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Abstract: Tuberculosis (TB) is a major global threat, mostly due to the development of antibiotic-
resistant forms of Mycobacterium tuberculosis, the causal agent of the disease. Driven by the pressing
need for new anti-mycobacterial agents several natural products (NPs) have been shown to have
in vitro activities against M. tuberculosis. The utility of any NP as a drug lead is augmented when
the anti-mycobacterial target(s) is unknown. To suggest these, we used a molecular reverse docking
approach to predict the interactions of 53 selected anti-mycobacterial NPs against known “drug-
gable” mycobacterial targets ClpP1P2, DprE1, InhA, KasA, PanK, PknB and Pks13. The docking
scores/binding free energies were predicted and calculated using AutoDock Vina along with physic-
ochemical and structural properties of the NPs, using PaDEL descriptors. These were compared to
the established inhibitor (control) drugs for each mycobacterial target. The specific interactions of
the bisbenzylisoquinoline alkaloids 2-nortiliacorinine, tiliacorine and 13′-bromotiliacorinine against
the targets PknB and DprE1 (−11.4, −10.9 and −9.8 kcal·mol−1; −12.7, −10.9 and −10.3 kcal·mol−1,
respectively) and the lignan α-cubebin and Pks13 (−11.0 kcal·mol−1) had significantly superior
docking scores compared to controls. Our approach can be used to suggest predicted targets for the
NP to be validated experimentally, but these in silico steps are likely to facilitate drug optimization.

Keywords: tuberculosis; reverse docking; natural products; anti-mycobacterial agents

1. Introduction

Tuberculosis (TB) is the leading cause of death from infectious diseases, with 10 million
new cases in 2017. About 1.7 billion people are estimated to have latent TB infection,
and are at risk of developing active TB disease during their lifetime [1]. The emergence of
multidrug-resistant (MDR) and extremely drug-resistant (XDR) TB is primarily due to the
improper use of the first-line anti-tubercular drug. The increased prevalence of such strains
has become a major obstacle in the treatment of TB and also a serious financial burden on
the health care sector. As a result, there is an urgent need for new cost-effective anti-TB
drugs with new mechanisms of action and less chance of developing resistance [2].

TB drug discovery has been based on the use of combinatorial chemistry and high-
throughput screening strategies in drug discovery, but recently, there has been an increased
interest in plant-based natural products (NP) as drugs [2]. Plants are an important source
of secondary metabolites that can have enormous therapeutic potential. They are still used
in traditional medicine in such nations as China and in economically developing countries.
Often knowledge of medicinal plants is passed verbally from generation-to-generation
without any proper documentation or scientific validation. However, medicinal plants
still represent a resource that can be further explored for potential “hit” compounds with
significant biological activity, i.e., drug leads [3]. These hit compounds are typically
found in biochemically complex extracts, and their identification can be considered to be
equivalent to searching for a “needle in a haystack”. This is usually approached through
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sequential rounds of bioassay informed purification but could be considerably accelerated
if candidate chemicals could be screened against known and “druggable” drug targets.
Crucially, the identification of these targets facilitates drug optimization for improved
efficacy and such reduced cytotoxicity [2].

Reverse docking is widely used to model interactions at the atomic level between a
small molecule (ligand) and a known macromolecule [4]. Molecular docking and other
bioinformatic tools represent cost-effective approaches to screen potential compounds
prior to in vitro cell culture-based assays or chemical modifications to accelerate the overall
drug discovery process. The importance of the reverse docking technique was evident
in its recent application in the identification of p38-alpha kinase as the molecular target
of anti-inflammatory natural products hybrids. This approach was directly linked to the
identification of esculentoside A’s target and mode of action [5,6]. In this present study,
we exploited the existing knowledge of anti-tubercular drug targets to predict the potential
modes of action of NPs known to have activity against TB. Seven molecular targets of
M. tuberculosis—ClpP1P2, DprE1, InhA, KasA, PanK, PknB and Pks13—were selected as
these are essential for bacterial survival, and their inhibition will affect mycobacterial
metabolism [7–18]. We herein predict the binding of the NPs in comparison with the estab-
lished inhibitor of the molecular target, which was referred to as the control. We show that
the specific interactions of the bisbenzylisoquinoline alkaloids 2-nortiliacorinine, tiliacorine
and 13’-bromotiliacorinine against PknB and DprE1 and the lignan α-cubebin with Pks13
had significantly superior docking scores. The predicted interactions here reported should
facilitate in vitro validation studies.

