
Aberystwyth University

Constructing ANFIS with Sparse Data through Group-Based Rule Interpolation
Yang, Jing; Shang, Changjing; Li, Ying; Li, Fangyi; Shen, Liang; Shen, Qiang

Published in:
IEEE Transactions on Fuzzy Systems

DOI:
10.1109/TFUZZ.2021.3049949

Publication date:
2021

Citation for published version (APA):
Yang, J., Shang, C., Li, Y., Li, F., Shen, L., & Shen, Q. (2021). Constructing ANFIS with Sparse Data through
Group-Based Rule Interpolation: An Evolutionary Approach. IEEE Transactions on Fuzzy Systems.
https://doi.org/10.1109/TFUZZ.2021.3049949

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 11. Dec. 2021

https://doi.org/10.1109/TFUZZ.2021.3049949
https://pure.aber.ac.uk/portal/en/persons/changjing-shang(b892bfaa-ae7f-45c2-9082-7bfbf2b70a5e).html
https://pure.aber.ac.uk/portal/en/persons/qiang-shen(695ae0bf-c764-425b-9496-cca71f02cb57).html
https://pure.aber.ac.uk/portal/en/publications/constructing-anfis-with-sparse-data-through-groupbased-rule-interpolation(1764978c-ea33-42f9-ba96-a08ab4eb12ac).html
https://pure.aber.ac.uk/portal/en/publications/constructing-anfis-with-sparse-data-through-groupbased-rule-interpolation(1764978c-ea33-42f9-ba96-a08ab4eb12ac).html
https://doi.org/10.1109/TFUZZ.2021.3049949

1

Constructing ANFIS with Sparse Data
through Group-Based Rule Interpolation:

An Evolutionary Approach
Jing Yang, Changjing Shang, Ying Li, Fangyi Li, Liang Shen and Qiang Shen

Abstract—Adaptive-Network-based Fuzzy Inference System,
ANFIS, offers a popular and powerful fuzzy inference mech-
anism. As with many other advanced data driven techniques,
developing an effective ANFIS typically requires sufficient train-
ing data. However, in many real-world applications it is not
always straightforward to obtain a large amount of representative
data that covers the entire problem space to accomplish the
required training, seriously restricting the performance of a
learned ANFIS. This paper introduces a new ANFIS learning
approach through an evolutionary process, which is able to
generate an ANFIS with only a small number of training data in
a certain problem region, by interpolating well trained ANFISs
in the neighbouring regions. Such a process works by firstly
producing an initial population of candidate fuzzy rules in the
region of data shortage, through interpolating a rule dictionary
constructed from trained ANFISs in the neighbourhood regions.
The crossover and mutation operations over these candidate rules
are then executed in an effort to attain candidates of improved
performance. When this genetic learning process terminates the
chromosomes in the final population either collectively form
or each individually represent a learned ANFIS, depending on
whether a single fuzzy rule or a set of fuzzy rules representing
an entire ANFIS is implemented with a chromosome within
the evolving population. Comparative experimental evaluations
on both synthetic and real world datasets are carried out,
demonstrating that in spite of data shortage, the proposed
interpolation approach is able to produce ANFIS models that
significantly outperform those trained using existing learning
mechanisms.

Index Terms—ANFIS, data shortage, fuzzy rule interpolation,
ANFIS interpolation, rule dictionary, genetic algorithms.

I. INTRODUCTION

Fuzzy rule based inference systems have achieved signifi-
cant successes in performing many real world tasks, including
classification, regression and prediction [1], [2], [3]. Along
with the development of fuzzy systems different rule gen-
eration strategies have been proposed in the literature (e.g.,
[4], [5], [6], [7]). Among them is the means to construct
ANFIS [8] (Adaptive Network based Fuzzy Inference System)
which implements fuzzy inference within an adaptive network.

J. Yang and F. Li are with School of Computer Science and Engineering,
Northwestern Polytechnical University, China and Department of Computer
Science, Aberystwyth University, UK. (e-mail: {jiy6, fal2}@aber.ac.uk).

C. Shang and Q. Shen are with Department of Computer Science, Aberys-
twyth University, UK. (e-mail: {cns, qqs}@aber.ac.uk).

Y. Li is with School of Computer Science and Engineering, Northwestern
Polytechnical University, China. (e-mail: lybyp@nwpu.edu.cn).

L. Shen is with School of Information Engineering, Fujian Business
University, China. (e-mail: c6c123@gmail.com).

This work is partly supported by the Strategic Partner Acceleration Award
(80761-AU201), funded under the Sêr Cymru II programme, UK.

ANFIS is one of the most effective and popular fuzzy systems,
whilst being structurally simple it is powerful for approxi-
mately modelling highly non-linear problems [9]. The classical
learning procedure for building ANFISs works via extracting
useful knowledge in terms of a set of fuzzy rules directly from
training data. As such, normally a large amount of training data
is required to generate an effective ANFIS. Unfortunately, for
a range of real applications, especially those involving novel
problems (say, intelligence data analysis [10] and network
security modelling [11]), it is difficult or even impossible
to obtain sufficient data in the problem domain to execute
the required learning procedure. The shortage of training
data significantly degrades the performance and potential of
ANFISs.

A number of approaches have been proposed to address this
challenging practical issue. One is through transfer learning
[12], which works with the assistance of models learned
from other relevant domain regions where sufficient data
is available, instead of directly learning from data of the
problem region concerned [13], [14], [15], [16]. For easy cross
referencing, the problem region is hereafter interchangeably
termed target domain (TD), while each of the relevant regions
is referred to as a source domain (SD). Generally speaking,
transfer learning aims to transfer the knowledge accumulated
from data in SDs, to support predictive modelling in a certain
TD. It first constructs non-linear mappings between the target
and the source domains and then, transfers model parameters
from the SDs into those in the TD using such mappings. An
alternative approach is to utilise fuzzy rule interpolation (FRI)
techniques (e.g., [17], [18], [19], [20], [21]), enabling fuzzy
inference to be performed with an incomplete or sparse rule
base, where a given observation may not match any of the
existing rules. FRI works by interpolating a new rule for the
unmatched observation using neighbouring rules in the rule
base. For instance, each member of the popular family of scale
and move transformation based FRI approaches (e.g., [22],
[23], [24], [25], [26], [27]) derives an interpolated rule by
selecting and transforming rules that are the closest to a given
unfired observation, obtaining an inferred result in response to
the observation.

Inspired by the aforementioned techniques, a new approach
for ANFIS learning is proposed in this paper to cope with
the problem of training data shortage, termed ANFIS interpo-
lation. It aims to construct a new ANFIS in the TD (where
only limited training data is available) from two well trained
ANFISs in the neighbouring SDs (where sufficient data is

2

available for training relevant ANFISs).
The approach integrates the general ideas of FRI and trans-

fer learning, while possessing a number of specific character-
istics: 1) Unlike traditional FRI approaches, which interpolate
one single rule to perform inference for an unfired observation,
a group of fuzzy rules are collectively interpolated covering
the entire TD. 2) Instead of using Mamdani type of rules [28]
for knowledge representation, which almost all existing FRI
techniques (other than those reported in [29], [30], [31]) take,
Takagi-Sugeno-Kang (TSK) type of rules [32] are utilised.
3) The proposed approach handles situations that are rather
different from those dealt with by traditional FRI techniques,
where training data (or more generally the rules) regarding the
actual problem domain (namely, the TD) are extremely sparse,
but there are sufficient data (or rules) in the neighbouring
domains (or the SDs). That is, the knowledge about the TD is
so poor that traditional FRI methods simply fail to work (with
few rules available to carry out interpolation). Combining these
characteristics makes it a very difficult task to interpolate a set
of accurate rules in an effort to construct a required ANFIS.
The proposal is to interpolate a number of candidate fuzzy
rules first, forming an initial population which is then modified
via an evolutionary optimisation process subsequently. Of
course, if there were a fair amount of training data available
in the TD, then a traditional FRI that works for TSK models
would be sufficient to perform interpolation; that is, there
would not be a need for the separation of SDs from the TD
in the first place.

In general, evolutionary computation [33], [34] offers a
range of optimisation algorithms by analogy to natural evo-
lution processes. Whilst implemented in a stochastic man-
ner, such algorithms perform a highly effective search in
the problem hyperspace, efficiently directing the solution to
promising regions. Typical evolutionary algorithms such as
genetic algorithms (GAs) [35], genetic programming [36] and
particle swarm optimizers [37], have been widely employed
for a variety of theoretical and practical applications [38],
[39]. Applying an evolutionary computation method to aid in
building a fuzzy inference system injects learning capacity into
the underlying fuzzy systems, which is commonly referred to
as evolutionary fuzzy systems in the literature (e.g., [40], [41],
[42], [43]). Considering genetic algorithms being the most
popular technique for use in developing such systems, the
present work utilises a GA to implement ANFIS interpolation.

One of the key points of the proposed work is therefore, to
examine how an ANFIS may be encoded using a certain chro-
mosome representation. Without prejudgement, two alternative
forms of representing fuzzy rules are considered in this paper,
using either individual rule based representation or group of
rules (equivalently an entire ANFIS) based representation to
construct an initial population for evolving. The initial pop-
ulation is iteratively updated through crossover and mutation
operations, subject to the use of a fitness function, in order
to determine whether a chromosome may enter into the next
loop. Then, chromosomes of the highest fitness, namely rules
or ANFISs with the best performance, will be returned when
the iterative process terminates. If chromosomes represent
individual rules, they collectively form the required ANFIS;

otherwise, each returned chromosome is a learned ANFIS.
Such a resulting ANFIS will be fine tuned to obtain the final
improved ANFIS model, appropriate to deal with approximate
inference in the TD concerned.

The remainder of this paper is organised as follows. Section
II reviews the relevant background of ANFIS, FRI and GAs
for academic completeness. Section III details the proposed
evolutionary ANFIS interpolation approach. Experimental re-
sults are discussed in Section IV. Finally, Section V concludes
the paper and points out identified further research.

