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Index measures for oak decline severity using phenotypic descriptors 
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A B S T R A C T   

Oak decline syndromes such as Acute Oak Decline (AOD) and Chronic Oak Decline (COD) are becoming 
increasingly prevalent and with this comes the need for more quantitative, sensitive and standardised visual oak 
health monitoring. 

Phenotyping protocols were developed to specifically measure oak decline severity and were based on a 
comprehensive set of simple to measure phenotypic descriptors. A total of 36 phenotypic measurements 
describing oak decline status included aspects of tree size, crown condition, the presence of biotic agents and a 
number of derived composite descriptors. 

Phenotypic measurements were collected from a total of 174 Quercus robur, surveyed from 9 sites across 
England and included healthy, AOD, COD and AOD trees in remission. Using these data, the Phenotypic Decline 
Index (PDI) and the Decline Acuteness Index (DAI) were developed to quantitatively describe and differentiate 
the acute and chronic oak decline severity spectrum. These decline indexes were derived from unsupervised 
random forest machine learning models, trained using the collected phenotypic data. 

The suitability of the decline indexes for describing decline severity and type were assessed by comparing 
decline index scores to manual decline status classifications along with an assessment of descriptor importance 
and contribution to the decline index models. Crown condition and trees size descriptors such as ‘composite 
crown volume’ contributed positively to the PDI. Trees with smaller crowns in poor condition had greater PDI 
values. Tree stature and the presence of stem bleeding contributed highly to the DAI, allowing differentiation 
between trees with AOD and COD syndromes. AOD trees had relatively larger stature and the presence of stem 
bleeding where as COD trees had small stature and stem bleeding was absent. 

The oak decline indexes are simple but sensitive measures of tree decline severity and allow easy comparisons 
of oak trees both spatially and temporally. These have the potential to provide useful tools for forest monitoring 
and management as well application to remote sensing and omics research.   

1. Introduction 

Trees and forests across the globe face threats from a changing 
climate. Notably warming and an increase in drought episodes can 
adversely affect the health status of individual trees, causing vegetation 
changes at the landscape scale (Choat et al., 2012; Millar and Ste
phenson, 2015; Allen et al., 2015). Within this context, biotic agents 
(pests and diseases) can flourish and often drive mortality (Kautz et al., 
2017; Jactel et al., 2012). Monitoring vegetation changes and under
standing the underlying processes affecting tree health are important 
first steps to predicting the scale and extent of these threats (Hartmann 
et al., 2018) and plan future policies for planting and mitigation efforts 
(Bradford and Bell, 2017). Current omics and remote sensing 

approaches provide powerful tools to document and understand these 
changes across multiple scales (from cellular to tree to landscape scales), 
but an important prerequisite is the ability to accurately describe tree 
health status, so that even subtle changes can be documented (Dungey 
et al., 2018; Hornero et al., 2020). Phenotyping, documenting the 
physical traits of an individual or group, is thus a crucial first step 
relevant to studies across disciplines and further, it is necessary to un
derstand how these measurements combine to describe health status. 

Oak decline is expected to become increasingly prevalent in the UK 
and across Europe with the onset of climate change (Sturrock et al., 
2011; Petr et al., 2014; Brown et al., 2018). Oak declines are complex 
syndromes that are facilitated by a variety of both abiotic and biotic 
factors. Abiotic factors can include both long-term predisposing and 
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one-off inciting factors. Biotic agents can include insect infestation such 
as larvae of the bark boring beetle Agrilus biguttatus or bacterial stem 
bleeds associated with Acute Oak Decline (AOD) (Brown et al., 2017b; 
Denman et al., 2014), as well as a variety of fungal root pathogens 
associated with Chronic Oak Decline (COD) (Denman et al., 2017). The 
bacterial stem bleeds associated with AOD initially start as active dark 
weeping patches. Over time, as lesion development continues beneath 
the bark, external cracks form between the bark plates that are sur
rounded by blackening stains. Evidence of stem tissue repair can be seen 
as lignified-callus-like tissue that, when extensive, can fully occlude the 
internal lesion, appearing as exposed rolls of callused tissue on the 
exterior (Denman et al., 2014). Stem bleeds can also be associated with a 
range of root pathogens including Armillaria attack on the inner stem 
tissues of oak. Active stem weeping and black staining can be found 
along the leading edge of the mycelial front of affected stem tissues 
(Denman et al., 2017). 

Oak decline syndromes are wide ranging in cause and attempts have 
been made to subdivide the types of decline associated with Quercus 
robur and Q. petraea based on the duration over which a tree has been 
declining and the biotic agents associated with a declining tree. Mor
tality in trees suffering from COD can occur over a period of decades 
whereas AOD can occur in 5–10 years (Denman and Webber, 2009). A 
chronically declining oak can also subsequently begin to develop the 
stem bleeds associated with AOD (Denman et al., 2017). 

As a result of the variety of factors contributing to oak decline and 
oak responses to these, there are many visual phenotypic descriptors 
that contribute to categorizing an oak tree as being in decline. When the 
decline is severe there are clear symptoms visible in the crown, such as 
low foliage density and numerous dead branches. It is these character
istics that many studies use as the primary indicator of tree decline 
severity (Zarnoch et al., 2004), however symptoms can develop slowly 
(especially in COD) and simple classes are unlikely to capture the full 
detail of the subtle transition from being healthy to declined. 

