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Normal cellular physiology and biochemical processes require undamaged RNA molecules. However, RNAs are frequently
subjected to oxidative damage. Overproduction of reactive oxygen species (ROS) leads to RNA oxidation and disturbs redox
(oxidation-reduction reaction) homeostasis. When oxidation damage affects RNA carrying protein-coding information, this may
result in the synthesis of aberrant proteins as well as a lower efficiency of translation. Both of these, as well as imbalanced redox
homeostasis, may lead to numerous human diseases. The number of studies on the effects of RNA oxidative damage in
mammals is increasing by year due to the understanding that this oxidation fundamentally leads to numerous human diseases.
To enable researchers in this field to explore information relevant to RNA oxidation and effects on human diseases, we
developed DES-ROD, an online knowledgebase that contains processed information from 298,603 relevant documents that
consist of PubMed abstracts and PubMed Central full-text articles. The system utilizes concepts/terms from 38 curated thematic
dictionaries mapped to the analyzed documents. Researchers can explore enriched concepts, as well as enriched pairs of
putatively associated concepts. In this way, one can explore mutual relationships between any combinations of two concepts
from used dictionaries. Dictionaries cover a wide range of biomedical topics, such as human genes and proteins, pathways, Gene
Ontology categories, mutations, noncoding RNAs, enzymes, toxins, metabolites, and diseases. This makes insights into different
facets of the effects of RNA oxidation and the control of this process possible. The usefulness of the DES-ROD system is
demonstrated by case studies on some known information, as well as potentially novel information involving RNA oxidation
and diseases. DES-ROD is the first knowledgebase based on text and data mining that focused on the exploration of RNA
oxidation and human diseases.

1. Background

Oxidative damage induced by reactive oxygen species (ROS)
to the cellular elements such as proteins, lipids, and DNA has
proven to be deleterious to organisms as a whole. Until
recently, RNA damage was not recognized and explored as

one such component of ROS effects on cellular elements.
RNA oxidation was believed to be primarily a consequence
of a dying cell until it was shown that changes in RNA struc-
ture are early events in the development of aging-related dis-
orders such as Alzheimer’s disease (AD), Parkinson’s disease
(PD), amyotrophic lateral sclerosis (ALS), and cardiovascular
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diseases (CVD) [1–6]. These findings are strengthened by the
notion that RNA species rRNA and tRNA are abundantly
present in the cell and are not readily degraded during cell
growth. These features have recognized RNA oxidation to
be a great challenge to cell function and to cell surveillance
mechanisms that control oxidative-reductive stress. Alter-
ations of these processes may advance the development of
pathologies in various diseases [1, 6–8].

RNA undergoes oxidative damage more often than
DNA, owing to the RNA’s location in the cytosol, where
they are in closer proximity to the mitochondria where oxi-
dative stress is generated and because there are no protec-
tive histones in single-stranded RNA structure [1]. These
oxidative modifications of RNA affect translation and syn-
thesis of proteins, as well as the self-regulatory processes
of transcription repression by various miRNAs [9, 10].
Thus, curbing the accumulation of oxidatively damaged
RNA aids the maintenance of cellular health and prevents
disease development. Several RNA oxidation surveillance
mechanisms prevent such accumulation. That is, oxidized
RNAs appear to be targeted for degradation [11] in a pro-
cess that involves the ribosome [12, 13]. Another RNA oxi-
dation surveillance mechanism is via RNA-binding proteins
such as YB-1, which was shown to bind to 8-oxoguanosine
(8-oxoG) with high affinity [14]. This action of YB-1 and its
known role in mRNA stability associated with helping the
winding of RNA duplexes suggest that this protein may
be functioning as an RNA chaperone that targets oxidized
RNA for degradation [14]. Another mechanism of RNA
quality control is promoted by proteins such as MTH1,
MTH2, and NUDT5. These proteins can hydrolyze oxida-
tively damaged RNA (such as 8-oxoG), thereby eliminating
them from the RNA precursor pool [15]. Many such
research findings showed the complexity and importance
of the RNA oxidation-related processes. However, research
related to RNA oxidation mechanisms and its role in differ-
ent diseases is scattered in a large volume of scientific liter-
ature. For example, indexed in the Web of Science (All
Databases) (https://clarivate.com/), specifically focused on
the RNA oxidations in human diseases, there are 50,905
and 273,633 scientific articles published in 2018 and the
2014-2018 period, respectively, while in the most strict
selection of the Web of Science Core Collection, there are
21,578 and 100,016 articles published in 2018 and the
2014-2018 period, respectively. This volume of literature
makes it infeasible to efficiently search for RNA oxidation-
related information or track significant developments man-
ually. Such bottlenecks are not new to specialized domains;
thus, several groups have been looking for ways to simplify
the search for useful information.

