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Abstract: 
 Sphene based glass-ceramics (CaTiSiO5), an excellent candidate for a host lattice of 
ceramic materials and for nuclear waste immobilization, has been prepared from a powder 
mixture of CaCO3, TiO2 and SiO2 using vibro-milling for homogenization. Starting powders 
were melted at 1400 °C for 2 h, cooled to room temperature, grounded again, then 
crystallized by thermal treatment yielding a sphene glass-ceramic. The evolution of the phase 
composition during thermal treatment was investigated by X-ray powder diffraction (XRPD), 
FT-IR, Raman and thermal analyses (TG-DTA). Pure synthetic single phase sphene was 
formed at 800 °C for 4 h, even it is very hard to obtain monophase powder at such low 
temperature. Powder morphology was analyzed by scanning electron microscopy (SEM). 
Keywords: Sphene; Glass-ceramics; Mechanochemistry; XRPD, TG-DTA. 
 
 
 
1. Introduction 
 

Glass-ceramics can be used for various applications, such as thermal, chemical, 
biological and dielectric ones. These kinds of materials offer great possibilities as we can 
control their properties, including strength, resistance to abrasion and coefficient of thermal 
expansion [1]. Another advantage is the simple fabrication process in combination with a 
lower production cost [2-5]. The synthesis of the parent glass is an important step in preparing 
the final glass-ceramic material because the precursors and their percentage in the glass 
composition manage the precipitation of the crystalline phases. The results of this process can 
provide glass-ceramic with the desired properties. 

Beside the biomaterials field, the glass-ceramics can be used as nuclear waste storage. 
They are significantly more durable than borosilicate glasses in a wide variety of leachates at 
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neutral or alkaline pH values [6]. In previous research, the Canadian Nuclear Fuel Waste 
Management program has considered the possibility of waste storage with glass-ceramics 
containing crystalline titanite embedded in an aluminosilicate glass [7, 8]. It can also be used 
for the stabilization of waste sludge [9, 10] and other waste material [11, 12]. 

Sphene or titanite (CaTiSiO5 or CaTiO(SiO4)) belongs to the nesosilicate family of 
minerals. It crystallizes in monoclinic symmetry in two space groups: A2/a and P21/a [13]. 
Sphene is a phase well known for its excellent containment capacity and long-term behavior 
(high chemical durability and self-radiation resistance). It has good thermal stability and it is 
an excellent candidate as a host material [14], as well as biomedical engineering (coatings on 
Ti-6Al-4V) [15]. Furthermore, it can be used for nuclear waste disposal [16], luminescent 
materials [17] and pigments [18-21] because of the ability to incorporate many elements into 
its crystal lattice.  

In our work, we report the synthesis of sphene without additional phases. It is very 
difficult to obtain pure synthetic monophase titanite, especially bellow 1200 °C. Several 
different methods like sol-gel, coprecipitation, combustion, spray pyrolysis, freeze-drying and 
hydrothermal methods have been used. In most cases, pure sphene was not obtained [22-27]. 
There are always some traces of crystobalite (SiO2), perovskite (CaTiO3), wollastonite 
(CaSiO3) and other phases, besides sphene. 

When preparing the glass-ceramics at the laboratory, the crystallization of the parent 
glass is carried in two-phase via thermal treatment: nucleation and growth. In this paper we 
present the evolution of the crystallization, followed by scanning electron microscopy (SEM), 
Fourier transforms infrared spectroscopy (FTIR), Raman spectroscopy and X-ray powder 
diffraction (XRPD), with the temperature of the crystal growth thermal treatment, in the range 
650-1250 °C. The formation process from glass to the final glass-ceramic product is discussed 
for different temperature treatments. 
 
 
2. Materials and Experimental Procedures 
2.1. Powder preparation and synthesis 
 

Reactants used in the synthesis were commercial powders: TiO2 (Lab. Art. 808 E. 
Merck), SiO2 (ASP-K-amorphous, Prahovo) and CaCO3 (pro analysi, 11490, Kemika, 
Zagreb). Sample was prepared from stoichiometric amounts of powders and weighed 5 grams. 
The powder mixtures were homogenized in the vibratory mill (Fritsch Puloerisette Analysette 
Laborette, type 09 003, no. 155, 380 volt). Detailed description of the synthesis procedures 
for sample can be found in the original paper [28]. Samples were ground for 30 min in air 
atmosphere prior to melting at 1400 °C in a platinum crucible for 2 h. After melting, sample 
was poured in water and grinded for glass homogenization before further thermal treatment. 
The glass was transformed into glass-ceramics by annealing in an open-air atmosphere in 
furnace. Calcination of powders was carried out at different temperatures from 600 to 1250 
°C in at a heating rate of 10 °C/min and a soaking period of 4 h in alumina crucibles. 
 