The visual, manual assignment of decline status and severity in the 
field is variable and error prone due to the many factors contributing to 
oak decline and surveyor bias. For instance, accurate and reproducible 
crown condition assessments often require rigorous quality assurance 
steps that include training and regular calibration among surveyors 
(Ferretti, 1997; Redfern and Boswell, 2004). Additionally, differences in 
woodland age and individual tree sizes at different geographical loca
tions can add difficulty to objectively comparing health status between 
sites. These factors require standardisation to reduce the potential 
confounding comparisons for tree health status (Zarnoch et al., 2004). 

Assigning discrete decline status classes neglects the true spectrum of 
decline severity encountered in the field. There is a growing need for 
sensitive, continuous measures of tree decline that accurately reflect the 
decline severity spectrum (Pontius and Hallett, 2014). This has the po
tential to greatly improve monitoring, enable the early detection of 
decline for accurate forecasting and inform forestry management prac
tices. Consistent long term monitoring has been highlighted as a key 
requirement for understanding the threats to oak and safeguarding its 
future (Hartmann et al., 2018). Coupled with this, monitoring methods 
should take advantage of modern data analysis techniques whilst still 
retaining practical simplicity in the field. 

Machine learning is finding increasing utility in ecological and 
environmental applications due to it’s ability to learn complex patterns 
within and between variables (Cutler et al., 2007; Belgiu and Drăguţ, 
2016). A popular algorithm is random forest due to it’s versatility, 
relatively simple model training requirements and ease of use. It is an 
ensemble machine learning method where forests of bootstrap sampled 
decision trees are grown, yielding both ‘out of bag’ sample prediction 
accuracy and variable importance (Breiman, 2001a; Biau and Scornet, 
2016). 

Here, we propose a framework using unsupervised random forest 
machine learning to enable quantitative, visible oak decline severity 
assessments that utilise a range of oak decline informative phenotypic 

descriptors, observed in oak forests across England. 
The two resulting measures are:  

• The Phenotypic Decline Index (PDI) - a measure of decline severity, 
scoring trees between 0 and 1. More severely declining oak trees 
have a score closer to 1. 

• The Decline Acuteness Index (DAI) - a measure differentiating be
tween chronically and acutely declining oak trees with a score be
tween − 1 and 1. Acutely declining trees have a score closer to 1 and 
chronically declining trees have a score closer to − 1. 

2. Materials and methods 

2.1. Phenotypic data collection 

The phenotypic data were collected over two summers between June 
and September from a total of 174 trees at nine sites across the south of 
England (Table 1). The occurrence of AOD has previously been reported 
and studied at these sites (Brown et al., 2016; Brown et al., 2017b). 
These sites included a variety of woodlands with diverse management 
histories, tree sizes/ages and were made up of mainly Q. robur. 

All trees were manually assigned a decline status category; healthy, 
AOD, COD or remission prior to collection of phenotypic descriptors. At 
sites with only COD present, trees were either COD (trees with clear 
signs of poor crown condition and dieback) or healthy (dominant or co- 
dominant trees with full crowns). At Site 2, trees with stronger crowns 
were also categorised as COD when Armillaria (Desarmillaria tabescens) 
fruiting bodies had been observed on their buttress roots. At sites with 
AOD present, annual monitoring data collected since 2009 was used to 
guide tree selection. Healthy trees had no known history of AOD and 
fruiting bodies of root pathogens had not been observed; all trees had 
crown condition of 4 or 5, see Brown et al. (2016) for details of this 

Table 1 
Overview of the surveyed site information.  

Site UK 
Region 

Site description Oak 
decline 
types 
present 

Survey date Trees 
surveyed 

1 West 
Midlands 

Oak dominated 
amenity woodland, 
parkland 
plantation. 

AOD/ 
COD 

June 2017 21 

2 East of 
England 

Oak dominated 
woodland 
managed for 
timber. 

AOD/ 
COD 

September 
2016 

22 

3 South 
West 

Oak dominated 
plantation 
managed for 
timber. 

COD August 
2016 

20 

4 East of 
England 

Oak dominated 
woodland 
managed for 
timber, with lapsed 
lime coppice. 

AOD/ 
COD 

June 2017 20 

5 South 
East 

Parkland with 
shelterbelts. 

AOD/ 
COD 

July 2017 20 

6 South 
West 

Open high forest, 
mown grass below. 

AOD/ 
COD 

June 2017 22 

7 London Oak dominated 
urban woodland, 
boundary belt of 
park. 

AOD/ 
COD 

August 
2017 

9 

8 South 
West 

Oak dominated 
amenity woodland. 

COD August 
2016 

20 

9 East of 
England 

Oak dominated 
woodland 
managed for 
timber. 

AOD/ 
COD 

June 2017 20  
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assessment. AOD trees had current stem bleeds but a variety of crown 
conditions. COD trees either had poor crowns (category 2) or the fruiting 
bodies of Gymnopus or Armillaria species had been observed in previous 
years. The remission group included trees that had shown stem bleeds 
associated with AOD within the previous three years but were not 
showing signs of stem bleeds at the time of assessment. Thus, at all sites, 
selection attempted to create a balanced sample of condition categories 
including both the unhealthiest and healthiest trees. 

