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Abstract. We give explicit symbolic formulas of the isogeny of degree � from an
elliptic curve E to that Ẽ in terms of coefficients a, b of E defined by y2 = x3 + ax +
b. Since the isogeny of degree � can be expressed as

(
N�
F 2
�

, y(N�
F 2
�

)′
)

, where N�, F� are

polynomials in x andN� is expressed byF� and its derivatives, we mean a symbolic formula
of the isogeny by a representation of F� in terms of a, b. Considering the algebraic structure
of the extended field generated by coefficients of F� and ã, b̃, we show that all coefficients
of F� can be expressed as certain rational functions in a, b and t1, where t1 is the coefficient

of x
�−1

2 −1 in F�. Its actual computation can be done by using a Gröbner basis of the ideal
associated to such algebraic constraints derived from the well-known Vélu’s formula. The
correctness of our computed formulas is examined by adopting them to SEA algorithm
which counts the number of rational points of an elliptic curve over a finite field.

1. Introduction

Elliptic curves have been playing an important role not only in number theory but also
in related fields such as cryptography by its computational aspect. For an elliptic curve E
defined over a field K , the set E(K) of its K-rational points including the point at infinity
forms an abelian group whose properties are very useful for computational number theory
and also for cryptography. Among those properties, the order (the number of points) is
the most important. For examples, in Elliptic Curve Primality Proving (ECPP) we search
elliptic curves whose order is of special type and also for Elliptic Curve Cryptosystem,
we need elliptic curves whose order is almost prime for making the Elliptic Curve Dis-
crete Logarithm Problem (ECDLP) enough hard. (See textbooks [4, 27, 30].) The well-
known Schoof-Elkies-Atkin (SEA) algorithm [24] and its improvements [18, 13] use ex-
plicit isogeny computation efficiently, where modular polynomials or its variants are used.
Although all of computed results are exact, those are obtained by rounding approximated
numerical solutions of a linear system derived from analytic properties of theory of elliptic
curves. But, as an alternative, we may consider this isogeny computation in purely alge-
braic point of view. In more detail, by considering the extension field generated by all
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coefficients appearing in the rational functions in the explicit isogeny, certain symbolic for-
mulas can be defined with help of the action of its Galois group. For their purely-algebraic
computation, we can use algebraic constraints on coefficients derived from the well-known
Vélu’s formula. We note that, once we know the shape (possible terms) of symbolic formu-
las, we can also apply the computational approach proposed by Charlap et al. [6], where
finding linear relations among such possible terms can be reduced to solving a linear system
derived from q-series expansions of them.

Let E and Ẽ be elliptic curves given in explicit Weierstrass forms y2 = x3 + ax + b
and y2 = x3 + ãx + b̃, respectively. For a positive integer �, an isogeny of degree � from
E to Ẽ is a rational map φ(x, y) defined over points (x, y) of E. Thanks to Vélu’s theorem
and its precise computational expression, for a given finite subgroup of order � of E, φ can
be expressed as

φ(x, y) =
(
N�(x)

D�(x)
, y

(
N�(x)

D�(x)

)′)
,

where N� and D� are polynomials in x. (See [29, 5, 30].) (For a function f (x) in x we
denote its derivative by f ′(x).) As D� is a square of a polynomial F�, called the Elkies
polynomial, of degree (�−1)/2 in x andN� is derived from F�, F ′� and F ′′� , computation of
the isogeny is reduced to that of each coefficient of F�. Moreover the coefficients ã, b̃ of Ẽ
can be also computed from coefficients of F�. Basically, the isogeny between elliptic curves
E, Ẽ, can be computed efficiently in several numerical techniques. Thus, as a natural com-
putational problem, it arises whether there is a symbolic formula of isogenies (coefficients
of F�), where an elliptic curve is given in symbolic form, that is, in a Weierstrass form with
indeterminate coefficients a, b, and if exists, how we can compute it practically. Thus, the
following is set as our goal that shall contribute to computational aspect of theory of elliptic
curves and its application.

1. Show that there exist explicit formulas for expressing coefficients of F� by consider-
ing the algebraic structure of the extended field generated by those coefficients.

2. Show that such explicit formulas can be computed by solving directly a system of
algebraic equations derived from the well-known Vélu’s formula. In other words,
Vélu’s formula is sufficient for producing symbolic formulas.

3. Moreover, exact computation of such formulas can be considered as good test suites
for Gröbner basis (or triangular form) computation. Examine how existing efficient
techniques on Gröbner basis computation can be applied effectively to isogeny com-
putation.

We give more details. We set the Elkies polynomial as follows;

F�(x) = xk + t1xk−1 + · · · + tk ,
where k = �−1

2 . Then, as symbolic formulas, we consider to find essential algebraic re-
lations among all coefficients a, b, ã, b̃, t1, . . . , tk . As seen in Schoof’s paper [24], the
most important coefficients are the coefficient t1 of xk−1 of F� and the coefficients ã, b̃
of Ẽ. Other coefficients of F� are expressed as explicit simple polynomials in these three
coefficients, and their computation is very easy.
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1. By purely algebraic arguments, we succeed in expressing essential algebraic relations
as a shape form in variables t1, ã, b̃, t2, . . . , tk over Q(a, b). The coefficient t1 is in
generic position and has its minimal polynomial over Q[a, b] of degree � + 1. (We
note that its irreducibility was already shown in [6].) Other variables ã, b̃, t2, . . . , tk
are expressed as polynomials in t1 over Q(a, b). But, for each of their coefficients in
Q(a, b), its denominator and numerator (in Q[a, b]) tend to be very huge. Thus, we
also present a much more concise formula called RUR (Rational Univariate Repre-
sentation) formula. By this formula, each of variables ã, b̃, t2, . . . , tk is expressed as
rational functions in t1 with small denominator (the derivative of the minimal polyno-
mial of t1). We note that in [6] only minimal polynomials were dealt and no algebraic
relation among t1, ã, b̃ was discussed.

2. We consider the ideal generated by algebraic constraints derived from Vélu’s for-
mula. Our precise analysis on it shows that each zero of the ideal with 4ã3+ 27b̃2 �=
0 gives exactly a correct isogeny. This implies that Vélu’s formula can be considered
as a generic one in algebraic sense.

3. Those formulas can be computed on real computer by using efficient modular tech-
niques for Gröbner bases computation. Also, their computation over finite fields can
be also efficiently done by using the property of weighted homogeneousness. Thus,
in our computational experience the RUR formulas were computed successfully and
verified up to � = 83.　

4. In addition to the above, the computed formulas can be adopted directly to SEA
algorithm of counting rational points of elliptic curves over finite fields with the same
efficiency. Our implementation can compute the correct answer which guarantees the
correctness of our formulas. We note that, once we succeed in getting a Gröbner basis
of the ideal, we can derive any other essential relations simply by change of order
technique. (See Section 6.)

We have to remark that our aim for construction of symbolic formulas is not to improve
SEA algorithm, since polynomial factorization is inevitable for any symbolic formula. We
consider simply how we can obtain essential relations by Vélu’s formula and this task can
be a good exercise for Gröbner basis computation. Specifically, we can apply modular
techniques efficiently. Moreover, we may apply interpolation techniques for computing
our formulas by more simplified Gröbner basis computation, where the coefficients a, b
are evaluated with several integers. This might improve the total efficiency for computing
our formulas. Meanwhile, as the shape of our formulas are theoretically given, we may
efficiently apply the computational approach in [6], where one has to first predict the form
(list up possible terms in a, b, t1, ã, b̃). As the RUR formula is concise, that is, has less
number of terms, it should be suited for this computational approach. It is a very interesting
task to make this application very efficient and some possible combination among this
approach and Gröbner basis computation can be considered. These improvements should
be our next work for computing our formulas for larger �.

At the end, we would like to give one more remark on possible contribution to theory
of elliptic curves. In order to express formulas in a shape form or an RUR, we review
theoretical results on elliptic curves over C and translate them to their counterparts on
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elliptic curves over C(a, b), the rational function field in two variables over C. By this
translation, we merely consider certain generic case, where the Galois group acts on E[�]
as the general linear groupGL(2, �), where E[�] denotes the �-torsion subgroup of E, that
is, the unique subgroup of E with order �2. Usually, many studies were done on elliptic
surfaces which are defined over the rational function field in one variable, and our setting
in several variables is quite special. But, we hope that our simple study could be the first
step for making fruitful results in elliptic curves over rational function fields in several
variables. We also remark that, from the computed formulas, we found some interesting
numerical properties on our formulas, which will be given in Appendix.

The rest of this paper is organized as follows. Section 2 provides necessary math-
ematical fundamentals on computational aspects on isogeny. We give a further study on
algebraic properties of coefficients of F�. Section 3 extends properties discussed in Sec-
tion 2 to their counterparts in parametric case, that is, elliptic curves with indeterminate
coefficients. Then our symbolic formulas are defined explicitly in purely algebraic man-
ner. Section 4 explains how symbolic and algebraic methods can be applied for computing
our symbolic formulas. We characterize the algebraic structure of the ideal associated to
the system of algebraic equations derived from Vélu’s formula. Section 5 gives how effi-
cient techniques on Gröbner bases computation can be applied and how large degree we
can succeed in getting formulas. We show the state-of-arts on computation of symbolic
formulas. Also Section 6 reports that our formulas can be effectively adopted to SEA
algorithm. Section 7 summarizes our results and computational observation for further de-
velopment. Also, in Appendix, we give computed examples and some numerical properties
found from our computed example. We remark that all formulas were computed by using
Risa/Asir computer algebra system, and their binary data can be downloaded from the page:
http://www2.rikkyo.ac.jp/web/noro/isogeny.

2. Preliminaries on Computational Aspect on Isogeny

In this section, we review basic properties of isogenies of an odd prime degree �. Here
we use the standard notations on elliptic curves. (See textbooks [27, 30].) Let K be a field
and K denote its algebraic closure. Let E and Ẽ be two elliptic curves defined over K .
An isogeny between E and Ẽ is a regular rational map φ : E −→ Ẽ that induces a group
homomorphism E −→ Ẽ. Throughout this paper, we assume that all isogenies are non-
zero and separable. Then Ẽ � E/S, where S is the finite kernel of φ. Since φ is separable,
the degree of φ is defined as degφ = [K(E) : φ∗K(Ẽ)] = #S, where φ∗ : K(Ẽ) −→
K(E) is the induced map between function fields K(E) and K(Ẽ).

2.1. Isogeny and Vélu’s Formula
From now on, we express an elliptic curve by its Weierstrass equation. Let E be an

elliptic curve defined by y2 = x3+ax+b overK , that is, a, b ∈ K , and � an odd prime. For
cases we need to distinguish elliptic curves, we write E(a, b). Also, for each P ∈ E \ {∞},
where∞ denotes the point at infinity, we denote its x coordinate by x(P ) and its y coordi-
nate by y(P ). We assume char(K) is 0 or sufficiently larger than �. Therefore, any isogeny
of degree � is separable. Let S denote a subgroup of E of order �. Then S is a subgroup of
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the �-torsion subgroup E[�] ∼= Z/�Z⊕ Z/�Z and there are �+ 1 such subgroups of order
�.

Vélu [29] showed how to explicitly represent the rational function of the isogeny φ :
E −→ Ẽ = E/S. Based on independent works by [16] and [9], Bostan et al. [5] showed
that a normalized isogeny φ can be written as follows: An isogeny φ : E −→ Ẽ is said to
be normalized if φ∗(ωẼ) = ωE , where ωE and ωẼ denote the invariant differentials of E
and Ẽ, respectively.

PROPOSITION 2.1 (Modified Vélu’s formula [5]:Proposition 4.1). Let E : y2 = x3

+ax+b be an elliptic curve over a fieldK , � an odd prime, and φ : E −→ Ẽ a normalized
isogeny of degree � and S its kernel. Then φ can be written as

φ(x, y) =
(
N�(x)

D�(x)
, y

(
N�(x)

D�(x)

)′)
, (1)

where the polynomialD�(x) is given by

D�(x) =
∏

P∈S\{∞}
(x − x(P )) = x�−1 − s1x�−2 + s2x�−3 − · · · + s�−1 (2)

and N�(x) is related to D�(x) through the formula

N�(x)

D�(x)
= �x − s1 − (3x2 + a)D

′
�(x)

D�(x)
− 2(x3 + ax + b)

(
D′�(x)
D�(x)

)′
. (3)

Addition to Proposition 2.1, we give more details. Let

F�(x) =
∏
P∈S+

(x − x(P )) = xk + t1xk−1 + · · · + tk , (4)

where S \ {∞} is partitioned into S+ and S− such that S = {∞} ∪ S+ ∪ S− and S− =
{−P : P ∈ S+}. Then k = �−1

2 , D�(x) = F�(x)2 and s1 = −2t1 since � is an odd prime.
According to [18], we call F� the �-th Elkies polynomial. Then N�(x) can be expressed by
using F�(x) as

N�(x) = (�x+2t1)F�(x)
2−2(3x2+a)F ′�(x)F�(x)−4(x3+ax+b)(F ′′� (x)F�(x)−F ′�(x)2) .

(5)
Moreover, we have the following relations:{

ã = (1− 10k)a − 30t21 + 60t2 ,

b̃ = (1− 28k)b + 70t31 − 210t1t2 + 210t3 + 42at1 .
(6)

AsN�(x),D�(x), F�(x) are determined by the choice of the subgroup S, we also write them
by NS� (x),D

S
� (x), F

S
� (x). Also, for FS� (x), we write tSi for its coefficient of xi . Thus ,

FS� (x) = xk + tS1 xk−1 + · · · + tSk .
By (6), the coefficients ã, b̃ are determined by a, b, t1, t2 and t3, and thus they are deter-
mined by S. Therefore, we also write ãS and b̃S.
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REMARK 2.2. For our symbolic computation, we consider a, b, t1, . . . , tk as vari-
ables and introduce weights on x, a, b, t1, . . . , tk such that the weight of x is 1, that of s1 is
1, that of a is 2, that of b is 3, and for each i, 1 ≤ i ≤ k, that of ti is i. Then, F�(x),D�(x)
and N�(x) are weighted homogeneous polynomials. Their weights are k, 2k and �(= 2k +
1), respectively.

