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ABSTRACT 

Unsupervised Classification to Change (UC-Change) is a new remote sensing 

approach for mapping areas affected by logging and wildfires. It addresses the main limitations of 

existing image time-series change detection techniques, such as limited multi-sensor capabilities, 

use of purely spectral-based forest recovery metrics, and poor detection of salvage harvesting. 

UC-Change detects disturbances and tracks forest recovery by analyzing changes in the spatial 

distribution of spectral classes over time. The algorithm detected approximately 85% and 70% of 

reference cutblock and fire scar pixels at a ±2-year temporal agreement, respectively, consistently 

outperforming existing algorithms across different biogeoclimatic zones of British Columbia, 

Canada. The results indicate an upper estimate of 7.5 million ha of forest cleared between 1984 

and 2014, which is above estimates based on existing maps and databases (6.3 – 6.7 million ha). 

Also presented is a new framework for using open-access data for validation of change detection 

results.  
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CHAPTER 1  

INTRODUCTION 

1.1. Ecological Consequences of Forest Harvesting 

Global forest cover has undergone tremendous changes due to human activities 

(Kaplan et al., 2016). Remote sensing plays a crucial role in documenting, monitoring, and 

mitigating these changes. It has been estimated that there are from 35% to 46%  fewer trees on the 

planet today than there were at the start of human civilization (Crowther et al., 2015; Mackey et 

al., 2015) and that intact forests account for only 18% of the remaining forest cover (Venter  et al., 

2016; Potapov et al., 2017; Watson et al., 2018). Deforestation (i.e., removal of forest not followed 

by reforestation), caused by the clearing of forested land for agricultural and other land uses, has 

resulted in the extinction or habitat loss of many species of plants, animals, and other organisms 

(Gibson et al., 2011, Betts et al., 2017). In many areas, deforestation has caused soil degradation 

and desertification (Glantz and Orlovsky, 1983; Oldeman, 1992; De la Paix et al., 2013), changed 

hydrology (De la Paix et al., 2013; Bagley et al., 2014) and altered microclimate (Betts, 2001; 

Bounoua et al., 2002; Li et al., 2016), and had various negative socio-economic effects. For 

example, deforestation affects the livelihoods of people who depend on forest products and 

services (Sunderlin et al., 2005; Mamo et al., 2007). A significant portion of the carbon stored in 

felled trees ends up in the atmosphere, contributing to the rising concentration of atmospheric 

greenhouse gases (Bala et al., 2007) and this contributes to anthropogenic climate change. 

Deforestation is less common in developed countries (Leckie et al., 2002; Clement et 

al., 2015), where forests are usually allowed to partially regrow with or without human assistance 

(e.g., planting and/or seeding) before being harvested again. However, conversion of natural 
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forests into managed, repeatedly harvested forests can have similar consequences to deforestation 

mentioned in the previous paragraph, although to a lesser extent. For example, clearcutting (i.e., 

cutting of all trees in an area of at least a few hectares at one time), which is the most common 

harvesting method in Canada (Bergeron and Fenton, 2012) and many other countries (Brassard 

and Chen, 2006; Lundmark et al., 2013), results in even-aged stands after regeneration and can 

have a less diverse understory compared with old-growth forests and forests recovering from 

natural disturbances, such as fire and insect infestations (Burton et al., 2003; Bergeron and Fenton, 

2012). Animal biodiversity is also much lower due to the lack of coarse woody debris, which is a 

critical habitat component for small mammals (Carey and Johnson, 1995), birds (Carey et al., 

1991), and amphibians (Bury et al., 1991; Corn and Bury, 1991).  

Whereas natural disturbances, including wildfires (Kutiel and Shaviv, 1992; Yildiz et 

al., 2010), return nutrients like phosphorus, potassium, calcium, and magnesium from the trees 

back into the soil, logging removes nutrients directly and through post-harvest leaching (McRae 

et al., 2001; Palviainen et al., 2014; Swinfield et al., 2019), depleting the soil after every harvest. 

Soils also suffer from erosion caused by heavy equipment involved with logging (Startsev et al., 

1998), including the need for access roads. Finally, unlike natural forests, which can continue to 

accumulate carbon for many centuries (Pregitzer and Euskirchen, 2004; Luyssaert et al., 2008), 

managed forests are harvested about every 100 years or even more frequently, typically well before 

they reach their maximum carbon capacity. To maximize financial return, managed forests are cut 

before reaching peak biomass (Hyde, 1981) and contain as little as 20% of the carbon on average 

over the rotation period compared to surrounding intact old-growth forests, depending on the type 

of forest and climate (less in tropics and more in boreal forests; Cooper, 1983). For example, in 

British Columbia, considering that only half of the harvested wood is turned into long-lived 
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products (e.g., lumber and panels; BC Ministry of Forests, 2010), those products would need to 

last for at least two harvest rotations (~ 200 years) to make logging in the province carbon neutral, 

which is not realistic (Pingoud, 2010). 

Intensive silviculture often replaces native tree species with monocultural plantations. 

For example, the Province of British Columbia, by far the largest timber producer in Canada 

(NRCan, 2020), replants 80% of harvested areas (BC Ministry of Forests, 2017), of which 55% 

are replanted as lodgepole pine plantations instead of a mixture of native tree species (BC Ministry 

of Forests, 2009; Mather et al., 2010; FGC, 2018). This practice is common even in areas with 

very high pre-harvest tree species diversity (Roach et al., 2015). Lodgepole pine has been deemed 

as a highly attractive species by the timber industry due to its commercial suitability and also rapid 

growth rate under various conditions (Burns and Honkala 1990, Klinka et al. 2000) and has been 

planted in many countries outside its native range (e.g., Sweden and New Zealand; Gundale et al., 

2014), where it and its pests threaten to become invasive species (Engelmark et al., 2001; Ledgard 

et al., 2001). While lodgepole pine is native to North America and a common, dominant, or seral 

species in parts of British Columbia, it is now being recognized that monospecific plantations of 

this species suffer high mortality rates compared to the natural forest they replace for several 

reasons. Due to low species diversity, they are less resilient to diseases (e.g., western gall rust and 

dohistroma needle blight) and insect infestations (e.g., mountain pine beetle and lodgepole pine 

terminal weevil) and are prone to damage by wildlife (e.g., bears), ice, and snow press (Mather et 

al., 2010; Roach et al., 2015). In addition, the health of lodgepole pine plantations may become 

compromised in the future as the climate gets warmer. According to Coops and Waring (2010), 

lodgepole pine prefers relatively cold climates, with harsh spring frosts and average summer 
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temperatures below 15°C, and as a result, they predicted that this species will disappear in many 

parts of its current range by 2070 due to global warming.  

1.2. Transition to Sustainable Silviculture 

To protect biodiversity and maintain ecosystem integrity, forestry must transition from 

an agricultural model to one that mimics natural disturbance processes. One such alternative to 

clearcutting and monocultural plantations is variable retention harvesting, which leaves behind 

coarse woody debris, shrubs, single trees, and patches of intact forest that have high biodiversity 

and/or are important for forest recovery (Franklin et al., 1997). Many researchers, such as Curtis 

(1997), Burton et al. (1999), and Harvey et al. (2003), also argue that an extended rotation period 

of up to 200 years is necessary to ensure that older cutblocks provide at least some of the habitat 

value and other ecological functions of the old-growth forest they replace. While the use of these 

sustainable practices (variable retention harvesting and extended rotation) is still very limited 

(Beese et al., 2019), somewhat less ecologically-oriented partial-harvest, clearcutting-with-

reserves, and small-area-clearcutting methods have become common in some places, such as 

British Columbia and Ontario (Thorpe and Thomas, 2007; BC Ministry of Forests, 2018). 

There are often competing objectives between what will generate the most profit, 

particularly in the short term, and what is best ecologically. Sustainable methods, especially those 

using extended rotation periods, may require larger areas and higher expenses to maintain the same 

rate of timber extraction as clearcutting. In addition, there is no systematic approach to determining 

what kind of forest management methods are best suited for each particular area. For example, 

lone trees left behind by variable retention harvest may suffer high mortality in areas where strong 

winds are frequent (Beese et al., 2019). In drier areas, moisture competition from residual trees 
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can also slow down forest regeneration (Beese et al., 2019). Thus, there is a distinct need for 

information to help properly drive these forest harvest and management decisions, both for short 

term harvesting decisions and longer-term forest integrity (which has both ecological and 

economic benefits). 

1.3. Role of Remote Sensing in Forestry 

While field visits are crucial for studying forest recovery in individual cutblocks, it is 

impractical to monitor hundreds of thousands of them without using remote sensing tools. 

Therefore, remote sensing plays an important role in helping to find a compromise between 

ecological and economic objectives. Using satellite data, it is possible not only to map the extent 

and date of harvest, but also to monitor forest recovery. A combination of satellite, airborne, and 

near-surface remote sensing data can be used to determine if the composition and structure of 

recovering forest stands meet the goals of sustainable forestry. This information makes it possible 

to evaluate the success of different forest management practices. Likewise, biomass can be 

estimated regularly, and this can also help monitor greenhouse gas emissions and carbon 

sequestration (De Sy et al., 2012).  

Aerial photography has been used for high-definition forest mapping for 

approximately a century (e.g., Robbins, 1929; Parsons, 1930; Husch et al., 2002). British 

Columbia’s Forest Inventory is still primarily based on human interpretation of aerial photographs 

(Bourgeois et al., 2018). However, while this method makes it possible to map forest disturbance 

and analyze post-disturbance forest recovery at a high level of spatial accuracy and detail, it is 

labour intensive and time consuming, expensive, subjective based on individual interpreter 
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variations, limited to a few regions where sufficient spatial and temporal coverage of the area is 

available, and rarely provides up-to-date information. 

Satellite sensors can acquire data for any forested area on the planet at regular and 

relatively short (compared to aerial photography) time intervals. Most cutblocks can be easily 

identified on images acquired by the multispectral scanner (MSS) that was on board the Landsat 1 

satellite launched in 1972 (originally called ERTS/1). Landsat data have been continuously 

recorded for nearly half a century and, therefore, can be used to determine the baseline for 

monitoring both recent and older forest disturbances. Such a long record of satellite data can 

provide essential information on how forest disturbances of the past affect forest communities, 

flora, and fauna today. For example, Landsat sensors captured the rapid growth in commercial 

harvesting of northern forests which was facilitated by the mechanization and automation of the 

timber industry in the 1970s and 1980s (Burton et al., 2003). 

Despite the long and continuous record of satellite observations, there are few detailed 

large-area maps of anthropogenic forest disturbances that are openly available today. Prior to the 

opening of the Landsat archive in 2008, satellite-based forest disturbance mapping was mostly 

limited to small-area medium-resolution (10m – 100m) or large-area but coarse resolution 

(>100m) studies (Banskota et al., 2014; Zhu, 2017). Even today, the use of medium-resolution 

1972 – 1983 Landsat data is hindered by the quality of data preprocessing (Wulder et al., 2019). 

In contrast, the preprocessing of data acquired by Landsat 5 TM (launched in 1984) and newer 

sensors has been continuously improving (Zhu et al., 2015; Qiu et al., 2019; Wulder et al., 2019), 

resulting in analysis-ready imagery that can be used in multi-temporal studies without any 

additional preparation on the user side. This presents an important opportunity. However, a key 
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challenge is the much larger size and temporal extent of these datasets, and the need for a better 

approach and new processing methods. This forms the focus of this thesis. 

The goal of forest disturbance mapping is to determine how (e.g., fire, logging, and 

insect infestation), where (location and boundary of disturbed forest), and when changes in forest 

cover occur, as well as to provide information on the temporal dynamics of such changes. Only 

time-series change detection techniques, which use large, temporally dense sets of satellite data, 

can be used to address these questions. Many researchers (e.g., Hansen and Loveland, 2012; 

Banskota et al., 2014) predicted that automated time-series algorithms would largely replace 

traditional techniques that compare a small number (as few as two) of images as they provide a 

deeper understanding of forest changes and trends and can be used to map large areas. 

1.4. Research Goal and Objectives 

The goal of this research was to develop a new technique for mapping stand-replacing 

forest disturbances (i.e., disturbances resulting in a complete or near complete removal of forest 

cover) that would address some of the limitations of existing methods, such as limited multi-sensor 

capabilities, use of purely spectral-based forest recovery metrics, and poor detection of salvage 

harvesting. The technique, named Unsupervised Classification to Change (UC-Change), 

represents a completely new approach to time-series change detection. It can utilize both spectral 

and spatial information contained in data of variable spatial, spectral, and radiometric resolutions 

from multiple sensors to map forest disturbances. It offers new, object-based metrics for 

monitoring forest recovery that can provide unique ecological information. It may also have utility 

for other time-series applications. The objectives of the thesis were as follows: 
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1) Develop a technique that detects forest disturbances using unsupervised classification maps 

derived from time-series Landsat and Sentinel-2 data. Compared to existing methods, it 

was expected that such a technique would require fewer data preprocessing steps and be 

able to more fully utilize the spectral and spatial information offered by different sensors 

in multi-sensor datasets. 

2) The second objective with this new UC-Change approach was focused on the analysis of 

post-disturbance dynamics. Its basis is tracking changes in the distribution of spectral 

classes inside a disturbed area over time to better monitor forest recovery than by using 

pixel-based metrics only. To test this, the saturation rate for the two types of metrics 

(existing pixel-based metrics and the new object-based metrics) was compared. Pixel-

based methods use spectral indices that, in Canada, reach pre-disturbance values within 20 

years after a disturbance event (White et al., 2017), well before the forest reaches maturity 

(80 – 120 years, depending on the species), not to mention the old-growth status (>200 

years) (Cooper, 1983; Burton et al., 1999). It was expected that the proposed object-based 

metrics would take longer to saturate than pixel-based metrics. In addition, they were 

expected to be able to provide basic information about changes in stand composition (e.g., 

whether regenerating stands are deciduous, coniferous, or mixed). 

3) Develop a framework for the assessment of forest disturbance maps using high-quality 

open-access data, such as the forest inventory data of British Columbia. 

4) The final objective was to evaluate the ability of the UC-Change technique to accurately 

estimate the rate of forest harvesting in different biogeoclimatic zones and over large areas. 

To do so, a map produced for the province of British Columbia was validated against forest 

inventory data and compared with existing forest disturbance maps and databases. 
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1.5. Thesis Overview 

This thesis follows a journal paper format. In Chapter 2, the literature is reviewed to 

identify issues associated with existing approaches to forest disturbance mapping. Chapter 3 (draft 

of Paper 1) presents the new UC-Change method created with the purpose of addressing those 

issues. Chapter 4 (draft of Paper 2) analyzes the utility of the UC-Change approach for estimating 

the scale and rate of forest harvesting at a regional scale. Chapters 3 and 4 are intended as self-

contained, stand-alone manuscripts in draft form to be updated and submitted for peer-review and 

publication at a later date. Chapter 5, the Conclusion, summarizes the thesis findings, highlights 

the significance of the research, provides major conclusions, and suggests areas for future research. 
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CHAPTER 2  

BACKGROUND 

In the context of remote sensing, change detection can be defined as the process of 

detecting changes in land cover by comparing multitemporal observations. For example, two 

Landsat images of the same area can be compared to identify areas of forest loss and forest gain 

that occurred between the acquisition dates of the two images. Usually the term is applied to semi-

automated and automated procedures (Lu et al., 2004; Hansen and Loveland, 2012; Banskota et 

al., 2014). 

This chapter starts with a summary of main factors affecting forest change detection, 

which is followed by a review of current methods, including their strengths and weaknesses. 

Separate sections will analyze the ability of existing algorithms to characterize change and monitor 

post-disturbance forest recovery. Finally, the chapter will discuss the unique aspects of the 

accuracy assessment of change detection products. 

2.1. Factors Affecting Forest Change Detection 

There are numerous factors that can affect the performance of any change detection 

technique. Understanding these factors and knowing which of them a particular technique is most 

sensitive to may help select and pre-process imagery to maximize the accuracy of resulting maps. 

Using suitable data allows the algorithm of choice to separate the disturbances of interest from 

other changes and from noise, and to improve the mapping of individual disturbance events. 
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2.1.1. Data type 

2.1.1.1. Optical remote sensing 

Most forest change detection techniques use primarily or exclusively optical remote 

sensing data, which covers the visible (0.4 μm – 0.7 μm), near-infrared (NIR; 0.7 μm – 1.4 μm) 

and short-wave infrared (SWIR; 1.4 μm – 2.4 μm) parts of the electromagnetic spectrum (Lu et 

al., 2004; Hussain et al., 2013). All three regions (visible, NIR, and SWIR) can be used to identify 

and separate forested areas from other land-cover types and particularly bare ground (e.g., fresh 

clearcuts). What sets forest cover apart are the strong canopy shadowing effects and absorption of 

light in the SWIR region by canopy moisture (Steiner and Gutermann, 1966; Colwell, 1974; Horler 

and Ahern, 1986; Gemmell, 1995). Strong absorption of light in the visible spectrum by chlorophyl 

and other pigments (carotenoids and xanthophylls) can also be used to distinguish forest pixels 

from areas lacking vegetation (e.g., fresh clearcuts and fire scars) (Huete, 2012). 

Trees can be distinguished from non-vegetated surfaces by using the visible and NIR 

bands. For this reason, many studies used the Normalized Difference Vegetation Index (NDVI) to 

map forest disturbances (e.g., Lunetta et al., 2006; Verbesselt et al., 2010; Reiche et al., 2015): 

NDVI =
NIR − red

NIR + red
 , (2-1) 

where NIR and red are spectral reflectance values from the corresponding spectral bands. NDVI 

is sensitive to the health and density of green vegetation (Tucker, 1979; Sellers et al., 1992); 

therefore, fresh cutblock and fire scars have low NDVI values compared to pre-disturbance values.  

There are two main challenges associated with using NDVI for mapping forest 

disturbances. Compared to longer wavelengths, the NIR and especially red (due to strong 

chlorophyl absorption) bands can only sense the very top layer of tree canopies (Gao, 1996). As a 
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result, NDVI is known to saturate (plateau) at leaf area index1 values far below those of mature 

forest stands (Gao, 1996). Consequently, NDVI has a limited application when it comes to 

monitoring forest recovery, as it can only be used to detect the initial emergence of any leafy 

vegetation, not just trees (Pickell et al., 2016). In addition, it is not always easy to separate forest 

from non-woody vegetation using NDVI alone, for the same reason. 

While other VNIR spectral indices exist, they perform similarly to NDVI when used 

for forest disturbance mapping (Xue and Su, 2017; Huo et al., 2019; Cohen et al., 2018). It is 

noteworthy that many sensors either do not have bands other than in the visible and NIR 

wavelength regions (e.g., Landsat MSS, SPOT 1 – 7, and most sensors with sub-10-m spatial 

resolution), or the spatial resolution of other bands is too low to accurately map the spatial extent 

of most cutblocks and small fire scars. For example, only two bands, red and NIR, of the 

MOderate-Resolution Imaging Spectroradiometer (MODIS) sensors have a spatial resolution of 

250 m (other bands are 500 m or 1000 m). Therefore, using other indices is not always on option. 

Landsat 5 TM (launched in 1984) and newer Landsat and some other sensors (e.g., 

Sentinel-2) have two spectral bands measuring radiance in two short-wave infrared (SWIR) 

atmospheric windows: 1500 nm – 1750 nm and 2000 nm – 2400 nm; these bands are commonly 

referred to as SWIR-1 and SWIR-2. It has been known that SWIR bands are extremely important 

for forest mapping (Horler and Ahern, 1986). Gemmell (1995) found strong inverse correlation 

between the SWIR bands of Landsat 5 TM data and timber volume. Hermosilla et al. (2015a) 

found the SWIR-1 bands of Landsat 5 TM and Landsat 7 ETM+ to be more important for the 

classification of forest disturbances than any other band, vegetation index, or other characteristic 

 
1 Leaf area index (LAI) is the ratio of one-sided leaf area per unit of ground area (Jordan, 1969). 
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that they tested. Cohen et al. (2018) had similar findings, in which the Normalized Burn Ratio 

(NBR) and Tasseled Cap Wetness (TCW) performed slightly better at detecting forest disturbances 

in Landsat data than just SWIR-1 or SWIR-2 bands alone. These indices are defined as follows: 

NBR =
NIR − SWIR2

NIR + SWIR2
  and (2-2) 

TCW = 0.0315 × Blue + 0.2021 × Green + 0.3102 × Red + 0.1594 × NIR  

− 0.6806 × SWIR1 − 0.6109 × SWIR2, 

(2-3) 

where Blue, Green, Red, NIR, SWIR1 and SWIR2 are spectral reflectance values for the 

corresponding Landsat spectral bands; coefficients used for TCW may differ depending on the 

sensor. Both NBR and TCW contrast SWIR bands with other spectral bands and have been found 

very useful for forest change detection because these regions (visible, NIR, and SWIR) react to 

forest disturbances differently (Huang et al., 2010; Kennedy et al., 2010; Hermosilla et al., 2015a; 

Hughes et al, 2017).  

There are several reasons why SWIR bands are particularly useful for mapping forest 

disturbances and monitoring regrowth. First of all, the SWIR reflectance is inversely related to 

water content, which is typically higher in tree canopies than in other vegetation and bare soil 

(Horler and Ahern, 1986; Fiorella and Ripple, 1995; Schultz et al., 2016). Secondly, the SWIR 

reflectance of a forest stand is even more affected by canopy shadowing than visible and NIR 

bands due to lower diffusive radiation in the shadows at longer wavelengths (Horler and Ahern, 

1986; Zhu and Woodcock, 2012), which makes the difference between trees and non-woody 

vegetation or bare ground even greater. Thirdly, because SWIR wavelengths can penetrate 

multiple layers of leaves, SWIR-based vegetation indices do not saturate as quickly and are more 

sensitive to LAI than VNIR indices; therefore, they can provide more information about forest 

recovery than indices that use shorter wavelengths, such as NDVI (Hardisky et al., 1983; Buma, 

2012; Bartels et al., 2016). Finally, SWIR bands are less sensitive to atmospheric conditions like 
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haze and thin clouds than visible and NIR bands because they are less affected by atmospheric 

scattering (USGS, 2020a). All these factors make cutblocks and fire scars easier to spot in SWIR 

bands than in VNIR bands.  

While it is not surprising that most Landsat time-series forest change detection 

methods rely solely on SWIR bands (Kennedy et al., 2007) or indices that contrast SWIR against 

other spectral bands (Huang et al., 2010; Kennedy et al., 2010; Hermosilla et al., 2015a; Hughes 

et al, 2017), the fact that SWIR bands are sensitive not only to canopy moisture, but also soil 

moisture, may present a challenge. In fact, the TCW transformation (Equation 2-3) was initially 

developed for mapping soil moisture (Crist, 1985). For this reason, precipitation events may affect 

the detection of some forest disturbances when using only TCW, SWIR bands, or SWIR-based 

vegetation indices because wet cutblocks and fire scars may have forest-like values in these 

spectral bands and indices. 

It is now being recognized that using more than one band or vegetation index can 

significantly improve forest change detection.  Cohen et al. (2018) compared the performance of 

their change detection algorithm (LandTrendr) using different combinations of 13 optical bands 

and indices, from singular bands/indices to a combination of all thirteen, and found that the 

combined use of all 13 bands and indices produced the lowest commission and omission errors 

when mapping forest disturbances using Landsat data. Healey et al. (2018) achieved similar results 

when they combined the outputs from multiple change detection algorithms that used different 

combinations of spectral bands. These studies indicate that every spectral band contains unique 

information that can be related to forest disturbance. Several methods have adopted a multispectral 

approach in the last decade (Jin et al., 2013; Zhu and Woodcock, 2014; Cohen et al., 2018), and 

among them, the one presented in this thesis. 
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2.1.1.2. Synthetic Aperture Radar  

Multispectral satellite instruments do not always provide enough cloud-free data to 

accurately map disturbances, especially in areas with frequent cloud cover. To address this issue, 

some studies used Synthetic Aperture Radar (SAR) data (Almeida-Filho et al., 2007; Lehmann et 

al., 2013, Reiche et al., 2015), which are largely unaffected by clouds. SARs are active sensors 

that transmit long-wavelength microwaves and then record the amount of backscattered radiation. 

The proportion of energy backscattered towards the receiver depends of the geometry of the target, 

its surface roughness and moisture content, as well as various sensor parameters (Leberl, 1990). 

These characteristics are different for various vegetation types and non-vegetated areas, which 

makes it possible to map changes in forest cover using SAR data. It has been found that low 

frequency radar bands, such as the L-band (1 – 2 GHz; 15 – 30 cm) and P-band (0.23 – 1 GHz; 30 

– 130 cm), are more useful for detecting forest disturbances than the C-band (4 – 8 GHz; 3.75 –  

7.5 cm) and other high-frequency radar bands as they can penetrate tree canopies deeper, and 

therefore, provide information about canopy structure (Luckman et al., 1997; Ribbes et al., 1997; 

van der Sanden and Hoekmen, 1999). In these two bands, forested pixels appear brighter than other 

types of vegetation and bare ground, because the signal can penetrate foliage but bounces off trunks 

and branches.  

Optical and L-band radar time-series data can be combined to improve the detection 

of forest disturbances. For example, Reiche et al. (2015) used a regression model based on 

optimized weighted correlation of Landsat NDVI and ALOS PALSAR L-band backscatter time 

series in order to create a fused times series. In case of PALSAR data, they used the ratio of 

horizontally polarized and vertically polarized backscatter of horizontally transmitted waves 

(HVHH). High HVHH ratios indicate high volume scattering, where emitted waves become 
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polarized as they bounce off branches and trunks (Rignot et al., 1997). By using the fused NDVI 

and SAR data, the authors achieved an overall accuracy of 95.5% with a 1.59-month mean time 

lag when mapping deforestation in the tropical forests of Fiji. 

The C-band is another SAR band that is worth mentioning in this brief summary as its 

availability has increased dramatically in recent years. Many radar satellites (e.g., Sentinel-1 and 

the RADARSAT constellations) now provide C-band data at a high temporal resolution. In the C-

band, woody and some non-woody vegetation appear similar because the pulses reflect from not 

only trunks and brunches, but also leaves and, therefore, cannot penetrate deep into the canopy, 

resulting in a low sensitivity to aboveground biomass (Wang et al., 1994). In addition, the C-band 

is also more sensitive to soil moisture than longer wavelengths (Wang et al., 1994). Despite these 

limitations, Reiche et al. (2018) used Sentinel-1 data in combination with Landsat and ALOS-2 

PALSAR-2 L-band imagery to increase the temporal resolution of their time series dataset, which 

resulted in a reduced detection lag (31 days). 

SAR is generally less preferred to optical data for several reasons. One of them is the 

difficulty related to data interpretation. The side-looking viewing geometry causes SAR layover 

and shadow in hilly and mountainous areas and makes the spatial resolution and backscatter 

dependent on the distance from the sensor (slant range) and topography. The SAR speckle has also 

been cited as a deterring factor (Quegan and Yu, 2001; Reiche et al., 2015), although methods 

exist to reduce speckle (Quegan and Yu, 2001; Trouvé et al., 2003). Finally, SAR data acquired 

when soil moisture is high may present a problem because backscatter depends on canopy and soil 

water content, making it harder to separate disturbed areas from undisturbed (Lucas et al., 2010; 

Mitchell et al., 2017). 
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2.1.1.3. LiDAR 

Light Detection and Ranging (LiDAR) is a very useful technology for forest mapping 

as it provides highly detailed three-dimensional information (Wulder et al., 2013; White et al., 

2016). However, its spatial and temporal coverage are very limited compared to radar and optical 

satellite platforms due to the fact that currently only airborne LiDAR sensors can provide sufficient 

detail to map forest disturbances (Wulder et al., 2013; White et al., 2016). One notable exception 

is the Global Ecosystem Dynamics Investigation (GEDI) that was launched to the International 

Space Station in December 2018. This instrument was designed specifically for studying Earth’s 

forests. However, it is expected to sample only 4% of the Earth’s land surface during its two-year 

mission (Dubayah et al., 2020). Similarly, regional airborne LiDAR data acquisition programs are 

generally too expensive to be carried out frequently (Hansen et al., 2014; Guo et al., 2017). 

Therefore, LiDAR is outside the scope of this thesis, because the focus is on time-series forest 

change detection of large areas for which LiDAR data sets do not exist. 

2.1.2. Spatial resolution 

While coarse-resolution data can be used to map large-area disturbances, satellite 

imagery with sufficiently high spatial (< 100 m) and temporal resolution is required to accurately 

map individual forest clearings and fire scars (Mantovani and Setzer, 1996; Pape and Franklin, 

2008; Potapov et al., 2011; De Sy et al., 2012; Banskota et al., 2014). Landsat satellites have been 

continuously collecting such data since 1972. Landsat pixels are small enough to discern the shape 

of small clearcuts (Figure 2-1) and have a temporal resolution that is high enough to provide cloud-

free observations for most years. However, before the opening of the Landsat archive in 2008, data 

costs were high, the processing power of computers was more limited, and data storage was 

challenging. As a result of all these factors, higher spatial resolution (< 100 m) time-series change 
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detection was rarely used for mapping forest disturbances (Lu et al., 2004; Kennedy et al., 2007; 

Banskota et al., 2014; Zhu, 2017). Landsat data becoming available for free resulted in a dramatic 

increase in the number of studies and publications using time-series change detection in the 2010s 

(Banskota et al., 2014; Zhu, 2017). Nonetheless, it is worth mentioning that many routines used in 

time-series forest disturbance mapping today, such as curve-fitting change detection and image 

compositing, were first developed to process coarse resolution MODIS data (250 m – 1000 m; Luo 

et al., 2008; Verbesselt et al., 2010) and AVHRR data (1100 m; Holben, 1986; Roerink et al., 

2000; Bradley et al., 2007). 

 

Figure 2-1. Left: a subset of a 30-m Landsat 7 ETM+ false-color (green-red-NIR) image showing 

a 13.5 km x 13.5 km area near Prince George, British Columbia. Right: the same subset resampled 

to a 250-m resolution to match the spatial resolution of the red and NIR bands of the MODIS 

sensor. The white and pink patches are clearcuts. 