II. BACKGROUND

Relevant background work is introduced in this section,
including an illustration of ANFIS, an overview of FRI and an
outline of genetic algorithm. Whilst basic concepts are covered
for academic completeness, technical details regarding these
topics are beyond the scope of this paper.

A. ANFIS

ANFIS [8] stands for a type of fuzzy inference system that
is implemented within the framework of an adaptive network.
It provides an efficient way for dealing with highly nonlinear
problems and has been widely applied [44]. The information
content of an ANFIS includes the network structure and
the corresponding parameter learning mechanism. There are
totally five layers in a general ANFIS structure. An example
of two-input and one-output system is illustrated here, with
each input variable of the system described by two fuzzy sets.
In this case, the system’s rule base contains 4 fuzzy if-then
rules of Takagi and Sugeno’s type [45], as expressed below:
Rule 1: If x1 is A1 and x2 is A3, then y1 = p1x1 + q1x2 + r1
Rule 2: If x1 is A1 and x2 is A4, then y2 = p2x1 + q2x2 + r2
Rule 3: If x1 is A2 and x2 is A3, then y3 = p3x1 + q3x2 + r3
Rule 4: If x1 is A2 and x2 is A4, then y4 = p4x1 + q4x2 + r4

Structurally, such an ANFIS can be illustrated as shown
in Fig. 1, where square nodes in the first and fourth layer
are the adaptive nodes with modifiable parameters, and circle
nodes in the remaining layers involve fixed operations without
parameters. In the first layer, each square node is defined with
a membership function µAi(x), where i ∈ {1, · · · , 4}, x is
the input variable and Ai is a fuzzy set defining an imprecise
value of x. The most popularly applied function is triangular
shaped due to its simplicity, which is defined by

µA(x) =

 k1x+ b1 a0 ≤ x ≤ a1
k2x+ b2 a1 ≤ x ≤ a2

0 otherwise
(1)

where k1 = 1/(a1 − a0), b1 = −a0/(a1 − a0), k2 = 1/(a1 −
a2), and b2 = −a2/(a1 − a2) are named premise parameters,
with {a0, a1, a2} being the three vertexes of the triangular
membership function.

The second layer, Layer 2 multiplies the incoming mem-
bership value of each variable and outputs the product: wi =
µAi

(x1)×µAj
(x2) (i ∈ {1, 2}, j ∈ {3, 4}). The output of this

layer wi stands for the firing strength of a certain rule. Then
Layer 3 normalises each rule’s firing strength by computing the
relative proportion of a given rule’s firing strength to the total

3

Fig. 1. Architecture of an example ANFIS encoding four rules

of N rules’ firing strengths w̄i = wi/
∑N

j=1 wj (here N = 4,
i ∈ {1, · · · , 4}). In the fourth layer, each node is a square node
with a linear function w̄iyi = w̄i(pix1 + qix2 + ri), where
pi, qi, ri are referred to as consequent parameters. Finally,
Layer 5 is the output layer, computing the overall output in
response to the current input, i.e., y =

∑
i w̄iyi. Each layer

within a general ANFIS is summarised in Table I.

TABLE I
FUNCTIONALITY OF INDIVIDUAL LAYERS IN ANFIS

Layer Activity Parameter

1 Fuzzifying crisp value Premise parameter
2 Computing firing strength of each rule No
3 Normalising firing strength No
4 Computing local output Consequent parameter
5 Computing global output No

Given the network structure, the only uncertain part of
an ANFIS concerns the parameters in the first and fourth
layers. These parameters are trained using a hybrid learning
method combining gradient descent and Least Square Estima-
tion (LSE), which can be divided into a forward pass and
a backward pass. In the forward pass, the input values of
the training samples are fed forward to compute the output
with the premise parameters being fixed, and the consequent
parameters are optimised by LSE. Then, in the backward pass,
the consequent parameters are set to be fixed, while the error
rates between the computed output and the expected ones are
propagated backward, with the premise parameters updated
using the gradient descent method. Table II summarises the
activities in each pass [8].

TABLE II
TWO PASSES OF ANFIS LEARNING PROCEDURE

— Forward Pass Backward Pass

Premise parameters Fixed Gradient descent
Consequent parameters LSE Fixed

Signals Node outputs Error rates

B. Fuzzy Rule Interpolation

Fuzzy rule interpolation techniques are developed to per-
form fuzzy inference with an incomplete or sparse rule base.
A sparse rule base means that the problem space is not fully

covered by the rules, so that certain input observations cannot
match any rule and therefore, no conclusion can be drawn us-
ing traditional pattern matching methods (e.g., compositional
rule of inference [28]). All existing FRI methods make a
reasonable assumption: If a given observation is close to (but
does not match) the antecedents of certain rules in the sparse
rule base, then the conclusion should also be similar to the
consequents of those rules.

Without losing generality, for an unmatched observation, a
conventional FRI algorithm typically works by: 1) searching
for a small number (usually just two [46]) of the rules
closest to the observation within the sparse rule base, and 2)
interpolating a new rule by averaging the closest rules found.
For instance, suppose that an unfired observation A∗ and the
K closest rules are given as follows:

observation : X is A∗

closest rules : If X is Ai, then Y is Bi (2)

where i = 1, 2, · · · ,K. Then, the interpolated rule is often
generated as the weighted average of the closest rules:

interpolated rule : If X is A′, then Y is B′

where B′ =
∑
wiB

i

A′ =
∑
wiA

i
(3)

with {wi|i = 1, 2, · · · ,K} being the weights obtained by
computing the similarity degrees between Ai and A∗, subject
to the constraint that Rep(A′) = Rep(A∗), where Rep(A)
denotes the representative value of the fuzzy set A [20]. Note
that the representative value of a triangular fuzzy set as per
Eqn. (1) can be defined as Rep(A) = (a0 + a1 + a2)/3 [22].

Following the above general idea of FRI, many FRI methods
have been proposed in the literature. However, as indicated
previously, almost all such methods are based on the use
of Mamdani type of fuzzy model, which differs from the
underpinning representation of ANFISs that are a dialect of
TSK fuzzy models. This significantly justifies the necessity in
devising an approach that enables interpolation of ANFISs, as
to be presented later.

C. Genetic Algorithm

Inspired by observing natural evolution processes, evolu-
tionary computation [33], [34] is in general, proposed to
provide an effective and efficient way for searching optimal
solution in poorly understood and irregular problem spaces.
Typically, evolutionary algorithms work with a population of
individuals, in which each individual may be one or a set
of potential solutions in the solution space. Among various
evolutionary algorithms, GAs may be the most commonly
adopted and hence, are utilised in this work also.

Mainly owing to the conceptual simplicity and computa-
tional effectiveness GAs gain their popularity. In a GA imple-
mentation, each individual of the population is encoded as a
chromosome, which may be subsequently modified through
crossover and mutation subject to a certain probability. A
fitness function is utilised to evaluate the performance of every
chromosome within a population. The general implementation
of a GA can be summarised in the following steps:

(1) Initialize the population;

4

(2) Perform crossover and mutation on the population;
(3) Calculate the fitness of each chromosome;
(4) Select a portion of chromosomes for a new population;
(5) Loop to step (2) until a certain stop criterion is met.
Applying GAs for fuzzy systems modelling leads to tech-

niques for building a form of evolutionary fuzzy learning
systems. Typical approaches involve the development of proce-
dures for: 1) Parameter tuning – By assuming that the structure
of a fuzzy inference system is pre-defined, this procedure
adapts the system’s parameters [47] with respect to changes in
the model input. 2) Rule selection – By encoding a rule base
as a fixed-length chromosome, this procedure aims to control
the complexity of a fuzzy inference system, leaving less room
for redundant, incorrect or badly defined rules to exist [48].
3) Rule base construction – By encoding both the parameters
and the structure of a fuzzy system within each chromosome,
this procedure performs parameter estimation and structure
identification at the same time [49].

III. GA FOR ANFIS INTERPOLATION

This section presents the proposed novel ANFIS interpola-
tion approach, which is implemented via a GA. The problem
addressed can be outlined as follows: With only a small
number of training data in the target domain T , expressed
in the form of input-output pairs {(x, y)}, the process of
ANFIS interpolation is to construct an effective ANFIS Aint

over T , by interpolating two neighbouring ANFISs, A1 and
A2, defined on two source domains S1 and S2, respectively.
Fig. 2 summarises the entire interpolation process, consisting
of 3 main stages: i) population initialisation via observation-
guided interpolation of rules embedded in the source ANFISs,
based on the method of [30]; ii) evolution via a GA over the
initial population; and iii) ANFIS fine-tuning via the standard
ANFIS learning method as described in Section II-A (using the
given small number of training data in the target domain). The
entire evolutionary process will of course depend upon how
individuals are to be encoded in a population of chromosomes
and how each chromosome may be evaluated. Details of this
process are described below.

A. Chromosome Representation: Two Strategies

How to encode a potential solution with a chromosome is
a critical point in GAs. To reflect the fact that an ANFIS is
essentially a set of fuzzy rules, there are two strategies that
may be taken to represent an ANFIS model within a GA: 1)
Encode each underlying rule of the ANFIS as a chromosome,
and 2) Encode the entire ANFIS as a chromosome. Both types
of chromosome are introduced here.

1) Rule-based Chromosome Representation: This represen-
tation strategy encodes each rule of an ANFIS as a vector
of rule parameters, in the form of (antecedent parameters,
consequent parameters). For example, suppose that a rule
involving m antecedent variables that take triangular fuzzy
sets as values is expressed by:

If x1 is A1 and x2 is A2 . . . and xm is Am,

then y = p0 + p1x1 + p2x2 + · · ·+ pmxm
(4)

where each fuzzy set Ai (i = 1, 2, · · · ,m) contains 3
parameters (ai0, ai1, ai2) that respectively denote the three
vertices of the triangle. Then, the rule based chromosome can
be expressed such that

((a10, a11, a12), (a20, a21, a22), · · · ,
(am0, am1, am2), p0, p1, · · · , pm)

(5)

In general, using triangular fuzzy sets, if a rule contains m
antecedent variables, there will be 3m premise parameters
and m + 1 consequent parameters. Thus, the length of the
corresponding chromosome will be 3m+m+ 1 = 4m+ 1.