The phenotypic descriptors related to tree size, crown condition and 
the presence of biotic agents including insects, bacteria and fungi are 
listed and described in Supplementary Table S1. Surveyors involved in 
phenotyping the trees used in this study had prior experience conducting 
ICP-Forests level I crown condition surveys. In each year of sampling, 
surveyors underwent refresher training and “calibration” assessments in 
oak woodland. The descriptors collected were based on Innes (1990) and 
ICP-Forests (2016). Diameter at breast height (DBH) was collected at a 
stem height of 1.3 m, to the nearest 1 mm. Total height, timber height 
and lowest live crown were measured using a Vertex IV Digital Hyp
someter (Haglof, Sweden) to the nearest 0.1 m. The timber height was 
measured at either where the upper stem diameter was 70 mm or where 
no main stem could be distinguished. For crown contact, missing crown 
and absolute crown transparency, percentages were visually estimated 
between 0 and 100% in 5% interval ranges. 

Other categorical descriptors included social class, dieback type, 
main crown dieback location, stem epicormic growth, branch epicormic 
growth, extent of insect damage, insect damage type, extent of crown 
mildew and the presence or absence of pruning damage or branch loss 
from the main stem. See Supplementary Table S1 for category details. 

Crown radius, canopy closure and bark tap tests for dead stem tissue 
were measured for each cardinal point. The crown radius was measured 
using a Vertex IV Digital Hypsometer attached to the relevant side of the 
stem at a height of 1.3 m. Canopy closure was recorded as yes or no 
depending on whether any other crowns were touching the sampled 
tree. A high resolution photo was taken of the base to the top of the 
crown and of the stem from the base to a height of 3 m for each cardinal 
point for later reference. 

The AOD stem symptoms (active bleeds, black staining, callused 
wounds) were collected by measuring longest axis of each individual 
bleed, stain or callused wound found within the basal 3 m of the stem. 
The frequency of A. biguttatus exit holes was counted along with the 
presence or absence of other oval shaped insect exit holes, small circular 
shaped exit holes and ground level fungal fruiting bodies which were 
recorded around the stem circumference from the basal tree collar to a 
radial distance of 2 m from the stem. 

2.2. Phenotypic descriptor preparation 

R version 4.0.3 was used for all parsing, preparation and subsequent 
analysis of phenotypic data (R Core Team, 2020). All raw data, data 
preparation routines and analysis code used to generate this manuscript 
are available at https://github.com/jasenfinch/Index_measures_for_oa 
k_decline_severity_using_phenotypic_descriptors. 

All cardinal assessments were averaged to give a single value per 
tree. The crown density (CD) values collected at Site 1 and 6 were 
converted to crown transparency (t = 100 − CD). All descriptors 
collected in cm were converted to mm except for DBH which was con
verted to m. The bark tap tests that were positive for hollow stem tissue 
were converted to present and absent then renamed dead stem tissue. 
The canopy closure descriptor was converted from yes and no to present 
and absent. Finally, the stem symptoms lengths for active bleeds, black 
staining and callused wounds were averaged and a frequency per tree 
given by the total observed. After preparation there were a total of 31 
raw descriptors for analysis. 

2.3. Composite descriptor calculation 

Five additional, composite descriptors were calculated to account for 
the three dimensional attributes of the tree and covariate nature of 
certain descriptors as suggested by Zarnoch et al. (2004). This then gave 
a total of 36 raw and composite phenotypic descriptors. The data for 
these phenotypic descriptors for all 174 trees can be found in Supple
mentary Table S3. The composite descriptors are defined as follows: 

Live crown ratio (%) - percentage of the whole tree height that 
supports live crown. 

R =
(h − l)

h
× 100  

h = total height (m), l = lower crown height (m). 
Crown condition (%) - percentage of present crown proportional to 

the percentage crown density. 

c = (100 − m)(1 −
t

100
)

m = missing crown (%), t = crown transparency (%) 
Composite crown volume (m3) - estimated volume of the crown as a 

paraboloid proportional to the crown condition. Adapted from the 
composite crown volume from Zarnoch et al. (2004) using crown con
dition instead of crown density alone. 

v =
1
2

πr2(h − l) ×
c

100  

r = crown radius (m). 
Estimated bleed prevalence (%) - estimated percentage of the sur

veyed 3 m basal trunk area affected by bleeds or black staining. 

p =
a2A + b2B

3000dπ × 100  

a = average active bleed length (mm), A = number of active bleeds, b =
average black stain length (mm), B = black stain number, d = DBH(m)×

1000. 
Agrilus exit hole density (m− 2) - density of observed A. biguttatus exit 

holes across the surveyed 2 m basal trunk area. 

e =
h

2dπ  

h = number of A. biguttatus exit holes, d = DBH (m). 

2.4. Random forest analysis of inter-site discrimination 

Supervised random forest classification was performed to assess the 
discrimination in the phenotypic descriptors between the site locations 
and identify descriptors that could potentially confound comparisons 
relating to oak decline severity. Random forest analysis was performed 
using the randomForest R package version 4.6.14 (Liaw and Wiener, 
2002) with 100 repetitions using default mtry and ntree parameters. Due 
to uneven class sizes, the site classes were balanced using stratified 
sampling with a sample size of 9 per class, the smallest class size. 

To assess classification performance the margin metric was computed 
for each observation using the out of bag predictions, which was aver
aged across all observations for each random forest repetition, and then 
averaged across all repetitions. The margin metric is the difference be
tween the proportion of votes for the correct class and the maximum 
proportion of votes for the other classes for a given observation. A 
positive margin value indicates correct classification (Breiman, 2001a). 