Sustainable forest harvest practices leave behind small patches of trees that require a 

spatial resolution that exceed what Landsat provides (i.e., smaller than 30 m) to be mapped 

accurately. Recently launched (2015 and 2017) Sentinel-2 sensors provide free high-quality and 
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high-temporal-resolution (5 days) data at spatial resolutions of 10 m and 20 m that can make this 

possible. One can predict that future forest disturbance studies will primarily use Sentinel-2 or 

even higher resolution data. High-spatial-resolution (< 10 m) satellite data typically lack SWIR 

bands and are still prohibitively expensive for most users when it comes to large-area time-series 

analysis over multiple years (≥$1.2/km²/image; Sozzi et al., 2018). In addition, currently only large 

constellations of small satellites can provide such data for large areas at high temporal frequencies 

(Planet, 2020). Small satellites are relatively inexpensive, but they have small imaging sensors, 

which cannot provide the same image quality as larger sensors (Planet, 2020). Finally, forest 

change mapping techniques designed for medium-resolution data (from 10 m to 100 m) may not 

work for high-spatial-resolution (< 10 m and especially < 1 m) data. There are two main reasons: 

1) such techniques require sub-pixel geometric accuracy and 2) forest stands and disturbed areas 

should appear relatively homogenous in the imagery for these techniques to work. Neither is 

typically true for very-high-resolution data. For example, 3-m PlanetScope images have a 

positional accuracy of 5-8 m (https://spacedata.copernicus.eu/planetscope). This makes it difficult 

to analyze a time series of pixel values, because a pixel can fall on a treetop in one image and in 

the shadow between trees in the next image. Therefore, change detection using very-high-

resolution data requires object-based approaches to information extraction to achieve accurate 

results (Ferreira et al., 2019). 

Aerial photography has been used for high-definition forest mapping for 

approximately a century (e.g., Robbins, 1929; Parsons, 1930; Husch et al., 2002). British 

Columbia’s Forest Inventory is still primarily based on human interpretation of aerial photographs 

(color-infrared stereo-pairs) collected at a scale ranging between 1:10,000 and 1:15,000 

(Bourgeois et al., 2018). Approximately $15 million (Canadian) is required to map one tenth of 



25 

 

the province per year using this method (Bourgeois et al., 2018). However, the budget has 

decreased substantially since the 1990s and is now well below this number. Due to the 10-year gap 

between subsequent photo acquisitions, the temporal information for disturbances is collected 

using a reporting system. This indicates that using aerial photos for highly detailed forest mapping 

at a regional scale is possible, but requires additional sources of information and is very expensive. 

2.1.3. Image quality 

The detection of changes can be affected by numerous data quality factors, such as 

image noise, pixel or line/column drop-outs, geometric correction, and cloud and cloud shadow 

masking. Changes in pixel values caused by any of these factors can be mistakenly identified as 

forest change. Techniques that directly compare pixel values also require accurate atmospheric 

correction or data normalization to reduce the effect of atmospheric conditions on pixel values 

(Banskota et al., 2014; Zhu, 2017).  

The quality of data is limited by sensor technology. Increased sensitivity and 

quantization level (radiometric resolution) allow newer sensors to convert smaller number of 

photons to pixel values more accurately and precisely. For example, Landsat 8 OLI has 6 – 12 

times higher signal-to-noise ratios, depending on the spectral band, compared to Landsat 7 ETM+ 

at a radiance level typical of land observations, as specified in Morfitt et al. (2015). Despite having 

narrower bands, Landsat 8 data are not only more accurate, but also more precise due to the 

increased radiometric resolution: Landsat 7 records 8-bit data (256 different values), while Landsat 

8 pixels are 12-bit data (4096 values); Landsat MSS images are only 6 bit (64 different values). 

Sensors that have more spectral bands, lower signal-to-noise ratios, and higher radiometric 

resolutions provide more useful information that can be used to separate similar forest types and 

detect subtle forest disturbances. 
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The quality of cloud-masking and atmospheric correction has also been improving 

based on new algorithms (Zhu et al., 2015; Qiu et al., 2019a; Wulder et al., 2019). These 

procedures are especially accurate when coupled with the additional spectral bands of newer 

multispectral instruments, such as the Coastal Aerosol (442.7 nm), Cirrus (945.1 nm), and Water 

Vapor (1373.5 nm) bands of the Sentinel-2 sensors (Qiu et al., 2019b). While the quality of Landsat 

MSS preprocessing still leaves much to be desired at the time of writing, efforts are being made to 

bring it closer to the level achieved for newer Landsat sensors (Braaten et al., 2015; Wulder et al., 

2019). This is a primary reason why relatively few studies have used Landsat MSS data in time-

series forest disturbance mapping (Pflugmacher et al., 2014; Vogeler et al., 2018). 

Snow cover can be a problem when mapping disturbances. For example, in 

mountainous areas, warmer years expose bare ground that is normally covered by snow in high 

alpine areas during the summer. Variable snow cover can also be more prevalent in the “shoulder” 

seasons of the spring and fall, depending on latitude and also extent of seasonal time series in a 

given year. Areas with variable snow cover can be misidentified as forest disturbance due to large 

temporal variation in the SWIR spectral reflectance (as seen in the Composite2Change map; C2C, 

2019). Although most techniques reviewed in this chapter use only mid-summer data, some use 

all available data throughout the year (including winter). For these techniques, winter snow cover 

can also be a challenge, as discussed separately in Section 2.2.2.2. 

Many change detection algorithms also require that agricultural areas are masked out 

in input data. Due to crop rotation, pixel values can change dramatically from year to year, which 

may result in crop fields being incorrectly identified as a forest change class (Huang et al., 2010). 

For this reason, croplands are masked before change detection (Stueve et al., 2011; Hermosilla et 
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al., 2015a), removed after change detection (Zhao et al., 2018), or omitted from accuracy 

assessment (Hughes et al., 2017). 

Finally, accurate geometric correction and image-to-image co-registration are crucial 

for any time-series analysis. The goal of these procedures is to project multitemporal images onto 

the same grid so that change detection algorithms can compare the values of pixels that are most 

similar in their ground coverage (Fisher, 1997; Banskota et al., 2014). Nowadays, 

orthorectification is performed by data providers using sophisticated routines, digital elevation 

models (DEMs), and ground control points (GCPs) (ESA, 2020; USGS, 2020b). Landsat 5 – 8 

geometrically corrected products typically have a cartographic accuracy of 12 m or better (Wulder 

et al., 2019). For Sentinel-2, the number is 12.5 m with GCPs and 20 m without (ESA, 2020), 

which means the geometric error can be equal or greater than the size of a pixel. The terrain 

correction of imagery acquired over mountainous areas is particularly difficult due to relief 

displacement (Itten and Meyer, 1993; Stumpf et al., 2018). 

Image noise and co-registration errors contribute to the “salt-and-pepper” effect 

(speckle) seen in many forest disturbance maps, where there are many pixels inside clearcuts and 

other homogeneous disturbed areas that are mislabelled as undisturbed (Hughes et al., 2017). Due 

to variations in the spatial coverage of pixels, pixel values can change slightly from image to 

image. Combined with image noise and other factors (e.g., spatial resampling of data of various 

spatial resolution), these changes can result in algorithms producing errors (pixels labeled 

incorrectly as disturbed). To combat this effect, the user can set stricter thresholds, but this in turn 

can result in false negatives (pixels labeled incorrectly as undisturbed) in disturbed areas, 

especially in highly heterogeneous forest stands (e.g., old-growth and mixed stands). 
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2.1.4. Sun-target-sensor geometry 

The spectral reflectance of an object varies depending on the illumination and viewing 

angles, and this variation is characterized using the Bidirectional Reflectance Distribution 

Function (BRDF; Nicodemus, 1965). The illumination component of the function changes in a 

predictable way depending on the time of year and, therefore, does not present a problem for pixel-

based change detection techniques as it is either avoided by using only mid-summer data or 

incorporated in phenological reflectance models (Zhu and Woodcock, 2014). Scene-level 

techniques2 that use multi-season data are more sensitive. For example, in mountainous areas, 

shadows cast in areas of high relief have different positions at different times of year and can be 

mistakenly identified as forest change (Hansen and Loveland, 2012; Banskota et al., 2014). 

Therefore, imagery acquired over such areas may require some form of terrain illumination 

correction (Tan et al., 2013). 

The view-angle component of BRDF affects both pixel-based and scene-level 

techniques. Pixel-based techniques that use satellite imagery acquired from neighbouring orbital 

paths require BRDF correction to remove variation caused by large differences in viewing angles 

for pixels located within the overlap of two paths (Hansen and Loveland, 2012). Scene-level 

classification-based techniques may suffer from inconsistent across-track classification of pixels. 

One way to avoid this problem for this type of technique without BRDF correction is to use subsets 

 
2 Hereinafter, the term scene-based or scene-level refers to routines that process data in such a way that the output 

(e.g., class assignment) for one pixel depends on the values of other pixels in the image (e.g., the K-means 

classifier). Similarly, object-based routines are routines where the output for a pixel depends on the values 

of other pixels in the same object. Object is a spatially contiguous cluster of pixels (e.g., a group of detected 

change pixels representing a clearcut). Finally, pixel-based routines process each pixel independently (e.g., 

the Maximum Likelihood classifier or the LandTrendr change detection algorithm). 
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of images (e.g., 100 km × 100 km). However, this may not work for mountainous areas and/or off-

nadir imagery, which may still require some form of correction. 

BRDF effects also present an opportunity. Using BRDF information has been shown 

to improve forest type and species classification (Deering, 1999; Kayitakire and Defourny, 2004; 

Fassnachta and Koch, 2012). Consequently, such information can potentially improve the 

detection of subtle changes and provide useful information about forest recovery. 

2.2. Types of Change Detection Techniques 

There are two main types of change detection techniques. Bi-temporal techniques use 

image pairs: one image acquired before the disturbance event (or events) that the user wishes to 

map, and one after. Alternatively, time-series techniques use a large number (or “stack”) of 

multitemporal images (usually one or more image per year, over a series of years) to determine 

not only the spatial extent, but also the date of change. Because the focus of the thesis is on time-

series change detection, these are considered in more detail than bi-temporal techniques in the 

following review. 

2.2.1. Bi-temporal change detection techniques 

Bi-temporal change detection techniques detect changes by comparing two images. 

The goal is to detect changes that occurred between the acquisition dates of the two images.  Most 

commonly used methods are image differencing, change vector analysis, principal component 

analysis (PCA), and post-classification comparison.  

Image differencing techniques simply subtract one image from another on a pixel by 

pixel basis (Hayes and Sader, 2001). In the resulting image, a pixel value close to zero indicates 

no change, while any significant (i.e., exceeding predefined thresholds) deviations from zero 
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indicate a change. For this to work, the two original images must be atmospherically corrected or 

normalized to each other prior to subtraction. Because one cannot subtract more than one band at 

a time, the most important band or spectral index (e.g., NDVI) must be selected depending on what 

type of change is being detected, or if multiple bands are differenced, a way to reconcile different 

outcomes from different bands is also needed. One advantage of this approach is that it provides 

some information about the direction of change (e.g., whether NDVI increased or decreased). 

Change vector analysis is a similar approach that works with multiple bands by 

calculating the Euclidean distance between the spectrum of a pixel at time T1 and the spectrum of 

the same pixel at time T2 (Cohen and Fiorella, 1998). Both image differencing and change vector 

analysis are sensitive to image noise and use thresholds that are often arbitrary or based on trial 

and error. 

In PCA-based change detection, a transform is performed on a stack of all spectral 

bands of the two images (Fung and LeDrew, 1987; Collins and Woodcock, 1996; Macleod and 

Congalton; 1998; Hayes and Sader, 2001). In PCA, the original image is transformed into principal 

components, where the first principal component accounts for most variance in the data, the second 

shows most variance unaccounted for in the first principal component, and so on. Pixels values 

(eigenvalues) in individual components are calculated in a similar way to tasseled cap 

transformation (Equation 2-3), but coefficients (eigenvectors) are calculated automatically for each 

image or stack of images. Major components typically account for variation in pixel values that 

can be explained by spectral differences among land-cover types. Because changed areas have low 

inter-image correlation but represent only a small portion of the study area, most of the change 

information is contained in the second or, sometimes, lower components (Collins and Woodcock, 

1996). PCA-based change detection is far less sensitive to noise, can use all spectral bands, 
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typically does not require image normalization, and can even be used with multisource data (Deng 

et al., 2008). However, the user must find the principal components that represent change and 

select thresholds to extract change pixels. In addition, this approach provides no information about 

the type or direction of change, so labeling detected changes can be difficult.  

Post-classification methods compare class labels in a pair of classified images, 

providing a clearer understanding of the type of change (e.g., forest to clearcut or forest to 

agriculture) (Gregory et al., 1981; El-Hattab, 2016). This includes comparing results from several 

images, one pair at a time. It is important to note, however, that the resulting change map typically 

combines the classification errors of the two images. This can often be a problem, considering that 

a common accuracy expectation for land cover and ecological classifications is 85% (Anderson, 

1971; Foody, 2008; Congalton and Green, 2009). Accordingly, comparing two maps with an 85% 

accuracy may yield a change map of even lower accuracy. In addition, knowledge of the study 

area is required to select training data (in case of supervised classification) or label spectral classes 

(in case of unsupervised classification). 

Bi-temporal change detection techniques are still commonly used in small local studies 

(e.g., Deng et al., 2008; El-Hattab, 2016). These techniques are simple and easy to understand, but 

rely heavily on human input, as the user has to select images, training areas, and/or thresholds. 

Each pair of images must be cloud-free and acquired in the same season and growing stage because 

bi-temporal methods cannot distinguish between phenological changes and land-cover changes 

(DeVries et al., 2015b; Zhu et al., 2012). In addition, bi-temporal techniques miss many 

disturbances when the difference in the acquisition date between the two images they compare is 

larger than a few years, because disturbed areas become harder to separate spectrally from the 

surrounding intact forest as they regenerate (Masek et al. 2008; Schroeder et al., 2011). For 
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example, Masek et al. (2008) found that they missed between 30% to 60% of stand-replacing 

disturbances (i.e., disturbances resulting in the removal of forest cover) when comparing 1990 and 

2000 imagery. Schroeder et al. (2011) reported a similar finding, where change detection 

accuracies gradually decreased as the temporal gap between images increased. When the gap was 

10 years, the results were not different from random. 

Regional and global studies require a completely different approach. In the last decade, 

increased computer processing power and availability of remote sensing data have allowed the 

development of highly automated and flexible time-series techniques that extract information by 

looking through hundreds of multitemporal images. These are reviewed in the next section. 

2.2.2. Time-series change detection techniques 

Many time-series change detection techniques have been developed, especially in the 

last decade. They typically use one or more images per year, where a series of images covers a 

long period of time (usually a decade or longer). Most such techniques that are used in forest 

disturbance mapping can be grouped into three types: classification-based, trajectory-based, and 

hybrid. 

2.2.2.1. Classification-based time-series change detection techniques 

 Classification-based routines either compare a series of classification maps (Knudby 

et al., 2010) or classify entire stacks of multitemporal images at once (Schroeder et al., 2011). 

Often, classification-based time-series change detection techniques use the same routines as bi-

temporal methods. For example, Knudby et al. (2010) used a supervised classifier to classify every 

scene in a 1984 – 2009 time series (one Landsat 5 TM or Landsat 7 ETM+ image per year). A total 



33 

 

of 728 field observations were used to delineate training areas. The authors concluded that this 

approach was more time consuming and less reliable than using direct visual interpretation. 

Other studies produced more encouraging results. Schroeder et al. (2011) used 16 

growing-season Landsat 5 TM and Landsat 7 ETM+ images spanning the years from 1987 to 2008. 

They manually delineated training areas representing clearcuts and fire scars for every image in 

the time series. Training areas were also produced for persistent forest, persistent non-forest, and 

water classes. This was interesting as it introduced a multi-temporal component to the definition 

of a given class (i.e., a training pixel referred to properties spanning several image dates). Instead 

of classifying images separately, the authors used the training areas to classify a stack of the 

SWIR-1 bands from all the images in the time series with the minimum-distance-to-means 

classifier. The resulting forest disturbance map had an overall spatio-temporal accuracy of 93%. 

The main source of error was the misclassification of wetland pixels as forest disturbances and 

some fire scar pixels as forest harvest. Wetlands spectral characteristics may vary from year to 

year depending on the weather, water level, and time of vegetation flushing, which confused the 

algorithm.  

Subpixel classification techniques like Spectral Mixture Analysis (SMA; Horwitz et 

al., 1971) have been adapted to process time series datasets, where instead of spectral bands there 

are layers representing individual dates in the time series. SMA classification produces fractional 

images for each endmember (i.e., a pure spectrum of a thematic class), where pixel values in each 

image represent the fraction of the corresponding endmember. Piwowar et al. (1998) introduced a 

new approach called  “Temporal Mixture Analysis” (TMA) and applied it to a stack of 12 images 

derived from passive microwave imagery acquired by the Nimus-7 Scanning Multichannel 

Microwave Radiometer (SMMR), where each “time slice” represented monthly Arctic sea ice 
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concentrations averaged over a 9-year period spanning the years 1978 – 1987. They found that one 

non-seasonal sea ice and three seasonal sea ice endmembers could accurately characterize intra-

annual changes in sea ice in most pixels. Resulting fraction images represented long-term normals. 

The same endmembers could then be used to produce fraction maps for individual years and find 

years that deviated from the normals. The work was later repeated for a longer time series (20 

years) using more endmembers (nine) (Piwowar, 2008). A similar approach was also used to 

analyze changes in plant vigor interpreted from NDVI values in Central North America (Piwowar 

et al., 1999). The authors concluded this method showed promise, however, to date it has received 

only limited attention by others. 

2.2.2.2. Change detection based on temporal trajectory analysis  

There are two main types of techniques that use the temporal trajectories of individual 

pixels to detect change: trajectory-segmentation and curve-fitting. Both approaches analyze how 

pixel values change over time. They extract information about forest disturbances by fitting simple 

models in the form of straight lines or polynomial curves to segments of the temporal profiles of 

individual pixels representing pre-disturbance, disturbance, and post-disturbance states. Each 

approach has a number of advantages and disadvantages. 

Segmentation-based time series change detection techniques 

Trajectory-segmentation techniques typically use yearly mid-summer imagery 

(Kennedy et al., 2010; Hermosilla et al., 2015a). Because such data are largely unaffected by 

seasonal reflectance fluctuations, segments in the temporal trajectories of individual pixels 

representing pre-disturbance, disturbance, and post-disturbance states appear as nearly straight 

lines. Segmentation algorithms fit straight lines to these segments, making it possible to extract 

information about forest change in an automated fashion. Such information as the date of change, 
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its magnitude, and the rate of forest recovery can be determined based on the location of vertices 

and the slope of regression lines.  

LandTrendr (Kennedy et al., 2010) is perhaps the most established segmentation-based 

algorithm (cited 914 times as of 2020-09-27, according to Google Scholar), and it is also available 

to the public through the Google Earth Engine platform. For every year between 1985 and 2007, 

the authors created a single mosaic from images acquired between mid-July and late August using 

only clear-sky pixels. Such mosaics are sometimes referred to as Best-Available-Pixel (BAP) 

composites (White et al., 2014; Hermosilla et al., 2015a). After creating BAP composites, 

LandTrendr identifies straight-line segments in a time series of NBR values (Figure 2-2a). The 

algorithm then removes vertices that are deemed to be unimportant or caused by noise (Figure 

2-2b). Based on the slope of individual segments, the algorithm identifies not only abrupt events 

(i.e., forest disturbances), but also long-term trends (e.g., forest regrowth). 
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Figure 2-2. Temporal segmentation process as proposed by Kennedy et al. (2010). Grey lines 

represent yearly NBR values for a single pixel. Potential vertices are identified by fitting 

regression lines to the temporal trajectory of a pixel (a) and then removed one by one to produce 

a simple model with the best fit (b). Image modified from: Kennedy et al. (2010), some steps 

removed. 

The Composite2Change (C2C; Hermosilla et al., 2015a) technique also uses mid-

summer image composites to avoid vertices that do not represent disturbance events (e.g., seasonal 

variation caused by normal phenological changes in reflectance). However, other approaches can 

use a wider range of dates. For example, the Detecting Breakpoints and Estimating Segments in 

Trend (DBEST) technique can use images acquired during any part of the year (Jamali et al., 

2015). It uses a procedure called Seasonal-Trend decomposition based on Loess (STL; Cleveland 

et al., 1990; LOESS stands for LOcally Estimated Scatterplot Smoothing) to decompose temporal 

trajectories of pixels into “trend (low frequency variation), seasonal (variation at or near the 

seasonal frequency), and remainder (remaining variation) components”. Temporal segmentation 

is then applied only to the trend component. 
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LandTrendr, C2C, and DBEST all use different approaches to perform the same tasks. 

For example, LandTrendr and DBEST start with a single segment and gradually increase the 

number until the maximum number of segments, defined by the user, is reached or a good enough 

fit between the segments and data values is achieved (the threshold for which is also user-defined). 

In contrast, C2C starts with the maximum number of segments and iteratively reduces their 

number. All three techniques utilize different goodness-of-fit measures: C2C uses the Root-Mean-

Square Error (RMSE), LandTrendr uses the F statistic, and DBEST uses the Bayesian information 

criterion (Schwarz, 1978). 

The performance of a segmentation-based technique is highly dependent on what 

parameters and thresholds it employs and what values the user assigns to them. For example, the 

threshold that defines the maximum number of segments determines the ability to detect whether 

an area was affected by more than one disturbance during the study period (Hermosilla et al., 

2017). The ability to detect more subtle changes and the edges of disturbed areas depends on the 

magnitude-of-change threshold, which must be selected carefully to minimize commission and 

omission errors. For example, Kennedy et al. (2010) used aerial photos to determine what 

threshold values result in the best detection of forest disturbances of interest. Finally, one 

goodness-of-fit measure can work better than another depending on circumstances (e.g., amount 

of noise and temporal autocorrelation; Banskota et al., 2014). 

Like other pixel-based techniques, segmentation-based change detection algorithms 

produce maps with a noticeable “salt-and-pepper” or speckle effect (see Section 2.1.3 Image 

Quality). To reduce map speckle, Hughes et al. (2017) performed spatial segmentation on yearly 

mid-summer image composites of vegetation index values to identify patches of forest and other 

land-cover types with similar spectral characteristics. The spatial segmentation algorithm removed 
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local variation while preserving object edges, resulting in same-valued objects. The value assigned 

to all pixels inside an object was calculated using a spatial de-noising algorithm. This was followed 

by a pixel-based temporal segmentation. While both steps (spatial segmentation and temporal 

segmentation) are still univariate, the technique utilizes at least some spatial information for 

change detection, unlike other purely pixel-based trajectory-based techniques. The authors found 

that the addition of spatial segmentation resulted in a slightly more accurate detection of forest 

change. However, this approach has its own weaknesses. Firstly, the user must specify the 

parameter which controls the intensity of spatial “de-noising” and, consequently, the size of 

patches, which can be both difficult to determine and site-specific. Secondly, pixels on the edges 

of patches may produce errors as they can become associated with a different patch from one image 

to the next in a time series of images. 

Curve-fitting time series change detection methods 

One inherent weakness of segmentation-based techniques is that they completely 

ignore phenological information. In contrast, curve-fitting techniques use every single clear-sky 

observation to construct models (polynomial curves representing phenological change in spectral 

reflectance) that allow precise (both spatially and temporally) detection of changes with a minimal 

detection lag (i.e., the length of time between the actual date of occurrence and the date of 

acquisition for the image in which the change was detected). They have much more information 

available to them to distinguish different vegetation types and disturbances compared to techniques 

like LandTrendr and C2C, which use only mid-summer data. Seasonal data contain such 

information as the amplitude (difference between the summer and winter spectral reflectance), 

timing (e.g., of the beginning and end of the growing season), and shape (e.g., rate of green-up and 
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senescence) of phenology-driven changes in reflectance, which can potentially allow a more 

accurate detection and classification of changes (Zhu and Woodcock, 2014). 

Breaks For Additive Season and Trend (BFAST) was among the first curve-fitting 

time-series change detection methods (Verbesselt et al., 2010). It was initially used to detect forest 

disturbances in MODIS data. The high temporal resolution of MODIS data allowed it to 

automatically generate a model for each pixel that predicted normal seasonal variations in pixel 

values. Any lasting deviations from the modelled trends were labeled as disturbances (Figure 2-3). 

This approach allowed them to detect changes soon after they occurred. In comparison, 

segmentation-based techniques, which typically use only one image composite per year, cannot 

reliably detect changes for the last year in the time series (Kennedy et al., 2010). 

 

Figure 2-3. Disturbance detection using the BFAST Monitor (Source: Verbesselt et al., 2012). The 

black line represents NDVI fluctuations before disturbance (“history period”). The blue dashed 

line is the model based on those normal fluctuations. The red line within the grey background 

(“monitoring period”) shows where data persistently deviates from the model, resulting in 

disturbance detection (vertical green line). 

While the 250-m resolution of MODIS data is sufficient to locate most clearcuts or fire 

scars, it is insufficient to accurately map the spatial extend of individual disturbance events (see 

Section 2.1.2; Figure 2-1). Up until recently, the temporal resolution of coarse-resolution remote 

sensing data (e.g., AVHRR and MODIS) was superior to that of freely available moderate-
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resolution Landsat data, and it was not possible to derive complex time-series models for the latter. 

Nonetheless, multiple studies, such as by Zhu et al. (2012), Zhu and Woodcock (2014), DeVries 

et al. (2015a,b), and Schultz et al. (2016), have shown that simple first-order harmonic models can 

be used to accurately detect small-area forest disturbances using Landsat data. 

Newer BFAST-based techniques have evolved to provide more detailed outcomes, not 

just initial disturbances. DeVries et al. (2015b; 2016) used all available Landsat 5 TM, Landsat 7 

ETM+, and Landsat 8 OLI data not only to detect initial forest disturbances, but also to monitor 

regrowth and repeat disturbances that followed. Another modification of the BFAST algorithm 

can detect permanent shifts in vegetation activity trends (de Jong et al., 2013). 

Continuous Change Detection and Classification (CCDC) is another notable example 

of a curve-fitting technique (Zhu and Woodcock, 2014). Unlike other existing BFAST-like 

methods that rely on a single vegetation index based on two bands, the authors used all seven 

Landsat spectral bands. This allowed them to detect not only forest change, but also other types of 

land-cover change. In addition, the technique also classified pre- and post-disturbance time-series 

models into land-cover types. Using all available phenological and spectral information allowed 

them to produce a hypertemporal map for 16 land-cover types, such as bare soil, grassland, mixed 

forest, deciduous forest, coniferous forest, and pasture/crops, at an overall accuracy of 90%. 

Reference data produced from airphoto interpretation and field visits were used for training the 

Random Forest classifier. However, no attempts were made to classify changes by disturbance 

agent (e.g., fire and harvest). 

The combined temporal resolution of Landsat and Sentinel-2 sensors (less than 3 days; 

Gómez et al., 2016; Li and Roy, 2017) is now close to that of MODIS (daily coverage). Using 

both Landsat and Sentinel-2 data can potentially allow curve-fitting methods to use more complex 
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models to achieve better results. However, the issue of spectral band dissimilarities among sensors 

must be addressed to make this possible. For example, Sentinel-2 and the various Landsat sensors 

have similar (but in some cases not corresponding) spectral band ranges, and of the bands that do 

correspond, their spectral response functions differ, which further affects pixel values and derived 

vegetation indices (Teillet and Ren, 2008; Roy et al., 2016; Sulla-Menashe et al., 2016). In 

addition, the Sentinel-2 sensors have more optical bands than Landsat sensors. Existing algorithms, 

for example, use either one band, or a vegetation index, sometimes within the context of index-

based monitoring protocols (e.g., BFAST), or, they can use the same set of bands (e.g., CCDC) 

across the entire time series, however, in these and other cases, they still cannot fully utilize 

datasets with variable number of spectral bands across multiple sensors. 

There is another limitation that can potentially affect curve-fitting change detection 

algorithms when mapping forest disturbances in northern countries, such as Canada. While this 

type of algorithms produced good results when tested on several areas in the USA (Zhu and 

Woodcock, 2014), large-area tests are required to determine how well they can map disturbances 

in northern forests. Winter snow cover can make it difficult to generate accurate models of seasonal 

reflectance fluctuations, which is necessary for good change detection results (Zhu and Woodcock, 

2014). 

Common limitations of trajectory-based techniques 

Trajectory-based techniques assume that pixel values for undisturbed land cover stay 

the same or change in a predictable manner from year to year. However, there is always variation 

due to such factors as incomplete cloud and snow masking, image noise, the quality of atmospheric 

correction, differences in the relative spectral response functions of sensors, BRDF effects, and 

interannual variation in plant vigor and phenology (e.g., length of the growing season). The user 
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must carefully tune the parameters and thresholds of an algorithm to minimize the effects of these 

factors, mainly to reduce false detection. However, a threshold that is too strict can also make the 

algorithm less sensitive to some forest changes. Cohen et al. (2017) compared maps produced with 

seven different time-series change detection algorithms using the same Landsat dataset and found 

that the maps that had low commission errors had high omission errors, and vice versa.  

Availability of clear-sky data can be an issue for both segmentation-based and curve-

fitting time-series change detection techniques, although to a much lesser extent compared to bi-

temporal techniques owing to data redundancy. These techniques use tens or hundreds of images, 

and if a disturbance event is not visible in one of the images due to cloud cover, it can potentially 

be detected in another. Segmentation-based techniques typically use only mid-summer data 

(Kennedy et al., 2010, Hermosilla et al., 2015a), which rarely provide a complete spatial coverage 

for each year in the time series even for areas with abundant sunshine (Hermosilla et al., 2015b). 

The larger the temporal gap between observations, the more difficult it is for such techniques to 

detect change. This is due to the fact that the difference between pre- and post-disturbance pixel 

values quickly diminishes with time (Schroeder et al., 2011). Although curve-fitting algorithms 

can use much more data than segmentation-based algorithms because they are not limited to the 

peak of the growing season, they also need more data to generate accurate time-series models. 

Therefore, clouds can present a problem for this type of techniques too, for example from 1984 – 

1998, when data were available primarily from Landsat-5 only (Landsat-4 provided sporadic data 

during parts of this period).  

Trajectory-based methods are inherently univariate. In other words, they process 

individual bands/indices and pixels independently. The only way for trajectory-based techniques 

to utilize multiple bands/indices is to combine the outputs derived from the temporal trajectories 
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of individual bands/indices (Zhu and Woodcock, 2014; Schultz et al., 2016; Cohen et al., 2018). 

The disadvantage of this approach is the assumption that disturbances are easily detectable in at 

least some of the spectral bands; i.e., the difference between the actual pixel values and predicted 

values exceeds the thresholds set for one or more bands. As this thesis will demonstrate, a truly 

multispectral technique can detect changes that have a very mild effect on individual bands but are 

more easily discernable when multiple bands are considered simultaneously. 

2.2.2.3. Hybrid approaches 

The Global Forest Change (GFC) map shows forest gain and loss for every year 

between 2000 and present (Hansen et al., 2013). It is the first such map that has a 30-m spatial 

resolution and is updated yearly for all forested area on the planet and is readily available for 

viewing, analysis, and downloading via the Google Earth Engine platform (GFC, 2020). The map 

was produced using a change detection algorithm that blurs the line between classification-based 

and temporal trajectory analysis approaches. Various modifications of the algorithm have been 

developed by the authors (Hansen et al., 2008; Potapov et al., 2011, 2012, and 2015). The 

following paragraph is a brief summary of Potapov et al. (2015). 