2.2. Characterization 
 
 The thermal stability of samples was investigated by non-isothermal thermo-
gravimetric analysis (TG) and DTA analysis using a SETARAM SETSYS Evolution-1750 
instrument. The measurements were conducted at a heating rate of 10°C /min in a dynamic air 
atmosphere (flow rate 16 cm3/min) in the temperature range from 30 to 1250 °C 

 Fourier transform infrared spectroscopy (FTIR) was performed in the absorbance 
mode using a BOMEM Michelson Series MB FTIR spectrometer set to give undeformed 
spectra. The resolution was 4 cm−1 in the 400–2000 cm−1 analyzed range. The spectra were 
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obtained at room temperature from KBr pressed pellets prepared by mixing 1.5 mg of a 
sample with 150 mg of KBr. 

 All of the samples were characterized at room temperature by X-ray powder 
diffraction (XRPD) using Ultima IV Rigaku diffractometer equipped with Cu Kα1,2 radiation 
using a generator voltage (40.0 kV) and a generator current (40.0 mA). The range of 10 - 90 
°2θ was used for all powders in a continuous scan mode with a scanning step size of 0.02 ° 
and at a scan rate of 2 °/min. Phase analysis was done by using the PDXL2 software (version 
2.0.3.0) [23], with reference to the patterns of the International Centre for Diffraction Data 
database (ICDD) [29], version 2012.  

The average crystallite size (D) was calculated on the basis of the full-width at half-
maximum intensity (FWHM) of the main reflections by applying Scherrer’s formula: 

 
Dhkl = Kλ / (β·cosθ)           (2) 
 
 where K is a Scherrer’s constant (~0.9), λ is the wavelengths of the X-ray used, θ is 
diffraction angle and β is corrected half-width for instrumental broadening given as β = (βm - 
βs) where βm and βs are observed half-width and half-width of the standard monoclinic sphene 
sample, respectively. 

Internal lattice strain (Δd/d) of calcined samples was estimated from the Williamson–
Hall plots, using following equation [30]: 

 
βtotal cosθ = (Kλ)/D + (4∆d/d)·     (3) 
 

where βtotal represents full-width half-maximum of the characteristic XRPD peak and 
Δd is the difference of the d spacing corresponding to a typical peak. The strain of 
nanocrystals, Δd/d, can be estimated from the slope of function β·cosθ vs. sinθ whereas 
crystallite size, D, can be estimated from the y-intercept. 

Micro-Raman scattering measurements were performed at room temperature using a 
Jobin-Yvon T64000 triple spectrometer system equipped with a liquid-nitrogen cooled CCD 
detector. The λ=514.5 nm line of an Ar+/Kr+ mixed laser was used as an excitation source. 

Microstructure and grain size were investigated using Field Emission Scanning 
Electron Microscopy (FESEM), performed on a JEOL-5200F Scanning electron 
microanalyzer. 
 
 
3. Results and Discussion 
 

The results of thermal analysis of sample (as- prepared glass) after melting at 1400 °C 
are presented in Figure 1. As TG curve indicates, there is no obvious mass loss. At low 
temperature (below 300 °C), small exotermic peaks corresponding to volatiles appear larger, 
presumable due to the use of coarse powder [31]. As shown in DTA curves, there is a small 
endothermic peak attributed to the glass transition temperature range. Its minimum that starts 
at 760 °C refers to the glass transition temperature (Tg). The temperature at 886 °C belongs to 
sharp exothermic peak, due to the amorphous-crystalline transformation. The maximum 
temperature belongs to the crystallization peak temperature (Tp).  
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Fig. 1. DTA/TG diagram for as-synthesized amorphous glass up to a heat treatment 

temperature of 1250 °C. Black line – DTA; red line – TG. 
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Fig. 2. X-ray powder diffraction patterns of sphene glass-ceramics (30 min grinding) after 
melting at 1400 °С and calcination at different temperatures (650-1250 °С). All the peaks 

belong to sphene. 
 