Descriptor importance contributions were measured using the mean 
decrease in accuracy metric averaged for each descriptor across the 
repetitions. Higher mean decrease in accuracy values had greater overall 
contribution and therefore greater importance. 

J.P. Finch et al.                                                                                                                                                                                                                                  
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2.5. Tree size descriptor adjustment for age and inter site variance 

To account for age, size and site specific tree differences, the tree size 
descriptors (DBH, lower crown height, timber height, total height, 
crown radius) were standardised using an adjustment of site means to 
the overall mean. An example of this adjustment is shown for DBH in 
Supplementary Fig. S1 and the adjustment factors for each of the de
scriptors at each site are given in Supplementary Table S2. 

All composite descriptors utilising these adjusted descriptors were 
recalculated after adjustment. The application and effect of this 
adjustment is described and discussed in Sections 3.1 and 4.3 
respectively. 

2.6. Calculation of indexes for oak decline severity 

The phenotypic descriptors were analysed using 100 repetitions of 
unsupervised random forest. The proximity matrices from each repeti
tion were averaged to a single proximity matrix (P). This was then 
transformed to a dissimilarity matrix (1 − P) and scaled to two di
mensions using multidimensional scaling (MDS). The first MDS dimen
sion (D1) was inverted (1 − D1) to ensure the correct dimensional 
orientation relative to decline severity. It was then min–max scaled to 
give a scale between 0 and 1 with more severely declining trees having a 
score closer to 1. This dimension was named the Phenotypic Decline 
Index, PDI. The second MDS dimension (D2) was min–max scaled and 
then transformed (2D2 − 1) to give a scale between − 1 and 1 with COD 
trees having a score closer to − 1 and AOD having a score closer to 1. This 
dimension was named the Decline Acuteness Index, DAI. The code used 
to generate the decline indexes is available as an R package pdi version 
0.4.1 (Finch, 2020). 

2.7. Descriptor contribution to decline indexes 

To investigate the descriptor contributions to the decline indexes, 
supervised random forest regression models were trained for each 
decline index using the phenotypic descriptors for all 174 trees. These 
models will subsequently be referred to as MPDI and MDAI for the PDI and 
DAI respectively. The parameters number of trees (ntree) and number of 
randomly assigned variables (mtry), for each random forest model, were 
tuned prior to training using the values of 10, 100, 1,000, 10,000 for 
ntree and a range of 2–26 at intervals of 4 for the mtry parameter. The 
combination of parameters giving the lowest mean absolute percentage 
error (MAPE) were selected and set as follows: for the PDI (MPDI): ntree =
1000, mtry = 14, MAPE = 4.74%; for the DAI (MDAI): ntree = 10000, mtry 
= 14, MAPE = 6.2% (Supplementary Fig. S2). Overall descriptor 
importance contributions to each of the indexes was assessed using the 
percentage increase in mean squared error measure with higher values 
indicating a greater overall contribution to the given model and there
fore greater importance. 

2.8. Local descriptor contribution to index models 

To identify which phenotypic descriptors contributed locally to 
specific example cases of each of the decline indexes, Local Interpretable 
Model-Agnostic Explanations (LIME) were computed for each of models 
MPDI and MDAI (Ribeiro et al., 2016). The example cases for the PDI used 
for MPDI included the trees with the minimum (0) and maximum (1) PDI 
values and the tree with the PDI value closest to the median (0.522) for 
the healthy, severe and moderately declining trees respectively. For the 
DAI (MDAI), five example cases were selected from trees with PDI scores 
greater than 0.5. These cases included a decline neutral case with a score 
closest to 0 and then for each of the AOD and COD syndromes, a mod
erate and a severe case were selected with scores closes to 0.5 and 1 for 
AOD and − 0.5 and − 1 for COD respectively. LIME analysis was con
ducted using the lime R package version 0.5.1 with the default param
eters (Pedersen and Benesty, 2019). 

2.9. Index model simulations to investigate interactions of key descriptors 

The interactions of key raw descriptors identified with high per
centage increase in mean squared error importance scores and their 
associations with the decline indexes was investigated by using simu
lated descriptor values to construct index model (MPDI,MDAI) response 
surfaces for specific example cases. The same example cases were used 
as described for the LIME analyses in Section 2.8. This approach was 
similar to response surface methodology without the need for probabi
listic approximation due to the low computation time required for index 
calculation (Abbasi and Mahlooji, 2012). 

For MPDI, missing crown and crown transparency were compared for 
example cases of a healthy, a moderate and a severely declining tree. 
The value ranges were based on the observed range in the training data. 
For the missing crown (0–95%) and crown transparency (0–95%) de
scriptors, the ranges were divided into 100 increments. For a given case, 
each combination of these simulated descriptor values were used to 
calculate a PDI value from MPDI, building a model response surface. 

The same approach was used for MDAI using a comparison between 
active bleed length and black staining length as well as total height and 
lower crown height. The upper boundary for the ranges of active bleed 
length and black stain length was taken as the centre value between the 
maximum and minimum values in the training data sets. These were 
reduced by a factor of eight to give ranges of 0–8.75 mm and 0–8.12 mm 
respectively and enabled more effective visualisation. For the total 
height (16.2–31.1 m) and lower crown height (4–16.2 m) descriptors, 
the ranges were divided into 100 increments. 