2. Results

A total of 53 NPs with reported anti-mycobacterial activity (≤100 mg·mL−1) were se-
lected [3] (Table 1). These were subjected to a series of in silico predictions to assess their
“druggability” and suggest their targets. The 53 NPs were organized into chemical classes
and then assessed for their individual binding energy against established antimicrobial
target proteins, ClpP1P2, DprE1, InhA, KasA, PanK, PknB and Pks13, which were retrieved
from Protein Data Bank (PDB). For ease of comparison, the binding energies associated
with all groups of studied NPs against each mycobacterial target are given as box-plots
and compared to the binding of the known anti-TB drug hit for each protein (Figure 1,
control bindings are shown with a dashed line).

Table 1. Plants and their molecules active against different Mycobacterium strains. a mono-resistant clinical and non-
clinical isolates, b multidrug-resistant (MDR) clinical and non-clinical isolates, c mycobacteria other than M. tuberculosis, d

Mycobacterium tuberculosis.

Plant Names Active Phytomolecules MIC (µg/mL) References

Andrographis paniculata Andrographolide - [19,20]

Aristolochia brevipes Benth.

6α-7-Dehydro-N-formyl-nornantenine >50 a,b,d

[21]N-Formylnornantenine >50 a,b,d

Aristolactam I 12.5–25 a,b,d

Aristolochia taliscana Hook and Arn.

Licarin A 3.12–25 a,b,d

[22]Licarin B 12.5–5 a,b,d

Eupomatenoid-7 6.25–50 a,b,d

Aristolochia elegans Mast.
Fargesin 12–50 a,b,d

[23](8R,8’R,9R)-Cubebin or
α-Cubebin 50–100 a,b,d

Artemisia capillaris Thunb.
Ursolic acid 12.5–50 a,b,c,d [24,25]

Hydroquinone 12.5–25 a,b,c,d [25]
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Table 1. Cont.

Plant Names Active Phytomolecules MIC (µg/mL) References

Azorella compacta Phil., A. madreporica Clos.

Azorellanol 12.5 b,d

[26]Mulin-11,13-dien-20-oic acid 25–50 b,d

Mulinol 12.5–25 b,d

Beilschmiedia tsangii Merr. Beilschmin A 2.5 d [27]

Blepharodon nitidum (Vell.) J.F. Macbr. 25-Hydroperoxycycloart-23-en-3β-ol 25 b [28]

Citrullus colocynthis (L.) Schrad. Cucurbitacin-E-2-o-β-d-glucopyranoside 25–62.5 a,b,c,d [29]

Clavija procera B. Ståhl Aegicerin 1.6–3.12 a,b,d [30]

Curcuma longa L.

Curcumin 100 d

[31]Demethoxycurcumin 50 d

Bisdemethoxycurcumin 25 d

Diospyros anisandra S.F. Blake

Plumbagin 1.5–62.5 b,c,d [32,33]

Maritinone or
8,8′-Biplumbagin 3.12 b,d

[32]
3,3′-Biplumbagin 3.12 b,d

Diospyros montana Diospyrin 8–250 b,c,d [33,34]

Euclea natalensis A. DC.

7-Methyljuglone 0.5–1.25 a,b,d [34]

Mamegakinone 100 d

[35]
Isodiospyrin 10 d

Neodiospyrin 10 d

Shinanolone 100 d

Ferula communis Linn. Ferulenol 1.25 c [36]

Feniculum vulgare Mill. 5-Hydroxy-furanocoumarin or bergaptol 100–200 b [37]

Juniperus communis subsp. communis var.
communis L.