2) ANFIS-based Chromosome Representation: In this rep-
resentation, an entire ANFIS containing C rules is encoded
as one chromosome. That is, all these rules are collectively
encoded as one vector like the following:

(rule 1, rule 2, · · · , rule C) (6)

where each single rule is coded exactly the same as Eqn. (5).
In so doing, the length of an ANFIS based chromosome will
be C × (4m + 1), which is much longer than that of a rule
based one.

B. Population Initialisation

An initial population, composed of a number of interpolated
rules in the TD, needs to be generated first, in order to start
the evolutionary process. This is accomplished by adopting
the FRI mechanism of [30], over the given (sparse) training
data, with the assistance of a rule dictionary constructed by
extracting rules from the two source domain ANFISs A1 and
A2 (as shown in Fig. 2(b)). Details are as follows.

1) Constructing a rule dictionary: A rule dictionary is
developed by extracting and then storing rules from the given
source ANFISs. In particular, the rule dictionary D is designed
with an antecedent part Da and a consequent part Dc, to
separately store collected rule antecedents and consequents:
D = {Da, Dc}. Suppose that A1 and A2 consist of n1 and
n2 rules, respectively, and the extracted rules are expressed in
the following format:

RAt
i : if x1 is A

At
i1 and . . . and xm is AAt

im,

then yi =

m∑
j=0

pAt
ij xj

(7)

where t ∈ {1, 2}, m is the number of input variables, and pAt
i0

is the coefficient of the constant term (x0 = 1) in a certain
rule consequent.

It follows from the above that the antecedent part of the
dictionary Da ∈ Rm×n, consisting of all the rule antecedents:

Da = [da1 d
a
2 · · · dan] (8)

where each column dai = [AAt
i,1 AAt

i,2 · · ·A
At
i,m]T , t ∈ {1, 2}

contains all the antecedent fuzzy sets of one particular rule,
and n = n1 + n2 denotes the number of the columns.
Similarly, the corresponding consequent part of the dictionary
Dc ∈ R(m+1)×n is:

Dc = [dc1 d
c
2 · · · dcn] (9)

where each column dci = [pAt
i,0 p

At
i,1 p

At
i,2 · · · p

At
i,m]T , t ∈ {1, 2}.

5

Fig. 2. Flowchart of proposed approach. (a) Overall flowchart. (b) Population initialisation process. (c) Crossover process. (d) Mutation process.

2) Interpolating candidate rules: In order to form an ini-
tial population, a number of rules in the TD are required.
Traditional means for generating the initial population in a
GA usually use randomly set parameters in the rules. Whilst
this is practical for situations with sufficient training data it
becomes a significant challenge for the current case, where
only highly restricted sparse data is available. To address this
challenge, FRI is employed to interpolate rules in TD, in an
effort to set up an improved initial network, so as to be able to
produce a more effective model with less training data. Given
the above rule dictionary, a number of candidate rules in the
TD can indeed be obtained through interpolation by running
the following procedure.

To start with, the given training data {(x, y)} in the TD is
divided into C clusters. Here, C stands for the number of the
rules in the ANFIS to be interpolated and is determined by

C =
∏m

j=1b
n
(j)
1 + n

(j)
2

2
c, where n(j)1 is the number of mem-

bership functions in the jth variable of A1, n1 =
∏m

j=1 n
(j)
1 ,

and n2 =
∏m

j=1 n
(j)
2 . Clustering is utilised in order to

minimise the derivation of any redundant rules, so that similar
training data which belong to one cluster will (eventually)
only lead to one rule. It is implemented in the simpliest
‘variable by variable’ fashion (unless otherwise stated). That
is, clustering is iteratively applied to all training data according
to the first variable of the domain (with variables ordered in
any preferable order), and then, for each resulting cluster, it is
applied again to the data within the current cluster according to
the second variable, etc. Following this ’variable by variable’
clustering strategy, the resulting clusters will cover all possible
regions of the input variables.

Having obtained the clusters, for each cluster, a number of
candidate rules are interpolated to create the initial population.
However, the number of training data in each cluster may
be very different, and in certain clusters there may be just

one datum. For extreme cases where the number of train-
ing samples is smaller than C, certain clusters are simply
empty, covering no data at all, though such situations may
be rare. Therefore, instead of just utilising the raw training
data contained within the clusters, individual instances are
also artificially generated in an effort to enrich the original
sparse training data. For this, the centre of each cluster is
used as the seed to generate more individuals. In particular,
for those clusters without any training data, the seeds are set
to be the same as their neighbouring clusters (of course, such
initially identical settings will become different through the
evolutionary process).

For each cluster Ck, the centroid is denoted by c(k) =
(c1, c2, · · · , cm)T with regard to the m attributes. Use c(k)

as a seed, a number of artificial data (denoted by {O =
(o1, o2, · · · , om)T }) can be generated by adding Gaussian
white noise with the seed itself being the mean and a small
value (δ) being the standard deviation for each attribute. This
method borrows practical ideas often adopted in the field of
electrical engineering. The number of the individual instances
in each cluster is set subject to the constraint in which the
sum of cluster sizes will be the size of the required initial
population. For implementational simplicity, in this work, all
clusters are set to be of an equal size. Such an individual
generation process can be illustrated as per Fig. 3. From the
resulting data enriched clusters, for each individual instance
within a given cluster, a candidate rule can be generated
through interpolation that involves the following two steps.

Step 1. Selecting closest rules in rule dictionary:

Given the dictionary of the antecedent part Da, closest
rule selection is accomplished by computing the Euclidian
distance as defined by Eqn. (10) (although other distance
metrics may be used as alternatives if preferred), between the
current individual O and every column of Da:

6

Fig. 3. Individual generation from a seed.

di = d(dai , O) =

√√√√ m∑
j=1

d(AAt
ij , oj)

2 (10)

where d(AAt
ij , oj) = |Rep(AAt

ij) − oj |, t ∈ {1, 2}. Those K
columns resulting in the smallest distances are chosen as the
closest rules. The index set associated with the K selected
columns {dai } in Da is denoted by K. That is, ∀i ∈ K,
maxi{d({dai }, O)} < d({daj }, O), j /∈ K and |K| = K.
Step 2. Interpolating rules:

With the obtained closest columns {dai ; i ∈ K}, the
candidate rule for the current individual can be interpolated as
the weighted average of the selected rules. This process can be
seen as the reconstruction of O using {dai }. Thus, the weights
required for rule interpolation can be obtained by minimising
the following reconstruction error:

w = min
w
||O −

∑
i∈K

Rep(dai)wi||2, s.t.
∑
i∈K

wi = 1 (11)

where Rep(dai) = [Rep(AAt
i,1) Rep(AAt

i,2) · · ·Rep(AAt
i,m)]T ,

t ∈ {1, 2}, and wi denotes the relative weighting of the column
dai . This is a constraint optimisation problem with solution:
w(k) = (G−11)/(1TG−11), where G = (O1T −X)T (O1T −
X), 1 is a column vector of ones, and the columns of X are
the selected {{dai }, i ∈ K}.

Following the principles of FRI which performs reasoning
by analogy, the weights wi derived for the antecedent part
are applied to the consequent part to attain similarity. Thus,
the newly interpolated rule for the current individual has the
following format:

R : If x1 is A1 and . . . and xm is Am,

then y =

m∑
j=0

pjxj
(12)

where the premise and consequent parameters are calculated
by Eqn. (13) and Eqn. (14) respectively, with t ∈ {1, 2}.

Aj =
∑
i∈K

wiA
At
ij , j = 1, 2, · · · ,m. (13)

pj =
∑
i∈K

wip
At
ij , j = 0, 1, 2, · · · ,m. (14)

3) Generating initial population: By collecting all the
interpolated candidate rules, the initial population results.
Depending on which of the two chromosome representation
strategies is used, there are slightly differences when forming
the initial population. Using rule based chromosome repre-
sentation, all the candidate rules within one cluster form an

initial sub-population for this cluster. Therefore, there are C
initial sub-populations in total, each of which will initiate an
independent evolutionary learning process, as shown in Fig.
4(a). While using ANFIS based chromosome representation,
all the candidate rules are collected to form a global initial
population, as shown in the Fig. 4(b). Therefore, there is just
one initial population in this case.

C. Crossover and Mutation

For an evolutionary process, from the initial sub-population
or the entire population (depending upon which coding style
is used for chromosome representation), a subset of chro-
mosomes (of an even cardinality) are randomly selected to
perform crossover with a pre-specified crossover probability.
The chosen chromosomes are then, randomly paired up. For
each (so-called parent) pair (ch1, ch2), the standard ‘two-
point’ crossover is applied, in which a start position and
an end position are randomly determined and subsequently,
the genes between them are exchanged. In so doing, two
child chromosomes are generated per pair. This procedure is
illustrated in Fig. 2(c).

After crossover, mutation operation follows. Similar to
the crossover operation, a subset of the (sub-)population is
selected for mutation with a pre-determined probability. For
each chosen chromosome, a mutation position is randomly
generated. Then, the mutated chromosome is created by ran-
domly adding or subtracting a small value ε to the gene at that
position. The mutation procedure is illustrated in Fig. 2(d).

Note that as with common approaches in the literature, a
larger crossover probability and a smaller mutation probability
are empirically assumed.

D. Fitness Function

Fitness function is used to evaluate the performance of the
chromosomes so that better performers can be maintained to
enter the next iteration. For prediction and estimation tasks,
functions that compute the mean square error or the absolute
difference error are the most commonly adopted. In this work,
the fitness function is implemented on the basis of the RMSE
(Root-Mean-Squared Error), which is defined per chromosome
as follows:

E =

√∑N
i=1(gk −A(xk))2

N
(15)

where N is the number of training data, gk and A(xk) are the
kth expected and estimated output over the evolutionary pro-
cess, respectively. Suppose that the maximum error permitted
is Emax, then such a fitness function may be specified by

F = Emax − E (16)

For the present application, a meaningful fitness measure
should be given for an entire ANFIS instead of a single rule.
Thus, further consideration may be due, depending upon which
chromosome representation is utilised. For ANFIS based chro-
mosome representation, the fitness of each chromosome can
be directly obtained using the fitness function above, as per
Eqn. (16). However, if individual rule based chromosome

7

Fig. 4. Type of chromosome representation used in implementation. (a) Rule based chromosome. (b) ANFIS based chromosome.

representation is employed, the fitness of such a chromosome
is obtained using a score table that evaluates and records
the performance of every candidate rule, as per Table III,
where scoreij denotes the evaluated (fitness) value of the jth
candidate rule in the ith cluster and S is the size of candidates
in each cluster.