3. Results 

3.1. Phenotypic differences between site locations and trees size descriptor 
adjustments 

A preliminary analysis using supervised random forest classification 
could separate trees based on their location (Supplementary Fig. S3a) 
with an average margin value of 0.231. The descriptors that contributed 
most to this discrimination were those that were related to tree size such 
as DBH, total height and crown radius and likely reflect the varied tree 
age and planting density across the nine sites (Supplementary Fig. S3b). 
To counter this effect, sizes were adjusted based on the site means for 
each tree size descriptor to remove inter-site variability but maintain 
intra-site variability as described in Section 2.5. This ensures that the 
subsequent comparisons of these descriptors in the context of oak 
decline are not confounded by these identified site differences. After the 
application of the tree size adjustment, the average random forest margin 
value was substantially reduced to 0.0727. The reduction in this value 
indicates that the adjustment was able to remove the majority of the 
between site variance and that the random forest models were no longer 
able to accurately classify the site locations of the trees (Supplementary 
Fig. S4a) with almost no contribution of the corrected tree size de
scriptors (Supplementary Fig. S4b). 

3.2. Oak decline severity indexes of manually assigned decline statuses 

The calculated PDI and DAI scores (see Supplementary Table S4) 
derived from MDS of proximity values from unsupervised random forest 
for all 174 trees, for which phenotypic descriptor data was collected, is 
shown in Fig. 1. The healthy trees grouped towards the lower end of the 
PDI scale and the symptomatic COD and AOD groups towards the higher 
end. There was a significant difference when the PDI values of the 
healthy (non-symptomatic) and symptomatic (AOD and COD) decline 
statuses were compared using an independent two sample t-test (t(144) 
= 12.4, p < 0.001) with group means of 0.297 and 0.696 for non- 
symptomatic and symptomatic statuses respectively. 

On the DAI scale, the AOD trees grouped at the upper end of the scale 
(>0) and the COD trees at the lower end (< 0). This was confirmed with 

J.P. Finch et al.                                                                                                                                                                                                                                  
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Fig. 1. Decline indexes for all 174 surveyed trees. The decline status categories were manually assigned in the field prior to data collection. AOD = acute oak decline; 
COD = chronic oak decline. Remisson tress were those that were known to have had active bleeds within the previous 3 years. 

Fig. 2. Descriptor importance scores from the random forest models MPDI and MDAI for relative contributions to the decline index measures. Descriptors are ordered 
by descending percentage increase in mean squared error (MSE) and therefore from highest contribution to lowest contribution to the given decline index. 

J.P. Finch et al.                                                                                                                                                                                                                                  
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significance found in the DAI between these groups (t(84) = 7.89, p <
0.001) with group means of 0.421 and − 0.345 for the AOD and COD 
groups respectively. 

The remission trees were found to be significantly different in their 
PDI scores from both the healthy (t(83) = 4.28, p < 0.001) and symp
tomatic (AOD and COD; t(109) = 4.63, p < 0.001) groups with means of 
0.297, 0.48 and 0.696 for the healthy, remission and symptomatic 
groups respectively. As a group, these trees are showing moderate 
overall decline. 

The remission trees were also found to be significantly different to 
the AOD (t(52) = 4.08, p = < 0.001) and COD (t(80) = 2.6, p = 0.011) 
groups on the DAI scale with group means of 0.421, − 0.0685 and 
− 0.345 for the AOD, remission and COD groups respectively. As a group, 
the remission trees were found to be neither distinctively AOD or COD. 

3.3. Key descriptors contributing to the decline indexes 

The relative contributions of the phenotypic descriptors to the 
decline index models (MPDI,MDAI) is shown in Fig. 2. 

The top four ranked descriptors found to contribute to MPDI were all 
crown size and condition related descriptors with composite crown 
volume the top ranked descriptor overall (Fig. 2a). Other tree size 
related descriptors such as bleed prevalence, live crown ratio and stem 
bleeding descriptors contributed secondarily. 

MDAI was more complex with many more descriptors contributing 
more equally than for the PDI (Fig. 2b). The overall tree size descriptors 
such as live crown ratio, DBH and crown volume contributed almost 
equally to MDAI. These were followed closely by the stem staining and 
bleeding descriptors such as bleed prevalence. The presence of 
A. biguttatus exit holes had very little contribution to the DAI with exit 
hole density ranked only 25th. 

Plots of the individual descriptors against the decline indexes are 
available in Supplementary Figs. S5-S8. A web application is also 
available at https://jasenfinch.shinyapps.io/decliner/ that allows 
interactive input of phenotypic descriptor values into the MPDI and MDAI 
models. The following Sections 3.4 and 3.5 identify how the descriptors 
contribute and interact within the decline index models in specific 
decline cases. 

3.4. Local descriptor contributions and trends within the PDI and DAI 
models 

LIME identified crown volume, condition, transparency and radius as 
the top four descriptors contributing to MPDI in each of the healthy, 
moderate and severe decline cases (Table 2). These descriptors were also 
among the same top descriptors in the overall model importance lists for 
the PDI (Fig. 2a). Increasing decline severity was associated with a 
reduction in the size and condition of the crown. For instance, declining 
trees were found to have a composite crown volume below 841 m3. 
Healthy trees were found to have a crown condition greater than 71.3%, 
moderately declining trees between 47.6% and 71.3% and severely 
declining trees a condition below 23.9%. 