Totarol 2–25 a,c,d [38]

Ferruginol 5 c

[39]Sandaracopimeric acid 30 c

4-Epiabietol 60 c

Justicia adhatoda L. or Adhatoda vesica Vasicine 200 d

Kaempferia galangal L. Ethyl-p-methoxycinnamate 50–100 b,d [40]

Lantana hispida Kunth Oleanolic acid 25–100 a,b,c,d [24,41]

Larrea tridentata Coville
Dihydroguaiaretic acid 12–50 b,d

[42]
4-Epi-larreatricin 25–50 b,d

Plectranthus grandidentatus
Gurke Abietane 3.12–25 b,d [43]

Plumeria bicolor Ruiz and Pav.
Plumericin 1.5–2 b,d

[44]
Isoplumericin 2–2.5 b,d

Struthanthus concinnus Obtusifoliol 50 d [45]

Tabernemontana elegans Stapf. or
Tiliacora triandra

Tiliacorinine 3.12–6.25 b,d

[46]2′-Nortiliacorinine 1.5–6.25 b,d

13′-Bromotiliacorinine 1.5–6.25 b,d
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Table 1. Cont.

Plant Names Active Phytomolecules MIC (µg/mL) References

Ventilago madraspatana Emodin 4–128 b,c [33]

Vetiveria zizanioides
α-Curcumene 31.25–125 a,b,c

[47]Valencene
62.5–250 a,b,c

Selina-3,7(11)-dieneMolecules 2021, 26, x FOR PEER REVIEW 4 of 15 
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Figure 1. Binding energies (kcal·mol−1) of groups of selected natural products (alkaloids, coumarins, diter-
penoids, lignans/neolignans, polyphenols, quinones, sesquiterpenoids, triterpenoids and others) and controls
(represented with dashed lines) against mycobacterial targets ClpP1P2, InhA, DprE1, KasA, PanK, PknB and
Pks13. Control inhibitors of each protein are, respectively, ZIL (N-[(benzyloxy)carbonyl]-l-isoleucyl-l-leucine),
BTZ043 (bedaquiline), isoniazid, TLM (thiolactomycin), ZVT(2-chloro-N-[1-(5-{[2-(4-fluorophenoxy)ethyl]sulfanyl}-4-
methyl-4H-1,2,4-triazol-3-yl)ethyl]benzamide),MIX(1,4-dihydroxy-5,8-bis({2-[(2-hydroxyethyl)amino]ethyl}amino)-9,10-
antracenedione)andI28(ethyl-5-hydroxy-4-[(4-methylpiperidin-1-yl)methyl]-2-phenyl-1-benzofuran-3-carboxylate).

Three targets, InhA, Pks13 and DprE1, exhibited poor binding to all of the studied NPs.
Only a few alkaloids and quinones exhibited lower energies (−11.4 to −10.5 kcal·mol−1)
than the control drug isoniazid (−10.4 kcal·mol−1) against InhA. Considering Pks13, only one
neolignan displayed lower energy (−11.0 kcal·mol−1) than the control drug I28 (ethyl 5-hydroxy-
4-[(4-methylpiperidin-1-yl)methyl]-2-phenyl-1-benzofuran-3-carboxylate) (−10.5 kcal·mol−1).
Similarly, only alkaloids displayed favorable binding energies (−12.7 to−10.2 kcal·mol−1), com-
pared to the control, BTZ043 (bedaquiline) (−10.1 kcal·mol−1) against DprE1. Indeed, alkaloids
exhibited very low binding energies (−11.4 to−8.7 kcal·mol−1) against PknB, when compared
with the control inhibitor MIX (1, 4-dihydroxy-5,8-bis({2-[(2-hydroxyethyl)amino]ethyl}amino)-
9,10-antracenedione) (−7.7 kcal·mol−1). In contrast, KasA and ClpP1P2 were shown to have
some binding energy to a wide range of natural product classes. For KasA and ClpP1P2,
binding was seen with coumarins, lignans/neolignans, polyphenols and quinones. KasA is also
bound by sesquiterpenoids and ClpP1P2, by triterpenoids. Although the PanK is predicted to
bind to different classes of NPs, the alkaloids and quinones had lower binding energies (−10.5 to



Molecules 2021, 26, 475 5 of 14

−8.5 kcal·mol−1) compared with the control ZVT (2-chloro-N-[1-(5-{[2-(4-fluorophenoxy)ethyl]
sulfanyl}-4-methyl-4H-1,2,4-triazol-3-yl)ethyl]benzamide) (−8.3 kcal·mol−1).