2. Exploring Voluminous Information

It has been acknowledged that automated systems are needed
to search for and retrieve useful information from such volu-
minous data. Thus, several automated systems have been
developed using text mining (TM) and/or natural language
processing (NLP) for over 30 years [16–23]. Moreover, TM
and NLP methods have been combined with different

approaches for knowledge extraction from free text. For
example, ontologies provide a systematic representation of
interrelationships between terms in a specific domain
[24, 25]. Various ontology-based frameworks have been
developed [26] such as Aber-OWL [27]. Additionally,
ontology-based systems have different purposes, for example,
identifying pathways using pharmacogenomics data [28] and
selecting gene candidates [29]. Other methods are based on
network analysis [30] and biological knowledge graphs
[31]. In addition, TM has been combined with methods from
bioinformatics. For example, position weight matrices have
been used for text representation and feature generation in
a TM system to extract associations between methylated
genes and diseases [32, 33]. Another study combined TM
and bioinformatics approaches for the interpretation of
mutations in protein kinases [34].

Several generalized automated systems were designed to
facilitate extracting information from biomedical literature
[35]. For example, iHOP uses a text mining approach
wherein genes and proteins are used as hyperlinks between
sentences and PubMed abstracts and then uses the text-
mined information to produce network representations that
users can browse [36]. Other tools include Twister that is
aimed at reducing the screening time of systematic literature
reviews [37]; SWIFT-Review, which is a workbench for sys-
tematic review based on NLP [38]; SparkText, which is a
big data framework for mining biomedical literature [39];
and GIS, which is an NLP-based framework for gene discov-
ery from scientific literature [40]. In addition to these tools,
several frameworks for mining biomedical literature have
been developed [41–47].

Automated extraction of relevant and necessary informa-
tion helps improve our understanding and knowledge of spe-
cific domains, propose hypotheses, and potentially discover
new knowledge. For example, TM and NLP systems have
been used to identify new candidate compounds for drug
repurposing [48, 49], analyze relationships between proteos-
tasis protein factors and cancer [50], prioritize cancer genes
and pathways [51], predict protein functions [52], and
extract disease-related biomarkers [53], as well as find associ-
ations between TFs [54]. Additionally, the text has been used
as features to represent protein structures and subsequently
predict their characteristics computationally [55]. Other
useful applications of TM and NLP have been reported in
the literature [56–61].

Moreover, various domain-specific knowledgebases (KB)
exist. For example, CRAB is a KB implemented to support
chemical health risk assessment through literature TM [61].
Another KB is ERIC, developed to support research focused
on molecular mechanisms of bacterial enteropathogens using
TM of PubMed abstracts [62]. Also, CNVdigest created using
TM assists geneticists or physicians to find rare CNVs and
the original literature context for more detailed information
[63]. Other tools include CHAT (Cancer Hallmark Analytics
Tool), developed to organize and evaluate cancer-related sci-
entific literature [64]; FamPlex, designed for exploring asso-
ciations between human protein families and complexes in
the scientific literature [65]; and PPInterFinder and PIminer,
implemented for mining protein-protein interactions from
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biomedical text [66, 67], while [54] presents a tool for
context-specific protein interaction networks based on TM.
In addition to these tools, several tools have been developed
for specialized domains [68].

Here, we develop DES-ROD, the KB focused on RNA
oxidation-related research, and demonstrate its utility in this
domain, focusing on the role of RNA oxidation in the devel-
opment of AD, CVD, and obesity.

3. The DES-ROD Exploration System

We developed DES-ROD using the DES V3.0 framework on
26 November 2018. DES is a text mining and data mining
system that allows the exploration of text through enriched
concepts and enriched pairs of concepts in topic-specific lit-
erature. We used the DES framework to create several
topic-specific KBs [32, 33, 54, 67, 69–82]. The underlying
systems, workflow, and concept enrichment process used in
the current version of DES have been described in [69]. The
user manual is provided at https://des-documentation
.readthedocs.io/en/des-rod/.