For MDAI, a number of different descriptors were found to be locally 
important to the decline type cases compared to the overall model 
importance such as crown contact (Table 3). This likely reflects the 
greater number of descriptors contributing to the DAI with different 
descriptors relevant to particular decline contexts. The important de
scriptors identified were mainly associated with tree size such as live 
crown ratio and lower crown height. Bleed prevalence and stem symp
tom descriptors were not found to be locally important to any of the 
decline type cases. Live crown ratio was greater than 61.6% in the severe 
AOD and moderate COD cases. COD trees were found to have greater 
crown contact (greater than 50%) compared to AOD trees. 

3.5. Key descriptor interactions within the decline index models 

The complex descriptor interactions within the index models (MPDI,

MDAI) were investigated by simulating phenotypic data and generating 
the index values from the supervised index random forest regression 
models. The index values, generated by the models from these simulated 
phenotypic data, were then visualised as model response surface plots, 
to allow interpretation of descriptor interactions between the indexes. 
Figs. 3 and Fig. 4 show the simulated index value response surfaces 
under a variety of different circumstances for the key phenotypic de
scriptors described in Section 3.3 that contribute highly to the PDI and 
DAI. 

Crown condition descriptors such as composite crown volume and 
crown condition contributed highly to MPDI (Fig. 2a). The phenotypic 
measures central to this were percentage missing crown and percentage 
crown transparency from which crown condition and crown volume are 
calculated. It can be seen in Fig. 3 that as the percentage missing crown 
and percentage crown transparency increase and therefore crown con
dition and composite crown volume decrease, the PDI increases. A much 
greater range of PDI values can be obtained from trees with relatively 
greater stature (e.g. greater crown radius, total height, lower crown 
height and DBH; Fig. 3a & b), while relatively small stature trees have 
PDIs of 0.6 or greater even with 100% crown condition. 

The DAI (MDAI) is a more complex index with a greater number of 
descriptors contributing to it than the PDI such as live crown ratio, bleed 
prevalence, and DBH. Simulated response surfaces for the DAI are shown 
in Fig. 4. These response surfaces show circumstances under which bleed 
prevalence related descriptors (Fig. 4a, b & c) and live crown ratio de
scriptors (Fig. 4d, e & f) change for neutral decline type (trees neither 
distinctively AOD or COD; Fig. 4a & d respectively), moderate AOD or 
COD (Fig. 4b & e respectively) and severe AOD or COD (Fig. 4c & f 
respectively). Increasing active bleeds, black staining length and fre
quency contributed to greater positive values of the DAI and more severe 
AOD. Higher DAI values could also be obtained from trees with greater 
stature (Fig. 4c). Total height and lower crown height have no influence 

Table 2 
LIME results for oak decline severity cases in the PDI index model MPDI . Top four 
important descriptors shown. Descriptors ordered by descending absolute 
weight within each case.  

Status PDI Predicted 
PDI 

Descriptor Descriptor 
(d) range 

Weight 

Healthy 0.000 0.0571 Crown volume 
(m3) 

841 < d <=

1683 
− 0.1090 

Crown 
condition (%) 

71.3 < d − 0.0584 

Crown radius 
(m) 

5.75 < d <=

8.63 
− 0.0239 

Crown 
transparency 
(%) 

d <= 23.8 − 0.0238  

Moderate 
decline 

0.524 0.4890 Crown volume 
(m3) 

d <= 841 0.1120 

Crown 
condition (%) 

71.3 < d − 0.0610 

Crown radius 
(m) 

5.75 < d <=

8.63 
− 0.0246 

Crown 
transparency 
(%) 

d <= 23.8 − 0.0235  

Severe 
decline 

1.000 0.9600 Crown volume 
(m3) 

d <= 841 0.1140 

Crown 
condition (%) 

d <= 23.9 0.0722 

Crown radius 
(m) 

2.88 < d <=

5.75 
0.0314 

Crown 
transparency 
(%) 

71.2 < d 0.0224  
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on the DAI for trees of neutral decline type (Fig. 4d). Similarly to the PDI, 
trees with smaller stature and poorer crown condition give lower DAI 
values (Fig. 4e & f) and therefore more severe COD; however, only 
narrow ranges of DAI values could be obtained for each case when 
varying the ranges of these descriptors. 

4. Discussion 

4.1. Suitability of the decline indexes for describing decline severity and 
type 

The decline indexes presented here provide simple intuitive scores 
based on a wide number of factors known to be heavily influenced by 
oak decline severity. These two indexes can be represented as a two- 
dimensional oak decline continuum under which the spectrum of 
decline severity and type can be assessed (Fig. 5). The index thresholds 
for category definitions (healthy, declining, severe decline etc.) shown 
currently serve only as a guide to aid human interpretation as opposed to 
definitive thresholds of disease. Further work is needed that includes 
phenotypic data with greater spatial and temporal distribution to 
establish these definitive thresholds. 

Although significant differences were obtained between the decline 
status groups on both the PDI and DAI scales, Fig. 1 highlights the 
inaccuracies in the manual decline status classifications when viewed in 
an individual tree context. It can be seen that a number of the trees, 
when compared quantitatively using these measures, could in fact be 
classified with a different decline state. This is likely due, at least in part, 
to the inclusion of trees in early stages of decline. For example, trees 
with visible fruiting bodies of root pathogens were manually classed as 
COD, even if crown health was still relatively good. 