The core part of the GFC technique is classification-based change detection, where 

instead of classifying a stack of images the authors classified multitemporal metrics derived from 

a Landsat time series. The metrics were computed for Landsat bands 3, 4, 5, and 7, as well as for 

the vegetation indices NDVI and Normalized Difference Water Index (NDWI; what formulation 

the authors used is unclear), and include “the first and last cloud-free observation, slope of linear 

regression between reflectance value and observation date, largest reflectance drop or gain 

between consecutive observations”, among many others. To compute some of these metrics, as 
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well as to determine the date of disturbance, the technique analyzed the temporal trajectories of 

individual pixels. Therefore, the technique is characterized as hybrid. 

To classify the metrics, the authors used a bagged decision-tree algorithm (Breiman, 

1996). This is a supervised classifier that requires training data, which was manually produced 

using visual interpretation with a particular emphasis on edge pixels to ensure that the maps 

comply with the definition of forest that was used by the authors: 25% or greater canopy closure 

of trees taller than 5 m (Hansen et al., 2013). Thus, unlike most developers of change detection 

techniques, the authors provided a clear definition of forest and emphasized the importance of 

accurate detection of boundary pixels. 

2.3. Change Attribution 

To better understand the impact of human activities and natural phenomena on forested 

ecosystems, it is important not only to detect a change, but also to determine the disturbance agent. 

Disturbances can be distinguished based on a number of spectral, spatial, and temporal 

characteristics derived from remote sensing data. For example, clearcuts cause a more dramatic 

change in the SWIR spectral reflectance (Schroeder et al., 2011) and are more homogeneous 

compared to fire scars (Chu and Guo, 2014). Cutblocks are usually also much smaller than fire 

scars (Hermosilla et al., 2015a). Low-magnitude spatially discontinuous changes can typically be 

characterized as due to wind or insect damage. Long-term changes with linear shapes can be 

considered as paved or unpaved roads. 

Most classification-based techniques detect and classify changes simultaneously, as a 

single process. Their ability to classify changes depends on the training data or endmembers 

selected by the user, among other factors. In contrast, trajectory-based techniques require separate 
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routines to perform change attribution (Hermosilla et al., 2015a; Kennedy et al., 2015; DeVries et 

al., 2016). For example, the C2C technique has an algorithm that attributes detected changes to 

the following four classes: fire, harvesting, road, and non-stand-replacing changes (Hermosilla et 

al., 2015a). In the first step, the algorithm performs spatial aggregation of change pixels with the 

same date of occurrence and duration of event, creating “change objects”. These change objects 

are then classified using a Random Forest classifier based on 17 different spectral, spatial, and 

temporal characteristics. The spectral characteristics are based on average and standard deviation 

values before and after disturbance for various spectral bands and indices, the spatial 

characteristics are based on properties such as object area and compactness, and the temporal 

characteristics are based on the duration of the disturbance event. To produce training samples for 

the supervised classification, the authors labeled some of the detected change objects using 

photointerpretation. The resulting change attribution was 91.6% accurate at the object level. 

Kennedy et al. (2015) used a nearly identical approach to reach an overall accuracy of 84%, 

although for a different study area and set of change classes. 

2.4. Forest Recovery Monitoring 

The goal of forest recovery monitoring is to determine if, how fast, and in what form 

tree cover returns to disturbed areas. Time-series remote sensing data are well suited for this 

purpose as they provide a continuous, nearly half century record of satellite observations. 

Trajectory-based change detection techniques can be used not only to detect changes, but also to 

monitor the initial stages of regrowth. However, the ability to monitor forest regeneration depends 

on what information is available to a particular technique. 
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Segmentation-based techniques either use mid-summer spectral reflectance data 

(Kennedy et al., 2010; Hermosilla et al., 2015a) or generalize winter and summer data into straight-

line segments devoid of seasonal information (Jamali et al., 2015) to track forest recovery in 

individual pixels. Therefore, their ability to monitor forest recovery is limited. Pickell et al. (2016) 

compared several indices (NDVI, NBR, and tasseled cap greenness) and the SWIR-1 band of 

Landsat sensors and concluded that the SWIR band and NBR were more useful for monitoring 

forest regrowth using only mid-summer data, because indices based on shorter wavelengths 

saturated too quickly, before forest cover could even establish. However, even the NBR reached 

pre-disturbances values in disturbed boreal and sub-boreal forest stands within 20 years (White et 

al., 2017). This occurs well before a forest reaches maturity (80 – 120 years, depending on species), 

and old-growth status (>140 years) (Cooper, 1983; Burton et al., 1999).  

Curve-fitting techniques like BFAST and CCDC, which utilize all available summer 

and winter data, can potentially provide much more information. Depending on the temporal 

density of cloud-free and snow-free observations, these procedures are able to derive such 

information as the amplitude and shape of seasonal changes in reflectance, the length of the 

growing season, and the timing of leaf emergence, peak greenness, and defoliation. This 

information has been used to distinguish between evergreen and deciduous stands (Huete, 2012; 

Zhu and Woodcock, 2014). For example, the CCDC technique can simultaneously detect changes 

and classifies images in the time series into land-cover types such as bare soil, mixed forest, 

deciduous forest, and coniferous forest (Zhu and Woodcock, 2014). First, the CCDC algorithm 

produces a time series model for each pixel; the coefficients of these models are then used to 

classify forest types.  
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Most existing approaches are pixel-based and, therefore, cannot measure spatial 

characteristics like stand composition and structure, which are critical for monitoring forest 

recovery from an ecological perspective (Foster et al., 1998; Reyes and Kneeshaw, 2008; Chen et 

al., 2009; Ilisson and Chen, 2009; Bartels et al., 2016). A successful recovery of the ecological 

properties of a forest stand does not necessarily mean that every pixel inside the stand has reached 

its pre-disturbance reflectance value (and vice versa), because the spatial distribution of tree 

species in a recovered forest stand can be different from the pre-disturbance distribution. What 

matters is the overall stand composition, which can only be determined using an object-based 

method. While trajectory-based change detection techniques can use objects instead of pixels, they 

must average pixel values inside objects due to the univariate nature of such techniques (Hughes 

et al., 2017), resulting in loss of crucial information. 

Finally, using LiDAR technology and/or photogrammetry is the only reliable way to 

derive detailed information about the composition and structure of forest stands over larger areas 

(Goodbody et al., 2017). Existing trajectory-based methods cannot use mixed data type datasets 

and, therefore, cannot incorporate data produced with LiDAR and photogrammetry into their 

processing chains. In contrast, some classification-based approaches can potentially utilize 

multisource data, but due to the very limited spatial and temporal coverage, the use of various data 

types is rarely considered except for smaller, local studies (Falkowski et al., 2009; Chu and Guo, 

2014). 

2.5. Accuracy Assessment of Forest Change Maps 

Many studies presenting new time-series forest change detection techniques report 

near or higher than 90% accuracies. However, these accuracies may represent best-case scenarios, 
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because many authors used parameters fine-tuned for a particular study area or training data 

available for that study area. Using the same parameters or training data outside the initial study 

areas may yield substantially lower accuracies. For example, Cohen et al. (2017) assessed forest 

disturbance maps produced using seven different change detection algorithms for five different 

areas across the United States and found that the omission errors for cutblocks and fire scars ranged 

between 54% and 82%. 

Prior to mapping a new area, the user of a change detection algorithm must re-calibrate 

the algorithm’s thresholds using a process called sensitivity analysis, where different threshold 

values are tested on one or few small areas within the study area (Kennedy et al., 2010; Hermosilla 

et al., 2015b). Because sensitivity analysis requires reference data, it can rarely be performed at a 

regional or national scale. Therefore, selected thresholds are not guaranteed to produce good 

change detection outside the test areas. Sensitivity analysis is also very time consuming as it 

implies numerous re-runs. The more thresholds and parameters an algorithm has, the more difficult 

it is to fine tune it for a particular geographical area, as every combination must be tested 

separately. Similarly, supervised methods may require additional or new training data when used 

to map a new area to properly capture its land cover type and variability. 

Accuracy estimates can vary greatly depending on the reference data used. Unlike 

traditional land-cover maps, forest disturbance maps have a temporal component that must be 

examined as carefully as the spatial component. For this reason, reference data must contain 

temporal information (e.g., the date of disturbance). Field observations rarely provide such 

information because it is difficult to determine the date or at least the year of disturbance if it 

occurred decades ago. Therefore, to produce reference data, especially the temporal component, 

authors often resort to human interpretation of images from the same dataset that is fed to the 
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change detection algorithm (Kennedy et al., 2010; Hermosilla et al., 2015a, Kennedy et al., 2015; 

Potapov et al., 2015). This approach produces biased results as it simply compares the ability of 

an algorithm to detect change to that of a human interpreter, which itself is not error-free (e.g., 

visual interpretation of Landsat data to produce validation data for maps produced using the same 

Landsat data). Validation data produced using an independent, high-quality set of data (e.g.,  aerial 

photos, high-resolution satellite imagery, LiDAR, and field reports) can provide a more accurate 

estimation of the actual accuracy (Olofsson et al., 2014; Zhu and Woodcock, 2014). Where 

available, forest inventory can be used for this purpose. For example, the Vegetation 

Resources Inventory (VRI) of British Columbia is produced by human analysts using high-

resolution aerial photos and, more recently, LiDAR data (BC Ministry of Forests, 2019), resulting 

in accurate polygons representing most clearcuts that occurred in the province in the 20th and 21st 

century. 

Because the “no change” class is disproportionally large in forest disturbance maps, 

commission errors can easily be overlooked. To avoid underestimation of false positives, it is 

important to know the weaknesses of a change detection technique when designing a validation 

dataset. For example, areas that are subject to high interannual variation in spectral reflectance, 

such as wetlands (due to variations in hydrology) and agricultural land (due to crop rotation), must 

be examined carefully as they can be misidentified as forest change (Huang et al., 2010; Stueve et 

al., 2011; Zhao et al., 2018). In addition, particular attention must be given to boundary pixels 

between disturbed areas and surrounding forest, because the detection of mixed pixels is highly 

sensitive to the algorithm’s thresholds. A change threshold that is too high or too low can make 

disturbed areas appear smaller or larger in the resulting map than their actual size, which in turn 

leads to omission or commission errors, respectively.  
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Chapters 3 and 4 will discuss additional aspects related to the evaluation of forest 

change maps. For example, they will discuss how protected areas (e.g., provincial parks) can be 

used to assess false detection of forest harvest. Another example is an accuracy assessment 

approach focused on the temporal accuracy of forest disturbance maps. Good practices developed 

for the accuracy assessment of traditional bi-temporal forest change maps overlook this important 

aspect of time-series change detection (Olofsson et al., 2014). 
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CHAPTER 3  

A CLASSIFICATION-BASED TIME SERIES CHANGE DETECTION TECHNIQUE 

FOR MAPPING STAND-REPLACING FOREST DISTURBANCES USING MULTI-

SENSOR REMOTE SENSING DATA 

Abstract 

Unsupervised Classification to Change (UC-Change) is a new approach developed to 

address key limitations of existing time-series change detection techniques. Instead of using 

temporal trajectories of individual pixels (reflectance or spectral index values), UC-Change 

analyzes changes in the spatial distribution of spectral classes over time. Unlike existing 

classification-based methods, the new technique does not require training data and can process 

dense and lengthy time-series and multi-sensor data with minimal user input. 

The algorithm is described in full, and tested using a dataset containing 268 Landsat 

and Sentinel-2 images acquired over a forested area south of Prince George, British Columbia, 

Canada throughout a 47-year period (1972 to 2019). The 100 km × 100 km study site has been 

actively harvested in recent decades and experienced many wildfires and a mountain pine beetle 

(MPB) outbreak. The spatio-temporal accuracy of clearcut and fire scar detection was assessed 

using the Vegetation Resources Inventory (VRI) and National Burned Area Composite (NBAC) 

products, respectively, and compared against the Canadian Forest Service’s Composite2Change 

1984 – 2015 (C2C) and Hansen’s Global Forest Change 2000 – 2019 (GFC) maps, as well as a 

map produced using an open-source version of the LandTrendr algorithm (1984 – 2019). The 

UC-Change algorithm detected 85.4% of the reference VRI 1974-2017 cutblock pixels at a 

temporal resolution of ±1 year (90.4% at ±3 years). It detected 86.6% of 1985 – 2015 VRI pixels, 
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compared to 46.1% and 46.8% in case of C2C and LandTrendr, respectively. For the period 2000 

– 2019, UC-Change mapped 87.6% of the reference cutblock pixels, much more than LandTrendr 

(34.1%) and GFC (70.7). It also detected 23.6%, 19.2%, and 19.9% more reference forest fire 

pixels than the LandTrendr, C2C, and GFC approaches, respectively. 

The UC-Change algorithm does not require atmospheric correction or any other 

preprocessing, except for image-to-image spatial co-registration and topographic correction in 

mountainous areas. It also performed much better than the other methods at detecting forest harvest 

and fire scars in areas heavily affected by the MPB outbreak. The potential of using the technique 

to measure forest recovery was tested and compared with a commonly used pixel-based method 

that uses temporal trajectories of spectral-index values in individual pixels. The new object-based 

metrics from UC-Change showed various rates of recovery depending on forest type (e.g. pine 

stands recovered faster than spruce stands), which was not the case for the pixel-based method 

using the Normalized Burn Ratio (NBR), and took longer to saturate. 

3.1. Introduction 

The goal of forest disturbance mapping is to determine how (e.g., fire, logging, and 

insect infestation), where (location and boundary of disturbed forest), and when changes in forest 

cover occurred, as well as to provide information on the temporal dynamics of such changes. Only 

time-series change detection techniques, which use large (tens or hundreds of images), temporally 

continuous (typically one or more images per year) sets of satellite data, can answer all of these 

questions in a timely fashion and over large areas. Many researchers, such as Hansen and Loveland 

(2012) and Banskota et al. (2014), predicted that automated time-series algorithms would largely 

replace traditional bi-temporal (i.e., comparing image pairs) and multitemporal (i.e., comparing 
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several images) techniques as they provide a deeper understanding of forest changes and trends 

and can be used to map large areas. 

While coarser spatial resolution (>100 m) data can be used to map large-area 

disturbances, satellite imagery with sufficiently high spatial (<100 m) and temporal resolution is 

required to accurately map individual cutblocks and fire scars (Mantovani and Setzer, 1996; Pape 

and Franklin, 2008; Potapov et al., 2011; De Sy et al., 2012; Banskota et al., 2014). Landsat 

satellites have been continuously collecting such data since 1972. Landsat pixels are small enough 

to discern the shape of small clearcuts (10 – 20 ha) and have a temporal resolution that is high 

enough to provide cloud-free observations for most years. However, due to the high cost of data 

and limited processing power of computers, high-resolution (<100 m) time-series change detection 

had rarely been used for mapping forest disturbances before the opening of the Landsat archive in 

2008 (Lu et al., 2004; Kennedy et al., 2007; Banskota et al., 2014; Zhu, 2017). Free Landsat data 

resulted in a dramatic increase in the number of publications on time-series change detection in 

the 2010s (Figure 3-1). This period also corresponded with considerable improvements in 

computing power and storage capacity options that further contributed to processing these larger 

datasets. 
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Figure 3-1. Number of Google Scholar returns for "change detection", "Landsat", and "time 

series". 

Time-series change detection techniques can be classified based on the types of 

disturbances they detect and how they detect them. There are three types of forest disturbances: 

stand-replacing, partial, and gradual. The first causes a complete removal or mortality of trees in 

the area, whereas the latter two cause either the death of only some trees or slow degradation of a 

forested area. Few techniques detect all three types, although most can detect stand-replacing 

disturbances. When using a change detection map, one must understand what types of changes it 

shows and what definition of forest it follows. Different countries and disturbance mapping 

techniques use different definitions of forest, ranging in canopy cover and height and, sometimes, 

stand area. For example, the Global Forest Change (GFC) map follows two criteria: 25% or greater 

canopy closure, for trees taller than 5 m (Hansen et al., 2013). Canada, on the other hand, uses the 

forest definition from the Food and Agriculture Organization of the United Nations: >0.5 ha area, 

>10% canopy cover, and >5 m height (NRCan, 2020a). The definition of forest used in this study 
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includes any area where timber can or could be (if the area was not protected) harvested 

commercially (i.e., any area where cutblocks can occur). 

There are three main approaches to time-series change detection: classification-based, 

trajectory-based, and hybrid. Classification-based routines either compare a series of classification 

maps (Knudby et al., 2010) or classify entire stacks of multitemporal images together (Schroeder 

et al., 2011). For example, Schroeder et al. (2011) used 16 growing-season Landsat 5 TM and 

Landsat 7 ETM+ images from 1987 to 2008. They manually delineated training areas representing 

clearcuts and fire scars for every image in the time series. Training areas were also produced for 

persistent forest, persistent non-forest, and water classes. The resulting forest disturbance map had 

an overall spatio-temporal accuracy of 93%. Techniques like this can be very flexible as they can 

potentially use auxiliary information and data acquired during any part of the growing season, any 

number of spectral bands, sensors, and data types without atmospheric correction or data 

normalization. However, they typically require a considerable amount of user input and are not 

practical for larger time series or areas.  

Trajectory-based change detection is a more popular approach because it is more 

automated and can be used to not only detect forest disturbances, but also monitor post-disturbance 

recovery (Kennedy et al., 2010; Zhu and Woodcock, 2014; Hermosilla et al., 2015a). This 

approach analyzes how pixel values change over time. Trajectory-based techniques extract 

information about forest disturbances by fitting simple models in the form of straight lines or 

polynomial curves to segments of the temporal profiles of individual pixels representing pre-

disturbance, disturbance, and post-disturbance states.  

LandTrendr (Kennedy et al., 2010) is one of the most established trajectory-based 

algorithms (cited 914 times as of 2020-09-27, according to Google Scholar), and it is also available 
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to the public through the Google Earth Engine platform (Kennedy et al., 2018). For every year in 

the time series, the algorithm creates a single mosaic from a number of midsummer images using 

only clear-sky pixels. Such mosaics are sometimes referred to as Best-Available-Pixel (BAP) 

composites (White et al., 2014; Hermosilla et al., 2015a; Chowdhury et al., 2021). After creating 

BAP composites, LandTrendr identifies straight-line segments in a time series of normalized pixel 

values. The algorithm then removes vertices that are deemed to be unimportant or caused by noise. 

Based on the slope of individual segments, the algorithm identifies not only abrupt events (i.e., 

forest disturbances), but also long-term trends (e.g., forest regrowth). An example of such 

segmentation is presented in Figure 3-2, where LandTrendr identified four segments in a time 

series of Normalized Burned Ratio (NBR) values. NBR is a spectral index calculated using the 

following equation (Key and Benson, 2006): 

NBR =
NIR−SWIR2

NIR+SWIR2
 , (3-1) 

where NIR and SWIR2 are spectral reflectance values for the corresponding near-infrared and 

shortwave infrared Landsat spectral bands. This index was initially found to be sensitive to burn 

severity (Key and Benson, 1999) but has since been widely adopted for mapping other forest 

disturbances (Huang et al., 2010; Hermosilla et al., 2015b; Hughes et al, 2017). 
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Figure 3-2. Original NBR values (blue) and LandTrendr segmentation results (orange) for a pixel 

in a 1993 clearcut in Oregon, USA. Parameters best suited for the area  were used to produce this 

segmentation (Kennedy et al., 2018).  

Composite2Change (C2C) is another technique based on temporal trajectory analysis 

(Hermosilla et al., 2015b; White et al., 2017) that will also be used for comparison in this study. 

It follows the same approach as LandTrendr with a few minor differences. For example, 

LandTrendr starts with a single segment and gradually increases the number until a maximum 

number of segments, defined by the user, is reached or a good enough fit between the segments 

and data values is achieved (the threshold for which is also user-defined). In contrast, C2C starts 

with the maximum number of segments and iteratively reduces their number. Both algorithms have 

change-attribution extensions that classify detected disturbances into harvest, fire, and other 

classes (Hermosilla et al., 2015a; Kennedy et al., 2015). 

The GFC map, produced using a hybrid approach, shows forest gain and loss for every 

year between 2000 and present (Hansen et al., 2013). It is the only forest change map that has a 
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30 m spatial resolution and is updated yearly for the entire planet (GFC, 2020). The GFC change 

detection algorithm blurs the line between classification-based and temporal trajectory analysis 

approaches. Various modifications of the algorithm have been developed by the researchers 

(Hansen et al., 2008; Potapov et al., 2011, 2012, and 2015). The following paragraph is a brief 

summary of the publication by Potapov et al (2015).  

The core part of the GFC technique is classification-based change detection, but 

instead of classifying a stack of images, the authors classified a diverse set of multitemporal 

metrics derived from a Landsat time series (e.g., the slope of linear regression between reflectance 

value and observation date). To compute some of these metrics, as well as to determine the date 

of disturbance, the technique analyzed the temporal trajectories of individual pixels. Therefore, the 

technique can be characterized as hybrid. This approach has the advantages of post-classification 

and pixel-based methods; however, it also has disadvantages such as requiring training data, 

atmospheric correction and/or normalization of data. 

This Chapter presents a new classification-based technique named Unsupervised 

Classification to Change (UC-Change) and compares generated forest change maps against 

LandTrendr, C2C, and GFC maps for a complex mosaic of forest disturbance in western Canada. 

UC-Change combines the flexibility of classification-based routines with the high automation and 

ability to track forest recovery usually attributed to trajectory-based techniques. This approach can 

use multi-sensor data without losing the unique spectral and spatial information provided by each 

individual sensor. Unlike trajectory-based methods, it does not require atmospheric correction or 

any other preprocessing except for image-to-image spatial co-registration. Finally, it offers new, 

object-based metrics for measuring forest recovery. 
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3.2. Study Area and Data 

To demonstrate various aspects of the new technique, a forested area was selected 

based on several criteria, such as the availability of reference data for the entire 1972 – 2019 period, 

sufficient amount of forest disturbances to test the temporal and spatial accuracy of the produced 

maps for every year in the time series, and a variety of forest types in terms of species composition 

and stand density. The study area in British Columbia (BC), Canada, corresponds to grid square 

T10UDD in the Universal Transverse Mercator (UTM) coordinate system (Sentinel-2 data are tiled 

based on this system) and is 100 km by 100 km in size (center coordinate: 52º 45’ N; 123º 40’ W; 

Figure 3-3). It is located south of Prince George, BC, and lies within the Montane Cordillera 

ecozone (Wiken 1986; Leckie et al., 2016). The dominant tree species is lodgepole pine (Pinus 

contorta var. latifolia), followed by white spruce (Picea glauca) and subalpine fir (Abies 

lasiocarpa). The south part (coloured amber in Figure 3-3) of the study area has a low canopy 

cover of approximately 30% (VRI, 2020), which is still sufficient for land to be classified as forest 

based on the definition of forest adopted by Natural Resources Canada (NRCan, 2020a). The 

terrain is characterized as gently rolling (Leckie et al., 2016). A mountain pine beetle (MPB) 

outbreak in the 2000s killed most lodge-pole pines in the area (BC Gov, 2020). Major forest fires 

occurred in 2006, 2010, 2014, 2016, and especially 2017 with many smaller fires over the years. 



72 

 

 

Figure 3-3. Biogeoclimatic zones and subzones (in brackets) in the study area (based on 

BEC, 2020).  

The main dataset comprised 193 Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, and 

Sentinel-2 images acquired between 1984-06-22 and 2019-09-06 (Figure 3-4). Landsat Collection 

1 Level-1 (terrain corrected but not atmospherically corrected) and Sentinel-2 Level-1C (ortho-

rectified, top-of-atmosphere reflectance) data were selected and cropped automatically based on 

cloud cover. To reduce the processing time, only images with ≤ 50% cloud cover were selected, 

except for particularly cloudy years. For those years, identified as when the 50% threshold resulted 

in < 90-% yearly coverage of the study area, the threshold was reduced to 25% cloud cover.  
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Figure 3-4. Number of images per year per sensor used in the study. The light grey bars in the 

background represent study area coverage (percent area covered per year) provided by the data. 

The “Quality” band included with Landsat and Sentinel-2 images was used to mask 

clouds. Two additional steps were required for the Sentinel-2 data due to the low quality of the 

provided cloud masks. Firstly, a blue-band threshold (top-of-atmosphere reflectance > 16.5%) was 

used to mask most remaining clouds. The threshold was determined empirically to ensure that no 

clearcuts, which also have a high blue reflectance, are masked together with clouds. Secondly, a 

mask for cloud shadows was produced by shifting the cloud mask according to the mean solar 

azimuth angle at the time of image acquisition and an offset of 1,800 meters. The value (1,800 m 

= distance of 60 Landsat pixels) accounts for low-level clouds (<2000 m above ground) and most 

sun elevation angles (from 38° in September to 59° in June) possible at the acquisition time of 

Sentinel-2 data (~11:30 am) in the study area. While this value is not sufficient for mid- and high-

level clouds (>2000 m), a higher value would result in the removal of a large number of useful 

pixels. A buffer of 300 meters was applied to both Landsat and Sentinel-2 cloud and cloud shadow 
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masks to remove most residual cloudy pixels. Despite such an excessive cloud masking, it was 

still possible to achieve a nearly 100% coverage of the study areas for most years. 

Like many other change detection algorithms, UC-Change requires that agricultural 

areas be masked in input data. Preliminary tests showed that unmasked crop fields resulted in many 

false detections. Due to crop rotation, pixel values can change dramatically from year to year, 

which may result in crop fields being incorrectly identified as a forest change class by change 

detection algorithms (Huang et al., 2010). For this reason, croplands were either masked in input 

data (Stueve et al., 2011; Hermosilla et al., 2015a), removed after change detection (Zhao et al., 

2018), or omitted from accuracy assessment (Hughes et al., 2017). In this study, agriculture and 

water bodies were masked using the Agriculture and Agri-Food Canada’s 2017 crop inventory 

map (AAFC, 2020). Using only the 2017 map for all years (1972 – 2019) was deemed a valid 

approach because there was little change in the extent of agricultural areas in Canada (NRCan, 

2020b) and because no crop maps older than 2009 were available. 

Spectral bands most affected by atmospheric conditions (e.g., blue, and from Sentinel-

2: coastal aerosol, and cirrus bands) and phenomena unrelated to forest change (e.g., Landsat 

thermal infrared band) were not used in this study, resulting in a total of five Landsat and nine 

Sentinel-2 bands (Figure 3-5). To match the resolution of Landsat data, the 10 m (visible and near-

infrared) and 20 m (red edge and short-wave infrared) spectral bands of Sentinel-2 data were 

resampled to 30 m by averaging the values within the nearest neighbor 30 m × 30 m area. However, 

it is noteworthy that errors of co-registration of Landsat 8 OLI and Sentinel-2 data can exceed 

16 m (Stumpf et al., 2018) and, therefore, introduce new issues, such as incorrect mapping of 

boundaries between patches of disturbed and undisturbed forest (this is expected to improve with 

future sensors and satellite imaging programs, as in the past). 
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Figure 3-5. The spectral response functions of the ten sensors used in this study. The bands that 

were not used are grayed out. The thermal and panchromatic bands of the Landsat sensors were 

not used and are not shown here. Data obtained from the USGS and ESA websites. 

In addition to the main dataset, a separate one containing 75 Landsat 1 – 5 MSS images 

was used to expand the time series to 1972. Only Tier 2 data were available for the study area. Tier 

2 data are geometrically and radiometrically corrected but do not meet the Tier 1 quality criterion 

that requires a Root-Mean-Square Error (RMSE) of less than 12 m geometric correction error. The 

spatial resolution of Tier 2 data is 60 m, resampled from the original MSS resolution of 

57 m × 79 m. Data values represent scaled top-of-atmosphere radiance and reflectance (scaling 

factors are provided in the metadata). The initial set of 92 images was selected automatically using 

the same approach that was used for the other sensors; however, based on visual examination, 17 

images had to be discarded due to poor cloud masks or large geometric errors. The images were 

cloud masked the same way as Sentinel-2 images, but using a different threshold for clouds (the 

lowest wavelength available was used, which was the green band, with a top-of-atmosphere 
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reflectance threshold of > 13%). Produced masks were of lower quality than those generated for 

the Sentinel-2 data because the green band does not allow a clear separation of clouds and fresh 

clearcuts. All four MSS spectral bands (green, red, NIR-1, and NIR-2) were used for change 

detection. 

Clearcut detection was evaluated using Vegetation Resources Inventory (VRI, 2020) 

forest harvest polygons. The National Burned Area Composite (NBAC, 2020) database was used 

to assess the detection of wildfire burn scars. A set of polygons representing provincial parks and 

other protected areas were used to estimate false detections in the UC-Change and C2C maps 

(ECCC, 2020). It was assumed that only wildfires and biotic factors, but not harvesting, could 

cause disturbances in protected areas after they were established.  

UC-Change maps were compared with maps produced by three methods already 

described in the Introduction section: LandTrendr, C2C, and GFC v1.7. Table 3-1 compares some 

aspects of these maps that are relevant to this study. For example, the LandTrendr and GFC maps 

used in this study show disturbances other than fire and harvest but lack change type information; 

therefore, it was not possible to evaluate false detection in these maps using the method described 

in the previous paragraph. While the C2C algorithm can also detect non-target disturbances, the 

available map contains only disturbances caused by wildfire and harvest (Hermosilla et al., 2016; 

C2C, 2019). 
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Table 3-1. The characteristics of maps and algorithms used in the study. 

Characteristic UC-Change LandTrendr C2C GFC 

Approach to time-series change 

detection 

Classification-

Based 

Temporal 

Trajectory 

Analysis 

Temporal 

Trajectory 

Analysis 

Hybrid 

Are forest change maps available 

for the study area? 

Yes3 No Yes Yes 

Is the algorithm open source? Yes4 Yes No No 

Does the open-access map or 

algorithm show only stand-

replacing disturbances?  

Yes5 No Yes No 

Does the open-access map or 

algorithm classify changes? 

No No Yes No 

Forest recovery monitoring 

capabilities 

Object-based Pixel-based Pixel-based N/A 

Minimum mapping unit (in 

Landsat pixels and ha) for the 

study area 

40 pixels  

(3.6 ha) 

11 pixels 

(1.0 ha) 

6 pixels 

(0.5 ha) 

1 pixel 

(0.1 ha) 

Temporal coverage 1984 – 2019 1984 – 2019 1984 – 2015 2000 – 

2019 

Input data date range June 1 –  

Sep 20 

June 20 –  

Sep 10 

Aug 1 ± 30 

days 

Jan 1 –  

Dec 31 

Were agricultural lands masked 

out? 