Specific to this DES-ROD, our local MongoDB repository
(updated September 03, 2018) hosting PubMed and PubMed
Central articles was used to retrieve all topic-specific articles
using the following query: “(human OR mouse OR rat OR
mammal∗) AND (“RNA damage” OR Fenton OR PNPase
OR hPNPase OR APE1 OR “apyrmidinic endonuclease 1”
OR “apurinic endonuclease 1” OR nucleophosmin∗OR
NPM1 OR “purine nucleoside phosphorylase” OR PNP OR
“oxidative demethylase” OR “tRNA nucleotidyl transferase”
OR “Y box binding protein” OR “Ro autoantigen” OR
“8-hydroxyguanine” OR “8-oxoG” OR “8-hydroxyguanosine”
OR “8-oxo-deoxyguanosine triphosphate” OR “8-oxodGTP”
OR “8-oxo-guanosine triphosphate” OR “8-oxo-GTP” OR
“nucleoside-diphosphate kinase” OR NDK OR “adenosine-
diphosphate kinase” OR ADK OR Lipoxygenase∗OR LOs OR
“4-hydroxy-2,3-nonenal” OR HNE OR “4-oxo-2-nonenal”
OR acrolein OR “reductive stress” OR radical∗OR peroxide∗
OR ROS OR “reactive oxygen species” OR RNS OR “reactive
nitrogen species”OR redox OR “reduction-oxidation reaction”
OR oxidat∗OR nitrosat∗OR peroxide∗OR superoxide∗OR
detoxifi∗OR antioxid∗OR “polyunsaturated fatty acids” OR
“arachidonic acid” OR “linoleic acid” OR hydroperoxide∗OR
“hypochlorous acid” OR peroxynitrit∗OR flavoprot∗OR oxi-
dase∗OR “cytochromes P450” OR catalase∗OR sulfiredoxin∗
OR peroxiredoxin∗) AND (clinic∗OR disease∗OR diabet∗
OR obes∗OR syndrome∗OR neuro∗OR heart OR cardi∗OR
cancer∗). The query retrieved 286,370 articles used as the lit-
erature corpus. This literature corpus was indexed using 38
dictionaries: 28 dictionaries from the preexisting DES v2.0
vocabularies (used to develop other KBs) and 10 newly com-
piled topic-relevant dictionaries (see Table 1).

To integrate these newly compiled dictionaries into
DES-ROD, redundant dictionary concepts are unified and
concepts are normalized to ensure that a single concept
represents synonymous symbols and names. Then, initial
indexing is performed to identify and remove promiscuous
or ambiguous concepts. After this dictionary cleaning, the

literature corpus is reindexed to calculate and ensure the
accuracy of concepts’ enrichment estimates.

Concepts are recognized as enriched, if their occurrence
in the DES-ROD literature corpus is proportionally higher
than its occurrence in the complete set of PubMed and
PubMed Central articles in our local repository and has a
false discovery rate ðFDRÞ < 0:05. A total of 131,741 concepts
were determined to be statistically enriched in DES-ROD
(see Table 1). Also, 10,846,802 pairs of concepts were deter-
mined to be statistically enriched. Concepts are regarded as
cooccurring based on their cooccurrence in the text within a
200-character distance from each other. The resulting net-
work of concept pairs was also embedded in a high-
dimensional semantic space, enabling the computation of
semantic similarity between concepts. The literature corpus,
38 dictionaries, enriched concepts, enriched pairs of concepts,
and semantic similarities were integrated to create DES-ROD.

4. Knowledgebase Utilities

DES-ROD allows RNA oxidation-related literature to be
easily explored using concepts found to be statistically
enriched in the topic-specific literature. The KB is designed
to provide users with multiple means to explore the literature
with topic-relevant concepts (determined through concept
enrichment estimates). Users are provided with multiple
views, including “Enriched Concepts”, “Enriched Pairs”,
“Semantic Similarity”, and “Literature”. Briefly, individual-
enriched concepts can be explored on the “Enriched Con-
cepts” page where their mentions in the text are highlighted
on the right-hand side annotation pane, enriched cooccurring
concepts on the “Enriched Pairs” page are also linked to their
cooccurrence context in the literature, and concepts with
semantic similarity to a chosen enriched concept are displayed
on the “Semantic Similarity” page. The “Semantic Similarity”
link is new in this version of DES. Using these utilities, users
can view all enriched concepts, search for their concept of
interest, or select a specific dictionary. Furthermore, provided
is a “Column visibility” tab that allows viewing the enriched
concepts using several ranking options, including false discov-
ery rate (FDR), KB frequency, background frequency, or den-
sity. Moreover, highlighting the concept or concept pair of
interest allows the user to view the literature from where the
indexing was retrieved. Also, concepts are highlighted, making
them easily identifiable in the literature, as well as color-coded
to indicate in which dictionary the concept is located. Each
concept is also linked to a right-click menu which allows users
to generate a “Network” view or “TermCo-occurrences” table.
The literature in DES-ROD can also be explored via the “Lit-
erature” view. Case study examples are given below to demon-
strate the utility of DES-ROD.