The average of MW presented by conventional anti-TB drugs [48] (358.5 g·mol−1)
contrasted with our NPs that typically had lower binding energies (MW > 500 g·mol−1).
However, the number of H-bonds acceptors of the NPs matched those of H-bonds acceptors
of conventional anti-TB drugs [48], the majority of which were below 10 H-bonds acceptors.
The same is observed with the number of rotational bonds, since 88% of conventional
anti-TB drugs have less than 10 rotational bonds [48].

PaDEL-Descriptor was used to assess the key physicochemical properties necessary
for an optimal binding between the NP with ClpP1P2, DprE1, InhA, KasA, PanK, PknB and
Pks13, compared to each respective control drug. PaDEL-Descriptor provided molecu-
lar weight (MW), partition coefficient (xLogP), rotatable bonds (nRotB), H-bond donors
(nHBDon_Lipinski), H-bond acceptors (nHBAcc_Lipinski) and topological polar surface
area (TopoPSA) (Supplementary Table S3). All components were assessed and checked for
toxicity and drug-likeness employing SWISS-ADME [49] including Lipinsky, Ghose, Veber,
Egan, Muegge, PAINS [50], and Brenk filters [51]. SwissADME evaluation did not post
PAINS alert for the molecules with higer binding energy (Supplementary Table S4).

For ClpP1P2, InhA and PanK, there was a clear tendency for molecules with a
higher topological polar surface area to have more favorable binding energies. This is
due, in part, to the low binding energies of quinones against these three protein targets
(Supplementary Figure S1). Higher MW appeared to have lower binding energies against
ClpP1P2, InhA, DprE1, PanK and PknB. In this higher MW category of natural prod-
uct, lower binding energies, usually lower than the control inhibitor, were mostly seen
with triterpenoids and sesquiterpenoids (Supplementary Figure S2). When the lipophilic-
ities of the NPs were analyzed compared to binding energies, no particular tendency
was observed (Supplementary Figure S3). The NP with more favorable binding energies
did not exhibit distinctive partition coefficients as indicated by xLogP values. For PanK,
DrpE1 and PknB, a higher number of H-bond acceptors (maximum of 8) was associated
with lower binding energies. No similar trend was seen for the number of H-bond donors
(Supplementary Figures S4 and S5). NPs with smaller rotation bonds were often linked to
lower binding energies (Supplementary Figure S6).

Unsupervised principal component analysis (PCA) was used to provide a multivari-
ate comparison of the physicochemical parameters of the selected NPs and 14 licensed
anti-TB drugs (Figure 2). There was a large clustering of most NPs and anti-TB drugs,
suggesting a significant commonality of properties. However, six anti-TB drugs (isoni-
azid, ethambutol, streptomycin, kanamycin, amikacin and levofloxacin, large red circle in
Figure 3) do not cluster with the NPs mainly due to their high hydrophilicity. The three
aminoglycosides—streptomycin, kanamycin and amikacin—also exhibit a high number
of H-bonds donors (n > 10), which does not conform to one of “Lipinski’s rule of five”.
Some NPs (selina-3,7(11)-diene, abietane and α-curcumene), represented in a large green
circle in Figure 3, possessed distinctive chemical properties due to lack of any H-bond ac-
ceptors or donors. This would exclude them from being possible drug candidates without
further derivatization.