REMARK 2.3. We can examine whether φ maps the point at infinity of E to that
of Ẽ by simply checking the degrees and leading coefficients of polynomials appearing
in Equation (1). Considering the projective coordinate, we may write a point by [x, y, z],
where [0, 1, 0] implies the point at infinity. (We use the notation in Chapter I in [27].) Then
the map φ(x, y) can be rewritten in a projective form as

φ([x, y, z]) =
[
F ∗� (x, z)N∗� (x, z), y(N ′�F� − 2N�F

′
�)
∗(x, z), z(F ∗� (x, z))3

]
,

where G∗ denotes the homogenization of a polynomial G with respect to z. However, it
cannot map the point at infinity [0, 1, 0], and so it can not be proven even to be a morphism
by its shape. Thus, we modify the map slightly as follows.

It is clear that F�(x) is monic and of degree k and its square D�(x) is also monic and
of degree 2k. Also, by seeing the leading coefficients of the right hand side of Equation (5),
it follows that N�(x) is monic and of degree � = 2k + 1 and N ′�F� − 2N�F ′� is also monic
and of degree 3k. Dividing N ′�F� − 2N�F ′� by x3 + ax + b(= y2), we can express it as a
polynomialM(x, y) in x, y as follows;

M(x, y) = y2k +M1(x)y
2k−2 + · · · +Mk−1(x)y

2 +Mk(x) ,

where each Mi is a polynomial in x of degree less than 3. In the same manner, we rewrite
other polynomials F�N� and F 3

� as U(x, y) and V (x, y), respectively. Then we have

U(x, y)= (x + U0)y
2k + U1(x)y

2k−2 + · · · + Uk−1(x)y
2 + Uk(x) ,

V (x, y)= y2k + V1(x)y
2k−2 + · · · + Vk−1(x)y

2 + Vk(x) ,
where U0 is a constant and Ui, Vi are polynomials in x of degree less than 3. We note
that the total degree of M(x, y) is 2k, that of U(x, y) is 2k + 1 and that of V (x, y) is 2k.
Moreover, it is clear that they give the same values as their corresponding polynomials on
E. Thus, to handle the point at infinity [0, 1, 0], we consider the following equivalent map
φ0

φ0([x, y, z]) =
[
U∗(x, y, z), yM∗(x, y, z), zV ∗(x, y, z)

]
.

As U∗(0, 1, 0) = 0 and M∗(0, 1, 0) = 1, it maps the point at infinity of E to that of Ẽ.　

2.2. Algebraic Structures Related to Vélu’s Formula
We extract some useful properties on algebraic structures related toE[�] and t1, . . . , tk ,

ã, b̃. We begin by recalling properties of division polynomials. The map φn which multi-
plies all points of E by n is an important isogeny. It can be written explicitly as a rational
map by using division polynomials ψi given in Definition 2.4 as follows (see Section 3.2
in [30] for details):

φn : E(K)  P = (x, y) �→ nP =
(
x − ψn−1ψn+1

ψ2
n

,
ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1

4yψ3
n

)
. (7)
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DEFINITION 2.4. The � th division polynomial ψ� is defined in a recursive manner
as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ0 = 0 ,

ψ1 = 1 ,

ψ2 = 2y ,

ψ3 = 3x4 + 6ax2 + 12bx − a2 ,

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx − 8b2 − a3) ,

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2

ψ2m = (2y)−1(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1)ψm form ≥ 3

We note that ψ2m+1 is a polynomial in x over K by replacing y2 with x3 + ax +
b. Then, it is shown that for an odd prime �, ψ� is the polynomial in x whose roots are
x-coordinates of �-torsion points in E[�] \ {∞}. Thus, all roots of ψ�(x) are algebraic over
K . Moreover, since roots of ψ� are x-coordinates of points in E[�], as long as E(a, b) is
an elliptic curve, that is, 4a3 + 27b2 �= 0, ψ� is square-free by looking its degree shown in
the following lemma which can be shown easily by induction argument. This implies that
the discriminant of ψ�(x) is a power of 4a3+ 27b2 with some non-zero leading coefficient.

LEMMA 2.5. The degree of ψ�(x) is �2−1
2 and its leading coefficient is �. Moreover

the coefficient of x
�2−3

2 (the second term) in ψ�(x) is 0.

As E[�] has �+ 1 subgroups of order �, let S1(= S), . . . , S�+1 be all those subgroups.
Then, for each Si , we have the polynomial FSi� by Proposition 2.1 and

ψ�(x) = �
�+1∏
i=1

F
Si
� (x) .

As shown in (6), each ti can be written by a symmetric polynomial of degree i in all
roots of F�(x), ti is also algebraic over K . Moreover, ã is written as a polynomial in t1, t2
over K and b̃ is written as a polynomial in t1, t2, t3 over K . (See (6).) Thus they are also
algebraic over K .

LEMMA 2.6. All ti are algebraic over K and also the coefficients ã, b̃ of Ẽ are

algebraic over K . (The same holds for t
Sj
i , ã

Sj and b̃Sj . )

For computation of F�(x), ã, b̃, we need certain field extension. In fact, the extension
field L = K(t1, t2, . . . , tk, ã, b̃) is the smallest extension field for the computation. We also
write LSi forK(tSi1 , t

Si
2 , . . . , t

Si
k , ã

Si , b̃Si ).
LetK(E[�]) be the extension field ofK generated by {x(P ), y(P ) |P ∈ E[�] \ {∞}}.

As the group addition can be written as a rational function over K , each element of the
Galois group Gal(K(E[�])/K) acts on E[�] as a linear map, where E[�] is considered
as a 2-dimensional vector space over F�. Thus, Gal(K(E[�])/K) can be considered as
a subgroup of GL(2, �). For K = Q, there is a Serre curve E = E(a0, b0) such that
the action of Gal(Q/Q) on E[�] is exactly isomorphic to GL(2, �). (For Serre curves,
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see [25, 15] and [7], where elliptic curves over a univariate function field are considered.)
For simplicity, we denoteGal(K[E[�]/K) by G�.

Now we consider the case where G� ∼= GL(2, �). Recall that S = S1, . . . , S�+1 are
all distinct subgroups of order � of E[�]. Then, G� acts on transitively on E[�] \ {∞} and

so on x(E[�]) = {x(P ) | P ∈ E[�] \ {∞}}. We note that #x(E[�]) = �2−1
2 as two points

have the same x coordinates. Also, the kernel of its action on x(E[�]) is {±1}. It can be
shown as follows. Choosing a basis {P,P ′} of E[�] as a vector space, each element σ of
the kernel transforms P to ±P and P ′ to ±P ′. If σ transforms P to P and P ′ to −P ′, then
it transforms P +P ′ to P −P ′. As σ fixes x(P ), x(P ′) and x(P +P ′), this implies x(P +
P ′) = x(P − P ′) and so P + P ′ = P − P ′ or P + P ′ = −P + P ′. Thus 2P = ∞ or
2P ′ = ∞. As � > 2, this is a contradiction.

Since each subgroup Si of order � is considered as a line, x(Si) = {x(P ) | P ∈
Si \ {∞}} forms an imprimitive block. Since G� ∼= GL(2, �) acts transitively on the set
of all lines, G� acts transitively on those imprimitive blocks. For the set-wise stabilizer
StabG�(Si) of Si in G�, StabG�(Si) acts on Si transitively and so on x(Si) transitively.
Then, StabG�(Si) stabilizes all symmetric polynomials in x(Si), which implies that it also
stabilizes all tSij and ãSi , b̃Si . Thus, we have the following.

LEMMA 2.7. Suppose that G� ∼= GL(2, �). Then, the following results hold:

(1) ψ�(x) is irreducible over K .
(2) G� acts on x(E[�]) = {x(P ) | P ∈ E[�] \ {∞}} asGL(2, �)/Z2, where Z2 = {±1}.

(We note #x(E[�]) = �2−1
2 and x(E[�]) coincides with the set of all roots of ψ�(x).)

(3) The set {x(S1), x(S2), . . . , x(S�+1)} forms a system of imprimitive blocks of the ac-
tion of G�.

(4) F
S1
� , . . . , F

S�+1
� are conjugate to each other, where G� acts naturally on the polyno-

mial ring K(E[�])(x).
(5) The stabilizer StabG�(L) of L in G� coincides with the set-wise stabilizer

StabG�(S), where G� acts on E[�] as the linear map GL(2, �) and S is a line in
E[�]. This implies that the extension degree of L/K is � + 1. (The same holds for
LSi .)

For many examples, t1 is a primitive element of L, that is, L = K(t1). In these cases,
all other elements t2, . . . , tk and ã, b̃ are expressed as polynomials in t1 over K . Actually,
in our case, if t1 �= 0, t1 is a primitive element.

LEMMA 2.8. Suppose that G� ∼= GL(2, �). If t1(= tS1
1 ) �= 0, then tS1

1 (= t1), . . . ,
t
S�+1
1 are all distinct. This means that the extension degree of K(t1)/K is � + 1 and L =
K(t1).

Proof. Suppose that t1 �= 0. As s1 = sS1 , where S = S1, is the sum of all x coordinates
of points in S \ {∞} and −t1 is a half of s1, t1 = −∑u∈x(S) u. By Lemma 2.7 each x(Si)
forms an imprimitive block. This means that, for P in Si \{∞}, the stabilizer StabG�(x(P ))

of x(P ) in G� also stabilizes the set x(Si) and so tSi1 . Thus, the stabilizer StabG�(t
Si
1 ) of

t
Si
1 in G� contains StabG�(x(P )).
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Now we show that tSi1 �= t
Sj
1 for 1 ≤ i �= j ≤ � + 1. Suppose, to the contrary, that

there are different subgroups, say T , T ′, such that tT1 = tT
′

1 . Then, we take a point P in
T \ {∞}. By the action of GL(2, �), StabG�(x(P )) also acts transitively on {x(P ′) | P ′ ∈
E[�] \ T }. This implies that StabG�(t

T
1 ) acts transitively on {x(P ′) | P ′ ∈ E[�] \ T } and

also transitively on {x(T ′′) | T ′′ �= T }. Thus, it transforms tT
′

1 to tT
′′

1 for any subgroup
T ′′ �= T of order �. But, as it stabilizes tT

′
1 (= tT1 ), we conclude that tT1 = tT

′′
1 for any

subgroup T ′′ of order �. As the coefficient of the second leading term x
�2−3

2 in ψ�(x) is the
sum of all tSi1 , it should coincides with (�+1)t1. But, by Lemma 2.5 it is 0 and so t1 should
be 0. This is a contradiction. �

3. Symbolic Formulas of Isogeny

Here we give the definition of symbolic formulas of isogeny.

3.1. Algebraic Structures in Parametric Case
For symbolic computation of isogeny, we consider a, b as variables (parameters). Here

we use the same notation as in the previous section. Then, ψ�(x) is a polynomial in x, a, b
over K and we consider x as its main variable. To indicate variables a, b explicitly, we
write ψ�(x; a, b). (We use the same for other polynomials.) By the weight defined in
Remark 2.2, we have the following:

LEMMA 3.1. ψ�(x; a, b) is weighted homogeneous of weight �
2−1
2 . Moreover, as

4a3 + 27b2 �= 0 in K(a, b), ψ�(x; a, b) is square-free.

By Lemma 2.6, all ti’s and ã, b̃ are shown to be algebraic over K . When a, b are
variables, we can show more precise properties over K(a, b). We recall that K[a, b] is an
integrally closed domain in K(a, b), as it is a UFD. (See (13.3) in [20].) As ψ�(x; a, b) is a
polynomial in x overK[a, b]with leading coefficient �, all roots of ψ�(x; a, b) are integral
over K[a, b]. Then, since each ti is expressed as an integral polynomial in elementary
symmetric forms in roots of ψ�(x; a, b), it is also integral overK[a, b]. Moreover, since ã
and b̃ are expressed as polynomials in t1, t2, t3 over K[a, b] (see the formula (6)), they are
also integral over K[a, b]. By this fact, their minimal (monic) polynomials over K(a, b)
have integral coefficients, that is, those are defined overK[a, b].

LEMMA 3.2. t1, ã and b̃ are all integral over K[a, b] and their minimal polynomi-
als mt1(x), mã(x) and mb̃(x) over K(a, b) are defined over K[a, b].

Now we consider the case K = Q and the smallest field L = Q(a, b)(t1, . . . , tk, ã, b̃)
over which F� and ã, b̃ are defined. The following lemmas give alternative proofs for
theorems in Appendix of [6] about the irreducibility of ψ� and the degree of mt1 .

LEMMA 3.3. ψ�(x; a, b) is irreducible over Q(a, b) and its Galois group over
Q(a, b) is isomorphic to GL(2, �)/Z2. Moreover, the extension degree L/Q(a, b) is �+ 1.

Proof. First we show that ψ�(x; a, b) is irreducible over Q(a, b). By Gauss’ lemma,
since ψ�(x; a, b) is a polynomial in x overK[a, b], if it has a non-trivial factorization over
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K(a, b), that is,
ψ�(x; a, b) = h1(x; a, b)× h2(x; a, b) ,

then h1(x; a, b) and h2(x; a, b) can be considered as polynomials in x over K[a, b]. As
the leading coefficient of ψ�(x; a, b) belongs to K , the leading coefficient of hi(x; a, b)
also belongs to K . Then, for any values a0, b0 in K , we have a non-trivial factorization as

ψ�(x; a0, b0) = h1(x; a0, b0)× h2(x; a0, b0) .

We note that degrees of ψ�, h1, h2 are unchanged by the substitution.
Thus, if there are some special values a0, b0 inK such thatψ�(x; a0, b0) is irreducible,

we have a contradiction to prove the irreducibility of ψ�(x; a, b). As mention in previous
subsection, there exists a Serre curve E = E(a0, b0) such that the action of Gal(Q/Q) on
E[�] is isomorphic to GL(2, �), where E[�] is considered as a 2-dimensional vector space
over F� = Z/�Z. In this case, by Lemma 2.7 ψ�(x; a0, b0) is irreducible over Q.

In the same manner, we can show that the Galois group of ψ�(x; a, b) over Q(a, b) is
isomorphic toGL(2, �)/Z2 by considering resolvents over Q(a, b). We recall that from the
action of GL(2, �) on E[�], GL(2, �) acts on x(E[�]) = {x(P ) | P ∈ E[�] \ {∞}}, where
its kernel is {±1}, and the action of GL(2, �) on x(E[�]) is considered as GL(2, �)/Z2.
(See Lemma 2.7 (2).)