TABLE III
SCORE TABLE

Candidate
Cluster

1 2 · · · C

1 score11 score21 · · · scoreC1

2 score12 score22 · · · scoreC2

...
...

...
. . .

...
S score1S score2S · · · scoreCS

Note that to capture and reflect the essence of the fitness
of a candidate rule, computationally, scoreij is calculated as
the averaging performance of the jth candidate rule in the
ith cluster across a certain number of randomly generated
possible ANFISs. This is necessary because in dealing with
practical problems, the number of possible ANFISs can be
rather large. For example, suppose that there are 10 rules in
the rule base of an ANFIS, and that there are 5 candidates per
underlying rule. Then, the number of possible ANFISs will be
510, which is a huge figure that requires substantial storage and
computation power. Thus, in implementation, just a portion
of the possible ANFISs are randomly chosen for evaluation.
To balance effectiveness and efficiency, the number of chosen
possible ANFISs, denoted by Amax, may be set empirically
(and in this research, Amax = 500).

The evaluated ANFISs are subsequently sorted according
to their RMSEs in descending order. For individual rule-based
representation, the score table is initialised with each cell set
to zero and, for the kth sorted ANFIS (k ∈ {1, 2, . . . , Amax}),
record the candidate rules used, and the scores of those
relevant candidate rules are added by k. After doing this for
all those created possible ANFISs, the score table results. The
procedure for computing the score table is summarised as
given in Alg. 1.

Algorithm 1: Calculation of Score Table
Input:

Candidate rules;
C – Number of clusters;
S – Number of candidate rules in each cluster;
Amax – Number of ANFISs for evaluation.

1: Make a zero Score Table of S rows and C columns;
2: Make a zero Counting Table of S rows and C columns;
3: Make Amax possible ANFISs randomly and record

candidate rules used;
4: Evaluate ANFISs and sort them according to RMSE

in descending order;
5: for k = 1 to k = Amax do
6: for i = 1 to i = C do
7: record the candidate rule number j used;
8: Score Table: scoreij ← scoreij + k
9: Counting Table: countij ← countij + 1
10: end for
11: end for
12: for i = 1 to i = C do
13: for j = 1 to j = S do
14: Score Table: scoreij ← scoreij/countij
15: end for
16: end for
Output:

Score table of all candidate rules

E. Summary of GA-based ANFIS Interpolation

The proposed evolutionary ANFIS interpolation algorithms
are summarised as Alg. 2.

F. ANFIS Interpolation: Contrasting Two Algorithms

The two algorithms, implemented depending upon which
chromosome representation is employed, have already been il-
lustrated in Fig. 4. There exist three major differences between
these two implementations: 1) The objects that are evolved
during the evolutionary process are different. One using rule
based chromosome (termed ’Method 1’ hereafter) conducts
one evolutionary process per cluster, whilst the other using
ANFIS based chromosome (termed ’Method 2’) initialises the
population directly with ANFISs, conducting the evolutionary

8

Algorithm 2: Evolutionary ANFIS Interpolation
Input:

Source ANFISs in SDs: A1,A2

Sparse training data in TD
Population size (ANFIS chromosome): Q
- Population Initialization

1: Extract fuzzy rules {Ri} from A1 and A2;
2: Construct rule dictionary D by Eqn. (8) and (9);
3: Divide sparse training data into C clusters;
4: for each cluster do
5: Use centre of each cluster as seed, generate

a set of individuals;
6: for each individual do
7: Interpolate one candidate rule;
8: end for
9: end for
10: if chromosome is rule type then
11: for each cluster do
12: Collect candidate rules within current cluster,

to form an initial sub-population;
13: end for
14: else if chromosome is ANFIS type then
15: for i = 1 to i = Q do
16: for each cluster do
17: Choose one candidate rules in current cluster;
18: end for
19: Form an ANFIS chromosome by all chosen rules;
20: end for
21: Collect all ANFIS chromosomes as initial population;
22: end if

- Crossover and Mutation
23: Choose chromosomes for crossover with probability pc;
24: Do two-point crossover for chosen chromosomes;
25: Choose chromosomes for mutation with probability pm;
26: Do mutation for chosen chromosomes;

- Chromosome Evaluation
27: if chromosome is rule type then
28: Evaluate chromosomes using Score Table;
29: else if chromosome is ANFIS type then
30: Evaluate chromosomes using Eqn. (16);
31: end if
32: Update population by roulette selection;
33: Return to 23 until stop criteria is met;
Output:

Interpolated ANFIS Aint in TD

process only once. This is of course, the fundamental reason
for all the differences between these two algorithms. 2) The
population initialisation methods are different, as discussed
previously in Section III-B3. 3) The fitness measurement
means are different, as described in Section III-D.

Both algorithms have their own advantages and disadvan-
tages, as summarised below. In particular, the individual rule-
based approach requires less storage – Each chromosome only
represents one rule, meaning that it is generally much shorter
than a chromosome in ANFIS based method. This also leads to
less running time, as to be indicated in an illustrative example

later. However, the entire ANFIS-based representation offers
a more convenient means for evaluation – The process of
assessing the quality of chromosomes to decide whether any
of them will enter the next iteration can be directly evaluated
in this approach, whilst the evaluation step of rule based
chromosomes involves a much more complex procedure (using
a score table and using an additional parameter of Amax).

G. Fine-tuning of GA-learned ANFIS Model

A GA-learned network (through the process as described
above) is used as an intermediate network through the standard
ANFIS learning algorithm that was introduced in Section II-A.
Note that only the TD data is used in the fine-tuning process,
while the SD data is used for training the source ANFISs
only. Compared with the use of the original standard ANFIS
training procedure, which initialises the network parameters
as ’zeros’ or ’random values’, the proposed ANFIS learning
mechanism employs both fuzzy rule interpolation and GA-
based evolutionary procedure, in an effort to produce higher
quality initial network parameters. In so doing, the sparse
training data is used more efficiently in the fine-tuning proce-
dure for generating ANFIS of improved performance.

H. Complexity Analysis

The time complexity of the proposed methods (for both
the rule based and ANFIS based chromosome representation)
is analysed here. According to Alg. 2, there are generally
three steps in performing evolutionary ANFIS interpolation:
population initialisation, crossover and mutation, and chromo-
some evaluation. As indicated previously, triangular fuzzy sets
are utilised in implementing both methods (unless otherwise
stated) and hence, the complexity analysis only involves the
use of such fuzzy sets. The notations used are listed as follows:
m : number of antecedent attributes
n : number of fuzzy rules in rule dictionary
N : number of sparse training data points
C : number of clusters in training data
P : number of individuals in each cluster
Q : population size for ANFIS based chromosomes
Amax : number of ANFISs used in calculating score table
1) Rule based chromosome representation: In the ‘Popu-

lation Initialisation’ step, lines 1-2 extract the rule parame-
ters from sources ANFISs. There are totally n rules, with
4m + 1 parameters in each rule. Thus, running lines 1-
2 costs O(4mn + n). Following this, line 3 for clustering
takes O(NCm). Lines 4-9 repeat C ×P times implementing
candidate rule interpolation, each of which includes three sub-
steps: (1) selecting K closest rules (at the cost of O(n2)), (2)
calculating weights (at O(K)) and (3) generating new rules (at
O(4m+1)). Therefore, the complexity for computing lines 4-
9 is C×P×[O(n2)+O(K)+O(4m+1)] = O(CPn2). Next,
lines 10-13 jointly lead to C initial populations, costing O(C).
Hence, the sub-total complexity for this step is O(4mn+n)+
O(NCm) +O(CPn2) +O(C) = O(NCm) +O(CPn2).

In the ‘Crossover and Mutation’ step, the crossover and
mutation operation repeats C times. Line 23 selects pcP rules
for crossover, costing O(pcP). In line 24, there are b(pcP)/2c
pairs of chromosomes. For each pair, in the worst case, all

9

the parameters within the two chromosomes are exchanged,
taking O(4m+1). Then, in performing the mutation operation,
lines 25-26 take O(pmP). Thus, the sub-total complexity is
C × [O(pcP) + b(pcP)/2c × O(4m + 1) + O(pmP)] =
O(mCP).

The rule based chromosome uses a score table to implement
the ‘Chromosome Evaluation’ step. In running Alg. 1, lines 1-
2 take O(SC). Line 3 makes Amax ANFISs with C rules
in each, costing O(AmaxC). Line 4 costs O(A2

max) for
sorting the Amax RMSEs. Following this, lines 5-11 repeat
AmaxC times, costing O(AmaxC). Lines 12-16 repeat SC
times with a complexity of O(1) each time. Thus, the sub-
total complexity for the ‘Chromosome Evaluation’ step is
O(SC) +O(AmaxC) +O(A2

max) = O(A2
max).

In summary, the overall complexity for the proposed
approach with rule based chromosome is: O(NCm) +
O(CPn2) +O(mCP) +O(A2

max).
2) ANFIS based chromosome representation: For the

method that exploits ANFIS based chromosome representa-
tion, the ‘Population Initialisation’ step is almost the same
as that for the method using rule based chromosomes, expect
for its final population construction process as given in lines
15-20, which costs O(QC). Thus, running this ‘Population
Initialisation’ step is at the cost of O(4mn+n)+O(NCm)+
O(CPn2) + O(QC) = O(NCm) +O(CPn2) + O(QC).
Different from the method with rule based chromosome rep-
resentation, here, the crossover and mutation operation are
only implemented once within the population of the size Q.
Line 23 takes O(pcQ). In line 24 the crossover operation
repeats for b(pcQ)/2c times, and in the worst case, each
crossover incurs exchanges across all the C(4m + 1) pa-
rameters in each ANFIS based chromosome, thereby costing
O(C(4m+1)). Following this, lines 25-26 take O(pmQ). The
sub-total complexity for the ‘Crossover and Mutation’ step is
therefore, O(pcQ)+b(pcQ)/2c×O(C(4m+1))+O(pmQ) =
O(mCQ). Finally in the ‘Chromosome Evaluation’ step, line
30 evaluates all the Q chromosomes by sorting the related
RMSEs, costing O(Q2). Hence, the overall complexity for
the method with ANFIS based chromosome representation is:
O(NCm) +O(CPn2) +O(mCQ) +O(Q2).