Crown condition and volume were shown to be the key contributors 
to the MPDI. This is to be expected and are indicators of model suitability 
using the unsupervised approach as crown condition and crown di
mensions are well established as the key components of assessing overall 
tree health and condition (Schomaker et al., 2007). However, previous 
studies such as Evans et al. (2012) and Pontius and Hallett (2014) have 
treated these descriptors as linear progressions of oak health that 
contribute equally to overall tree condition. It has been shown here that 
in the given visual definitions of oak decline severity; firstly, factors of 
overall crown condition and size are unlikely to contribute equally 
(Fig. 2a) and secondly, it is unlikely that these aspects of crown condi
tion contribute linearly (Fig. 3a). 

It was shown that tree size, reflected by the live crown ratio 
descriptor, contributes most to the DAI in discriminating between COD 
and AOD trees. The relationship of relative tree stature and the acute
ness of oak decline has not previously been shown and likely reflects the 
period of time under which these trees have been afflicted. AOD occurs 
over a much shorter period compared to COD and therefore has less time 
in which to inhibit growth of the tree as a whole. 

The high contribution of bleed prevalence related descriptors to MDAI 
is also expected as this is one of the defining features of AOD (Denman 
et al., 2014). There was no contribution of A. biguttatus exit hole 
occurrence to the DAI and therefore stem bleeding. This could partly be 
due to the low number of trees on which A. biguttatus exit holes were 
detected (15 out 174) but it has also been shown previously that trees 
with bleeds do not always have exit holes, attributed to the fact that not 
all A. biguttatus larvae complete their life cycle (Brown et al., 2017b; 
Vansteenkiste et al., 2004). 

There were 4 manually assigned COD trees that were scored with PDI 
and DAI values greater than 0.5, suggesting that they were in fact AOD 
trees. These trees were manually assigned COD status due to the pres
ence of Armillaria attack and associated bleeds. While the phenotyping 
protocol used here made no distinction as to the biotic origin of the stem 
bleeds, it is interesting to note that not only do these trees have the 
presence of stem bleeds similar to AOD trees, but also share their rela
tively larger stature compared to the majority of COD trees. This likely 
reflects a more acute and aggressive nature of the Armillaria infection in 
these trees with deterioration in crown health having occurred over a 
shorter time period. It therefore has less time in which to impact overall 
growth compared to the other COD trees. In this sense the DAI scale can 
be seen to differentiate decline types based less on the actual biotic 
agents involved in the interaction but more on the time-scales over 
which the trees themselves have been afflicted. 

AOD severity was associated with overall decline severity in trees 
having both PDI values greater than 0.7 and DAI values greater than 0.5 
(Fig. 1). The association of crown condition and AOD severity has pre
viously been shown by Brown et al. (2016). 

The remission trees as a group were shown to be intermediate in 
decline severity and type to the healthy, AOD and COD trees on both the 
PDI and DAI index scales. However, this was also the most varied of the 
decline status groups. It is possible that this could reflect the potential 
for trees to recover from AOD but this is speculative and it is not possible 
to test this suggestion further with current observations. Using these 
decline indexes, remission trees could be more objectively defined in 

Table 3 
LIME results of oak decline type and severity in the DAI index model MDAI . Top four important descriptors shown. Descriptors ordered by descending absolute weight 
within each case.  

Syndrome Status DAI Predicted DAI Descriptor Descriptor (d) range Weight  

Neutral − 0.000249 − 0.0405 Live crown ratio (%) 61.6 < d 0.0683  
Crown contact (%) d <= 25 0.0404  
Lower crown height (m) 7.05 < d <= 10.09 0.0359  
Branch epicormics d = 0 − 0.0242  

AOD Moderate 0.504000 0.4820 Live crown ratio (%) 41.3 < d <= 61.6 − 0.0589 
Lower crown height (m) 10.09 < d <= 13.14 − 0.0356 
Crown contact (%) 75 < d − 0.0395 
Crown radius (m) 5.75 < d <= 8.63 0.0171 

Severe 1.000000 0.8630 Live crown ratio (%) 61.6 < d 0.0708 
Crown contact (%) d <= 25 0.0419 
Lower crown height (m) 7.05 < d <= 10.09 0.0348 
Diameter at breast height (m) 0.809 < d <= 1.071 0.0344  

COD Moderate − 0.508000 − 0.4670 Live crown ratio (%) 61.6 < d 0.0732 
Lower crown height (m) d <= 7.05 0.0276 
Crown contact (%) 75 < d − 0.0357 
Branch epicormics d = 0 − 0.0239 

Severe − 1.000000 − 0.9000 Live crown ratio (%) 41.3 < d <= 61.6 − 0.0543 
Lower crown height (m) 7.05 < d <= 10.09 0.0341 
Crown contact (%) 50 < d <= 75 − 0.0302 
Crown radius (m) 2.88 < d <= 5.75 − 0.0177  
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terms of their temporal trajectory within the decline index continuum. 

4.2. The machine learning approach 

A machine learning approach was used to derive the phenotypic 
index measures as it allows the models to be moulded to the complex 
interactions that exist between the phenotypic descriptors from which 
the decline indexes are calculated. This would likely be oversimplified 
using conventional modelling strategies (Breiman, 2001b). 

