher amounts increase the physical strength of stems 

(Jones et al., 2001; Berry et al., 2003; Peng et al., 2014). On the other hand, some studies 

did not observe a correlation between the amount of lignin and lodging resistance 

(Hondroyianni et al., 2000). There are also suggestions that plants with higher lignin 

concentration were more prone to stem breakage (Li, 1997). The results presented in 

this chapter clearly indicate that lignification plays a role in the response of 

Brachypodium plants to mechanical stimulation.   

The grass cell walls contain two phenolic acids, both being hydroxycinnamates: ferulic 

acid (FA) and p-coumaric acid (p-CA) (Vogel, 2008). Both FA and p-CA content were 

significantly affected by both wind and mechanical stress treatments in both genotypes. 

The content of p-CA increased after WS and MS in both genotypes, while the response 

pattern for FA was not the same for both genotypes. In ABR6, a decrease in FA content 

was observed for both stresses, while for Bd21 WS resulted in an increase and MS in a 

decrease in FA content compared with control treatment. It needs to be emphasised 

that observed differences in the content of hydroxycinnamates are small. However, 

because of the low standard deviation, these small differences in content were 

identified as being significant by statistical tests. In the literature, there is no evidence 

of similar studies conducted. Furthermore, the evidence for the analysis of soluble 

phenolics content after mechanical stimulation, which is not connected with the cell 

wall, has, to my knowledge, only been described in one paper. McArthur et al. noticed 

that total soluble phenolic concentration was 7% higher in Eucalyptus tereticornis 



CHAPTER 4 

157 
 

seedlings exposed to the chronic wind compared with samples from plants from no 

wind treatment (McArthur et al., 2010). They suggested that their results are consistent 

with the concept that soluble phenolics, as antioxidants, increase to minimise oxidative 

pressure that otherwise leads to photo damage and that can occur as a result of a range 

of abiotic factors, potentially including wind (Close & Mcarthur, 2002; McArthur et al., 

2010). Generally, FA and p-CA probably play completely different roles in grass cell 

walls. FA in grasses is mainly by on arabinoxylans attached by an ester linkage to the C5 

carbon of arabinofuranosyl branches on the main xylan backbone. Incorporation of FA 

into the cell wall matrix in most of the grasses is mostly by substitutions upon newly 

synthesised arabinoxylans (Hatfield & Marita, 2010). The dimerisation of such ferulate 

esters provides a pathway for cross-linking polysaccharide chains (Ralph et al., 1994). 

Moreover, FA is also bound to monolignols of the lignin polymer. This results in a highly 

cross-linked matrix involving both carbohydrates and lignin (Grabber et al., 2004; 

Hatfield & Marita, 2010). Therefore, FA is involved in the mechanical properties of cell 

walls, such as giving strength to plants (Hatfield & Marita, 2010). Casler and Jung 

demonstrated that reduced content of FA in cell walls lead to the enhanced digestibility 

of cell wall polysaccharides (Casler & Jung, 1999). Structural analysis of feruloylated and 

lignified grass cell walls revealed that FA might function as nucleation sites for the 

lignification process, also providing an anchor point to perhaps direct lignification into 

specific regions of the cell wall (Ralph et al., 1995; Hatfield et al., 1999; Hatfield & 

Marita, 2010). Though present in substantial amounts, the function of p-CA in grass cell 

walls is less clear, but it has been postulated to be involved in the lignification process 

(Hatfield & Marita, 2010). The results of this study suggest that ferulic and p-CA acids 

may play a role in response to mechanical stimulation in Brachypodium distachyon.  

Neutral sugars in the cell wall of Brachypodium distachyon were characterised by using 

a procedure involving total acid hydrolysis of cell wall samples followed by HPAEC-PAD 

separation and detection. The analysis was performed on stem biomass for three 

treatments (control, WS and MS) for two genotypes Bd21 and ABR6.  The carbohydrates 

in Brachypodium distachyon can be divided into two groups based on abundance: 

major, including arabinose (Ara), xylose (Xyl), glucose (Glc), galactose (Gal); minor, 

including rhamnose (Rha), fucose (Fuc), and mannose (Man) (Rancour et al., 2012). In 
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this study, results for Glu, Xyl, Ara, Gal and Man are presented. Results revealed various 

differences in neutral sugar content between treatments in both genotypes. Glucose 

content was significantly higher after both WS and MS in ABR6 compared with control, 

while in Bd21 a higher glucose content was observed only after MS. Glucose is the most 

abundant cell wall neutral sugar throughout development and the principal component 

of cellulose and the mixed-linkage β-glucan and xyloglucan. No differences in labelling 

pattern with antibodies for MLG and XG and cellulose visualisation with Calcofluor 

White (chapter 3) were found for such components, but immuno-localisation detect 

only the specific epitopes, which do not reflect the total content of glucose. Moreover, 

immuno-localisation was performed only on the second internode of the main stem, 

while composition analysis was based on overall stem material from plants. Xylose 

content in Bd21 was not affected by both stress treatments while MS treated plants of 

ABR6 showed lower xylose content compared with control. Both stresses also affected 

arabinose, resulting in a lower content after MS in both genotypes. The majority of the 

xylose found in walls of grasses derives from arabinoxylan, while a smaller contribution 

arises from xyloglucan. Almost all the arabinose is derived from arabinoxylan, as the 

contribution from pectic arabinan is very small in grasses (Carpita et al., 2001; Gibeaut 

et al., 2005; Christensen et al., 2010). Differences found in the content of these two 

monosaccharides may be at some point connected with differences found in the 

labelling pattern of RG-I related antibodies used in immuno-localisation (see Chapter 3, 

Figure 3.7 and 3.8). Galactose content after stress treatment was significantly affected 

by both stresses. MS treatment led to a lower Gal content compared with control in 

both genotypes, while WS treatment resulted in higher Gal content for Bd21. Gal, in 

grass cell walls, is predominantly derived from galactans, mainly in the form of 

arabinogalactans, which typically occur as side-chains of pectic polysaccharides or as 

part of AGPs (Carpita, 1996). High Gal content in cell walls was observed during early 

stages of plant development (seedlings, embryos) in Brachypodium rather than in later 

developmental stages because of more abundant primary cell walls (Rancour et al., 

2012). Since galactose occur mostly associated with pectins and AGPs, which are less 

abundant in secondary cell walls (Ishii, 1997), low Gal contents in stress treatments may 

be explained by the higher proportion of secondary cell walls after stress exposition. It 
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would be in agreement with higher lignin content in stress-treated plants of both 

genotypes. A difference in content was also observed for the minor neutral sugar 

mannose, resulting in higher mannose content after WS and MS in ABR6 and after WS 

in Bd21. To my knowledge, there is no data available in the literature on the effect of 

mechanical stimulation on cell wall monosaccharide content, making it difficult to relate 

and discuss obtained results with published research. The only analysis of carbohydrate 

composition was done on soluble sugars, which are not related to the cell wall, however 

taking into account lack of composition analysis in response to mechanical stimulation, 

those findings will be discussed. Analysis of the response of seedlings of Eucalyptus tree 

to wind treatment revealed no significant differences in total soluble carbohydrates 

(McArthur et al., 2010) while rubbing of rice (Oryza sativa) stems did not result in 

differences in total soluble sugar content compared with control (Zhao et al., 2018). 

Composition analysis of potential cell wall monosaccharide content alterations after 

mechanical stimulation was not previously studied. Thus, the results presented in this 

chapter are novel and may be a good indicator for further and more detailed 

monosaccharide analyses of the response of grasses to the wind and mechanical stress. 

More recently, grasses have been explored as biomass feedstocks for bioenergy 

production and biorefining into platform chemicals and value-added bio-based 

products. The inherent recalcitrance of lignocellulosic materials to deconstruction is the 

most crucial limitation for the commercial viability and economic feasibility of biomass 

biorefining (Bhatia et al., 2017). Sugar release by enzymatic hydrolysis is one of the most 

commonly used quality measures for grass biomass quality, as a forage and a bioenergy 

feedstock. To our knowledge, this is the first data linking mechanical stimulation to 

differences in saccharification. Enzymatic hydrolysis performed in this study was aimed 

at comparing potential differences in saccharification (i.e. enzymatic sugar release using 

an enzyme cocktail) between stress treatments: WS, MS and control. Indeed, significant 

differences were found, with wind and mechanical stress treatments resulting in lower 

glucose and arabinose release in both genotypes. Moreover, lower xylose release was 

observed after both stresses in ABR6, while in Bd21 release of xylose was higher after 

stresses compared with control treatment. The most likely explanation for lower 

saccharification after the stress treatments is the higher lignin content observed in 
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these plants. Lignin is considered to be a major determinant of cell-wall digestibility due 

to the coating of cell polysaccharides with this complex and insoluble polymer (Marriott 

et al., 2014). It has been reported that lignin content, as well as lignin structure in cell 

walls, can have an impact on saccharification (Chen & Dixon, 2007; Studer et al., 2011; 

Bouvier D’Yvoire et al., 2013; Marriott et al., 2014). There are also reports that 

modifications in cell wall components other than lignin can affect biomass digestibility 

such as alteration of production, deposition, or crystallinity of cellulose, which is hard 

to digest (Harris et al., 2009; Sahoo et al., 2013). Moreover, modification in 

polysaccharide content and composition can have an impact on saccharification by 

changing the extractability and/or architecture of the cell wall (Lee et al., 2009; 

DeMartini et al., 2013; Marriott et al., 2014), but also alteration in linkages between 

lignin and the polysaccharide matrix via ferulic acid esters may have an effect on 

saccharification (Marcia, 2009). To my knowledge, this is the first data linking 

mechanical stimulation to differences in saccharification, which makes this result novel 

in this area of research.  

In conclusion, the results of this chapter provide proof for cell wall compositional 

alterations in Brachypodium stems in response to mechanical stimulation. Cell wall 

composition changes were detected after both wind and mechanical stress treatment 

in both genotypes. All of the examined compositional features were significantly 

affected, resulting in altered monosaccharide, FA and p-CA contents, increased lignin 

content, as well as in lower sugar release. These results indicate that mechanical 

stimulation affects visual, mechanical and anatomical changes, which may partially 

originate from changes in cell wall composition. 
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CHAPTER 5 :      THE MOLECULAR AND METABOLIC RESPONSE OF 
BRACHYPODIUM DISTACHYON STEMS TO WIND 
AND MECHANICAL STRESS 

5.1. INTRODUCTION 

Despite the sessile nature, plants are very sensitive and responsive to mechanical 

stimulation, and even seemingly harmless stimulation can provoke reactions in plants. 

Plants can undergo many changes in terms of their physiology and development to 

adapt to the surrounding environment, which was clearly visible in previous chapters. 

Such changes can be noticed some time after stress exposure, but molecular and 

metabolic changes can occur very quickly after mechanical stimulation. While the 

phenotypical or developmental alterations are broadly studied and very well 

documented, especially in dicots, the molecular mechanisms underlying touch 

perception and mechanotransduction are not well understood (Mauch et al., 1997).  

Touch stimulation can rapidly alter gene expression (Lee et al., 2005). The first described 

touch-induced (TCH) genes in plants were discovered by (Braam & Davis, 1990) in 

Arabidopsis thaliana, which were induced in plants 10 to 30 min following many forms 

of mechanical stimulation such as touch, rain and wind (Braam & Davis, 1990). A 

differential cDNA library screen led to the discovery of four TCH genes. The first of these 

genes, TCH1, encodes a calmodulin (Braam & Davis, 1990; Lee et al., 2005), the next 

two TCH2 and TCH3 encode calmodulin-like proteins CML24 and CML12, respectively 

(Braam & Davis, 1990; McCormack et al., 2005; Sistrunk et al., 2007). The TCH4 gene 

encodes a xyloglucan endotransglucosylase/ hydrolase (XTH), which is involved in cell 

wall modification (Xu et al., 1996; Rose et al., 2002). Moreover, further genome-wide 

identification of touch-regulated Arabidopsis genes was accomplished (Lee et al., 2005). 

Researchers found that touch stimulation increased the expression (at least two-fold 

change) of over 2.5% of genes expressed in Arabidopsis. They discovered that genes 

encoding for Ca2+-binding proteins and cell wall-associated proteins were the most 

highly represented functional classes of the touch-regulated genes. Additionally, they 

identified genes encoding for other putative Ca2+-binding proteins, arabinogalactan 

proteins, pectin esterases, cellulose synthases, expansins but also genes implicated in 
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disease resistance such as peroxidases, kinases, and transcription factors (Lee et al., 

2005). A link between mentioned gene classes and mechanical stimulation has been 

studied in Arabidopsis as well as in other species. For example, genes encoding other 

CaMs and protein kinases in Arabidopsis and in mung bean (Vigna radiate) (Perera & 

Zielinski, 1992; Botella et al., 1996; Mizoguchi et al., 1996), a lipoxygenase in wheat 

(Mauch et al., 1997), ACC synthases and a cytosolic ascorbate peroxidase in tomato 

(Gadea et al., 1999; Tatsuki & Mori, 1999), extensins in tobacco (Hirsinger et al., 1999) 

and xyloglucan endotransglucosylase/ hydrolase in Arabidopsis (Xu et al., 1996; 

Purugganan et al., 1997; Campbell & Braam, 1998). Despite the relatively massive 

transcriptional reprogramming upon mechanical stimulation, a functional role for the 

TCH genes in thigmomorphogenesis has yet to be established (Börnke & Rocksch, 2018).  

Moreover, there is very limited knowledge in terms of the effect of mechanical 

stimulation on metabolites. Most of the metabolite related studies have focussed on 

the analysis of cellular signalling involving mostly hormones such as abscisic acid (ABA), 

auxin (Whitehead, 1963; Chehab et al., 2009), and ethylene (Goeschl et al., 1966; 

Botella et al., 1995; Johnson et al., 1998; Braam, 2005). Unfortunately, their role in 

touch-induced changes mostly remains unclear (Börnke & Rocksch, 2018). There is also 

a hypothesis that the phytohormone jasmonate (JA) might be important for 

thigmomorphogenesis firstly because of the overlap between genes whose expression 

is induced by touch and wound-responsive genes induced by JA (Chehab et al., 2012). 

Secondly, it was reported that jasmonates induce lipoxygenase (LOX) genes and the 

products of these genes are part of a jasmonate-based signal amplification mechanism 

(Bell & Mullet, 1991; Mauch et al., 1997). Nevertheless, knowledge in this area of 

research is still not well established.  

The main objective of this study was to investigate if the expression of TCH and cell wall-

related genes, identified as being regulated by touch in Arabidopsis, is also affected in 

response to wind and mechanical stress in Brachypodium distachyon. The almost 

complete lack of knowledge of the molecular response in grasses to mechanical 

stimulation makes this aim even stronger. The study includes analysis of Brachypodium 

orthologues genes established based on over-expressed TCH and cell-wall related genes 

of Arabidopsis thaliana from (Lee et al., 2005). In addition, using the knowledge 
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acquired in chapter 3 where PME activity was enhanced by mechanical stimulation, it 

was decided to extend the molecular analysis to PME genes. Additionally, Lipoxygenase 

genes were analysed, as it was reported that in wheat, the TaLOX1 gene was highly 

expressed after mechanical stimulation (Mauch et al., 1997). Plants metabolic response 

to various abiotic stresses is intensively studied, while the metabolic response to 

mechanical stimulation remains unknown. In the literature no evidence can be found of 

analysis of pathways involved in response to wind, or other sources of mechanical 

stress, thus in this chapter, the preliminary metabolic response to wind and mechanical 

stress was analysed and presented. 
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5.2.  MATERIALS AND METHODS 

5.2.1.  RNA ISOLATION 

Total RNA was isolated from Brachypodium distachyon stems of two genotypes, Bd21 

and ABR6, for all three treatments (control, WS and MS). For each treatment, stem 

material from three plants from the first greenhouse experiment was collected and 

stored at -80oC until use for RNA isolation.  

For isolation and purification, the combination of Trizol reagent (Invitrogen) and Qiagen 

RNAeasy Plant Mini Kit was used. Stem tissue was homogenised to powder in liquid 

nitrogen with RNase-free mortar and pestle. Around 100 mg of homogenised tissue was 

transferred to 2 mL Eppendorf tubes and immediately 1 mL of pre-warmed Trizol 

Reagent was added, and samples were mixed well by vortexing. This is a very crucial 

step in terms of obtaining pure and high-quality RNA. Addition of Trizol Reagent 

stabilises RNA from lysis and deactivates intracellular RNases released during the 

homogenisation. Samples were then incubated at room temperature for 5 min and 

vortexed frequently. Subsequently, 0.2 mL of chloroform was added, and samples were 

vortexed for 15 s, incubated at room temperature and again vortexed for 15 s. The 

chloroform addition is necessary to ensure the partitioning of RNA into aqueous 

supernatant for isolation and purification. For phase separation, the sample mix was 

centrifuged at 15,000 rpm for 10 min and RNA was then purified using the Qiagen 

RNAeasy Mini Kit. Briefly, 200 μL of colourless aqueous RNA supernatant was 

transferred into a new 2 mL Eppendorf tube, and 700 μL of RNeasy Lysis buffer (RLT) 

containing 7 μL beta-mercaptoethanol (ß-ME) was added. The remaining aqueous RNA 

supernatant (±700 μL) was saved as a backup in case of low yield and stored at -20C. 

Beta-mercaptoethanol (ß-ME) was supplemented to the RLT buffer, as it is a reducing 

disulphide bonds agent that irreversibly denatures and inactivates RNases in 

combination with the guanidinium isothiocyanate (GITC) contained in RLT buffer 

(Qiagen). To the sample mix composed of sample and buffer, 500 μL of 100% ethanol 

was added, and samples were vortexed for 15 s. This ethanol step provides the perfect 

binding conditions for RNA onto the RNeasy silica membrane (Qiagen). Half of the 

sample was then transferred to the RNeasy MiniElute spin column and centrifuged at 
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10,000 rpm for 30 s. The flow-through was discarded, and the procedure was repeated 

with the second half of the sample. An on-column DNase digestion was performed to 

eliminate genomic DNA contamination. Briefly, 350 μL of RW1 buffer was transferred 

to the RNeasy MiniElute spin column, incubated for 1min at room temperature, and 

centrifuged for 30 s at 8,000 rpm. The flow-through was discarded and 80 μL DNase I 

incubation mix composed of 10 μL of DNase I stock solution and 70 μL of RDD buffer 

was pipetted directly onto the RNeasy MiniElute spin column. This step must be 

performed with caution as the digestion may be incomplete if the incubation mix is not 

on the column. The samples were incubated at room temperature for 15 min, and 

subsequently, 350 μL of RW1 buffer was added to the column and samples were 

centrifuged for 30 s at 8,000 rpm. RNeasy MiniElute spin columns were transferred to 

new 2mL Eppendorf tubes and 500 μL of RPE buffer was added to the column. Samples 

were centrifuged for 30 s at 10,000 rpm, and the flow-through was discarded. 

Subsequently, the column was washed twice with 750 μL of 80% ethanol, followed by 

centrifugation at 10,000 rpm for 15 s after each wash to remove traces of salts on the 

column due to buffers used earlier in the protocol. RNeasy MiniElute spin columns were 

again transferred to the new 2 mL Eppendorf tube and spun for 5 min at top speed with 

the cap off to ensure removal of trace amounts of ethanol that may interfere with 

downstream applications. Finally, RNA was eluted and dissolved in 30 μL of RNase free 

water. Following isolation, RNA quality and quantity were assessed using an Epoch 

Microplate Spectrophotometer (BioTEK). The two ratios were used for checking the 

purity of RNA sample: A260/230 and A260/280. The nucleic acid is detected at 260 nm, 

whereas protein, salt and solvents are detected at 230 and 280 nm. Good quality  RNA 

has a value of 1.8 or greater for A260/230 ratio and between 1.8 and 2 for A260/280. 

5.2.2.  ISOPROPANOL PRECIPITATION OF RNA SAMPLES 

For samples with too low RNA yield or purity, isopropanol precipitation was performed. 

The tube containing aqueous RNA supernatant from the protocol for RNA isolation was 

defrosted, and the exact volume was determined. An equal volume of 100% isopropanol 

was added and mixed well by vortexing and incubated at -20C overnight. The samples 
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were then centrifuged for 15 min at 14,000 rpm at 4C and the supernatant was 

removed without disruption of the pellet. The pellet was washed with 1 mL of 75% 

ethanol prepared with RNase free water followed by vigorous vortexing. The samples 

were then centrifuged at max speed for 5 min at 4C and ethanol was removed. The 

pellet was left with caps open at room temperature for 5-10 min to air-dry. Finally, the 

pellet was re-suspended in 200 μL of RNase free water, and the isolation of RNA was 

continued with RNA isolation protocol from the step of addition of RNeasy Lysis buffer 

(RLT). 

5.2.3.  RNA INTEGRITY USING TAE AGAROSE GEL 

The integrity and size distribution of total RNA purified with RNeasy Kits can be checked 

by denaturing agarose gel electrophoresis and GelRed® Nucleic Acid Gel Stain (Biotium). 

Briefly, the electrophoresis tank, tray, comb, and 100 mL flask were rinsed with 100% 

ethanol. The gel was prepared with 100 mL of 1xTAE buffer (98 mL ddH20 + 2 mL 50x 

TAE stock) and 0.8 g of agarose. The agarose solution was boiled in the microwave, 

cooled, and GelRed® Nucleic Acid Gel Stain was added, and the solution poured into the 

tank and solidified. A total of 1.5 μg of RNA was loaded for each sample with 2 μL of 6x 

loading dye and RNase free water to achieve 12 μL total volume. The gel was run for 30 

min at 110 volts. The respective ribosomal RNAs should appear as sharp bands. If the 

ribosomal bands of a specific sample are not sharp but appear as a smear towards 

smaller sized RNAs, it is likely that the sample suffered major degradation either before 

or during RNA purification. 

5.2.4.  FIRST-STRAND CDNA SYNTHESIS 

Synthesis of cDNA was performed with the SuperScript III First-Strand Synthesis 

SuperMix according to the manufacturer’s protocol (Invitrogen). Briefly, obtained RNA 

was converted into the first-strand cDNA using 1 μg total RNA, 1 μL of 50 μM oligo 

(dT)20 primer and annealing buffer and RNAse free water to a total reaction volume of 

8 μL. The reaction was conducted in aseptic conditions in 100 μL PCR tubes on ice. After 
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preparing the mix, samples were incubated in a preheated thermal cycler at 65C for 5 

min to anneal template with oligo (dT)20 primers. The reaction was terminated by 

placing tubes on ice for few minutes immediately after incubation. Subsequently, 10 μL 

of 2X First-Strand Reaction Mix and 2 μL of Superscript III/RNase OUT Enzyme Mix were 

then added to the PCR tube on ice. Samples were mixed by vortexing, and the contents 

of the PCR tube were collected by brief centrifugation and incubated in the thermal 

cycler at 50C for 50 min. The reaction was terminated at 85C for 5 min and stored at 

-20C until use. 

5.2.5.  EXAMINATION OF PCR PRIMERS SPECIFICITY 

PCR examinations were performed to check cDNA integrity and primer specificity. PCR 

reactions consisted of 5 μL of 10x PCR Buffer (Roche), 0.5 μL of 10mM dNTPs, 0.2 μL of 

FastStart Taq DNA Polymerase (Roche), 0.5 μL of each primer (5 μM) (Forward, 

Reverse), 0.5 μL of cDNA template and 20.3 μL DEPC treated water. The following PCR 

thermal cycling conditions were used: 6 min of denaturation at 95C, subsequently 35 

cycles of denaturation (95C, 30 s), annealing (60C, 30 s) and elongation (72C, 1 min), 

followed by one cycle of final extension (72C, 7 min). Non-specific amplification, 

product integrity and specificity, were confirmed by 1% agarose gel with 1x TAE Buffer 

at an electric field set at 100 V. Primer pairs showing the expected results were then 

taken into further Real-Time PCR analysis (Table 5.1) and all primers tested are listed in 

Appendix 5. 