TABLE IV
SUMMARY OF COMPLEXITY ANALYSIS

Main steps Rule-based chromosome ANFIS-based chromosome

Population
Initialization O(NCm) +O(CPn2)

O(NCm) +
O(CPn2) +O(QC)

Crossover
and Mutation O(mCP) O(mCQ)

Chromosome
Evaluation O(A2

max) O(Q2)

Overall O(NCm)+O(CPn2)+
O(mCP) +O(A2

max)
O(NCm)+O(CPn2)+
O(mCQ) +O(Q2)

For clarity, the outcomes of the above computational com-
plexity analysis are summarised in Table IV. Comparing the
overall complexity of running the method using rule based
chromosome representation and that using ANFIS based one,
it can be seen that the first two items (O(NCm)+O(CPn2))

in each are the same. Moreover, in implementations, Amax and
Q are usually set as the same number because both denote the
number of ANFISs to be evaluated. Thus, the only difference
between the complexities of these two methods lies in their
respective third items: (O(mCP) vs. O(mCQ)). From this
analysis, it can be concluded that the complexities of the two
proposed methods do not differ very much. The time complex-
ity of using the ANFIS based chromosome representation is
slightly higher than that of using the rule based one, because
that the value of Q is typically larger than that of P . This is
verified experimentally later.

IV. EXPERIMENTATION

This section presents a systematic experimental evaluation
of the proposed approach. Section IV-A provides the general
experimental set-up, including the parameters used, compar-
ative methods employed, and performance index measured.
Section IV-B validates the two proposed algorithms by looking
into a few synthetic function modelling cases, while Section
IV-C shows the effectiveness of the proposed approach in
performing TSK regression over ten benchmark datasets.

A. Experimental Set-up

In the experimental studies, triangular membership func-
tions are used in implementing the first layer of an ANFIS
due to their popularity and simplicity, unless otherwise stated.
Both normalised and unnormalised data are used, reflecting the
capability of the proposed approach in dealing with different
data representations. Particularly, original data is used without
normalisation in the synthetic data experiments for the conve-
nience of result illustration. While in the experiments involving
benchmark datasets, all input domains of the original data
are normalised to [0, 1]. Following the common practice, the
crossover and mutation probabilities are chosen as pc = 0.8
and pm = 0.2, respectively, unless otherwise stated. In setting
up the initial population, the number of candidate rules of each
cluster is set to P = 5. Note that P is the number of candidate
rules per cluster in the very original population before any
crossover and mutation, which differs in principle from the
figure S in Table III, that stands for the number of candidate
rules in each cluster in the evaluation step.

Regression results using different ANFISs are compared,
including: 1) An original ANFIS trained with the classical
ANFIS learning method, using the sparse data in the TD
only, named as ’Original ANFIS’ hereafter; 2) An interpolated
ANFIS obtained by the first ANFIS interpolation method [30],
named as ’Method 0’ (which interpolates one rule with respect
to the centre of each cluster without involving evolutionary
computation); 3) An interpolated ANFIS obtained by the pro-
posed ’Method 1’ (via rule based chromosome representation);
and 4) An interpolated ANFIS obtained by the proposed
’Method 2’ (via ANFIS based chromosome representation).

RMSE is taken to evaluate the performance of different
ANFISs, as per the definition of Eqn. (15), where N now
represents the number of the testing data points {xk} in the
TD; gk denotes the corresponding ground truth of the kth data
point; and A(xk) stands for the output of different ANFISs
on the data point xk. Obviously, a smaller RMSE indicates a

10

better performance, given otherwise the same conditions while
performing statistical analyses.

B. Experiments on Synthetic Data

In this set of experimental studies, synthetic data is created
by sampling each of three non-linear functions, including two
1-D functions (of different complexities) and one 2-D function,
the underlying functions used are listed in Table V.

TABLE V
FUNCTIONS USED

No. Function Domain range

1 cos(x) · x x ∈ [−10, 10]
2 sin(2x)/ex/5 x ∈ [−10, 10]
3 sin(x1/π)sin(x2/π) x1 ∈ [−30, 30], x2 ∈ [−10, 10]

1) Illustrative Example: This is presented in order to show
the main working procedures of the proposed ANFIS interpo-
lation approach and the differences between the two types of
chromosome representation. The first one dimensional non-
linear function [y = cos(x) · x] is used for giving the
illustrative example, the underlying function is plotted for
illustration in Fig. 5. As shown in Fig. 5, the input domain
[−10, 10] is divided into three parts to simulate the SDs and
the TD. In particular, there are totally 201 data points sampled
from this continuous function (with a sampling step of 0.1), in
which the data in the left part (67 data points, shown in dashed
line) forms the first source domain, which is used for training
the first source ANFIS A1, and the data in the right part (67
data points, shown in dotted line) forms the second source
domain for training the corresponding second ANFIS A2.
These two source ANFISs are pre-trained using the standard
ANFIS learning algorithm as described in Section II-A, with
4 and 5 fuzzy rules resulted, respectively. The remaining data
of the middle part (also 67 data points, shown in real line)
forms the target domain, it will be subsequently divided into
two sub-parts with a small portion (20%, 13 data points) for
training and the rest 80% (54 data points) for testing.

Fig. 5. Illustration of source data and target data.

Following the proposed approach, the fuzzy rules embedded
within the two well trained ANFISs A1 and A2 are extracted,
forming the columns of the rule dictionary, with 4+5 = 9 rules
in total, as shown in Table VI. Note that the rule dictionary is
the same for either the rule chromosome based method or the
ANFIS chromosome based one.

TABLE VI
RULE DICTIONARY

Rule Source ANFIS Antecedent (a0, a1, a2) Consequent

1 A1 (−12.2,−10.02,−7.83) 14.09x+ 149.33

2 A1 (−9.95,−7.82,−5.55) 7.16x+ 55.41

3 A1 (−7.79,−5.59,−3.39) 13.83x+ 72.83

4 A1 (−5.62,−3.39,−1.2) 10.99x+ 40.84

5 A2 (1.75, 3.39, 5.09) 7.16x− 27.67

6 A2 (3.39, 5.05, 6.7) 10.02x− 48.99

7 A2 (5.01, 6.7, 8.33) 6.36x− 36.38

8 A2 (6.71, 8.35, 9.96) 3.30x− 31.56

9 A2 (8.36, 10.01, 11.65) 9.81x− 106.53

Next, the sparse training data (13 data points) is clustered
into C clusters, C = b(4 + 5)/2c = 4. Details of each cluster
are listed in Table VII, from which it can be seen that the
number of raw data in each cluster is different, particularly
in Cluster 1 there is only one data point. Thus, it can be
very difficult to control the size of the initial population while
scaling up, if the raw data is directly used. This issue is
remedied with artificially generated individual instances, using
the cluster centre as the seed by adding Gaussian white noise
from it, with the seed itself being the mean and a small number
δ (here δ = 0.2) acting as the standard deviation. For example,
the individuals of Cluster 3 are generated, consisting of the
cluster centre itself (1.26) and the four randomly generated
data points (1.13, 1.37, 0.89 and 1.05). Thus, the number of
individuals P in each cluster becomes the same.

TABLE VII
GENERATING INDIVIDUALS FOR EACH CLUSTER (P = 5)

Cluster Center Raw data Generated individuals

1 -2.3 -2.3 -2.3,-2.43,-2.18,-2.67,-2.5

2 -0.62 0.2,-1.1,-0.4,-0.6,-1.2 -0.62,-0.75,-0.5,-0.99,-0.82

3 1.26 1.4,0.9,1.5 1.26,1.13,1.37,0.89,1.05

4 2.52 2.2,3.2,2,2.7 2.52,2.38,2.63,2.15,2.31

For each generated individual, a candidate rule is interpo-
lated. As such, there are totally 4× 5 = 20 interpolated rules
(namely, number of clusters times that of individuals in each
cluster), which are subsequently used to construct the initial
population. For the method using rule based chromosome
representation, the initial population contains 4 initial sub-
populations, each with 5 chromosomes. For the method with
ANFIS based chromosome representation, one candidate rule
in each cluster is chosen and used for constructing possible
ANFISs. There are 5 different choices in each cluster, so the
number of possible ANFISs is 54 = 625, which is also the
size of the initial population. This is a doable number for the
current simple illustrative case, however, for more complex
problems with tens of clusters, this number will become
excessively large and therefore, will require a huge storage
space. In order to keep this under control, only a portion of all
possible ANFISs are randomly selected as the chromosomes
in implementing the initial population. Denote the number
of possible ANFISs to take as Q, then, as stated previously,

11

Q = 500 is empirically set in the present experimental studies.
In this illustrative example, the length of the individual rule-

based chromosome is (4m+1) = 5 (m = 1), while that of the
entire ANFIS-based chromosome is 5× 4 = 20 (with 4 rules
in each ANFIS). From this setup of the initial population, the
crossover and mutation operations are followed. The changes
incurred to the number of the chromosome during and after
one evolutionary iteration is shown in Table VIII. Of course,
for rule based chromosome representation, this number is
counted within one sub-population. Taking the method run-
ning on the entire ANFIS-based chromosome representation
as an example, the population is initialised as Q = 500
chromosomes at the beginning. Then 400 chromosomes are
chosen as parents for crossover with a crossover probability
pc = 0.8, resulting in 400 children. After crossover, the
number of chromosomes becomes 500+400=900. Similarly,
100 chromosomes are chosen for mutation with a mutation
probability pm = 0.2, resulting in 100 new chromosomes,
and the number of chromosomes after mutation becomes
900+100=1000. Finally, the evaluation process will select 500
chromosomes out of these 1000 to enter into the next iteration,
ensuring that the population size remains the same.