Before 

processing 

After 

processing 

Before 

processing 

No 

There were no LandTrendr maps available online for the study area at the time of 

writing, but the algorithm itself is open-source (Kennedy et al., 2018). The map used in this study 

was therefore generated, and using the default parameters (Table 3-2). These parameters were 

found optimal for multiple locations across the Unites States (Kennedy et al., 2018) and were 

deemed appropriate for this study area as it is similar to forests in the Pacific northwest and interior 

forests south of BC. Sensitivity analysis confirmed this assumption. While increasing the size of 

 
3 The UC-Change map for British Columbia can be made available by contacting the author. 
4 See Appendix 1 for pseudocode. 
5 UC-Change can potentially detect non-stand-replacing disturbances using a different set of parameters and/or 

classification routines. 
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the LandTrendr minimum mapping unit (MMU6) from the default 11 Landsat pixels to 40 pixels 

and the change magnitude threshold from 0.2 to 0.3 drastically reduced false detection and/or 

detection of non-stand-replacing disturbances, such as MPB damage, it also negatively affected 

the detection of disturbances of interest (cutblocks and fire scars). A change-attribution algorithm, 

such as the one used by Hermosilla et al. (2016), could potentially solve this problem without 

parameter adjustment by separating cutblocks and burned areas from other disturbances. 

Therefore, using the default parameters allowed a fairer comparison with other maps.  

Table 3-2. Default LandTrendr parameters (Kennedy et al., 2018). 

Parameter Value 

Magnitude of change (ΔNBR = NBRpost-disturbance – NBRpre-disturbance) < -0.2 

Pre-disturbance NBR > 0.3 

Duration of disturbance event < 4 years 

Number of segments  ≤ 6 

MMU 11 pixels 

The available C2C and GFC maps are two-dimensional, showing all changes in a 

single layer instead of multiple layers (i.e., one per year). This means that they do not show repeat 

disturbances. The C2C map shows only disturbances with the greatest magnitude of change (C2C, 

2019). Based on the analysis of areas affected by multiple disturbances, the GFC map shows the 

disturbances that occurred first. To account for these limitations and to make the comparison of 

the maps fair, all repeat disturbances were removed from the 1985 – 2015 reference VRI and 

NBAC data and only secondary disturbances were removed from the 2016 – 2018 reference data. 

 
6 In the thesis, MMU refers to the minimum size of spatial clusters of change pixels that are allowed in change 

detection output. For example, an MMU of 11 pixels means that all clusters of change pixels smaller than 

11 pixels are removed in the final change detection map. The main goal of this threshold is to reduce false 

detections. It is based on the assumption that disturbances of interest typically affect areas larger than the 

MMU (e.g., clearcuts are typically larger than 11 Landsat pixels, or 1 ha). 
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3.3. UC-Change Algorithm 

The UC-Change algorithm detects groups of pixels (e.g., patches of disturbed forest) 

that break away from other groups of pixels (undisturbed forest of various types). A key concept 

in the algorithm is identification and use of stable and change pixels. Each image in a time series 

has its own set of stable pixels. This is where ground cover either does not change (e.g., 

undisturbed old-growth forest) or changes in the same way (e.g., regenerating clearcuts) for some 

duration of time from the date of image acquisition. To detect stable pixels, the algorithm processes 

small sets of images in a sliding time window fashion, starting from the first image in the dataset: 

[t1, t2, t3, t4], then [t2, t3, t4, t5], then [t3, t4, t5, t6], etc.7 Each temporal subset contains a primary 

image, which is the first image in the subset, and all the others are secondary images. Only those 

pixels where no disturbances occurred in any of the secondary images are considered to be stable 

for the particular primary image.  

Change pixels are defined as stable pixels that were not stable in temporally 

overlapping previous sets of images. For example, if the acquisition date of the image that is 

currently being processed is tx, the overlapping sets are those where the primary image was 

acquired before the current image and at least one of the secondary images was acquired on or 

after tx. For example, clearcuts that first appeared in tx are stable in the corresponding subset of 

images [tx, tx+1, tx+2, tx+3] but not in the preceding subsets [tx-3, tx-2, tx-1, tx], [tx-2, tx-1, tx, tx+1], and 

[tx-1, tx, tx+1, tx+2]. The subtraction of the tx-3, tx-2, and tx-1 stable pixels from the tx stable pixels 

 
7 Note: examples provided in this section refer to a hypothetical dataset where there are no clouds in any of the 

images. In real scenarios, when selecting secondary images, the algorithm skips images where cloud-free 

areas do not overlap with cloud-free areas in the primary image. For example, the second image (t2) in a 

time series may not necessarily be a secondary of the first image (t1), depending on the cloud cover in the 

two images. 
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removes all undisturbed forest and disturbances that occurred before tx, leaving only disturbances 

that first appeared in the tx image. 

UC-Change detects stable and change pixels through a number of steps involving 

image classification and re-classification (Figure 3-6). Although the algorithm utilizes traditional 

unsupervised and supervised classification routines, it does not require any user input once the 

parameters are selected. The following paragraphs describe each processing step in detail. 

 

Figure 3-6. Flowchart of the UC-Change algorithm. 

3.3.1. Unsupervised classification 

To detect stable and change pixels, original numerical data must be converted into 

categorical data (i.e., classification maps). The UC-Change algorithm uses maps derived by 

unsupervised image classification, or clustering. The choice of classifier was based on several 
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criteria: 1) disturbed areas and pre-disturbance forest must be classified into different spectral 

classes; 2) the spatial distribution of spectral classes must remain similar in a sequence of images 

except for newly disturbed areas; 3) different stages of forest regrowth should be represented by 

different spectral classes to allow forest recovery information extraction; and 4) the classifier 

should be able to process hundreds of images in an automated and timely fashion. Based on these 

criteria, the K-means classifier (Steinhaus, 1956) was found well suited for this study. K-means 

reclusters pixels through an iterative process until it finds groups that are most separable from one 

another in the spectral domain. In the first iteration, pixels are classified based on the minimum 

Euclidean distance to evenly-distributed arbitrary class means. During each following iteration, 

class means are recalculated and pixels are reclassified based on the same minimum-distance-to-

mean rule.  

It is noteworthy that K-means is highly sensitive to canopy shadowing and topographic 

effects because these factors strongly affect all optical spectral bands. On the one hand, high 

sensitivity to canopy shadowing is beneficial to change detection and forest recovery monitoring, 

as older stands have stronger canopy shadowing (Gemmell, 1995). On the other hand, topographic 

effects (e.g., lower illumination and stronger canopy shadowing on north-facing slopes) may result 

in spatial inconsistencies in K-means classification maps. In the study area, some pixels containing 

one forest type were in fact classified into two separate spectral classes depending on whether they 

were located on north- or south-facing slopes. Nonetheless, based on visual analysis, the effect of 

terrain slope and aspect on change detection was minimal in the study area because the 10-class 

K-means maps still satisfied the four criteria in the previous paragraph. If this became a concern 

in a different study area, the fact that north and south facing aspects were separated into two 

spectral classes yet still associated with a given forest type could permit those spectral classes to 
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be combined in an automated environment to provide an integrated class for that forest type. The 

choice of 10 spectral classes is explained in the next section (Section 3.3.2). 

3.3.2. Stable pixel detection 

Although the spectral characteristics of land-cover types change through seasons and 

years, the spatial distribution of classes stays mostly unchanged through time for any particular 

land-cover type, at least when the number of classes is small. This is also the case for clearcuts 

and fire scars. For example, when images were classified into 10 classes, nearly all clearcut pixels 

remained in one class for at least four years. Therefore, to extract stable pixels from 10-class 

classification maps, the algorithm locates pixels that continue sharing one class for up to four years 

(Figure 3-7a-c). 
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Figure 3-7. Main steps of the UC-Change change detection: a) original multispectral images in 

false color (green-red-NIR; t1 – t7 are the acquisition dates of the images; bright areas are fresh 

clearcuts); b) K-means classification output (10 classes); c) stable pixels derived from the K-

means maps; d) primary change pixels derived from stable pixels; and e) multitemporal 

classification using the stable and change pixels as training samples and a stack of the four 

corresponding original images together with the final output product.  

It is important to note that in order to detect stable pixels, the UC-Change algorithm 

matches only the spatial distribution of spectral classes and completely ignores whichever arbitrary 

class numbers are assigned to them. For example, K-means can assign different numbers (e.g., 

“Class 4” and “Class 5”) to a spectral class that contains a particular type of deciduous forest 

depending on the time of the year, because the spectral characteristics of the trees change with 

seasons. However, the spatial extent of the spectral class stays mostly unchanged because trees of 

the same species usually change their spectral characteristics in unison through seasons and years 

based on the leaf phenological cycle (Lechowicz, 1984; Hill et al., 2010). The same is true for 

cutblocks and fire scars, and this is how UC-Change can detect stable pixels. This is a very 

Stable pixels: pixels remaining in one 

class in a set of images within a certain 

time frame (in this example, four years). 

Primary change pixels: stable pixels 

that were not stable in preceding sets of 

images. ~50% of changes are detected at 

a very high accuracy. 
 
Multitemporal supervised classification 

using corresponding stable and change 

pixels as training data. Detection rate: 

90% or higher. 
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important point regarding the use of an unsupervised classification approach within the 

UC-Change algorithm. Some of the main challenges (and indeed, disadvantages) of unsupervised 

classification include the general need for cluster integration and class labeling, and associated 

with that, the rather arbitrary numbering of classes in intermediate steps. The UC-Change approach 

instead essentially bypasses those concerns by integrating a spatial-structural approach to 

unsupervised output management. 

It should also be noted that a separate set of stable pixels is detected for each set of 

primary and secondary images. In other words, stable pixels are only detected for periods of time 

that do not exceed the length of time of the processing window. Therefore, from the algorithm’s 

perspective, stable pixels are areas that do not experience abrupt changes between the acquisition 

dates of the first and last images in the time processing window. Examples of stable areas include 

undisturbed forest stands and areas disturbed before or after the stable period (four years in this 

study). 

Stable pixel detection depends on three inter-dependent parameters: the number of 

spectral classes, the length of time with the processing window, and the number of secondary 

images. The K-means classifier set to produce 10 classes was used in this study. The choice of 10 

classes was found optimal after a series of tests on several datasets representing various forest 

types across Canada, including mixed and deciduous forests in the Province of New Brunswick. 

The algorithm could not find enough stable pixels when using 15-class K-means images, because 

the distribution of spectral classes varied too much from image to image. In contrast, the K-means 

classifier could not separate clearcuts and fire scars from some types of undisturbed forest when it 

was set to produce five or fewer classes. Based on additional testing using reference data produced 

by visual interpretation of Landsat data, excellent (>90% of reference cutblock pixels detected in 
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all test sites) and very similar (less than ±1% deviation in producer accuracies) results were 

produced when using images classified into 6 to 14 classes, because in those cases disturbances of 

interest (clearcuts and fire scars) were classified into a class of their own and remained so for the 

duration of the time processing window, which is the main requirement for the algorithm to work. 

Consequently, the middle value (10 classes) was used as reasonable value to work best for a wide 

variety of forest environments. 

The maximum length of time of the processing window was set to four years based on 

two factors: the length of time patches of disturbed forest remain homogeneous in K-means 

classification maps (i.e., contain only one spectral class) and the availability of spatially 

overlapping images. The former determines the maximum value for this parameter, while the latter 

determines the minimum value. In 10-class K-means maps, cutblocks and fire scars contain only 

one spectral class for at least four years. Therefore, in order for the UC-Change algorithm to detect 

as many stable pixels as possible for disturbed areas, the length of the processing period should 

not exceed four years.  

UC-Change is a scene-based technique and, therefore, when processing a subset of 

images, it can only utilize the parts of images that overlap. Instead of using all four years of data 

within the time window, which can contain as many as 40 images, the algorithm selects the three 

images where cloud-free areas have the largest spatial overlap with the cloud-free portion the 

primary image that is currently being processed. Using fewer than four images (i.e., primary plus 

three secondary) per set increased the probability of detecting unmasked cloud pixels as stable 

pixels, while using a larger number of images resulted in an insufficient number of stable pixels. 

A time window size of less than four years made it difficult for the algorithm to find overlapping 

images in the 1984 – 1998 data, where only Landsat 5 data were available. Note that all secondary 
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images can be from the same year as the primary one, as long as they have the largest overlap 

among all combinations of images acquired within the time window (i.e., within four years after 

the primary image). 

3.3.2.1. Iterative retraining option 

To detect changes accurately, the algorithm must locate as many stable pixels as 

possible. While it is not possible to detect all of them due to image noise, unmasked clouds and 

cloud shadows, and other factors, the number of detected stable pixels can be increased through a 

process called iterative retraining, whereby stable pixels derived from K-means classification 

output for a subset of images are used as training data in single-date Maximum Likelihood 

classifications of the images in the subset. For example, stable pixels detected for each K-means 

cluster in image X are used as training samples for the Maximum Likelihood classification of the 

same image, producing a new 10-class map that replaces the original K-means map. The resulting 

classified images can then be used again to locate stable pixels, this time in much larger quantities. 

This process can be repeated multiple times. The goal is to minimize multitemporal differences in 

the distribution of spectral classes caused by atmospheric conditions, phenology, and differences 

in sensor characteristics, and to maximize those caused by forest disturbances.  

Iterative retraining can be viewed as a continuation of the single-date K-means 

classification with the addition of temporal and spatial (i.e., based on the spatial extent of spectral 

classes) information. Similar to when using the K-means classifier, the user can either set a fixed 

number of iterations or use a stopping criterion. In the latter case, the algorithm can be set to stop 

the retraining process if it no longer increases the number of stable pixels. 
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Although iterative retraining brings only minor improvements when the primary and 

secondary images are from the same type of sensor (e.g., Landsat 5 – 8), it proved highly beneficial 

in sets that contained a mixture of Sentinel-2 and Landsat images. K-means maps derived from 

Sentinel-2 images were noticeably different from those derived from Landsat 8 images acquired 

on the same day, because Sentinel-2 images contained more spectral bands, including three 

red-edge bands that have no analogues in Landsat data. Two iterations of retraining helped increase 

the number of detected stable pixels for such mixed sets of images by up to 70%. Considering that 

iterative retraining has the greatest impact on the processing time and that the third iteration 

improved the resulting change map only by a fraction of one percent, two iterations were found 

optimal for a number of test sites in Canada, and this fixed number of iterations was used in this 

study as well. The goal of iterative retraining is to make the spatial distribution of spectral classes 

more consistent among the primary image and the three secondary images, and this was achieved. 

For the next step (primary change pixel detection) to work, no stable pixels should be 

detected in areas disturbed during the processing time window period. Such areas indeed remained 

free of stable pixels, even after multiple iterations of retraining. 

3.3.3. Primary change pixel detection 

After the first primary image is processed, the second image in the time series becomes 

a primary image and three images acquired after it become the secondary images for this next 

processing set. Once stable pixels are detected for the new set of images, disturbances that occurred 

before the new primary image but after the previous one are now detected and designated as stable. 

Primary change pixels are then extracted by subtracting old stable pixels from the new ones (Figure 

3-7d). 
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The main purpose of primary change pixel detection is to automatically generate 

training sample for the next step (secondary change pixel detection). Therefore, it is important that 

they represent only forest disturbances of interest. However, in addition to true disturbances, some 

pixels representing undisturbed forested areas can also be mistakenly labeled “change” pixels if 

the algorithm failed to detect them as stable in previous sets of images due to image noise and 

other factors. These mislabeled “change” pixels are usually spread out and can be removed by 

deleting change pixels that are not spatially clustered or occur in groups smaller than 40 Landsat 

pixels (3.6 ha). While smaller patches of disturbed forest (< 3.6 ha), which account for 0.9% (by 

area) of all clearcuts and 0% of fire scars in the study area (according to the VRI and NBAC data), 

are not represented by the resulting set of primary change pixels, the removal of non-clustered 

pixels is a sacrifice worth making as it removes the vast majority of false detections. The goal of 

this step is to produce training areas (e.g. even if cutblocks < 3.6 ha are removed, the training 

pixels still represent 99.1% of cutblocks). This approach also improves the training data for the 

following step of secondary change pixel detection. 

3.3.4. Secondary change pixel detection 

After stable and primary change pixels are detected for the entire time series, more 

changes can be detected by performing a series of multitemporal supervised classifications using 

the same subsets of images that were used in the previous steps (Figure 3-7e). Stable pixels 

detected for a primary image and primary change pixels detected for the secondary images are 

used as training data in a supervised classification of the corresponding four-image stack. This 

process is then repeated for all temporal subsets throughout the time series. The following is an 

example of one of such multitemporal classifications: 

Input data: 
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• A stack of four images: 1990-06-23_L5, 1992-08-15_L5, 1993-09-03_L5, and  

1994-07-20_L5, where 1990-06-23_L5 is the primary image and the rest are secondary 

images selected based on the maximum spatial overlap with the primary images (in this 

case, 97% overlap). The spectral bands of the four images are combined to produce a single 

image stack with 24 bands. 

Training data: 

• Stable pixels detected for all ten classes in the primary image:  

1990-06-23_L5_c1_stable, 1990-06-23_L5_c2_stable, 1990-06-23_L5_c3_stable, …, and 

1990-06-23_L5_c10_stable. 

• Primary change pixels detected for all images within entire processing window period: 

1990-08-10_L5_primary_change, 1990-08-26_L5_primary_change,  

1990-09-11_L5_primary_change, 1991-06-10_L5_primary_change,  

1991-07-28_L5_primary_change, 1991-08-13_L5_primary_change,  

1991-08-22_L5_primary_change, 1991-09-07_L5_primary_change,  

1992-07-23_L5_primary_change, 1992-08-15_L5_primary_change,  

1992-08-24_L5_primary_change, 1993-08-11_L5_primary_change,  

1993-09-03_L5_primary_change, 1994-06-02_L5_primary_change, and 

1994-07-20_L5_primary_change. 

Output: 

• 1990-06-23_L5-1994-07-20_L5_ML, a Maximum Likelihood classification map with 24 

labelled classes 
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Combining same-date change classes from consecutive multitemporal classification 

maps produces secondary change pixels for each acquisition date. For example, change class 

‘1994-07-20’ is contained in 15 different multitemporal classification maps:  

1990-06-23_L5-1994-07-20_L5_ML, 1990-08-10_L5-1994-07-20_L5_ML, …,  

1997-06-10_L5-2001-08-16_L7_ML, and 1994-06-02_L5-1996-07-25_L5_ ML. 

The Maximum Likelihood classifier was found well suited for multitemporal 

classification, as it was much faster than the other two classifiers tested (Support Vector Machines 

and Neural Network) and was not prone to overfitting. Due to the very large number of training 

samples (>3,000,000 training pixels per image) and a large number of classifications to perform, 

the processing speed was an important consideration. In addition, it was important that the 

resulting spectral classes were normally distributed to prevent classes containing a mixture of 

disturbed and undisturbed forest. The Maximum Likelihood classifier aligned with this 

requirement due to its parametric statistical properties. 

3.3.5. Removal of false positives and analysis of post-disturbance recovery 

Although the multitemporal classification step described in Section 3.3.4 improves the 

detection rate, it can also introduce unwanted false detections of disturbance. Similar to the 

primary-change-pixel-detection step, clusters smaller than 40 Landsat pixels (3.6 hectares) were 

removed first. Doing so decreased the detection of clearcuts by 0.3% while reducing false positives 

and non-target disturbances by nearly 20% compared to results produced with the minimum cluster 

size set to 20 pixels.  

Once non-clustered change pixels are removed, change maps are segmented into 

individual spatial clusters and the distribution of spectral classes before and after disturbance are 
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analyzed for every cluster. Spatial clusters that do not have substantially different pre- and post-

disturbance distributions of spectral classes are rejected as described in the next paragraph. This 

filter requires ordinal categorical input with consistent class numbering. To meet this requirement, 

spectral classes in the K-means maps were ranked based on their average SWIR-2 pixel values. 

The SWIR-2 bands were chosen for three main reasons: 1) SWIR bands are the most important 

bands in forest disturbance mapping (Zhu and Woodcock, 2014; Hermosilla et al., 2015a; Cohen 

et al., 2018); 2) SWIR-2 is least affected by thin clouds and haze compared to other optical spectral 

bands; and 3) SWIR-2 bands of the Landsat and Sentinel-2 sensors have relatively similar spectral 

response curves (Figure 3-5). Such a ranking system assigns the highest rank to spectral classes 

representing disturbances and the lowest rank to classes representing dense forest. The ranking is 

relative and, therefore, does not require atmospheric correction and intra-sensor normalization to 

produce consistent results across the time series. The NIR band was used for Landsat MSS data 

due to the lack of SWIR bands. 

The presented technique uses cumulative percentage of dominant pre- and post-

disturbance spectral classes to remove clusters that do not represent clearcuts or fire scars. 

Dominant pre-disturbance classes are classes that, when combined, make up at least 90% of  

clustered pixels in images acquired up to four years before disturbance. In the study area, 

undisturbed coniferous stands were represented by Classes 1 to 5 in the 10-class SWIR-2-ranked 

K-means maps. Dominant post-disturbance classes are determined the same way, but using images 

acquired up to four years after disturbance. In the study area, most cutblocks and fire scars were 

represented by Classes 10 and Classes 7 – 10, respectively8. A filter threshold of 2 was used to 

 
8 Spectral class 10 contained both clearcuts and severely burned areas due to similar spectral characteristics. 

Importantly, UC-Change uses classification maps from an unsupervised classifier (K-means in this study) 

that produces unlabelled spectral classes that do not necessarily match any specific thematic classes, and 

instead are handled in UC-Change using spatial-structural metrics.  
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produce the results presented in this Chapter. This means that the percentage of dominant pre-

disturbance classes must drop twofold and the percentage of post-disturbance classes must increase 

twofold following a disturbance event in order for the cluster of pixels to be labelled “disturbed”. 

This threshold was determined to produce the lowest commission and omission errors. A stricter 

threshold would not affect the detection of clearcuts, because the distribution of spectral classes 

changes dramatically. This is true even for low-canopy-cover stands despite the small absolute 

difference between the pre- and post-disturbance SWIR-2 pixel values. This confirms that the 

SWIR-2 ranking does not discard the unique information contained in other spectral bands, as the 

results will demonstrate. However, unlike clearcuts, fire scars are more heterogeneous and 

sometimes contain a similar set of spectral classes to the forest they replace. Therefore, the user 

must adjust this threshold carefully to balance false detection and fire-scar detection. 

The two metrics (percentage of dominant pre- and post-disturbance spectral classes) 

can also be used to analyze forest recovery (Figure 3-8). After disturbance, clearcuts and fire scars 

become increasingly heterogeneous. Consequently, the percentage of dominant post-disturbance 

classes starts to decrease, and reach 0% (absent) typically 15 to 20 years after disturbance. The 

percentage of dominant pre-disturbance classes starts to increase after that, plateauing between 

90% and 100% from 25 to 30 years after disturbance, depending on forest type. 
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Figure 3-8. Top: Changes in the distribution of SWIR-ranked spectral classes in a 1987-07-01 

clearcut over time. Bottom: forest recovery in the same clearcut measured by the cumulative 

percentage of dominant (containing 90% or more pixels) pre-disturbance  and post-disturbance 

spectral classes, as well as average NBR and NDVI values. The spectral indices (NDVI and NBR) 

reached pre-disturbance values within 13 years after disturbance. The percentage of pre-

disturbance classes reached 90% only after 28 years. 
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Finally, the proposed metrics can improve the classification of changes (i.e., change 

attribution). Clearcuts usually contain only one dominant post-disturbance class, whereas fire scars 

contain many. This is an area for future work. 

It is important to note that while the algorithm that filters out false positives and tracks 

forest recovery is somewhat sensor-dependent, the technique itself is not. Only a few images in 

the time series are required to perform these routines. For example, in multi-source datasets, the 

user may choose to use only Landsat 5 - 8 for this step (filtering and forest recovery information 

extraction), as they showed consistent SWIR-2 ranking. 

3.3.6. Accuracy assessment and comparison with LandTrendr, C2C, and GFC 

VRI forest harvest polygons were used to assess the spatial and temporal accuracy of 

clearcut detection. At least some temporal discrepancy between the maps and VRI dataset was 

expected for two reasons. Firstly, VRI polygons are produced using aerial photographs and, 

therefore, are precise and accurate spatially. However, they are not always as accurate temporally, 

because the precise harvest date is often not reported for clearcuts (i.e., only the year but not the 

month and day of disturbance). Secondly, different change detection techniques time-stamp 

change pixels differently. For example, changes labelled “2010” in the C2C map could actually 

occur any time between July 1st 2009 and August 31st 2010, because the C2C technique used only 

July and August data. 

Based on our own set of reference data, containing 3,545 manually delineated 

polygons produced through consecutive bi-temporal image interpretations of 1984-2016 Landsat 

data, the VRI polygons represented approximately 86.3% of all clearcuts in the study area. 93.7% 

of VRI polygons had a temporal accuracy of ±1 year. There were two reasons why the VRI dataset 
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was chosen over our own set of polygons for the assessment of cutblock detection. First of all, 

VRI maps are produced by an independent group of analysts using an independent set of data 

(stereo aerial photos) and are freely available to the public, and thus allow an unbiased, 

reproduceable, and transparent evaluation of Landsat-based change detection products. Secondly, 

VRI polygons show the full spatial extent of individual cutblocks, making it possible to assess the 

detection of cutblock edges. 

Cutblock detection was evaluated at a temporal agreement of ±1 year and ±3 years to 

exclude as many change pixels detected by chance as possible. The difference between ±1-year 

and ±3-year results was indicative of detection lag, which is defined as the offset between the 

acquisition date of the image in which a forest disturbance is first detected and the actual date of 

the disturbance. However, ±1-year and ±3-year results should only be interpreted in a relative 

sense due to temporal inaccuracies in the reference dataset itself (VRI). 

NBAC polygons were used to assess the detection of forest fire scars. Only polygons 

produced using aerial photos and satellite data with a spatial resolution < 55 m were selected for 

this study. It is noteworthy that NBAC polygons do not indicate variation in burn severity. Many 

burned areas have surviving patches of trees that can be indistinguishable from undisturbed forest 

in Landsat images. Such unburned areas were removed from 90% of NBAC polygons by area 

(Hall et al., 2020). Using generalized vector data for the accuracy assessment of highly 

heterogeneous classes, such as fire scars, in classification maps is known to result in considerably 

underestimated accuracies (Wulder et al., 2006). For this reason, a relatively low agreement 

between the NBAC map and change detection maps was expected. Nonetheless, the NBAC 

polygons can still be used as the basis for comparison to assess the relative performance of different 
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change detection techniques. Confidence intervals for this dataset were estimated at ±4.3% (Hall 

et al., 2020). 

Polygons representing provincial parks and other protected areas were used to estimate 

false detection of forest harvest activities in the UC-Change and C2C maps (ECCC, 2020). The 

study area was heavily affected by a MPB outbreak, including the protected areas (NRCan, 2020c). 

However, MPB-affected areas were not detected by the UC-Change algorithm due to the lack of 

abrupt and localized changes in infested areas. Therefore, any change pixels detected within 

protected areas except those located inside NBAC forest fire polygons were considered false 

positives in the UC-Change map (Figure 3-9). The same rule was applied to the C2C map because 

it also shows only harvested and burned areas. However, this was not applied to the LandTrendr 

and GFC maps as they do show MPB-affected areas. False detection of cutblocks was evaluated 

only for the period mapped in all four maps (2001 – 2015). Lack of protected areas before 1995, 

and devastating forest fires after 2016 made it difficult to produce reliable estimates of commission 

errors outside this period. 
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Figure 3-9. VRI (blue), NBAC (white), and Kluskoil Lake Provincial Park (green) polygons 

overlaid on a Landsat 8 image (RGB: red, NIR, SWIR-2) acquired on 2014-09-13 (top) and the 

UC-Change map (bottom). Colors in the UC-Change map represent the year of disturbance. A 

large number of false positives (highlighted with red circles) can be seen inside the park, mainly 

due to changing wetland conditions. 
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3.4. Results 

Overall, UC-Change detected 85.4% of all 1974 – 2017 VRI cutblock pixels with a 

temporal agreement of ±1 year; 89.0% were detected at ±2 years and 90.4% at ±3 years (Table 

3-3). UC-Change outperformed all other techniques used for comparison across all years in the 

time series (Figure 3-10). C2C and LandTrendr both had much lower results than UC-Change, and 

they both performed very similarly to each other, detecting only 46.8% and 46.1% of 1985 – 2015 

VRI cutblock pixels, respectively. For the same period, UC-Change mapped 86.6% of forest 

harvest pixels using June 1 – September 20 data and 79.0% using July 1 – August 31 data. In terms 

of cutblock detection, the GFC map was more similar to the UC-Change map, except for the period 

2012 – 2015, where it contained 26.7% – 35.3% fewer VRI pixels. In addition, GFC detected 9.1% 

more cutblock pixels at ±3 years than at ±1 year (77.1% vs. 70.7%), indicating a relatively large 

detection lag in this map. In other maps, the difference for the same period was less than 5%. 

Table 3-3. Percent reference clearcut pixels detected at a temporal agreement of ±1 and ±3 years. 

The available C2C and GFC maps covered limited time periods. UCC = UC-Change; LT = 

LandTrendr. 

Years Detection at ± 1 year (%) Detection at ± 3 years (%) Total area of VRI 

polygons (km²) 
UCC LT C2C GFC UCC LT C2C GFC 

1974-2017 85.4 - - - 90.4 - - - 2720.1 

1974-1984 76.3 - - - 85.1 - - - 245.4 

1985-2015 86.6 46.1 46.8 - 91.3 49.0 50.2 - 2414.9 

2001-2017 87.6 34.1 - 70.7 91.9 35.7 - 77.1 1405.6 
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Figure 3-10. Percent reference clearcut pixels detected at a temporal agreement of ±1 year (solid 

lines) and ±3 years (dashed lines). The grey line represents the total area of VRI clearcut polygons 

per year. 

UC-Change also outperformed other techniques in fire scar detection (Table 3-4). It 

detected 74.1% of reference 1987 – 2014 forest fire pixels at a ±1-year agreement (78.2% at ±3 

years), while LandTrendr detected 60.0% and C2C detected 62.2%. Similarly, UC-Change 

detected 72.1% of reference 2006 – 2017 forest fire polygons at a ±1-year agreement (73.3% at ±3 

years), while GFC mapped 60.1% (62.6% at ±3 years). LandTrendr detected only 28.2% of the 

2017 fire, which affected a seven times larger area than all 1987 – 2016 fires combined. 
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Table 3-4. Total area of the reference forest fire polygons per year and percent of the area detected 

by the four change detection techniques. The table only shows the years for which the total size of 

reference polygons was greater than 1 km². UCC = UC-Change; LT = LandTrendr. 