Now we use the following property: (See Section 3.3 in [14].) Suppose that f (x; t)
is monic and irreducible over Q(t)[x], where t is a set of parameters (variables). Then, for
any values t0 over Q, if f (x; t0) is square-free,

Gal(f (x; t0)/Q) ⊂ Gal(f (x; t)/Q(t)) ,
where Gal(f (x; t0)/Q) denotes the Galois group of f (x; t0) over Q and Gal(f (x; t)/
Q(t)) denotes the Galois group of f (x; t) over Q(t).

For our case, there are special values a0, b0 giving a Serre curve E = E(a0, b0) such
that Gal(Q(E(a0, b0)[�])/Q) ∼= GL(2, �) and so Gal(ψ�(x; a0, b0)/Q) ∼= GL(2, �)/Z2.
Thus, we have

GL(2, �)/Z2 ∼= Gal(ψ�(x; a0, b0)/Q) ⊂ Gal(ψ�(x; a, b)/Q(a, b)) .
On the other hand, any field automorphism preserves point addition of E[�] and thus

Gal(ψ�(x; a, b)/Q(a, b))⊂ GL(2, �)/Z2 .

Therefore, we have Gal(ψ�(x; a, b)/Q(a, b)) ∼= GL(2, �)/Z2. By using the same argu-
ment in the proof of Lemma 2.7, from the action of Gal(ψ�(x; a, b)/Q(a, b)) on x(S), it
follows that the extension degree L/Q(a, b) is �+ 1. �

Next we consider t1, the coefficient of xk−1 of F�(x). As Gal(ψ�(x; a, b)/Q(a, b))
is isomorphic to GL(2, �)/Z2, by using the same argument in Lemma 2.8, we have the
following.

LEMMA 3.4. If t1 �= 0, tS1
1 (= t1), . . . , t

S�+1
1 are all distinct. This means

Q(a, b)(t1, . . . , tk, ã, b̃) = Q(a, b)(t1) and the minimal polynomial of t1 over Q(a, b)
is of degree �+ 1.

In our caseK = Q(a, b), we can show t1 �= 0 with help of analytic arguments in [24].
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LEMMA 3.5. In Q(a, b), t1 �= 0. Thus, Q(a, b)(t1, . . . , tk, ã, b̃) = Q(a, b)(t1) and
the minimal polynomial of t1 over Q(a, b) is of degree �+ 1.

Proof. Suppose, to the contrary, that t1 = 0 over Q(a, b). We recall the formula (7).
Then, t1 can be expressed as a rational function in x(P ) ∈ x(S) over Q[a, b] as follows,
where we write x for x(P );

t1(x)= x(P )+ x(2P)+ · · · + x(kP ) = x +
k∑
i=2

(
x − ψi−1(x)ψi+1(x)

ψ2
i (x)

)

=
kxθ(x)+∑k

i=2(
θ

ψ2
i

(x)ψi−1(x)ψi+1(x))

θ(x)
,

where θ(x) = ∏k
i=2 ψi(x)

2. Let N�(x; a, b) be the numerator of the rational function.
Then N�(x; a, b) is a polynomial in x over Q[a, b]. Since each ψi is irreducible over
Q(a, b), if t1 = 0 over Q(a, b) then tSi1 = 0 for every Si and N�(x; a, b) should be divided
by ψ�(x; a, b). As both N�(x; a, b) and ψ�(x; a, b) are polynomials in x over Q[a, b], its
cofactor M�(x; a, b) is also a polynomial in x over Q[a, b]. Thus, we have the following
equation over Q[a, b] which holds for every values a, b in C;

N�(x; a, b) =M�(x; a, b)× ψ�(x; a, b) .
Hence, if there are values a0, b0 in C with 4a3

0 + 27b2
0 �= 0 such that t1 �= 0 for E(a0, b0),

then we have a contradiction. This is because for any root γ ofψ�(x; a0, b0), N�(γ ; a0, b0)

should be 0 and so t1 = 0.
Schoof [24] gave an analytic presentation on isogeny of degree �, and he considered

an elliptic curve E
(
−E4(q)

48 ,
E6(q)

864

)
, where E4, E6 are Eisenstein power series of weight 4

and 6, respectively, q = e2π
√−1τ and τ ∈ C. (See [26, 4] for Eisenstein power series.) In

this case, t1 can be expressed by using another Eisenstein power series E2(q) as follows:

t1 = − s1
2
= − 1

24
�(E2(q)− �E2(q

�)) .

Comparing q-expansions of E2(q) and E2(q
�), it can be shown that t1 is not a identically

zero-function, which implies that there is a value q0 such that t1 �= 0. �
3.2. Definition of Symbolic Formulas

We consider the representation L(= Q(a, b)(t1)) ∼= Q(a,b)[t1]〈mt1 (t1)〉 , where 〈mt1〉 denotes

the ideal generated by mt1 . Using a usual elementary argument based on discriminant
in field theory, since Q[a, b] is integrally closed in its quotient field Q(a, b), it can be
shown easily that the integral closure of Q[a, b] in L is contained in 1

disc(mt1 )
Q[a, b][t1],

where disc(mt1) denotes the discriminant of mt1(t1). (See Theorem 10.15 in [20].) More
precisely, as Q[a, b] is a UFD, the integral closure is included in 1

dt1
Q[a, b][t1], where dt1

denotes the product of all square-factors of disc(mt1). We note that disc(mt1) and dt1 are
polynomials in a, b over Q, as mt1(t1) is a polynomial in a, b, t1 over Q and monic with
respect to t1. As to other t2, . . . , tk, ã, b̃, since they are all integral over Q[a, b], they can
be expressed as polynomials in t1 over 1

dt1
Q[a, b]. Hence, we have the following:
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THEOREM 3.6 (Shape Form Formula). There are polynomials T2, . . . , Tk , A,B in
t1, a, b and polynomials dT2, . . . , dTk , dA, dB in a, b which are factors of dt1 over Q such
that ⎧⎪⎪⎨⎪⎪⎩

t2 = T2(t1; a, b)
dT2(a, b)

, t3 = T3(t1; a, b)
dT3(a, b)

, . . . , tk = Tk(t1; a, b)
dTk (a, b)

,

ã = A(t1; a, b)
dA(a, b)

, b̃ = B(t1; a, b)
dB(a, b)

.

(8)

We can assume that all rational functions are reduced and degrees of T2, . . . , Tk , A,B in
t1 are less than �+ 1.

The formulas (8) with the minimal polynomialmt1(t1) can be considered as Symbolic
Formula for the isogeny of degree �. As the shape of the formula just corresponds to so-
called a shape form in theory of Gröbner basis, we may call this formula Shape Form
formula.

REMARK 3.7. The discriminant disc(mt1) is calculated (up to sign) as the resultant
ofmt1 and its derivativem′t1 , that is, the determinant of the Sylvester matrix of them. Then it
follows that disc(mt1) is weighted homogeneous and its weight is �(�+1). Since a factor of
a weighted homogeneous polynomial is weighted homogeneous, dA, dB, dT2, . . . , dTk are
weighted homogeneous. Moreover, it can be shown thatA,B, T2, . . . , Tk are also weighted
homogeneous using properties of weighted homogeneous ideals given in the next section,
where dAã−A, dBb̃−B, dT2 t2−T2, . . . , dTk tk−Tk shall belong to a weighted homogeneous
ideal derived from algebraic relations among a, b, ã, b̃, t1, . . . , tk .

On the other hand, as will be shown in Lemma 4.2, t2, . . . , tk are expressed as poly-
nomials in t1, a, b, ã, b̃ over Q and those polynomials are very compact, that is, have fewer
terms and smaller coefficients, and can be computed very easily. In more detail, the weight
of the polynomial expression of ti is i and its monomials are of form t

e1
1 a

e2be3 ãe4 b̃e5 with
e1 + 2e2 + 3e3 + 2e4 + 3e5 = i. (See Section A.) Thus, we can modify our target formula
as follows.

COROLLARY 3.8 (Modified Formula). There are polynomialsA,B in t1, a, b, poly-
nomials dA, dB in a, b, which are factors of dt1 , and polynomialsH2, . . . , Hk in t1, ã, b̃, a, b
over Q such that ⎧⎪⎨⎪⎩ ã = A(t1; a, b)

dA(a, b)
, b̃ = B(t1; a, b)

dB(a, b)
,

t2 = H2(t1, ã, b̃; a, b), . . . , tk = Hk(t1, ã, b̃; a, b) .
(9)

We can assume that all rational functions are reduced and degrees of A,B in t1 are less
than �+ 1.

As alternative formulas for ã and b̃, we may consider the rational univariate represen-
tation (RUR) which was introduced by [23] and is expected to have a very compact shape.
(It is also described in Theorem 10.18 in [20].) By our computational experiment for small
primes �, the degree of dA and that of dB become very huge compared with that of the
denominator m′t1 . (See Section A about the degrees.) Thus, use of RUR can produce a
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concise formula which can be computed much easier than Shape Form formula. We show
the following by using a typical argument for RUR.

THEOREM 3.9 (RUR Formula). There are polynomials Â, B̂ in t1, a, b over Q such
that the degree of Â and that of B̂ in t1 are less than �+ 1 and

ã = Â(t1; a, b)
m′t1(t1; a, b)

, b̃ = B̂(t1; a, b)
m′t1(t1; a, b)

, (10)

where m′t1(t1; a, b) denotes the derivative of mt1(t1; a, b) in t1.

Proof. We show the formula only for ã, since that for b̃ can be shown in the same
manner. Consider all roots τ1, . . . , τ�+1 of mt1 in the algebraic closure Q(a, b). Then, as
ã is expressed as a rational function in t1 over Q(a, b), each τi determines the value of ã
which we denote by ã(τi ).

Now we set the following polynomial in a newly introduced variable z over Q(a, b);

Â(z) =
�+1∑
i=1

ã(τi)
∏
j �=i
(z− τj ) .

We show that Â(z) is a polynomial over Q[a, b]. First it can be shown easily that each
coefficient is stable under the action of the Galois group of mt1 and therefore it belongs
to Q(a, b). Also, since each coefficient is calculated by additions and multiplications of
integral elements ã(τ1), . . . , ã(τ�+1) and τ1, . . . , τ�+1, it is also an integral element over
Q[a, b]. Thus, it should belong to Q[a, b]. Moreover, its degree in z is less than �+ 1. By
easy calculation, for each τi , we have

Â(τi)

m′t1(τi)
= ã(τi)

∏
j �=i (τi − τj )∏

j �=i (τi − τj )
= ã(τi ) .

�
REMARK 3.10. Since the leading coefficient of ψ� is �, �x(P ) is integral over

Z[a, b] for P ∈ E[�]. This implies that �t1 is also integral over Z[a, b] and m�t1 be-
longs to Z[a, b]. Thus, mt1 belongs to 1

��+1Z[a, b, t1]. In [6], it is shown that mt1 belongs
to Z[a, b, t1] for every � > 3 by using analytic arguments. Moreover, in our computation,
it is examined that Ã, B̃ also belong to Z[a, b, t1].

Finally in this subsection, we discuss how the formulas can give the correct isogeny for
specified values a and b. Consider arbitrary values α, β in Q such that 4α3+27β2 �= 0 and
mt1(t1; α, β) is square free over Q. Then, for any root τ of mt1(t1; α, β), we can compute
the values for ã, b̃, t2, . . . , tk by substituting a, b, t1 with α, β, τ in our formulas. We write
α̃, β̃, τ2, . . . , τk for those values, respectively. By using those values, we can expressF�(x),
D�(x) and N�(x) explicitly. Here we write them by F�(x; α, β, τ ), D�(x; α, β, τ ) and
N�(x; α, β, τ ).

PROPOSITION 3.11 (Valid Formulas by Substitution). Let α, β are rational num-
bers such that 4α3 + 27β2 �= 0 and mt1(t1; α, β) is square free over Q. Also let τ be
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a root of mt1(t1; α, β). Then, the computed map
(
N�(x;α,β,τ )
D�(x;α,β,τ )

)
, y
(
N�(x;α,β,τ )
D�(x;α,β,τ )

′
)

is the cor-

rect isogeny from E(α, β) to E(α̃, β̃).

Proof. We show the statement for Shape Form formula. We note that RUR for-

mula outputs the same value as Shape Form formula. First we prove that
(
N�(x;α,β,τ )
D�(x;α,β,τ )

)
,

y
(
N�(x;α,β,τ )
D�(x;α,β,τ ))

′
)

satisfies the equation y2 = x3 + α̃x + β̃. This algebraic constraint can be

reformulated in the following equation;

(x3+ ax + b)(N�(x)′F�(x)− 2N�(x)F�(x)′)2 −N�(x)3− ãN�(x)F�(x)4− b̃F�(x)6 = 0 .
(11)

(See Section 4.1 for details.) As Shape Form formula corresponds to the correct isogeny
over Q(a, b), Equation (11) holds in Q(a, b)[t1]/〈mt1(t1; a, b)〉, where ã, b̃, t2, . . . , tk are
expressed as polynomials in t1 modulo mt1(t1; a, b) over Q(a, b). Then the left hand side
of Equation (11) is a rational function in t1, a, b and its denominator is a product of factors
of the discriminant disc(mt1). Letting N (t1, a, b) be its numerator in Q[t1, a, b], we have

N (t1, a, b) ≡ 0 (mod mt1(t1; a, b)) in Q[t1, a, b] ,
and there exists a polynomial M(t1, a, b) in Q[t1, a, b] such that

N (t1, a, b) =M(t1, a, b)×mt1(t1; a, b) .
Thus, for any value α, β for a, b and any root τ ofmt1(t1; α, β), as disc(mt1)(α, β) �= 0, all
values for ã, b̃, t2, . . . , tk can be determined and N (t1, a, b) vanishes at (τ, α, β).

In a similar manner, we can show that F�(x; α, β, τ ) is a factor of ψ�(x; α, β) by
the divisibility of ψ�(x; a, b) by F�(x; a, b, t1) in Q(a, b)[t1]/〈mt1(t1; a, b)〉. That is,
as F�(x; a, b, t1) is a monic polynomial in x over Q(a, b)[t1], there is a polynomial
H(x; a, b, t1) in x over Q(a, b)[t1] such that

ψ�(x; a, b)− F�(x; a, b, t1)H(x; a, b, t1) ≡ 0 (mod mt1(t1; a, b)) .
Since the common denominator of coefficients of F�(x; a, b, t1) is a product of factors
of disc(mt1) and disc(mt1)(α, β) �= 0, the congruence also holds for ψ�(x; α, β) and
F�(x; α, β, τ ) and thus each root of F�(x; α, β, τ ) is also a root of ψ�(x; α, β) and so it
is the x-coordinate of a point in E[�].