TABLE VIII
NUMBER OF CHROMOSOMES IN ONE (SUB-)POPULATION DURING
DIFFERENT PROCESSES WITHIN ONE EVOLUTIONARY ITERATION

Initial
population

After
Crossover

After
Mutation

After
Evaluation

Rule
chromosome 5 9 10 5

ANFIS
chromosome 500 900 1000 500

As mentioned previously, the methods for fitness evaluation
of the two types of chromosome encoding are different.
For the entire ANFIS-based representation, the evaluation is
simply done using Eqn. (16) and hence, its illustration is
omitted. Only is the evaluation of the individual rule-based
chromosomes explained below.

Having produced four sub-populations (each with 10 chro-
mosomes), a score table of size 10× 4 is computed according
to Alg. 1. Fig. 6 presents four instances of computed tables.
Firstly, the score table is initialised as a zero table of size
10 × 4, as illustrated in Table (a) of this figure. Then, 500
(Amax) possible ANFISs are randomly generated, with the
rules used in these ANFISs recoded. The resulting ANFISs are
evaluated using Eqn. (15) and are sorted in descending order
according to their RMSEs. In this illustrative example, the first
ANFIS (with the largest RMSE) is composed of 4 candidate
rules indexed by candidates [3, 10, 6, 4]. That is, the first rule
of this ANFIS is the third candidate rule (or chromosome) in
cluster 1, the second rule is the tenth candidate in cluster 2,
the third rule is the sixth candidate in cluster 3, and the last
rule is the fourth candidate rule in cluster 4. The value in each
of the four corresponding locations (or cells) in the score table
is therefore, added by 1, resulting in Table (b) of Fig. 6. Next,
given the ordered indices [1, 7, 6, 10] of the second ANFIS,
the values in their corresponding locations are added by 2,
leading to Table (c) of Fig. 6. This process is repeated for all

of the 500 ANFISs. Averaging over such 500 tables results in
the final score table that consists of the scores or fitness of
all candidate rules, as shown in Table (d) of Fig. 6, where the
candidate rules with the largest average score in each cluster
are highlighted in bold. Of course, here, the scores are the
averages of how many times a certain candidate rule is utilised
by the randomly generated (500) ANFISs.

Fig. 6. Example for score table computation

2) Accuracy and Runtime Performance: The experimental
results of all three function modelling case studies are pre-
sented here. The classical 5×5-fold cross validation is applied
in the experiments to statistically evaluate the performance of
different ANFISs. The mean and standard deviation values of
RMSE using different ANFISs are listed in the first half of
Table IX, while the visual result of one randomly selected
fold regarding the first function modelling problem is shown
in Fig. 7 as an illustrative example.

As can be seen from the results, the ‘Original ANFIS’
gives the worst outcomes (which is not surprising due to data
shortage in the TD). While the existing interpolation-aided
approach (of [30]), i.e., ‘Method 0’ shows an already sig-
nificantly improved performance over the ‘Original ANFIS’,
the GA-based algorithms produce further enhanced results.
Quantitatively, running either ‘Method 1’ or ‘Method 2’ leads
to smaller RMSE values with a narrower standard deviation,
as shown in Table IX. Qualitatively, the shape of the estimated
function by either of the proposed methods is much closer to
that of the ground truth, as depicted in Fig. 7.

Comparing the two proposed algorithms themselves, the re-
sults demonstrate that ‘Method 1’ (which represents individual
rules as chromosomes) performs slightly better than ‘Method
2’ (which expresses an entire ANFIS as one chromosome),
for this function modelling problem. The likely reason for
this is that, as the rule based chromosomes are shorter than
the ANFIS based ones, there are more opportunities for
crossover and mutation operations to take effect under the

12

TABLE IX
ACCURACY (MEAN ± STANDARD DEVIATION) AND RUNNING TIME

(SECONDS) OF DIFFERENT METHODS ON SYNTHETIC DATA

Methods Function 1 Function 2 Function 3 Run time

Original
ANFIS

0.913±
1.184

1.329±
1.153

0.468±
0.244

0.32±
0.21

Method 0 0.364±
0.406

0.905±
0.743

0.351±
0.148

0.65±
0.26

Method 1 0.294±
0.401

0.691±
0.461

0.334±
0.147

40.21±
27.33

Method 2 0.317±
0.441

0.794±
0.552

0.325±
0.096

55.42±
29.70

LR 1.243±
0.055

0.772±
0.022

0.471±
0.007

3.04±
2.52

SVR 1.234±
0.064

0.789±
0.030

0.470±
0.007

3.44±
2.13

CART 1.302±
0.329

1.394±
0.235

0.393±
0.037

3.32±
1.75

RF 0.547±
0.133

0.805±
0.167

0.408±
0.024

3.61±
0.78

E-ANFIS 1.552±
0.478

0.836±
0.048

0.476±
0.012

359.21±
126.42

Fig. 7. Visual illustration of one-fold result by different ANFISs

same probabilistic set up.
Both implementations for the proposed ANFIS interpolation

approach are also compared with five conventional machine
learning methods: linear regression (LR), support vector re-
gression (SVR), classification and regression tree (CART),
random forest (RF), and an evolutionary ANFIS method (E-
ANFIS [50]) in which the genetic algorithm is used to learn
the network parameters (without interpolation). The evaluation
results are listed in the second half of Table IX. From the
accuracy over the three function modelling case studies, it can
be observed that the proposed ANFIS interpolation methods
(‘Method 1’ or ‘Method 2’) perform better in terms of mean
error values. Although the classical machine learning meth-
ods (especially the LR approach) may give better standard
deviation values, their overall accuracy is lower than what is

achieved by the proposed methods.
The average running time (also showing in the ‘Mean
± Standard deviation’ form) of different methods over the
three function modelling cases is shown in the last col-
umn of Table IX. Comparing the two proposed methods
with other approaches, as can be expected, they run faster
than ‘E-ANFIS’ but incur more computation than the rest.
However, the considerably improved accuracy they gain over
the other approaches justifies this increase in computational
cost. Comparing the two proposed methods themselves, it
can be seen that the method employing individual rule-based
chromosome representation consumes less time, this conforms
to the theoretical analysis presented in Section III-H.

C. Experiments on Real Data

A number of investigations are carried out here, looking into
the issues regarding accuracy, amount of training data and key
GA parameters (namely, crossover and mutation rates).

1) Datasets and Experimental Environment: Table X lists
the ten popular benchmark real-world regression datasets,
taken from the KEEL data repository [51], which are used
here to further evaluate the performance of both GA-based
ANFIS interpolation algorithms.

TABLE X
DATASETS USED IN EXPERIMENTAL STUDY

Dataset Attribute No. Instance No.
Diabetes 2 43
Plastic 2 1650
Quake 3 2178
Laser 4 993
AutoMPG6 5 392
Delta-ail 5 7129
Friedman 5 1200
Dee 6 365
Delta-elv 6 9517
ANACALT 7 4052

To conduct this set of experimental investigations, the SDs
and TD are created in a similar manner to the synthetic data
experiments, by splitting each entire dataset into three parts
according to one of the input variables. For example, the
Quake dataset has 3 input variables (‘Longitude’, ‘Latitude’
and ‘Depth’). This is divided into three sub-datasets with
regard to the values of the variable ‘Longitude’. In particular,
instances whose ‘Longitude’ value is smaller than −40 form
the first SD with 593 instances, those whose ‘Longitude’ value
is between [−40, 92] form the TD with 332 instances, and the
remaining 1253 instances form the second SD. The same as
the synthetic data experiments reported previously, only 20%
(66 instances) of the data in TD are used for training, with
the remaining 80% (266 instances) used for testing.

2) Accuracy Analysis: The 5×5-fold cross validation re-
sults over the ten datasets are shown in Table XI, with the
average RMSE values listed in the last row and the best
results indicated in bold. Similar observation can be made
from Table XI to those results obtained from the synthetic data

13

experiments. The ‘Original ANFIS’ gives the poorest perfor-
mance as expected, and the other three interpolated ANFISs
improve the inference results obviously. Amongst the three
interpolation-based methods, both GA-based implementations
outperform ‘Method 0’ for most cases, though there is no clear
winner between the two themselves.

3) Comparison with other machine learning methods: As
with the experiments on synthetic data, the proposed approach
is also compared with five conventional machine learning
methods: LR, SVR, CART, RF, and E-ANFIS. Different
from those earlier experiments (where triangular membership
functions and a very simple clustering method were used), to
enrich the experimental investigation, Gaussian membership
functions and fuzzy c-means clustering are utilised here, in
implementing the proposed ANFIS interpolation methods. The
results are listed in Table XII with the best highlighted in bold.

The proposed approach outperforms the others in a substan-
tial majority of cases. For the three particular cases (of LR on
the Quake dataset, SVR on Dee, and RF on AutoMPG6) where
an existing method shows the best outcome, the accuracy of
the proposed approach is close. In particular, the proposed
approach with ANFIS based chromosome representation gives
by far, the best mean value of the overall RMSE averaged
across the ten datasets, and the proposed with rule based chro-
mosome representation achieves the second best (as shown
in the second last row of Table XII). This superiority in
performance remains to be true taking into consideration the
standard deviations. Note however, that in terms of the overall
averaged standard deviation measure, the classical SVR has
the least value, demonstrating its excellent stability.

The last row of Table XII shows the running time per-
formance of different methods. Similar observations as per
those on the synthetic data case studies can be drawn: The
proposed methods are faster than E-ANFIS, but slower than
the rest, since the evolutionary process incurs more compu-
tation. Between the two proposed methods themselves, it is
clear that the implementation with ANFIS-based chromosome
representation consumes more time. Again, this is expected,
reflecting the result of theoretical analysis on computational
complexity.

4) Effects of Sparsity in Training Data: This particular
experimentation is conducted to investigate the performance
of different ANFISs in response to the use of different per-
centages of training data, instead of just the 20% and 80%
split. To focus on the discussion about the consequences of
varying the amount of training data, only the results on the
‘Quake’ dataset are shown here, as given in Fig. 8.