An unsupervised approach was favoured in this context due to the 
concession that there are known difficulties with and inaccuracy in 
manual decline status classification in the field (Ferretti, 1997). This is 
highlighted in Fig. 1 where numerous trees would be considered to have 
been misclassified as they fall into regions of the decline indexes asso
ciated with a different decline status (e.g. COD trees with DAI values 
>0.5). The unsupervised approach has worked in this context in aptly 
describing decline severity as the phenotypic descriptors selected were 
highly specific and well suited to describing the decline severity prob
lem. In situations where descriptors may well be less suited, perhaps as a 
result of technical limitations, the use of a semi-supervised approach 
may be favourable. The unsupervised approach to derive the decline 

indexes would be applied to a subset of the observations on which the 
descriptors are known to perform well and that would be considered 
benchmark observations by the investigators. Indexes could then be 
attained for the rest of the observations by prediction based on super
vised models of the benchmark subset (Chapelle et al., 2010). This 
approach would be more suitable than a fully supervised approach as it 
would limit the inaccuracies that would be introduced by manual clas
sification while still allowing the data driven flexibility of the unsu
pervised approach. 

Machine learning approaches are usually seen as black box and hard 
to interpret; however, there are substantial gains in terms of predictive 
capability for applying these models in real world situations (Touw 
et al., 2012). The assessment of descriptor contributions to the index 
models are an integral part of this approach and helps to overcome these 
limitations. Knowledge input of the biological mechanisms, by the 
investigator at this stage, is essential in ensuring that the models suitably 
learn the patterns relevant to the biological problem to which it is being 
applied. The descriptors contributing to these should be sensible and it is 
important to check that the algorithm (random forest) is not learning 
spurious or artificial patterns within the data such as site differences in 
tree size and age. Approaches such as LIME and model response surfaces 

Fig. 3. PDI response surfaces from MPDI for simulated values of key contributing descriptors for example healthy, moderate and severly declining cases. The values of 
additional tree size descriptors are shown for the individual cases to indicate the relative stature of the example cases. 
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enable investigators to query the contributions and interactions of in
dividual phenotypic descriptors. This in turn promotes trust in the in
dexes derived from these models by the investigator and potential model 
end-users (Ribeiro et al., 2016). 

4.3. Applications 

While it is important to note that these decline indexes are study 
specific and based on a relatively small sample size, they do have the 
potential for wider use. Subsequent studies could easily build on this 
foundation by collecting additional data and incorporating it with the 

Fig. 4. DAI response surfaces from MDAI for simulated values of key contributing descriptors for example cases. The neutral case is a tree that can be neither 
distinguished as AOD or COD. All cases have PDI values >0.5. The values of additional descriptors related to bleed prevalence and relative stature/crown condition 
are shown for the AOD and COD example cases respectively. 
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data from this study to train random forest models from which to derive 
decline index values. This would only be viable so long as comparable 
phenotyping protocols are used. Alternatively, study specific decline 
index values could be generated using the unsupervised random forest 
approach. 

By defining decline severity objectively across a spectrum, these 
decline indexes provide greatly enhanced sensitivity over previous cat
egorical decline status assignments. This approach could enhance inte
gration with large scale data such as those from genome wide 
association studies or for providing ground-truth data for remote sensing 
(Stocks et al., 2019; Evans et al., 2012). These index measures allow 
sensitive comparisons of visual health to be made for the same tree 
between years as well as comparisons of trees between different 
locations. 

Scaling this technique to enable computation of decline indexes for 
any tree sampled in the UK would require index models trained using a 
substantially larger data set that incorporates the full descriptive di
versity of oak health in the population as whole. Scaling to this level 
would also require an appropriate method of tree size correction that 
could be applied on an individual tree basis. A potential solution to this 
would be to correct trees based on estimated age from DBH as proposed 
by White (1998). These indexes could have great utility in long term 
forest health monitoring by providing consistent scores which can be 
compared over time to inform both forestry management and research 
(Denman et al., 2010). For instance, the increase of the PDI values of 
trees within a woodland, beyond what is considered the healthy region 
of the PDI scale, could indicate that management intervention is 
required. 

The phenotypic descriptors used to calculate these indexes are easily 
measurable in the field and are based on well established tree condition 
assessment protocols (Innes, 1990). Further refinement of these pro
tocols could be designed to reduce survey time and complexity and 
potentially be incorporated into citizen science programmes (Brown 
et al., 2017a). Alternatively, the machine learning approach used to 
derive these decline indexes could also be applied to long established 
oak health monitoring programmes to aid sensitivity in detecting overall 
trends in tree health. An example programme includes The International 
Co-operative Programme on Assessment and Monitoring of Air Pollution 
Effects on Forests (ICP Forests) (Lorenz, 1995). 

5. Conclusions 

The decline indexes presented here provide a new framework to 
quantitatively describe the phenotypic oak decline spectrum using 
intuitive measures of severity (PDI) and type (DAI). Their basis is on 
simple phenotypic descriptor measurements and a utilisation of a data 
driven, unsupervised random forest based machine learning approach. 
This has shown the relative contributions that aspects of tree size, crown 
condition and symptoms such as stem bleeding have on quantitatively 
defining our concepts of oak decline status. 

Strategies have been presented such as the use of LIME and simulated 
model response surfaces that can aid the interpretation of the complex 
descriptor interactions that underpin these simple index measures and 
greatly reduce the black box nature that is often associated with these 
approaches. It is encouraged that this approach of deriving descriptive 
index measures using machine learning is applied in other tree health 
phenotyping contexts and it is hoped that this will have an impact on the 
future consistency and comparability of oak health monitoring. 
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