Next we show that all roots of F�(x; α, β, τ ) correspond to a subgroup. To prove it,
we show that the x-coordinate of the i-th multiple of each point inE[�]whose x-coordinate
is a root of F�(x; a, b, t1) is still a root of F�(x; a, b, t1) for each positive integer i. This
condition can be translated to the following algebraic condition:

resultantx
(
ψ2
i (x; a, b)(y − x)+ ψi−1(x; a, b)ψi+1(x; a, b), F�(x; a, b, t1)

)
≡ CF�(y; a, b, t1) (mod mt1(t1; a, b)) ,

where C �= 0 in Q(a, b)[t1]/〈mt1〉, as C ≡ ∏
γ ;F�(γ )=0ψ

2
i (γ ; a, b). Then this equation

also holds for F�(x; α, β, τ ) andmt1(x; α, β), as the denominators never vanish at (a, b) =
(α, β) by using the fact disc(mt1)(α, β) �= 0.

Finally, by Vélu’s formula, E(α̃, β̃) can be proved to be non-singular (See Lemma
12.17 in [30].) and the computed rational map is the correct isogeny. �
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REMARK 3.12 (Formulas over Fp by Projection). Let p be an odd prime number
sufficiently larger than �, and consider the projection ϕp from Z(p) = { nm | n,m ∈ Z, p �
m} to the finite field Fp of order p. The projection ϕp can be extended naturally to polyno-
mials over Z(p). Then the image ϕp(mt1) does not vanish. Suppose that the image ϕp(dt1)
does not vanish and all rational functions Ti

dT2
, . . . , Tk

dTk
, A
dA

and B
dB

belong to Z(p)(a, b)[t1].
Then, by the projection ϕp, all rational functions in Formula (8) can be projected to their
counterparts over Fp which give the symbolic formula of the isogeny over Fp. This can be
examined by using ideal theoretical arguments given in the next section. Moreover, Propo-
sition 3.11 holds for values α, β for a, b over Fp. As to the representation of each ti , i > 1,
it will be shown later in Lemma 4.2 that ti is expressed as a polynomialHi in a, b, ã, b̃, t1
over Q and the common denominator of its coefficients is not divisible by any prime larger
than �. This implies that we have symbolic formulas of the isogeny of degree � over Fp
simply by the projection when a prime p is greater than �.

4. Ideals Derived from Vélu’s Formula

In this section, we consider ideals derived form Vélu’s formula and analyze their prop-
erties related our symbolic formulas discussed in the previous section. We show, with help
of symbolic and algebraic computation, that each zero of the ideal I e� : 4ã3 + 27b̃2 gives
an isogeny from the curveE(a, b) to that E(ã, b̃), where I e� is the ideal in K(a, b)[t1, ã, b̃]
generated by algebraic constraints derived from Vélu’s formula. (See Proposition 4.6.)
Then, by Proposition 3.11, each zeros of the ideal I� also gives an isogeny, if it annihi-
lates neither D = 4a3 + 27b2 nor D̃ = 4ã3 + 27b̃2 but keep the minimal polynomial mt1
square-free. Thus, Vélu’s formula can be considered as a generic formula for isogenies in
algebraic sense. We first handle a, b, ã, b̃, t1, . . . , tk as variables in the formulas in Propo-
sition 2.1 and focus on the ring of multivariate polynomials R0 = K[a, b, ã, b̃, t1, . . . , tk],
where K is an arbitrary computable field with characteristic 0 or sufficiently large charac-
teristic. Next, we reduce variables and handle only a, b, ã, b̃, t1 and focus on the ring of
multivariate polynomials R = K[a, b, ã, b̃, t1].
4.1. Generating Ideals Corresponding to Vélu’s Formula

Here we give an explicit system of algebraic equations derived from Vélu’s formula.
Since φ(x, y) ∈ Ẽ can be rewritten as the formula (1) for any (x, y) ∈ E, the equation(

y

(
N�(x)

D�(x)

)′)2

−
(
N�(x)

D�(x)

)3

− ã
(
N�(x)

D�(x)

)
− b̃ = 0 (12)

is satisfied. Since y2 = x3 + ax + b for (x, y) ∈ E, Equation (12) depends on the unique
variable x:

(x3+ax+b)
(
N�(x)

′D�(x)−N�(x)D�(x)′
D�(x)2

)2

−
(
N�(x)

D�(x)

)3

−ã
(
N�(x)

D�(x)

)
−b̃ = 0 . (13)
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As D�(x) = F�(x)
2, we have the following by eliminating a factor F�(x)2 from the

numerator of Equation (13):

(x3+ ax+ b)(N�(x)′F�(x)− 2N�(x)F�(x)′)2−N�(x)3− ãN�(x)F�(x)4− b̃F�(x)6 = 0 ,
(14)

where N�(x) is expressed by F�(x) and its derivatives in Equation (5). Using the weights
in Remark 2.2 and letting weights of ã, b̃ be 2, 3, respectively, the polynomial of the
left hand side of Equation (14) is homogeneous of weight 6k + 3, where the weights of
F�(x), F

′
�(x),N�(x), and N ′�(x) are k, k − 1, 2k + 1 and 2k, respectively. Then, from

Equation (14), we have

f6k+3x
6k+3 + f6k+2x

6k+2 + f6k+1x
6k+1 + · · · + f0 = 0 , (15)

where each fi is a polynomial in t1, . . . , tk, a, b, ã, b̃ overK .
Now we consider the ideal I 0

� generated by all fi ’s in R0 = K[a, b, ã, b̃, t1, . . . , tk];
I 0
� = 〈f0, . . . , f6k+3〉R0

Since each isogeny from E(a, b) gives a zero of I 0
� over K , I 0

� is non-trivial. Con-
versely, each zero (α, β, α̃, β̃, τ1, . . . , τk) of I 0

� overK gives a rational map fromE(α, β) to
E(α̃, β̃) and if both E(α, β) and E(α̃, β̃) are elliptic curves, the rational map is an isogeny.
(See Remark 2.3 and Proposition 4.6.)

REMARK 4.1. As the polynomial of the left hand side of Equation (14) is weighted
homogeneous, all fi ’s are also weighted homogeneous. As the weight of f6k+3 is 0, we
can show f6k+3 = 0. Moreover, as the weight of f6k+2 is 1 and t1 is the unique variable of
weight 1, we can also show f6k+2 = 0.

Counting weights of terms appearing in fi ’s, we have the following.

LEMMA 4.2. For each integer i, 2 ≤ i ≤ k, the coefficient polynomial f6k+3−i is of
weight i and contains a term cti , where c is a non-zero element of K . Moreover, from the
equation f6k+3−i = 0, ti is expressed as a polynomial in a, b, ã, b̃, t1 overK . The common
denominator of its coefficients as rational numbers is not divisible by any prime number
greater than �.

Proof. We consider how ti can appear in f6k+3−i for 2 ≤ i ≤ k. As f6k+3−i is 0 or
of weight i, ti may appear in f6k+1−i as cti for some constant c in K . By the definition
(4), ti appears only in the coefficient of xk−i in F�(x). From Equation (5), it follows that,
in N�(x), ti does not appear in any coefficient of x2k+1−j for j < i and ti appears in the
coefficient of x2k+1−i with constant multiple−4i2+2i+2. Also, as the leading coefficient
of N� is 1, ti can appear in the coefficient of x6k+3−i in N3

� with constant multiple 3 ×
(−4i2 + 2i + 2). In the same manner, we can show that in (x3 + ax + b)(N�(x)′F�(x)−
2N�(x)F�(x)′)2, ti appears in the coefficient of x6k+3−i with constant multiple 8i3−12i2+
4i + 6. On the other hand, as the weight of ã is 2 and that of b̃ is 3, ti can appear in the
coefficient of x6k+3−i in neither the term ãN�(x)F�(x)

4 nor b̃F�(x)6.
Thus, ti can appear in the coefficient of x6k+3−i in the left hand side of Equation (14)

with non-zero constant multiple Ci = 8i3 − 2i = (2i − 1)(2i + 1)2i. (We note that the
constant does not depend on k.) Therefore, for i ≥ 2, it follows that Ci �= 0.
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Now, f6k+3−i can be written as

f6k+3−i = Citi − gi (a, b, ã, b̃, t1, t2, . . . , ti−1) ,

where gi (a, b, ã, b̃, t1, t2, . . . , ti−1) is a polynomial in a, b, ã, b̃, t1, t2, . . . , ti−1 over K ,
and thus, by using recursive substitution

ti ← gi (a, b, ã, b̃, t1, t2, . . . , ti−1)

Ci

(which is equivalent to remainder (polynomial division) computations by monic polynomi-

als ti − gi (a,b,ã,b̃,t1,t2,...,ti−1)
Ci

), it can be shown that the ideal I 0
� has a polynomial hi of the

following form;
hi = ti −Hi(a, b, ã, b̃, t1) ,

where Hi(a, b, ã, b̃, t1) is a polynomial in a, b, ã, b̃, t1 over K . Since Ci = (2i − 1)(2i +
1)2i for 2 ≤ i ≤ k = �−1

2 , it can be shown directly that the common denominator of
coefficients of Hi is not divisible by any prime greater than �. �

EXAMPLE 4.3. We give polynomial expressions of ti for several smaller �.
� = 5:

t2 =
19a + ã + 30t21

223151
.

� = 7:

t2 =
29a + ã + 30t21

223151
, t3 =

119t1a + 166b + 7t1ã + 2b̃ + 70t31
22315171

.

The set {t2 = H2, . . . , tk = Hk} in the proof of Lemma 4.2 is essentially the same as
the set of relations among t1, . . . , tk, a, b, ã, b̃ given in [24] which was derived from ana-
lytic arguments. Applying substitution ti with hi to other f6k+3−i for i > k, we can make
them polynomials in t1, a, b, ã, b̃ over K and we denote it by f̃6k+3−i . Thus, for finding
zeros of I 0

� , we need only to consider the ideal I� in R generated by all such polynomials
f̃5k+2, . . . , f̃0. Letting G0 = {f̃5k+2, . . . , f̃0},

I� = 〈G0〉R = 〈f̃5k+2, . . . , f̃0〉R .
As a notation, we let (I 0

� )
e the extension of I 0

� overK(a, b)[ã, b̃, t1, . . . , tk] and I e� that of
I� overK(a, b)[ã, b̃, t1].

LEMMA 4.4. I� is the elimination ideal of I 0
� , that is I� = I 0

� ∩R. Moreover, each
zero of I� can be extended uniquely to a zero of I 0

� . These properties also hold for I e� and
(I 0
� )
e.

Proof. Let H = {h2, . . . , hk}. First we show that G0 ∪ H also generates the ideal
I 0
� . This is because each hi is the remainder of f6k+3−i by h2, . . . , hi−1 up to constant

multiple and each f̃i is also the remainder of fi by h2, . . . , hk up to a constant multiple.
Thus, the ideal generated by G0 ∪ H contains I 0

� . Conversely, G0 and H are constructed
by polynomial divisions from {f6k+1, . . . , f0}, it is clear that I 0

� contains G0 ∪ H and the
ideal generated by them.
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Next we show that I� coincides with I 0
� ∩ R. As G0 is contained in I 0

� ∩ R, I� is
contained in I 0

� ∩R. Thus, it suffices to show that for each g in I 0
� ∩ R, g belongs to I�.

As g belongs to I 0
� , there are polynomials ui in R0 such that g = ∑6k+1

i=0 uifi . Since f̃i
is the remainder of fi by H and f6k+1, . . . , f5k+3 are expressed as linear sums on H over
R0, letting ũi be the remainder of ui by H , we have

g =
6k+1∑
i=0

uifi =
5k+2∑
i=0

ũi f̃i +
k∑
i=2

vihi ,

for some vi ∈ R0. Then ũi belongs to R and
∑5k+2
i=0 ũi f̃i belongs to I� ⊂ R. Thus, as g

belongs to R,
∑k
i=2 vihi also belongs to R.

On the other hand, H forms a Gröbner basis of the ideal in R0 generated by itself
with respect to a block (or product) monomial ordering ≺ such that {a, b, ã, b̃, t1} �
{t2, . . . , tk}, since their leading monomials are relatively prime. (See Proposition 4 and
Exercise 3 in Chapter 2.9 in [8], and see also [11, 8] for monomial orderings.) Seeing their
leading monomials t2, . . . , tk , the ideal generated by H does not contain non-zero element
in R = k[a, b, ã, b̃, t1]. This means that

∑k
i=2 vihi = 0 and g belongs to I�.

Finally we show that each zero of I� can be extended to a zero of I 0
� . For each hi =

ti − Hi(a, b, ã, b̃, t1) in I 0
� , its leading coefficient never vanish at any zero of I�. Thus,

by the extension theorem (see Theorem 3 in Chapter 3.5 in [8]), each zero of I� can be
extended to a zero of I 0

� . Also, the value of ti is uniquely determined by the values of
a, b, ã, b̃, t1. �
4.2. Structure of Ideals

Now we analyze the structure of the ideal I� in R. Let D(x, y) = 4x3 + 27y2, D =
D(a, b) = 4a3 + 27b2 and D̃ = D(ã, b̃) = 4ã3 + 27b̃2.

REMARK 4.5. As Vélu’s formula is constructed from a subgroup S of order �, it is
automatically proved that the constructed map is a morphism and Ẽ = E(ã, b̃) is also an
elliptic curve. (See Lemma 12.17 in [30]). But, in our case, for each zero (α, β, α̃, β̃, τ ) of
I�, we do not know about the algebraic structure of the kernel of computed polynomial F�.
Thus, even if D(α, β) �= 0, it is difficult to predict D(α̃, β̃) �= 0. Also, we have to check
whether the map is a morphism. This implies that we have to consider special ideals based
on saturation and extension for eliminating cases D = 0 and D̃ = 0 to make E(α, β) and
E(α̃, β̃) elliptic curves.