It can be seen that in general, the RMSE values decrease as
the percentage of training data increases, independent of which
learning method is used. Importantly, also independent of what
percentage of training data is utilised, the three interpolated
ANFISs all remarkably outperform the ‘Original ANFIS’
(until training data reaches 90%). Furthermore, the RMSE
values of the three interpolated ANFISs generally decline
much less rapidly than the RMSE of the ‘Original ANFIS’,
indicating that the interpolated ANFISs are less sensitive
to the decrease of training data. Indeed, the performances
of these three methods using 30% data are very close to

those using 90% data. When the available data percentage
is 20%, the results are of course the same as discussed in
the preceding sub-section, with the three interpolated ANFISs
significantly beating the original and the two GA-based meth-
ods outperforming ‘Method 0’. When only 10% of data is
available for training, the performances of the interpolated
methods degrade but still beat the ‘Oriainl ANFIS’ trained
with the conventional method substantially. Most interestingly,
even in this case, either of the two proposed methods retains
its superior performance over ‘Method 0’, especially when
rule based chromosome representation is used. Overall, the
proposed ANFIS interpolation algorithms via evolutionary
computation achieve a much better result while using less
training data than the existing techniques.

Fig. 8. Performance vs. percentage of training data used

5) Effects of Crossover and Mutation Probability: The
crossover probability pc and mutation probability pm are two
important parameters in the evolutionary process. Generally,
larger crossover probability and smaller mutation probability
are a common choice for most evolutionary problems. In the
above-reported experimental investigations, these two param-
eters are set to pc = 0.8, pa = 0.2 respectively. In order to ex-
amine the effects on performance of using different pc and pm,
these probabilities are varied from 0.1 to 0.9 (with step=0.1)
in this experimentation. This part of the experimental studies
is focussed on the use of the entire ANFIS based chromosome
representation since the number of the individual rule-based
chromosome in each sub-population is very small (only 5 in
the experiments, so the results of using different pc and pm do
not differ much in the first place). The resulting box-plot over
the ’Quake’ dataset is shown in Fig. 9. In conformation with
common knowledge in evolutionary computation the results
reveal that larger pc as well as smaller pm give a better value
for both the median and the interquartile range.

Fig. 9. (a) Performance vs. crossover rate. (b) Performance vs. mutation rate.

14

TABLE XI
EXPERIMENTAL RESULTS USING DIFFERENT ANFISS ON REAL WORLD DATASETS

Dataset
Mean ± Standard deviation of ANFISs

Original ANFIS Method 0 Method 1 Method 2

Diabetes 1.527± 0.829 1.058± 0.497 0.989± 0.359 1.011± 0.451

Plastic 2.003± 0.246 1.843± 0.105 1.836± 0.093 1.828± 0.078

Quake 1.264± 0.641 0.542± 0.248 0.458± 0.175 0.498± 0.225

Laser 12.087± 4.739 3.757± 2.724 3.476± 1.069 3.279± 1.262

AutoMPG6 12.770± 1.431 5.120± 1.038 4.776± 1.015 4.987± 0.843

Delta-ail 3.53× 10−4 ± 1.09× 10−4 1.78× 10−4 ± 1.06× 10−5 1.73×10−4±8.87×10−6 1.75× 10−4 ± 9.49× 10−6

Friedman 5.177± 0.633 3.004± 0.409 2.900± 0.335 2.930± 0.405

Dee 1.017± 0.339 0.870± 0.225 0.824± 0.188 0.839± 0.191

Delta-elv 0.0034± 6.195× 10−4 0.0020± 1.69× 10−4 0.0018± 7.11× 10−5 0.0018± 5.90× 10−5

ANACALT 1.209± 0.966 0.994± 0.768 0.999± 0.675 0.986± 0.681

Average 3.706± 0.982 1.719± 0.601 1.626± 0.391 1.635± 0.412

TABLE XII
ACCURACY (MEAN ± STANDARD DEVIATION) AND RUNNING TIME (SECONDS) OF DIFFERENT METHODS ON REAL DATA

Dataset
Results of different methods

LR SVR CART RF E-ANFIS Method 1 Method 2

Diabetes 0.533± 0.100 0.441± 0.052 0.779± 0.130 0.391± 0.052 1.172± 1.100 0.362± 0.045 0.377± 0.050

Plastic 1.623± 0.044 2.285± 0.037 2.245± 0.128 1.886± 0.069 1.865± 0.348 1.620± 0.046 1.603± 0.056

Quake 0.194± 0.006 0.206± 0.007 0.243± 0.015 0.195± 0.008 0.259± 0.153 0.198± 0.006 0.199± 0.007

Laser 6.934± 1.337 15.522± 0.435 12.872± 2.685 7.680± 0.801 5.644± 2.636 4.547± 1.632 4.030± 1.539

AutoMPG6 3.569± 0.685 3.336± 0.353 4.044± 0.559 3.282± 0.331 5.625± 1.275 3.628± 0.696 3.575± 0.572

Delta-ail 1.55× 10−4 ±
1.48× 10−6

1.59× 10−4 ±
1.66× 10−6

1.91× 10−4 ±
7.33× 10−6

1.66× 10−4 ±
5.13× 10−6

1.64× 10−4 ±
3.86× 10−5

1.50×10−4±
1.45× 10−6

1.51× 10−4 ±
1.46× 10−6

Friedman 2.795± 0.049 2.771± 0.047 7.224± 0.483 2.771± 0.156 2.408± 1.325 2.041± 0.075 2.030± 0.052

Dee 0.424± 0.023 0.416± 0.021 1.016± 0.063 0.482± 0.035 0.810± 0.366 0.477± 0.048 0.486± 0.064

Delta-elv 1.51× 10−3 ±
1.17× 10−5

1.53× 10−3 ±
1.23× 10−5

1.95× 10−3 ±
5.19× 10−5

1.51× 10−3 ±
1.26× 10−5

1.55× 10−3 ±
1.78× 10−4

1.48×10−3±
1.03× 10−5

1.48×10−3±
1.09× 10−5

ANACALT 0.405± 0.020 0.333± 0.021 0.299± 0.038 0.292± 0.043 0.357± 0.100 0.280± 0.029 0.279± 0.028

Average 1.648± 0.227 2.531± 0.097 2.873± 0.409 1.698± 0.149 1.814± 0.811 1.316± 0.258 1.258± 0.236

Run time 1.46 ± 0.15 13.34 ± 15.57 2.38 ± 1.85 3.47 ± 2.5 225.3 ± 171.65 35.15 ± 20.2 64.91 ± 36.55

V. CONCLUSION

This paper has presented a new ANFIS interpolation ap-
proach via evolutionary computation (implemented with GAs),
in an effort to improve the learning of ANFIS when there is
significant shortage of training data for the problem concerned.
Different from typical existing FRI algorithms, the concept
of ‘ANFIS interpolation’ means the interpolation of an entire
inference system, or a whole group of rules in the target
region. This is enabled with the assistance of well-trained
ANFISs in the neighbouring regions. Two forms of chromo-
some representation are considered: one encoding individual
rules and the other expressing an entire possible ANFIS. The
proposed approach has been tested on both three function mod-
elling problems with synthetic data and real world regression
problems involving 10 benchmark datasets, demonstrating its
ability in significantly improving the inference performance
when compared with existing techniques.

This work only involves two source ANFISs in the in-
terpolation procedure, but the framework can be extended
to interpolation of multiple ANFISs. Currently, the simplest
evolutionary process (genetic algorithm) is utilised, imple-

menting the underlying ideas with more advanced evolution-
ary algorithms may lead to further strengthened interpolative
results. Purely for convenience in implementation, the sizes
of different clusters are herein assumed to be the same,
but there is no reason why an adaptive mechanism cannot
be introduced to form different cluster sizes, reflecting the
amounts of training data scales given per cluster. This may
further improve the learning performance. Also, expanding
and evaluating the proposed work with more real world tasks
forms a necessary direction of continuing the present work. A
particular focus on the practical application of this research is
for image modelling and analysis, especially in the areas of
remote sensing [52], [53] and medical diagnosis [54], [55].

REFERENCES

[1] A. Esfahanipour and W. Aghamiri, “Adapted neuro-fuzzy inference
system on indirect approach tsk fuzzy rule base for stock market
analysis,” Expert Syst. Appl., vol. 37, no. 7, pp. 4742–4748, 2010.

[2] J. Alcalá-Fdez and J. M. Alonso, “A survey of fuzzy systems software:
Taxonomy, current research trends, and prospects,” IEEE Trans. Fuzzy
Syst., vol. 24, no. 1, pp. 40–56, 2016.

15

[3] Y. Jiang, Z. Deng et al., “Recognition of epileptic eeg signals using a
novel multiview tsk fuzzy system,” IEEE Trans. Fuzzy Syst., vol. 25,
no. 1, pp. 3–20, 2017.

[4] N. K. Kasabov and Q. Song, “Denfis: dynamic evolving neural-fuzzy
inference system and its application for time-series prediction,” IEEE
Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144–154, 2002.

[5] K. B. Cho and B. H. Wang, “Radial basis function based adaptive fuzzy
systems and their applications to system identification and prediction,”
Fuzzy Sets Syst., vol. 83, no. 3, pp. 325–339, 1996.

[6] J.-H. Chiang and P.-Y. Hao, “Support vector learning mechanism for
fuzzy rule-based modeling: a new approach,” IEEE Trans. Fuzzy Syst.,
vol. 12, no. 1, pp. 1–12, 2004.

[7] T. Chen, C. Shang, P. Su, and Q. Shen, “Induction of accurate and
interpretable fuzzy rules from preliminary crisp representation,” Knowl.
Based Syst., vol. 146, pp. 152–166, 2018.

[8] J.-S. Jang, “Anfis: adaptive-network-based fuzzy inference system,”
IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665–685, 1993.

[9] C.-C. Chuang, S.-F. Su, and S.-S. Chen, “Robust tsk fuzzy modeling for
function approximation with outliers,” IEEE Trans. Fuzzy Syst., vol. 9,
no. 6, pp. 810–821, 2001.