The changes in the X-ray pattern due to annealing are presented in Figure 2. The 
pattern of glass sample and sample obtained at 650 °C corresponds to amorphous materials; 
no crystalline phases were detected. According to the results of TG/DTA, the glass starts to 
crystallize around 760 ºС. At 800 ºС X-ray powder diffraction results indicated that there was 
a significant change in the sample, and glass recrystallized to form sphene (CaTiSiO5). All of 
the diffraction peaks belonging to sphene were observed. On further increasing the 
temperature up to 1250 °C, the intensity of sphene reflections increased, due to better 
crystallization. In addition, the peaks moved to slightly higher scattering angles on annealing, 
while the lattice volume decreases [32, 33]. The height of the strongest peak, the (200) 
reflection, is plotted against the annealing temperature in Figure 3, and the changes in lattice 
volume are similarly plotted in Figure 4. Sphene is a principle crystalline phase above 800 °C. 
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The main reflections in these patterns are observed at 2θ of 17, 27, 29, and 34 °, which are 
typical for the sphene structure. All the structure information was taken from American 
Mineralogist Crystal Data Structure Base (AMCDSB) [34]. Pure synthetic single phase 
sphene was formed at 800 °C for 4 h, even it is very hard to obtain monophase powder at such 
low temperature.  
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Fig. 3. Position of (200) X-ray powder diffraction peak, measured from samples calcinated at 
different temperatures (800-1250 °С). 
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Fig. 4. Decrease in lattice volume as a function of annealing temperature. Measurements were 
made with samples calcinated at different temperatures (800-1250 °С).  

 
The values of crystallite size and internal strain of samples after melting at 1400 °С 

and calcined at different temperatures for 4 h are presented in Table I. The average crystallite 
size increases with an increase in calcination temperature (up to 1100 °С) because of 
accelerated diffusion at higher temperatures, with decreasing the lattice parameters. At 1250 
°С, due to close temperature range of melting point, crystallite size starts to decrease. 
Furthermore, the internal strain of samples calcined at different temperature which was 
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estimated from the slope of Williamson – Hall plots is presented in Figure 5. Just after the 
crystalization, there is no evident strain.  
 
Tab. I Lattice parameter and crystallite size of sphene glass-ceramics (30 min grinding) after 
melting at 1400 °С and calcination at different temperatures (650-1250 °С). 

Temperatures (°C) Lattice parameter (Å) β (°) D (nm) 
650 amorhous / / 
800 a = 7.0859 

b = 8.8062 
c = 6.5478 

 
112.8200 

 
23 

950 a = 7.0808 
b= 8.7882 
c = 6.5413 

 
112.9181 

 
25 

1100 a = 7.0911 
b = 8.7893 
c = 6.5316 

 
112.9995 

 
28 

1250 a = 7.0946 
b = 8.7716 
c = 6.5328 

 
113.0340 

 
16 
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Fig. 5. Williamson-Hall plot of sphene glass-ceramics (30 min grinding) after melting at 1400 
°С and calcination at different temperatures (650-1250 °С). The dotted lines are visual guides. 

 
 To confirm X-ray powder diffraction results, FT-IR measurements were done. FT-IR 
spectra of samples sintered at different temperatures are shown in Figure 6. From 800 °C up 
to 1250 °C, vibrations centered at about: 895 cm-1, 870 cm-1, 694 cm-1, 561 cm-1, 468 cm-1 and 
424 cm-1 correspond to vibration of sphene and they are in good agreement with published 
data [35-38]. The spectra are dominated by the IR band near 870 cm-1 which is attributed 
mainly to SiO4 stretching modes. The broad band near 694 cm-1 is associated with TiO6 
octahedral stretching modes, polarized along the crystallographic a-axis and it is related to the 
crystal quality [39]. Vibration band around 1636 cm-1 due to the asymmetric stretching mode 
of CO3

-2 were also detected [40]. 
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 The effect of temperature increase is seen as a decrease in band width, an increase in 
band intensity associated with Si-O bending at 561 cm-1 and the Si-O stretching band at about 
870 cm-1 [41, 42]. All peaks shift to higher wavenumbers with increasing temperature.  
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Fig. 6. FTIR absorption spectra of sphene glass-ceramics after (30 min grinding) after melting 
at 1400 °С and calcination at different temperatures (650-1250 °С). 

 
 The Raman spectra collected from samples are shown in Figure 7. The characteristic 
bands of sphene that occur in Raman spectra are centered around 167, 258, 473, 548 and 608 
cm-1 [38, 43]. All peaks shift to higher wavenumbers with increasing temperature.  
 The position of the peak near 608 cm-1 belongs to a symmetrical mode from Ti–O 
bond stretching and Ti–O–Ti bond bending [44-46]. As peak intensity increases with 
increasing temperature, band width of this peak decreases [47]. 
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Fig. 7. The Raman spectra of sphene glass-ceramics (30 min grinding) after melting at 
1400 °С and calcination at different temperatures (650-1250 °С). 
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 On increasing temperature, the peaks near 432 and 473 cm-1 related to SiO4 bending 
modes as well as the external SiO4 mode near 258 cm-1 have the same dependence, an 
increasing wavenumber and a decreasing band width. Peak near 473 cm-1 belongs to the SiO4 
bending mode [43]. The Raman peaks near 866 cm-1 correspond to Si-O stretching modes in 
orthosilicates [47]. 
 