For RT-PCR analysis two reference genes were selected based on constitutive 

expression (Hong et al., 2008; Verelst et al., 2013). S-adenosylmethionine 

decarboxylase gene (SamDC) was ranked as the most stable in plants grown under 

various environmental stresses. Ubiquitin-conjugating enzyme 18 gene (UBC18) was 

validated as a suitable reference gene across all the plant tissues, environmental 

stresses and various growth conditions (Hong et al., 2008). Reference genes are listed 

at the bottom of Table 5.1. 
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Table 5.1. List of primer pairs used for RT-PCR analysis. 

Gene name Gene ID 
Designed 

primer 
The sequence of gene-specific primers 

Amplicon 
size (bp) 

CaM1 Bradi2g21460 

AG01 
AG02 

F:5’-TCAACGAGGTTGACGCTGAT-3’ 
R:5’-TCTGGTCCTTGTCGAAGACAC-3’ 

135 

AG03 
AG04 

F:5’-TTTCTGAACCTGATGGCAAGGA-3’ 
R:5’-CTTCTCCCCGAGGTTGGTCAT-3’ 

144 

CaM5 Bradi1g17237 

AG09 
AG10 

F:5’-TTAAGGAGGCTTTCCGTGTG-3’ 
R:5’-TCACGGATCATCTCATCCAC-3’ 

127 

AG11 
AG12 

F:5’-GGCTGAACTCCGTCATGTCA-3’ 
R:5’-TCTGACCGTCACCATCAACG-3’ 

101 

CaM5 Bradi2g10010 

AG05 
AG06 

F:5’-GGCAACGGCACCATTGATTT-3’ 
R:5’-TCAGCAGCAGAGATGAAGCC-3’ 

137 

AG07 
AG08 

F:5’-AGTTGGGAACTGTCATGCGT-3’ 
R:5’-AAATCAATGGTGCCGTTGCC-3’ 

103 

CML23 Bradi2g51090 
AG19 
AG20 

F:5’-CATCACTTCGCTGAGCCTGA-3’ 
R:5’-CCCGTTGAGATCAAACCTGC-3’ 

100 

GH Bradi1g33810 

AG21 
AG22 

F:5’-TGTCGTTCCCAAAGTCGCAG-3’ 
R:5’-CGTTGAAGTCGCGGAAAGAG-3’ 

135 

AG23 
AG24 

F:5’-CTCAGCGACATGAGCTACCG-3’ 
R:5’-CGTCGGTGCAGTAGTTGTAGA-3’ 

73 

GH Bradi1g33840 
AG27 
AG28 

F:5’-AACCTGGAGGGGAAAGGGAT-3’ 
R:5’-GGTAGGATGCCGAGAAGGG-3’ 

142 

ExpA1 
 

Bradi1g76260 

AG37 
AG38 

F:5’-TGTGGGCAGAGAAGGAAGTG-3’ 
R:5’-GTGTCGCAAGGGAAGCAG-3’ 

109 

AG39 
AG40 

F:5’-CAAGTGGGTGTGGGCAGAGA-3’ 
R:5’-CACCTCCACTCCTGCGTGTC-3’ 

132 

ExpA1 
 

Bradi1g76270 

AG41 
AG42 

F:5’-TAGGGTCGTCGAACTGGAAG-3’ 
R:5’-ACTTCCTTCTCCACCCACAG-3’ 

142 

AG43 
AG44 

F:5’-GGGTGGAGAAGGAAGTGCTG-3’ 
R:5’-GATGTCGGTGATCTGGAGCC-3’ 

77 

ExpA3 Bradi1g28130 
AG45 
AG46 

F:5’-TGGGTGTGGGCTGATAAAG-3’ 
R:5’-GCCACTTTCATTTCCCAGTC-3’ 

137 

CSLD2 Bradi1g50170 
AG53 
AG54 

F:5’-GTATGGCAGCAATGGTGAAG-3’ 
R:5’-TTTCACGGGACACATAGACC-3’ 

89 

b-Glu Bradi3g03520 
AG59 
AG60 

F:5’-AACTACCTCAACGACGGCTG-3’ 
R:5’-TTTCGGAGGGCAGGAAAAGT-3’ 

110 

Pkinase Bradi5g24311 
AG61 
AG62 

F:5’-CGGTGGTTGCAAGACTCACA-3’ 
R:5’-TGGAGCATTCTGGCTCACTC-3’ 

146 

PME Bradi2g11860 
AG115 
AG116 

F:5’-CTTCACCGTGGGATCGTTCA-3’ 
R:5’-TCGCTTGTGACCCTTCAGTC-3’ 

115 

PME Bradi2g56820 

AG71 
AG72 

F:5’-TATGGCGAGTACGACAGTGC-3’ 
R:5’-TGTATGAAGCTAGCGACGCC-3’ 

119 

AG117 
AG118 

F:5’-CGCTAGCTTCATACAGGGGG-3’ 
R:5’-AGTGTTTGCCCAACCTCACA-3’ 

171 

PME Bradi5g17850 

AG75 
AG76 

F:5’-ATGACGGCGTTCTTTGGGAT-3’ 
R:5’-GAGCCAGTGGAATCCGTTGA-3’ 

141 

AG119 F:5’-TCAACGGATTCCACTGGCTC-3’ 106 
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AG120 R:5’-TGCCTGTGCTGTACGAATGA-3’ 

AG121 
AG122 

F:5’-TCATTCGTACAGCACAGGCA-3’ 
R:5’-GTGGAACTTGTGACCACCCT-3’ 

140 

PMEI Bradi5g27675 
AG129 
AG130 

F:5’-CTCTTCAGGAGGAAGCGAGTG-3’ 
R:5’-CTTGAGCAGTCGCCATTAGC-3’ 

143 

LOX Bradi1g11680 

AG63 
AG64 

F:5’-ACAATGATCCCAGCCTCAAG-3’ 
R:5’-TCGGAGGTATTGGGGTAGAG-3’ 

76 

AG65 
AG66 

F:5’-TCGAGCAGTACGTGAACGAG-3’ 
R:5’-TCCTTCCACCATGACTGTAGC-3’ 

91 

LOX1/LOX5 Bradi1g09270 

AG85 
AG86 

F:5’-GCAAAAGCGTTGGAGGCATT-3’ 
R:5’-GTATGGAAACTTGGCTGGGC-3’ 

123 

AG87 
AG88 

F:5’-CTTCGTCATCGCCACAAGCC-3’ 
R:5’-GGTCATCTCGATGATCCCGC-3’ 

142 

LOX1/LOX5 Bradi1g11670 

AG89 
AG90 

F:5’-AATATCGCCCGTCGGAATCA-3’ 
R:5’-CGCTCAGGAAAAAGGGACCA-3’ 

143 

AG91 
AG92 

F:5’-TCAACTTGCCCTTTCCACATG-3’ 
R:5’-GCAAACCGGATTAACTCCTGC-3’ 

100 

LOX2 Bradi3g39980 
AG101 
AG102 

F:5’-GATCCGTTGATCCCGCTAGT-3’ 
R:5’-ACCTCATCTTGTTACCCCTCA-3’ 

148 

LOX3 Bradi1g72690 

AG93 
AG94 

F:5’-ATCTAAGAAGGCGGGGGAGT-3’ 
R:5’-AGATGAGTTTGCAGATAGGCG-3’ 

96 

AG95 
AG96 

F:5’-TGATCTCGGCTAAGAATCTGACT-3’ 
R:5’-ACTCCCCCGCCTTCTTAGAT-3’ 

143 

LOX3 Bradi5g11590 

AG107 
AG108 

F:5’-GTGTTCAAGCTGCTCAAGCC-3’ 
R:5’-TCGCCGTTGATGAGGATCTG-3’ 

80 

AG109 
AG110 

F:5’-GATCCAGGAGAACAGCGAGG-3’ 
R:5’-GGGAACTCCTGAAGACGCTC-3’ 

150 

LOX5 Bradi3g59942 
AG111 
AG112 

F:5’-CGGCTCAATGAAAACGCCAT-3’ 
R:5’-GACACACATGCCGATGATGC-3’ 

81 

LOX5 Bradi3g59710 
AG105 
AG106 

F:5’-AACGACCTGTACAGCAAGCC-3’ 
R:5’-GGAACTTGACGGGGTTCTCC-3’ 

133 

Gene name 
Reference 

genes 
Designed 
primers 

Sequence of gene-specific primers 
Amplicon 
size (bp) 

SamDC Bradi5g14640.1 
LF72 
LF73 

F:5’-ATCCATGTGACCCCTGAGGA-3’ 
R:5’-CCTCTTGACAAGGTCGCCAT-3’ 

87 

UBC18 Bradi4g00660.1 
LF74 
LF76 

F:5’-GGAGGCACCTCAGGTCATTT-3’ 
R:5’-CGAGCTAGACAGCATGGACA-3’ 

157 

 

5.2.6.  REAL-TIME PCR ANALYSIS 

Real-Time PCR was performed on a Light Cycler® 480 Real-Time Instrument (Roche) with 

a fluorescence binding dye SYBR® Green PCR Master Mix (Applied Biosystems). 

SYBR®Green detects specifically the presence of double-stranded DNA (dsDNA) and 

along with gene-specific primers amplifies a target sequence. The amount of PCR 
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product doubles after each cycle and hence, the number of SYBR® green molecules 

incorporated into DNA increases. Therefore, fluorescence intensity increases 

proportional to the amount of PCR product. The fluorescence signal generated by 

SYBR®Green was detected and analysed by a Roche Light Cycler® 480 at 530 nm. The 

Real-Time PCR Instrument monitors the amplification of products in real-time and 

calculates the amplification efficiency of the products to perform quantitative analysis 

of gene expression (Figure 5.1). There are two main types of analysis 

techniques/methods to quantify gene expression by Real-Time PCR: the absolute and 

the relative quantification. 

 

Figure 5.1. SYBR® Green I dye detection chemistries for qPCR. 

In the denaturation and annealing phase, the fluorescence signal of the SYBR® Green I dye is 

absent or very low. Subsequently, during the annealing phase, gene-specific primers hybridize 

to the target creating short regions of dsDNA. In the extension phase, amount of incorporated 

SYBR Green I increases as more dsDNA shapes, and therefore signal can be detected and is at 

its maximum at the end of a PCR cycle (Kim et al., 2013). 

5.2.6.1.  THE ABSOLUTE QUANTIFICATION 

The absolute quantification method was used to evaluate gene-specific primer 

amplification efficiencies and to quantify a target DNA concentration. In this analysis, a 

standard curve was used to determine the concentration of unknown samples. In the 

standard curve, serial dilutions of known concentrations of standard samples are 
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plotted against the absolute crossing point (Cp) value of the samples. The Cp value is 

the cycle number at which the fluorescence of a sample becomes detectable by the 

Roche Light Cycler® 480. Its value depends on the initial DNA concentration in the 

sample; high initial concentration requires fewer amplification cycles to reach the Cp, 

while low initial concentration requires more amplification cycles (Figure 5.2). A perfect 

amplification reaction would produce a standard curve with Efficiency of 2.0 because 

the amount of target DNA doubles with each amplification cycle. Nevertheless, most of 

the reactions do not show exactly an Efficiency of 2.0 due to factors including sample 

preparation, RNA purity and integrity as well as high GC-content. An Error value shows 

the accuracy of the quantification of the results and should not exceed 0.2 (mean 

squared error of the single data point fit the regression line). The Slope of the standard 

curve describes the kinetics of the PCR amplification. It indicates how quickly the 

amount of target DNA can be expected to increase with the amplification cycles, perfect 

value for the Slope, which gives the Efficiency of 2.0 is -3.3 (Figure 5.2A). Moreover, 

Melting Peaks and Amplification Curves generated by the Light Cycler 480® Software 

were checked for PCR product specificity and the absence of primer-dimers (Figure 

5.2B).  

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Example of Real-Time PCR analysis report on gene-specific primer 

amplification efficiency. 

A. A standard curve, B. Melt Curve and Amplification Curve. 

A 

B 
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Real-Time PCR reactions were performed in 96-well plates (Roche) with three technical 

replicates per sample. The reaction mix per sample consisted of 10 μL SYBR Green I 

Master Mix (Applied Biosystems), 1 μL of each primer (Forward, Reverse) at 5 μM 

concentration, 3 μL of water and 5 μL of cDNA template from pooled samples diluted 

to 2 ng/μL, 0.2 ng/μL and 0.02 ng/μL. For each primer set, negative control without 

template was included. The 96-well plate was sealed with an optical adhesive cover and 

centrifuged to position PCR reactions into the bottom of the well. 96-well plates with 

reaction components were assembled on ice until ready to load onto the Light Cycler® 

480. Thermal cycling conditions were composed of an initial denaturation step for 

polymerase activation set at 50C for 2 min and then 95C for 10 min, followed by 45 

PCR cycles consisting of a denaturation step at 95C for 15 s, and annealing at 60C for 

1 min. The next step was a melting peak analysis step (1cycle) set at 95C for 15 s, 60C 

for 1 min and 95C with continuous acquisition mode/monitoring of the fluorescence. 

A primer amplification efficiency of 1.8 to 2.0 (80%-100%) calculated by the Light 

Cycler® 480 software was considered satisfactory (Table 5.2). Real-Time PCR reports are 

presented in Appendix 6. 

Table 5.2. Standard curve information for Real-time PCR. 

Results of absolute quantification for evaluation of gene-specific primer amplification 

efficiencies and other parameters are defining primers (slope, error, specificity). Red coloured 

pairs of primers indicate primers, which matched all criteria, required for being selected for 

further analysis – relative expression levels. * Indicates pair of primers, which matched all 

criteria, but other pairs of primers were selected for further analysis. Specificity - 

indicateswhether the pair of primers have non-specific products and/or primer-dimers; + 

indicates that a pair of primers were specific; - non-specific.  

Family Gene Designed primer Slope 
LC480 PCR 
efficiency 

Error Specificity 

CaM1 Bradi2g21460 
AG01/AG02 
AG03/AG04* 

-3.085 
-3.053 

2.110 
2.126 

0.071 
0.075 

+ 
+ 

CaM5 Bradi2g10010 
AG11/AG12 
AG09/AG10 

-3.249 
-3.038 

2.032 
2.134 

0.06 
0.056 

+ 
- 

CaM5 Bradi1g17237 
AG07/AG08 
AG05/AG06* 

-3.046 
-3.072 

2.130 
2.116 

0.059 
0.055 

+ 
+ 

CML23 Bradi2g51090 AG19/AG20 - - - - 

GH Bradi1g33810 AG23/AG24 -2.030 3.109 0.193 + 
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AG21AG22 -2.006 3.151 0.178 - 

GH Bradi1g33840 AG27/AG28 -2.831 2.256 0.047 - 

ExpA1 Bradi1g76260 
AG37/AG38 
AG39/AG40 

-2.814 
-3.660 

2.267 
1.876 

0.244 
0.096 

- 
- 

ExpA1 Bradi1g76270 
AG43/AG44 
AG41/AG42 

-3.652 
-2.222 

1.879 
2.819 

0.059 
0.422 

+ 
- 

ExpA3 Bradi1g28130 AG45/AG46 -2.621 2.407 0.25 - 

CSLD2 Bradi1g50170 AG53/AG54 -3.137 2.083 0.094 + 

b-Glu Bradi3g03520 AG59/AG60 -3.247 2.032 0.044 + 

WAK Bradi5g24311 AG61/AG62 -3.469 1.942 0.101 + 

PME Bradi2g11860 AG115/AG116 - - - - 

PME Bradi2g56820 
AG71/AG72 
AG117/AG118 

-3.432 
-2.489 

1.956 
2.522 

0.025 
0.172 

+ 
+ 

PME Bradi5g17850 
AG75/AG76 
AG119/AG120 
AG121/AG122 

- 
-2.170 
-3.355 

- 
2.889 
1.986 

- 
0.024 
0.008 

- 
- 
- 

PMEI Bradi5g27675 AG129/AG130 - - - - 

LOX Bradi1g11680 
AG63/AG64 
AG65/AG66* 

-3.378 
-2.717 

1.977 
2.334 

0.024 
0.011 

+ 
+ 

LOX1/L
OX5 

Bradi1g09270 
AG85/AG86 
AG87/AG88* 

-3.375 
-3.249 

1.978 
2.031 

0.015 
0.015 

+ 
+ 

LOX1/L
OX5 

Bradi1g11670 
AG91/AG92 
AG89/AG90 

-3.511 
-3.874 

1.927 
1.812 

0.028 
0.263 

+ 
+ 

LOX2 Bradi3g39980 AG101/AG102 -2.835 2.253 0.232 + 

LOX3 Bradi1g72690 
AG93/AG94 
AG95/AG96 

- 
- 

- 
- 

- 
- 

- 
- 

LOX3 Bradi5g11590 
AG107/AG108 
AG109/AG110* 

-3.252 
-3.075 

2.030 
2.114 

0.082 
0.027 

+ 
+ 

LOX5 Bradi3g59942 AG111/AG112 -3.495 1.932 0.064 + 

LOX5 Bradi3g59710 AG105/AG106 -2.306 2.714 0.015 + 

Family 
Reference 

genes 
Designed primer Slope 

LC480 PCR 
efficiency 

Error Specificity 

SamDC Bradi5g14640 LF72/LF73 -3.051 2.127 0.110 + 

UBC18 Bradi4g00660 LF74/LF76 -3.079 2.113 0.107 + 
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5.2.6.2. THE RELATIVE QUANTIFICATION 

The relative quantification was used to verify expression levels of genes of interest. This 

method compares the Cp value of two different DNA sequences. The first sequence is a 

reference gene, which should demonstrate a constant Cp value across all samples. This 

is a very important factor as it provides a basis for normalisation of sample-to-sample 

differences. The second sequence is a gene of interest. Cp values generated by the Light 

Cycler® 480 software were then used to calculate the relative fold gene expression with 

the use of the delta-delta Cp method described by the formula: 

Fold gene expression = 2−ΔΔCp 

Where: 

∆∆Cp = ∆Cp (experimental sample) – ∆Cp (control sample) 

∆Cp = Cp (gene of interest) – Cp (reference gene) 

Once the amplification efficiencies for target and reference genes were confirmed 

(Absolute quantification), the relative quantification can be conducted. Real-Time PCR 

reactions were performed in the 96-well plates and consisted of 10 μL of SYBR Green I 

Master Mix (Applied Biosystems), 1 μL of each primer (Forward, Reverse) at 5 μM 

concentration, 3 μL of water and 5 μL of cDNA template samples diluted to 2 ng/μL. All 

samples were analysed in three technical replicates (n=3), and the negative control 

without cDNA template was incorporated for each sample. The 96-well plate was sealed 

with an optical adhesive cover and centrifuged to position PCR reactions into the 

bottom of the well. 96-well plates with reaction components were assembled on ice 

until ready to load onto the Light Cycler® 480. Thermal cycling conditions were the same 

as for Absolute quantification. All genes in red in Table 5.2 were analysed for both 

genotypes Bd21 and ABR6, for all three treatments: control, WS and MS. RT-PCR 

experiments were performed twice, as independent experiments, and results were 

tested with the use of the statistical t-student test. 
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5.2.7.  SAMPLE PREPARATION FOR METABOLITE ANALYSIS 

For metabolite extraction, six plants per each treatment (control, WS and MS) of both 

genotypes Bd21 and ABR6 from the second greenhouse experiment were collected. 

From each plant, the main stem was selected for analysis. Briefly, approximately 40 mg 

of main stem material was collected and individually placed in Eppendorf microfuge 

tubes with metal ball bearing before being flash-frozen in liquid nitrogen and stored at 

-80C. Samples were then homogenised to a fine powder in a Retch-mill MM300, mixer 

mill (Retch, Germany) for 2 min. Subsequently, samples were transferred to ice and a 1 

mL aliquot of chloroform: methanol: dH20 (in ratio 1: 2.5: 1) was added to each tube 

and samples were vortexed and placed in a shaker for 15 min set at 4C. Samples were 

again vortexed and subjected to centrifugation for 3 min at 4C. Particulate free 

supernatants were then transferred into a new Eppendorf tube and placed on ice. 

Immediately after this, 80 µL of the extract was transferred into an HPLC vial containing 

a 0.2 mL flat bottom micro insert and sealed for metabolite analysis. All samples were 

run in triplicate with no significant differences in the results obtained. 

5.2.8.  METABOLITE FINGERPRINTING BY FLOW INJECTION ELECTROSPRAY HIGH-

RESOLUTION MASS SPECTROMETRY (FIE-HRMS) 

Flow injection electrospray high-resolution mass spectrometry (FIE-HRMS) was 

performed in the High-Resolution Metabolomics Laboratory (HRML) at Aberystwyth 

University. A Q-Exactive Plus (Thermo-Scientific) mass analyser equipped with an 

UltiMate 3000 UHPLC system (Thermo-Scientific) consisting of a binary pump and an 

auto sampler generated metabolite fingerprints in positive-negative polarity switching 

mode. In the positive ion mode protonated and/or alkali adduct analyte molecules are 

generally observed in the mass spectra, while in the negative ion mode operation peaks 

correspond to deprotonated analyte molecules. Ion intensities were acquired between 

m/z 55 and 1200 in profiling mode at a resolution setting of 280,000 for 3.5 min. An 

auto sampler injected 20 µL extract into a flow of 100 µL*min-1 methanol: water (70:30, 

v/v). Electrospray ionisation (ESI) source parameter settings were according to the 

manufacturer’s recommendations. Mass spectra around the apex of the infusion 
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maximum were combined into a single mean intensity matrix (runs x m/z) for each 

ionisation mode using FIEms-pro in R-studio. 

5.2.8.1.  METABOLOMIC DATA ANALYSIS 

Statistical analyses were performed with the R-based MetaboAnalyst 4.0 platform. Data 

were filtered based on the interquartile range (IQR) to remove variables that were 

unlikely to be used when modelling the data. Principal component analysis (PCA) was 

used to distinguish the difference between treatments and genotypes. Statistical 

differences were estimated from ANOVA tests at the 5% level (P ≤ 0.05) of significance, 

and where a significant difference was indicated, pair-wise comparison of means by 

Tukey's HSD (honestly significant difference) test was carried out at the 5% (P ≤ 0.05) of 

significance. For compound and pathway identification, the mummichog algorithm 

within MetaboAnalyst 4.0 for high-resolution MS peaks was used, without prior peak 

annotation. Compounds were identified based on mass-to-charge (m/z); the p-values 

and t-scores, which were used to interrogate the Kyoto Encyclopedia of Genes and 

Genomes library (KEGG). The targeted metabolites were mapped on to KEGG for 

pathway analysis. Metabolite Set Enrichment Analysis (MSEA) was performed to 

identify biologically meaningful pathways. 
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5.3.  RESULTS 

Results presented in this chapter are based on material collected after various 

greenhouse stress experiments (Table 5.3). Repeatability of phenotypic traits in each 

experiment (Chapter 2) indicates that changes and differences between treatments are 

stable across experiments performed. Thus, further analysis of the gene expression and 

metabolomic level should be constant.  

Table 5.3. Summary of all analysis performed in this chapter. 

 Indicates that analysis was done on a particular experiment. 

 #1 #2 #3 #4 

Gene expression     

Metabolite fingerprinting     

 

5.3.1.  THE REAL-TIME PCR ANALYSIS OF GENE EXPRESSION LEVELS 

Genetic analysis with the use of Real-Time PCR method was performed to compare gene 

expression levels between control plants and stress treated plants (WS and MS). The 

analysis is based on the first greenhouse experiment. The examination includes analysis 

of cell wall-related and touch-regulated genes (TCH); pectin methylesterase/pectin 

methylesterase inhibitor genes and lipoxygenase genes. 