Subsequently, a structural study was undertaken with the NPs that exhibited the
most favorable anti-mycobacterial profiles, i.e., show lower energies than the control
inhibitor (Figure 1). Thus, the interaction between the bisbenzylisoquinoline alkaloids 2-
nortiliacorinine, tiliacorine and 13′-bromotiliacorinine against the targets PknB and DprE1
were modeled.

The interaction of tiliacorine, nortiliacorinine and 13′-bromotiliacorine with PknB is
shown in Figure 3 and exhibited binding energies of −11.4, −10.9, and −9.8 kcal·mol−1,
respectively. These values are significantly lower than the binding energy found for the
control drug, MIX (−7.7 kcal·mol−1). The best docking positions of each of the three NPs
were compared, and these showed considerable overlap (Figure 4). Such commonality
of interaction could be related to inhibitory function and could guide drug optimization.
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In particular, a key feature here revealed is the interactions of the hydrophobic core of these
NPs with PnkB [49] a feature also seen with the planar dihydroxyanthraquinone moiety of
the control drug.
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The predicted interactions of tiliacorine, nortiliacorinine and 13′-bromotiliacorine with
DprE1 were also visualized (Figure 5). Again, the interactions for all these NPs appeared
to nearly superimpose. These showed better binding energies against DprE1, −12.7,
−10.9, and −10.3 kcal·mol−1, respectively, than the benzothiazinethione drug control
BTZ043 (−10.1 kcal·mol−1). The binding of DprE1 to tiliacorine, nortiliacorinine and 13′-
bromotiliacorine, is stabilized by several non-covalent interactions. The LigPlot+ analysis
shows that key van der Waals interactions with the residues Trp230, Val365, Lys367, Lys134,
Tyr415, His132, Pro116, Ile131, Ala417, Lys418, Arg58, Thr118, Trp16, Tyr60, Gly117 and
Tyr314 are responsible for the low binding energies of these structures with DprE1.
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The interaction between the lignanα-cubebin and Pks13 was examined (Figure 6) as it had
a lower docking scoring (−11.0 kcal·mol−1) compared to the control I28 (−10.5 kcal·mol−1).
α-cubebin interacts with Pks13 via two H-bonds with the residues Asp1644 and Gln1633 and
several hydrophobic interactions with the residues Tyr1637, Ser1636, Phe1670, Ile1643, Tyr1663,
Tyr1674, Ala1667, Asn1640 and Arg1641. The interaction with the residues Tyr1663, Tyr1674,
Asn1640, Asp1644 and Gln1633 are also key features in the binding of the control drug I28
against Pks13 [10].
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3. Discussion

Predictions of molecular docking are now well-established when assessing the interac-
tions between ligands and targets. The use of docking approaches has been facilitated by
the development of suitable software such as GOLD, FlexX, FRED, DOCK and particularly,
AutoDock Vina [52,53]. Such in silico reverse docking provides a numerical estimate of
the likelihood of interaction of a compound to its target. This approach can be extended to
identify the proteins which are likely in vivo binding sites, and therefore possible modes of
action [54–56]. For example, the target of the antibacterial and anti-fungal natural product
scytoscalarol was found to dock with EmbC, and this was linked with anti-mycobacterial
activity. Other compounds such as the β-carboline alkaloids 8-hydroxymanzamine A and
manzamine A were found to bind to the oxidoreductase InhA.