5. Case Studies that Demonstrate the Use of
DES-ROD as a Research Supporting System

Example 1.Hypothesis derived through the use of DES-ROD.
Hypothesis:Let-7b may be preventing RNA oxidation

through suppression of OGG1, and this may be the cause of
dopaminergic neuron death and Alzheimer’s disease.
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Only recently was it reported that ROS could oxidatively
modify miRNAs. Wang et al. [107] demonstrated that oxida-
tively modified miR-184 associates with the 3′ UTRs of some
mRNAs (Bcl-xL and Bcl-w that are known to initiate apopto-
sis) that are not the usual targets of this miRNA. In this man-
ner, oxidized miR-184 promotes apoptosis via suppression of
Bcl-xL and Bcl-w. Also, miR-205/let-7/miR-184 is highly
expressed in the nondiseased brain, and miR-205 directly
inhibits LRKK2 [108]. In line with this, dopamine neurons
were shown to be devoid of LRRK2 mRNA [109]. Moreover,
the other miRNAs, miR-184 and let-7, repress E2F1 and DP,
respectively, and downregulation of E2F1 and DP suppresses
the death of dopaminergic neurons [110]. Also, inhibition of
both let-7 and miR-184 is sufficient to phenocopy pathogenic

LRRK2 in wild-type animal models, and both miRNAs regu-
late dopaminergic survival and activity [110]. This finding is
interesting as the death of dopaminergic neurons is being
looked at as the possible leading cause of both Alzheimer’s
disease (AD) and Parkinson’s diseases (PD), and oxidized
miR-184 not binding to its usual mRNA targets suggests that
oxidized miR-184 might not be providing protection against
the death of dopaminergic neurons. This reveals the com-
plexity and necessity of oxidation research.

Also, RNA oxidation was shown to be significantly ele-
vated in early preclinical stages of AD, and this increase is
observed with a compensatory increase in 8-oxoguanine
glycosylase (OGG1) levels [111, 112]. OGG1 is the pri-
mary enzyme responsible for the excision of 8-oxoguanine

Table 1: Dictionaries used in DES-ROD with data source references.

Dictionary
Enriched unique terms in

the KB
Source

Chemicals/compounds

Chemical Entities of Biological Interest (ChEBI) [83] 19,298 Preexisting in DES

Toxins (T3DB) [84] 2,193 Preexisting in DES

Lipids (lipid maps) [85,86] 3,099 Preexisting in DES

Amyloids (Human and Mouse), compiled in-house 394 Newly compiled

Functional annotation

Biological Process (GO) [87] 5,868 Preexisting in DES

Cellular Component (GO) [87] 1,284 Preexisting in DES

Molecular Function (GO) [87] 1,963 Preexisting in DES

Pathways (KEGG [88], Reactome [89], UniPathway [90], and PANTHER [91]) 1,584 Preexisting in DES

Diseases

DOID Ontology (BioPortal) Human Disease Ontology [92] 3,637 Preexisting in DES

ADO Ontology (BioPortal) Alzheimer’s Disease Ontology [93] 937 Newly compiled

DMTO Ontology (BioPortal) Diabetes Mellitus Treatment Ontology [94] 1,980 Newly compiled

HFO Ontology (BioPortal) Heart Failure Ontology [95] 1,002 Newly compiled

CVDO Ontology (BioPortal) Cardiovascular Disease Ontology [96] 49 Newly compiled

HP Ontology (BioPortal) Human Phenotype Ontology [97] 3,306 Preexisting in DES

UBERON Ontology (BioPortal) Uber Anatomy Ontology [98] 6,657 Newly compiled

ICD9 Ontology (BioPortal) International Classification of Diseases,
Version 9-Clinical Modification [99]