[10] S. Jin, R. Diao, C. Quek, and Q. Shen, “Backward fuzzy rule interpo-
lation,” IEEE Trans. Fuzzy Syst., vol. 22, no. 6, pp. 1682–1698, 2014.

[11] N. Naik, R. Diao, and Q. Shen, “Dynamic fuzzy rule interpolation and
its application to intrusion detection,” IEEE Trans. Fuzzy Syst., vol. 26,
no. 4, pp. 1878–1892, 2018.

[12] S. J. Pan, Q. Yang et al., “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, 2010.

[13] H. Zuo, G. Zhang, W. Pedrycz, V. Behbood, and J. Lu, “Fuzzy regression
transfer learning in takagi–sugeno fuzzy models,” IEEE Trans. Fuzzy
Syst., vol. 25, no. 6, pp. 1795–1807, 2017.

[14] H. Zuo, G. Zhang, V. Behbood, and J. Lu, “Granular fuzzy regression
domain adaptation in takagi–sugeno fuzzy models,” IEEE Trans. Fuzzy
Syst., vol. 26, no. 2, pp. 847–858, 2018.

[15] Z. Deng, Y. Jiang, F.-L. Chung, H. Ishibuchi, and S. Wang, “Knowledge-
leverage-based fuzzy system and its modeling.” IEEE Trans. Fuzzy Syst.,
vol. 21, no. 4, pp. 597–609, 2013.

[16] J. Shell and S. Coupland, “Fuzzy transfer learning: methodology and
application,” Inf. Sci., vol. 293, pp. 59–79, 2015.

[17] D. Tikk, I. Joó, L. T. Kóczy, P. Várlaki, B. Moser, and T. D. Gedeon,
“Stability of interpolative fuzzy kh controllers,” Fuzzy Sets Sys., vol.
125, no. 1, pp. 105–119, 2002.

[18] L. Kóczy and K. Hirota, “Approximate reasoning by linear rule interpo-
lation and general approximation,” Int. J. Approx. Reason., vol. 9, no. 3,
pp. 197–225, 1993.

[19] P. Baranyi, L. T. Kóczy, and T. D. Gedeon, “A generalized concept for
fuzzy rule interpolation,” IEEE Trans. Fuzzy Syst., vol. 12, no. 6, pp.
820–837, 2004.

[20] Z. Huang and Q. Shen, “Fuzzy interpolative reasoning via scale and
move transformations,” IEEE Trans. Fuzzy Syst., vol. 14, no. 2, pp.
340–359, 2006.

[21] S.-M. Chen and Y.-C. Chang, “Weighted fuzzy rule interpolation based
on ga-based weight-learning techniques,” IEEE Trans. Fuzzy Syst.,
vol. 19, no. 4, pp. 729–744, 2011.

[22] Z. Huang and Q. Shen, “Fuzzy interpolation and extrapolation: A
practical approach,” IEEE Trans. Fuzzy Syst., vol. 16, no. 1, pp. 13–
28, 2008.

[23] L. Yang and Q. Shen, “Adaptive fuzzy interpolation,” IEEE Trans. Fuzzy
Syst., vol. 19, no. 6, pp. 1107–1126, 2011.

[24] L. Yang, F. Chao, and Q. Shen, “Generalised adaptive fuzzy rule
interpolation,” IEEE Trans. Fuzzy Syst., vol. 25, pp. 839–853, 2017.

[25] C. Chen, MacParthalain, L. Y. N., Price, P., C. Quek, and Q. Shen,
“Rough-fuzzy rule interpolation,” Inf. Sci., vol. 351, pp. 1–17, 2016.

[26] F. Li, C. Shang, Y. Li, J. Yang, and Q. Shen, “Fuzzy rule based
interpolative reasoning supported by attribute ranking,” IEEE Trans.
Fuzzy Syst., vol. 26, no. 5, pp. 2758–2773, 2018.

[27] F. Li, Y. Li, C. Shang, and Q. Shen, “Fuzzy knowledge-based prediction
through weighted rule interpolation,” IEEE Trans. Cybern., vol. 50,
no. 10, pp. 4508–4517, 2020.

[28] E. Mamdani, “Application of fuzzy logic to approximate reasoning using
linguistic synthesis,” IEEE Trans. Comput., vol. 26, no. 12, pp. 1182–
1191, 1977.

[29] J. Li, L. Yang, Y. Qu, and G. Sexton, “An extended takagi–sugeno–
kang inference system (tsk+) with fuzzy interpolation and its rule base
generation,” Soft Comput., vol. 22, no. 10, pp. 3155–3170, 2018.

[30] J. Yang, C. Shang, Y. Li, F. Li, and Q. Shen, “Anfis construction with
sparse data via group rule interpolation,” IEEE Trans. Cybern., doi:
10.1109/TCYB.2019.2952267.

[31] T. Chen, C. Shang, J. Yang, F. Li, and Q. Shen, “A new approach for
transformation-based fuzzy rule interpolation,” IEEE Trans. Fuzzy Syst.,
vol. 28, no. 12, pp. 3330–3344, 2020.

[32] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” IEEE Trans. Syst., Man, Cybern.,
no. 1, pp. 116–132, 1985.

[33] T. Bäck, U. Hammel, and H.-P. Schwefel, “Evolutionary computation:
Comments on the history and current state,” IEEE Trans. Evol. Comput.,
vol. 1, no. 1, pp. 3–17, 1997.

[34] T. Bäck, D. B. Fogel, and Z. Michalewicz, Evolutionary computation 1:
Basic algorithms and operators. CRC press, 2018.

[35] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and
J. R. Woodward, “Genetic improvement of software: a comprehensive
survey,” IEEE Trans. Evol. Comput., vol. 22, no. 3, pp. 415–432, 2017.

[36] A. Agapitos, R. Loughran et al., “A survey of statistical machine learning
elements in genetic programming,” IEEE Transactions on Evolutionary
Computation, vol. 23, no. 6, pp. 1029–1048, 2019.

[37] Y. Zhang, S. Wang, and G. Ji, “A comprehensive survey on particle
swarm optimization algorithm and its applications,” Mathematical Prob-
lems in Engineering, vol. 2015, 2015.

[38] R. V. Kulkarni and G. K. Venayagamoorthy, “Particle swarm optimiza-
tion in wireless-sensor networks: A brief survey,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 41, no. 2, pp. 262–267, 2010.

[39] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolu-
tionary computation approaches to feature selection,” IEEE Trans. Evol.
Comput., vol. 20, no. 4, pp. 606–626, 2015.

[40] Y. Shi, R. Eberhart, and Y. Chen, “Implementation of evolutionary fuzzy
systems,” IEEE Trans. Fuzzy Syst., vol. 7, no. 2, pp. 109–119, 1999.

[41] O. Cordón, “A historical review of evolutionary learning methods for
mamdani-type fuzzy rule-based systems: Designing interpretable genetic
fuzzy systems,” Int. J. Approx. Reason., vol. 52, no. 6, pp. 894–913,
2011.

[42] P. Angelov, D. P. Filev, and N. Kasabov, Evolving intelligent systems:
methodology and applications. John Wiley & Sons, 2010, vol. 12.

[43] X. Gu, Q. Shen, and P. Angelov, “Particle swarm optimized
autonomous learning fuzzy system,” IEEE Trans. Cybern., doi:
10.1109/TCYB.2020.2967462.

[44] Z. J. Viharos and K. B. Kis, “Survey on neuro-fuzzy systems and their
applications in technical diagnostics and measurement,” Measurement,
vol. 67, pp. 126–136, 2015.

[45] T. Takagi and M. Sugeno, “Derivation of fuzzy control rules from human
operator’s control actions,” IFAC Proceedings Volumes, vol. 16, no. 13,
pp. 55–60, 1983.

[46] F. Li, C. Shang, Y. Li, J. Yang, and Q. Shen, “Interpolation with just two
nearest neighbouring weighted fuzzy rules,” IEEE Trans. Fuzzy Syst.,
vol. 28, no. 9, pp. 2255–2262, 2020.

[47] F. Herrera, M. Lozano, and J. L. Verdegay, “Tuning fuzzy logic
controllers by genetic algorithms,” Int. J. Approx. Reason., vol. 12, no.
3-4, pp. 299–315, 1995.

[48] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Selecting fuzzy
if-then rules for classification problems using genetic algorithms,” IEEE
Trans. Fuzzy Syst., vol. 3, no. 3, pp. 260–270, 1995.

[49] O. Cord et al., Genetic fuzzy systems: evolutionary tuning and learning
of fuzzy knowledge bases. World Scientific, 2001, vol. 19.

[50] S. Mousavi, S. Mirinezhad, and V. Lyashenko, “An evolutionary-based
adaptive neuro-fuzzy expert system as a family counselor before mar-
riage with the aim of divorce rate reduction,” Artigence, vol. 1, pp. 1–16,
05 2018.

[51] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. Garcı́a, and F. Her-
rera, “Keel data-mining software tool: data set repository, integration of
algorithms and experimental analysis framework.” Journal of Multiple-
Valued Logic & Soft Computing, vol. 17, 2011.

[52] J. Yang, Y. Li, J. Chan, and Q. Shen, “Image fusion for spatial
enhancement of hyperspectral image via pixel group based non-local
sparse representation,” Remote Sensing, vol. 9, no. 1, p. 53, 2017.

[53] H. Zhang, Y. Li, Y. Jiang, P. Wang, Q. Shen, and C. Shen, “Hyperspectral
classification based on lightweight 3d-cnn with transfer learning,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 57, no. 8, pp.
5813–5828, 2019.

[54] N. MacParthalain, R. Jensen, Q. Shen, and R. Zwiggelaar, “Fuzzy-rough
approaches for mammographic risk analysis,” Intelligent Data Analysis,
vol. 14, no. 2, pp. 225–244, 2010.

[55] F. Li, C. Shang, Y. Li, and Q. Shen, “Interpretable mammographic
mass classification with fuzzy interpolative reasoning,” Knowledge-
Based Systems, vol. 191, p. 105279, 2020.