5.3.1.1. RELATIVE EXPRESSION OF CELL WALL-RELATED GENES 

Literature research showed almost no results for the analysis of touch regulated genes 

in the grass family (one touch-related gene was identified, see section 5.3.1.3); 

however, a complete analysis was made by Lee et al. on the model plant Arabidopsis 

thaliana (Lee et al., 2005). After careful analysis of their work, it was decided to select 

cell wall-related genes and touch-regulated genes, which were highly expressed after 

mechanical stimulation in Arabidopsis. The reason for selecting cell wall-related genes 

was based on the fact that changes in cell wall properties induced by mechanical 
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stimulation were central to the PhD project. Based on selected Arabidopsis genes, the 

apparent orthologues genes were identified in Brachypodium distachyon with use of 

Phytozyme v.12.1 and EnsemblPlants database (Table 5.4). Unfortunately, many sets of 

primers were excluded from RT-PCR analysis because of the lack of bands after gel 

electrophoresis or pairs of primers were not efficient enough for relative quantification 

analysis. Hence, relative quantification of gene expression levels was performed only 

on seven genes from the list.  

Table 5.4. List of selected Arabidopsis genes and Brachypodium orthologue genes. 

List of selected cell wall-related genes and touch-related genes in Arabidopsis thaliana with 

higher expression level after mechanical stimulation and their orthologue in Brachypodium 

distachyon with a description. Genes were selected and described based on (Lee et al., 2005), 

supported by information found on the TAIR database. * Indicates information added based on 

TAIR database. Brachypodium gene IDs with a grey background indicates genes that were 

analysed by RT-PCR; the bold font specifies genes for which the relative quantification was 

possible to perform. For the remaining genes in the table, the analysis was not performed due 

to low primer specificity and/or efficiency.  

Arabidopsis 
thaliana gene ID 

Description 
Orthologue gene ID 

– Brachypodium 
distachyon 

Description 

At5g37780 CaM1 (TCH1)* Bradi2g21460 Calmodulin-1-related (CAM1) 

At2g41110 CaM2 (TCH1) Bradi2g10010 Calmodulin-5-related (CAM5) 

At1g66410 CaM4 (TCH1)* Bradi1g17237 Calmodulin-5-related (CAM5) 

At3g45970 
At4g38400 

ExpA1 
ExpA2 

Bradi1g76270 Expansin-like A1-related (ExpA1) 

At5g16910 CSLD2 Bradi1g50170 
Cellulose synthase-like (CSL), 

Subfamily D2 

At5g58090 
Glucan endo 

1,3beta-
glucosidase 6 

Bradi3g03520 
Glycosyl hydrolase (GH), 

Subfamily GH17, Glucan endo-
1,3-beta-D-glucosidase 

At1g79680 WAKL10 Bradi5g24311 
Protein kinase domain (Pkinase), 
Wall-associated receptor kinase 

galacturonan-binding (WAK) 

At3g01830 CML40 Bradi2g51090 
Putative calcium-binding 

Protein, CML23-related (CML23) 

At5g57560 XTH22 (TCH4) 

Bradi1g33810 
Glycosyl hydrolase (GH), 

subfamily GH16 

Bradi1g33840 
Glycosyl hydrolase (GH), 

Subfamily GH16’ Xyloglucan 
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Endotransglucosylase/Hydrolase 
protein 14-related 

At2g41100 CML12 (TCH3) No orthologue found 

At5g37770 CML24 (TCH2) 

Bradi2g02340 
Calcium-dependent protein 

serine/threonine phosphatase 
activity (CDP) 

Bradi2g31900 
Calcium-dependent protein, 
myosin heavy chain binding, 
actin filament binding (CDP) 

At3g61640 AGP Bradi2g45510 
Arabinogalactan peptide 16-

related (AGP) 

At3g45970 
At4g38400 

ExpA1 
ExpA2 

Bradi1g76260 Expansin-like A1-related (ExpA1) 

At3g45970 
At4g38400 

ExpA1 
ExpA2 

Bradi1g28130 Expansin-like A3-related (ExpA3) 

At4g02330 PME Bradi2g11850 Pectin methylesterase (PME) 

At4g02330 PME Bradi2g27930 Pectin methylesterase (PME) 

 

Gene expression levels were calculated for seven genes including three encoding 

calcium-binding proteins: Bradi2g21460, Bradi2g10010, Bradi1g17237; two encoding  

expansin-related proteins: Bradi1g76260, Bradi1g50170; with the remaining two 

encoding a glycosyl hydrolase, Bradi3g03520, and a wall-associated receptor kinase, 

Bradi5g24311. In Bd21, WS and MS treatments resulted in down-regulation of all genes 

compared with control. A statistically significant difference in expression in Bd21 was 

found with Bradi2g21460 and Bradi1g76260 after both stresses; Bradi2g10010, 

Bradi3g03520 and Bradi5g24311 only after WS treatment; Bradi1g50170 only after MS 

treatment (Table 5.5). Similar results were observed with ABR6; most of the genes after 

both stress treatments were down-regulated compared with the control. A statistically 

significant difference after both WS and MS treatment was found for Bradi2g21460, 

only after MS treatment for Bradi1g17237, Bradi1g76260 and Bradi5g24311, only after 

WS treatment for Bradi3g03520 and Bradi3g03520. There was one up-regulated gene 

(Bradi3g03520), although the difference is significant, the fold change increased only by 

0.14 compared with control (Table 5.5).
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Table 5.5. Comparison of relative expression levels of cell wall-related and touch-related genes between treatments. 

RT-PCR analysis to determine the relative expression level of cell wall-related and touch-related genes in three treatments of Brachypodium distachyon stems 

(control, WS, MS) for two genotypes Bd21 and ABR6. RT-PCR analysis was repeated twice independently with three biological replicates for each treatment; 

data are expressed as means with standard error means ±SE. The expression level of genes in control was set to 1. For statistical significance t-test, (P ≤ 0.05) 

was performed. * Statistically significant difference from control. 

 

 

 

 

 

 

 

 

 

Gene Name 
Bd21 ABR6 

Control WS MS Control WS MS 

Bradi2g21460 CaM1 1 ± 0.23 0.51 ± 0.03* 0.62 ± 0.07* 1 ± 0.12 0.75 ± 0.08* 0.63 ± 0.06* 

Bradi1g17237 CaM5 1 ± 0.26 0.62 ± 0.07* 0.79 ± 0.07 1 ± 0.12 1.14 ± 0.14* 0.64 ± 0.05 

Bradi2g10010 CaM5 1 ± 0.28 0.57 ± 0.07 0.78 ± 0.06 1 ± 0.12 0.91 ± 0.05 0.82 ± 0.05* 

Bradi1g76270 ExpA1 1 ± 0.31 0.84 ± 0.11* 0.76 ± 0.11* 1 ± 0.19 0.95 ± 0.12 0.76 ± 0.17* 

Bradi1g50170 ExpA1 1 ± 0.16 0.89 ± 0.14 0.77 ± 0.15* 1 ± 0.15 0.84 ± 0.05 1.18 ± 0.1 

Bradi3g03520 b-Glu 1 ± 0.16 0.59 ± 0.09* 0.67 ± 0.11 1 ± 0.16 0.65 ± 0.07* 0.8 ± 0.08 

Bradi5g24311 WAK 1 ± 0.11 0.55 ± 0.09* 0.85 ± 0.19 1 ± 0.14 0.8 ± 0.04 0.66 ± 0.04* 
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5.3.1.2. RELATIVE EXPRESSION OF PME GENES 

Considering the data presented in Chapter 3 in terms of results obtained with immuno-

localisation of pectin-related antibodies and PME gel diffusion assay, it was decided that 

RT-PCR analysis including pectin methylesterase (PME) and pectin methylesterase 

inhibitor (PMEI) genes should be performed. It may give a deeper insight into the 

relationship between mechanical stimulation and pectins. Recognition of all PME/PMEI 

genes identified in Brachypodium was performed with the use of Phytozyme v.12.1 and 

EnsemblPlants database. The approach for the selection of PME/PMEI genes for RT-PCR 

analysis was to find genes with higher expression, particularly in stem-related plants 

organs, as the main focus of analysis in this research are stems. For the selection of 

candidates’ genes with the higher expression levels in early inflorescence and/or 

emerging inflorescence and/or leaves the EnsemblPlants database and EMBL-EBI 

Expression Atlas was interrogated. List of genes, which show any expression in plant 

parts listed above is presented in Appendix 7. After choosing genes, which show any 

expression in these plant organs, six genes with the highest expression levels were 

selected for further analysis (Table 5.6).  

Table 5.6. List of selected PME/PMEI genes. 

Pectin methylesterase genes and pectin methylesterase inhibitor genes with the highest 

expression levels in early inflorescence and/or emerging inflorescence and/or leaves selected 

for expression analysis. Brachypodium distachyon gene IDs on grey background indicate genes 

that were analysed by RT-PCR; the bold font specifies the PME gene (Bradi2g56820) for which 

the relative quantification was possible to perform. For the remaining genes in the table, further 

analysis was not performed due to low primer specificity and/or efficiency. 

Gene Description 

Bradi2g56820 Pectin methylesterase 

Bradi2g11860 Pectin methylesterase 

Bradi5g17850 Pectin methylesterase 

Bradi5g27675 Pectin methylesterase inhibitor 

Bradi3g30770 Pectin methylesterase inhibitor 

Bradi3g45080 Pectin methylesterase inhibitor 
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Bradi2g56820 showed down-regulation after MS treatment in Bd21, while WS 

treatment had no effect compared with control (Table 5.7). Results for ABR6 were 

opposite, with MS treatment resulting in up-regulation of the gene expression, while 

WS treatment in down-regulation compared with control treatment (Table 5.7).
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Table 5.7. Comparison of the relative expression level of the Bradi2g56820 PME gene between treatments. 

RT-PCR analysis of the relative expression level of PME (Bradi2g56820) in three treatments of Brachypodium distachyon stems (control, WS, MS) for two 

genotypes Bd21 and ABR6. RT-PCR analysis was repeated twice independently with three biological replicates for each treatment; data are expressed as the 

mean with a standard error of the mean ±SE. The expression level of genes in control was set to 1. For statistical significance t-test, (P ≤ 0.05) was performed. 

* Statistically significant difference from control. 

 

Gene Name 
Bd21 ABR6 

Control WS MS Control WS MS 

Bradi2g56820 PME 1 ± 0.14 1.05 ± 0.15* 0.67 ± 0.09** 1 ± 0.35 0.78 ± 0.11** 1.6 ± 0.22** 
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5.3.1.3. LIPOXYGENASE GENES 

To our knowledge, only one touch-related gene, encoding for a lipoxygenase, has been 

identified in the grasses. Researchers found that after mechanical stimulation, a 

lipoxygenase gene in wheat (TaLOX1, GenBank: U32428.1) was highly expressed 

(Mauch et al., 1997). Bradi1g11680 was identified as the orthologue for TaLOX1 in 

Brachypodium distachyon. Real-time PCR analysis showed very high expression levels of 

Bradi1g11680, especially after MS treatment in ABR6. This result prompted us to 

continue the analysis of lipoxygenase genes. Two approaches were undertaken. The 

first approach was to select genes from the pathway that Bradi1g11680 is part of. This 

analysis was made with the use of the PlantCyc Brachypodium distachyon database, and 

it revealed that Bradi1g11680 is a part of the 9-lipoxygenase and 9-hydroperoxide lyase 

pathway (Appendix 8A). The five LOX genes out of the seven genes in that pathway were 

selected for further analysis. Available expression data showed that Bradi1g11680 had 

by far the highest expression levels of these five LOX genes, especially in the 

inflorescence (Appendix 8B). In the second approach, similar to what was previously 

presented (section 5.3.1.2), lipoxygenase genes, not confined to the before-mentioned 

pathway, were selected based on their expression levels (Appendix 9). All selected 

genes from the two approaches are listed in Table 5.8. 
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Table 5.8. List of selected Lipoxygenase genes 

List of selected Brachypodium distachyon lipoxygenase genes. Brachypodium gene IDs on grey 

background indicate genes that were analysed by RT-PCR; the bold font specifies genes for 

which the relative quantification was possible to perform. For the remaining genes listed in the 

table, further analysis was not performed due to low primer specificity and/or efficiency.  

Gene Description 

Bradi1g11680 Iron ion binding, lipoxygenase activity / TaLOX1 (wheat) 

Bradi1g09270 Iron ion binding, lipoxygenase activity (LOX) 

Bradi1g11670 Iron ion binding, lipoxygenase activity (LOX) 

Bradi3g39980 Iron ion binding, lipoxygenase 2-related activity (LOX2) 

Bradi5g11590 Iron ion binding, lipoxygenase 3-related activity (LOX3) 

Bradi3g59942 Iron ion binding, lipoxygenase 5-related activity (LOX5) 

Bradi1g72690 Iron ion binding, lipoxygenase 3-related activity (LOX3) 

Bradi3g59710 Iron ion binding, lipoxygenase 5-related activity (LOX5) 

Bradi3g07000 Iron ion binding, lipoxygenase 2-related activity (LOX2) 

Bradi3g07010 Iron ion binding, lipoxygenase 2-related activity (LOX2) 

Bradi1g09260 Iron ion binding, lipoxygenase activity (LOX) 

 

As already mentioned, expression of Bradi1g11680, the orthologue to wheat TaLOX1, 

showed a significant increase in ABR6; ranging from ῀2.5 fold after WS treatment and 

῀7.5 fold after MS treatment compared with control (Table 5.9). The lipoxygenase 

encoding gene Bradi1g09270 was down-regulated after WS treatment in ABR6, while 

after MS treatment, there was a statistically significant increase in expression by ῀2.5 

fold. Analysis of Bradi1g11670 showed a slight increase of expression after both stresses 

in ABR6; however, these were not significant. Lower expression was observed for 

Bradi3g39980 after WS treatment, while expression was significantly higher (῀1.7 fold) 

in MS treated ABR6 plants compared with control. Increased expression in both stresses 

was also detected for Bradi5g11590, ranging from ῀1.8 fold after MS treatment to ῀1.6 

fold after WS. The expression of Bradi3g59942 was significantly lower after both 

stresses in ABR6 (Table 5.9). 
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Generally, the results for Bd21 were not consistent with those for ABR6 (Table 5.9). 

While Bradi1g11680 was highly expressed in ABR6 after both stresses, expression in 

Bd21 showed a significant down-regulation after both stresses. The same pattern of 

response (lower expression compared with controls) was also observed for 

Bradi1g11670, Bradi5g11590 and Bradi3g59942. Bradi1g09270 was down-regulated 

after WS treatment, while after MS treatment, there was a slight increase in expression 

(῀1.13 fold); however, this was not significant. No differences in expression levels were 

found for Bradi3g39980 (Table 5.9).
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Table 5.9. Comparison of relative expression levels of lipoxygenase genes between treatments. 

RT-PCR analysis to determine the relative expression level of lipoxygenase genes in three treatments of Brachypodium distachyon stems (control, WS, MS) 

for two genotypes Bd21 and ABR6. RT-PCR analysis was repeated twice independently with three biological replicates for each treatment; data are expressed 

as the mean with a standard error of the mean ±SE. The expression level of genes in control was set to 1. For statistical significance t-test, (P ≤ 0.05) was 

performed. * Statistically significant difference from control. 

 

Gene Name 
Bd21 ABR6 

Control WS MS Control WS MS 

Bradi1g11680 LOX 1 ± 0.25 0.57 ± 0.07* 0.64 ± 0.09* 1 ± 0.08 2.42 ± 0.26** 7.51 ± 0.72** 

Bradi1g09270 LOX 1 ± 0.21 0.61 ± 0.09** 1.13 ± 0.31* 1 ± 0.2 0.31 ± 0.04** 2.56 ± 0.4** 

Bradi1g11670 LOX 1 ± 0.21 0.52 ± 0.05* 0.57 ± 0.06* 1 ± 0.24 1.15 ± 0.08 1.36 ± 0.11 

Bradi3g39980 LOX 1 ± 0.05 0.57 ± 0.16 0.69 ± 0.09 1 ± 0.2 0.75 ± 0.06** 1.73 ± 0.34** 

Bradi5g11590 LOX 1 ± 0.17 0.69 ± 0.07** 0.87 ± 0.13** 1 ± 0.3 1.58 ± 0.13* 1.77 ± 0.09* 

Bradi3g59942 LOX 1 ± 0.06 0.82 ± 0.08* 0.9 ± 0.07* 1 ± 0.24 0.6 ± 0.06** 0.44 ± 0.03** 
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5.3.2. METABOLITE FINGERPRINTING ANALYSIS 

Metabolite analysis was performed for all three treatments (control, WS and MS) for 

both genotypes Bd21 and ABR6 with use of metabolite fingerprinting by flow injection 

electrospray high-resolution mass spectrometry (FIE-HRMS). The negative and positive 

ionisation spectra were generated and analysed with principal component analysis 

(PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). PCA analysis belongs to 

a so-called unsupervised technique, and PLS-DA is a supervised technique used for 

metabolite data presentation and analysis. The PCA method focuses on differences 

between samples rather than differences between groups, which means that the 

method does not use class label information. On the other hand, PLS-DA highlights the 

differences between groups (Worley & Powers, 2013). 

PCA analysis for the negative ionisation derived spectra showed the well-defined 

separation of two genotypes (Figure 5.3A). The majority of the variation in Bd21 is 

between WS treated samples with control and MS treated samples (Figure 5.3B). In 

ABR6, the variation between treatments is not significantly different (Figure 5.3C). 

Nevertheless, PLS-DA analysis for metabolites detected in negative ionisation mode 

showed clear variation between genotypes (Figure 5.3D), but also within each genotype 

showing separation between all three treatments in both genotypes (Figure 5.3E, F). 

Spectra derived in positive ionisation mode analysed by PCA indicates that there is a 

clear separation between the two genotypes (Figure 5.4A). Moreover, a significant 

difference was observed in Bd21 clustering between WS with control and MS treatment 

(Figure 5.4B), while in ABR6, no distinctive clustering was observed (Figure 5.4C). PLS-

DA plots similarly as in negative ionisation showed clear distinctive clustering between 

all three treatments, and between genotypes (Figure 5.4D-F). 

The top 20 metabolites showing the biggest differences in concentration between 

treatments for both genotypes and both ionisation modes were identified and are 

presented in Appendix 10. Identification of metabolites was based on KEGG and 

MZedDB databases. 
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Figure 5.3. PCA and PLS-DA analysis of all metabolites detected by mass 
spectrometry in negative ionisation mode in Bd21 and ABR6. 

Derived spectra were analysed by Principal Components Analysis (PCA) and Partial Least Squares 

Discriminant Analysis (PLS-DA). Shaded areas indicate 95% confidence intervals. The explained 

variances for each PC are shown in brackets (C – control; WS – wind stress; MS – mechanical stress). 

PCA plot for all treatment for both genotypes (A), PCA plot for Bd21 (B), PCA plot for ABR6 (C), PLS-

DA plot for all treatments (D), PLS-DA plot for Bd21 (E), PLS-DA plot for ABR6 (F).  
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Figure 5.4. PCA and PLS-DA analysis of all metabolites detected by mass 
spectrometry in positive ionisation mode  in Bd21 and ABR6. 

Derived spectra were analysed by Principal Components Analysis (PCA) and Partial Least Squares 

Discriminant Analysis (PLS-DA). Shaded areas indicate 95% confidence intervals. The explained 

variances for each PC are shown in brackets (C – control; WS – wind stress; MS – mechanical stress). 

PCA plot for all treatment for both genotypes (A), PCA plot for Bd21 (B), PCA plot for ABR6 (C), PLS-

DA plot for all treatments (D), PLS-DA plot for Bd21 (E), PLS-DA plot for ABR6 (F). 
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5.3.2.1. PATHWAY ENRICHMENT  

In an attempt to provide functional information on the responses to mechanical 

stimulation in each genotype, the significant metabolites (P ≤ 0.05) were assessed for 

pathway enrichment for both negative and positive ionisation modes. An overview of 

the top 50 enriched pathways for positive and negative ionisation mode for both 

genotypes can be found in Appendix 11. Although none of the enriched pathways 

exhibited robust statistical validity with satisfactory P value (P ≤ 0.05) and FDR (P ≤ 0.05), 

it was decided to accept pathways with P ≤ 0.1 and flagged it as suggestive and thus to 

present data analysis for these pathways.  

5.3.2.1.1.  Pathway enrichment for Bd21 

In the case of Bd21 for negative ionisation mode, three pathways were accepted as 

enriched: Glycolysis, Pentose Phosphate and Gluconeogenesis, while for positive 

ionisation mode two pathways were enriched: Methylhistidine Metabolism and 

Galactose Metabolism (Table 5.10).  

Table 5.10. Pathway enrichment detected by mass spectrometry in negative and 
positive ionisation mode in Bd21. 

Pathway Hits P value FDR 

Negative ionisation mode 

Glycolysis 12/25 0.0582 1 

Pentose Phosphate Pathway 13/29 0.0856 1 

Gluconeogenesis 15/35 0.0974 1 

Positive ionisation mode 

Methylhistidine Metabolism 4/4 0.018 1 

Galactose Metabolism 19/38 0.0612 1 

All metabolites represented in the PCA and PLS-DA analysis were compared for 

treatment effect by statistical ANOVA test at the 5% level (P ≤ 0.05) of significance. 
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Where ANOVA indicated a significant difference, pair-wise comparison of means by 

Tukey's HSD (honestly significant difference) test was carried out at the 5% level (P ≤ 

0.05) of significance. Metabolites with P value (P ≤ 0.05) and FDR (P ≤ 0.05) were 

considered as significant. Metabolites with the same chemical formula were clustered. 

Box plots with normalised concentrations of most significant metabolites in each 

pathway enriched are presented in Appendix 12A-B.    

METABOLITES DETECTED BY MASS SPECTROMETRY IN NEGATIVE IONISATION MODE 

Glycolysis Pathway 

The metabolites tentatively identified as being involved in the Glycolysis Pathway: D-

Glucose; Pyruvic acid; Phosphoenolpyruvic acid; Beta-D-Glucose; 3-Phosphoglyceric 

acid; D-glyceraldehyde 3-phosphate; Glyceric acid 1,3-biphosphate; 2,3-

Diphosphoglyceric acid, ADP, Dihydroxyacetone phosphate, NADH and Alpha-D-

Glucose were selected for PCA and PLS-DA analysis. Both types of analyses showed a 

distinctive clustering between treatments, especially between control and WS 

treatment, while MS treatment clustered mostly with control (Figure 5.5).  

 

 

 

 

 

 

 

 

 

 

Figure 5.5. PCA and PLS-DA analysis of metabolites linked to the Glycolysis Pathway. 

Derived spectra were analysed by A. Principal Components Analysis (PCA) and B. Partial Least 

Squares Discriminant Analysis (PLS-DA) to assign the profiles to groups based on metabolites 

tentatively linked to the Glycolysis Pathway. Shaded areas indicate 95% confidence intervals. 

A B 
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The explained variances for PC1 and PC2 are shown in brackets (C – control; WS – wind stress; 

MS – mechanical stress). 

NADH and 3-Phosphoglyceric acid showed decreased concentrations after both WS and 

MS treatments, with stronger effect after WS treatment. ADP, C3H7O6P, and 

Phosphoenolpyruvic acid displayed the same pattern; however, the difference was 

found between WS and control as well as MS, with no difference between control and 

MS. An increased concentration of C6H12O6 and Pyruvic acid was detected after WS 

treatment in comparison with control and WS, while for C3H8O10P2, a difference was 

found only between WS and control (Figure 5.6). 
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Compound P value FDR Differences 

NADH 1.37E-09 1.10E-08 C WS** MS** 

3-Phosphoglyceric acid 8.23E-08 2.63E-07 C WS** MS** 

ADP 9.86E-08 2.63E-07 C WS** MS* 

C6H12O6 7.46E-05 0.000149 C WS** MS* 

Pyruvic acid 0.0023646 0.003783 C WS** MS* 

C3H8O10P2 0.0084088 0.011212 C WS* MS 

Phosphoenolpyruvic acid 0.011975 0.013686 C WS* MS 

C3H7O6P 0.013824 0.013824 C WS** MS* 

 

 

Figure 5.6. Average normalised concentrations of most significant metabolites in the Glycolysis Pathway. 