Year Detection at ±1 year (%) Detection at ±3 years (%) Total area of NBAC 

polygons (km²) 
UCC LT C2C GFC UCC LT C2C GFC 

1987 0.6 7.8 13.0 - 2.0 11.1 13.7 - 1.6 

1988 92.7 79.9 84.2 - 94.9 79.9 85.1 - 1.4 

1990 38.1 31.3 24.9 - 41.0 33.2 26.4 - 3.2 

1995 56.3 47.4 53.5 - 56.4 47.4 53.5 - 19.2 

2006 93.4 88.3 82.9 76.9 93.5 88.8 83.0 81.1 149.5 

2009 68.2 35.0 56.4 54.1 69.4 35.8 58.2 57.3 53.9 

2010 40.2 37.5 33.0 44.4 45.5 38.5 35.3 52.7 112.5 

2014 87.5 60.2 68.3 50.6 87.6 60.2 68.4 57.3 134.3 

2016 7.1 22.3 - 35.1 7.9 22.4 - 35.4 2.1 

2017 71.7 28.2 - 60.4 72.2 28.8 - 62.4 3500.3 

The C2C map had very few false cutblock pixels in protected areas (0.06% of the total 

protected area) (Table 3-5). In contrast, UC-Change mapped 2.6% of protected areas unaffected 

by forest fires as disturbed between 2001 and 2015 inclusive. Most false detections were along 

rivers and around lakes and ponds due to long-term fluctuations (4 – 5 years) in water level and 

wetland conditions. The LandTrendr map had somewhat fewer change pixels in unburned 

protected areas (1.8%) than the UC-Change map, but those pixels were more spread out and were 

mostly found in forested areas. Finally, 9.8% of protected areas were labelled disturbed in the GFC 

map. 
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Table 3-5. False detection of cutblocks (commission errors) in the UC-Change and C2C maps for 

the period 2001 – 2015. The LandTrendr and GFC maps may contain disturbances other than 

logging and forest fires and were added for comparison only. 

Percent area, excluding 

agriculture and water bodies, 

mapped as disturbed… 

UC-Change 

(%) 

LandTrendr 

(%) 

C2C 

(%) 

GFC 

(%) 

…in protected areas unaffected 

by forest fires (out of 226.4 km²) 
2.55 1.79 0.06 9.83 

…outside protected areas  

(out of 10,418.4 km²) 
24.16 13.31 12.00 29.35 

Outside protected areas, UC-Change, LandTrendr, C2C, and GFC found change in 

24.2%, 13.3%, and 12.0%, and 29.3% of pixels in the 2001 – 2015 data, respectively. According 

to the VRI and NBAC data, 14.9% and 6.4% of the unprotected area was harvested and burned 

during that period, respectively, resulting in a total of 20.2% of the area affected by stand-replacing 

disturbances, including areas disturbed twice (fire and harvest). Considering that the VRI dataset 

contains approximately 90.6% of cutblocks that occurred in the study area during the period 2001 

– 2015 (based on our own set of reference cutblock polygons), the actual percentage of disturbed 

forest is likely greater than 20.2%. Therefore, the UC-Change approach likely produced a better 

estimation of the total area affected by logging and forest fires compared to LandTrendr and C2C. 

A visual comparison of the maps revealed that C2C and LandTrendr failed to detect 

most clearcuts in the Very Dry Cold subzone of the Sub-Boreal Pine - Spruce biogeoclimatic zone 

(south-west part of the map in Figure 3-11). In this subzone, C2C detected only 18.0% 

(LandTrendr: 21.9%) of 1985 – 2015 VRI clearcut pixels compared to 53.0% (LandTrendr: 50.0%) 

in the rest of the study area. GFC also struggled to detect cutblocks in this subzone (59.0% of 2001 

– 2015 VRI pixels detected in the subzone and 72.8% outside). In contrast, UC-Change had nearly 

the same detection rate throughout the study area (84.7% and 87.0% at ±1 year, respectively). 
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UC-Change 

 

C2C 

 

Figure 3-11. UC-Change and C2C forest change maps of the entire study area (100 km × 100 

km; north is up) for the period 1985 – 2015. Brighter shades of grey indicate more recent 

changes. Note the differences in the south-west corner. 

Clearcuts in the UC-Change map had a more homogenous, spatially contiguous 

appearance with almost no “salt-and-pepper” (speckle) effect compared to other maps (Figure 

3-12). Unlike the GFC map, it accurately represented forest reserves inside clearcuts. In contrast, 

many cutblocks were absent or only partially present in the C2C and LandTrendr maps (e.g., Figure 

3.12).  

 



103 

 

VRI 

 

UC-Change 

 

GFC 

 
C2C 

 

LandTrendr 

 

Figure 3-12. 2001 – 2015 clearcuts and clearcuts with reserves (patches of undisturbed forest) as 

they appear in the reference data (VRI) and the four change detection maps compared in the 

Chapter. The UC-Change map was the most similar to the reference map. It accurately 

represented clearcuts with reserves and had a cleaner look overall, whereas other maps had a 

strong “salt-and-pepper” effect with many missing or only partially represented cutblocks. 

The UC-Change classification-based forest recovery metrics showed good potential. 

Unlike average NBR values, which followed the same recovery pattern in most clearcuts, the 

recovery of these areas in the UC-Change maps depended on forest type (Figure 3-13). Pine-

dominated stands showed a faster recovery compared to spruce-dominated stands. For example, 

the UC-Change metrics reached their pre-disturbance values in 70.6% (by area) of 1986 and 1987 

clearcuts in the Moist Cool subzone of the Sub-Boreal Pine – Spruce biogeoclimatic zone by 2016. 
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The number for the Very Dry Very Cold subzone of the Montane Spruce zone was only 54.8%. 

The VRI data shows that the lodgepole pine became the dominant tree species in many clearcuts 

in the subzone. The Very Dry Cold subzone of the Sub-Boreal Pine - Spruce zone was an 

exception: only 18.8% of 1986 and 1987 clearcuts fully recovered by 2016 in this part of the study 

area, according to the UC-Change metrics. According to the VRI dataset, trembling aspen became 

the dominant (14.3% of clearcuts) or common (accounting for 10% or more trees in 42.9% of 

clearcuts) species in most clearcuts in this subzone, and very few clearcuts reached a crown closure 

of 25% or higher 28 years after being harvested.  Seral deciduous stands are common in naturally 

regenerating cutblocks due to serotinous cones (most cutblocks in the study area were replanted 

with lodgepole pine). 
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Figure 3-13. Forest recovery in 1986 and 1987 clearcuts per biogeoclimatic zone and subzone (in 

brackets; followed by the total area of 1986 and 1987 clearcuts in km²) as estimated using 

UC-Change forest recovery metrics (top) and average NBR values (bottom). Low 2017 and 2018 

values are due to forest fires that affected recovering areas. 
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3.5. Discussion 

3.5.1. Performance of the UC-Change technique 

The UC-Change technique detected 85.4% of reference cutblock pixels at a temporal 

agreement of ±1 year (90.4% at ±3 years), outperforming all other techniques that were tested by 

a large margin. Somewhat lower detection of clearcuts in the 1974 – 1983 time period, for which 

only Landsat MSS data were available, can be attributed to several factors: lack of SWIR bands, 

image quality (e.g., low signal-to-noise ratio and large geometric errors), and low spatial resolution 

(57 m x 79 m resampled to 60 m). Only 76.3% of 1974 – 1984 cutblocks were detected and dated 

within ±1 year from the corresponding VRI timestamps, while 85.1% were detected at a ±3-year 

accuracy, which indicates a delayed detection of affected clearcuts. These temporal inaccuracies 

in the UC-Change map were likely caused by the aggressive cloud masking that was applied to the 

input MSS data, which created large temporal data gaps between consequent observations.  

The higher quality of Landsat 5 TM data and available cloud masks improved the 

temporal accuracy and overall detection of 1984 – 1998 disturbances. The addition of Landsat 7 

ETM+ observations resulted in the highest agreement with the reference data, maintaining a 

detection rate close to 90% between the years 2000 and 2012.  

The results after 2013 had lower accuracies, despite the availability of high-quality 

Landsat 8 OLI and Sentinel-2 data. This was likely due to the inability of the algorithm to detect 

multiple disturbances if they occur within the processing time window, which was four years in 

this study. In this case, a 2017 wildfire engulfed more than a third of the study area. Because of 

the 2017 fire, fewer stable pixels were detected in the 2013 – 2017 data, resulting in fewer primary 

change pixels and, consequently, secondary change pixels, because primary change pixels are 
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derived from stable pixels and secondary change pixels are derived using primary change pixels. 

Removal of post-2016 images from the dataset improved the detection of 2013 – 2015 clearcuts 

by 21.6%, confirming the hypothesis that the relatively low performance in this period was caused 

by the 2017 fire.  

UC-Change detected relatively fewer reference forest fire pixels (72.0% at ±1 year for 

the period 1987 – 2017) than reference cutblock pixels (86.5%), and this was expected. Compared 

to clearcuts, fire scars are heterogeneous and may contain unaffected trees, information that is not 

contained in the reference polygons. If the NBAC polygons represented only areas with fully 

burned canopies, the detection rate would likely be only slightly lower than that of cutblocks. The 

spatial distribution of spectral classes within fire scars continues to change months and even years 

following a fire, making it difficult to detect stable and, consequently, change pixels. 

3.5.2. Comparison with existing change detection techniques and maps 

The resulting UC-Change maps were considerably different from the maps produced 

with existing change detection methods. The most obvious difference was the total area mapped 

as disturbed. UC-Change, LandTrendr, C2C, and GFC mapped 2363 km², 1269 km², 1150 km², 

and 2865 km² as disturbed during the period of 2001 – 2015, respectively. Such a large difference 

can be partially explained by a MPB outbreak in the 2000s, which killed most lodgepole pine trees 

in the area (BC Ministry of Forests, 2020). The GFC map shows the MPB damage, whereas the 

UC-Change map and the available C2C map do not. Based on visual interpretation, LandTrendr 

also detected some MPB-affected areas, but for a more accurate detection the change-duration 

threshold would need to be set to a higher value than the one used in this study (3 years), because 

MPB-affected stands undergo a more gradual, longer-duration decline than cutblocks (Liang et al., 

2014). However, detection of MPB damage itself was outside the scope of this Chapter and thesis. 
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Instead, the focus of the study was on the detection of cutblocks and fire scars, including salvage 

harvesting of MPB-affected stands.  

The MPB outbreak can explain why the LandTrendr and C2C technique detected so 

few 2006 – 2015 reference cutblocks pixels (32.8% and 38.8% at a temporal agreement of ±1 year, 

respectively). Salvage logging accounted for a significant proportion of wood harvested in the area 

during this period (Kurz et al., 2008). Because many trees were already dead, the difference 

between pre- and post-harvest NBR values in MPB-affected stands was too low for LandTrendr 

and C2C to detect cutblocks. However, it is noteworthy that compared to UC-Change these 

techniques also detected fewer reference cutblock pixels before the outbreak. LandTrendr and C2C 

mapped 73.3% and 67.8% of 1985 – 1999 VRI cutblock pixels at a ±1-year agreement, whereas 

UC-Change mapped 83.6%. This indicates that UC-Change was more capable at detecting 

cutblocks, at least partially due to its ability to use more spectral bands and approximately double 

as many images per year (June – September imagery vs July and August). 

In comparison to other methods, UC-Change showed a much more consistent 

performance over both time and space. The performance of the technique was unaffected by the 

MPB outbreak. In many respects, this is especially interesting as it illustrates the robustness of the 

UC-Change approach in terms of the cutblock detection. Intuitively, it could easily be expected 

that not accounting for major disturbance such as MPB would impact other disturbance detection; 

however, that was not the case.  

UC-Change also performed very well in the Very Dry Cold subzone of the Sub-Boreal 

Pine - Spruce biogeoclimatic zone, where the other three techniques (LandTrendr, C2C, and GFC) 

struggled the most. Due to the low soil moisture and stand density, undisturbed forest stands in 
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this part of the study area have relatively low NBR values, making clearcuts and forest fires harder 

to detect for techniques that rely exclusively on this spectral index, such as LandTrendr and C2C. 

One of the main advantages of the UC-Change technique is its flexibility. It can use 

datasets containing any number of images per year and any number of bands per image. Because 

the technique can use data acquired during any part of the growing season, the availability of cloud-

free data was much less of an issue. June to September data provided a full coverage of the study 

area for most years in the time series. In contrast, the C2C map was produced using only data 

acquired during the peak of the growing season (July and August). This limitation likely affected 

the performance of the C2C algorithm in a negative way. For example, Hermosilla et al. (2015b) 

found that cloud-free July and August Landsat data covered only 85% of the forested area of 

Saskatchewan on average per year during the period 2000 to 2010. Considering Saskatchewan is 

the sunniest province in Canada (Saskatchewan Research Council, 2014), July and August data 

coverage for interior British Columbia, where the study area is located, was likely lower, especially 

for the years 1984 to 1998, for which only Landsat 5 TM imagery was available. This may be the 

reason why LandTrendr, being a very similar technique to C2C, detected 10.7% more reference 

cutblock pixels during this period. LandTrendr used a slightly wider date range (June 20 – 

September 10) than C2C, and therefore, had more data to fill gaps in yearly image composites. 

However, UC-Change still detected 29.4% more cutblock pixels for the same period than 

LandTrendr when only July and August data were used (79.7% vs. 61.5%) instead of June 1st – 

September 20th data (84.5%), which indicates that the narrow date range used by LandTrendr and 

C2C was a significant but not the most important factor that affected their ability to detect forest 

harvesting. 
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Using protected areas, such as provincial parks, to quantify commission errors helped 

identify a problem in the current version of the UC-Change algorithm. Most false detections in the 

UC-Change map were found in wetlands, where spectral changes resulting from interannual 

variation in water levels and precipitation were often misidentified as forest disturbances. 

Coincidentally, most parks in the study area were established around large lakes and contain many 

wetlands. As a result, there were relatively more errors of commission in parks than in the rest of 

the study area. Based on a visual analysis, false detections in other maps (LandTrendr, C2C, and 

GFC) occurred mostly in forested areas and were more evenly spread out throughout the study 

area. Therefore, it was not surprising that the UC-Change map had more commission errors in 

parks (2.55% of the total park area) than C2C (0.06%) and LandTrendr (1.79%). 

3.5.3. Forest recovery monitoring 

Existing change detection techniques use spectral indices to track forest recovery. It 

took ~20 years for most clearcuts in the study area to fully recover their average NDVI and NBR 

values. These pixel-based metrics can be useful for monitoring disturbed areas from a purely 

economic standpoint. From this point of view, what matters the most is whether a disturbed area 

becomes a free-growing stand and, eventually, reaches a stocking target or, on the contrary, 

degrades to a not-satisfactorily-restocked (NSR) area (i.e., an area where there is not enough 

commercially valuable trees). For example, White et al. (2018) found that a metric named Years 

to Recovery (Y2R), defined as the number of years it takes for a pixel to reach 80% of its pre-

disturbance NBR value, provided a realistic way to detect the re-establishment of forest cover, 

defined in the study as an area with canopy cover > 10% and tree height > 5 m. UC-Change has a 

completely different approach to monitoring forest recovery. It uses two metrics, the percentage 

of dominant pre- and post-disturbance spectral classes, to monitor recovery, and this is performed 
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at the object level. These object-based metrics make it possible to track changes in stand 

composition, which is a crucial determinant of forest recovery from an ecological perspective 

(Foster et al., 1998; Reyes and Kneeshaw, 2008; Chen et al., 2009; Ilisson and Chen, 2009; Bartels 

et al., 2016). The rate at which clearcuts regain their pre-disturbance composition of spectral 

classes depends in part on the number of classes the classifier is set to generate; however, even at 

10 classes, UC-Change offers more realistic measures of forest recovery compared to spectral 

indices as it uses all spectral bands that the user chooses to include in data processing (rather than 

only two). The new metrics in UC-Change take longer to saturate (up to 30 years) than NDVI and 

NBR (10 - 20 years). Most importantly, they capture differences in the recovery rate between 

different forest types. For example, stands dominated by the lodgepole pine showed a faster 

recovery in the UC-Change map than spruce stands, which was expected based on the literature 

(Armit, 1966; Burton et al., 1999). This capability that UC-Change provides is very important to 

forest management, both for sustainability and for improved harvest planning.  

Interestingly, the percentage of dominant pre-disturbance classes for many clearcuts 

plateaued or even declined before reaching 90%. There are several factors that could explain this. 

Clearcuts in northern forests often become populated with deciduous trees (Brumelis and Carleton, 

1988; Carleton and MacLellan, 1994; Brassard and Chen, 2006). This makes clearcutting different 

from wildfires, which promote the regeneration of coniferous species (McRae et al., 2001; Harvey 

et al., 2014). Analysis of high-resolution Google Earth and Bing imagery produced by 

DigitalGlobe, as well as VRI data, revealed that some disturbed areas indeed became overgrown 

with deciduous species. However, most cutblocks in the study area  met a completely different 

fate, becoming monocultural lodgepole pine plantations. Such plantations grow fast but do not 

have the stand composition and structure of the native forest they replace. In addition, lodgepole 
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pine plantations are often affected by various biotic agents, resulting in high mortality (Mather et 

al., 2010). Both lodgepole pine plantations and seral deciduous stands often have a different 

composition of spectral classes in unsupervised classification maps compared to the original 

undisturbed forest, and this is the reason why UC-Change metrics did not reach their pre-

disturbance values in these areas. 

3.6. Conclusions 

The UC-Change technique represents a new approach to forest disturbance mapping. 

As the name suggests, the technique uses classified images to detect and date stand-replacing 

disturbances, as well as monitor post-disturbance vegetation recovery, which makes it primarily 

independent of spectral resolution and data type, be it radiance or reflectance. For the same reason, 

the algorithm can use any number of spectral bands of any sensor to detect disturbances, unlike 

many existing change detection methods that use only one or two bands. The technique is also 

very flexible in terms of requirements to the temporal resolution of input data. While other methods 

either use only mid-summer data (e.g., LandTrendr and C2C use July and August data; Kennedy 

et al., 2010; Hermosilla et al., 2015a) or require all available data to achieve good results (i.e., 

every single available image between January 1st and December 31st; Verbesselt et al., 2010; Zhu 

and Woodcock, 2014), the proposed method can use any number of non-winter images. Therefore, 

data availability is much less of an issue for UC-Change compared to these two approaches. 

Furthermore, unlike existing classification-based methods, UC-Change is an unsupervised 

algorithm that requires little user input9. 

 
9 Parameter adjustment may be required when applying the algorithm to new geographical areas. 
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The new UC-Change approach is based on three steps. Images classified with an 

unsupervised classifier are used in the first step to detect a small number of highly accurate change 

pixels that are then used as training data in a series of multitemporal supervised classifications in 

the second step. The third step is object-based and filters clusters of change pixels based on their 

pre- and post-disturbance spectral class composition. This step not only removes false positives, 

but also provides information on forest recovery and can help classify changes by disturbance type 

(e.g., forest fire, clearcut, or road). 

This Chapter has presented results produced using a very challenging study region and 

datasets. The dataset consisted of Landsat and Sentinel-2 data acquired over an area south of Prince 

George, British Columbia. The area contains diverse forests ranging in species composition and 

canopy cover, from sparse and dry pine-dominated forests in the south to dense spruce-dominated 

forests in the north. Overall, UC-Change detected 85.4% of the reference 1974 – 2017 clearcut 

pixels and 72.0% of the reference 1987 – 2017 fire scar pixels at a temporal agreement of ±1 year 

(90.4% and 73.2% at ±3 years, respectively). The resulting UC-Change maps were compared with 

a map generated using an open-source version of the LandTrendr algorithm, as well as with the 

C2C and GFC maps available online. Within the period of 1985 – 2015, the proposed technique 

detected 87.8% and 84.8% more reference clearcut pixels and 23.6% and 19.2% more reference 

forest fire pixels when compared to the C2C and LandTrendr maps, respectively. It also 

outperformed the GFC technique by 24.0% and 19.9% in clearcut and fire scar detection, 

respectively, in the period of 2001 – 2017. 

The UC-Change technique detected the vast majority of 1972-1984 clearcuts using 

Landsat MSS data (85.1% at ±3 years), showing that MSS data could be quite valuable for time 

series studies. However, the quality of MSS data is inconsistent, requiring manual image selection. 
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Therefore, it is recommended that data providers improve image quality (including reprocessing 

older archive data), as well as cloud and cloud shadow detection and geometric correction 

algorithms, particularly for Landsat 1 - 4. 

The UC-Change algorithm uses two object-based metrics to derive information about 

forest recovery: percentage of dominant pre- and post-disturbance spectral classes inside spatial 

clusters of change pixels (see also Figure 3.8). While many factors affect the distribution of 

spectral classes (e.g., unmasked clouds and cloud shadows, seasonality, and spectral properties of 

data), the study showed that the two metrics can provide useful information about long-term 

changes in stand composition, which is a crucial determinant of forest recovery. Another strength 

of the UC-Change metrics is that they do not saturate as quickly as spectral indices used by other 

change detection methods. Unlike spectral indices, the UC-Change metrics also follow different 

recovery patterns depending on forest type and they better capture differences in the actual growth 

rate. 

UC-Change was applied for the detection of clearcuts and fire scars. It was not used to 

detect any mountain pine beetle damage, even though the study area had a major outbreak. For the 

algorithm to be able to detect a disturbance, the distribution of spectral classes must change 

dramatically between consecutive images. No such drastic changes were observed in the K-means 

classification maps used in this study for this ongoing MPB disturbance. This was not a concern, 

as it was not part of this study’s goal. In fact, it is noteworthy that, given this level of other 

disturbance, the new UC-Change method could capture the disturbances of interest (forest harvest 

and fire scars) even in the presence of these other disturbance agents. This suggests the robustness 

of the approach given the greater complexity and number of disturbances present. If other types of 



115 

 

disturbance were of interest, the unsupervised classifier and subsequent steps could be designed to 

separate those disturbances, including with respect to their unique temporal signatures. 

The two main limitations of the UC-Change technique are related to its scene-based 

nature and the size of the processing time window. First of all, large-area disturbances (e.g., a 

major forest fire), unmasked clouds, and agricultural land may affect the detection of disturbances 

in the surrounding areas, because they affect the distribution of spectral classes in the rest of the 

image. However, the iterative retraining step largely negates this problem, as it makes 

classification consistent among images. Secondly, the technique cannot detect a disturbance event 

if another disturbance occurred in the same area within a time period equal to or smaller than the 

length of the time processing window. It is expected that using a smaller time window (e.g., 2 

years instead of 4 years) would improve the detection of repeat disturbances, but would also require 

more images. Fortunately, with new sensors available (e.g. two Sentinel-2 sensors, and others 

planned from many other programs internationally), this is not viewed as a problem and in fact 

provides even further rationale for using algorithms such as UC-Change that can better take 

advantage of these data, while being designed to ingest data with different properties and attributes. 

The next research steps with UC-Change include testing it over even larger areas (e.g., 

the entire province of British Columbia), with further algorithm refinements, such as change 

attribution, automatic parameter adjustment, and support for data of various spatial resolution 

without resampling (e.g., 10-m and 20-m Sentinel-2 data). False detection of change in wetlands 

is also an issue that needs to be addressed. In addition, it is worth investigating if a different, 

perhaps custom classifier could be used instead of K-means for the initial unsupervised 

classification to improve the separation of disturbed and undisturbed forest and reduce the 

processing time. 
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The flexibility and robustness of UC-Change may also create synergies with other 

powerful approaches, such as improved topographic correction (Soenen et al., 2005, 2008, 2010), 

canopy reflectance modeling including work in mountainous terrain with various sensors (e.g. 

airborne, Landsat, MODIS, and others), applied to various types of forest disturbance (e.g. fire, 

MPB, partial harvesting), as improvements to classification (e.g. large area unsupervised cluster 

labeling) and involving considerable new algorithm development with a focus on automated 

methods (Peddle et al., 2003, 2004, 2011), as well as possible linkages to other time series 

approaches, such as the development of temporal mixture analysis (TMA: Piwowar et al., 1998) 

and applications involving other longer time series assessments of multiple disturbances 

(Chowdhury et al., 2021). 
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CHAPTER 4  

A COMPARISON OF THE UC-CHANGE AND C2C CHANGE DETECTION 

ALGORITHMS FOR MAPPING CUTBLOCKS AND ESTIMATING THE RATE OF 

FOREST HARVESTING IN BRITISH COLUMBIA, CANADA 

Abstract 

Two satellite-based forest change detection algorithms were evaluated for their ability 

to accurately map cutblocks and estimate the rate of forest harvesting. Generated maps were 

compared with forest inventories and official records for a large area (71 million ha) in the province 

of British Columbia, Canada, which has been subject to intense forest industry activity. The area 

covers multiple biogeoclimatic (BGC) zones and has a diverse terrain including several major 

mountain ranges. Our Unsupervised Classification to Change (UC-Change) technique and the 

Composite2Change (C2C) technique were used to map and date cutblocks that occurred between 

1984 and 2015 using Landsat time-series data. The resulting maps were compared against the 

Vegetation Resources Inventory (VRI), the Consolidated Cutblocks (CC) dataset, and the National 

Forestry Database (NFD). VRI cutblock polygons were also used as validation data; they were 

produced by skilled interpreters based on stereo aerial photographs and reports from logging 

companies and, therefore, were expected to have a high spatial accuracy. The UC-Change 

algorithm detected 85.7% of reference cutblock pixels, whereas the C2C map had 69.5%. The 

former had a more consistent performance across BGC zones but was more sensitive to terrain 

slope and aspect conditions than the latter. It was estimated that the average rate of forest 

harvesting during the investigated time period and adjusted for commission and omission error 

was 251,000 ha/year (UC-Change) and 243,000 ha/year (C2C). This means that as much as 7.5 

million ha of forest (33% of harvestable forest area in the province) were cleared between 1984 
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and 2015, well above the 6.7 million ha indicated by the VRI and CC datasets and 6.3 million ha 

derived from the NFD records. Based on this finding, the province may need to reduce the rate of 

timber extraction to meet its sustainability goals. The results show that highly automated 

techniques like UC-Change can detect cutblocks missing in forest inventory maps while providing 

temporally accurate information in a timely fashion and at no cost, although false detection is an 

issue that requires attention. 

4.1. Introduction 

Unlike deforestation, conversion of natural forests into managed forests has received 

far less attention, yet it has major effects on forest ecosystems. Clearcut harvesting, practiced in 

Canada (Bergeron and Fenton, 2012; Environmental Reporting BC, 2018a) and many other 

countries (Brassard and Chen, 2006; Lundmark et al., 2013), results in even-aged stands that lack 

the diverse understory of old-growth forests and forests recovering from natural disturbances, such 

as fire10 and insect infestations (McRae et al., 2001; Burton et al., 2003; Bergeron and Fenton, 

2012). Animal biodiversity is also much lower after clearcutting due to the lack of snags and coarse 

woody debris, which is a critical habitat component for small mammals (Carey and Johnson, 

1995), birds (Carey et al., 1991), and amphibians (Bury et al., 1991; Corn and Bury, 1991). 

Accordingly, a better understanding of the scale and temporal dynamics of human-caused forest 

disturbances can facilitate the development of improved sustainable forest management practices. 

Given the vast areas and long time periods involved, this cannot be achieved without change 

detection techniques that use archive and current satellite image data to map and track changes in 

 
10 High-intensity wildfires in forests dominated by lodgepole pine and other species with serotinous cones, which 

release seeds simultaneously when exposed to the heat of fire, may also produce even-aged stands, at least 

until subsequent disturbances (e.g., wind and insect infestations) transform them into more complex, multi-

aged stands (Axelson et al., 2009). 
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forest cover. Similarly, due to the large data volumes, areas, and time periods, it is not practical to 

do site-specific, manual satellite image analyses and, therefore, automated methods are required. 

Mechanization and automation of the timber industry in the 1970s and 1980s caused a 

rapid growth in commercial harvesting of northern forests (Burton et al., 2003; Environmental 

Reporting BC, 2018b). This dramatic expansion is well documented as it coincided with the launch 

of the first civilian Earth observation satellites. For example, the shape of individual cutblocks can 

be easily discerned in Landsat-1 Multispectral Scanner (MSS) imagery (nominal 57 m × 79 m 

spatial resolution; 18-day revisit; launched 1972). However, despite the long and continuous (i.e., 

with observations available for every year) record of satellite data acquisition, there are few 

detailed large-area maps of anthropogenic forest disturbances that are openly available today. Prior 

to the opening of the Landsat archive in 2008, satellite-based forest disturbance mapping was 

mostly limited to small-area medium-resolution (10 m – 100 m) or large-area but coarse-resolution 

(>100 m) studies (Banskota et al., 2014; Zhu, 2017). Even today, the use of 1972 – 1983 Landsat 

data is hindered by the quality of data preprocessing (Wulder et al., 2019). In contrast, the 

preprocessing of data acquired by Landsat 5 TM (launched in 1984) and newer sensors has been 

continuously improving (Zhu et al., 2015; Qiu et al., 2019a,b; Wulder et al., 2019), resulting in 

analysis-ready imagery that can be used in multi-temporal studies without any additional or only 

minor preparation by the user. 

Availability of free, geometrically-corrected and cloud-masked Landsat 5 TM and 

newer data (Landsat 7 and 8; Sentinel-2) created the opportunity and the need for the development 

of time-series change detection techniques that can automatically process vast amounts of remote 

sensing data to produce detailed forest disturbance maps. Two examples are the 

Composite2Change (C2C; White et al., 2017) and the Global Forest Change (GFC; Hansen et al., 
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2013) methods, which have both been used to produce 30m maps. The former shows stand-

replacing forest disturbances (i.e., disturbances resulting in the removal of forest cover) that 

occurred between 1984 and 2015, while the latter is limited to the period 2000 – 2018. 

Unsupervised Classification to Change (UC-Change) is a new approach that provides 

several important advancements and advantages and, thus, warrants a more extensive comparison 

with currently available products. In this Chapter, the UC-Change method was applied over the 

period 1984 – 2018 to assess stand-replacing disturbances at a spatial resolution of 30 m over a 

large area that contains almost all managed forests in British Columbia, Canada, and use the maps 

to estimate the rate of forest harvesting in the province (i.e., area harvested per year). The forest 

industry is vital to the economy of this province, producing an estimated $18.4 billion (Canadian) 

of products and supporting more than 52 thousand jobs (Barnes, 2019; NRCan, 2020). Therefore, 

remote sensing data and techniques are required to monitor and promote sustainable use of forest 

resources.  