We here demonstrate how reverse docking can be used to assess large numbers of
anti-mycobacterial NPs to suggest key interactions and imply a mode of action. Our ap-
proach was to examine the literature for NPs with anti-mycobacterial activities, but whose
targets had not been previously characterized. Then, proteins known to be targeted by
established anti-mycobacterial drug leads were screened using the NP chemical struc-
tures. The aim was to identify natural product interactions whose docking energies were
as good as, or superior to, the established drug lead. The “druggable” mycobacterial
targets ClpP1P2, DprE1, InhA, KasA, PanK, PknB and Pks13, were all known to play
important roles in maintaining mycobacterial viability. ClpP1P2 carries out the energy-
dependent degradation of abnormal proteins within the cells during in vitro growth and
infection [57]. DprE1 is a decaprenylphosphoryl-d-ribose oxidase involved in the biosyn-
thesis of decaprenylphosphoryl-D-arabinose, an essential component of the mycobacterial
cell wall and thus is essential for cell growth and survival [11,58]. InhA is a known tar-
get of isoniazid, a first-line anti-tuberculosis drug essential for the synthesis of mycolic
acids. KasA is one of the enzymes responsible for the elongation of C16–26 fatty acyl
primers in the FAS-II system for mycolic acid production of M. tuberculosis [59]. Pantothen-
ate kinase (PanK) is a ubiquitous and essential enzyme that catalyzes the first step of the
coenzyme A biosynthetic pathway [17]. PknB is a very well-characterized mycobacterial
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serine/threonine-protein kinase that determines cell shape, morphology and possibly cell
division [9]. Pks13 is a polyketide synthase that catalyzes the final condensation step in
mycolic acid biosynthesis and is therefore essential for mycobacterial growth [60].

A key aspect of our approach was to identify several “drug-like” properties of the NPs
and compare them with conventional anti-TB drugs [21]. Our analyses first assessed the
chemical space occupied by the NPs against ClpP1P2, DprE1, InhA, KasA, PanK, PknB and
Pks13, which were compared with the respective control inhibitor. This identified NPs
which occupied the same “chemical space” as most of the anti-TB drugs. Only isoniazid,
ethambutol, streptomycin, kanamycin, amikacin and levofloxacin, exhibited higher hy-
drophilicity compared to the NP. This could indicate that a few NPs have high cytotoxicity
due to their higher relative lipophilicity. This will must be directly assessed through
experimental testing.

Our structural study focused on bisbenzylisoquinoline alkaloids 2-nortiliacorinine,
tiliacorine and 13′-bromotiliacorinine against the targets PknB and DprE1. These bisben-
zylisoquinoline alkaloids isolated from Tiliacora triandra roots, which are used in Thai
cuisine, were very effective in suppressing 59 isolated MDR-TB strains with MICs in the
range of 1.5–6.25 µg·mL−1 [46]. Structurally, these molecules are similar, but the minor
differences resulted in different binding properties. Tiliacorine, with the lowest binding
energy, formed two hydrogen bonds with the residues Tyr94 and Phe19 of PknB. However,
both nortiliacorinine and 13′-bromotiliacorine only formed one stable hydrogen bond
with Gly97 and Tyr94 (Figure 2). The bromide substitution at C-13 of 13′-bromotiliacorine
made the molecule less planar and thereby increased the binding energy through steric
impedance as seen with the superimposed docked conformations of all three molecules
(Figure 3). A key feature here revealed is the interactions of the hydrophobic core of these
NPs and the planar dihydroxy anthraquinone moiety of the control in the hydrophobic
“cage” of PnkB [18].

The importance of our modeling approach for drug optimization was demonstrated by
considering the binding of DprE1 to tiliacorine, nortiliacorinine and 13′-bromotiliacorine.
The interaction with these NPs is stabilized by several non-covalent interactions, but cru-
cially, these were distinctive from the binding simulations with BTZ043, where H-bonding,
hydrophobic and ionic interactions are responsible for the stabilization of the complex [61].
Additionally, the residue Cys387, before identified as critical for covalently binding to Ct325
(3-(hydroxyamino)-N-[(1R)-1-phenylethyl]-5-(trifluoromethyl) benzamide) is not involved
in the binding of any of the NPs. Overall, 13′-bromo-tiliacorinine has shown slightly better
anti-mycobacterial activity (and lower cytotoxicity against MRC-5 cell lines) than tiliacorine,
nortiliacorinine, despite the higher binding energies here reported. Other biochemical
assays are required to understand how the different chemical properties of these NPs
influence bacterial uptake, metabolism and target binding. Nonetheless, the molecular
interactions that we have defined can be used to inform chemical derivatization strategies
aiming to increase specificity and decrease toxicity.