A heat map with an average normalised concentration of metabolites with statistics. ANOVA with a post hoc Tukey test was performed to identify statistical 

differences (P ≤ 0.05); * Significantly different from control; * Significant difference between WS and MS. C3H7O6P includes D-glyceraldehyde  

3-phosphate and Dihydroxyacetone phosphate; C6H12O6 includes D-Glucose, Alfa-D-Glucose and Beta-D-glucose; C3H8O10P2 includes Glyceric acid 1,3-

biphosphate and 2,3-Diphosphoglyceric acid.
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Pentose Phosphate Pathway 

The metabolites tentatively identified as being involved in pentose Phosphate Pathway: 

Adenosine monophosphate; Gluconolactone; NADPH; D-Ribose; D-Ribulose 5-

phosphate; Xylulose 5-phosphate; D-glyceraldehyde 3-phosphate; 6-Phosphogluconic 

acid; ADP; Dihydroxyacetone phosphate; Ribose 1-phosphate; D-Ribose 5-phosphate 

and Carbon dioxide were selected for PCA and PLS-DA analysis. Like previously observed 

for the Glycolysis Pathway, both analyses revealed a distinctive clustering between 

treatments, especially between control and WS treatment, while MS treatment 

clustered mostly with control (Figure 5.7).  

 

 

 

 

 

 

 

Figure 5.7. PCA and PLS-DA analysis of metabolites linked to the Pentose Phosphate 
Pathway. 

Derived spectra were analysed by A. Principal Components Analysis (PCA) and B. Partial Least 

Squares Discriminant Analysis (PLS-DA) to assign the profiles to groups based on metabolites 

tentatively linked to the Pentose Phosphate Pathway. Shaded areas indicate 95% confidence 

intervals. The explained variances for PC1 and PC2 are shown in brackets (C – control; WS – wind 

stress; MS – mechanical stress). 

ADP, NADPH, 6-Phosphogluconic acid and C3H7O6P showed a decreased concentration 

after WS treatment compared with control as well as to MS, while for C5H11O8P, a 

decrease was observed after both stress treatments. An increase in concentration after 

both stress treatments was detected for D-Ribose and Gluconolactone with the 

strongest effect after WS treatment. The concentration of Carbon dioxide was increased 

A B 
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by MS treatment compared with control and MS, while the Adenosine monophosphate 

concentration increased only after WS treatment compared with control and MS (Figure 

5.8). 
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Figure 5.8. Average normalised concentrations of most significant metabolites in the Pentose Phosphate Pathway. 

A heat map with an average normalised concentration of metabolites with statistics. ANOVA with a post hoc Tukey test was performed to identify statistical 

differences (P ≤ 0.05); * Significantly different from control; * Significant difference between WS and MS. C3H7O6P includes D-glyceraldehyde  

3-phosphate and Dihydroxyacetone phosphate; C5H11O8P includes D-Ribulose 5-phosphate, Xylulose 5-phosphate, Ribose 1-phosphate and D-Ribose 5-

phosphate.

Compound P value FDR Differences 

ADP 9.86E-08 8.87E-07 C WS** MS* 

Carbon dioxide 2.25E-06 1.01E-05 C WS* MS** 

C5H11O8P 3.33E-05 9.98E-05 C WS* MS* 

NADPH 0.000234 0.000527 C WS** MS* 

6-Phosphogluconic acid 0.001125 0.002025 C WS** MS* 

D-Ribose 0.005162 0.00754 C WS* MS* 

Gluconolactone 0.005864 0.00754 C WS* MS* 

Adenosine monophosphate 0.008505 0.009569 C WS** MS* 

C3H7O6P 0.013824 0.013824 C WS** MS* 
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Gluconeogenesis Pathway 

The metabolites tentatively identified as being involved in the Gluconeogenesis 

Pathway: D-Glucose, Beta-D-Glucose, Alpha-D-Glucose, D-Glyceraldehyde 3-phosphate, 

Dihydroxyacetone phosphate, Glyceric acid 1,3-biphosphate, 2,3-Diphosphoglyceric 

acid, L-Lactic acid, Pyruvic acid, Phosphoenolpyruvic acid, NADH, Carbon dioxide, 

Hydrogen carbonate, 3-Phosphoglyceric acid and ADP were selected for PCA and PLS-

DA analysis. Again, both analyses showed a similar outcome than seen for the Glycolysis 

Pathway and Pentose Phosphate Pathway analysis with a distinctive clustering between 

treatments, especially between control and WS treatment, while MS treatment 

clustered mostly with control (Figure 5.9).  

 

 

 

 

 

 

 

 

 

Figure 5.9. PCA and PLS-DA analysis of metabolites linked to the Gluconeogenesis 
Pathway. 

Derived spectra were analysed by A. Principal Components Analysis (PCA) and B. Partial Least 

Squares Discriminant Analysis (PLS-DA) to assign the profiles to groups based on metabolites 

tentatively linked to the Gluconeogenesis Pathway. Shaded areas indicate 95% confidence 

intervals. The explained variances for PC1 and PC2 are shown in brackets (C – control; WS – 

wind stress; MS – mechanical stress). 

NADH and 3-Phosphoglyceric acid showed a lower concentration after both stress 

treatments, more pronounced for WS, compared with control while a decreased 

concentration caused by WS treatment was observed for ADP, Phosphoenolpyruvic acid 
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and C3H7O6P. An increased concentration after WS compared with control and MS 

treatment was observed for Hydrogen carbonate, C6H12O6, Pyruvic acid and L-Lactic 

acid. The concentration of C3H8O10P2 was also significantly increased by WS treatment 

compared with control, but additionally, a slightly increasing tendency was observed 

after MS treatment. Only the concentration of Carbon dioxide was increased by MS with 

the concentration for control and WS being at the same level (Figure 5.10). 
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 Figure 5.10. Average normalised concentrations of most significant metabolites in the Gluconeogenesis Pathway. 

A heat map with an average normalised concentration of metabolites with statistics. ANOVA with a post hoc Tukey test was performed to identify statistical 

differences (P ≤ 0.05); * Significantly different from control; * Significant difference between WS and MS. C3H7O6P includes D-Glyceraldehyde 3-phosphate 

and Dihydroxyacetone phosphate; C6H12O6 includes D-Glucose, Beta-D-Glucose, Alpha-D-Glucose; C3H8O10P2 includes Glyceric acid 1,3-biphosphate and 2,3-

Diphosphoglyceric acid.

Compound P value FDR Differences 

NADH 1.37E-09 1.51E-08 C WS** MS** 

3-Phosphoglyceric acid 8.23E-08 3.61E-07 C WS** MS** 

ADP 9.86E-08 3.61E-07 C WS** MS* 

Hydrogen carbonate 4.71E-07 1.30E-06 C WS** MS* 

Carbon dioxide 2.25E-06 4.95E-06 C WS* MS** 

C6H12O6 7.46E-05 0.000137 C WS** MS* 

Pyruvic acid 0.002365 0.003716 C WS** MS* 

C3H8O10P2 0.008409 0.011562 C WS* MS 

Phosphoenolpyruvic acid 0.011975 0.013536 C WS* MS 

L-Lactic acid 0.012306 0.013536 C WS** MS* 

C3H7O6P 0.013824 0.013824 C WS** MS* 
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METABOLITES DETECTED BY MASS SPECTROMETRY IN POSITIVE IONISATION MODE 

Methylhistidine Metabolism 

The metabolites tentatively identified as being involved in Methylhistidine Metabolism: 

L-Histidine, 3-Methylhistidine, S-Adenosylhomocysteine and  

S-Adenosylmethionine were selected for PCA and PLS-DA analysis. PCA analysis with 

metabolites associated with Methylhistidine Metabolism revealed no distinctive 

clustering between treatments (Figure 5.11). PLS-DA analysis could not be performed 

due to the small number of compounds assigned to this pathway.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11. PCA analysis of metabolites linked to methylhistidine metabolism. 

Derived spectra were analysed by Principal Components Analysis (PCA) to assign the profiles to 

groups based on metabolites tentatively linked to the Methylhistidine Metabolism. Shaded 

areas indicate 95% confidence intervals. The explained variances for PC1 and PC2 are shown in 

brackets (C – control; WS – wind stress; MS – mechanical stress). 

3-Methylhistidine showed an increased concentration after WS treatment compared 

with control and MS, while the L-Histidine concentration increased after both stress 

treatments. A decreased concentration was detected after WS for S-

Adenosylhomocysteine and S-Adenosylmethionine compared with control and MS 

(Figure 5.12). 
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 Figure 5.12. Average normalised concentrations of the most significant metabolites linked to methylhistidine metabolism. 

A heat map with an average normalised concentration of metabolites with statistics. ANOVA with a post hoc Tukey test was performed to identify statistical 

differences (P ≤ 0.05); * Significantly different from control; * Significant difference between wind stress (WS) and mechanical stress (MS).

Compound P value FDR Differences 

3-Methylhistidine 3.21E-05 0.000128 C WS** MS* 

L-Histidine 0.00039 0.00078 C WS* MS* 

S-Adenosylhomocysteine 0.007219 0.008587 C WS* MS 

S-Adenosylmethionine 0.008587 0.008587 C WS* MS 
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Galactose Metabolism 

The metabolites tentatively identified as being involved in Galactose metabolism: D-

Glucose, D-Galactose, D-Mannose, Myo-inositol, D-Fructose, Alpha-D-Glucose, Alpha-

Lactose, Sucrose, Sorbitol, Galactitol, Adenosine triphosphate, Glycerol, Uridine 5'-

diphosphate, NAD, Maltotriose, Phosphate, NADH, Raffinose and Stachyose were 

selected for PCA and PLS-DA analysis. Both analyses revealed a distinctive clustering 

between all three treatments (Figure 5.13).  

 

 

 

 

 

 

 

Figure 5.13. PCA and PLS-DA analysis of metabolites linked to galactose metabolism. 

Derived spectra were analysed by A. Principal Components Analysis (PCA) and B. Partial Least 

Squares Discriminant Analysis (PLS-DA) to assign the profiles to groups based on metabolites 

tentatively linked to Galactose Metabolism. Shaded areas indicate 95% confidence intervals. 

The explained variances for PC1 and PC2 are shown in brackets (C – control; WS – wind stress; 

MS – mechanical stress). 

 

The NADH, Raffinose and NAD concentration decreased after both stress treatments 

compared with control, however, WS had the strongest effect, while for Maltotriose 

and Phosphate a similar decrease in concentration was observed after both stresses 

when compared with control. For S-Adenosylhomocysteine, S-Adenosylmethionine and 

Stachyose, the concentration was only significantly lower after WS treatment compared 

with control, and for Stachyose a significant difference between WS and MS was also 
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noted. The concentration of Glycerol decreased by MS only compared with control and 

WS. An increased concentration was detected after WS treatment for Uridine 5’-

diphosphate, 3-Methylhistidine, Adenosine triphosphate and C6H14O6 compared with 

control and WS; moreover, a difference between WS and MS was also detected for 

these metabolites. L-Histidine and C6H12O6 increased in their concentration by both 

stresses, while C12H22O11 only increased by MS compared with control and WS (Figure 

5.14).
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Compound P value FDR Differences 

NADH 1.26E-20 2.01E-19 C WS** MS** 

Raffinose 2.15E-19 1.72E-18 C WS** MS** 

NAD 4.16E-19 2.22E-18 C WS** MS** 

Maltotriose 4.40E-12 1.76E-11 C WS* MS* 

C6H12O6 1.86E-11 5.97E-11 C WS** MS** 

Uridine 5'-diphosphate 3.30E-06 8.80E-06 C WS** MS* 

Glycerol 1.22E-05 2.80E-05 C WS* MS** 

3-Methylhistidine 3.21E-05 6.42E-05 C WS** MS* 

Stachyose 5.52E-05 9.75E-05 C WS** MS* 

Phosphate 6.09E-05 9.75E-05 C WS* MS* 

C12H22O11 0.000165 0.000239 C WS* MS** 

L-Histidine 0.00039 0.00052 C WS* MS* 

C6H14O6 0.000971 0.001195 C WS** MS* 

S-Adenosylhomocysteine 0.007219 0.00825 C WS* MS 

S-Adenosylmethionine 0.008587 0.009159 C WS* MS 

Adenosine triphosphate 0.010087 0.010087 C WS** MS* 

Figure 5.14. Average normalised concentrations of most significant metabolites linked to galactose metabolism. 

A heat map with an average normalised concentration of metabolites with statistics. ANOVA with a post hoc Tukey test was performed to identify statistical 

differences (P ≤ 0.05); * Significantly different from control; * Significant difference between WS and MS. C6H14O6 includes Sorbitol and Galactitol; C6H12O6 

includes D-Glucose, D-Galactose, D-Mannose, myo-Inositol, D-Fructose and Alpha-D-Glucose; C12H22O11 includes Alpha-Lactose and Sucrose.
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5.3.2.1.2. Pathway enrichment of ABR6 

In the case of ABR6 six pathways were accepted as enriched for negative ionisation 

mode: Nucleotide Sugars Metabolism, Galactose Metabolism, Fructose and Mannose 

Degradation, Glycolysis Pathway, Lactose Synthesis, Starch and Sucrose Metabolism 

and Gluconeogenesis, while for positive ionisation mode only Galactose Metabolism 

(Table 5.11). 

Table 5.11. Pathway enrichment detected by mass spectrometry in negative and 
positive ionisations mode in ABR6. 

Pathway Hits P value FDR 

Negative ionisation mode 

Nucleotide Sugars Metabolism 13/20 0.000991 0.0971 

Galactose Metabolism 20/38 0.00204 0.1 

Fructose and Mannose Degradation 16/32 0.0109 0.357 

Glycolysis 12/25 0.0381 0.741 

Starch and Sucrose Metabolism 14/31 0.0454 0.741 

Gluconeogenesis 15/35 0.0624 0.873 

Positive ionisation mode 

Galactose Metabolism 17/38 0.0538 1 

 

All metabolites represented in the PCA and PLS-DA analysis were compared for 

treatment effect by statistical ANOVA test at the 5% level (P ≤ 0.05) of significance. 

Where ANOVA indicated a significant difference, pair-wise comparison of means by 

Tukey’s HSD (honestly significant difference) test was carried out at the 5% level (P ≤ 

0.05) of significance. Metabolites with P value (P ≤ 0.05) and FDR (P ≤ 0.05) were 

considered as significant. Metabolites with the same chemical formula were clustered. 

Box plots with normalised concentrations of most significant metabolites in each 

pathway enriched are presented in Appendix 13A-B. 
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METABOLITES DETECTED BY MASS SPECTROMETRY IN NEGATIVE IONISATION MODE 

Nucleotide Sugars Metabolism 

The metabolites tentatively identified as being involved in the Nucleotide Sugars 

Metabolism: Galactose 1-phosphate, Glucose 6-phosphate, Glucose 1-phosphate, D-

Galactose, Alpha-D-Glucose, Uridine diphosphate glucose, Uridine diphosphate 

galactose, NADH, Pyrophosphate, Uridine triphosphate, Uridine diphosphate glucuronic 

acid. UDP-D-Xylose and Zinc (II) ion were selected for PCA and PLS-DA analysis. No clear 

distinctive clustering between treatments could be observed. Nevertheless, it may be 

suggested that the cluster for WS treatment is at the very edge of the control cluster 

(Figure 5.15).  

 

 

 

 

 

 

Figure 5.15. PCA and PLS-DA analysis of metabolites linked to nucleotide sugar 
metabolism. 

Derived spectra were analysed by A. Principal Components Analysis (PCA) and B. Partial Least 

Squares Discriminant Analysis (PLS-DA) to assign the profiles to groups based on metabolites 

tentatively linked to metabolites forming Nucleotide Sugar Metabolism. Shaded areas indicate 

95% confidence intervals. The explained variances for PC1 and PC2 are shown in brackets (C – 

control; WS – wind stress; MS – mechanical stress). 
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The NADH and UDP-D-Xylose concentration increased by both stress treatments 

compared with control while Pyrophosphate increased only after WS treatment. 

Decreased concentrations were detected for Uridine diphosphate glucuronic acid and 

C15H24N2O17P2 after both stresses, while Zinc II ion and C6H13O9P only decreased after 

WS and C6H12O6 and Uridine triphosphate only after MS (Figure 5.16).
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Compound P value FDR  Differences  

NADH 1.01E-05 7.91E-05 C WS* MS* 

Zinc II ion 1.76E-05 7.91E-05 C WS** MS* 

UDP-D-Xylose 0.000455 0.001366 C WS* MS* 

Pyrophosphate 0.000665 0.001497 C WS** MS* 

C15H24N2O17P2 0.001007 0.001813 C WS* MS* 

Uridine diphosphate 
glucuronic acid 

0.001442 0.002163 C WS* MS* 

Uridine triphosphate 0.001704 0.002191 C WS* MS** 

C6H12O6 0.009471 0.010654 C WS* MS** 

C6H13O9P 0.013223 0.013223 C WS* MS 

 

Figure 5.16. Average normalised concentrations of most significant metabolites in to nucleotide sugar metabolism. 

A heat map with an average normalised concentration of metabolites with statistics. ANOVA with a post hoc Tukey test was performed to identify statistical 

differences (P ≤ 0.05); * Significantly different from control; * Significant difference between WS and MS. C15H24N2O17P2 includes Uridine diphosphate glucose 

and Uridine diphosphate galactose; C6H13O9P incudes Galactose 1-phosphate, Glucose 6-phosphate and Glucose 1-phosphate; C6H12O6 includes D-Galactose 

and Alpha-D-Glucose.
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Galactose Metabolism 

The metabolites tentatively identified as being involved in Galactose Metabolism: 

Galactose 1-phosphate, Glucose 6-phosphate, Glucose 1-phosphate, D-Glucose, D-

Galactose, D-Mannose, myo-Inositol, D-Fructose, Alpha-D-Glucose, Alpha-Lactose, 

Sucrose, Uridine diphosphate glucose, Uridine diphosphate galactose, Maltotriose, 

NADH, Pyrophosphate. Uridine triphosphate, Zinc (II) ion, Raffinose and Stachyose were 

selected for PCA and PLS-DA analysis. PCA analysis revealed no significant difference 

between treatments; however, it can be noted that the WS treatment cluster is much 

denser compared with control. Moreover, PLS-DA analysis showed distinctive clustering 

between control and WS treatment (Figure 5.17).  

 

 

 

 

 

 

Figure 5.17. PCA and PLS-DA analysis of metabolites linked to galactose metabolism. 

Derived spectra were analysed by A. Principal Components Analysis (PCA) and B. Partial Least 

Squares Discriminant Analysis (PLS-DA) to assign the profiles to groups based on metabolites 

tentatively linked to metabolites forming Galactose Metabolism. Shaded areas indicate 95% 

confidence intervals. The explained variances for PC1 and PC2 are shown in brackets (C – 

control; WS – wind stress; MS – mechanical stress). 

The NADH, C12H22O11 and Maltotriose concentration was increased by both stress 

treatments compared with control, while the Pyrophosphate (concentration was 

increased only by WS. A decreased concentration was detected after both stress 
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treatments for C15H24N2O17P, while WS treatment resulted in lower Zinc II ion and 

C6H13O9P concentrations. MS treatment caused a decrease in Uridine triphosphate and 

C6H12O6 concentration. WS treatment showed a lower concentration of Raffinose, while 

MS resulted in a higher concentration of this metabolite. A similar situation was 

observed for Stachyose; however, this difference was not significant, though the 

difference between WS and MS were significant (Figure 5.18). 
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Compound P value FDR  Differences  

NADH 1.01E-05 9.67E-05 C WS* MS* 

Zinc II ion 1.76E-05 9.67E-05 C WS** MS* 

Raffinose 0.000248 0.000711 C WS** MS** 

C12H22O11 0.000258 0.000711 C WS* MS* 

Pyrophosphate 0.000665 0.001464 C WS** MS* 

Maltotriose 0.000961 0.001583 C WS* MS* 

C15H24N2O17P2 0.001007 0.001583 C WS* MS* 

Uridine triphosphate 0.001704 0.002343 C WS* MS** 

Stachyose 0.008162 0.009975 C WS* MS* 

C6H12O6 0.009471 0.010418 C WS* MS** 

C6H13O9P 0.013223 0.013223 C WS* MS 

 

Figure 5.18. Average normalised concentrations of the most significant metabolites in the Galactose Metabolic pathway. 

A heat map with an average normalised concentration of metabolites with statistics. ANOVA with a post hoc Tukey test was performed to identify statistical 

differences (P ≤ 0.05); * Significantly different from control; * Significant difference between WS and MS. C12H22O11 includes Alpha-Lactose and Sucrose; 

C15H24N2O17P2 includes Uridine diphosphate glucose and Uridine diphosphate galactose; C6H13O9P includes Galactose 1-phosphate, Glucose 6-phosphate and 

Glucose 1-phosphate; C6H12O6 includes D-Glucose, D-Galactose, D-Mannose, myo-Inositol, D-Fructose and Alpha-D-Glucose.
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Fructose and Mannose Degradation 

The metabolites tentatively identified as being involved in Fructose and Mannose 

Degradation: Fructose 1-phosphate, Mannose 6-phosphate, D-Mannose 1-phosphate, 

Fructose 6-phosphate, D-Mannose, D-Fructose, Alpha-D-Glucose, D-Fructose 2,6-

bisphosphate, Fructose 1,6-bisphosphate, D-Glyceraldehyde 3-phosphate, 

Dihydroxyacetone phosphate, GDP-L-fucose, Guanosine triphosphate, NADH, 

Pyrophosphate and Zinc (II) ion were selected for further PCA and PLS-DA analysis. Both 

analyses revealed a significant difference between control and WS clustering, while 

control and MS clustered comparably (Figure 5.19).  

 

 

 

 

 

 

Figure 5.19. PCA and PLS-DA analysis of metabolites linked to fructose and mannose 
degradation. 

Derived spectra were analysed by A. Principal Components Analysis (PCA) and B. Partial Least 

Squares Discriminant Analysis (PLS-DA) to assign the profiles to groups based on metabolites 

tentatively linked to metabolites forming Fructose and Mannose Degradation. Shaded areas 

indicate 95% confidence intervals. The explained variances for PC1 and PC2 are shown in 

brackets (C – control; WS – wind stress; MS – mechanical stress). 

As seen before, the NADH concentration increased by both stress treatments compared 

with control, while the Guanosine triphosphate and Pyrophosphate concentrations 

were higher only after WS treatment and GDP-L-Fucose only after MS treatment. 

Decreased concentrations of C3H7O6P and C6H14O12P2 were caused by both stresses 

compared with control. A lower concentration after WS treatment was observed for 
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C6H13O9P and Zinc II ion and after MS treatment for C6H12O6 compared with control 

(Figure 5.20).
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Figure 5.20. Average normalised concentrations of most significant metabolites linked to fructose and mannose degradation. 

A heat map with an average normalised concentration of metabolites with statistics. ANOVA with a post hoc Tukey test was performed to identify statistical 

differences (P ≤ 0.05); * Significantly different from control; * Significant difference between WS and MS. C3H7O6P includes D-Glyceraldehyde 3-phosphate 

and Dihydroxyacetone phosphate; C6H14O12P2 includes D-Fructose 2,6-bisphosphate and Fructose 1,6-bisphosphate; C6H13O9P includes Fructose 1-phosphate, 

Mannose 6-phosphate, D-Mannose 1-phosphate and Fructose 6-phosphate.