A rigorous accuracy assessment of UC-Change map products was undertaken to 

estimate the rate of forest harvesting in the province (i.e., area harvested per year), with results 

compared to the Composite2Change (C2C) maps.  The study area and dataset used provided a rare 

opportunity to conduct a thorough and challenging experiment, based on two main factors: 1) it 

presents a wide diversity of forest types, topography, and climate and, importantly, 2) it is one of 

the few regions for which highly detailed and extensive forest inventory data are available. 

4.2. Study Area and Data 

The study area encompasses 71 million ha of land and contains 99.98% of cutblocks 

that occurred in British Columbia between 1984 and 2015, based on the forest inventory data of 
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the province (VRI, 2020). The Pacific Ocean and several mountain chains create unusually diverse 

climatic conditions that support a wide variety of ecosystems, from dense temperate rainforests on 

Vancouver Island and along the mainland coast, to dry and sparse lodgepole pine forests in the 

interior of the province, as described in the Biogeoclimatic Ecosystem Classification system of 

British Columbia (BEC, 2020). The extent of the zones is shown in Figure 4-1, while Table 4-1 

provides a description of each biogeoclimatic (BGC) zone in the study area (BEC, 2020). 

 

Figure 4-1. The extent of the study area (dashed line) and biogeoclimatic zones (based on BEC, 

2020) in British Columbia. See also Table 4.1. 
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Table 4-1. The characteristics of forested BGC zones spanning the study area and information 

relevant to forest disturbance mapping (Meidinger and Pojar, 1991; BEC, 2020). Abbreviations: 

MAT – mean annual temperature (°C); MAP – mean annual precipitation (mm); MSP – mean 

summer precipitation (mm); Area – area occupied by the zone within the study area (km²); Slope 

– average terrain slope ± standard deviation (°); CS – average cutblock size (ha) calculated based 

on the Vegetation Resources Inventory data of British Columbia (VRI, 2020). 

BGC zone Climate MAT MAP MSP Area Slope CS Dominant species and relevant information 

Boreal 

White and 

Black 

Spruce 

(BWBS) 

Cold 

continental 

to hyper-

continental 

with short 

summers 

-1.8  

to 

2.8 

455 

to 

1297 

220 

to 

403 

103,109 3.9  

± 5.8 

33.7 White spruce, black spruce, lodgepole pine. Two 

main ecosystems: upland forests and muskeg. 

Upland areas: mixed white spruce and aspen or 

black spruce and lodgepole pine. Mossy black 

spruce on wetter sites and open lodgepole pine – 

lichen on drier sites. White spruce and balsam 

poplar along rivers. Logging is difficult due to 

numerous wetlands and relies on hardwood 

species (e.g., trembling aspen and balsam poplar) 

more than in other zones. Primary anthropogenic 

disturbance: oil and gas industry. 

Coastal 

Western 

Hemlock 

(CWH) 

Sub-

maritime to 

hyper-

maritime 

with long, 

wet, and 

cool 

summers 

3.4 

to 

9.3 

1181  

to 

3416 

262  

to 

859 

100,007 20.3 

±14.1 

13.2 Western hemlock, western red cedar. Highly 

diverse and productive forests with deep, 

multilayered canopy. Most of the forests are old. 

Wind is a common disturbance factor. Soil 

conservation is a concern due to intensive 

silvicultural practices, mountainous topography, 

and high precipitation. 

Englemann 

Spruce – 

Subalpine 

Fir (ESSF) 

Subalpine 

boreal with 

very short 

summers 

-0.5 

to  

2.5 

602 

to 

1659 

246 

to 

561 

158,419 19.8 

±11.9 

21.2 Englemann spruce and subalpine fir forests 

occupying high elevations. 2 – 3-m deep 

snowpacks are common in winter. 

Interior 

Cedar – 

Hemlock 

(ICH) 

Continenta

l with 

relatively 

long, cool 

to warm 

summers 

1.9  

to  

6.7 

 

569 

to 

1175 

196 

to 

378 

50,752 17.0 

±11.3 

17.4 Western hemlock and western red cedar. High 

productivity and species diversity. Wildfires can 

occur frequently in drier parts of the zone, 

producing a mosaic of young and old forest 

patches. 

 

Interior 

Douglas-fir 

(IDF) 

Temperate 

with cool 

dry 

summers 

(3 – 5 

months) 

 

1.7  

to  

6.0 

336 

to 

601 

164 

to 

239 

42,989 10.7 

±10.3 

25.8 Douglas-fir. Historically frequent low-intensity 

forest fires kill young trees and understory, 

producing open, uneven-aged stands of Douglas-

fir. Older trees of this species develop fire-

resistant bark. Selective cutting with frequent 

thinning of low-vigour and high-risk trees leaves 

many older trees intact to provide shelter during 

regeneration and prevent fires. This practice is 

meant to replicate and replace the natural fire 

regime and was common in this zone in the 1980s 

and 1990s. Soil water deficits are common in 

summer. 
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Table 4-1. Continued… 

BGC zone Climate MAT MAP MSP Area Slope CS Dominant species and relevant information 

Interior 

Douglas-fir 

(IDF) 

Temperate 

with cool 

dry 

summers 

(3 – 5 

months) 

 

1.7  

to  

6.0 

336 

to 

601 

164 

to 

239 

42,989 10.7 

±10.3 

25.8 Douglas-fir. Historically frequent low-intensity 

forest fires kill young trees and understory, 

producing open, uneven-aged stands of Douglas-

fir. Older trees of this species develop fire-

resistant bark. Selective cutting with frequent 

thinning of low-vigour and high-risk trees leaves 

many older trees intact to provide shelter during 

regeneration and prevent fires. This practice is 

meant to replicate and replace the natural fire 

regime and was common in this zone in the 1980s 

and 1990s. Soil water deficits are common in 

summer. 

Montane 

Spruce 

(MS) 

Continenta

l with 

moderately 

short (2 – 4 

months), 

warm 

summers 

-0.2 

to  

3.2 

527 

to 

960 

200 

to 

271 

28,231 10.5 

±9.6 

30.7 Lodgepole pine and hybrid spruce (Engelmann + 

white spruce). Contains numerous wetlands. 

Extensive mountain pine beetle outbreaks result 

in a large amount of forest fuel. This and 

extended period of drought in summer often lead 

to large, stand-replacing fires, resulting in even-

aged and even-sized canopies. Trembling aspen 

is a common seral species. 

Sub-Boreal 

Pine – 

Spruce 

(SBPS) 

Sub-

continental 

to 

continental 

with cool, 

dry 

summers 

0.7  

to  

4.6 

411 

to 

540 

195 

to 

270 

21,877 3.7 

±4.0 

35.3 Lodgepole pine. Other species are rare. The 

climate favours plants that can tolerate frequent 

frosts and droughts. Trembling aspen is a 

common seral species in wetter areas. 

Historically, stand-replacing wildfires occurred 

approximately every 75–125 years, resulting in 

even-aged pine stands typically no older than 120 

years. Although mountain pine beetle numbers 

are usually low, salvage harvesting yields a 

significant portion of extracted timber. 

Sub-Boreal 

Spruce 

(SBS) 

Mild 

continental 

with short 

but warm 

and moist 

summers 

-2.0 

to  

0.4 

500 

to 

949 

196 

to 

373 

91,821 6.5  

±6.4 

30.3 Hybrid spruce (Engelmann + white spruce) and 

subalpine fir. Dense, productive coniferous 

forests with a developed understory. Wetlands 

are common. 

 

4.2.1. Forest disturbance maps 

The authors’ UC-Change map was compared to the Composite2Change map (C2C; 

White et al., 2017). The latter is the only other Landsat-based map available for the entire province 

that separates cutblocks from other forest disturbances and, therefore, it is the only available 

product for comparison that can be used for the purpose of this study (harvest rate estimation). The 
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two maps were produced using completely different time-series change detection algorithms, 

which are described briefly in the next sections.  

4.2.1.1. Unsupervised Classification to Change (UC-Change) map 

To detect changes, the UC-Change technique uses images classified with an 

unsupervised (K-means) classifier. This approach uses categorical data (spectral classes), similar 

to commonly used bi-temporal classification-based change detection techniques (e.g., Gregory et 

al., 1981; Hall et al., 1991; El-Hattab, 2016). However, instead of using image pairs, it employs a 

time-series approach, using hundreds of Landsat and Sentinel-211 images to locate clearcuts and 

forest fire scars in time and space. The approach is based on four steps. In Step 1, the algorithm 

identifies areas where spectral class boundaries do not shift spatially for some duration of time 

(e.g., four years). Such areas are labelled as stable. This is done for every image in the time series. 

Based on this rule, clearcuts are stable in 10-class K-means classification maps for up to 5 – 6 

years. However, forest stands within that period that are subsequently harvested are considered as 

not stable. In Step 2, primary change pixels are identified for every image by subtracting stable 

pixels identified for preceding images from the current stable pixels. Only 40% to 50% of 

cutblocks and burned areas are detected this way with very few false positives. To improve the 

detection of disturbances, primary change pixels are used as training areas in a series of 

multitemporal Maximum Likelihood classifications in Step 3. Finally, Step 4 is object-based and 

filters spatial clusters of change pixels based on their pre- and post-disturbance spectral class 

 
11 Although Sentinel-2 imagery was used in addition to Landsat data to produce the original 1985 – 2019 map 

covering the Province of British Columbia, the map was then truncated to 1985 – 2015 to match the period 

covered by other maps in this study. Therefore, the addition of Sentinel-2 data had a negligible effect on the 

results. 
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composition. This step not only removes false positives, but also provides information on forest 

recovery and can help classify changes by disturbance type (e.g., forest fire and harvest). 

The user must specify two parameters: the length of the time window and the number 

of classes for the K-means classifier. The length of time for the temporal processing window is 

selected based on the availability of cloud-free data to ensure that the algorithm can find 

overlapping images within the time window. The number of classes is selected to ensure that 

disturbances of interest remain homogenous for the duration equal to the length of the time 

window. For example, clearcuts remain homogenous for 4 – 6 years in 10-class K-means 

classification maps and 5 – 6 years in 8-class maps. Consequently, the algorithm used two settings 

depending on the availability of spatially overlapping images (in particular, the cloud-free portions 

of images): a 4-year time window and 10-class K-means classification or a 5-year window and 8-

class classification. In most scenarios, both settings would produce nearly identical results. 

However, the second option produced better results in areas with frequent cloud cover at the cost 

of longer processing time. Other, less important parameters are discussed in Chapter 3. 

The UC-Change technique currently can detect disturbance from both logging and 

wildfires but does not separate the two. Therefore, the National Burned Area Composite (NBAC) 

database was used to remove fire scar pixels in the UC-Change map (NBAC, 2020). To make the 

comparison of maps fair, this procedure was also applied to the C2C map. 

4.2.1.2. Composite2Change (C2C) map 

The C2C is a pixel-based technique that analyzes the temporal trajectories of 

individual pixels, breaking down those trajectories into straight-line segments representing pre-
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disturbance, disturbance, and post-disturbance states (Hermosilla et al., 2015b). The technique 

uses yearly image composites of the Normalized Burn Ratio, calculated as: 

NBR =
NIR − SWIR2

NIR + SWIR2
 , (4-1) 

where NIR and SWIR2 are surface reflectance values for the near-infrared and second short-wave 

infrared Landsat spectral bands, respectively. The composites were derived from cloud-free mid-

summer (July and August) Landsat data. The difference between pre- and post-disturbance NBR 

values must exceed a user-defined change magnitude threshold. The C2C map currently available 

online shows forest fires and logging that occurred between July-August 1984 and July-August 

2015 (C2C, 2019). Clouds, agriculture, and water bodies were masked out prior to data processing 

to reduce the false detection of clearcuts (Hermosilla et al., 2016), similar to UC-Change. 

4.2.2. Forest inventory map and protected areas as validation data   

British Columbia’s Vegetation Resources Inventory (VRI, 2020) data were used to 

assess the spatial and temporal accuracy of clearcut detection. VRI clearcut polygons were 

delineated and time-stamped using airphoto interpretation at a scale ranging between 1:10,000 and 

1:15,000, together with ground sampling, and a reporting system, as described in Bourgeois et al. 

(2018). Because aerial photos for any particular area are acquired approximately once a decade, 

VRI data were expected to be very accurate and precise spatially but not always temporally. While 

VRI contains information about the majority of cutblocks in the study area, some information was 

lost during re-inventories or was not yet added due to delays in submission of information by 

logging companies (Bourgeois et al., 2018). In addition, VRI data do not contain harvest date 

information for forest stands that were affected by wildfires after they were harvested. For these 

two reasons, two VRI datasets, released in 2015 and 2018, were combined to provide a more 

complete set of 1985-2015 reference clearcut polygons. The 2015 set had harvest date information 
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for cutblocks that were not yet affected by devastating wildfires in BC in 2017 and 2018, while 

the 2018 set contained many 2013 – 2015 cutblocks that were not included in the 2015 dataset. It 

is also noteworthy that while many clearcuts contain small patches of remaining trees, patches 

smaller than 0.5 ha were not captured in the VRI data (Bourgeois et al., 2018). This could result 

in a slight overestimation of false negatives in this study. 

The Canadian Protected and Conserved Areas Database (CPCAD) was used to 

evaluate general false detection of clearcuts in protected areas. Because commercial timber harvest 

is not allowed in provincial parks and other protected areas, all change pixels detected in such 

areas were labeled as false detections. Forest inventory data (VRI) confirmed almost no harvesting 

in protected area (logging occurred only on 0.01% of park area). 

4.2.3. Other datasets 

Forest harvest rates estimated based on the UC-Change and C2C maps were compared 

against those listed in the National Forestry Database (NFD) and calculated using the Consolidated 

Cutblocks (CC) dataset. The NFD is maintained by the Canadian Forest Service and contains data 

reported by logging companies (NRCan, 2014; NFD, 2020), while the CC dataset is updated by 

the Ministry of Forests, Lands and Natural Resources Operations of British Columbia (BC 

Ministry of Forests, 2020a). The CC dataset was designed to fill gaps in the VRI map, which is 

produced by the same agency. It mostly consists of VRI polygons, with the addition of polygons 

generated using Landsat data and the Reporting Silviculture Updates and Land status Tracking 

System (RESULTS). The Landsat part was carried out by a contractor and was based on 

bi-temporal change detection (SWIR-1 band ratios), followed by spatial segmentation and 

classification and, finally, manual editing (BC Ministry of Forests, 2020b). The Ministry checks 

at least 10% of Landsat-derived polygons, of which 95% must pass the inspection (personal 
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communication, C. Butson of the Ministry of Forests, Lands, Natural Resource Operations and 

Rural Development of British Columbia, Victoria, BC). A visual comparison of the VRI and CC 

datasets revealed that some cutblocks present in the VRI are absent in CC. For this reason, a 

combined dataset (VRI∪CC) will also be used in this study. To produce VRI∪CC, polygons unique 

to the CC map were added to the VRI map. 

4.3. Experimental Design 

Two factors needed to be considered when evaluating the temporal aspect of forest 

harvest detection. On the one hand, the detection lag can be as long as a year or more depending 

on the availability of usable data (e.g., cloud-free July and August data in case of C2C and June-

September data in case of UC-Change). The detection lag is the offset between the acquisition date 

of the image in which a change is first detected and the actual date of the change. On the other 

hand, disturbance dates listed in the reference VRI dataset are sometimes inaccurate, as mentioned 

previously. Therefore, some disagreement between the maps and VRI data in terms of date of 

harvest can be expected.  

To assess the spatio-temporal accuracy of the reference dataset (VRI), 500 randomly 

selected iVRI cutblock pixels were analyzed using the LandTrendr Pixel Time Series Plotter 

(Kennedy et al., 2018; GEE, 2020). This algorithm was used to plot yearly NBR, red, NIR, 

SWIR-1 and SWIR-2 values derived from atmospherically corrected July and August Landsat 

composites. These plots were then visually analyzed to identify the actual time of disturbance 

(Figure 4-2). To compare the temporal accuracy of the VRI map and the change detection maps, 

another 200 pixels were randomly selected in iVRI cutblocks where there was a greater than 2-

year disagreement with the UC-Change and C2C maps.  
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Figure 4-2. LandTrendr-generated NBR trajectory for a pixel in a clearcut dated 1993 in both the 

UC-Change and C2C maps and 1996 in the VRI. Based on the dramatic fall in NBR values, the 

forest was harvested some time between summer 1992 and summer 1993 (only July and August 

Landsat data were used to produce this plot). Therefore, the VRI timestamp was deemed incorrect. 

VRI polygons accurately represent the full spatial extent of individual cutblocks and, 

therefore, make it possible to assess the detection of cutblock edges. Edge pixels present a problem 

when using 30-m Landsat data, as they contain a mixture of disturbed and undisturbed forest. As 

one way to handle this, a change detection algorithm could label such mixed pixels as either 

disturbed or undisturbed depending on which constituent contributes more than the other (i.e., 

more than 50% of a pixel). However, because disturbance events do not alter the spectral 

characteristics of mixed pixels as much as pure pixels, the detection of edge pixels depends more 

on user-defined thresholds and other parameters, such as the minimum number of image 

combinations in which a change pixel must be detected. In addition, remote sensing images contain 

positional or other geometric errors. Because change detection techniques use multiple images in 

large image stacks, geometric and registration errors across individual images may propagate and 

be compounded, further affecting the detection of clearcut edges while also potentially generating 

overlapping mixed pixels in terms of cutblock recognition in a time-series context. Depending on 

how a change detection algorithm handles boundary pixels, cutblocks may appear bigger or 

smaller in the map than they actually are. This affects total-harvest-area estimates.  

To evaluate the detection of edge pixels, positive and negative 30-m buffers were 

applied to VRI polygons (Figure 4-3). The former produced polygons that will be referred to as 
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buffered VRI (bVRI), while the latter produced inner VRI (iVRI) polygons. Because the positional 

RMSE of Landsat 5 – 8 data is typically less than 12m (Wulder et al., 2019), a buffer corresponding 

to the width of one Landsat pixel (30m) was chosen to eliminate the impact of geometric errors 

and account for inaccuracies caused by the mixed-pixel problem in this context. Importantly, the 

total area of all VRI polygons was 58,887 km² and the area of all iVRI polygons was 37,971 km², 

meaning that edge pixels account for 35.5% of rasterized VRI polygons on average. Therefore, 

accurate detection of edge pixels is extremely important if the goal is to produce accurate estimates 

of total harvested area. 

 

Figure 4-3. Positive and negative 30-m buffers were applied to each VRI clearcut polygon. The 

positive buffer allowed assessment of clearcut edge detections, which are subject to various 

geometric errors and the mixed-pixel problem. Inner VRI polygons (iVRI) were used to evaluate 

the ability of change detection techniques to detect pure clearcut pixels. 

By comparing the detection of inner and edge pixels, it is possible to quantify whether 

cutblocks appear larger or smaller in the map compared to the corresponding VRI clearcut 

Original VRI clearcut boundary 

±30-meter buffer: 

Contains pixels affected by the mixed-pixel problem 

and image misregistration errors. 

iVRI: 

Contains pixels generally 

unaffected by image 

geometric errors; almost all 

pixels are pure clearcut 

pixels. 

bVRI 
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polygons. The following formula compares the actual number of clearcut pixels detected in bVRI 

polygons with the number expected based on the detection of forest harvest pixels in iVRI 

polygons: 

RSDmap/VRI =
𝐴ℎ𝑚𝑎𝑝∩ 𝐴ℎ𝑏𝑉𝑅𝐼

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴ℎ𝑚𝑎𝑝∩ 𝐴ℎ𝑏𝑉𝑅𝐼
=  

 𝐴ℎ𝑚𝑎𝑝∩𝐴ℎ𝑏𝑉𝑅𝐼

(𝐴ℎ𝑚𝑎𝑝∩ 𝐴ℎ𝑖𝑉𝑅𝐼)×
𝐴ℎ𝑉𝑅𝐼
𝐴ℎ𝑖𝑉𝑅𝐼

 
 , (4-2) 

where  

RSDmap/VRI is the relative size difference for cutblocks in the map and VRI data;  

Ahmap is the total area mapped as harvested in the change detection map; 

AhVRI, AhiVRI, and AhbVRI are the total areas of VRI, iVRI, and bVRI polygons; 

Ahmap ∩ AhbVRI is the area inside bVRI polygons mapped as harvested; and 

Ahmap ∩ AhiVRI is the area inside iVRI polygons mapped as harvested. 

The more images used to derive a change map for a particular date, the more likely it 

was that geometric discrepancies among images resulted in inaccuracies in the detection of clearcut 

edges. For example, the UC-Change technique used nearly twice as much data for the period 1999 

– 2015 compared to 1984 – 1998, whereas the C2C technique used one observation per year for 

all years. Therefore, the detection of clearcut edges was expected to be different depending on the 

period in the UC-Change maps, whereas in the C2C map, the level of error would be consistent 

across all years. 

False detection caused by factors other than geometric errors and mixed pixels will be 

referred to as general commission errors. These errors typically occur in areas that have high inter-

annual reflectance fluctuations, such as wetlands and mountainous areas near the snow line. 

General commission errors were evaluated using change pixels detected in protected areas, such 

as national and provincial parks. It was assumed that after a protected area was established, no 

forest harvesting occurred (Gawalko, 2004). A negative buffer of 30 m was applied to CPCAD 
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polygons to exclude errors already assessed using bVRI polygons. Commission errors were 

estimated for each year in the study period using parks established at least two years prior. For 

example, 37,683.7 km² of protected areas were used to assess false detections for the year 1985, 

and 90,426.0 km² (12.7% of the land area) for the year 2015. 

Once the aforementioned factors are accounted for, it is possible to estimate the actual 

scale of forest harvesting in the study area. The harvested area estimates calculated from the C2C 

and UC-Change maps were adjusted based on the commission and omission error estimates using 

the following formula: 

𝐴ℎ =  (𝐴ℎmap − 
𝐴ℎ𝑚𝑎𝑝 ∩ 𝐴𝑝𝑎𝑟𝑘𝑠

𝐴𝑝𝑎𝑟𝑘𝑠
 × 𝐴𝑠𝑡𝑢𝑑𝑦 𝑎𝑟𝑒𝑎) ÷

𝐴ℎ𝑚𝑎𝑝 ∩ 𝐴ℎ𝑏𝑉𝑅𝐼

𝐴ℎ𝑉𝑅𝐼
 , (4-3) 

where  

Ah is the corrected estimate of the harvested area; 

Aparks is the total area of protected areas; 

Ahmap ∩ Aparks is the area inside protected areas mapped as harvested; and 

Astudy area is the total land area in the study area. The part of the equation that is in brackets removes 

general commission errors, while the rest of the equation considers whether cutblocks in the map 

have smaller or larger area than the corresponding VRI polygons.  

There are two main sources of error in estimates adjusted using Equation 4-3. First of 

all, this equation is based on the assumption that protected areas are representative of the whole 

study area in terms of general commission errors. However, this may not be the case, because most 

protected areas in BC were established in mountainous areas (the average terrain slope in protected 

areas was 20.5°, compared to 15.1° in the whole study area) and around water bodies. These areas 

contain dynamic land-cover types, such as wetlands and mountain glaciers. The spectral 
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characteristics of wetlands can change dramatically from year to year due to variation in water 

levels, and glaciers can retreat and advance. These spectral changes can be misidentified as forest 

disturbances. Therefore, relatively more false detections can be expected in protected areas than 

in the rest of the study area. 

Another source of uncertainty in Equation 4-3 comes from the assumption that the VRI 

map is error free, which is also not true. For example, VRI polygons do not contain clearcut 

reserves smaller than 0.5 ha. There are also other errors in the VRI map, which will be evaluated 

in the next section. 

Cutblock detection was evaluated for the entire study area and for each individual 

biogeoclimatic zone. This allowed to compare the performance of the UC-Change and C2C change 

detection techniques depending on forest type. The maps were expected to have lower accuracies 

in dry, open forests, where disturbance events produce less change in forest spectral characteristics.  

Finally, to evaluate the effect of topography on the detection of clearcuts, VRI 

polygons were divided into four groups based on slope: 0°-10°, 10°-20°, 20°-30°, and >30°. Also, 

as an initial assessment of broad aspect influences on steeper slopes (clearcuts located on slopes 

>30°),  a second and preliminary assessment was conducted whereby results from two broad aspect 

classes were assessed and compared with those obtained without considering aspect at all. The 

aspect classes were designated simply as facing generally north (<90° and >270°), or facing 

generally south (90° to 270°). These are very broad, general aspect classes and were selected to 

allow for an initial assessment of broad aspect influences, only. A digital elevation model with a 

base resolution of 0.75 arc-seconds (~25 m) was used to calculate slope and aspect (CDEM, 2013). 

These results are discussed in the next section. 
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4.4. Results 

4.4.1. Evaluation of the VRI forest inventory map 

Visual analysis of the temporal trajectories of 500 randomly selected 1988 – 2012 iVRI 

cutblock pixels revealed that 94.8% of them represented areas harvested between 1985 and 2015, 

whereas the remaining 5.2% were disturbed before 1985, after 2015, or showed no sign of 

disturbance. 95.1% of confirmed cutblock pixels had timestamps within ±2 years of the harvest 

date identified using the LandTrendr Pixel Time Series Plotter (90.2% divided by 94.8%). This 

means that the VRI map and a change detection map produced using 1984 – 2015 data (e.g., the 

UC-Change or C2C map used in this study) cannot have a spatial agreement of more than 94.8% 

and a temporal agreement of more than 95.1%, unless there are commission errors common to 

both maps.   

Table 4-2. Percent 1988–2012 iVRI pixels visually confirmed as cutblock pixels using the 

LandTrendr Pixel Time Series Plotter. The last column shows the total percentage of 1988 – 2012 

iVRI cutblock pixels confirmed as 1985 – 2015 disturbances. 

Forest Harvest 

Map 

Difference between visually-determined dates and iVRI timestamps 

±1 year ±2 years ±3 years 1985 – 2015 

iVRI 86.8% 90.2% 92.2% 94.8% 

4.4.2. Evaluation of the UC-Change and C2C forest change maps 

Overall, the UC-Change technique detected 85.7% of reference 1988 – 2012 iVRI 

cutblock pixels, whereas the C2C map contained only 69.5%. In both the UC-Change and C2C 

maps, 95.0% of the detected 1988 – 2012 iVRI cutblock pixels were dated within ±2 years of the 

corresponding VRI timestamps (Table 4-3). Among the remaining 5.0%, it was the change 

detection maps that were more temporally accurate in 55% (UC-Change) and 57% (C2C) of cases, 
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whereas VRI timestamps were more accurate in 39% and 30% of cases, compared to UC-Change 

and C2C, respectively, based on 200 randomly selected sample pixels verified using the 

LandTrendr Pixel Time Series Plotter. This is consistent with the Landsat-based maps being more 

temporally accurate than the VRI map due to the fact that they were produced using data of much 

higher temporal resolution. 

Table 4-3. Percent 1988 – 2012 iVRI clearcut pixels present in the UC-Change and C2C maps. 

Forest 

Disturbance Map 

Percent 1988–2012 iVRI pixels detected with a temporal agreement of 

±1 year ±2 years ±3 years ±∞ 

UC-Change 76.6% 81.4% 83.0% 85.7% 

C2C 61.5% 66.0% 67.4% 69.5% 

UC-Change detected 84.2% of 1988–2012 VRI pixels with a spatial agreement of 

±1 pixels and temporal agreement of ±2 years. In contrast, it detected 81.4% of iVRI pixels at 

±2 years. In other words, UC-Change mapped more cutblock pixels inside bVRI polygons than 

what was expected based on the percentage iVRI pixels correctly mapped as harvested (Figure 

4-4). Based on Equation 4-2, cutblocks were estimated 1.7% larger in the UC-Change map than in 

the VRI map in the period 1988 – 1998, for which only Landsat 5 TM imagery was used, and 4.6% 

larger in the period 1999 – 2012, where data from two sensors (Landsat 5 TM and Landsat 7 

ETM+) were available (except 2012). This shows that the more images used per year, the more 

false positives were produced due to the mixed-pixel problem and image co-registration errors. 

Visual analysis confirmed this finding: clearcuts in the UC-Change map did appear bigger than 

the corresponding VRI polygons (Figure 4-5). 
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Figure 4-4. Percent reference clearcut pixels detected inside iVRI (e.g., UC-Change inner), VRI 

(UC-Change), and bVRI (UC-Change 1 pixel) polygons with a temporal agreement of ±2 years, 

represented by solid, dashed, and dotted lines, respectively. If there were no geometric errors and 

mixed pixels were labelled accurately, the three lines per change detection technique would 

coincide. Using original VRI polygons for the assessment of clearcut detection produced the lowest 

numbers due to a misalignment between the map and reference dataset (VRI). 
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Figure 4-5. UC-Change map (translucent) and a VRI polygon (red) overlaid on top of a high-

resolution Google Earth image (© Maxar Technologies). The size of the clearcut in the change 

map is clearly too large and the change pixels are shifted eastward relative to the actual location 

of the clearcut. This example illustrates false detection resulting from the mixed-pixel problem and 

image misregistration. 

C2C mapped cutblock edges approximately as accurately as inner pixels (with respect 

to mixed pixels and co-registration errors). It mapped 66.2% of reference clearcut pixels at ±30 m 

and a temporal agreement of ±2 years. This number is very close to the percentage of iVRI pixels 

correctly mapped as harvested at ±2 years (66.0%). Clearcuts appeared 0.2% smaller in the C2C 

map than the reference polygons for the years 1988-1998 and 0.7% larger for the years 1999 – 

2012. However, the geographic location of clearcut pixels did not match that in the VRI map, 

because only 60.6% of clearcut pixels were detected in the original VRI polygons. 
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There were four times more false clearcut pixels in provincial parks and other protected 

territories in the UC-Change map than in the C2C map (0.82% of the total protected area vs. 0.19%; 

0.01% in case of VRI∪CC). Assuming the rate of false detection was consistent across the study 

area, given its larger size, these percentages would translate into as much as 5,809 km² and 1,347 

km² of false “clearcuts” in the UC-Change and C2C maps, respectively, for the period 1984 - 2015. 

Most general commission errors in the UC-Change map were in fact unmasked fire scar pixels. 

This was not a problem for the C2C map because it contained accurate change type information. 

The current version of the UC-Change algorithm does not produce such information and the user 

has to rely on existing forest fire maps (e.g., NBAC) to separate cutblocks from fire scars. Some 

forest fires, such as the ones that occurred in Entiako Provincial Park and Tweedsmuir Provincial 

Park in 2001, were missing in the NBAC database and, therefore, were not masked out like most 

other fire scars, resulting in false positives. It is possible that this type of “error” attributed to 

UC-Change and C2C maps may in fact be a result of other similarly undocumented fires elsewhere 

in the NBAC database. 