α-cubebin, a dibenzyl butyrolactone lignan, has been isolated from several species in
various families, such as Aristolochiaceae, Myristicaceae, Rutaceae, and Piperaceae [62].
It is known to act as an insect antifeedant, as was noted with Anticarsia gemmatalis [63,64],
as well as being anti-tubercular [24]. However, α-cubebin displays only moderate activity
against several mono- and multi-drug-resistant isolates of M. tuberculosis (MICs ranging
50–100 µg·mL−1). Interestingly, it does not display cytotoxicity against LLCMK2 fibrob-
lasts [65], suggesting that α-cubebin could merit derivatization to make it a better drug
lead. α-cubebin exhibited a low binding energy value when docked to Pks13 and interacts
with some of the key residues within Pks13 as the drug inhibitor I28. Additionally, unlike
I28, α-cubebin has been predicted to bind to the protein tyrosine phosphatase B (PtpB)
of M. tuberculosis [66]. This suggested that α-cubebin had some unique distinct binding
characteristics with the M. tuberculosis proteome compared to 128. The information of
α-cubebin’s binding site will facilitate the optimization of this compound towards greater
efficacy and selectivity.
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In conclusion, we show how four promising NPs—tiliacorine, nortiliacorinine, 13′-
bromotiliacorine and α-cubebin—have very lower binding energies than the respective
controls against three “druggable” anti-mycobacterial targets PnkB, DprE1 and Pks13.
Due to problems in obtaining the NPs from natural sources or complex total synthesis, the
predicted in silico activity/binding will greatly facilitate drug optimization prior to further
studies. Even though in silico and in vitro results are not always correlated, our approach
based on reverse docking will generate hypotheses that should inform further in vitro
validation studies and aid the optimization of new and promising anti-TB natural products.

4. Materials and Methods

4.1. Selected Anti-Tubercular Natural Products

Information about the selected anti-mycobacterial NPs and their activity against TB in
minimum inhibitory concentration (MIC) is given in Table 1.

4.2. Ligand and Protein Selection

A total of 53 NPs with reported anti-mycobacterial activity ≤100 mg·mL−1 were
selected. All chemical structures were retrieved from the PubChem compound database
(NCBI) (http://www.pubchem.ncbi.nlm.nih.gov). The crystal structures and respective
controls of ClpP1P2 (PDB ID: 4U0G) [8], DprE1 (PDB ID: 6HEZ) [67], InhA (PDB ID:
1ENY) [14], KasA (PDB ID: 2WGE) [16], PanK type 1 (PDB ID: 4BFT) [68], PknB (PDB ID:
2FUM) [18] and Pks13 (PDB ID: 5V3X) [10] were retrieved from the RCSB Protein Data
Bank (PDB) database (https://www.rcsb.org).

4.3. Physicochemical and Structural Properties

In silico prediction of physicochemical and structural properties of the NPs was
performed using PaDEL-descriptor [69] including the descriptors: nHBAcc_Lipinski (ac-
ceptor H-bonds), nHBDon_Lipinski (donor H-bonds), nRotB (number of rotation bonds),
TopoPSA (topological polar surface area), MW (molecular weight) and XLogP (predic-
tion of logP based on the atom-type method). Chemical space analyses were conducted
with the NPs and 14 anti-TB drugs (ethambutol, isoniazid, pyrazinamide, rifampicin,
streptomycin, ciprofloxacin, levofloxacin, moxifloxacin, amikacin, kanamycin, linezolid,
bedaquiline, clofazimine and delamanid), comparing the descriptors above. Unsupervised
principal component analyses (PCA) were generated using the statistical analysis tool of
Metaboanalyst 4.0 [70].

4.4. Docking

The extended PDB format, PDBQT, was used to coordinate files to include atomic
partial charges [71]. All file conversions were performed using the open-source chemical
toolbox Open Babel 2.3.2 [72]. The ligand and protein structures were optimized using
AutoDock Tools software (AutoDock 1.5.6), which involved adding all hydrogen atoms
to the macromolecule, which is a step necessary for correct calculation of partial atomic
charges. Gasteiger charges are calculated for each atom of the macromolecule in AutoDock
1.5.6 [71].