Compound P value FDR Differences 

C3H7O6P 6.71E-12 6.04E-11 C WS** MS** 

NADH 1.01E-05 3.53E-05 C WS* MS* 

Guanosine triphosphate 1.61E-05 3.53E-05 C WS** MS* 

Zinc II ion 1.76E-05 3.53E-05 C WS** MS* 

C6H14O12P2 1.96E-05 3.53E-05 C WS* MS* 

Pyrophosphate 0.000665 0.000998 C WS** MS* 

GDP-L-Fucose 0.001971 0.002534 C WS* MS** 

C6H12O6 0.009471 0.010654 C WS* MS** 

C6H13O9P 0.013223 0.013223 C WS* MS 
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Glycolysis Pathway 

The metabolites tentatively identified as being involved in Glycolysis Pathway: Fructose 

6-phosphate, Glucose 6-phosphate, Glucose 1-phosphate, Beta-D-Glucose 6-

phosphate, D-Glucose, Beta-D-Glucose, Alpha-D-Glucose, D-Glyceraldehyde 3-

phosphate, Dihydroxyacetone phosphate, Fructose 1,6-bisphosphate, NADH and 3-

Phosphoglyceric acid were selected for further PCA and PLS-DA analysis. PCA analysis 

with metabolites associated with Glycolysis Pathway revealed that there is no clear 

distinctive clustering between treatments. Nevertheless, WS treatment is placed at the 

edge of a control cluster (Figure 5.21). PLS-DA analysis could not be performed due to 

a small number of compounds assigned to this pathway.  

 

 

 

 

 

 

Figure 5.21. PCA analysis of metabolites linked to the Glycolysis Pathway. 

Derived spectra were analysed by Principal Components Analysis (PCA) to assign the profiles to 

groups based on metabolites tentatively linked to metabolites forming the Glycolysis pathway. 

Shaded areas indicate 95% confidence intervals. The explained variances for PC1 and PC2 are 

shown in brackets (C – control; WS – wind stress; MS – mechanical stress). 

In this pathway, only NADH concentration was increased by both stress treatments 

compared with control. Decreased concentration after both stresses was observed in 

C3H7O6P and C6H14O12P2 and after WS in C6H13O9P, C6H12O6 and Phosphoglyceric acid 

compared with control (Figure 5.22).
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Figure 5.22. Average normalised concentrations of most significant metabolites in the Glycolysis Pathway. 

A heat map with an average normalised concentration of metabolites with statistics. ANOVA with a post hoc Tukey test was performed to identify statistical 

differences (P ≤ 0.05); * Significantly different from control; * Significant difference between WS and MS. C3H7O6P includes D-Glyceraldehyde 3-phosphate 

and Dihydroxyacetone phosphate; C6H14O12P2 includes Fructose 1,6-bisphosphate; C6H13O9P includes Fructose 6-phosphate, Glucose 6-phosphate, Glucose 1-

phosphate and Beta-D-Glucose 6-phosphate; C6H12O6 includes D-Glucose, Beta-D-Glucose and Alpha-D-Glucose.

Compound P value FDR Differences 

C3H7O6P 6.71E-12 4.03E-11 C WS** MS** 

NADH 1.01E-05 3.02E-05 C WS* MS* 

C6H14O12P2 1.96E-05 3.92E-05 C WS* MS* 

3-Phosphoglyceric acid 0.000445 0.000668 C WS** MS* 

C6H12O6 0.009471 0.011365 C WS** MS* 

C6H13O9P 0.013223 0.013223 C WS* MS 
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Starch and Sucrose Metabolism 

The metabolites tentatively identified as being involved in Starch and Sucrose 

Metabolism: Glucose 6-phosphate, Glucose 1-phosphate, Alpha-D-Glucose, D-Fructose, 

D-Maltose, Sucrose, Uridine diphosphate glucose, Alpha-D-Glucose 1,6-bisphosphate, 

3-Phosphoglyceric acid, Glycogen, NADH, Pyrophosphate, Uridine triphosphate and 

Uridine diphosphate glucuronic acid were therefore selected for further PCA and PLS-

DA analysis. PCA and PLS-DA analysis with metabolites associated with Starch and 

Sucrose Metabolism was performed. PCA analysis revealed no significant difference 

between treatments (Figure5.25A), while PLS-DA analysis showed distinctive clustering 

between control and WS treatment (Figure 5.25B).  

 

 

 

 

 

Figure 5.23. PCA and PLS-DA analysis of metabolites linked to starch and sucrose 
metabolism. 

Derived spectra were analysed by A. Principal Components Analysis (PCA) and B. Partial Least 

Squares Discriminant Analysis (PLS-DA) to assign the profiles to groups based on metabolites 

tentatively linked to metabolites forming Starch and Sucrose Metabolism. Shaded areas 

indicate 95% confidence intervals. The explained variances for PC1 and PC2 are shown in 

brackets (C – control; WS – wind stress; MS – mechanical stress). 

In this pathway, NADH and C12H22O11 concentrations were increased by both stress 

treatments compared with control, while Pyrophosphate only by WS. Lower 

concentration after both stresses was detected in C6H14O12P2, 3-Phosphoglyceric acid, 

C15H24N2O17P2 and Uridine diphosphate glucuronic acid. WS treatment decreased 
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C6H13O9P concentration, and decrease tendency was also observed in Glycogen 

concentration; however, the difference is not significant. Lower concentration after MS 

was detected in Uridine triphosphate and C6H12O6 (Figure 5.26).
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Figure 5.24. Average normalised concentrations of most significant metabolites linked to starch and sucrose metabolism. 

A heat map with an average normalised concentration of metabolites with statistics. ANOVA with a post hoc Tukey test was performed to identify statistical 

differences (P ≤ 0.05); * Significantly different from control; * Significant difference between WS and MS. C12H22O11 includes D-Maltose and Sucrose; C6H14O12P2 

includes Alpha-D-Glucose 1,6-bisphosphate; C15H24N2O17P2 includes Uridine diphosphate glucose; C6H13O9P includes Glucose 6-phosphate and Glucose 1-

phosphate; C6H12O6 includes Alpha-D-Glucose and D-Fructose.

Compound P value FDR Differences 

NADH 1.01E-05 0.000108 C WS* MS* 

C6H14O12P2 1.96E-05 0.000108 C WS* MS* 

C12H22O11 0.000258 0.000948 C WS* MS* 

3-Phosphoglyceric acid 0.000445 0.001225 C WS* MS* 

Pyrophosphate 0.000665 0.001464 C WS** MS* 

C15H24N2O17P2 0.001007 0.001847 C WS* MS* 

Uridine diphosphate 
glucuronic acid 

0.001442 0.002266 C WS* MS* 

Uridine triphosphate 0.001704 0.002343 C WS* MS** 

Glycogen 0.008162 0.009975 C WS* MS* 

C6H12O6 0.009471 0.010418 C WS* MS** 

C6H13O9P 0.013223 0.013223 C WS* MS 
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Gluconeogenesis Pathway 

The metabolites tentatively identified as being involved in Gluconeogenesis Pathway: 

Beta-D-Glucose 6-phosphate, Glucose 1-phosphate, Fructose 6-phosphate, Glucose 6-

phosphate, Alpha-D-Glucose, D-Glucose, Beta-D-Glucose, D-Glyceraldehyde 3-

phosphate, Dihydroxyacetone phosphate, Fructose 1,6-bisphosphate, 3-

Phosphoglyceric acid  Guanosine triphosphate, NADH, Oxoglutaric acid and Oxalacetic 

acid were therefore selected for further PCA and PLS-DA analysis. Both analyses 

revealed a significant difference between control and WS clustering, while control and 

MS clustered comparably (Figure 5.27).  

 

 

 

 

 

Figure 5.25. PCA and PLS-DA analysis of metabolites linked to the Gluconeogenesis 
Pathway. 

Derived spectra were analysed by A. Principal Components Analysis (PCA) and B. Partial Least 

Squares Discriminant Analysis (PLS-DA) to assign the profiles to groups based on metabolites 

tentatively linked to metabolites forming Gluconeogenesis Pathway. Shaded areas indicate 95% 

confidence intervals. The explained variances for PC1 and PC2 are shown in brackets (C – 

control; WS – wind stress; MS – mechanical stress). 

In this pathway, only NADH concentration was increased by both stress treatments 

compared with control. Guanosine triphosphate and Oxalacetic acid concentrations 

were increased by WS treatment, while MS treatment effected in a higher 

concentration of Oxoglutaric acid. Lower concentration after both stresses was 

detected in C3H7O6P and C6H14O12P2 and WS treatment caused a decrease in the 
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concentration of C6H13O9P and 3-Phosphoglyceric acid, while MS treatment caused a 

lower concentration of C6H12O6 (Figure 5.28). 
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Figure 5.26. Average normalised concentrations of most significant metabolites linked to starch and sucrose Metabolism. 

A heat map with an average normalised concentration of metabolites with statistics. ANOVA with a post hoc Tukey test was performed to identify statistical 

differences (P ≤ 0.05); * Significantly different from control; * Significant difference between WS and MS. C3H7O6P includes D-Glyceraldehyde 3-phosphate 

and Dihydroxyacetone phosphate; C6H14O12P2 includes Fructose 1,6-bisphosphate; C6H13O9P includes Beta-D-Glucose 6-phosphate, Glucose 1-phosphate, 

Fructose 6-phosphate and Glucose 6-phosphate; C6H12O6 includes Alpha-D-Glucose, D-Glucose and Beta-D-Glucose.

Compound P value FDR Differences 

C3H7O6P 6.71E-12 6.04E-11 C WS** MS** 

NADH 1.01E-05 4.41E-05 C WS* MS* 

Guanosine triphosphate 1.61E-05 4.41E-05 C WS** MS* 

C6H14O12P2 1.96E-05 4.41E-05 C WS* MS* 

3-Phosphoglyceric acid 0.000445 0.000802 C WS** MS* 

Oxoglutaric acid 0.001416 0.002124 C WS* MS** 

Oxalacetic acid 0.00256 0.003291 C WS** MS* 

C6H12O6 0.009471 0.010654 C WS* MS** 

C6H13O9P 0.013223 0.013223 C WS* MS 
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DETECTION BY MASS SPECTROMETRY IN POSITIVE IONISATION MODE 

Galactose Metabolism 

The metabolites tentatively identified as being involved in Galactose Metabolism: D-

Glucose, D-Fructose, D-Galactose, D-Mannose, Alpha-Lactose, myo-Inositol, Alpha-D-

Glucose, Uridine diphosphate glucose, Uridine diphosphate galactose, Raffinose, 

Maltotriose, Stachyose, Glycerol, Sucrose, NAD, NADH and ADP were therefore selected 

for further PCA and PLS-DA analysis. Both analyses revealed a significant difference in 

WS clustering compared with control and MS, which clustered comparably (Figure 

5.29).  

 

 

 

 

 

 

Figure 5.27. PCA and PLS-DA analysis of metabolites linked to galactose metabolism. 

Derived spectra were analysed by A. Principal Components Analysis (PCA) and B. Partial Least 

Squares Discriminant Analysis (PLS-DA) to assign the profiles to groups based on metabolites 

tentatively linked to metabolites forming Galactose Metabolism. Shaded areas indicate 95% 

confidence intervals. The explained variances for PC1 and PC2 are shown in brackets (C – 

control; WS – wind stress; MS – mechanical stress). 

C15H24N2O17P2 concentration was increased by both stress treatments compared with 

control. WS treatment effected in a higher concentration of NAD, NADH and Stachyose, 

while MS in Sucrose. Decrease in concentration after WS treatment was observed in 

C18H32O16, ADP and Glycerol, while after MS in C6H12O6 (Figure 5.30).
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Figure 5.28. Average normalised concentrations of most significant metabolites linked to starch and sucrose metabolism. 

A heat map with an average normalised concentration of metabolites with statistics. ANOVA with a post hoc Tukey test was performed to identify statistical 

differences (P ≤ 0.05); * Significantly different from control; * Significant difference between WS and MS. C15H24N2O17P2 includes Uridine diphosphate glucose 

and Uridine diphosphate galactose; C18H32O16 includes Raffinose and Maltotriose; C6H12O6 includes D-Glucose, D-Fructose, D-Galactose, D-Mannose, Alpha-

Lactose, myo-Inositol and Alpha-D-Glucose.

Compound P value FDR Differences 

NAD 1.00E-09 9.04E-09 C WS** MS* 

NADH 2.16E-08 9.70E-08 C WS** MS* 

C18H32O16 2.18E-07 6.54E-07 C WS** MS* 

Stachyose 0.000851 0.001673 C WS** MS* 

Sucrose 0.000929 0.001673 C WS* MS** 

Glycerol 0.001172 0.001759 C WS** MS* 

C6H12O6 0.003246 0.004173 C WS* MS** 

ADP 0.006061 0.006337 C WS** MS* 

C15H24N2O17P2 0.006337 0.006337 C WS* MS* 
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5.3.2.2. MANUAL SELECTION OF METABOLITES LINKED TO THE PHENYLPROPANOID 

PATHWAY. 

The Phenylpropanoid Pathway is one of the indispensable pathways to plants because 

of its role in the production of the hydroxycinnamyl alcohols, also known as 

monolignols. Monolignols serve as the building blocks of lignin, which confers structural 

support (Fraser & Chapple, 2011). Experiments performed in this project (Chapter 4) 

revealed that both stress treatments induced changes in the content of cell wall 

hydroxycinnamoyl esters as well as an impressive increase in lignin content. As the 

Phenylpropanoid Pathway was not enriched, it was decided to manually select 

metabolites linked to this pathway and to perform an analysis. This pathway contains 

66 metabolites according to the KEGG database. Table 5.12 lists all the metabolites 

linked to the Phenylpropanoid Pathway found in the samples accompanied by the 

significance of the difference between three treatments (control, WS and MS) (ANOVA, 

P ≤ 0.05). Interestingly all metabolites detected in the samples are located in the first 

part of this pathway, so the table lists the first 23 metabolites of the Phenylpropanoid 

Pathway. 

PCA analysis with selected metabolites for each genotype and ionisation mode was 

performed. PLS-DA analysis was performed only for Bd21 positive ionisation mode, for 

the Bd21 negative and ABR6 positive and negative ionisation mode the number of 

metabolites assigned was too small. PCA analysis for Bd21 negative and positive 

ionisation mode shows no cluster separation (Figure 5.31A-B). However, PLS-DA 

analysis performed on Bd21 positive ionisation mode shows the separation of WS 

treatment from control, while MS treatment clusters in between these two treatments 

(Figure 5.31C). No distinctive clustering between treatments in positive and negative 

ionisation modes was observed in ABR6 (Figure 5.32) 
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Table 5.12. Metabolites associated with the Phenylpropanoid Pathway 

Metabolites associated with Phenylpropanoid Pathway with the statistical significance (ANOVA, 

P ≤ 0.05) for both genotypes and both negative and positive ionisation mode. The listed 

compounds represent the first 23 metabolites of this pathway.  

Metabolite 
Bd21 ABR6 

Negative Positive Negative Positive 

L-Phenylalanine - 4.32E-05 - 6.71E-04 

L-Tyrosine - - - - 

p-Coumaroyl-CoA 2.22E-04 - 3.97E-04 - 

Spermidine - - - 2.92E-04 

Caffeoyl-CoA - - - - 

Feruloyl-CoA - 1.06E-04 - - 

Sinapoyl-CoA - - - - 

trans-Cinnamate - 5.28E-03 - 8.40E-04 

Sinapate - - 7.56E-03 3.44E-03 

Cinnamoyl-CoA - 2.31E-03 - 5.01E-04 

Coniferyl alcohol - 1.10E-03 - 9.42E-03 

Coniferin 1.53E-02 - 4.12E-03 - 

4-Coumarate - 3.71E-04 - - 

Chlorogenate - 1.41E-03 9.75E-04 - 

Cinnamaldehyde - 1.24E-03 - 6.62E-05 

Sinapine - - - - 

1-O-Sinapoyl-beta-D-glucose 1.14E-04 1.91E-04 1.86E-04 - 

Caffeate 5.83E-03 - - - 

Ferulate - - - - 

Scopolin - 1.41E-03 9.75E-04 - 

Syringin 1.71E-03 - 2.67E-03 - 

Scopoletin - - - - 

trans-2-Hydroxycinnamate  3.71E-04 - - 
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Figure 5.29. PCA and PLS-DA analysis of metabolites linked to the Phenylpropanoid 
Pathway in Bd21. 

Derived spectra were analysed by Principal Components Analysis (PCA) of A. negative ionisation 

mode, B. Positive ionisation mode, to assign the profiles to groups based on metabolites 

tentatively linked to the Phenylpropanoid Pathway. C. Partial Least Squares Discriminant 

Analysis (PLS-DA) analysis of Bd21 positive ionisation mode. Shaded areas indicate 95% 

confidence intervals. The explained variances for PC1 and PC2 are shown in brackets (C – 

control; WS – wind stress; MS – mechanical stress). 
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Figure 5.30. PCA analysis of metabolites linked to the Phenylpropanoid Pathway in 
ABR6. 

Derived spectra were analysed by Principal Components Analysis (PCA) of A. negative ionisation 

mode, B. Positive ionisation mode, to assign the profiles to groups based on metabolites 

tentatively linked to the Phenylpropanoid Pathway. Shaded areas indicate 95% confidence 

intervals. The explained variances for PC1 and PC2 are shown in brackets (C – control; WS – 

wind stress; MS – mechanical stress). 
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5.4. DISCUSSION 

The aim of this chapter was to investigate the influence of wind and mechanical stress 

on the expression of previously reported touch-inducible geneses and cell wall-related 

genes. An additional aim was to identify metabolite pathways involved in response to 

mechanical stimulation. 

The response of plants to mechanical stimulation encompasses many phenotypic, 

histological, physiological and compositional changes, as has been described for many 

different species, and was presented in the previous chapters of this thesis. These 

modifications require alterations in gene expression, and indeed, various touch-induced 

genes were previously reported (Lee et al., 2005).  

In the present study, the potential Brachypodium orthologs of the touch-inducible and 

touch responsive cell wall-related genes reported in Arabidopsis (Lee et al., 2005) were 

identified, and the effect of wind and mechanical stress on their gene expression was 

analysed. Unfortunately, only one of the Arabidopsis TCH genes could be analysed, due 

to problems with primer efficiency and specificity. The three candidate Brachypodium 

ortholog genes (Bradi2g21460, Bradi2g10010 and Bradi1g17237) for the Arabidopsis 

TCH1 gene, which encodes a calmodulin, were analysed by Real-Time PCR. Calmodulins 

and calmodulin-like proteins are ubiquitous calcium-dependent activators of various 

enzymes in eukaryotic cells, and their alteration in expression upon mechanical 

stimulation suggests the involvement of Ca2+ in plant mechanosensing (Börnke & 

Rocksch, 2018). The current study does not support previous findings in Arabidopsis as 

results indicate a down-regulation of the expression of the TCH-related genes in both 

Brachypodium genotypes and after both stress treatments (WS and MS), while in 

Arabidopsis TCH1 was highly expressed after mechanical stimulation (Braam & Davis, 

1990; Lee et al., 2005). Nearly half of the 33 XTH (including TCH4) genes were highly 

expressed after mechanical stimulation in Arabidopsis (Lee et al., 2005). The family of 

XTH genes is involved in cell wall modifications through alterations of xyloglucan 

polymers in the plant cell wall, which may affect wall architecture (Campbell & Braam, 

1998; Steele et al., 2001). Furthermore, xyloglucans cross-link the cellulose microfibrils, 

which provides cell wall integrity (Rose et al., 2002). Unfortunately, in this study 
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expression analysis of these important genes was unsuccessful, due to primer efficiency 

issues. One of the most important aspects of gene expression analysis by RT-PCR is 

primer specificity and/or efficiency. Many attempts of changing the RT-PCR parameters 

and concentrations of reaction components were performed but were unfortunately 

unsuccessful in overcoming the before-mentioned issues. The expression analyses of 

other cell wall-related genes in this study could not confirm results from previous 

studies. While the ExpA-related, CSL, WAK and GH genes were all highly expressed upon 

mechanical stimulation in Arabidopsis, their potential orthologs in Brachypodium 

showed down-regulation. These results may suggest that Brachypodium has a different 

molecular thigmomorphogenesis response pathway compared to Arabidopsis. 

However, it is important to note that the experimental setup for the Arabidopsis 

experiment was different than presented in this research. Mechanically treated 

Arabidopsis rosettes were collected after 30min, while Brachypodium stems were 

collected after two weeks of stress treatment. These two weeks of exposure to stress 

may cause at some point plant adaptation to particular environmental conditions, and 

thus, the expression of genes may stabilise and therefore, the overexpression cannot 

be observed.  

Pectin esterases, especially pectin methylesterases (PME), was another group of genes, 

which were found to be highly expressed after mechanical stimulation in Arabidopsis. 

Two pectin methylesterase genes At4g02330 and At1g53840 were over-expressed with 

around ῀7.47- and ῀2.09-fold change, respectively after mechanical stimulation. 

Moreover, two pectin methylesterase inhibitor (PMEI) genes At3g10720 and 

At5g62360, respectively were also upregulated by ῀4.39- and ῀2.04-fold after 

mechanical stimulation (Lee et al., 2005). Taking this into consideration and combined 

with the results presented in Chapter 3 (page 118), which suggested that pectin 

methylesterase activity was enhanced by wind and mechanical stress, it was decided to 

perform a more extensive examination of PME and PMEI genes. Expression analysis of 

the orthologue of Arabidopsis genes in Brachypodium combined with a selection of 

PME/PMEI genes showing the highest expression levels in “early inflorescence and/or 

emerging inflorescence and/or leaves” was performed. However, because of similar 

primer specificity and/or efficiency issues as mentioned before, expression analysis was 
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possible only for one PME gene - Bradi2g56820, which showed a down-regulation after 

MS in Bd21 and after WS in ABR6 and a 1.6-increase in expression was obtained after 

MS in ABR6. The analysis presented in this chapter in terms of expected over-expression 

of PME genes after mechanical stimulation failed to give an explanation for the 

increased PME activity (see Chapter 3) after stress treatments. 

The analysis of LOX genes presented in this chapter revealed an increased expression of 

the Brachypodium orthologue for wheat TaLOX1 (Bradi1g11680), especially after MS in 

ABR6 (῀7.5-fold change) and after WS treatment (῀2.5-fold change). This is in agreement 

with previously reported data in wheat, where researchers found this gene to be highly 

expressed after brushing (Mauch et al., 1997). The closer relation of Brachypodium to 

wheat than to Arabidopsis makes these results even more important, as it suggests that 

the family of monocot grasses may display a different response to mechanical 

stimulation than dicot plants. However, the expression analysis in Bd21 showed down-

regulation of the expression of this gene after WS and a slight increase in expression 

after MS (῀1.7-fold change), which may suggest that even within species responses can 

differ. The analysis of other LOX genes also revealed different responses between 

genotypes. All analysed LOX genes in Bd21 were down-regulated. In ABR6, WS 

treatment caused mostly down-regulation of LOX genes; only two genes out of six 

analysed by Real-Time PCR showed a slightly increased expression (1.15 and 1.58) while 

MS treatment caused mostly a low increase in expression, ranging between ῀1.36-2.56-

fold change. This indicates that WS and MS treatment may affect plants differently on 

the molecular level. Lipoxygenase genes are an integral part of the jasmonic acid 

biosynthetic pathway. Jasmonates are a family of cyclopentanone derivatives 

synthesised from linolenic acid via the octadecanoid pathway. These lipid-derived 

metabolites, which include jasmonic acid (JA), its methyl ester (MeJA), and 12-oxo-

10,15-phytodienoic acid (12-OPDA) (a central intermediate) (Chehab et al., 2009) were 

previously implicated to play a role in plant thigmomorphogenetic responses to 

mechanical stimulations (Stelmach et al., 1998; Ellis et al., 2002; Tretner et al., 2008). 

The metabolic analysis did not reveal enrichment for the JA biosynthesis pathway, 

linolenic acid pathway or octadecanoid pathway. Manual selection of metabolites was 

unsuccessful because only one of the metabolites from such pathways was detected. 
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12-OPDA was detected in negative ionisation mode in Bd21 and displayed a significant 

difference in concentration between treatments (Appendix 10A, page 305). 