The accuracy of the UC-Change map was affected by slope (Figure 4-6). It detected 

87.4%, 83.8%, 79.8%, and 74.7% of iVRI pixels on slopes ranging between: 0 – 10°, 10° – 20°, 

20° – 30°, and > 30°, respectively. C2C was more consistent, detecting 67.9%, 72.7%, 71.8%, and 

69.2%, respectively. Regarding aspect, from an initial assessment of broad aspect classes, both 

UC-Change and C2C found much fewer cutblock pixels on the generally more north-facing slopes 

(aspect: < 90° and >270°) than on the generally south-facing (aspect: 90° to 270°) slopes. 

UC-Change mapped 78.5% and 70.8% of forest harvest pixels on steep (>30°) south-facing and 

north-facing slopes, respectively, while C2C detected 72.9% on south-facing and 65.3% on north-

facing slopes. 
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Figure 4-6. Percent iVRI clearcut pixels detected on different slope intervals for the years 1987 - 

2013. An initial assessment of general terrain aspect was also done for steep slopes (>30°), as 

shown in the two right-most result sets. 

The performance of the C2C technique varied greatly among BGC zones (Figure 4-7). 

It detected only 40.1% of iVRI pixels in the IDF zone, 51.1% in the SBPS zone, and 69.9% – 

78.5% in other zones. The UC-Change map had higher accuracies in all cases compared with C2C, 

and was also more consistent, ranging between 82.9% and 90.7% in most zones except the IDF 

zone, where it detected only 68.3% of iVRI pixels (still a 28.1% improvement over C2C).  
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Figure 4-7. Percent iVRI clearcut pixels detected per BGC zone for the years 1987 - 2013. 

4.4.3. Harvest rate estimation 

All maps and datasets displayed very similar trends, with peak harvesting rates in the 

late 1980s, mid-2000s, and mid-2010s (Figure 4-8). Timber extraction rapidly increased in the 

second half of the 20th century due to mechanization and automation of the industry and peaked in 

the late 1980s, when it reached the Allowable Annual Cut (Burton et al., 2003; Environmental 

Reporting BC, 2018b). The mid-2000s peak is also very distinct. During this period, the Allowable 

Annual Cut was increased to allow salvage and preemptive harvest in lodgepole pine forests 

affected by a major MPB outbreak (Kurz et al., 2008). This was followed by a steep decline in 

harvest rates due to the global financial crisis of 2007 – 2008 (Masek et al., 2011). 
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Figure 4-8. Forest harvest rates in British Columbia, estimated using five different sources.  

The UC-Change map showed 40.6% higher average yearly forest harvest rates than 

the C2C map (2428 km²/year vs. 1726 km²/year). VRI, CC, VRI∪CC, and NFD showed 

intermediate numbers (1912 km²/year, 1970 km²/year, 2115 km²/year, and 2118 km²/year, 

respectively). The large discrepancy between the NFD dataset and the other two government 

datasets (VRI and CC) for the years 1985 – 2002 is noteworthy, even considering the fact that the 

VRI and CC maps do not contain information about privately owned forests and the NFD does. 

Adjustment for commission and omission errors based on Equation 4-3 made the 

UC-Change and C2C results more similar: 2,513 km²/year and 2,425 km²/year, respectively 

(Figure 4-9). Assuming that logging in public forests accounted for approximately 95% of all 

logging by area in the province (BC Ministry of Forests, 2020c), a total average rate of 2,226 

km²/year (2,115 km²/year divided by 0.95) can be calculated based on the VRI∪CC data. Resulting 

estimates of total harvested area derived from maps produced using automated change detection 
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algorithms (UC-Change and C2C) were 14.5% to 24.9% higher than the numbers taken from 

datasets developed by government agencies (VRI, CC, and NFD, individually) (Table 4-4). 

 

Figure 4-9. Forest harvest rate estimates with UC-Change and C2C results adjusted for 

commission and omission errors. The “VRI ∪ CC adjusted” numbers were produced by merging 

VRI and CC maps and dividing the results by 0.95 to produced estimates for the entire province 

(the original VRI and C2C maps contain information about logging occurring on public lands 

only, which accounts for approximately 95% of all logging in the province). 

Overall, 72,835 km² were harvested between June-September 1984 and June-

September 2014, according to the UC-Change results (Table 4-4). The C2C map had 28.9% fewer 

cutblock pixels (51,780 km² for the period July-August 1984 – July-August 2014). However, 

adjustment for commission and omission errors produced similar estimates of 75,383 km² 

(UC-Change) and 72,758 km² (C2C). These estimates were much higher than the 63,543 km² 

derived from the NFD records (January 1985 – December 2014). The combined VRI∪CC map 

showed 63,453 km² of cutblocks on public lands (January 1985 – December 2014). Assuming that 

5% of logging in the province occurred on private lands (BC Ministry of Forests, 2020c), one can 

estimate a total of 67,000 km² based on this source. 
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Table 4-4. Total area (km²) and percent of BC forest (~55 million ha) harvested between 1985 and 

2014 (inclusive). UCC = UC-Change. 

 UCC C2C VRI CC NFD UCC 

adjusted 

C2C 

adjusted 

VRI ∪ CC 

0.95
 

Area (km²)  72,835 51,780 57,359 59,107 63,543 75,383 72,758 6.7×104 

% of BC 

forest 
13 9 10 11 12 14 13 12 

4.5. Discussion 

4.5.1. VRI as validation data 

British Columbia’s forest inventory data (VRI) proved to be a great source of reference 

data for the assessment and comparison of time series change detection products. The VRI dataset 

contains detailed spatial information about the vast majority of forest harvest activities in the 

province (i.e., hundreds of thousands of cutblocks). However, there are certain limitations given 

that this dataset was produced by visual interpretation of aerial photos. Because aerial photos are 

acquired approximately once a decade for any particular area in the province, they cannot be a 

source of accurate harvest date information. Instead, this information is provided by logging 

companies (BC Ministry of Forests, 2016). As a result, incorrect harvest dates were assigned to 

some VRI polygons.  For example, the UC-Change technique detected 85.7% of cutblocks that 

were dated between 1988 and 2012 in the VRI map. However, when some VRI pixels were 

analyzed using the LandTrendr Pixel Time Series Plotter, it was found that 5.2% of the cutblocks 

they represented were actually cleared before 1984, after 2015, or showed no spectral changes and, 

therefore, could not be possibly detected in the 1984 – 2015 Landsat data that were used to produce 

the UC-Change map. Due to such temporal inaccuracies in the VRI dataset, using it as validation 

data can result in an underestimation of accuracy of change detection products. 



150 

 

Another reason why the UC-Change and C2C maps likely detected more cutblocks 

than what VRI data indicated is that VRI polygons do not show patches of forest smaller than 0.5 

ha (5.5 Landsat pixels), which are present in many cutblocks. While clearcutting was by far the 

most common silvicultural practice in British Columbia in the 20th century, a method called 

“clearcutting with reserves” became widespread in the 2000s and accounted for 85% of logging 

on public lands in 2012 by area (Environmental Reporting BC, 2018a). This silvicultural system 

is similar to clearcutting but leaves patches of intact forest of various size called reserves. Based 

on the visual analysis of high-resolution Google Earth satellite imagery, many reserves are smaller 

than 0.5 ha and, thus, are not represented in the VRI map. Therefore, pixels in these reserves 

correctly labelled as undisturbed by a change detection algorithm may be flagged as false negatives 

if VRI polygons are used as reference data. This is yet another instance where the UC-Change 

product may in fact be more accurate than the VRI map. 

Overall, the maps had a good temporal agreement with the forest inventory data. In 

total, 95% of cutblocks present in both UC-Change and VRI had similar harvest dates in the two 

maps (within two years). Among the remaining 5%, the UC-Change map had a higher temporal 

accuracy in the vast majority of cases. The same was true when comparing C2C and VRI data. 

This confirmed the finding that many VRI polygons had incorrect timestamps. This was not 

surprising as the change detection techniques used data of much higher temporal frequency than 

what was available to photo interpreters who delineated and dated VRI polygons.  

4.5.2. False detection of cutblock pixels in the UC-Change and C2C maps 

Cutblocks appeared larger in the UC-Change map than in the VRI and C2C maps. 

There were two main reasons for this. First of all, UC-Change classifies numerous combinations 

of multitemporal images to produce a change map for each date in the time series of satellite 



151 

 

images. For example, the algorithm used 5 - 15 different combinations of images for each date and 

tile in the period of 1984 – 1998, for which only Landsat 5 TM data were available, and 15 – 20 

combinations for the years 1999 – 2015, where data from two sensors (Landsat 5 TM and Landsat 

7 ETM+ or Landsat 7 ETM+ and Landsat 8 OLI) were available for all years except 2012. The 

UC-Change algorithm required that change pixels for a particular date were detected in at least 

two combinations of images. This allowed it to detect more change pixels and assign accurate 

harvest dates even to cutblocks that were obscured by clouds during the year of harvest. However, 

the more combinations of images were used to create a map for a particular date, the larger the 

clearcuts appeared in the UC-Change map due to misregistration errors among images (the spatial 

resolution was the same for all 1984 – 2015 Landsat 5 – 8 images). This is why 1999 – 2012 

cutblocks were 4.6% bigger in the UC-Change map than the corresponding VRI polygons, whereas 

1988 – 1998 cutblocks were “only” 1.7% larger. Setting a stricter threshold can solve this issue. 

For example, when change pixels for a particular date were required to appear in at least 20% of 

image combinations (instead of just 2 regardless the number of combinations), cutblocks were 

mapped almost true to their actual size. However, this also resulted in a proportionally reduced 

overall percentage of detected iVRI pixels. Using higher resolution data (e.g., 10-m Sentinel-2 

data instead of Landsat’s 30 m) is one way to produce less excessive edge detection when using 

UC-Change without sacrificing producer’s accuracy. 

Because the C2C algorithm used one observation per pixel per year, it was not 

surprising that cutblocks in the C2C map appeared close to their actual size in both periods (0.2% 

smaller than VRI polygons in the period 1988 – 1998 and 0.7% larger in 1999 – 2012). The 

difference for the two periods in this case can be explained by the change in silvicultural practices. 

Clearcutting was the dominant practice in the years 1988 – 1998. This practice was largely replaced 



152 

 

by the system called clearcutting with reserves. Because VRI polygons do not contain reserves 

smaller than 0.5 ha, using VRI polygons as reference data led to a slight overestimation of the 

relative size of cutblocks in both the C2C and UC-Change maps (see Equation 4-2). 

The UC-Change map had more false cutblock pixels in national parks and other 

protected areas than the C2C map (0.82% vs. 0.19%). The UC-Change algorithm maps both forest 

harvesting activities and fire scars, but, unlike C2C, cannot yet separate the two types of 

disturbances effectively. An existing forest fire map (NBAC) was used to mask burned areas in 

the UC-Change map (NBAC, 2020). However, this resulted in false positives because some forest 

fires were missing in the NBAC map. Therefore, future efforts will focus on improving the ability 

of the UC-Change algorithm to classify change, as well as reducing false detections in dynamic 

land-cover types, such as wetlands and agricultural areas. 

4.5.3. Effect of terrain slope and aspect on cutblock detection 

The performance of UC-Change was more sensitive to terrain slope and aspect due to 

the algorithm’s scene-based nature (as defined in §2.1.4). UC-Change processes data in tiles (i.e., 

original multispectral images are subset into 104 km × 104 km scenes12) and relies on a K-means 

algorithm to produce initial classification maps. In turn, K-means is sensitive to topography-related 

variation in reflectance and illumination because it assigns classes based on the absolute values of 

pixels (Section 3.3.1). One of the key requirements of the UC-Change technique is that undisturbed 

and recently disturbed forest are classified into different spectral classes. This is not always the 

case for tiles containing mountainous terrain because depending on the slope and aspect, cutblocks 

can be classified into the same spectral class as some forest types and vice versa. As a result, 

 
12 The tiling system used in this study is based on the one used for Sentinel-2 data (110 km × 110 km), but results in 

a smaller overlap among neighboring tiles (2 km on each side instead of 5 km). This system was used to 

avoid mosaicking of Sentinel-2 data. 
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UC-Change struggled to detect some clearcuts in mountainous areas. Using topographically 

corrected data (e.g., Soenen et al., 2005, 2008) or including slope and aspect information in 

K-means classification should improve the spatial consistency of resulting classification maps and, 

therefore, improve the performance of the UC-Change technique in topographically diverse areas. 

In contrast, C2C is a pixel-based technique, which means that the processing of one 

pixel is completely independent of the processing of other pixels. Therefore, it was expected to 

perform more consistently across different slope conditions. Analysis of results for the entire study 

area showed that C2C performed better on slopes ranging between 10° and 30° than 0 – 10° and 

>30°, indicating that other factors, such as forest type, likely had a greater role. However, from the 

general assessment of broad terrain aspect classes on steep (>30°) slopes, the effect of terrain 

aspect was as strong in the C2C map (72.9% of cutblock pixels detected on south-facing slopes 

vs. 65.3% on north-facing) as it was in the UC-Change map (78.5% vs. 70.8%), however, as noted 

earlier, the fact these aspect classes are so broad means that only very general interpretations can 

be drawn from that preliminary analysis. North-facing slopes receive less sunlight than south-

facing slopes in the Northern Hemisphere. SWIR bands are particularly affected, because there is 

less atmospheric scattering in the SWIR part of the electromagnetic spectrum than in the VNIR 

part. A stronger absorption of incident SWIR radiation by vegetation (due to oblique solar 

incidence angles) and soil moisture (due to relatively higher soil moisture on north-facing slopes; 

Macyk et al., 1978; Gemmell, 1995) also contributed to relatively low pixel values. For this 

reasons, higher NBR values and smaller difference between pre- and post-disturbance NBR values 

on north-facing slopes than south-facing slopes would be expected (Verbyla et al., 2008). Because 

C2C relies on NBR to detect change, it missed many cutblock pixels on north-facing slopes as pre- 

and post-disturbance values were not sufficiently different to meet the change threshold 
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requirement. Therefore, C2C should also benefit from topographic correction of data acquired over 

mountainous areas. 

4.5.4. Effect of forest type and harvest practices on cutblock detection 

UC-Change performed similarly across different BGC zones. Most of the variation can 

be explained by differences in topography rather than forest type. Out of the eight zones included 

in the analysis, the best UC-Change results were obtained in the four zones with the lowest average 

terrain slope values (BWBS, MS, SBPS, and SBS). However, the IDF zone stands out. UC-Change 

detected much fewer reference cutblock pixels in this zone compared to other zones (68.3% vs. 

82.9% – 90.7% in other zones) despite the relatively even terrain. Selective (partial) harvesting 

was widely practiced in this zone in the 1980s and 1990s with the purpose of mimicking natural 

disturbances typical to the region (frequent low-intensity wildfires; Table 4-1). This type of 

harvesting is a non-stand-replacing forest disturbance (Figure 4-10) and, thus, is more difficult to 

detect in Landsat images than clearcuts and clearcuts with reserves. Frequent thinning in resulting 

partially harvested stands makes it even more difficult to accurately map the spatial extent of 

disturbances. The accuracy of forest harvest detection in this zone improved greatly in the 2000s 

and 2010s, when the province abandoned selective harvesting in favor of clearcutting with reserves 

(Environmental Reporting BC, 2018a). Similar to the use of improved terrain data (e.g. Soenen et 

al., 2005, 2008), the incorporation of methods proven to be well suited for partial harvested forests 

(Peddle et al., 2003) could be either integrated into UC-Change, or, owing to the flexibility of 

UC-Change to ingest multisource spatial products, the results from processing using those and 

related methods (e.g. Peddle et al., 2004, 2011; Soenen et al., 2010) could be utilized as an 

intermediate product for direct analysis by UC-Change. As C2C is less flexible for such inputs and 

multisource integration, those methods may not be compatible with C2C. 
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Figure 4-10. 1998 (bottom) and 1989 (middle) partial cuts (examples of selection management) 

next to a 2002 clearcut with reserves (top-left) as seen in a 2004 high-resolution Google Earth 

image. Location: 51°40'55"N, 121°51'12"W; Biogeoclimatic zone: IDF. Imagery © Maxar 

Technologies. 
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The performance of the C2C technique varied much more among BGC zones 

compared to the UC-Change technique. There are three main factors that affect the C2C algorithm: 

the magnitude of difference between pre- and post-disturbance NBR values; the length of time it 

takes NBR values to reach pre-disturbance levels; and availability of cloud-free data for July and 

August. For example, temperate rainforests in the CWH zone are characterized by very high pre-

disturbance NBR values (0.7 – 0.8). C2C performed better in this zone than anywhere else in the 

province (78.5% of iVRI pixels detected vs. 40.1% – 75.4%) because the difference between pre- 

and post-disturbance NBR values was particularly large (Figure 4-11). In contrast, the SBPS zone 

had the lowest pre-disturbance NBR values (0.3 – 0.5) due to a combination of MPB, low canopy 

cover, and dry climate. Only 51.1% of reference cutblock pixels were detected in this zone by the 

C2C algorithm. Similar to UC-Change, C2C performed the worst in the IDF zone (40.1%) as post-

disturbance NBR values were very high (i.e., similar to pre-disturbance levels) due to the selective 

harvesting method that was widely practiced in this zone in the 1980s and 1990s. Selective 

harvesting reduced the NBR of stands in the IDF zone from approximately 0.6 to only 0.4. 
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Figure 4-11. NBR trajectories (blue lines) of Landsat pixels (red squares in high-resolution 

Google Earth images; 30 m × 30 m) in cutblocks representative of various BGC zones. Y-axis = 

NBR; X-axis = year. Red lines are LandTrendr-fitted segments. Imagery © CNES / Airbus, 

Province of British Columbia, and Maxar Technologies. 



158 

 

While the difference between post- and pre-disturbance NBR values was relatively 

high in the BWBS zone (0.1 – 0.2 vs. 0.6 – 0.7), it typically only lasted 2 – 4 years. There are two 

factors that can explain such a fast spectral recovery: vegetative regeneration by remnant species 

and, secondly, the presence of mineral-rich soils (Bartels et al., 2016). Many clearcuts in this zone 

occur in deciduous stands, where trees can quickly regenerate through root suckering, stem 

sprouting, and layering (Greene et al., 1999; Bartels et al., 2016). The C2C algorithm looks for 

long-lasting deviations in time series of NBR values and rejects short-term changes as noise. 

Because NBR values increased so quickly after disturbance in this zone, the C2C algorithm was 

unable to identify segments in the temporal profiles of pixels representing the disturbance event 

and post-disturbance recovery, which resulted in a poor cutblock detection (69.9%).  

Availability of cloud-free data can also be an issue for the C2C technique as it can only 

utilize July and August data. The four BGC zones where C2C performed the worst (BWBS, IDF, 

SBPS, and SBS) have their wettest months in the summer, whereas other zones have the most 

precipitation in December or January. Data availability is much less of an issue for the UC-Change 

technique as it can use June to September imagery. 

4.5.5. Accuracy of harvest rate estimation 

UC-Change and C2C maps produced very different estimates of total harvested area 

in the province. The UC-Change map showed much higher rates of forest harvesting than official 

governmental reports and datasets (2,428 km²/year on average vs. 2,118 km²/year in the NFD), 

whereas the C2C map showed much lower rates (1,726 km²/year). White et al. (2017) found a 

similarly vast difference between a Canada-wide C2C map and NFD records but were not able to 

fully explain it, citing the lack of spatial information in the NFD dataset. The study presented in 

this Chapter used VRI data as reference data for the evaluation of cutblock detection. These data 
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contain detailed spatial information about the vast majority of cutblocks that occurred in the 

province during the investigated time period (1985 – 2014). Using VRI polygons, it was found 

that the C2C technique underestimated the rate of forest harvesting in the province because its 

performance was sensitive to forest type, biotic disturbance factors, and data availability. 

There are two possible reasons why UC-Change estimates where higher relative to the 

other techniques. Firstly, the algorithm may have detected cutblocks unaccounted for in the NFD. 

Secondly, it is possible that commission errors may have been higher than what was estimated 

based on the VRI data and protected areas. 

Overall, commission errors in the UC-Change map were largely offset by omission 

errors, resulting in more accurate forest harvest rate estimates compared to the C2C map. In 

addition, UC-Change demonstrated a consistent and predictable performance across the province 

independent on forest type. The main weaknesses of the algorithm, such as excessive mapping of 

cutblock edges, sensitivity to terrain slope and aspect, and misclassification of burned areas as 

clearcuts, can be addressed in the future to make UC-Change maps even more reliable. 

4.6. Conclusions 

This Chapter has compared forest harvest rate estimates for the Province of British 

Columbia based on four different sources: 1) maps generated by automated time-series change 

detection algorithms from Landsat data (C2C and UC-Change); 2) a map produced by visual 

interpretation of aerial photography (VRI); 3) a map derived from both Landsat images and aerial 

photography (CC); and 4) a database summarizing reports from logging companies (NBD). 

UC-Change and C2C produced the highest (2428 km²/year on average for the years 1985 - 2014) 

and lowest (1726 km²/year) estimates, respectively. The other information products indicated 
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harvest rates ranging between 2013 km²/year and 2118 km²/year. Such a large gap between the 

Landsat-based maps was assumed to be due to high omission errors in the C2C map and 

commission errors in the UC-Change map, which necessitated a thorough evaluation of the two 

maps. 

This study used the forest inventory data of British Columbia (VRI) as a rich, open, 

and independent source of reference data. This approach has strengths and weaknesses that both 

stem from the fact that the VRI dataset was produced using visual interpretation of high-definition, 

large-scale stereo aerial photos. The dataset contains highly detailed spatial information about the 

majority of cutblocks in the province, making it possible to assess many aspects of forest change 

detection maps. It is freely available to the public, allowing a reproduceable and transparent 

assessment of maps produced from different algorithms. Because VRI polygons are produced 

using a different set of data (i.e., not Landsat), they allow an unbiased evaluation of Landsat-based 

maps, such as the ones compared in this study (UC-Change and C2C). However, the user must be 

aware of two caveats: a relatively low temporal accuracy and, secondly, a lack of information 

about small (< 0.5 ha) patches of residual forest that can be found in many clearcuts. Nonetheless, 

where available, forest inventory data can be an invaluable resource for the development and 

comparison of change detection algorithms.  

Provincial parks and other protected areas were used to assess general commission 

errors in the UC-Change and C2C maps. This approach makes it easy to assess false detection of 

logging in a transparent and reproducible way. However, it is based on the assumption that 

protected areas are representative of the region they are in, which is not always the case. For 

example, most protected areas in BC are located in areas where false cutblock detections are 

somewhat more likely, such wetlands and mountains. In addition, this approach may not be 
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applicable for many developing countries, where illegal logging still occurs in protected areas 

(Tacconi, 2007; Geldmann et al., 2017). Therefore, these results must be interpreted with caution. 

The UC-Change technique performed consistently better than C2C in all 

biogeoclimatic zones and across all years and terrain slope and aspect conditions due to its ability 

to utilize spatial information, more spectral bands (in this study, five bands vs. two), and more 

images per year and over a longer intra-annual time window (multiple June – September images 

vs. one July – August image composite). Overall, UC-Change detected 85.7% of reference iVRI 

cutblock pixels, whereas the C2C map contained only 69.5%. The C2C technique perform poorly 

in the period 2007 – 2011 (inclusive), as well as in deciduous and dry and open coniferous forests. 

A much more consistent performance across different forest types makes UC-Change a more 

reliable tool for mapping cutblocks and estimating the rate of forest harvesting. However, it was 

found that the UC-Change map had more false positives than the C2C map, mainly due to 

mislabelling of mixed pixels and burned areas. 

The main strength of the UC-Change algorithm is its ability to accurately map forest 

harvest activities, even in areas heavily affected by MPB. This compares favorably against other 

time-series change detection algorithms, such as C2C. UC-Change is a truly multivariate change 

detection method as it uses spatial information and multiple spectral bands together. This allows 

it to detect change even when the difference in pre- and post-disturbance values is subtle in any 

individual spectral band but is present in all or most bands, like in stands killed by MPB. The 

automatic multitemporal retraining routine in the UC-Change algorithm further improves the 

detection of subtle changes and separates these from phenological changes in reflectance. In 

contrast, C2C is a univariate technique that detects change based on a single spectral index (NBR); 
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this could be the reason why many cutblocks were missing in the C2C map, especially in MPB-

affected areas.  

Our analysis showed that more forest area was likely harvested between 1985 and 2014 

than what existing maps (e.g., C2C and VRI) and databases (NFD) indicate. For example, 

approximately 7.5 million ha of forest were cleared in the 30-year period, according to the 

UC-Change map (compared to 6.5 million ha based on NFD). According to Environmental 

Reporting BC (2018b), about as much was harvested between ~1910 and 1985. Of approximately 

55 million ha of forests, only 23 million ha are made available for logging in the province (BC 

Ministry of Forests, 2017; Gilani and Innes, 2020). This means that as few as 8 million ha remain 

harvestable. Therefore, the province may need to reduce the rate of timber extraction to meet its 

sustainability goals. 

In conclusion, the results of this study support the use of satellite-based maps as 

important for proper decision-making and long-term planning. Such maps can be updated 

frequently for the entire province at almost no cost using highly automated algorithms. In 

comparison, British Columbia’s Forest Inventory is primarily based on human interpretation of 

aerial photographs (Bourgeois et al., 2018). An estimated $15 million (Canadian) was required to 

map one tenth of the province per year using this method (Bourgeois et al., 2018). However, the 

budget has decreased substantially since the 1990s and is now well below this number. Due to the 

10-year gap between subsequent aerial photo acquisitions, the temporal information for 

disturbances is often inaccurate and many recent disturbances are missing. In contrast, the 

UC-Change algorithm can detect recent cutblocks and accurately identify the date of harvest by 

using temporally dense stacks of Landsat and Sentinel-2 images. These datasets are more readily 

available, more are available now at no cost, earlier images (e.g., Landsat MSS imagery dating 



163 

 

back to 1972) are increasingly being reprocessed with improved quality, and furthermore, there 

are increasingly more satellites being launched with improved sensors, area coverage, and revisit 

frequency. All of these factors point to the adoption of satellite image time-series data sets for 

forest management, including longer term and future disturbance monitoring and planning. This 

highlights the need for robust and high-quality time series analysis algorithms, such as 

UC-Change. 

4.6.1. Future work 

This study identified three opportunities to further improve on the current version of 

the UC-Change algorithm: excessive detection of cutblock edges, sensitivity to topographic 

effects, and inaccurate change attribution. Excessive mapping of edge pixels (i.e., labelling of 

pixels containing mostly undisturbed forest as cutblock pixels) can be addressed by parameter 

adjustment, but this can have a negative effect on the detection of inner cutblock pixels. 

Alternatively, Spectral Mixture Analysis or Temporal Mixture Analysis could be used to filter 

detected change pixels based on the proportion of undisturbed forest (Piwowar et al., 1999). 

Finally, using higher-resolution imagery (e.g., 10-m and 20-m Sentinel-2 data) should allow the 

UC-Change technique to map the extent of individual cutblocks more accurately, but only if it also 

comes with higher geometric accuracy. This can potentially make it possible to identify forest 

management methods (e.g., clearcutting, clearcutting with reserves, and selective harvesting) on a 

cutblock-by-cutblock basis and monitor the implementation of sustainable practices. 

There are several possible ways to reduce sensitivity to topographic illumination 

effects. One way is to include terrain slope and aspect information in input data. This should 

prevent classification routines in the UC-Change algorithm from, for example, classifying 

cutblocks on north-facing slopes into the same spectral classes as intact forest stands on south-



164 

 

facing slopes. Another solution is to subset data based on the slope and aspect. Finally, topographic 

correction of input data can potentially improve the spatial consistency of image classification and, 

therefore, change detection.  

Currently, the UC-Change algorithm lacks a dedicated algorithm for change 

attribution. As a result, it cannot effectively separate cutblocks from burned forest. Because this 

study focused entirely on forest harvesting, detected forest change pixels representing fire scars 

had to be masked using an existing forest fire map (NBAC). However, some burned areas remained 

unmasked because they were missing in the NBAC map, resulting in false positives. Therefore, 

future work should focus on improving change classification accuracy.  Existing change attribution 

approaches could be adopted for classifying disturbances detected by the UC-Change technique, 

as they have been shown to be highly effective (e.g., Hermosilla et al., 2015a). A change attribution 

algorithm could use existing maps (e.g., maps of protected areas and forest fires) as training data 

to better identify fire scars and false positives. 

In conclusion, the results of this study demonstrate a strong potential of the 

UC-Change technique as a tool for mapping and quantifying forest harvest activities. Future work 

is clearly warranted to further improve and expand its functionality. The study also showed that 

forest inventory maps can be used for the evaluation and comparison of change detection products, 

although the inconsistent temporal accuracy of such maps is an issue that must be considered in 

the process. 
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

5.1. Conclusions 

The goal of this research was to develop new methods in time-series analysis suitable 

for modern forestry and other needs (e.g., environmental monitoring), specifically that could 

improve cutblock detection and offer new, ecologically-based forest recovery metrics. It has 

potential use for multiple stakeholders, ranging from reporting, inventory, environmental 

sustainability, and the forest industry who have significant needs for harvest and planning 

information to optimize operations, yields, and future resource extraction. Logging has various 

negative effects on ecosystems, even in areas affected by natural disturbances, such as fire and 

mountain pine beetle (MPB) (Lindenmayer et al., 2012); therefore, there is a need for algorithms 

that can accurately map forest harvesting regardless of the type and health condition of forest. 

Using remote sensing data time-series analysis is the only way to map where and when forest was 

harvested in a consistent, transparent, cost-effective, and timely fashion and for large areas. In 

addition, the long and continuous record of Earth observation image data makes it possible to 

monitor forest recovery in disturbed areas almost anywhere in the world. This information can 

help researchers, policy makers, and the logging industry to develop site-optimized sustainable 

silvicultural practices. 

To achieve these goals, four objectives were defined: 

1. Develop a truly multisensor and multispectral approach for the detection of cutblocks and fire 

scars in various forest types over large areas despite the presence of other disturbance factors. 

2. Develop object-based forest recovery metrics indicative of stand composition. 
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3. Develop a framework for the evaluation of forest disturbance maps using open-access data. 

4. Compare generated maps with existing forest-disturbance maps and databases with an 

emphasis on their ability to provide accurate area and rate estimates for forest harvesting at a 

regional scale. 