719 Preexisting in DES

Drugs

Drugs (DrugBank) [100] 4,025 Preexisting in DES

ATC Ontology (BioPortal) Anatomical Therapeutic Chemical Classification [101] 2,008 Newly compiled

CSSO Ontology (BioPortal) Clinical Signs and Symptoms Ontology 206 Newly compiled

SIDER (Drug Indications and Side Effects) [102] 3,203 Preexisting in DES

Human

Human Genes and Proteins (EntrezGene) [103] 22,896 Preexisting in DES

Human Transcription Factors [104] 1,565 Preexisting in DES

Human Transcription Cofactors (TcoF-DB) [104] 388 Preexisting in DES

Human microRNAs (HGNC [105] and EntrezGene) [106] 2,088 Updated

Human Long Noncoding RNAs (HGNC) [105] 527 Preexisting in DES

Mutations (tmVar) [107] 15,852 Preexisting in DES

Human Anatomy (in-house compiled) 2,569 Preexisting in DES

OMIT Ontology (BioPortal) Ontology for MicroRNA Target [19] 695 Newly compiled
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(8-oxoG), a mutagenic base byproduct of reactive oxygen
species (ROS) that may be responsible for the RNA oxida-
tion. Knowing that a single miRNA can modulate multiple
genes and that multiple miRNAs are usually involved in a
single disease or physiological phenotype, discerning the
overall intricacies of these complex networks is needed. Thus,
we here use DES-ROD to explore miRNA associated with
RNA oxidation in AD.

In search of novel insights, we looked at AD concepts
associated with OGG1. Thus, we explored DES-ROD by
clicking on the “Enriched Concepts” link. In the search bar,
we typed the concept of interest “OGG1” and then used the
concepts’ right-click menu to generate a network (Figure 1,
Step 1). On the “Network” page, we selected the “ADO
Ontology (BioPortal) Alzheimer’s Disease Ontology” dictio-
nary; then, the “OGG1” node was highlighted (Figure 1,
Step 2) and expanded with the top ten enriched associated
terms from the selected dictionary. This process was repeated
by selecting the “Human microRNAs” dictionary only and
then expanding the “inflammation” nodewith these concepts,
as oxidative stress generally leads to inflammation. We then
selected the “ADOOntology (BioPortal) Alzheimer’s Disease
Ontology” dictionary only and then expanded all the
microRNA nodes with concepts from this dictionary. All
nodes with a single edge were removed and were nonspe-
cific nodes such as “things related to severe stage”, “micro

RNA”, “Chi-Square test”, “in vivo model”, and “In silico
thing” (see Figure 1, Step 3).

Of the miRNAs retrieved, only “MIRLET7B” (referred to
in the text as Let-7b) was associated with oxidative stress.
Elevated levels of Let-7b have been detected in AD patients
[113], and it was further identified as a blood-based
molecular biomarker signature in AD [114]. However, we
found no literature connecting Let-7b and OGG1 despite
this indirect association depicted by the network generated
by DES-ROD. Consequently, we used miRDB for microRNA
target prediction [115]. This tool retrieved several predicted
targets of “MIRLET7B” including OGG1. This finding indi-
cates that Let-7b might have a direct role in RNA oxidation
surveillance that protects against the development of AD.

Example 2. Finding the relevant concepts and potentially new
knowledge derived through the use of DES-ROD: focused on
the association between type 2 diabetes and heart failure.

Finding ROS-induced DNA damage in atherosclerosis
led Martinet et al. [116] to assess whether oxidative stress-
induced RNA damage occurs in human atherosclerotic pla-
ques. They reported that 11 of 20 atherosclerotic plaques
assessed showed significant loss of RNA integrity and strong
staining for the oxidative damage marker 8-oxoG, compared
to 20 nonatherosclerotic mammary arteries. Moreover, they