On the other hand, from our experiment for smaller primes �, the condition D �=
0 seems enough to obtain our formulas, because D(α̃, β̃) cannot vanish for every zero
(α, β, α̃, β̃, τ ) of I� with D(α, β) �= 0. Therefore, we mainly consider the ideal I� : D∞
for our experiment. See Conjecture for the detail.

Next we consider the ideal Î� generated by I� and uD̃−1 inK[a, b, ã, b̃, t1, u], where
u is a new variable, its extension Î e� of Î� in K(a, b)[ã, b̃, t1, u] and its elimination ideal

Î e� ∩K(a, b)[ã, b̃, t1]. Î e� is also generated by I e� and uD̃ − 1. Then, Î e� ∩K(a, b)[ã, b̃, t1]
coincides with the saturation I e� : D̃∞ of I e� with respect to D̃. Now we can show the
following.
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PROPOSITION 4.6. Î e� is 0-dimensional in K(a, b)[ã, b̃, t1, u] and it has exactly
� + 1 distinct zeros over the algebraic closure K(a, b), each of which corresponds to a
distinct isogeny of degree � from E(a, b). Moreover, I e� : D̃∞ is also 0-dimensional in
K(a, b)[ã, b̃, t1] and it contains exactly � + 1 distinct zeros which correspond to zeros of
Î e� .

Proof. We first show that any zero (α̃, β̃, τ, υ) of Î e� over the algebraic closureK(a,b)
corresponds to an isogeny from E = E(a, b) to E(α̃, β̃). (Here, α̃, β̃, τ and υ correspond
to ã, b̃, t1 and u, respectively.) We note that for such zero (α̃, β̃, τ, υ), (α̃, β̃, τ ) is a zero of
I e� and D̃ = 4α̃3 + 27β̃ �= 0. By Lemma 4.4 (α̃, β̃, τ ) gives a zero of (I 0

� )
e.

As we are considering all computation overK(a, b), it follows thatD = 4a3+27b2 �=
0. Also, by substituting ã, b̃, t1, u with α̃, β̃, τ, υ, we have D̃ = 4α̃3 + 27β̃2 �= 0 and Ẽ =
E(α̃, β̃) is an elliptic curve over K(a, b). Now we can construct the rational map φ from
E(a, b) to E(α̃, β̃) as follows:

φ : E(a, b)  (x, y) �→
(
N�(x; α̃, β̃, τ )
F 2
� (x; α̃, β̃, τ )

, y

(
N�(x; α̃, β̃, τ )
F 2
� (x; α̃, β̃, τ )

)′)
∈ E(α̃, β̃) ,

where F�(x; α̃, β̃, τ ) and N�(x; α̃, β̃, τ ) are determined by the values α̃, β̃, τ . (See Propo-
sition 3.11 and Lemma 4.4.) As shown in Remark 2.3, by using properties of F�,D�,N�,
φ maps the point at infinity of E to that of Ẽ. Thus, to confirm that the map φ is an isogeny
of degree �, we show that it maps P to the point at infinity of Ẽ for each point P on E such
that x(P ) is a root of F�(x; α̃, β̃, τ ) and F�(x; α̃, β̃, τ ) is square-free.

By the construction of N�, we derive the following properties. (For simplicity, we
write F and N for F�(x; α̃, β̃, τ ) and N�(x; α̃, β̃, τ ), respectively.)

(i) If F and N have a common irreducible factor which does not divide x3 + ax + b,
then it is a multiple factor of F .

This can be shown by using Equation (5) of the construction of N by F . LetG be
a common irreducible factor of F and N , and H its cofactor of F . Then F = GH .
By substituting F with GH in Equation (5), we have

4(x3 + ax + b)G′2H 2 ≡ N ≡ 0 (mod G) .

From this, asG is irreducible,G should divide (x3+ax+b) orH . In the latter case,
G is a multiple factor of F .

(ii) Conversely, if F have a multiple factor, then it is also a factor of N . Moreover, if F
has a common factor with x3 + ax + b, then it is also a factor of N .

This can be shown in a similar manner as (i) by using Equation (5). As to a
multiple factor G, by letting F = HG2 and substituting it in Equation (5), we can
examine that G2 divides N . Also, for a common factor G of F and x3 + ax + b, it
is clear that G dividesN .

(iii) F cannot have any multiple irreducible factor except its GCD with x3 + ax + b.
Suppose that G is an irreducible factor of F with multiplicity e. Let H be the

cofactor ofGe of F . Then, by combining Equations (5) and (14), we have

64e2(e − 1)(x3 + ax + b)3G′6H 4 ≡ 0 (mod G) .
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Therefore, unlessG is a factor of x3+ax+b,G should divides eitherG′ orH . This
is a contradiction.

(iv) F and x3 + ax + b have no common factor.
We can show it in the same manner as (iii). Suppose thatG is an irreducible factor

of F and x3+ ax + b and its multiplicity as a factor of F is e. LetH be the cofactor
of Ge of F and M the cofactor of G of x3 + ax + b. (We note that x3 + ax + b is
square-free overK(a, b).) Then, by combining Equations (5) and (14), we have

4e2(2e− 1)G′6H 4M3 ≡ 0 (mod G) .

As G is irreducible and divides neitherG′, H norM , we have a contradiction.

Combining properties (i),...,(iv), we conclude the following.

(v) F is square-free, F has no common factor with N and F has no common factor with
x3 + ax + b.

We note that, as e is not greater than the degree k of F , we have e ≤ k = �−1
2 . So, when

K = Fp, we have e < p−1
2 by our assumption, and 64e2(e − 1) �= 0 and 4e2(2e − 1) �= 0

in Fp.

From the property (v), it follows that for each point P on E such that x(P ) is a root
of F(x), we have y(P ) �= 0 and N(x(P )) �= 0. Then, the map written in a projective form

φ([x, y, z]) =
[
F ∗N∗, y(N ′F − 2NF ′)∗, z(F ∗)3

]
transform [x(P ), y(P ), 1] to [0,−2y(P )N(x(P ))F ′(x(P )), 0] = [0, 1, 0], as y(P ) �= 0,
F ′(x(P )) �= 0 and N(x(P )) �= 0. Thus we have shown that φ is an isogeny from E to Ẽ.
Moreover, as F is square-free, the number of points in the kernel of φ (including the point
at infinity) is �, which implies that the kernel of φ is a subgroup of order � of the �-torsion
subgroup E[�].

On the other hand, there are � + 1 subgroups of order � in E, and their points are
all algebraic over K(a, b). (See Lemma 2.6.) Thus, from each subgroup S, we have
algebraic elements α̃S, β̃S, τS that satisfy all f̃6k+3−i in the previous subsection. Thus,
(α̃S, β̃S, τS, υS), where υS = 1

D̃(α̃S,β̃S)
, is a zero of Î e� . Hence we conclude that the number

of distinct zeros is �+ 1 and Î e is 0-dimensional in K(a, b)[ã, b̃, t1].
As to I e� : D̃∞, since it is the elimination ideal of Î e� which is 0-dimensional, it is also

0-dimensional. Also, by the closure theorem, it contains the projected zero (α̃S, β̃S, τS) of
(α̃S, β̃S, τS, υS) for all subgroups S. (See Theorem 3 in Chapter 3.2 in [8]).

Meanwhile, since the 0-dimensionality of Î e� implies that there is a polynomial whose
leading term is a power of u, all zeros of its elimination ideal I e� : D̃∞ can be extended to
a zero of Î e� by the extension theorem. Also, as υ is determined uniquely from α̃ and β̃,

it follows directly that there is one to one correspondence between distinct zeros of Î e� and
those of I e� : D̃∞. �

When K = Q, by using Lemma 3.3, we can show the primariness of I e� : D̃∞ as
follows. Let z1 = (α̃1, β̃1, τ1), . . . , z�+1 = (α̃�+1, β̃�+1, τ�+1) be the distinct zeros of I e� :
D̃∞. Then, for each zi , there is a unique extended zero z0

i of (I 0
� )
e that gives a factor, say
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F (i)(x), of ψ�(x). Since ψ�(x; a, b) is irreducible and its Galois group is isomorphic to
GL(2, �)/Z2, all F (1)(x), . . . , F (�+1) are conjugate to each other by the action of the Ga-
lois group. This implies that z1, . . . , z�+1 are conjugate by the Galois group action. Hence

the variety {z1, . . . , z�+1} is irreducible over Q(a, b) and
√
I e� : D̃∞ is a prime (maximal)

ideal, that is, I e� : D̃∞ consists of one primary component. We note that
√
I e� : D̃∞ =√

I e� : D̃. (See Proposition 9 in Chapter 4.4 in [8].)

THEOREM 4.7. (1) The extension ideal I e� :D̃∞ ofK(a,b)[ã,b̃,t1] is 0-dimensional,

and the linear dimension of the residue class ring
K(a, b)[ã, b̃, t1]√

I e� : D̃
is �+ 1.

(2) The contraction ideal (I e� : D̃∞)c = I ec� : D̃∞ is 2-dimensional.
(3) When K = Q,

√
I e� : D̃ is a maximal ideal and I e� : D̃∞ and I ec� : D̃∞ are pri-

mary ideals. We may call I ec� : D̃∞ the generic component of I� which shall give our
formulas.

REMARK 4.8. By our experiment, when K = Q, for smaller primes �, the ideal I�
consists of the generic component I ec� : D̃∞ = I� : D∞ and other components coming
from the condition that E is singular. Moreover, I e� is maximal. By modular techniques,
computation of Gröbner basis of I� : D∞ seems to be done much efficiently compared with
that of I e� . See Conjecture in the next subsection.

4.3. More on Ideals and Conjecture
By Theorem 4.7, I e� : D̃∞ is 0-dimensional and has � + 1 distinct zeros all of which

correspond to isogenies. Thus, for t1, ã, b̃, there exist their minimal polynomials modulo√
I e� : D̃ overK(a, b), and we denote themmt1(x),mã(x),mb̃(x). This fact corresponds to

Lemma 3.2. Moreover, as shown in Lemma 3.2,mt1,mã,mb̃ are polynomials overK[a, b].
LEMMA 4.9. Minimal polynomialsmt1(x), mã(x) and mb̃(x) modulo

√
I e� : D̃ are

defined over K[a, b].
As a consequence of Lemma 4.9, since mt1(t1), mã(ã) and mb̃(b̃) belong to R =

K[a, b, ã, b̃, t1], we have the following.

COROLLARY 4.10. The contraction ideal
√
I ec� : D̃ of

√
I e� : D̃ contains mt1(t1),

mã(ã) and mb̃(b̃). When K = Q, I ec� : D̃∞ is a primary component of I� and so its
associate prime contains them.

COROLLARY 4.11. Minimal polynomials mt1(t1), mã(ã) and mb̃(b̃) are weighted
homogeneous.

Proof. As I� is weighted homogeneous ideal with respect to the given weights, all
components and associated primes are also weighted homogeneous. Therefore,

√
I ec� :

D̃ is weighted homogeneous and every homogeneous part of mt1(t1) is also belonging to√
I ec� : D̃. By the minimality, it follows thatmt1(t1) has a unique homogeneous part and so
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it is weighted homogeneous. In the same manner, we can prove that mã(ã) and mb̃(b̃) are
weighted homogeneous. �

When K = Q, as the number of zeros of
√
I e� : D̃ is �+ 1, the residue class ring

Q(a, b)[ã, b̃, t1]√
I e� : D̃

is considered as an algebraic extension field of Q(a, b) of degree � + 1.

Moreover, by Lemma 3.5, t1 is in generic position, that is, mt1(x) has degree � + 1 and
ã, b̃ can be expressed as polynomials in t1 over Q(a, b) given in Lemma 3.6. For any zero
(α, β, τ ) of I e� : D̃∞, we have

mt1(τ ; a, b) = 0, α = A(τ ; a, b)
dA(a, b)

, β = B(τ ; a, b)
dB(a, b)

,

where A(x; a, b), B(x; a, b) are polynomials over Q[a, b] and dA(a, b), dB(a, b) are fac-
tors of the discriminant ofmt1 . (We note that degree of A(x; a, b) and that of B(x; a, b) in
x are less than �+ 1, and gcd(dA(a, b),A(x; a, b))= gcd(dB(a, b), B(x; a, b)) = 1.)

Let GB be the following set:

GB =
{
mt1(t1; a, b), ã −

A(t1; a, b)
dA(a, b)

, b̃ − B(t1; a, b)
dB(a, b)

}
. (16)

As
√
I e� : D̃ is radical, GB is included in

√
I e� : D̃ by Hilbert’s Nullstellensatz. By its

shape, GB forms a Gröbner basis of the ideal generated by itself. Then, comparing the
linear dimensions, it follows that it also forms the reduced Gröbner basis of

√
I e� : D̃ with

respect to a block monomial ordering < such that {t1} � {ã, b̃} so called in shape form.
Also, by saturation technique for contraction ideal (see Lemma 8.91 and Proposition 8.92
in [3])

√
I ec� : D̃ can be computed by GB as follows:√

I ec� : D̃ = J� : (dA(a, b)dB(a, b))∞ , (17)

where J� is the ideal in Q[a, b, ã, b̃, t1] generated by mt1(t1; a, b), dA(a, b)ã −A(t1; a, b)
and dB(a, b)b̃−B(t1; a, b). Then dA(a, b)ã−A(t1; a, b) and dB(a, b)b̃−B(t1; a, b) belong
to
√
I ec� : D̃. Thus, by considering homogeneous parts, we can show that they are weighted

homogeneous. This implies that A(t1; a, b) and B(t1; a, b) are weighted homogeneous.
Now we propose our conjecture for making our computation practical, where another

ideal I� : D∞ plays an important role. As D ∈ K[a, b], √I ec� : D̃ ⊃ I ec� : D̃∞ ⊃ I ec� ⊃
I : D∞
Conjecture: By our computational experiments for small primes �, we set the following
as our conjecture forK = Q and a finite field Fp with sufficiently large p.

• I e� is maximal, I e� =
√
I e� = I e� : D̃∞ and I ec� =

√
I ec� =

√
I ec� : D̃.

• I� consists of one prime component I ec� and others containing some powers of D.
This implies

√
I ec� : D̃ = I� : D∞.