Nevertheless, based on the literature, it would be expected that the concentration after 

stresses should be increased, while in this analysis, the 12-OPDA concentration 

decreased after both stress treatments. The Arabidopsis cev1 mutant, with a mutation 

in the cellulose synthase gene CeSA3, produced constitutively high levels of JA and 12-

OPDA and showed a phenotype that resembled those associated with 

thigmomorphogenetic changes (Ellis et al., 2002). Moreover, it was also reported that 

in common bean (Phaseolus vulgaris) application of the 12-OPDA analogue - coronatine, 

a - elicits physiological changes reminiscent of thigmomorphogenesis. Furthermore, the 

levels of cis-OPDA were found to increase several-fold well before the development of 

thigmomorphogenic symptoms (Stelmach et al., 1998). The results obtained for the 

expression analysis of LOX genes in the current study, which showed either a decrease 

or a slight increase of expression for the LOX genes tested after both stresses in Bd21, 

are only partially in agreement with the presented findings in the literature. Although 

the results of the gene expression data in this study do not provide many new insights 

about the molecular response of Brachypodium distachyon to WS and MS, it should be 

stressed that this is a novel research area with little to no data on the molecular 

mechanisms involved in wind and mechanical stress in grasses. As such, albeit limited, 

this analysis gives some insight into the complexity of the response to mechanical 

stimulation in grasses and provides a platform for future more detailed analyses.  

Plants have developed biochemical, physiological, but also metabolic strategies in order 

to fight abiotic stresses. Thus, metabolomics plays an important role to gather 

information about stress-induced changes in plant development (Gupta, 2014). In this 

study, metabolites were extracted from stem tissue of Brachypodium distachyon after 

exposure to wind and mechanical stress. These were analysed by flow injection 

electrospray high-resolution mass spectrometry and and  metabolite profiles showing a 

high degree of variation were identified. The metabolites that showed significant 

changes in response to the treatments were further assessed for pathway enrichment, 

and pathways involved in response to mechanical stimulation were identified. Although 

the identified pathways did not exhibit robust statistical validity with satisfactory P 
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value (P ≤ 0.05) and FDR (P ≤ 0.05), and therefore cannot be marked as enriched, it was 

decided to accept pathways with P ≤ 0.1 and flagged these as suggestive. The reason 

for that is the novelty of results in this area of research and, to my knowledge, this 

represents the first data linking mechanical stimulation to metabolite profiling. 

The pathways showing  tentative enrichment for Bd21 were Glycolysis, Pentose 

Phosphate and Gluconeogenesis in negative ionisation mode and Methylhistidine 

Metabolism and Galactose metabolism in positive ionisation mode. There were seven 

enriched pathways identified in  ABR6 in negative ionisation mode, including Nucleotide 

Sugars Metabolism, Galactose Metabolism, Fructose and Mannose Degradation, 

Glycolysis, Starch and Sucrose Pathway and Gluconeogenesis, while for positive 

ionisation mode, only Galactose Metabolism showed enrichment. All the identified 

enriched (P ≤ 0.1) pathways in both genotypes belong to the parenting pathway of 

Carbohydrate Metabolism. The main pathways from Carbohydrate Metabolism are 

Glycolysis, Gluconeogenesis and Pentose Phosphate pathways. Glycolysis is the process 

of converting glucose into pyruvate and generating small amounts of ATP (energy) and 

NADH (reducing power). Moreover, it is a central pathway that produces important 

precursor metabolites. Glycolysis is thus of crucial importance in plants because it is the 

predominant pathway that “fuels” plant respiration (Plaxton, 1996). Gluconeogenesis is 

a synthesis pathway of glucose from noncarbohydrate precursors. It is essentially a 

reversal of glycolysis with minor variations of alternative paths. The pentose phosphate 

pathway is a process of glucose turnover that produces NADPH as reducing equivalents 

and pentoses as essential parts of nucleotides. Indirectly, the sugars play an important 

role during plant growth and development under abiotic stresses by regulating 

carbohydrate metabolism (Gupta & Kaur, 2005). Soluble carbohydrates and starch, 

which accumulates under normal conditions before the stress, constitute the main 

resources for plants to supply energy during stress condition, as well as during recovery 

(Khelil et al., 2007). Indeed, many environmental stresses like drought (Pelleschi et al., 

1997; Xue et al., 2008), cold (Morsy et al., 2007), salinity (Khodary, 2004; Morsy et al., 

2007; Zhang et al., 2012), pollutants like cadmium (Devi et al., 2007) lead to major 

alterations in Carbohydrate Metabolism. 
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Metabolic adjustments in response to unfavourable conditions are dynamic and 

multifaceted and not only depend on the type and strength of the stress, but also on 

the cultivar and the plant species. Plants respond to stress by a progressive adjustment 

of their metabolism with sustained, transient, early- and late-responsive metabolic 

alterations. For example, raffinose and proline accumulate to high levels over the 

course of several days of salt exposure, drought, or cold, whereas carbohydrate 

metabolism changes rapidly in a complex, time-dependent manner (Krasensky & Jonak, 

2012). Moreover, different species may accumulate different metabolites in response 

to stress, and sometimes there is no obligation for the accumulation of particular 

metabolite for adaptation to particular stress environment. In some cases, the flux 

through a metabolic pathway, rather than the accumulation of a specific metabolite per 

se, might contribute to stress tolerance (Krasensky & Jonak, 2012). 

Nevertheless, in response to various abiotic stresses such as drought, salt and many 

others, plants alter the accumulation of few classes of metabolites. Many of them 

belong to Carbohydrate Metabolism, namely: fructans, starch, mono- and 

disaccharides, trehalose and raffinose family oligosaccharides such as raffinose and 

stachyose (Krasensky & Jonak, 2012). In this research, Brachypodium distachyon 

responded by enrichment of many pathways involved in carbohydrate metabolism. 

Generally speaking, accumulation of sugars in response to various abiotic stresses can 

function as osmolytes to maintain cell turgor and have the ability to protect membranes 

and proteins from stress damage (Madden et al., 1985; Kaplan & Guy, 2004). Moreover, 

carbohydrate accumulation may function as storage substances, which can be 

mobilised in response to abiotic stresses, when limited energy supply is provided, or in 

the situation of enhanced demands (Hendry, 1993). Carbohydrate storage can be 

quickly metabolised to provide soluble sugars. Carbohydrate Metabolism is very 

sensitive to changes in the environment (Kaplan & Guy, 2004; Kempa et al., 2008; 

Todaka et al., 2017). 

Moreover, proline metabolism has been noted to be involved in response to various 

abiotic stresses. Proline and arginine metabolism is the central pathway for biosynthesis 

of the amino acids proline and arginine from glutamate (Rizhsky et al., 2004; Dobra et 

al., 2010). In this research study, proline and arginine metabolism was not observed to 
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be enriched in response to wind or mechanical stress; however, a few metabolites 

which are involved in this pathway were in the top 20 of metabolites identified showing 

the biggest difference between treatments in both genotypes. It has been proposed 

that proline acts as an osmolyte and therefore contributes to osmotic adjustment within 

the cells (Delauney & Verma, 1993). Moreover, it was proposed that proline is a 

molecular companion which helps in the stabilisation of proteins and therefore protect 

cells from damage caused by environmental stresses (Hare & Cress, 1997; Verbruggen 

& Hermans, 2008; Szabados & Savouré, 2010). 

Hormone metabolism has been linked to the response to mechanical stimulation in 

plants, namely ethylene, auxin and abscisic acid (ABA). It has been implicated that 

mechanical stimulation led to an increase in the release of ethylene (Goeschl et al., 

1966; Biro & Jaffe, 1984; Onguso et al., 2006), increase in ABA accumulation (Jeong & 

Ota, 1980; Erner & Jaffe, 1982) and changes in auxin distribution (Mitchell, 1977; Boyer 

et al., 1979; Hofinger et al., 1979). Brassinosteroids (BR) have also been linked to plant 

thigmomorphogenesis. Arabidopsis plants exposed to the highly active BR, 24-

epibrassinolide showed over-expression of TCH4 (Xu et al., 1995; Iliev et al., 2002), 

which encodes an enzyme xyloglucan endotransglycosylase predicted to have a role in 

cell wall modification (Campbell & Braam, 1998; Rose et al., 2002). In this study, we did 

not perform detailed metabolite profiling; thus, such observation could not be made. 

Nevertheless, it needs further consideration. 

In conclusion, gene expression results in response to mechanical stimulation presented 

in this chapter are completely novel in this area of research, especially for the grasses. 

Some alterations in expression were found in cell-wall related genes, LOX and PME 

genes. Moreover, it is the first study to investigate a plants’ response to mechanical 

stimulation at a metabolic level, where we began to unravel the metabolic response of 

Brachypodium distachyon stems to the wind and mechanical stress. The pathways 

found to be enriched play a crucial role in Carbohydrate Metabolism, which was 

previously reported to be involved in response to many abiotic stresses. All these results 

indicate that mechanical stimulation affects not only visual, mechanical, anatomical and 

compositional changes of cell walls but also induces changes at the molecular and 

metabolic level. 
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CHAPTER 6 : GENERAL DISCUSSION 

6.1. AIMS AND BACKGROUND 

Plants through their life are exposed to many abiotic stresses. Over the last decade, the 

climate is constantly changing, and weather anomalies responsible for abiotic stresses 

in plants become more frequent. This has a direct effect on plant growth and 

development (Le Gall et al., 2015). While plant responses to abiotic stresses such as 

drought, cold, air pollutants are intensively studied, there is relatively little research 

related to the response of plants to mechanical stimulation such as wind, brushing or 

touching. Nevertheless, it has been previously shown that plants respond to mechanical 

stimulation by modifications in phenotypic features, alterations in histology and 

anatomy and mechanical properties (Cleugh et al., 1998; Braam, 2005; Chehab et al., 

2009). Furthermore, molecular responses were also noted (Braam & Davis, 1990; Lee et 

al., 2005). Moreover, investigations of responses to mechanical stimulation are 

performed mostly on dicots, while there is almost no data for the most economically 

important plant group, the grasses. Literature suggests that responses may differ 

between plant species, but most importantly also within populations of the same 

species (Jaffe & Telewski, 1984; Bossdorf & Pigliucci, 2009). These responses are also 

determined by the intensity, duration (Retuerto & Woodward, 1992; Johnson et al., 

1998; Pigliucci, 2002) but also form of mechanical stimulation (e.g. wind stress, 

brushing) (Smith & Ennos, 2003; Anten et al., 2010). 

The main objective of this study was to characterise the response of two genotypes 

Bd21 and ABR6 of Brachypodium distachyon to wind stress and mechanical stress at 

various levels with an emphasis on stem cell walls. In particular, the main focus in this 

study was on consequences of WS and MS on cell wall composition, architectural and 

histological features of the stems, as well as phenotypic responses and mechanical 

properties. The molecular changes elicited by WS and MS were identified by analysis of 

expression of cell-wall related genes as well as metabolic pathways involved in response 

to mechanical stimulation.  
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6.2. KEY FINDINGS 

Morphological responses: 

 Both genotypes showed very similar responses to WS and MS. 

 Plants reacted by a reduction in main stem length and aboveground biomass. 

 Mechanical stimulation affected reproduction in Brachypodium distachyon by a 

reduction in seed yield, weight and number and also by delay in flowering time. 

 WS and MS caused alterations in stem mechanical properties by increasing the 

stiffness of these tissues. 

Anatomical and compositional responses: 

 Mechanical stimulation resulted in alterations in stem anatomy 

o Changes in tissue organisation 

o Increased cell wall thickness in specific areas 

o ABR6 reacted to mechanical stimulation by an increase in the area of VB, 

while in Bd21 B area decreased  

 Immuno-localisation with various cell wall related antibodies revealed that 

pectins are involved in response to MS and WS in both genotypes.  

 Both stresses enhance pectin methylesterases activity. 

 Cell wall composition analysis revealed alterations in monosaccharides content, 

increases in lignin and a reduction in recalcitrance to saccharification after WS 

and MS in both genotypes. 

 Lignin distribution assessed by phloroglucinol staining showed increased 

lignification in the cortex and interfascicular region of stem cross-sections. 

Molecular and metabolic responses: 

 Results indicate that Brachypodium distachyon has a different molecular 

response to mechanical stimulation compared with Arabidopsis thaliana. 

 RT-PCR analysis revealed that both treatments increase the expression of a 

Lipoxygenase gene previously reported in wheat to be touch-inducible. 

 Metabolite analysis identified changes in the concentration of metabolites 

involved in carbohydrate metabolism. 
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6.3. MORPHOLOGICAL RESPONSES 

It was previously established that plants respond to mechanical stimulation by various 

morphological modifications (Braam, 2005; Börnke & Rocksch, 2018). The responses 

may vary depending on species, genotypes, age of tissues but also factors such as 

duration, time and intensity of stress treatment (Jaffe, 1973; Biddington, 1986; Johnson 

et al., 1998; Bossdorf & Pigliucci, 2009; Anten et al., 2010). In this study, such responses 

were analysed on the model plant for grasses – Brachypodium distachyon. It was shown 

that exposure of two genotypes (Bd21 and ABR6) to wind and mechanical stress caused 

alterations in phenotypic traits. The most dramatic changes observed were a reduction 

of main stem length and aboveground biomass as well as alterations in the reproduction 

process and mechanical properties. 

Reduction in stem height is the most common response to mechanical stimulation, 

previously reported in various species (Retuerto & Woodward, 1992; Telewski & Pruyn, 

1998; Verhertbruggen et al., 2013). Generally, development of shorter stems is 

consistent with the concept that reduced height will limit the bending moment of the 

stem and lower the risk of a range of excessive mechanical strains, plastic deformation, 

uprooting, stem buckling and failure (Paul-Victor & Rowe, 2011). Thus, stem shortening 

is directly connected with alterations in mechanical properties. Literature suggests that 

stems after exposure to mechanical stimulation become either longer but more flexible 

or shorter and more rigid (Smith & Ennos, 2003). Results presented in this study may 

partially confirm the hypothesis that stems after mechanical stimulation become 

shorter and more rigid. Such results are also in agreement with the results from a study 

performed on Zea mays, another grass species (Whirehead & Luti, 1962).  

Reduction in aboveground biomass in this study is in agreement with previously 

established data (Goodman & Ennos, 1996; Henry & Thomas, 2002; Kern et al., 2005; 

Murren & Pigliucci, 2005). It is hypothesised that such reduction may be associated with 

stem height but most of all with a decrease in leaf size and area, which was broadly 

documented in many species (Jaffe, 1973; Biddington, 1986; Anten et al., 2010), 

however, leaves characteristic was not determined in this study. 
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Plant reproduction was significantly affected by mechanical stimulation in this study. 

Flowering time was delayed, and seed weight, number and total seed yield were 

reduced. It was previously noted in various species that mechanical stimulation resulted 

in delay of flowering (Retuerto & Woodward, 1992; Johnson et al., 1998; Niklas, 1998; 

Cipollini, 1999; Anten et al., 2005; Bossdorf & Pigliucci, 2009), delay of anthesis (Mitchell 

et al., 1975; Jaffe, 1976; Akers & Mitchell, 1983), reduction in reproductive structures, 

seed number, weight and total yield (Jaffe, 1973; Niklas, 1998; Bossdorf & Pigliucci, 

2009; Zhang et al., 2013b). Such a response to mechanical stimulation may indicate that 

mechanical stimulation significantly aggravates plant reproduction success. However, it 

has been hypothesised that this may be an adaptation mechanism to ensure the 

continuation of propagation (Jaffe & Forbes, 1993; Cipollini, 1999). 

6.4. ANATOMICAL, HISTOLOGICAL AND COMPOSITIONAL RESPONSES 

While many studies in the area of mechanical stimulation have examined its effect on 

phenotypic traits, little attention has been given to how such mechanical stimulation 

may affect anatomical and histological features of the stem and compositional features 

of the cell wall. Plant cell walls are the first barrier to abiotic stress, and biochemical 

changes in its composition and structural reorganisation of its architecture allow cell 

walls to adapt to particular conditions (Sarkar et al., 2009). 

This study clearly shows that stems undergo many histological and anatomical 

modifications in response to wind and mechanical stress. Such changes were previously 

studied mostly in dicots, with very limited studies performed in grasses, which have 

different stem anatomy compared with monocots. Observed anatomical and 

histological changes caused by both stresses suggest that plant’s response to 

mechanical stimulation may be species-specific or even genotype-specific. This study 

revealed that wind and mechanical stress caused rearrangements in tissue organisation; 

however, the response differs between genotypes. The most dramatic response was 

observed in vascular bundle area developed, which decreased after stresses in Bd21 

and increased in ABR6. Moreover, both stresses resulted in an increase in cell wall 

thickness and increased lignification in the interfascicular region and cortex area. The 

further histological investigation included of immuno-localisation with cell-wall related 
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antibodies in the grass family. Such analysis revealed multiple alterations in labelling 

with pectin-related antibodies. Moreover, this study is the first to our knowledge to 

examine the pectin involvement in response to mechanical stimulation in the grass 

family. The outcome of such an analysis did not reveal a clear pattern and did not give 

consistent results, and therefore, it is difficult to interpret and establish a clear 

conclusion. Nevertheless, pectins are involved in response to wind and mechanical 

stress. Such involvement was previously reported in Arabidopsis; however, similar to 

our work, the outcome was not consistent (Verhertbruggen et al., 2013; Rigo, 2016). It 

is known that HG with low levels of methyl-esterification takes part in creating calcium-

mediated gels, causing cell wall stiffening and playing a role in regulating the porosity 

and mechanical properties of cell walls (Ridley et al., 2001; Willats et al., 2001; Hongo 

et al., 2012). Also, lignin is known to be essential for the structural integrity of cell walls 

(Boerjan et al., 2003) and provides additional reinforcement resulting in increased 

tensile strength (Gibson, 2012; Barros et al., 2015). Thus, both increased levels of lignin 

and demethylesterified pectin could contribute to the observed increases in stem 

rigidity.  

This study was the first to our knowledge to asses complete cell wall composition 

analysis of stem responses to mechanical stimulation. The work shows that cell walls 

undergo many modifications in response do WS and MS treatment. Both stresses in 

both genotypes led to alterations in monosaccharide and cell wall-bound 

hydroxycinnamic acids content and composition, increase in lignin content and 

decreased sugar release. While changes in lignin accumulation in response to 

mechanical stimulation was previously investigated, there is no information in the 

literature for other compositional changes of cell wall components. Moreover, there is 

no clear consistency in the effect on the lignin content response (De Jaegher et al., 1985; 

Cipollini, 1997; Henry & Thomas, 2002; Paul-Victor & Rowe, 2011). 

Summarising histological, anatomical and compositional results obtained in this study, 

it is clear that the response of Brachypodium to wind and mechanical stress is not 

limited to morphological changes. WS and MS induce architectural changes across 

multiple scales, from the whole plant to organ, tissue and cellular level, highlighting the 

complex nature of how plants respond to wind stress and mechanical stimulation. 
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6.5.  MOLECULAR AND METABOLIC RESPONSES 

This work forms the first study to investigate the response of the Brachypodium 

distachyon model for grasses to wind and mechanical stress at the molecular and 

metabolic level. So far the molecular analysis of touch inducible genes was performed 

on Arabidopsis thaliana and revealed four TCH genes and a range of touch responsive 

cell-wall related genes which were highly expressed after mechanical stimulation 

(Braam & Davis, 1990; Lee et al., 2005). This study aimed to investigate orthologues 

genes in Brachypodium distachyon. The analysis revealed that the molecular response 

of Brachypodium to mechanical stimulation might have a difference compared with that 

of Arabidopsis, as the expression of none of the orthologue genes was induced by either 

WS or MS. Moreover, small alterations in the expression of PMEs were observed, 

indicating that indeed pectins may play a role in response to wind and mechanical stress 

of Brachypodium distachyon. High expression of LOX, especially after MS, was noted in 

this study in ABR6, which is in agreement with previously reported data in wheat, where 

researchers found this gene to be highly expressed after brushing (Mauch et al., 1997). 

The higher expression only in ABR6 may indicate that mechanical stimulation may affect 

genotypes differently on the molecular level. Although the results of the gene 

expression data in this study do not provide many new insights about the molecular 

response of Brachypodium distachyon to WS and MS, it should be stressed that this is a 

novel research area with little to no data on the molecular mechanisms involved in wind 

and mechanical stress in grasses. 

This study is the first to investigate a plants’ response to wind and mechanical stress at 

a metabolic level. To obtain insights into the metabolic response, the metabolite 

fingerprints after treatments was determined with the use of flow injection electrospray 

high-resolution mass spectrometry. Although analysis revealed no significant pathway 

enrichment, we decided to accept pathways with P ≤ 0.1 and flagged these as tentative. 

The reason for that is the novelty of results in this area of research and, to my 

knowledge, this represents the first data linking mechanical stimulation to metabolite 

profiling. It was previously suggested that the jasmonic acid biosynthesis pathway might 

play a role in plant thigmomorphogenetic responses to mechanical stimulations 

(Stelmach et al., 1998; Ellis et al., 2002; Tretner et al., 2008). However, this study does 
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not confirm such theories. The present work suggests that pathways involved in 

carbohydrate metabolism play an important role in response to wind and mechanical 

stress, which were previously also reported to be involved in response to many other 

abiotic stresses (Devi et al., 2007; Morsy et al., 2007; Xue et al., 2008).  

6.6. CONCLUSIONS AND FUTURE WORK 

This study has begun to unravel the response to wind and mechanical stress in the 

model plant for grasses – Brachypodium distachyon. Moreover, the two factors of 

mechanical stimulation, wind and mechanical stress, were analysed separately, as it was 

proposed that both stresses may cause different plant responses. Two genotypes of 

Brachypodium were used in this study as Aberystwyth University has a RIL population 

of these parents, and more importantly, as these lines have contrasting properties, to 

evaluate if there are differences in response within species. 

Both stresses had the same effect on phenotypic changes in Brachypodium distachyon 

resulting in shortening of the main stem, alterations in the reproductive process and 

mechanical properties. Based on previously reported studies from dicots, such an 

outcome was to some extend expected. However, the fact that this represents the most 

extensive study on mechanical stimulation on a grass makes this work a very good 

indicator and reference for further studies on economically important grasses such as 

maize, Miscanthus or rice. Moreover, it would be important to get a deeper insight into 

reproductive features, as the study suggests that seed yield was drastically decreased 

after both stresses.  

The detailed cell wall compositional analysis alongside with histological and anatomical 

analysis generated in this study provides a platform for the future integration of events 

associated with cell wall properties in response to mechanical stimulation. This study is 

first to our knowledge to present changes in cell wall composition in response to wind 

and mechanical stress in grasses. Brachypodium reacted to WS and MS by an increase 

in lignin content, alterations in monosaccharide and cell wall-bound hydroxycinnamic 

acids and decrease in sugar release. Such analysis can be used as a starting point for 

analysis in other grass family members. Moreover, as analysis in this study only focused 
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on stems, it would be of interest to also characterise cell wall compositional features of 

leaves, as they present a substantial amount of plant tissues. Such a complete analysis 

of stem and leaf material would be useful as grasses have been explored as biomass 

feedstock for bioenergy production and biorefining into platform chemicals and value-

added bio-based products. The main feedstock explored to date are agricultural 

residues and the harvestable biomass of dedicated perennial biomass crops, including 

Miscanthus and switchgrass (Panicum virgatum) (Bhatia et al., 2017). Reduction of 

aboveground mass and changes in cell wall composition may significantly affect such 

processes. Thus, further analysis should focus on detailed lignin analysis, as its 

composition and content directly affect sugar release.  

Anatomical and histological analyses revealed changes in tissue organisation after 

exposure to the wind and mechanical stress. Moreover, the cell wall thickness was 

significantly thicker after WS and MS in both genotypes. Our measurements of cell wall 

thickness have their limitations; thus, it would be interesting to pursue measurements 

with other technique (e.g. Transmission electron microscopy - TEM), which would give 

more reliable results. This work reports the first data on changes in the distribution and 

abundance of certain cell wall epitopes in response to mechanical stimulation using 

immuno-localisation methods. Such analysis showed differences in the labelling pattern 

between treatments only with some of the pectin-related antibodies. Moreover, it was 

noted that WS and MS resulted in enhanced pectin methylesterase activity. Such results 

indicate that pectins are involved in response to mechanical stimulation. Nevertheless, 

results obtained in this work do not give a clear answer of pectin involvement. Further 

validation of the role of pectins in plant response to mechanical stimulation is needed. 