Step 1

Step 2

Step 3

Figure 1: Step-by-step illustration of how DES-ROD can be used to identify relationships between the concepts. The blue circles represent
nodes from the “ADO Ontology (BioPortal) Alzheimer’s Disease Ontology” dictionary, the green circles represent the nodes from the
“Human Genes and Proteins (EntrezGene)” dictionary, and the light purple circles represent the nodes from the “Human microRNAs”
dictionary. The edge color is distributed across a color spectrum from black (strong association) to grey (weaker association) based on the
frequency of cooccurrence. The number of publications that link the associated nodes is displayed on each edge. Note that the generated
networks were exported from DES-ROD and manually adjusted in Cytoscape for better visibility.
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showed that plaque pretreated with RNase A diminished in
cytoplasmic 8-oxoG staining, which suggests RNA damage
[116]. Also, in the mouse model of myocardial injury, oxida-
tive modification of miR-184 results in decreased levels of
Bcl-xL and Bcl-w, which are essential for apoptosis of cells
[107]. On the other hand, different types of miRNA that are
present in the cardiomyocytes, such as miR-1, miR-499,
and miR-208, are not affected by RNA oxidation. This find-
ing raises the possibility to suspect the presence of specific
sequences that could be subjected to RNA oxidation and
shows that RNA oxidation plays a role in the development
of cardiovascular diseases.

Also, type 2 diabetes mellitus (T2DM) patients usually
have high urinary levels of 8-oxo-7,8-dihydroguanosine
(8-oxoGuo) and are at risk of cardiovascular mortality.
Consequently, Kjaer et al. [117] set out to determine if
8-oxoGuo is associated with this cardiovascular mortality
risk. They conducted a five-year follow-up clinical study
on 1,863 patients with T2DM wherein they measured the
level of 8-oxoGuo. It was concluded that in patients with
type 2 diabetes, high RNA oxidation is associated with
cardiovascular mortality risk [117].

Here, we attempt to search for novel insights into the
association found between type 2 diabetes and cardiovascular
risk, focused on oxidative stress. To do this, we start explor-
ing DES-ROD by clicking on the “Enriched Pairs” link. In
the search bars, we typed the concepts of interest “Type II
diabetes” and “OGG1”, to check if this association was
enriched in DES-ROD. Then, we used “OGG1” concepts’
right-click menu to generate a network (Step 1). On the
“Network” page, we selected the “HFO Ontology (BioPortal)
Heart Failure Ontology” and the “HP Ontology (BioPortal)
Human Phenotype Ontology” dictionaries; then, the
“OGG1” node was highlighted and expanded with the top
ten enriched associated terms from the selected dictionaries.
To restrict our search to the T2DM and cardiovascular risk
association, we removed all retrieved associations except
“Type II diabetes mellitus” and “Cardiac Hypertrophy” (Step
2). This process was repeated by selecting the “Human Genes
and Proteins (EntrezGene)”, “Human Long Non-Coding
RNAs”, and “Human microRNAs” dictionaries to individu-
ally expand “OGG1”, “Type II diabetes mellitus”, and
“Cardiac Hypertrophy” and then adjust the “current Thresh-
old for pruning is: 1” (Step 3). Now, we had 4 additional
nodes “MTOR”, “PGR-AS1”, “SOD2-OT1”, and “MIR21”
that were similarly expanded with same dictionaries used in
Step 3; then, the threshold was again adjusted “current
Threshold for pruning is: 1” (see Figure 2(a), Step 4). We
used the DIANA tool TarBase v.8 [118] to search if any
of the miRNAs retrieved through DES-ROD target OGG1.
This tool provides a collection of experimentally supported
miRNA-gene interactions. Figure 2(b) shows that this tool
retrieves results for mir-155, mir-17, and mir-34, but only
mir-17 interacts with OGG1.

However, Ikitimur et al. conducted a study to determine
the miRNAs involved in heart failure (HF) using blood sam-
ples of 42 HF patients and 15 healthy controls [119]. They
found that 29 showed miRNAs with significant dysregula-
tion, which included upregulated miRNA-155. Moreover,

miRNA-155 was positively correlated with the left ventricu-
lar mass index [119]. Marques et al. consistently demon-
strated upregulated miRNA-155 in HF patients [120]. Also,
He et al. confirmed the role of miRNA-155 in pathological
cardiac remodeling that causes HF. They demonstrated that
loss of miRNA-155 in fibroblasts protects left ventricular
function after experimental acute myocardial infarction
[121]. This is interesting as Corral-Fernandez et al. reported
a significant correlation between the basal expression of
miR-155 and miR-146a with HbA1c, glucose, and BMI
[122]. This altered distribution of miR-155 and miR-146a
expression related to HbA1c, glucose, and BMI was also
detected using the analysis of a three-dimensional association
of variables in the group of T2DM patients. Based on these
findings, this group further suggested that downregulated
levels of miR-155 could play an essential role in the patho-
genesis of T2DM [122].