From our experiments, a Gröbner basis of the ideal I� : D∞ can be computed very
efficiently compared with that of I e� . (See the next section for computational details.) More-
over, by our conjecture, I� : D∞ coincides with the generic component I ec� : D̃∞, and we
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may have very useful information from its Gröbner basis. Thus, we provide the following
proposition which is useful for checking our conjecture and for constructing our formulas.
Let G be the reduced Gröbner basis of I� : D∞ in K[a, b, ã, b̃, t] with respect to a block
monomial ordering < such that {a, b, t1} � {ã, b̃}. Comparing the linear dimension of
K(a, b)[ã, b̃, t1]
(I� : D∞)e with that of

K(a, b)[ã, b̃, t1]√
I e� : D̃

, we have the following:

PROPOSITION 4.12. If G ∩ K[t1, a, b] consists of one polynomial which is irre-
ducible in K[t1, a, b] and monic and of degree � + 1 with respect to t1, then it coincides
with the minimal polynomialmt1(t1; a, b) and t1 is in generic position.

Moreover, ifG contains a polynomialA in ã, t1, a, b and a polynomialB in b̃, t1, a, b
such that the degree of A with respect to ã is 1 and that of B with respect to b̃ is 1, then
(I� : D∞)e is maximal and thus (I� : D∞)e = I e� =

√
I e� =

√
I e� : D̃ = J e� . (This implies

that I ec� is a 2-dimensional prime ideal. We note that (I� : D∞) ∩K[a, b] = {0} as there
is no element in G whose leading monomial belongs to K[a, b].)

Finally we consider the RUR formula given in Theorem 3.9. By Hilbert’s Nullstellen-
satz,m′t1(t1; a, b)ã− Â(t1; a, b) andm′t1(t1; a, b)b̃− B̂(t1; a, b) should belong to

√
I e� : D̃.

Since the both are polynomials in t1, a, b, ã, b̃ over Q, they belong to (
√
I e� : D̃)c =

√
I ec� :

D̃. If Conjecture holds, they belong to I� : D∞ and thus, Ã(t1; a, b) and B̃(t1; a, b) can be
obtained simply as the normal form of m′t1(t1; a, b)ã and that of m′t1(t1; a, b)b̃ modulo G

with respect to a block monomial ordering< such that {a, b, t1} � {ã, b̃}. The details will
be given in the next section.

REMARK 4.13 (Multiple Root Case). The set GB shall directly give our formula
(Shape Form) for isogeny. However, as the denominators are factors of the discriminant
of mt1 , our formulas cannot work when mt1 has multiple roots for values α, β for a, b.
But, even in such a case, the ideal I� : D∞ (which is prime and coincides with I ec� in our
conjecture) itself has a corresponding zero giving a correct isogeny. For finding it, we can
use the computed Gröbner basis of I� : D∞. Thus, we may say the Gröbner basis itself
another formula that can handle any values α, β for a, b with D(α, β) �= 0.

5. Symbolic Computations by Gröbner Bases

Here we report our experiments for computing the symbolic formulas. To make our
computation efficient and practical, we apply modular techniques based on Chinese Re-
mainder Theorem and an F4 type algorithm. All experiments are done using a computer
algebra system Risa/Asir. Besides our main goal for obtaining symbolic formulas, the
ideals discussed here are very interesting to test our efficient techniques of Gröbner basis
computation. Thus, we give details on our Gröbner basis computation.

REMARK 5.1. Our computational goal is to find essential algebraic relations in I� :
D based on our conjecture. To do so, there are several approaches and possible efficient
combination. For examples, we may use an efficient computation for the minimal polyno-
mialmt1 by [6] and add it to the generators of the ideal. Moreover, we may use interpolation
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technique as follows; First we evaluate a, b with number of integers for the generating set
and consider ideals generated by them. Then, we obtain our formulas without parameter
a, b by Gröbner basis computation and recover the true formulas by interpolation. We note
that Poteaux and Schost [22] applied change of basis technique for computation of mt1 by
using the idea in [6], where they obtain mt1 from a triangular set {ψ�(x), t + A(x)} for
a certain polynomial A(x) constructed by a sum of x-coordinate of multiple points of P
with x = x(P ). This does not seems to work well on our parametric case, where a, b are
indeterminates, because k-th multiplication is complicated rational function, which might
makes the total computation worse.

5.1. Main Procedures
First we consider Shape Form formula. Using the properties of I� given in the previous

section, we execute the following steps for making the formula.

REMARK 5.2. We can use an equivalent generating set which is derived as follows:
Combining Equations (14) and (5), we can remove the factor F 2

� from Equation (15).

f6k+1x
6k+1 + f6kx

6k + · · · + f0 = F�(x)2 × (f̂4k+1x
4k+1 + · · · f̂0) .

From f̂4k+1, . . . , f̂3k+3, we have the polynomials hi = ti −Hi shown in Lemma 4.2.

Procedure for Shape Form Formula
STEP 1. COMPUTATION OF GENERATORS OF I 0

� : From the system of algebraic
equations (14) and (15), compute all generators fi of the ideal I 0

� of K[a, b, ã, b̃,
t1, . . . , tk].

STEP 2. COMPUTATION OF GENERATORS OF I� : Using Lemma 4.2, transform
generators fi to f̃i in K[a, b, ã, b̃, t1]. We note that for 2 ≤ i ≤ k, f̃6k+3−i gives
an expression of ti as a polynomial in a, b, ã, b̃, t1. Then, G0 = {f̃6k+3−i | k +
1 ≤ i ≤ 6k + 3} is a generating set of I�.

STEP 3. COMPUTATION OF GRÖBNER BASIS OF I e� : Compute the reduced Gröb-
ner basis GB1 of the ideal I e� generated by G0 with respect to a block monomial
ordering< such that {t1} � {ã, b̃}.

PROPOSITION 5.3. If the computed Gröbner basis GB1 is of shape form the same
as the formula (16), then I e� is shown to be a maximal ideal of K(a, b)[t1, ã, b̃] and GB1
gives the correct formula.

By our conjecture, for each prime �, the computed Gröbner basisGB1 is of shape form
and it shall give our symbolic formula. However, it is very hard to compute GB1 directly
over K(a, b), and thus it is better to change the third step as follows:

Modified Step 3.
STEP 3-1. COMPUTATION OF GRÖBNER BASIS OF I�: As I� is weighted homo-

geneous, compute its reduced Gröbner basis G1 with respect to some weighted-
degree-compatible monomial ordering.

STEP 3-2. COMPUTATION OF GRÖBNER BASIS OF I� : D∞: Let D = 4a3 +
27b2 and u a new variable. Compute the reduced Gröbner basis G2 of the ideal
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I� : D∞ as the elimination ideal I ′ ∩ K[a, b, ã, b̃, t1], where I ′ is generated by
G1 and uD − 1, with respect to a weighted block monomial ordering< such that
{a, b, t1 ã, b̃} � {u}.

STEP 3-3. COMPUTATION OF GRÖBNER BASIS OF I e� : Compute the reduced Gröb-
ner basis GB1 of the ideal I e� = (I� : D∞)e generated by G2 with respect to a
weighted monomial ordering< such that {t1} � {ã, b̃}.

We may skip Step 3-1 and compute the Gröbner basis G2 directly from G0 and uD − 1.

REMARK 5.4. In our case, the selection strategy SUGAR on S-pairs works very well
by assigning a virtual weight−6 to u. (For SUGAR strategy, see [10].) By this assignment,
we may tailor certain computational good behavior as a homogeneous ideal.

Even if we apply Modified Step 3, it is still hard to compute the Gröbner basis GB1
over K(a, b) at Step 3-3. Thus, we add a further trick for its computation. Using our
observation shown in Section A and Proposition 4.12 we can replace Step 3-3 with the
following. This trick can improve the total efficiency very well.

Alternative Procedure to Step 3-3.
STEP I. CHANGE OF ORDERING: We compute the Gröbner basisG3 with respect to

a weighted monomial ordering< such that {a, b, t1} � {ã, b̃}. (Another condition
{a, b} � {t1} � {ã, b̃} is more suited in theory but it might make our Gröbner
basis computation inefficient.)

STEP II. COMPUTATION OF mt1(t1; a, b): If G3 ∩K[a, b, t1] consists of one poly-
nomials which is irreducible in K[t1, a, b] and monic and of degree � + 1 with
respect to t1, it is shown to be the minimal polynomial mt1 by Proposition 4.12.
(Else our conjecture fails.)

STEP III. COMPUTATION OF POSSIBLE dA(a, b) AND dB(a, b): We compute the
discriminant of mt1 and, by its square-free factorization, we compute the product
dt1(a, b) of all square factors of the discriminant. By our observation in Section A,
we redefine dt1(a, b) by removing the power of D from dt1(a, b).

STEP IV. COMPUTATION OF dA, dB,A(t1), B(t1): First we compute the normal
form, say A0, of dt1(a, b)ã and that, say B0, of dt1(a, b)b̃ by using G3. (Then
degt1(A0) ≤ � and degt1(B0) ≤ �, where degt1 denotes the degree in t1.)

(1) If A0 or B0 does not belong to K[a, b, t1], then our conjecture fails.
(2) Else we compute the GCD, say fA, of dt1(a, b) and A0(t1; a, b) and

that, say fB , of dt1(a,b) and B0(t1;a,b). Then
dt1 (a,b)ã−A0(t1;a,b)

fA
and

dt1 (a,b)ã−B0(t1;a,b)
fB

give our formula, that is,

dA(a, b) = dt1(a, b)

fA(a, b)
, dB(a, b) = dt1(a, b)

fB(a, b)
,

A(t1; a, b) = A0(t1; a, b)
fA(a, b)

, B(t1; a, b) = B0(t1; a, b)
fB(a, b)

.

REMARK: By our observation possible common factors f1, f2 are small powers of a or
those of b.
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When the procedure Alternative Procedure to Step 3-3 outputs the polynomials, the
correctness can be guaranteed by the following:

PROPOSITION 5.5. If Alternative Procedure does not fail, output polynomials are
correct ones corresponding to Shape Form formula (8).

Proof. The radical of the generic component
√
I ec� : D̃ contains dA(a,b)ã−A(t1;a,b)

and dB(a, b)ã − B(t1; a, b), where degt1(A) ≤ � and degt1(B) ≤ �. Also, it contains I ec�
and I� : D∞, and thus it contains dt1(a, b)ã − A0(t1; a, b) and dt1(a, b)ã − B0(t1; a, b),
where degt1(A0) ≤ � and degt1(B0) ≤ �. As dA divides dt1 ,

√
I ec� : D̃ also contains the

following polynomial g:

g=dt1(a, b)ã−A0(t1; a, b)−dt1
dA
(dA(a, b)ã−A(t1; a, b))=−A0(t1; a, b)+dt1

dA
A(t1; a, b) .

Then g belongs to K[a, b, t1] and it should be divisible by the minimal polynomial
mt1(t1; a, b). Comparing their degrees with respect to t1, it follows that g = 0. This
implies that the output polynomial for ã coincides with dA(a, b)ã − A(t1; a, b). By the
same argument, the output polynomial for b̃ also coincides with dB(a, b)b̃ − B(t1; a, b).

�
REMARK 5.6. The efficiency of Alternative Procedure heavily depends on that of

computation of the discriminant, which is the resultant computation of mt1 and its deriva-
tive. For the square-free factorization of the discriminant, we can utilize its special structure
observed in Section A effectively as follows: After removing powers of 4a3 + 27b2 and
small powers of a, b, the remaining is a square of an irreducible polynomial. Thus, we can
compute the remaining irreducible factor by a special procedure for polynomial square-
root computation. In our experiment, it worked very efficiently. But, even we applied it,
computation of Shape Form formulas was still hard due to the growth of their weights.

Using the same technique, we can compute the RUR formula (9) from the Gröbner
basis G3.

Procedure for RUR Formula
STEP A. COMPUTATION OF mt1(t1; a, b): The same as Step I and Step II in Alter-

native Procedure to Step 3-3.
STEP B. COMPUTATION OF Â(t1; a, b) AND B̂(t1; a, b): We compute Â(t1; a, b)

and B̂(t1; a, b) as the normal form of m′t1(t1; a, b)ã and that of m′t1(t1; a, b)b̃,

respectively, by using G3. (If the normal form contains ã or b̃, our conjecture
fails.)

The correctness can be shown in the same manner as the proof of Proposition 5.5.
Once we have the Gröbner basis G3 of I� : D∞ with respect to a weighted monomial
ordering< such that {a, b, t1} � {ã, b̃}, the RUR formula can be computed very efficiently.
This is because it can be computed very efficiently by the normal form computation and
the presentation is very concise.

REMARK 5.7. For getting the RUR formula, we need to handle polynomials of
smaller weight only. Therefore, instead of the whole G3, its subset consisting of such
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smaller polynomials are sufficient. (Such a subset can be computed by stopping the Gröb-
ner basis computation in the middle.) Also, since the normal form computation heavily
depends on the monomial ordering, as a practical strategy, we compute two subsets G3,a
and G3,b such that G3,a is a subset of the Gröbner basis with respect to a weighted mono-
mial ordering < such that {a, b, t1} � {ã < b̃} and G3,b is also a subset of the Gröbner
basis with respect to another monomial ordering <′ such that {a, b, t1} �′ {b̃ <′ ã}. We
use G3,a for computing the normal form of m′t1 ã and G3,b for computing that of m′t1 b̃. By
our experiment, it is observed thatG3 tends to be huge compared withG2. So, it is better to
stop the Gröbner basis computation in the middle after getting smaller polynomials enough
for our normal form computation.