NPs were docked against ClpP1P2, DprE1, InhA, KasA, PanK, PknB, and Pks13
along with each respective control inhibitors, ZIL (N-[(benzyloxy)carbonyl]-L-isoleucyl-
L-leucine), BTZ043, isoniazid, TLM (thiolactomycin), ZVT, MIX, I28. Molecular docking
calculations for all compounds with each of the proteins were performed using AutoDock
Vina 1.1.2. Docking calculation was generated with the software free energy binding
own scoring function. The binding affinity of the ligand was expressed in kcal·mol−1.
Nine different poses were calculated for each protein with the parameters num_modes = 9
and exhaustiveness = 16. The lowest energy conformation was chosen for binding model
analysis. Molecular interactions between ligand and protein were generated and analyzed
by LigPlot+ and depicted by PyMOL. PyMOL Molecular Graphics System, Version 2.0
Schrödinger (http://www.pymol.org) was used to prepare Figures.

http://www.pubchem.ncbi.nlm.nih.gov
https://www.rcsb.org
http://www.pymol.org
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To provide enough space for free movements of the ligands, the grid box was con-
structed to cover the active sites as defined using AutoDock 1.5.6. The grid points for
ClpP1P2 were set to 18 × 20 × 12, at a grid center of (x,y,z) −84.697, −2.336, 38.022 with
a spacing of 1 Å. For DprE1, the grid points were set to 20 × 20 × 20, at a grid center of
(x,y,z) 14.99, −20.507, 37.226 with a spacing of 1 Å. For InhA, the grid points were set to 26
× 24 × 22, at a grid center of (x,y,z) −5.111, 33.222, 13.410 with space ng of 1 Å. For KasA,
the grid points were set to 20 × 20 × 20, at a grid center of (x,y,z) 38.342, −7.033, 13.410
with a spacing of 1 Å. For PanK, the grid points were set to 20 × 20 × 20, at a grid center of
(x,y,z) −18.742, 13.919, 11.679 with a spacing of 1 Å. For PknB, the grid points were set to 21
× 20 × 20, at a grid center of (x,y,z) 61.518, 2.429, −25.588 with a spacing of 1 Å. For Pks13,
the grid points were set to 16 × 18 × 14, at a grid center of (x,y,z) 3.954, 27.324, 8.499 with a
spacing of 1 Å.

Supplementary Materials: The following are available online, Figure S1: Topological polar surface
(TopoPSA) and binding energy of studied natural products against ClpP1P2, DprE1, InhA, KasA,
PanK, PknB and Pks13, Figure S2: Molecular weight (MW) and binding energy of studied natural
products against ClpP1P2, DprE1, InhA, KasA, PanK, PknB and Pks13, Figure S3: Partition coefficient
(XLogP) and binding energy of studied natural products against ClpP1P2, DprE1, InhA, KasA, PanK,
PknB and Pks13, Figure S4: Number of H-bonds acceptors (nHBAcc_Lipinski) and binding energy of
studied natural products against ClpP1P2, DprE1, InhA, KasA, PanK, PknB and Pks13, Figure S5:
Number of H-bonds donors (nHBDon_Lipinski) and binding energy of studied natural products
against ClpP1P2, DprE1, InhA, KasA, PanK, PknB and Pks13, Figure S6: Number of rotational
bonds (nRotB) and binding energy of studied natural products against ClpP1P2, DprE1, InhA, KasA,
PanK, PknB and Pks13, Table S1: Structures of the selected natural products, Table S2: Structures of
inhibitor (control) drugs for each mycobacterial target, Table S3: The physiochemical properties using
PaDel-descriptor: molecular weight (MW), partition coefficient (xLogP), rotatable bonds (nRotB),
H-bond donors (nHBDon_Lipinski), H-bond acceptors (nHBAcc_Lipinski) and topological polar
surface area (TopoPSA), Table S4: List of ligand molecules chosen for testing with their corresponding
drug likeness and medicinal chemistry filters using SWISS ADME.
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