For the first objective, a new technique named Unsupervised Classification to Change 

(UC-Change) was developed. It detects changes in the spatial distribution of spectral classes in 

classification maps produced with an unsupervised clustering algorithm. Because the technique 

does not compare pixel values directly, it is designed to be insensitive to radiometric differences 

among images caused by factors such as the temporal variation in BRDF effects, different sensors 

and sensor parameters, differences in image properties such as spectral response functions of 

sensors, and variability in vegetation phenology. Therefore, it can use data acquired during any 

part of the growing season without atmospheric correction, BRDF adjustment (except for 

mountainous areas), inter-sensor and other types of radiometric normalization, which makes this 

newly developed UC-Change technique highly flexible. This also substantially improves the 

ability to use a much greater portion of available image data in time series, especially in areas more 

prone to cloud cover. This flexibility allowed the algorithm to use June 1 – September 20 data, as 

opposed to only July and August data used by other approaches that are sensitive to phenological 

changes in reflectance (Kennedy et al., 2010; Hermosilla et al., 2015a,b). UC-Change detected 

9.5% more 1985 – 2015 reference cutblock pixels using June 1 – September 20 data than using 

July and August data (86.6% vs. 79.0%), mainly because the wider range of dates reduced the data 

gaps in the time series. The technique performed very well when tested on data of marginal quality 

(Landsat 1 – 5 MSS data acquired 1972 – 1990), where it detected over 85% of cutblocks. In 

addition, unlike any existing pixel-based time-series change detection technique, UC-Change can 
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fully utilize images with a different number of spectral bands (Landsat 5 - 8 and Sentinel-2) 

including those with different spectral ranges. This opens up important multi-sensor and multi-

source analysis possibilities, which are becoming increasingly more relevant with new sensors 

available today (e.g., Sentinel-1 and Sentinel-2) and planned for the near future. 

Because the UC-Change technique can use any number of images per year and can 

detect changes up to the third last image in the time series, it can map changes that occurred only 

weeks before the last image was acquired as long as that level of temporal resolution is available, 

which is increasingly the case. Besides UC-Change, only curve-fitting time-series change 

detection techniques, such as the Continuous Change Detection and Classification (CCDC) 

technique (Zhu and Woodcock, 2014), have such a capability. However, those techniques require 

a very large amount of cloud-free and snow-free data for both summer and winter. This can be an 

issue for areas with persistent winter snow cover, such as for most of British Columbia’s territory 

(Zhu and Woodcock, 2014). 

The new technique produced excellent results for a 100 km × 100 km test area in the 

interior British Columbia. It detected more reference cutblock (88.3% detected at a ±1 year 

agreement with the reference data) and forest-fire pixels (75.3%) than the LandTrendr (32.7% of 

cutblock pixels and 60.8% of fire-scar pixels detected at ±1 year), Composite2Change (C2C; 

41.9% and 62.9%, respectively), and Global Forest Change (GFC; 72.2% and 58.2%, respectively) 

techniques for the period 2002 – 2014 (Kennedy et al., 2018; C2C, 2019; GFC, 2020). Unlike 

these other techniques, it also performed well in areas characterized by low canopy cover and/or 

severe mountain pine beetle damage. 

The second objective was to evaluate the utility of the two forest recovery metrics 

offered by the new technique. Unlike the metrics used in other approaches, which measure spectral 
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recovery of individual pixels, the UC-Change metrics monitor the spatial distribution of spectral 

classes in disturbed areas at the object level (see also Figure 3.8). These metrics (percentage of 

pre- and post-disturbance spectral classes) are mainly determined by the spatial distribution of 

different tree species and other vegetation, and therefore, can provide information about stand 

composition, a critical aspect of forest recovery from an ecological perspective. Compared to the 

index-based spectral recovery metrics of existing techniques (e.g., C2C and LandTrendr), the 

UC-Change metrics took longer to return to pre-disturbance values (27 years compared to 20 years 

in this study) and showed different recovery patterns as was expected based on the forest type. For 

many clearcuts, the UC-Change metrics plateaued before reaching pre-disturbance values. 

Analysis of the forest inventory data of British Columbia showed that many of these clearcuts had 

a stand composition very different from the surrounding intact forest (e.g., more lodgepole pine 

and/or deciduous species), which was consistent with the results obtained using UC-Change. 

The third objective was to design an approach for a comprehensive assessment of 

forest change detection maps using open-access data for validation. This study used the Vegetation 

Resources Inventory (VRI) data of British Columbia to assess cutblock detection; the National 

Burned Area Composite (NBAC) dataset to assess the detection of burned areas; and polygons 

representing protected areas, such as national and provincial parks, to evaluate false detection 

(ECCC, 2020; NBAC, 2020; VRI, 2020). The VRI dataset contains detailed information about the 

vast majority of cutblocks that occurred in the province from the early 20th century to present time 

(~450,000 cutblock polygons). Likewise, the NBAC database includes information on over 5500 

forest fires that occurred since 1986. Finally, there are over 1000 protected areas covering 14.4% 

of the province.  
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It is noteworthy that VRI and NBAC data are not error-free; therefore, accuracy 

assessment based on these datasets was expected to produce lower results than if a smaller set of 

verified polygons (e.g., 600 polygons) had been used instead. In all cases of comparison with other 

reference products, the assessment is based on agreement with a product of established quality and 

acceptable accuracy, but ultimately, at these scales, it is not possible to do anywhere close to 

sufficient field validation. This is more than compensated for by the use of multiple reference 

validation sources that increase the integrity of agreement-based assessments. Using unedited VRI 

and NBAC datasets allows for very detailed, granular, unbiased, transparent, and reproduceable 

analyses and comparison of maps. Due to the enormous amount of reference data used in the study, 

a very high level of confidence can be attributed to any differences that were found among and 

within change detection maps. In addition, VRI polygons accurately characterize the spatial extent 

of individual cutblocks, which makes it possible to evaluate the detection of cutblock edges. This 

is important, because edge pixels in change detection maps are affected by the mixed-pixel 

problem and geometric inaccuracies in input data. 

The final objective was to compare UC-Change maps against existing forest 

disturbance maps and databases for their ability to estimate the area and rate of forest harvesting 

in the entire province of British Columbia. This region has a wide variety of forest types, terrain 

(from flat to mountainous) and climatic conditions (a large range of biogeoclimatic zones). In 

addition, it was heavily affected by an MPB outbreak in the 2000s. UC-Change was much more 

consistent throughout the study area compared with the C2C map, the only other change-detection 

maps available that distinguishes between stand-replacing and other disturbances. C2C performed 

poorly in areas with low stand density and areas affected by the MPB. In addition, it struggled to 

detect cutblocks characterized by fast spectral recovery (e.g., in many deciduous stands where 



176 

 

trees can regenerate vegetatively). The UC-Change map did not have these issues, but it was more 

sensitive to topography (e.g., fewer reference pixels were detected on steep north-facing slopes 

than on south-facing slopes) and had more false positives than the C2C map. Nonetheless, it 

performed consistently better than C2C in all biogeoclimatic zones and across all years and terrain 

slope and aspect conditions due to its ability to utilize spatial information, more spectral bands (in 

this study, five bands vs. two), and more images per year (multiple June – September images vs. 

one July – August image composite). Overall, it detected 85.7% of reference inner cutblock pixels, 

whereas the C2C map contained only 69.5%. 

The analysis showed that more forest area has likely been harvested between 1985 and 

2014 than what existing maps and databases indicate. According to the UC-Change map, 7.3 

million ha of forest were cleared during this period. In contrast, the C2C, VRI, and Consolidated 

Cutblocks (CC) maps showed a total of 5.2, 5.7, and 5.9 million ha of forest harvested over the 

same period, respectively. However, once adjusted for commission and omission error estimates, 

both the UC-Change and C2C results indicated that there could be as much as 7.5 million ha of 

1985 – 2014 cutblocks. 

In conclusion, UC-Change proved to be a highly flexible technique that can map 

cutblocks and fire scars consistently well in forests of various species composition, stand density, 

and health. The UC-Change forest recovery metrics behaved as expected based on the pre-

disturbance forest type and post-disturbance recovery dynamics. This makes these metrics more 

useful for monitoring forest recovery from the ecological perspective than existing pixel-based 

metrics. UC-Change represents a new approach to time-series change detection and monitoring, 

the full potential of which is yet to be realized. 
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5.2. Future work 

There are multiple ways in which the functionality of the UC-Change technique could 

be even further improved and expanded. The first priority would be to improve the UC-Change 

algorithm in regards to handling topographic effects, as well as addressing the false detection of 

forest change in wetlands and mountainous areas, and detection of some repeat disturbances when 

those occur within a few years from each other. Future work could also focus on adding forest-

disturbance and land-cover classification, as well as support for data of variable spatial resolution 

without resampling. 

Digital elevation data can potentially be used to make the performance of the technique 

more consistent across different terrain slope and aspect conditions. Integration of slope and aspect 

data has been shown to improve image classification in mountainous areas (Frank, 1988; Peddle 

and Duguay, 1995; Eiumnoh and Shrestha, 2000; Chen et al., 2017) as have improved terrain 

correction procedures (Soenen et al., 2005, 2008). Because UC-Change relies on image 

classification to detect change, it should also benefit from the addition of topographic information. 

Open-access digital elevation models (DEMs) with a sufficiently high spatial resolution (~30 m) 

and near-global coverage could be used for this purpose (Farr et al., 2007; CDEM, 2013; 

O'Loughlin et al., 2016). The flexibility and versatility of UC-Change to ingest and use multisource 

and variable format data sets opens up extensive new opportunities for using terrain and other 

types of regional/global data sets. 

Automatic parameter adjustment based on data availability can make the technique 

more automated and help address many issues identified in the thesis. This would be good to 

implement and test. To reduce commission errors, stricter parameters could be used for 

geographical areas and time periods for which more data are available. On the other hand, using a 
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very small temporal processing window (two images) for the last year in the time series would 

make it possible to map very recent forest disturbances, although possibly at the cost of user 

accuracy. Sensitivity analysis showed that UC-Change can perform similarly well under a wide 

range of input parameters and in different biogeoclimatic zones, which indicates that it is already 

highly robust. However, dynamic parameter adjustment is likely required to map very large areas 

(e.g., countries or even continents) in a fully automated fashion. 

To improve the detection of clearcut edges, access roads, and forest reserves inside 

clearcuts, which all suffer from the mixed-pixel problem, a higher than 30-m spatial resolution 

would generally be required. The next version of the UC-Change algorithm will use 10-m and 20-

m Sentinel-2 data without spatial resampling. This is possible because only one part of the UC-

Change algorithm (Secondary Change Pixel Detection, see Section 3.3.4) requires that images in 

the processing window have the same resolution. This part of the algorithm processes four images 

at a time, and it can be limited to using only data of the same resolution for each set on images. 

The 10-m and 20-m spectral bands of a Sentinel-2 image can be treated as two separate images. 

While they contain different spectral information, the iterative retraining algorithm should improve 

the consistency of unsupervised classification of 10- and 20-m data as it did when processing 

5-band Landsat images and 9-band Sentinel-2 images in this study. Using Sentinel-2 data with the 

original spatial resolution can potentially make it possible to identify forest management methods 

used by different logging companies on a cutblock-by-cutblock basis and monitor the 

implementation of sustainable practices. Using 10-m data will also reduce overestimation of 

logged area by the UC-Change algorithm, which tends to label more mixed pixels as forest change, 

even when the percentage of bare ground is low. 
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Currently, the UC-Change algorithm lacks a dedicated change attribution algorithm 

that could classify changes based on the disturbance factor. As a result, it cannot easily separate 

cutblocks from burned forest. Existing change attribution approaches could be adopted for 

classifying disturbances detected by the UC-Change technique, as they have proved to be highly 

effective (e.g., Hermosilla et al., 2015a).  

Finally, time-series land-cover classification is possible even with the current version 

of UC-Change. The iterative retraining routine in the UC-Change algorithm uses classification 

results for individual images to improve the unsupervised classification of other images in the time 

series by reducing deviation in the spatial distribution of spectral classes caused by phenological 

changes and clouds. The same routine could use an existing land-cover map for any particular year 

to label spectral classes in all images in the time series. Alternatively, an automated procedure 

could be used to label classes using a spectral library derived from hyperspectral imagery, such as 

Hyperion (Parshakov et al., 2014). Such time-series land-cover classification could also make the 

UC-Change forest recovery metrics even more meaningful as it would allow them to track changes 

in the distribution of thematic classes (e.g., vegetation types) rather than unlabeled spectral classes.  

Given the flexibility, level of automation, level of testing (both validation and 

challenging terrain and highly variable land cover), large-area datasets, and lengthy time series 

considered in this research, there are many other possible opportunities to further build and test 

even more extensive capabilities based on this new UC-Change approach. 
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APPENDIX 1  

PSEUDOCODE 

This appendix contains pseudocode detailing the main processing steps of the 

UC-Change algorithm: 1) unsupervised classification; 2) stable pixel detection and iterative 

retraining; 3) primary change pixel detection; 4) secondary pixel detection; and 5) object-based 

filtering and forest recovery information extraction (Figure 3-6). Parameters used in this study are 

listed first, followed by the list of variables, and, finally, the pseudocode.  

1. Parameters 

max_processing_window_length = 4 

Stable pixels are detected for a period of four or fewer years. 

size_of_processing_window = 4 

The number of images used for stable pixel detection is four. This means that one primary 

image and three secondary images are used to detect stable pixels. 

min_overlap = 70% 

Minimum non-masked-area overlap between the primary image p and individual secondary 

image candidates is 70%. 

n_retrainings = 2 

Number of iterations of retraining. Can be set to 0 to skip iterative retraining. 

n_classes_with_change = 1 

Number of spectral classes in classified images from which to extract primary change pixels. 

This parameter can be set to >1 if multimodal distribution of pixel values in disturbed forest is 

expected; however, n_classes_with_change = 1 still works for such disturbances because 

of temporal redundancies. 

change_likelihood_threshold = 0.2 

 Minimum proportion of multitemporal maximum likelihood maps that contain a change class 

representing a particular disturbance date that are represented by that change class in a particular 

pixel.  

MMU = 40 pixels 

Minimum mapping unit: spatial clusters of change pixels smaller than 40 pixels are 

automatically rejected. 

cluster_clearsky_threshold = 65% 

Minimum percentage of non-masked pixels in a spatial cluster of change pixels is 65%. 
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pre_in_post_threshold = 0.5 

Proportion of dominant pre-disturbance spectral classes in post-disturbance data must be less 

than 50%. 

post_in_pre_threshold = 0.5 

Proportion of dominant post-disturbance spectral classes in pre-disturbance data must be less 

than 50%. 

 

2. Global Variables 

image 

  Array of images containing original multispectral images. 

 date 

  Array containing the acquisition dates of all images in the time series. 

 year  

  Array containing the year of image acquisition of all images in the time series. 

 blank_image 

Blank image with the same number of rows and columns as input images. A value of zero is 

assigned to all pixels. 

 kmeans 

  Array of images containing K-means classification outputs. 

 classified 

Array of images containing either K-means classification maps (if n_retrainings = 0) or single-

date maximum likelihood classification maps (if n_retrainings > 0) with unlabelled classes. 

 classified_SWIR2_ranked 

Array of images containing single-date classification outputs (K-means or Maximum 

Likelihood) where spectral classes are ranked based on the average SWIR-2 values (e.g., in 10-

class classified_SWIR2_ranked, Class 1 has the lowest average SWIR-2 value and Class 10 has 

the highest average SWIR-2 value). 

 multitemporal_mlh 

Array of images containing multitemporal maximum likelihood classification outputs. Class 

labels are the image acquisition dates associated with the stable pixels and primary change 

pixels used as training data. 
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 stable 

Array of images where non-zero values represent stable pixels not only in primary images p, 

but also in secondary images s. 

 primary_change 

Array of images where non-zero values represent primary change pixels. Derived from stable. 

 secondary_change 

Array of images where non-zero values represent secondary change pixels. Derived from 
multitemporal_mlh. 

 primary_and_secondary_indices 

Non-image 2d array containing the indices of secondary images for each primary image p 

(Table A1-1). 

change_detection_maps 

  Array of images where each image is a forest disturbance map for a particular date. 

 recovery_to_pre 

Array of images where pixel values represent the percentage of dominant pre-disturbance 

classes after disturbance. 

 recovery_from_post 

Array of images where pixel values represent the percentage of dominant post-disturbance 

classes after disturbance. 

n_... (e.g., n_images, n_classes) 

Number of elements in an array (e.g., number of images or number of spectral classes). 

 

3. Local Variables  

The following variables are re-declared for every primary image: 

p 

The index of the primary image currently being processed. Any image in the time series except 

the last three (if size_of_processing_window = 4) can be primary. 

w_indices 

The indices of all images within the processing window for primary image p. For example, if 

max_processing_window_length = 4, then these are all images acquired within four years 

after the primary image that is currently being processed. 
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o_indices 

The indices of images within the processing window which individually have a >70% overlap 

with image p (if min_overlap = 70%). 

s_indices 

The indices of three images within the processing window which together have the largest 

overlap (typically 95% - 99%) with image p. These are the indices of secondary images to 

primary image p. 

p_number_of_mlh 

Total number of multitemporal Maximum Likelihood classification maps where a pixel can be 

labelled date[p]. 

secondary_change_p_number_of_mlh 

Total number of multitemporal Maximum Likelihood classification maps where a pixel is 

labelled date[p]. 

Table A1-1. The values of some of the variables for the nineteenth image (1990-06-23_L5.dat) in 

a hypothetical dataset. 

Variable Value Acquisition Date 

p 18 1990-06-23 

w_indices 19, 20, 21, 22, 

23, 24, 25, 26, 

27, 28, 29, 30, 

31, 32, 33, 34 

1990-08-10, 1990-08-26, 1990-09-11, 1991-06-10, 

1991-07-28, 1991-08-13, 1991-08-22, 1991-09-07, 

1992-07-23, 1992-08-15, 1992-08-24, 1993-08-11, 

1993-09-03, 1994-06-02, 1994-07-20, 1994-07-29 

o_indices 19, 20, 21, 27, 

28, 29, 30, 31, 

32, 33 

1990-08-10, 1990-08-26, 1990-09-11, 1992-07-23, 

1992-08-15, 1992-08-24, 1993-08-11, 1993-09-03, 

1994-06-02, 1994-07-20 

s_indices 28, 31, 33 1992-08-15, 1993-09-03, 1994-07-20 

primary_and_secondary_indices[p] 18, 28, 31, 33 1990-06-23, 1992-08-15, 1993-09-03, 1994-07-20 

   

4. Functions 

where 

Returns indices of array elements that match a user-defined criterion / criteria (e.g., 

where(image = 10) returns the x and y of pixels with a value of 10). 

array(n, value = z) 

Returns an array of n elements with a value of z. The parameter value is optional. 
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image_array(n, value = z) 

Returns an array of n images (2D arrays) where a value of z is assigned to all pixels. The 

parameter value is optional. 

overlap(image0; image1, image2, ...) 

Returns the percentage of non-masked pixels in image0 that are also not masked in image1, 

image2, ... 

mode(array, n_modes) 

Returns the most commonly occurring value (n_modes = 1) or values (n_modes > 1) in an array. 

stack(image0, image1, image2, ...) 

Returns a stack of input images (e.g., four images that each have six spectral bands are stacked 

to produce one 24-band image stack). 

maximum_likelihood_classification(input_data, training_rois) 

Returns a Maximum Likelihood classification map. 

kmeans_classification(input_data, number_of_classes, 

number_of_kmeans_iterations) 

Returns a K-means classification map. 

segmentation 

This function identifies contiguous spatial clusters of change pixels and returns the x and y 

coordinates of pixels for each cluster. 

percent_clearsky 

Returns the proportion of non-masked pixels. 

sum 

Returns the sum of all elements in an array. 

rank_classes(map, spectral_band = SWIR2) 

Returns a classification map where spectral classes are ranked based on the average SWIR-2 

values. 

merge(image0, image1) 

This function uses non-zero pixels in image1 to replace pixels with a value of 0 in image0. 
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5. Processing 

Step 1: Unsupervised Classification 

for each image i 

kmeans[i] = kmeans_classification(input_data = image[i], number_of_classes 

= 10, number_of_kmeans_iterations = 5) 

 

Step 2: Stable Pixel Detection and Iterative Retraining 

for each primary image p 

w_indices = where(date > date[p] and year ≤ year[p] + 

max_processing_window_length]) 

  

// Reduce the number of secondary image candidates by selecting only those that match the 

min_overlap requirement. 

for each index w in w_indices 

if (overlap(kmeans[p]; kmeans[w]) > min_overlap) 

add w to o_indices 

  

// Check every combination of the primary image p and three secondary image candidates for 

maximum overlap. 

max_overlap = 0 

s_indices = array(3) 

for (o1 = 0; n_o_indices - 3; o1++) 

for (o2 = o1 + 1; n_o_indices - 2; o2++) 

for (o3 = o2 + 1; n_o_indices - 1; o3++) 

percent_overlap = overlap(kmeans[p]; kmeans[o_indices[o1]], 

kmeans[o_indices[o2]], kmeans[o_indices[o3]])  

if (percent_overlap > max_overlap) 

max_overlap = percent_overlap 

s_indices = [o1,o2,o3] 

primary_and_secondary_indices[p,*] = [p, s_indices[0], s_indices[1], 

s_indices[2]] 

primary_and_secondary = kmeans[primary_and_secondary_indices[p,*]] 

last_secondary_date[p] = date[s_indices[2]] 

 

// Stable pixel detection and iterative retraining. 
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for (r = 0; r < n_retrainings; r++) 

// combine the primary classification map and all three secondary classification maps into 

one image. Each original map has pixel values ranging between 0 (masked) and 10 

(spectral class 10). The output image has pixel values ranging 101010100 (for pixels 

masked in all four images) to 111111110 (for pixels that are in spectral class 10 in all 

four images). 

primary_and_secondary_combined = (100 + primary_and_secondary[0]) + 

(100 + primary_and_secondary[1])*100 + (100 + 

primary_and_secondary[2])*10,000 + (100 + 

primary_and_secondary[3])*1,000,000 

 

// Detect stable pixels for the primary image and all three secondary images. 

for (s = 0; s < size_of_processing_window; s++) 

stable_s = blank_image 

for (c = 0, c < n_classes) 

// Subset kmeans_combined based on class c in image s. 

primary_and_secondary_combined_c = 

primary_and_secondary_combined[where(primary_and_secondary[s] = 

c)]  

// Find the most common multitemporal combination of spectral classes. 

primary_and_secondary_combined_c_mode = 

mode(primary_and_secondary_combined_c, n_modes = 1)  

// Find the x and y coordinates of stable pixels in class c in image s. 

stable_s[where(primary_and_secondary_combined = 

primary_and_secondary_combined_c_mode)] = c   

 

stable[p,s] = stable_s 

 

// Use detected stable pixels as training data in single-date maximum likelihood 

classification. 

if (r != n_retrainings - 1) 

primary_and_secondary[s] = 

maximum_likelihood_classification(input_data = 

image[primary_and_secondary_indices[p,s]], training_rois = 

stable[p,s]) 

// Replace original K-means maps with the output of retraining. 

classified[p] = primary_and_secondary[0] 
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Step 3: Primary Change Pixel Detection 

for each primary image p 

// Primary change pixelss are derived from stable pixels. 

primary_change_p = stable[p,0] 

 

// Subtract stable pixels detected for previous images. 

pre_where = where(last_secondary_date >= date[p] and date < date[p]) 

for each pre-disturbance image pre in pre_where 

for (s = 0; s < size_of_processing_window; s++) 

if (date[primary_and_secondary_indices[pre,s]] < date[p]) 

primary_change_p[where(stable[pre,s] != 0)] = 0 

 

// Remove clusters of change pixels smaller than 40 pixels. 

primary_change_p = sieve(primary_change_p, cluster_size > MMU) 

 

// Find the class that has the most remaining pixels. 

change_class = mode(primary_change_p[where(primary_change_p > 0)], n_modes 

= n_classes_with_change)  

temp = blank_image 

temp[where(primary_change_p = change_class)] = 1 

primary_change[p] = temp 

 

Step 4: Secondary Change Pixel Detection 

// Perform multitemporal supervised classification on every set of primary and secondary images 

to produce secondary change pixels. Unlike classifications performed in previous steps, the 

resulting maps have labelled classes where labels are the dates of forest change. 

for each primary image p 

// Produce a stack of four multispectral images. Example: 1990-06-23_L5.dat, 1992-08-

15_L5.dat, 1993-09-03_L5.dat, 1994-07-20_L5.dat → 1990-06-23_L5-1994-07-

20_L5_stack (24 bands). 

stack_p = stack(image[secondary_image_indices[p,*]]) 

// Training data: stable pixels detected for all ten classes in the primary image and primary 

change pixels detected for the entire processing window. Example:  

1990-06-23_L5_c1_stable, 1990-06-23_L5_c2_stable, 1990-06-23_L5_c3_stable,  



190 

 

1990-06-23_L5_c4_stable, 1990-06-23_L5_c5_stable, 1990-06-23_L5_c6_stable,  

1990-06-23_L5_c7_stable, 1990-06-23_L5_c8_stable, 1990-06-23_L5_c9_stable,  

1990-06-23_L5_c10_stable,  

1990-08-10_L5_primary_change, 1990-08-26_L5_primary_change,  

1990-09-11_L5_primary_change, 1991-06-10_L5_primary_change,  

1991-07-28_L5_primary_change, 1991-08-13_L5_primary_change,  

1991-08-22_L5_primary_change, 1991-09-07_L5_primary_change,  

1992-07-23_L5_primary_change, 1992-08-15_L5_primary_change,  

1992-08-24_L5_primary_change, 1993-08-11_L5_primary_change,  

1993-09-03_L5_primary_change, 1994-06-02_L5_primary_change,  

1994-07-20_L5_primary_change (24 classes in total). 

training_rois_p = [stable[p,0], primary_change[p+1 : 

secondary_image_indices[p,3]] 

multitemporal_mlh_p = maximum_likelihood_classification(input_data = 

stack_p, training_rois = training_rois_p, class_labels = 

training_rois_p.date) 

// Remove stable pixels from the resulting Maximum Likelihood classification. 

multitemporal_mlh_p[where(class_labels = date[p])] = 0  

multitemporal_mlh[p] = multitemporal_mlh_p 

 

// extract secondary change pixels from multitemporal_mlh. 

for each primary image p except the first one 

secondary_change_p_number_of_mlh = blank_image 

p_number_of_mlh = blank_image 

secondary_change_p = blank_image 

  

pre_where = where(last_secondary_date >= date[p] and date < date[p])  

for each pre-disturbance image pre in pre_where 

change_class_p_where = where(multitemporal_mlh[pre].class_labels = 

date[p]) 

secondary_change_p_number_of_mlh[where(multitemporal_mlh[pre] = 

change_class_p_where)]++ 

temp = blank_image 

temp[where(image[s] != 0)] = 1 

p_number_of_mlh[p] += temp 

 

secondary_change_likelihood_p = secondary_change_p_number_of_mlh / 

p_number_of_mlh 
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secondary_change_p[where(secondary_change_likelihood_p > 

change_likelihood_threshold)] = 1 

secondary_change[p] = secondary_change_p 

// combine primary and secondary change pixels for each date. 

primary_and_secondary_change[p] = merge(primary_change[p], 

secondary_change[p]) 

 

Step 5: Object-Based Filtering and Forest Recovery Information Extraction 

// rank spectral classes in single-date classification maps based on the average SWIR-2 values. 

This is required for the next step to work. 

for each image i 

classified_SWIR2_ranked[i] = rank_classes(classified[i], spectral_band = 

SWIR2) 

 

// Filter false positives and extract forest recovery information. 

recovery_to_pre = image_array(n_images, value = 0) 

recovery_from_post = image_array(n_images, value = 0) 

change_detection_maps = image_array(n_images, value = 0) 

 

for each primary image p except the first one 

primary_and_secondary_change_sieved = 

sieve(primary_and_secondary_change[p], cluster_size > MMU) 

spatial_clusters_p = segmentation(primary_and_secondary_change_sieved) 

pre_where = where(year >= year[p] - 4) 

post_where = where(year <= year[p] + 4) 

 

// The remaining steps are object-based, meaning they are performed on subsets of images 

representing individual patches of potentially disturbed forest. In this thesis, object is defined 

as a spatially contiguous cluster of pixels. 

for each spatial cluster d in spatial_clusters_p 

spatial_cluster_d = spatial_clusters_p[d] 

pre_class_percentages_sum = array[n_classes, value = 0] 

n_clearsky_pre = 0 

   

for each pre-disturbance image pre in pre_where 
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classified_pre = classified_SWIR2_ranked[pre] 

classified_pre_cluster_d = classified_pre[spatial_cluster_d] 

  

if (percent_clearsky(classified_pre_cluster_d) > 

cluster_clearsky_threshold) // if (n_nonmasked_px_in_cluster > 

n_nonmasked_px_in_cluster_min) 

n_clearsky_pre++ 

for each spectral class c 

pre_class_percentages_sum[c] += percentage of the non-masked portion 

of cluster d represented by class c in classified_SWIR2_ranked[pre] 

// calculate multitemporal average percentage for each class in pre-disturbance data. 

pre_class_percentages = pre_class_percentages_sum/n_clearsky_pre  

dominant_pre_class_indices = class or classes with the highest 

pre_c_multitemp_avg_percentage that cumulatively account for 90% or more pixels in 

spatial_cluster_d 

post_class_percentages = calculate the same way as 

pre_c_multitemp_avg_percentage but using 
classified_SWIR2_ranked[p:post_where[n_post_where - 1]] 

dominant_post_class_indices = determine dominant post-disturbance classes the 

same way as dominant_pre_class_indices 

pre_in_pre = sum(pre_class_percentages[dominant_pre_class_indices]) 

pre_in_post = sum(post_class_percentages[dominant_pre_class_indices]) 

post_in_post = sum(post_class_percentages[dominant_post_class_indices]) 

post_in_pre = sum(pre_class_percentages[dominant_post_class_indices]) 

 

// Reject cluster if pre- and post-disturbance distributions of spectral classes are not 

sufficiently different. 

if (pre_in_post/pre_in_pre < pre_in_post_threshold or 

post_in_pre/post_in_post < post_in_pre_threshold) 

add spatial_cluster_d to change_detection_maps[p] 

// Extract forest recovery information. 

for (i = p; i < n_images; i++) 

classified_i = classified_SWIR2_ranked[i] 

classified_i_cluster_d = classified_i[spatial_cluster_d] 
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if (percent_clearsky(classified_i_cluster_d) > 

cluster_clearsky_threshold) 

// recovery_to_pre[i] contains recovery information for spatial clusters that 

have already been processed and, therefore, it should not be overwritten 

temp = recovery_to_pre[i] 

temp[spatial_cluster_d] = percentage of the non-masked portion of 

cluster d represented by dominant pre-disturbance spectral classes 

recovery_to_pre[i] = temp 

     

temp = recovery_from_post[i] 

temp[spatial_cluster_d] = percentage of the non-masked portion of 

cluster d represented by dominant post-disturbance spectral classes 

recovery_from_post[i] = temp 