5.2. Practical Use of Subideal
Since the structure of ideal I ec� : D̃∞ and that of I e� : D̃∞ are known, we may improve

the total efficiency much more by using a subideal as follows: In Step 1 and Step 2, we
compute a generating set G0 of the ideal I�. However, in our experiment, we can generate
the correct ideal I e� by a smaller subset S0 of G0. Using such a smaller generator improves
the total efficiency very well. This is because G0 becomes very huge, as it has 5k + 3
elements and the last element f̃0 has its weight 6k+3. (Even if we use equivalent generators
mentioned in Remark 5.2, they become very huge.) For our experiment for � ≤ 89, we
choose the first � �3� + �−1

2 ≈ 5k
3 elements for such a subset S0, that seems to optimize the

total efficiency.
Let IS� be the ideal generated by S0. Suppose that the reduced Gröbner basis GB ′ of

the ideal (IS� )
e is of shape form the same as in the formula (16). Then, since the number

of zeros of I e� : D̃∞ coincides with that of (IS� )
e, it follows that

√
I e� : D̃ = I e� : D̃∞ =

(IS� )
e andGB ′ is the correct basis. In more detail, we have the following which guarantees

the correctness of the computation with the subideal. Let S2 be the Gröbner basis obtained
in Modified Step 3 for IS� : D∞ and S3 its another Gröbner basis obtained in Alterna-
tive Procedure to Step 3-3. Using the same argument in the proof of Proposition 5.5, the
correctness of the computed polynomials are guaranteed as follows:

PROPOSITION 5.8. Suppose that S3 ∩ K[a, b, t1] consists of one polynomial
M(t1; a, b) which is irreducible in K[a, b, t1] and monic and of degree �+ 1 with respect
to t1. Then M(t1; a, b) coincides with the minimal polynomialmt1(t1; a, b). Moreover, the
following holds;

(1) If there are polynomials Â0(t1; a, b) and B̂0(t1; a, b) in t1, a, b over K such that
degt1(Â0) ≤ �, degt1(B̂0) ≤ � and IS� : D∞ contains m′t1(t1; a, b)ã − Â0(t1; a, b)
and m′t1(t1; a, b)b̃ − B̂0(t1; a, b), then Â0 = Â and B̂0 = B̂. (Â0 and B̂0 shall be

computed as the normal form of m′t1 ã and that of m′t1 b̃ by S3, respectively.)
(2) If there are polynomials A0(t1; a, b) and B0(t1; a, b) in t1, a, b over K such that

degt1(A0) ≤ �, degt1(B0) ≤ � and IS� : D∞ contains dt1(a, b)ã − A0(t1; a, b) and

dt1(a, b)b̃−B0(t1; a, b), where dt1(a, b) is the product of all square-free factors of the
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discriminant of mt1 with the power ofD eliminated, then

A0

dt1
= A

dA
,

B0

dt1
= B

dB
.

(A0 and B0 shall be computed as the normal form of dt1 ã and that of dt1 b̃ by S3,
respectively.)

As mentioned in Remark 5.7 we need polynomials with smaller weight for the RUR
formula. Thus, we can replace S3 with its subsets S3,a and S3,b.

5.3. Formulas for K = Q by Modular Method
When K = Q, there are techniques called modular techniques, by which we can

resolve the notorious computational problem called intermediate coefficient growth. Here
we employ the following technique, where a generating set H of an ideal over Q and a
monomial ordering< are given.

General Procedure of Modular Method based on CRT
STEP 1. MODULAR STEP: We compute reduced Gröbner bases Gp of projected

ideals over Fp for several primes p with respect to<. Here the projected ideal over
Fp means the ideal 〈ϕp(H)〉 generated by the projected image of ϕp(H), where
ϕp denotes the natural projection from Z(p)[X] to Fp[X]. (See Remark 3.12.) It
is highly expected that Gp is the projected image of the reduced Gröbner basis G
of the ideal generated by H over Q with respect to <.

STEP 2. CRT STEP: From computed Gröbner bases Gp, we compute a candidate
Gcan of the Gröbner basis by Chinese Remainder Theorem (Algorithm) and ratio-
nal reconstruction.

STEP 3. VERIFICATION STEP: We check whetherGcan is the reduced Gröbner basis.

There are two merits for using Modular Method based on CRT; it is suited for parallel
computation and it practically detects unlucky prime numbers. Here a prime number p
is said to be lucky if the computed reduced Gröbner basis Gp coincides exactly with the
projected image of the reduced Gröbner basisG. We note that there arise a problem on how
to provide sufficiently many prime numbers and that on how to discard unlucky primes. In
many cases, it is hard to predict the luckiness without knowingG, although it is shown that
the number of unlucky primes is finite. Moreover, it is also hard to give practical or exact
coefficient bound for Chinese Remainder Theorem in theory and we should introduce some
heuristic bound with trial-error for making the total computation very practical. But, for
our case, as we know the shape of Gröbner basis and ideals are weighted homogeneous,
we may resolve those problems rather easily. See [1] for homogeneous ideals and [21] for
details on the most recent results.

In more detail, we employ the following general computational flow (see [12]).

CRT Modular Computation for Gröbner Basis
INPUT: a generating set H of an ideal I and a monomial ordering<
OUTPUT: the reduced Gröbner basis of I with respect to <

Choose P as a list of random prime numbers;
GP = ∅;
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loop
for p ∈ P do

compute the reduced Gröbner basisGp of 〈ϕp(H)〉 w.r.t. <;
GP = GP ∪ {Gp};

(HP lucky,Plucky) = DELETEUNLUCKYPRIMES(GP,P);
lift GP lucky to Gcan by CRT and rational reconstruction;
if Gcan passes VERIFICATION TEST then

returnGcan
enlarge P with prime numbers not used so far;

Our Verification Test
As to the correctness of I� or IS� , we can use the result of [1] for rather easier verifica-
tion by using the property of being weighted homogeneous. In our experiment, we applied
more effective verification for efficient computation, where we used a subideal IS� gen-
erated by a subset S0 and computed Shape Form formulas and RUR formulas from the
computed Gröbner basis S2 of IS� : D∞ by CRT modular computation but without verifi-
cation 〈S2〉 = IS� : D∞, where 〈S2〉 denotes the ideal generated by S2. (We checked that S2
is a Gröbner basis of 〈S2〉.) We note that, for each prime number p used in CRT modular
computation, we computed the reduced Gröbner basis of the ideal 〈ϕp(S0)〉 : ϕp(D)∞ in
Fp[a, b, t1, ã, b̃] as the projected image of IS� : D∞, where ϕp denotes the natural pro-
jection from Z(p)[a, b, t1, ã, b̃] to Fp[a, b, t1, ã, b̃]. Thus S2 is still a candidate of the
Gröbner basis of IS� : D∞.

But, in our case, we can examine not the correctness of S2 but the the correctness of
the computed RUR formula directly by checking the following: (The correctness of the
computed Shape Form formula can be checked in the same manner. If S2 is the verified
Gröbner basis of IS� : D∞, the property (1) is enough by Proposition 5.8.)

(1) From S2, we computed another Gröbner basis S3 (or its subsets S3,a, S3,b) by
which we obtained a monic and irreducible univariate polynomial MS in t1 over
Q[a, b] of degree � + 1 as a unique element in S3 ∩ Q[a, b, t1], and a RUR form
M ′Sã − ÂS for ã and that M ′Sb̃ − B̂S for b̃ with respect to MS . (ÂS and B̂S are
obtained as the normal form of M ′Sã and that of M ′Sb̃, respectively.)

(2) I� ⊂ 〈S2〉, that is, all members of G0 belong to 〈S2〉. We note that it is equivalent
to verify that all generators fi (or f̂i ) are reduced to 0 by S2 ∪ {h2, . . . , hk}, by
which we can skip the whole computation of G0. (For the definition of hi , see the
proof of Lemma 4.2, and for that of f̂i , see Remark 5.2. Also, see Lemma 4.4.)

(3) For any member of S2, its leading monomial does not belong to Q[a, b].
(4) D̃ = D(ã, b̃) = 4ã3+27b̃2 does not belong to 〈S2〉e. Actually this can be checked

if MS does not divide the numerator 4Â3
S + 27M ′SB̂2

S of D

(
ÂS

M ′S
,
B̂S

M ′S

)
.

Once the properties (1), (2), (3) and (4) are verified, the correctness of the computed
RUR formula can be shown as follows: From (3), we have 〈S2〉 ∩ Q[a, b] = {0} by using
the property of the Gröbner basis. Moreover, as MS is irreducible over Q(a, b), M ′Sã −
ÂS is linear in ã and M ′Sb̃ − B̂S is also linear in b̃, it follows that 〈S2〉e is maximal in
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Q(a, b)[ã, b̃, t1]. As I� ⊂ 〈S2〉, we also have I e� ⊂ 〈S2〉e and
√
I e� ⊂ 〈S2〉e. Also, as D̃ =

D(ã, b̃) does not belong to 〈S2〉e, we have 〈S2〉e : D̃ = 〈S2〉e by the maximality of 〈S2〉e
and thus

√
I e� : D̃ ⊂ 〈S2〉e : D̃ = 〈S2〉e. Then 〈S2〉e contains two irreducible polynomials

MS and mt1 in Q[t1, a, b]. If they differ, their non-zero resultant belongs to Q[a, b], which
implies 〈S2〉∩Q[a, b] �= {0} and a contradiction. Thus,MS = mt1 . In a similar manner, we
can show Â = ÂS and B̂ = B̂S . We remark that (M ′S)3D̃ = 4(M ′Sã)3 + 27M ′S(M ′Sb̃)2 ≡
4Â3

S + 27M ′SB̂2
S modulo 〈S2〉e and M ′S does not belong to 〈S2〉e. Thus, if 4Â3

S + 27M ′SB̂2
S

does not belong to 〈S2〉e then D̃ does not belong to 〈S2〉e. Also, 〈S2〉e ∩ Q(a, b)[t1] is a
principal ideal generated by MS and its membership can be decided by its divisibility by
MS .

We checked the properties (1), (2), (3) and (4) for all computed Gröbner bases up to
� = 83. Thus, those formulas are verified to be correct.

Experimental Data
Table 1 shows some timing data for computation of the Gröbner S2 basis of IS� : D∞ with
respect to a weighted block monomial ordering < such that {a, b, t1} � {ã, b̃} for several
primes � by using our modular techniques and subideals without verification 〈S2〉 = IS� :
D∞, where our subideal IS� was generated by a subset S0 with � �3�+ �−1

2 elements. Also we
apply the virtual weight mentioned in Remark 5.4. The timings (in seconds) for computing
S2 were measured on a PC with 4 Xeon E5-4617 CPUs, where 20 parallel processes were
used.

� 41 43 47 53 59 73 79
S1 421.7 621.3 1789 4777 14970 201500 353900

TABLE 1. Timings of Computation of S1

The practical behavior on our computation in Table 1 suggests that the cost can be
roughly estimated as O(�10) by seeing the ratios. We have also computed the reduced
Gröbner basis without complete verification and the RUR formula for � = 87 which was
adopted for SEA algorithm in Section 6.1.

After getting the Gröbner basis S2 of IS� : D∞, other Gröbner basesG3,a andG3,b (up
to necessary degrees) were computed, by which the RUR formulas were computed directly
by normal form computation. The timings (in seconds) in Table 2 for computing S3,a, S3,b
were measured on the same PC but with 10 parallel processes.

� 41 43 47 53 59 73 79
S3,a 7.986 11.34 17.01 39.17 80.81 420.6 705.0
S3,b 11.91 20.29 31.75 79.54 189.9 977.4 1463

TABLE 2. Timings of S3,a and S3,b
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6. Correctness on Computed Formulas and Application

The computed formulas (and Gröbner bases) can be used for further numerical com-
putations related to elliptic curves. By these applications, we can examine the correctness
and also the applicability of our computed formulas.

6.1. Direct Application to SEA Algorithm of Point Counting
To ensure the correctness and applicability of our computed formulas, we adopted

them to so called SEA (Schoof-Elkies-Atkin) algorithm for counting the number of rational
points of an elliptic curve over a finite field. Our adoption is done by replacing (canonical)
modular polynomials with minimal polynomials of t1 for each odd prime and computing
the Elkies polynomials (factors) by using our RUR formulas. Once we evaluate a and b in
our RUR formula, it can be shown that, except for cases of multiple roots, the factorization
pattern of the minimal polynomial mt1 satisfies the properties of the modular polynomial
Φ� given in Proposition 12.20 and Theorem 12.22 in [30]. Here we summarize how the
isogeny computation by our formulas can be used for SEA algorithm:

Let p be a prime, E(a, b) an elliptic curve defined over a finite field Fp and � an
odd prime much smaller than p. (Thus a, b belong to Fp.) In SEA algorithm we consider a
possible isogeny of degree �. The number of rational points ofE(a, b) over Fp is expressed
as p + 1 − T , where T is so-called the trace of the Frobenius map. By our formulas, we
can deduce the following, where we assume that mt1(= mt1(t1; a, b)) has no multiple root.

• If mt1 has no rational root over Fp, then � is an Atkin prime, and the factorization
pattern of mt1 over Fp gives a very useful information of possible values of the trace
T modulo � of the Frobenius map.
• If mt1 has a rational root τ over Fp, we get the values α̃ and β̃ by the RUR formula

and the Elkies polynomial F�. Then, by using F�, we compute the eigenvalue of the
Frobenius map acting on E[�] and the value of its trace T modulo �.

We implemented our adoption to the SEA implementation in [13], where several tech-
niques for improving the efficiency including isogeny double are used. As we have com-
puted the RUR formulas only for smaller primes, we compared our adoption and the orig-
inal SEA implementation for 160-bit size finite fields Fp which can be used for actual
elliptic curve cryptosystems. As a result, our adoption computed the correct outputs for all
sampled elliptic curves, which assures the correctness of our RUR formulas. As to the total
efficiency, our simple adoption is comparable to the original SEA implementation. This
is because the order of the complexity does not change by our adoption. Table 3 shows
some timing data for required seconds for counting the number of rational points of elliptic
curves E(a, b) over Fp, where p = 2160 − 75, a 160-bit prime, and a = 1 and 1 ≤ b ≤
300. Timings (in seconds) are measured on a PC with Xeon E5-1650v2 of 3.5 GHz.

Implementation Average Max Min
SEA 1.32 3.40 0.78

SEA with RUR Formula 1.38 3.34 0.81

TABLE 3. Timings of SEA and SEA with RUR Formula
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6.2. Computation of Modular Polynomial
Once we have a Gröbner basis, by using elimination ideals, we can compute essential

algebraic relations among specified variables. As an example, the modular polynomial of
order � can be obtained by this technique. For an elliptic curve E(a, b), its j -invariant,
denoted by j (a, b), is defined as

j (a, b) = 1728× 4a3

4a3 + 27b2 =
6912a3

D(a, b)

Introducing two variables j, j̃ , we consider the idealJ� generated by Î e� ,D(a, b)j−6912a3

and D(ã, b̃)j̃ − 6912ã3 in K(a, b)[ã, b̃, t1, u, j, j̃ ]. Then there is one to one correspon-
dence between the varieties (sets of zeros) VK(a,b)(Î

e
� ) and VK(a,b)(J�) as follows:

VK(a,b)(Î
e
� )  (α̃, β̃, τ, υ)↔ (α̃, β̃, τ, υ, ι, ι̃) ∈ VK(a,b)(J�) .