Taken together, this study demonstrates that the retrieval
of miR-155 is a relevant concept to both T2DM and cardio-
vascular risk and serves as potentially new knowledge as to
answering why T2DM and cardiovascular risk are associated.

6. Discussion and Limitations

DES-ROD provides users with over 10 million statistically
enriched (FDR < 0:05) cooccurring concepts (with cooccur-
rence based on a distance up to 200 characters), compared
to the documents in the background set. The cooccurring
concepts or associations that are of interest to the user can
be evaluated through the text from where the associations
are derived; this makes it easier for users to find meaningful
associations than can be used to develop novel hypotheses.
However, to find meaningful associations, users should
have some domain-specific knowledge. Users can also
explore over 10 billion associations between any of the indi-
vidual statistically enriched concepts that are semantically
similar. However, this number of associations is a bit mis-
leading; as such, associations appear to be most meaningful
when the similarity between concepts is sufficiently high,
i.e., >0.75.

Furthermore, DES-ROD carries all shortcomings as
other text mining approaches. (1) Information extraction is
restricted to electronically available documents; (2) informa-
tion extraction is restricted to what the author chose to men-
tion in the text of the manuscript, such as biomarkers,
whereas the complete gene set is placed in a depository or
supplementary material that DES does not analyze; (3)
peer-reviewed literature contains errors that may cause liter-
ature to be omitted; (4) completeness of the concept set
extracted depends on the quality and completeness of the
dictionaries used and availability of synonyms of a concept;
(5) some concepts are “promiscuous” and thus do not
retrieve the correct information pertaining to the concept of
interest; and (6) cooccurrence of terms does not necessarily
imply meaningful association/link between paired terms.

Given the constraints, DES-ROD is useful as most
initiated studies start with the review of literature, which
DES-ROD can provide comprehensively and visually in
minutes, and knowledge of this literature and summarized
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(a)

Figure 2: Continued.
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information extracted from it help not only with developing
hypotheses but also with the interpretation of the data. None-
theless, users should acknowledge the limitation of this

system and consequently use it to draw attention to linked
concepts or new emerging concepts in the field and to
provide a bird’s eye view on the topic of interest.

(b)

Figure 2: (a) An illustration of the concepts that link “Type 2 diabetes mellitus”, “Cardiac Hypertrophy”, and “OGG1”. The blue circles
represent nodes from the “HFO Ontology (BioPortal) Heart Failure Ontology” dictionary, the peach circles represent the nodes from the
“HP Ontology (BioPortal) Human Phenotype Ontology” dictionary, the purple circles represent the nodes from the “Human Genes and
Proteins (EntrezGene)” dictionary, the greenish-yellow circles represent the nodes from the “Human Long Non-Coding RNAs, and the
green circles represent the nodes from the “Human microRNAs” dictionary. The edge color is distributed across a color spectrum from
black (strong association) to grey (weaker association) based on the frequency of cooccurrence. The number of publications that link the
associated nodes is displayed on each edge. (b) Experimentally supported miRNA-gene interactions retrieved from the DIANA tool
TarBase v.8.
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7. Concluding Remarks

DES-ROD rapidly and comprehensively sifts through 298,603
topic-specific publications and extracts relevant topic-specific
concepts that may be known or novel. This type of infor-
mation is not at all available or not easily found in other
related databases. The current release comprises 131,741
statistically enriched concepts from 38 topic-relevant dictio-
naries, together with 10,846,802 statistically enriched pairs
of concepts.

DES-ROD provides a user-friendly interface and
instructional material to facilitate navigation through the
KB. DES-ROD has various tools that enable users to explore
enriched concepts, enriched concept pairs, or enriched asso-
ciated terms based on semantic similarity between these
terms, as well as the literature from which terms are derived.
Users are further provided with a network viewer to visualize
the associations of concepts of interests based on user-
selected dictionaries, providing a flexible information explo-
ration experience.

To our knowledge, DES-ROD is the first KB focused on
RNA oxidation in human disease discoveries through litera-
ture mining and data mining. It will be updated every six
months to ensure that the KB remains current. We hope that
users find DES-ROD to be a useful tool for supporting RNA
oxidation in human disease-related research questions.
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