This will enable further, more detailed studies of pectins association with obtaining 

more quantitative data. It would also be of interest to perform immuno-localisations 

with other internodes, as the distribution of epitopes may vary between internodes. 

Such comparison will enable a much fuller picture of the response to mechanical 

stimulation of Brachypodium distachyon stems.  

Genetics and metabolomics are an important area that should not be overlooked when 

attempting to understand the response of plants to mechanical stimulation. 

Nevertheless, the knowledge in this area is extremely poor, and not very well 
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understood. This study is the first to start to unravel molecular and metabolic response 

to mechanical stimulation in grasses based on the model plant Brachypodium 

distachyon. The genome-wide analysis of such response was previously performed on 

Arabidopsis, which led to the discovery of four touch inducible genes and the range of 

touch responsive cell-wall related genes. This study aimed to compare if the response 

to mechanical stimulation in Brachypodium have similarities. The expression analysis 

presented in this study does not provide strong evidence for a conserved set of touch 

inducible genes between Arabidopsis and Brachypodium. Thus, the molecular response 

to mechanical stimulation needs further attention. This should include genome-wide 

identification of genes involved in response to mechanical stimulation. Moreover, the 

design of plant exposure to stress should also be considered, as for Arabidopsis touch 

induced expression was noted 30 min after stress treatment. In our study, the molecular 

response was examined after two weeks of stress treatment, which may lead to 

stabilisation of genes expression, and thus, results may be misleading.  

Moreover, Brachypodium distachyon as a model plant for grasses may be used as a 

system to dissect treatment- and genotype-specific responses to mechanical 

stimulation. This may be achieved by use of the RIL population, which is available at 

Aberystwyth University. One of the important features, which showed an opposite 

response after mechanical stimulation, is  vascular bundle area. This trait may be 

utilised for mapping studies. 

Metabolomics plays an important role to gather information about stress-induced 

changes in plant development (Gupta, 2014). Analysis of the metabolite response to 

mechanical stimulation presented in this work is completely novel in this area of 

research, especially for the grasses. Metabolite fingerprinting analysis revealed that 

pathways involved in carbohydrate metabolism are significantly enriched. Initial 

analysis and results of the metabolic data provided in this study present important 

information, but they also provide a basis for further analysis. Further detailed analysis 

of pathways enriched is needed. Moreover, in-depth analysis and accurate mass 

determination of the highly significant metabolites is necessary to validate the findings 

described in this work. Moreover, more detailed data may be used in the future to 

provide insight into the genetic basis of plant response to mechanical stimulation 



CHAPTER 6 

248 
 

Selection of the most responsive metabolites after mechanical stimulation may be used 

to identify genes, which are up-regulated after stress treatment. Such an approach led 

to the identification of genes, which are involved in response to drought in wheat.  

Moreover, the transcriptomic analysis combined with metabolomics may also be useful 

for understanding the molecular mechanism underlying responses to mechanical 

stimulation in grasses. 
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APPENDIX 

Appendix 1. Water consumption during stress experiments. 

Tables present average of water intake (mL) per plant per day and total water consumed per 

plant during the whole greenhouse stress experiment (14 days) looking at wind stress (WS) and 

mechanical stress (MS). Data presented for all four experiments for both genotypes Bd21 (A) 

and ABR6 (B).  

A. 

Experiment Control WS MS 

 Average mL 

per day 

Total mL per 

the whole 

experiment 

Average mL 

per day 

Total mL per 

the whole 

experiment 

Average mL 

per day 

Total mL per 

the whole 

experiment 

1st 15.4 ± 8.4 200 27.7 ± 6.9 360 16.2 ± 8.4 210 

2nd 18.5 ± 5.3 240 26.2 ± 6.2 340 19.2 ± 4.7 250 

3rd 16.4 ± 4.8 230 26.4 ± 8.9 370 17.9 ± 4.1 250 

4th 15 ± 5 210 27.1 ± 9.6 380 14.3 ± 4.9 200 

 

B. 

Experiment Control WS MS 

 Average mL 

per day 

Total mL per 

the whole 

experiment 

Average mL 

per day 

Total mL per 

the whole 

experiment 

Average mL 

per day 

Total mL per 

the whole 

experiment 

1st 13.8 ± 9.2 180 26.9 ± 4.6 350 16.9 ± 7.2 220 

2nd 
18.5 ± 

10.3 
240 30.8 ± 7.3 400 21.5 ± 7.7 280 

3rd 
13.8 ± 

4.7.4 
180 30.8 ± 6.1 400 16.1 ± 6.2 210 

4th 14.3 ± 4.9 200 25 ± 8.2 350 15.7 ± 4.9 220 
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Appendix 2. Flowering time 
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Appendix 3.  

Scanning electron microscope images of whole cross-sections for control, wind stress (WS) and 

mechanical stress (MS) treatments for both genotypes Bd21 and ABR6.    
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Appendix 4. Immuno-localisation 

Appendix 4A. 

Immuno-localisation of the LM13 cell wall epitope in ABR6 stem cross-sections after three 

treatments (control, wind stress [WS], and mechanical stress [MS]). Scale bar = 100 µm. 
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Appendix 4B. 

Immuno-localisation of JIM7 epitope in ABR6 cell walls in three treatments (control, wind stress 

[WS], and mechanical stress [MS]). Scale bar = 100 µm. 
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Appendix 4C. 

Immuno-localisation of LM19 epitope in Bd21 cell walls in three treatments (control, wind stress 

[WS], and [MS]). Scale bar = 100 µm. 
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Appendix 4D. 

Immuno-localisation of LM6 epitope in ABR6 and Bd21 cell walls in three treatments (control, 

wind stress [WS], and mechanical stress [MS]). Scale bar = 100 µm. 
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Appendix 4E. 

Immuno-localisation of LM20 epitope in Bd21 and ABR6 cell walls in three treatments (control, 

wind stress [WS], and mechanical stress [MS]). Scale bar = 100 µm. 
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Appendix 4F. 

Immuno-localisation of LM25 epitope in Bd21 and ABR6 cell walls in three treatments (control, 

wind stress [WS], and mechanical stress [MS]). Scale bar = 100 µm. 
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Appendix 4G. 

Immuno-localisation of LM28 epitope in Bd21 and ABR6 cell walls in three treatments (control, 

wind stress [WS], and mechanical stress [MS]). Scale bar = 100 µm. 
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Appendix 4H. 

Immuno-localisation of LM10 epitope in Bd21 and ABR6 cell walls in three treatments (control, 

wind stress [WS], and mechanical stress [MS]). Scale bar = 100 µm. 

 

     

     

     

      

 

C
o

n
tr

o
l 

W
S 

M
S 

Bd21 ABR6 

M
S 



APPENDIX 

283 
 

Appendix 4I. 

Immuno-localisation of LM1 epitope in Bd21 and ABR6 cell walls in three treatments (control, 

wind stress [WS], and mechanical stress [MS]). Scale bar = 100 µm. 
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Appendix 4J. 

Immuno-localisation of LM2 epitope in Bd21 and ABR6 cell walls in three treatments (control, 

wind stress [WS], and mechanical stress [MS]). Scale bar = 100 µm. 
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Appendix 4K. 

Immuno-localisation of LM12 epitope in Bd21 and ABR6 cell walls in three treatments (control, 

wind stress [WS], and mechanical stress [MS]). Scale bar = 100 µm. 
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Appendix 4L. 

Immuno-localisation of BG1 epitope in Bd21 and ABR6 cell walls in three treatments (control, 

wind stress [WS], and mechanical stress [MS]). Scale bar = 100 µm. 
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Appendix 5. 

The list of all designed primer sets used for the analysis of specific Brachypodium distachyon 

genes. Blue coloured pairs of primers indicate primers that did not show expected results on 

electrophoresis gel and therefore were excluded from further RT-PCR analysis. 

Family Gene 
Designed 

primer 
Sequence of gene-specific primers 

Amplicon 
size (bp) 

CaM1 Bradi2g21460 

AG01 
AG02 

F:5’-TCAACGAGGTTGACGCTGAT-3’ 
R:5’-TCTGGTCCTTGTCGAAGACAC-3’ 

135 

AG03 
AG04 

F:5’-TTTCTGAACCTGATGGCAAGGA-3’ 
R:5’-CTTCTCCCCGAGGTTGGTCAT-3’ 

144 

CaM5 Bradi2g10010 

AG05 
AG06 

F:5’-GGCAACGGCACCATTGATTT-3’ 
R:5’-TCAGCAGCAGAGATGAAGCC-3’ 

137 

AG07 
AG08 

F:5’-AGTTGGGAACTGTCATGCGT-3’ 
R:5’-AAATCAATGGTGCCGTTGCC-3’ 

103 

CaM5 Bradi1g17237 

AG09 
AG10 

F:5’-TTAAGGAGGCTTTCCGTGTG-3’ 
R:5’-TCACGGATCATCTCATCCAC-3’ 

127 

AG11 
AG12 

F:5’-GGCTGAACTCCGTCATGTCA-3’ 
R:5’-TCTGACCGTCACCATCAACG-3’ 

101 

CDP 

Bradi2g02340 
AG13 
AG14 

F:5’-GGGTTCGAGGAGTTCAAGAAG-3’ 
R:5’-TCTTTCTTGGGCTTGTCAGG-3’ 

92 

Bradi2g31900 
AG15 
AG16 

F:5’-TTGGTCGTGGGAAACTCAC-3’ 
R:5’-AATTCCTTCCGTTCCTCTCC-3’ 

114 

CML23 Bradi2g51090 

AG17 
AG18 

F:5’-TGGTGCAAGACCACATTCAC-3’ 
R:5’-TGCTCATCATCAGCTTCAGG-3’ 

126 

AG19 
AG20 

F:5’-CATCACTTCGCTGAGCCTGA-3’ 
R:5’-CCCGTTGAGATCAAACCTGC-3’ 

100 

GH Bradi1g33810 

AG21 
AG22 

F:5’-TGTCGTTCCCAAAGTCGCAG-3’ 
R:5’-CGTTGAAGTCGCGGAAAGAG-3’ 

135 

AG23 
AG24 

F:5’-CTCAGCGACATGAGCTACCG-3’ 
R:5’-CGTCGGTGCAGTAGTTGTAGA-3’ 

73 

GH Bradi1g33840 

AG25 
AG26 

F:5’-CCTTCTCGGCATCCTACCG-3’ 
R:5’-AGGTCGAGCTCCTGGTTGTA-3’ 

145 

AG27 
AG28 

F:5’-AACCTGGAGGGGAAAGGGAT-3’ 
R:5’-GGTAGGATGCCGAGAAGGG-3’ 

142 

ExpA1 
 

Bradi1g76260 

AG37 
AG38 

F:5’-TGTGGGCAGAGAAGGAAGTG-3’ 
R:5’-GTGTCGCAAGGGAAGCAG-3’ 

109 

AG39 
AG40 

F:5’-CAAGTGGGTGTGGGCAGAGA-3’ 
R:5’-CACCTCCACTCCTGCGTGTC-3’ 

132 

ExpA1 
 

Bradi1g76270 

AG41 
AG42 

F:5’-TAGGGTCGTCGAACTGGAAG-3’ 
R:5’-ACTTCCTTCTCCACCCACAG-3’ 

142 

AG43 
AG44 

F:5’-GGGTGGAGAAGGAAGTGCTG-3’ 
R:5’-GATGTCGGTGATCTGGAGCC-3’ 

77 

ExpA3 Bradi1g28130 

AG45 
AG46 

F:5’-TGGGTGTGGGCTGATAAAG-3’ 
R:5’-GCCACTTTCATTTCCCAGTC-3’ 

137 

AG47 
AG48 

F:5’-GTTCATGGGCCCGTTTGGAG-3’ 
R:5’-TATCAGCCCACACCCACTTG-3’ 

103 

 
AGP 

 
Bradi2g45510 

AG49 
AG50 

F:5’-AGGGTCTCTCTTCTTCTGATGG-3’ 
R:5’-ACGAACATGAGCACATACGC-3’ 

 
131 

AG51 
AG52 

F:5’-GTGAGCTCCAGGGTCTCTCT-3’ 
R:5’-ACATACGCGATCCCTTGGTC-3’ 

128 

CSLD2 Bradi1g50170 AG53 F:5’-GTATGGCAGCAATGGTGAAG-3’ 89 
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AG54 R:5’-TTTCACGGGACACATAGACC-3’ 

AG55 
AG56 

F:5’-CGATGCGGTGGAAGCTGTTA-3’ 
R:5’-TCGCTAGGTGGTTTCAGCATT-3’ 

147 

b-Glu Bradi3g03520 

AG57 
AG58 

F:5’-TGGGTCGACAAGAATGTCTC-3’ 
R:5’-GGAAAGGCTCATTACCAACC-3’ 

79 

AG59 
AG60 

F:5’-AACTACCTCAACGACGGCTG-3’ 
R:5’-TTTCGGAGGGCAGGAAAAGT-3’ 

110 

WAK Bradi5g24311 
AG61 
AG62 

F:5’-CGGTGGTTGCAAGACTCACA-3’ 
R:5’-TGGAGCATTCTGGCTCACTC-3’ 

146 

PME Bradi2g11850 

AG29 
AG30 

F:5’-GTATGTCATGATGGTCGGTGAC-3’ 
R:5’-TCATGTTCACCGCCACGAAC-3’ 

134 

AG31 
AG32 

F:5’-GGCTGGACCACCTTCAACTC-3’ 
R:5’-CACTGGTAGAACGTCGACAGG-3’ 

149 

PME Bradi2g27930 

AG33 
AG34 

F:5’-ACGGTGGTCATGGAGTCCTA-3’ 
R:5’-GGCGTAGTAGAGCGTGTCAA-3’ 

96 

AG35 
AG36 

F:5’-AACGCTGCCTTTACAACGGT-3’ 
R:5’-GCCCAGGTAGGACTCCATGA-3’ 

84 

PME Bradi2g11860 

AG67 
AG68 

F:5’-CGTGTTCATGGAGTCGCAGA-3’ 
R:5’-CCGTAGTAGAGCGTGTCGAG-3’ 

93 

AG69 
AG70 

F:5’-GGGCAGAGCAACACCTACAC-3’ 
R:5’-CCAGGTACGTCCTGAAGCTC-3’ 

133 

AG113 
AG114 

F:5’-ACGTGGAAGTGGGGAAGAAC-3’ 
R:5’-CCGAGTTCTCGATGGTCAGG-3’ 

174 

AG115 
AG116 

F:5’-CTTCACCGTGGGATCGTTCA-3’ 
R:5’-TCGCTTGTGACCCTTCAGTC-3’ 

115 

PME Bradi2g56820 

AG71 
AG72 

F:5’-TATGGCGAGTACGACAGTGC-3’ 
R:5’-TGTATGAAGCTAGCGACGCC-3’ 

119 

AG73 
AG74 

F:5’-GACCTAACGATCGCGAACAC-3’ 
R:5’-GGTGTAGAATTGCCGCATGG-3’ 

147 

AG117 
AG118 

F:5’-CGCTAGCTTCATACAGGGGG-3’ 
R:5’-AGTGTTTGCCCAACCTCACA-3’ 

171 

PME Bradi5g17850 

AG75 
AG76 

F:5’-ATGACGGCGTTCTTTGGGAT-3’ 
R:5’-GAGCCAGTGGAATCCGTTGA-3’ 

141 

AG77 
AG78 

F:5’-AGCCGTACATCACGTTCGAG-3’ 
R:5’-ATAGAACGGTTACGGAGGCG-3’ 

129 

AG119 
AG120 

F:5’-TCAACGGATTCCACTGGCTC-3’ 
R:5’-TGCCTGTGCTGTACGAATGA-3’ 

106 

AG121 
AG122 

F:5’-TCATTCGTACAGCACAGGCA-3’ 
R:5’-GTGGAACTTGTGACCACCCT-3’ 

140 

PMEI Bradi3g30770 

AG79 
AG80 

F:5’-GGAGAAGGTTCGAGGTGGAC-3’ 
R:5’-CTTGAACCCTTCCACGCACA-3’ 

83 

AG123 
AG124 

F:5’-ATGATGATGACCAGACGCCG-3’ 
R:5’-ATAGATGGGGCCGGGGATTA-3’ 

177 

AG125 
AG126 

F:5’-CTGCTGCTTGTCGTCTCGTA-3’ 
R:5’-TACGGGGACAGTGTCGAGTC-3’ 

167 

PMEI Bradi5g27675 

AG81 
AG82 

F:5’-CTTTTGGAGGCACGGGAGTC-3’ 
R:5’-ACGAACGCCTCGTCGTAATA-3’ 

80 

AG83 
AG84 

F:5’-TCCTGCTGCTCTCCGTATCT-3’ 
R:5’-AAGGGCACGCACTAATACCG-3’ 

113 

AG127 
AG128 

F:5’-AGCTAGCTAATGGCGACTGC-3’ 
R:5’-CGAAACGTGGTGTGATGCTG-3’ 

131 

AG129 
AG130 

F:5’-CTCTTCAGGAGGAAGCGAGTG-3’ 
R:5’-CTTGAGCAGTCGCCATTAGC-3’ 

143 

PMEI Bradi3g45080 
LF66 
LF67 

F:5’-GTGGACTACCACTTCTGCGT-3’ 
R:5’-CTTGATGTCGTACACCCCGT-3’ 

132 
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LF68 
LF69 

F:5’-GGTGTACGACATCAAGCGCA-3’ 
R:5’-CTGATCCCGTCGTACGCCTC-3’ 

150 

LOX Bradi1g11680 

AG63 
AG64 

F:5’-ACAATGATCCCAGCCTCAAG-3’ 
R:5’-TCGGAGGTATTGGGGTAGAG-3’ 

76 

AG65 
AG66 

F:5’-TCGAGCAGTACGTGAACGAG-3’ 
R:5’-TCCTTCCACCATGACTGTAGC-3’ 

91 

LOX1/LOX5 Bradi1g09270 

AG85 
AG86 

F:5’-GCAAAAGCGTTGGAGGCATT-3’ 
R:5’-GTATGGAAACTTGGCTGGGC-3’ 

123 

AG87 
AG88 

F:5’-CTTCGTCATCGCCACAAGCC-3’ 
R:5’-GGTCATCTCGATGATCCCGC-3’ 

142 

LOX1/LOX5 Bradi1g11670 

AG89 
AG90 

F:5’-AATATCGCCCGTCGGAATCA-3’ 
R:5’-CGCTCAGGAAAAAGGGACCA-3’ 

143 

AG91 
AG92 

F:5’-TCAACTTGCCCTTTCCACATG-3’ 
R:5’-GCAAACCGGATTAACTCCTGC-3’ 

100 

LOX2 Bradi3g07000 
AG97 
AG98 

F:5’-ATCCATCTGAAGCAGCCTCT-3’ 
R:5’-CGAGCTCCTCGTCTGATCTTC-3’ 

116 

LOX2 Bradi3g07010 
AG99 

AG100 
F:5’-GAGCGGCCAGCAAATCAGA-3’ 
R:5’-GTAGCCGTCACCGTCAGAG-3’ 

135 

LOX2 Bradi3g39980 
AG101 
AG102 

F:5’-GATCCGTTGATCCCGCTAGT-3’ 
R:5’-ACCTCATCTTGTTACCCCTCA-3’ 

148 

LOX3 Bradi5g11590 

AG107 
AG108 

F:5’-GTGTTCAAGCTGCTCAAGCC-3’ 
R:5’-TCGCCGTTGATGAGGATCTG-3’ 

80 

AG109 
AG110 

F:5’-GATCCAGGAGAACAGCGAGG-3’ 
R:5’-GGGAACTCCTGAAGACGCTC-3’ 

150 

LOX3 Bradi1g72690 

AG93 
AG94 

F:5’-ATCTAAGAAGGCGGGGGAGT-3’ 
R:5’-AGATGAGTTTGCAGATAGGCG-3’ 

96 

AG95 
AG96 

F:5’-TGATCTCGGCTAAGAATCTGACT-3’ 
R:5’-ACTCCCCCGCCTTCTTAGAT-3’ 

143 

LOX5 Bradi3g59942 
AG111 
AG112 

F:5’-CGGCTCAATGAAAACGCCAT-3’ 
R:5’-GACACACATGCCGATGATGC-3’ 

81 

LOX5 Bradi3g59710 

AG103 
AG104 

F:5’-CTGGACTTCTACATCCCGCC-3’ 
R:5’-GCTCCATGGACCTGAAGTCG-3’ 

145 

AG105 
AG106 

F:5’-AACGACCTGTACAGCAAGCC-3’ 
R:5’-GGAACTTGACGGGGTTCTCC-3’ 

133 
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Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi2g21460 (AG03/AG04) – CAM1 

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi2g21460 (AG01/AG02) – CAM1 

Appendix 6. 

Appendix 6A. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi2g21460. 
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Appendix 6B. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi2g10010. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi2g10010 (AG07/AG08) – CAM5 

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi2g10010 (AG05/AG06) – CAM5 
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  Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g17237 (AG09/AG10) – CAM5 

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g17237 (AG11/AG12) – CAM5 

Appendix 6C. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi1g17237. 
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Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g33810 (AG21/AG22) – GH 

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g33810 (AG23/AG24) – GH 

Appendix 6D. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi2g10010. 
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Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi2g51090 (AG19/AG20) – CLM23 

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g33840 (AG27/AG28) – GH 

Appendix 6E. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi1g33840 and Bradi2g51090 
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Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g76260 (AG37/AG38) – ExpA1 

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g76260 (AG39/AG40) – ExpA1 

Appendix 6F. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi1g76260. 



APPENDIX 

296 
 

  

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g76270 (AG41/AG42) – ExpA1 

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g76270 (AG43/AG44) – ExpA1 

Appendix 6G. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi1g76270. 
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Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g28130 (AG45/AG46) – ExpA3 

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g50170 (AG53/AG54) – CSLD2 

Appendix 6H. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi1g28130 and Bradi1g50170. 
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Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi3g03520 (AG59/AG60) – b-Glu 

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi5g24311 (AG61/AG62) – WAK 

Appendix 6I. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi3g03520 and Bradi5g2431. 
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Tm Calling, Abs Quant/2nd Derivative Max & 

standard curve for  

Bradi1g17850 (AG75/AG76) – PME 

Tm Calling, Abs Quant/2nd Derivative Max & 

standard curve for  

Bradi1g178500 (AG121/AG122) – PME 

Tm Calling, Abs Quant/2nd Derivative Max & 

standard curve for  

Bradi1g17850 (AG119/AG120) – PME 

Appendix 6J. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi1g17850. 
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Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi2g56820 (AG71/AG72) – PME 

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi2g56820 (AG117/AG118) – PME 

Appendix 6K. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi2g5682.  
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Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi2g11860 (AG115/AG116) – PME 

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi5g27675 (AG129/AG130) – PMEI 

Appendix 6L. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi2g11860 and Bradi5g27675.  
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Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g11680 (AG63/AG64) – LOX 

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g11680 (AG65/AG66) – LOX 

Appendix 6M. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi1g11680. 
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Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g09270 (AG85/AG86) – LOX1/LOX5 

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g09270 (AG87/AG88) – LOX1/LOX5 

Appendix 6N. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi1g09270. 



APPENDIX 

304 
 

 

 

 

 

  

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g11670 (AG89/AG90) – LOX1/LOX5 

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g11670 (AG91/AG92) – LOX1/LOX5 

Appendix 6O. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi1g11670. 
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Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g72690 (AG93/AG94) – LOX3 

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi1g72690 (AG95/AG96) – LOX3 

Appendix 6P. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi1g72690. 