Then J� is 0-dimensional ideal with � + 1 distinct zeros, and E(a, b) and E(α̃, β̃) are
isogeny elliptic curves. Thus, their j -invariants ι = j (E(a, b)) and ι̃ = j (E(α̃, β̃)) should
satisfies the modular polynomial Φ� of order � for K = Q and its modular image ϕp(Φ�)
for K = Fp. By Hilbert’s Nullstellensatz, it should belong to the radical of J�. This gives
the following lemma.

LEMMA 6.1. Some power of Φ�(j, j̃) or its modular image ϕp(Φ�) belongs to J�
and so belongs to its elimination ideal J� ∩K[j, j̃ ]. If our conjecture holds, it belongs to
J� and so belongs to its elimination ideal J� ∩K[j, j̃ ].
From our conjecture and experience, the ideal I� generated by I�,D(a, b)u−1,D(a, b)j−
6912a3 andD(ã, b̃)j̃−6912ã3 inK[a, b, ã, b̃, t1, u, j, j̃ ] contains a polynomial in j and j̃
overK . It can be shown that the polynomial coincides withΦ�(j, j̃) or its projected image.
Thus, using a block monomial ordering {a, b, b̃, ã, t1, u} ! {j, j̃}, we find Φ�(j, j̃ ) in its
Gröbner basis. It is not an efficient way to use our formulas (Gröbner bases) for computing
modular polynomials over Q, since efficient numerical methods on floating arithmetics are
already given. But, our method is based on exact computation and purely algebraic, by
which their modular images can be computed directly over Fp.

7. Concluding Remarks

In this paper we considered possible symbolic formulas of the isogeny φ of degree �
between elliptic curves E(a, b) and E(ã, b̃) defined by y2 = x3 + ax + b and y2 = x3 +
ãx + b̃, respectively. Our target is to express ã, b̃ and all coefficients of the Elkies poly-
nomial F� as certain functions in a and b. Considering E(a, b) over K(a, b), we derived
the symbolic formulas. Then, by using algebraic relations derived from Vélu’s formula,
we proved that those can be obtained as elements in an ideal generated by all algebraic
constraints derived from Vélu’s formula. To obtain those formulas explicitly, we adopted
Gröbner basis computation as a purely algebraic tool. As results, we succeeded in getting
our symbolic formulas for small primes �. In more detail, we obtained the following:
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• By purely algebraic argument, we succeed in expressing essential algebraic relations
as a shape form in variables t1, ã, b̃, t2, . . . , tk over Q(a, b), where k = �−1

2 and
F�(x) = xk + t1xk−1 + · · · + tk . The coefficient t1 is in generic position and has
its minimal polynomial over Q[a, b] of degree �+ 1. Other variables ã, b̃, t2, . . . , tk
are expressed as polynomials in t1 over Q(a, b). Also, as a concise formula, other
variables ã, b̃, t2, . . . , tk are expressed as RUR (rational functions) in t1 overQ(a, b),
whose denominator is the derivative of the minimal polynomial of t1.
• Our precise analysis on the ideal generated by algebraic constraints derived from

Vélu’s formula show that each zero of the ideal with 4ã3+ 27b̃2 �= 0 gives exactly a
correct isogeny.
• Those formulas can be computed on real computer by using efficient modular tech-

niques for Gröbner bases computation. In particular, the RUR formulas were com-
puted successfully and verified up to � = 83. Also, their computation over finite
fields can be also efficiently done by using the property of being weighted homo-
geneous. The computed formula can be adopted very easily to SEA algorithm of
counting rational points of elliptic curves over finite fields. Our implementation can
compute the correct answer which guarantees the correctness of our formula.

Computation of our symbolic formulas heavily depends on that of Gröbner basis for
the ideal related to the algebraic constraints derived from Vélu’s formula. Thus, to compute
our formulas for primes � as larger as possible is a good test suite for making efficient meth-
ods for Gröbner bases computation, and we applied the most recent modular techniques.
Also, we may apply interpolation technique for it. For our further improvements, we may
combine other methods and ideas, such as those in [6] and [22]. Such improvements are
expected to help our further task for handling larger primes �.

Finally we remark that, from the computed formulas, we found some interesting nu-
merical properties which are given in Section A. It would be very nice if such numerical
properties might introduce new insights on theory of elliptic curves.

Acknowledgment. The authors are thankful to FUJITSU LABORATORIES LTD.
for allowing them to adopt the computed formulas to the SEA implementation that FU-
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A. Examples and Observation

Here we give symbolic formulas for small primes computed by our methods and we
show several interesting properties found by those examples. Actually, we have computed
Shape Form formulas (modified) up to � = 37 and RUR formulas up to � = 89.

EXAMPLE A.1. For � = 5, we have

mt1 = t61 + 20at41 − 160bt31 − 80a2t21 + 128bat1 − 80b2, disc(mt1) = −2263655b2(4a3 + 27b2)4 ,

ã = t
5
1 + 20at31 − 200bt21 − 80a2t1 + 50ba

2b

= 630at51 − 9360bt41 − 8240a2 t31 + 24480bat21 + (1120a3 − 28800b2)t1 − 3200ba2

m′t1
,

b̃ = 35t31 + 112at1 − 195b

= 15630bt51 + 34720a2 t41 − 208240bat31 + (−76160a3 + 110400b2)t21 + 138720ba2 t1 − 83200b2a

m′t1
,

t2 =
30t21 + 19a + ã

60
= t51 + 20at31 − 140bt21 − 80a2t1 + 88ba

233151b
.

For � = 7, we have

mt1 = t81 + 84at61 − 1512bt51 − 1890a2 t41 + 9072bat31 + (644a3 − 21168b2)t21 − 5832ba2 t1

−567a4 ,

disc(mt1)= 24831677a4(11236a3 + 84035b2)2(4a3 + 27b2)6 ,

ã = 1

2131a(11236a3 + 84035b2)

×(−12005bt71 + 3710a2 t61 − 999845bat51 + (308990a3 + 18151560b2)t41

+17794105ba2 t31 + (−8388310a4 − 130518360b2a)t21 + (13215825ba3 + 254121840b3 )t1

+358386a5 + 24706290b2a2)

= 1

m′t1
× (2408at71 − 75600bt61 − 150696a2 t51 + 1126440bat41 + (183960a3 − 3810240b2)t31

−2013984ba2 t21 + (−317912a4 + 864864b2a)t1 + 285768ba3 ) ,

b̃ = 1

2131a2(11236a3 + 84035b2)
× ((−16430a3 − 84035b2)t71 − 12005ba2 t61

+(−1376410a4 − 7058940b2a)t51 + (23842315ba3 + 127060920b3)t41

+(33215630a5 + 190843485b2a2)t31 + (−131258855ba4 − 762365520b3a)t21

+(379162a6 + 307861610b2a3 + 1778852880b4 )t1 + 32653257ba5 + 172944030b3a2)

= 1

m′t1
× (117656bt71 + 549024a2 t61 − 7411320bat51 + (−6891360a3 + 9064440b2)t41

+37051560ba2 t31 + (3259872a4 − 78028272b2a)t21 + (−21331016ba3 + 6054048b3)t1
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−1820448a5 + 2000376b2a2) ,

t2 =
30t21 + 29a + ã

60

= 1

2332a(11236a3 + 84035b2)
× (−2401bt71 + 742a2t61 − 199969bat51

+(61798a3 + 3630312b2)t41 + 3558821ba2 t31 + (−1273166a4 − 23078412b2a)t21

+(2643165ba3 + 50824368b3)t1 + 462690a5 + 7865676b2a2) ,

t3 =
70t31 + (119a + 7ã)t1 + 166b + 2b̃

420

= 1

233271a2(11236a3 + 84035b2)
× ((−1378a3 − 33614b2)t71 + 7203ba2 t61

+(−117978a4 − 2823576b2a)t51 + (2683443ba3 + 50824368b3 )t41

+(2486442a5 + 53143734b2a2)t31 + (−23177679ba4 − 304946208b3a)t21

+(2257906a6 + 71715224b2a3 + 711541152b4 )t1 + 5769945ba5 + 85917384b3a2) .

Observation from Computed Examples
For smaller odd primes � greater than 3 and up to 89, the minimal polynomial mt1

is defined over Z[a, b]. Also, polynomials A(t1; a, b), B(t1; a, b), Â(t1; a, b), B̂(t1;A,B)
are polynomials over Z[a, b]. This might indicate that t1, ã, b̃ are integral over Z[a, b].
Here we give the sizes of formulas and comparison with that of the modular polynomial
Φ� of order �. Here we use the bit-sizes of their data in Risa/Asir system and, in the table,
CAN means the size of a variant (called a canonical modular polynomial) of the modular
polynomial proposed by [19] and RUR means the total size of the triple [mt1,m′t1 ã −
Â,m′t1 b̃ − B̂] of polynomials over Z.

� 7 11 13 17 19 23 29 31 37 41 43
mt1 548 1100 1358 2242 2688 3924 6038 6888 9802 12222 13536
Φ� 2950 8754 13102 27082 36398 62798 122810 148686 251950 344230 396722

CAN 342 1438 532 1802 1594 6714 5210 3982 3094 11230 7922
RUR 2902 5698 7366 11682 14226 20354 31614 36070 51534 63974 70814

47 53 59 61 67 71 73 79 83 89
16460 21370 27312 29262 36420 41868 44458 53876 60772 72038

521042 752178 1045786 1157530 1547114 1853206 2018422 2580386 3011078 3743498
40638 20926 76190 8122 21966 129298 11930 32710 204082 80494
85858 111514 142042 152802 189658 217450 231654 279754 315050 373154

TABLE 4. Size of Formulas

Table 4 shows that the minimal polynomialmt1 is very concise and comparable to or
sometime much smaller than the canonical modular polynomial, and moreover, the RUR
formula is also concise. On the other hand, the size of the Shape Form formula is very
huge due to the growth of the denominators dA and dB which will be discussed just below.
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Table 5 shows its binary size in Risa/Asir system, where SHAPE means the size of the triple
[mt1, dAã − A, dBb̃ − B].

� 7 11 13 17 19 23 29 31 37
SHAPE 2444 12186 21132 66054 104828 259298 767042 1077092 2588626

TABLE 5. Size of Shape Form

As to the discriminant of mt1 , for smaller primes �, it has a special form

±2α3β��aγ bδ(4a3 + 27b2)�−1g�(a, b)
2 ,

where α, β, γ, δ are non-negative integers and g�(a, b) is an irreducible polynomial in a, b
over Z or 1 for � = 3 and 5. Table 6 shows the values of α, β, γ, δ for smaller primes.
From Table 6 it is shown that mt1 is also square-free over a finite field whose characteristic
is neither 2,3 nor �. Moreover, it is interesting that a appears as a factor if and only if � �≡ 2
(mod 3) and b appears as a factor if and only if � �≡ 3 (mod 4). This might suggest some
connection to the supersingularity of curves over the finite field F� of order �.

� α β γ δ weight of g�
11 112 36 0 0 36
13 186 70 4 2 48
17 276 102 0 2 102
19 344 160 4 0 132

� α β γ δ weight of g�
23 496 180 0 0 210
29 890 282 0 2 348
31 896 358 4 0 402
37 1354 574 4 2 588

TABLE 6. Indices of Factors of disc(mt1 )

Also, as to the denominators dA and dB , they have the following form for smaller
primes �:

2α
′
3β
′
aγ
′
bδ
′
g�(a, b) .

Thus, the weight of dA is almost the same as that of g� which seems to grow in �2-order
and much larger than that of m′t1 . Actually, it is expressed as (�−2)(�−3)

2 − (γ + 3
2δ) and

γ + 3
2δ is very small. This fact suggests strong superiority of RUR formulas to Shape Form

formulas, since the weight of the denominator m′t1 of RUR is �. Table 7 shows the values
of α′, β ′, γ ′, δ′.

dA: � α′ β′ γ ′ δ′
11 4 2 0 0
13 11 6 1 1
17 13 4 0 1
19 12 7 1 0
23 14 6 0 0
29 24 8 0 1

dB : � α′ β′ γ ′ δ

11 4 1 0 0
13 11 7 2 0
17 10 5 0 0
19 12 8 2 0
23 15 7 0 0
29 24 9 0 0

TABLE 7. Indices of Factors of dA, dB
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As to the factor g�(a, b), since it gives an algebraic constraint between a, b such that
mt1 is not square free, it shall give a constraint on the j -invariant of such curves. By using
the algebraic relation (4a3 + 27b2)j = 1728 × 4a3 among j and a, b, we can derive
an algebraic constraint on j as a polynomial, say h�(j), in j over Z via Gröbner basis
computation, where we excluded a power of a. (See Section 6 for the technique.) For
examples, h7(j) = 128j − 2268945 and

h11(j)= 48828125j6 − 410405299436664j5 − 848915250745862831760j4

+ 28519100586493187524058880j3 − 70071257008877545900521504000j2

+ 2109421372721333404066779064320j + 30320610632354162438738806036156416 .

Table 8 shows the computed degrees of h� for smaller primes �, which suggest that
the weight of g� coincides with the degree of h� times 6.

� 7 11 13 17 19 23 29 31 37 41 43 47
degree 1 6 8 17 22 35 58 67 98 123 136 165

TABLE 8. Degree of h�

Masayuki NORO

Department of Mathematics,
Rikkyo University
3–34–1 Nishi-Ikebukuro, Toshima-ku, Tokyo,
171–8501, Japan
e-mail: noro@rikkyo.ac.jp

Masaya YASUDA

Department of Mathematics,
Rikkyo University
3–34–1 Nishi-Ikebukuro, Toshima-ku, Tokyo,
171–8501, Japan
e-mail: myasuda@rikkyo.ac.jp

Kazuhiro YOKOYAMA

Department of Mathematics,
Rikkyo University
3–34–1 Nishi-Ikebukuro, Toshima-ku, Tokyo,
171–8501, Japan
e-mail: kazuhiro@rikkyo.ac.jp



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Japan Color 2001 Coated)
  /PDFXOutputConditionIdentifier (JC200103)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (Japan Color 2001 Coated)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive true
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