 
a) glass 

 
b) 650 °C 

 
c) 800 °C 

 
d) 950 °C 

 
e) 1100 °C 

 
f) 1250 °C 

 
Fig. 8. SEM micrographs (a-f) of sphene glass-ceramics (30 min grinding) after melting at 

1400 °С and calcination at different temperatures (650-1250 °С). 
 

 Due to the increasing degree of cristalization all peaks shift to higher wavenumbers. 
Ti-O bond stretching band shifts from 601 ± 0.5 cm-1 to 608 ± 0.5 cm-1. O-Si-O bending 
modes at 466 ± 0.5 cm-1 shifts to 473 ± 0.5 cm-1, 422 ± 0.5 cm-1 shifts to 432 ± 0.5 cm-1 and 
253± 0.5 cm-1 shifts to 258 ± 0.5 cm-1. Si-O stretching modes at 862 ± 0.8 cm-1 shifts to a 
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position at 866 ± 0.8 cm-1 (Figure 7). The lowest-energy mode occurring near 167 cm-1 also 
shows a slight shift to higher wavenumbers, from 161 ± 0.5 cm-1 shift to 167 ± 0.5 cm-1. 
 Regarding amorphous systems, in Ti–Si–O frameworks the Ti4+ cations can occur as 
6–, 5– and 4– coordinated [48, 49], and penta– and tetra–coordinated Ti4+ can be found in 
heavily metamict sphene [50-52]. When decreasing Ti coordination, the Ti–O bond strength 
increases. As a result, in a disordered framework, the Ti–O bond stretching mode would move 
to higher wavenumbers as compared to the Ti–O bond stretching mode having only TiO6 
octahedra. 
 The SEM micrographs of glass-ceramics obtained at various temperatures are shown 
in Figure 8. Samples were crushed in mortal prior the measurents. For glass obtained at 650 
°С, particles with irregular shapes were observed, as shown in Figure 6(b). After being 
calcined at higher temperatures (800-1250 °С), similar anhedral shape is seen (Figure 8 (c–f)). 
Particles have a smooth fracture surface with no obvious cracks or faults on the surface. 
 
 
4. Conclusion 
 
 Glass and glass-ceramics in the CaO–TiO2–SiO2 system have been successfully 
synthesized. From DTA curves, glass transition temperature (Tg) starts at 760 °C and 
temperature at 886 °C belongs to the crystallization peak temperature (Tp). X-ray powder 
diffraction results indicated that at 800 ºС glass recrystallize to form sphene (CaTiSiO 5), and 
the peaks moved to slightly higher scattering angles on annealing, while the lattice volume 
decreases. Pure synthetic single phase sphene was formed at 800 °C for 4 h, despite being 
difficult to obtain monophase powder at such low temperature. The effect of temperature 
increase in FT-IR and Raman measurements is seen as a decrease in band width and an 
increase in band intensity. All peaks shift to higher wavenumbers with increasing 
temperature, according to the Raman. SEM images showed anhedral shaped particles.  
 For crystal growth temperature (Tc) ranging from 800 to 1250 °C, sphene is the only 
crystalline phase. Thus there is a wide range of temperature for the preparation of monophase 
sphene-based glass-ceramics that can be designed as durable waste forms for immobilization. 
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Сажетак: Стакло-керамика на бази сфена (CaTiSiO5), као одличан кандидат за 
имобилизацију нуклеарног отпада, припремљена је из смеше реактаната TiO2, SiO2 и 
CaCO3 користећи вибро-млин за хомогенизацију. Почетни прахови су стопљени на 
1400 °С током 2h, охлађени до собне температуре, поново самлевени, затим 
калцинисани на одређеним температурама дајући стакло-керамику. Еволуција фазног 
састава током калцинације испитивана је рендгенском дифрактометријом праха, ИЦ 
спектроскопијом, Раманском и термалном анализом (ТГ-ДТА). Сфен, без додатних 
фаза, формиран је на 800 °С током 4h, иако га је веома тешко добити у монофаном 
облику на тако ниској температури. Морфологија прахова је анализирана 
скенирајућом електронском микроскопијом (СЕМ). 
Кључне речи: сфен стакло-керамика, механохемија, рендгенска дифрактометрија 
праха, ТГ-ДТА. 
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