APPENDIX 

306 
 

 

  
Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi5g11590 (AG107/AG108) – LOX3 

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi5g11590 (AG109/AG110) – LOX3 

Appendix 6R. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi5g11590. 
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Tm Calling, Abs Quant/2nd Derivative Max & 

standard curve for  

Bradi3g59710 (AG105/AG106) – LOX5 

Tm Calling, Abs Quant/2nd Derivative Max & 

standard curve for 

 Bradi3g39980 (AG101/AG102) – LOX2 

Tm Calling, Abs Quant/2nd Derivative Max & 

standard curve for  

Bradi3g59942 (AG111/AG112) – LOX5 

Appendix 6S. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi3g39980, Bradi3g59710 and Bradi3g59942. 
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Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi5g14640 (LF72/LF73) – Reference gene 

Tm Calling, Abs Quant/2nd Derivative Max & standard curve for 

Bradi4g00660 (LF74/LF76) – Reference gene 

Appendix 6T. Real-time PCR analysis report on determining gene-specific primer amplification efficiency of Bradi5g14640 and Bradi4g00660.  
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Appendix 7. Expression levels of PME/PMEI genes 

Pectin methylesterase genes and pectin methylesterase inhibitor genes showing expression in 

early inflorescence and/or emerging inflorescence and/or leaves. Expression levels were 

analysed with the use of EnsemblPlants database and EMBL-EBI Expression Atlas. Expression 

values are given in TPM units (Transcripts Per Kilobase Million). 

Gene Family Early inflorescence Emerging inflorescence Leaf 

Bradi5g17850 PME 223 134 0 

Bradi3g30770 PMEI 2 20 151 

Bradi2g11860 PME 15 85 13 

Bradi5g27675 PMEI 33 55 0 

Bradi2g56820 PME 38 40 13 

Bradi3g45080 PMEI 20 3 3 

Bradi3g13275 PMEI 12 19 0.6 

Bradi2g49500 PME 11 18 0 

Bradi2g19420 PME 15 17 0 

Bradi3g37340 PME 16 17 0 

Bradi1g15230 PMEI 16 15 0.7 

Bradi1g34920 PMEI 12 16 0 

Bradi3g52060 PMEI 14 2 0 

Bradi3g24750 PME 12 12 10 

Bradi1g17940 PME 12 8 0 

Bradi2g09090 PME 4 4 0 

Bradi2g08950 PMEI 0 4 2 

Bradi5g10700 PME 3 2 1 

Bradi2g52140 PME 1 3 1 

Bradi4g38250 PMEI 0 0 2 

Bradi2g00930 PMEI 0.6 0.9 0 

Bradi2g27930 PME 0 0 0.9 
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Appendix 8. 9-lipoxygenase and 9-hydroperoxide lyase pathway 

Appendix 8A. 9-lipoxygenase and 9-hydroperoxide lyase pathway – scheme 

 

 

Appendix 8B. 9-lipoxygenase and 9-hydroperoxide lyase pathway – genes. 

List of genes belonging to 9-lipoxygenase and 9-hydroperoxide lyase pathway with expression 

levels in early inflorescence and/or emerging inflorescence and/or leaves. Expression levels are 

given in TPM units (Transcripts Per Kilobase Million). 

Gene Family Early inflorescence Emerging inflorescence Leaf 

Bradi3g59942 LOX 2 5 4 

Bradi1g09270 LOX 2 2 0 

Bradi1g11680 LOX 366 333 38 

Bradi3g59710 LOX 6 6 15 

Bradi1g09260 LOX 0 0 0 

Bradi3g08160 Cytochrome P450 121 42 7 

Bradi1g68910 
Proline-rich 

family protein 
27 14 16 
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Appendix 9. Lipoxygenase genes with expression levels. 

List of Lipoxygenase genes with expression levels above zero in early inflorescence and/or 

emerging inflorescence and/or leaves. Expression levels are given in TPM units (Transcripts Per 

Kilobase Million). * Indicates genes, which belong to 9-lipoxygenase and 9-hydroperoxide lyase 

pathways. 

Gene Family Early inflorescence Emerging inflorescence Leaf 

Bradi1g11680* LOX 366 333 38 

Bradi3g07000 LOX 84 346 457 

Bradi3g07010 LOX 89 441 38 

Bradi1g11670 LOX 102 93 68 

Bradi1g72690 LOX 24 29 12 

Bradi5g11590 LOX 5 5 23 

Bradi3g59710* LOX 6 6 15 

Bradi3g59942* LOX 2 5 4 

Bradi1g09270* LOX 2 2 0 

Bradi3g39980 LOX 0 0 1 
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Appendix 10.  

Appendix 10A. Top 20 metabolites showing the biggest differences between treatments in Bd21 detected by mass spectrometry in negative 

ionisation mode. 

m/z Adduct P value Tentative ID Pathway 

392.06276 [M+FA-H]1- 2.59E-18 Deoxyguanylic acid Purine metabolism 

393.06624 [M+Cl]1- 3.16E-18 Pantetheine 4'-phosphate Pantothenate and CoA biosynthesis 

311.16888 [3M-H]1- 7.07E-18 2,3-Diaminopropanoate - 

339.20014 [M+Na-2H]1- 1.30E-17  Ent-7-α-hydroxykaurenoate GA12 biosynthesis 

567.16082 [2M+Hac-H]1- 2.75E-17 L-Arginine phosphate Arginine and Proline metabolism 

325.18443 [2M+Hac-H]1- 2.86E-17 1,1-Diethyl-2-hydroxy-2-nitrosohydrazine - 

566.15775 [3M-H]1- 3.37E-17 N-Acetyl-L-glutamate Arginine biosynthesis 

496.11002 [M+K-2H]1- 1.62E-16 5-methyl-THF Folate transformations 

297.15302 [M-H]1- 1.96E-16 Ostruthin - 

326.18792 [M+Hac-H]1- 2.96E-16 Adenosine Salvage pathways of purine nucleosides 

456.17216 [M-H]1- 3.05E-16 5,10-methylene-THF Folate transformations 

346.26015 [M-H]1- 4.36E-16 Anandamide Anandamide degradation 

420.09356 [M+TFA-H]1- 8.79E-16 Glutathione Cysteine and methionine metabolism 

312.17232 [M+Na-2H]1- 2.22E-15 12-OPDA Alpha-Linolenic acid metabolism 

696.41264 [M+K-2H]1- 2.74E-15 Phytate Lipid-independent phytate biosynthesis 

283.26427 [M-H]1- 4.13E-15 Octadecanoic acid Fatty acid biosynthesis 

588.1365 [M+FA-H]1- 8.22E-15 CMP-3-deoxy-D-manno-octulosonate CMP-KDO biosynthesis II 

347.94937 [M+Br]1- 1.20E-14 N-acetylglutamyl-phosphate Arginine biosynthesis II 

329.06674 [M-H]1- 1.33E-14 3,7-Di-O-methylquercetin Flavone and flavonol biosynthesis 

284.26772 [M-H]1- 1.48E-14 (R,S)-Coclaurine - 
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A heat map with top 20 metabolites showing the biggest differences between treatments in Bd21 detected by mass spectrometry in negative 

ionisation mode. 
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Appendix 10B. Top 20 metabolites showing the biggest differences between treatments in Bd21 detected by mass spectrometry in positive 

ionisation mode. 

m/z Adduct P value Tentative ID Pathway 

594.10863 [2M+NH4]1+ 1.26E-20 2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate Phenylalanine, tyrosine and tryptophan biosynthesis 

543.13179 [M+K]1+ 2.15E-19 Raffinose Galactose Metabolism 

593.10538 [M+H-FA]1+ 4.16E-19 
Luteolin 7-O-[beta-D-glucuronosyl-(1->2)-beta-D-

glucuronide] 
Flavone and flavonol biosynthesis 

544.13545 [M+2ACN+H]1+ 5.52E-19 CDP-N-methylethanolamine - 

339.04727 [M+Na]1+ 1.15E-17 3-O-Methylquercetin Flavone and flavonol biosynthesis 

116.0709 [M+H]1+ 1.99E-17 L-Proline Arginine and Proline Metabolism 

565.11055 [2M+H]1+ 2.64E-17 Pseudobaptigenin Isoflavonoid biosynthesis 

644.0834 [M+K]1+ 3.54E-17 Guanosine diphosphate mannose Amino sugar and nucleotide sugar metabolism 

473.08411 [2M+Na]1+ 6.81E-17 4-amino-4-deoxychorismate Tetrahydrofolate biosynthesis 

483.10501 [2M+Na]1+ 1.84E-16 Bis-noryangonin Resveratrol biosynthesis 

369.03675 [2M+H]1+ 1.91E-16 L-3,4-Dihydroxybutan-2-one 4-phosphate Riboflavin metabolism 

496.14226 [M+K]1+ 2.29E-16 5,10-methylene-THF Glycine biosynthesis 

117.56326 [M+2H]2+ 8.79E-16 N(omega)-Nitro-L-arginine methyl ester - 

563.09471 [2M+Na]1+ 1.16E-15 Apigenin Flavonoid biosynthesis 

451.33334 [M+K]1+ 1.46E-15 4α-methylfecosterol Sterol biosynthesis 

566.11383 [M+NH4]1+ 2.87E-15 dTDP-α-L-rhamnose dTDP-L-rhamnose biosynthesis I 

745.03524 [2M+K]1+ 3.77E-15 
2,5-diamino-6-(ribosylamino)-4-(3H)-pyrimidinone 5'-

phosphate 
Flavin biosynthesis 

526.82666 [M+2Na-H]1+ 3.85E-15 Deoxythymidine triphosphate Pyrimidine metabolism 

156.98957 [M+H]1+ 6.38E-15 2-Phosphoglycolate Glyoxylate and dicarboxylate metabolism 

154.02646 [M1+.]1+ 2.82E-14 2,3-Dihydroxybenzoate Benzoate degradation 
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A heat map with top 20 metabolites showing the biggest differences between treatments in Bd21 detected by mass spectrometry in positive 

ionisation mode. 
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Appendix 10C. Top 20 metabolites showing the biggest differences between treatments in ABR6 detected by mass spectrometry  in negative 

ionisation mode. 

m/z Adduct P value Tentative ID Pathway 

380.6005 [M-H]1- 3.22E-24 Sphinganine 1-phosphate Sphingolipid Metabolism 

1051.288 [2M-H]1- 1.03E-15 Inumakilactone A glycoside - 

443.1346 [2M-H]1- 1.21E-14 Cystathionine Methionine Biosynthesis II 

480.7728 [M-2H]2- 4.25E-14 3-Oxododecanoyl-CoA Fatty acid Metabolism 

507.1338 [2M-H]1- 7.06E-14 L-Arginine phosphate Arginine and Proline Metabolism 

413.1241 [M+Cl]1- 1.07E-13 Reduced riboflavin Riboflavin Metabolism 

134.9145 [M+K-2H]1- 1.22E-13 Sulfate Purine Metabolism 

481.1087 [M+Cl]1- 1.54E-13 Tetrahydrofolate Glycine, Serine and Threonine Metabolism 

426.8399 [M+K-2H]1- 1.60E-13 5-Phospho-alpha-D-ribose 1-diphosphate Pentose Phosphate Pathway 

125.9705 [M+K-2H]1- 3.51E-13 Oxamate Purine Metabolism 

464.7864 [M-H]1- 5.30E-13 Uridine 5'-triphosphate Pyrimidine Metabolism 

420.0936 [M+K-2H]1- 1.05E-12 Dihydrozeatin-9-N-glucoside Cytokinins-O-glucoside biosynthesis 

439.3261 [M+Cl]1- 1.97E-12 (22α)-hydroxy-cholestanol - 

411.1066 [M+Cl]1- 2.79E-12 Riboflavin Riboflavin Metabolism 

473.363 [M+Na-2H]1- 3.99E-12 Phylloquinol Ubiquinone and other Terpenoid-quinone Biosynthesis 

444.1379 [M-H]1- 5.61E-12 Tetrahydrofolate Methionine, Purine, and Pyrimidine Biosynthesis 

583.2183 [M+Na-2H]1- 5.82E-12 Protoporphyrin Porphyrin and chlorophyll Metabolism 

308.7956 [M-H]1- 1.80E-11 D-Ribose 1,5-bisphosphate Pentose Phosphate Pathway 

292.9051 [M+Cl]1- 1.99E-11 (Phosphate)n Oxidative Phosphorylation 

419.0983 [2M-H]1- 3.68E-11 5-hydroxy-ferulic-acid Phenylpropanoid Biosynthesis 



APPENDIX 

317 
 

 

A heat map with top 20 metabolites showing the biggest differences between treatments (control [C], mechanical stress [MS] and wind stress 

[WS]) in ABR6 detected by mass spectrometry in negative ionisation mode. 
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Appendix 10D. Top 20 metabolites showing the biggest differences between treatments in ABR6 detected by mass spectrometry in positive 

ionisation mode. 

m/z Adduct P value Tentative ID Pathway 

121.0649 [M+H]1+ 1.52E-17 Phenylacetaldehyde Phenylalanine Metabolism 

483.105 [2M+Na]1+ 8.21E-17 bis-noryangonin Resveratrol Biosynthesis 

761.1839 [2M+Na]1+ 2.25E-13 6-Hydroxyprotopine Isoquinoline Alkaloid Biosynthesis 

138.0913 [M+NH4]1+ 7.63E-13 Phenylacetaldehyde Phenylalanine Metabolism 

1091.2583 [2M+Na]1+ 8.63E-13 UDP-4''-ketopentose Amino Sugar and Nucleotide Sugar Metabolism 

567.1167 [M+H]1+ 1.53E-12 UDP-galactose Glycolipid Biosynthesis 

579.1262 [2M+K]1+ 1.80E-12 D-Lombricine Glycine, Serine and Threonine Metabolism 

484.1082 [M+H+NH4]2+ 3.10E-12 3-Isopropenylpimelyl-CoA Limonene and Pinene Degradation 

559.1575 [2M+Na]1+ 3.84E-12 2,3-Dihydroxycarbamazepine Drug Metabolism - Cytochrome P450 

591.1925 [M+NH4]1+ 4.82E-12 Biotinyl-5'-AMP Biotin Metabolism 

535.1210 [2M+K]1+ 1.48E-11 5-Hydroxyindoleacetylglycine Tryptophan Metabolism 

139.0946 [M+2H]2+ 1.48E-11 Saccharopine Lysine Degradation II 

386.7207 [M+H+NH4]2+ 1.80E-11 18:2-16:0-MGDG Glycolipid Biosynthesis 

453.0944 [M+H+NH4]2+ 1.94E-11 Salicyloyl-CoA Salicylate Biosynthesis 

307.0576 [M1+.]1+ 2.47E-11 Deoxycytidylic acid Pyrimidine Metabolism 

566.1138 [M+H+NH4]2+ 2.80E-11 Gentiodelphin Gentiodelphin Biosynthesis 

497.1099 [2M+K]1+ 2.81E-11 5-phospho-β-D-ribosyl-amine Purine Nucleotides de novo Biosynthesis I 

467.1311 [2M+Na]1+ 3.22E-11 L-Cystathionine Glycine, serine and threonine metabolism 

743.1734 [2M+K]1+ 4.21E-11 Benzylpenicilloic acid - 

416.1030 [M+Na]1+ 5.39E-11 Amsacrine - 
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A heat map with top 20 metabolites showing the biggest differences between treatments (control [C], mechanical stress [MS] and wind stress 

[WS])in ABR6 detected by mass spectrometry in positive ionisation mode. 
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Appendix 11. Enrichment overview of top 50 pathways detected by mass spectrometry in  positive and negative ionisation mode. 

Appendix 11A. Bd21 
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Appendix 11B. ABR6. 
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Appendix 12.  

Normalised concentrations of most significant metabolites assigned to enriched pathways for 

Bd21  detected by mass spectrometry  in negative and positive ionisation modes. 

 

 Appendix 12A. Negative ionisation. 

 

Glycolysis Pathway 

Normalised concentrations of most significant metabolites in the Glycolysis Pathway: A. NADH, 

B. 3-Phosphoglyceric acid, C. ADP, D. C3H7O6P (Including D-Glyceraldehyde  

3-phosphate and Dihydroxyacetone phosphate), E. Phosphoenolpyruvic acid, F. C6H12O6 

(Including D-Glucose, Alfa-D-Glucose and Beta-D-glucose), G. Pyruvic acid, H. C3H8O10P2 

(Including Glyceric acid 1,3-biphosphate and 2,3-Diphosphoglyceric acid). Red – control, green 

– mechanical stress, blue – wind stress. 
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Pentose Phosphate Pathway 

Normalised concentrations of most significant metabolites in the Pentose Phosphate Pathway: 

A. ADP, B. NADPH, C. 6-Phosphogluconic acid, D. C3H7O6P (Including D-Glyceraldehyde  

3-phosphate and Dihydroxyacetone phosphate), E. C5H11O8P (Including D-Ribulose  

5-phosphate, Xylulose 5-phosphate, Ribose 1-phosphate and D-Ribose 5-phosphate),  

F. D-Ribose, G. Gluconolactone, H. Carbon dioxide, I. Adenosine monophosphate. Red – control, 

green – mechanical stress, blue – wind stress 

. 
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Gluconeogenesis Pathway 

Normalised concentrations of most significant metabolites in the Gluconeogenesis Pathway. 

A. NADPH, B. 3-Phosphoglyceric acid, C. ADP, D. Phosphoenolpyruvic acid, E. C3H7O6P (Including 

D-Glyceraldehyde 3-phosphate and Dihydroxyacetone phosphate), F. Hydrogen carbonate, G. 

C6H12O6 (Including D-Glucose, Beta-D-Glucose, Alpha-D-Glucose), H. Pyruvic acid, I. L-Lactic acid, 

J. C3H8O10P2 (Including Glyceric acid 1,3-biphosphate and 2,3-Diphosphoglyceric acid), K. Carbon 

dioxide. Red – control, green – mechanical stress, blue – wind stress. 
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Appendix 12B. Positive ionisation mode. 

Methylhistidine Metabolism 

Normalised concentrations of most significant metabolites in the Methylhistidine Metabolism: 

A. 3-Methylhistidine, B. L-Histidine, C. S-Adenosylhomocysteine, D. S-Adenosylmethionine. Red 

– control, green – mechanical stress, blue – wind stress. 
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Galactose Metabolism 

Normalised concentrations of most significant metabolites in the Galactose Metabolism: A. 

NADH, B. Raffinose, C. NAD, D. Maltotriose, E. Phosphate, F. S-Adenosylhomocysteine,  

G. S-Adenosylmethionine, H. Stachyose, I. Glycerol, J. Uridine 5’-diphosphate,  

K. 3-Methylhistidine, L. Adenosine triphosphate, M. C6H14O6 (Including Sorbitol and Galactitol), 

N. L-Histidine, O. C6H12O6 (Including D-Glucose, D-Galactose, D-Mannose, myo-Inositol, D-

Fructose and Alpha-D-Glucose), P. C12H22O11 (Including Alpha-Lactose and Sucrose). Red – 

control, green – mechancial stress, blue – wind stress. 
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Appendix 13.  

Normalised concentrations of most significant metabolites assigned to enriched pathways for 

ABR6 for negative and positive ionisation modes. 

 

 Appendix 13A. Negative ionisation mode.  

Nucleotide Sugars Metabolism 

Normalised concentrations of most significant metabolites in the Nucleotide Sugars 

Metabolism: A. NADH, B. UDP-D-Xylose, C. Pyrophosphate, D. Uridine diphosphate glucuronic 

acid, E. C15H24N2O17P2 (Including Uridine diphosphate glucose and Uridine diphosphate 

galactose), F. Zinc II ion, G. C6H13O9P (Including Galactose 1-phosphate, Glucose 6-phosphate 

and Glucose 1-phosphate), H. C6H12O6 (Including D-Galactose and Alpha-D-Glucose), I. Uridine 

triphosphate. Red – control, green – mechanical stress, blue – wind stress. 
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Galactose Metabolism 

Normalised concentrations of most significant metabolites in the Galactose Metabolism: A. 

NADH, B. C12H22O11 (Including Alpha-Lactose and Sucrose), C. Maltotriose, D. Pyrophosphate, E. 

C15H24N2O17P2 (Including Uridine diphosphate glucose and Uridine diphosphate galactose),  

F. Zinc II ion, G. C6H13O9P (Including Galactose 1-phosphate, Glucose 6-phosphate and Glucose 

1-phosphate), H. Uridine triphosphate, I. C6H12O6 (Including D-Glucose, D-Galactose,  

D-Mannose, myo-Inositol, D-Fructose and Alpha-D-Glucose), J. Raffinose, K. Stachyose. Red – 

control, green – mechanical stress, blue – wind stress. 
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Fructose and Mannose Degradation 

Normalised concentrations of most significant metabolites in the Fructose and Mannose 

Degradation: A. NADH, B. Guanosine triphosphate, C. Pyrophosphate, D. G. GDP-L-fucose, E. 

C3H7O6P (Including D-Glyceraldehyde 3-phosphate and Dihydroxyacetone phosphate), F. 

C6H14O12P2 (Including D-Fructose 2,6-bisphosphate and Fructose 1,6-bisphosphate), G. C6H13O9P 

(Including Fructose 1-phosphate, Mannose 6-phosphate, D-Mannose 1-phosphate and Fructose 

6-phosphate), H. Zinc II ion, I. C6H12O6 (Including D-Mannose, D-Fructose and Alpha-D-Glucose). 

Red – control, green – mechanical stress, blue – wind stress. 
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Glycolysis Pathway 

Normalised concentrations of most significant metabolites in the Glycolysis Pathway: A. NADH, 

B. C3H7O6P (Including D-Glyceraldehyde 3-phosphate and Dihydroxyacetone phosphate), C. 

C6H14O12P2 (Including Fructose 1,6-bisphosphate), D. C6H13O9P (Including Fructose 6-phosphate, 

Glucose 6-phosphate, Glucose 1-phosphate and Beta-D-Glucose 6-phosphate), E. C6H12O6 

(Including D-Glucose, Beta-D-Glucose and Alpha-D-Glucose), F. 3-Phosphoglyceric acid. Red – 

control, green – mechanical stress, blue – wind stress. 
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Sucrose Metabolism 

Normalised concentrations of most significant metabolites in the Starch and Sucrose 

Metabolism: A. NADH, B. C12H22O11 (Including D-Maltose and Sucrose), C. Pyrophosphate, D. 

C6H14O12P2 (Including: Alpha-D-Glucose 1,6-bisphosphate), E. 3-Phosphoglyceric acid, F. 

C15H24N2O17P2 (Including Uridine diphosphate glucose), G. Uridine diphosphate glucuronic acid, 

H. C6H13O9P (Including Glucose 6-phosphate and Glucose 1-phosphate), I. Glycogen, J. Uridine 

triphosphate, K. C6H12O6 (Including Alpha-D-Glucose and D-Fructose). Red – control, green – 

mechanical stress, blue – wind stress. 

 

 

 

 

 

 

 

 

 

 

 

 

  

A B C D 

E F G H 

I J K 



APPENDIX 

332 
 

Gluconeogenesis Pathway 

Normalised concentrations of most significant metabolites in the Gluconeogenesis Pathway: A. 

NADH, B. Guanosine triphosphate, C. Oxalacetic acid, D. Oxoglutaric acid, E. C3H7O6P (Including 

D-Glyceraldehyde 3-phosphate and Dihydroxyacetone phosphate), F. C6H14O12P2 (Including 

Fructose 1,6-bisphosphate), G. C6H13O9P (Including Beta-D-Glucose 6-phosphate, Glucose 1-

phosphate, Fructose 6-phosphate and Glucose 6-phosphate), H. 3-Phosphoglyceric acid, I. 

FC6H12O6 (Including Alpha-D-Glucose, D-Glucose and Beta-D-Glucose). Red – control, green – 

mechanical stress, blue – wind stress. 
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Appendix 13B. Positive ionisation mode.  

Galactose Metabolism  

Normalised concentrations of most significant metabolites in the Galactose Metabolism: A. 

C15H24N2O17P2 (Including: Uridine diphosphate glucose and Uridine diphosphate galactose),  

B. NAD, C. NADH, D. Stachyose, E. Sucrose, F. C18H32O16 (Including Raffinose and Maltotriose), 

G. ADP, H. Glycerol, I. C6H12O6 (Including D-Glucose, D-Fructose, D-Galactose, D-Mannose, 

Alpha-Lactose, myo-Inositol and Alpha-D-Glucose). Red – control, green – mechanical stress, 

blue – wind stress. 
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