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ABSTRACT 

The anterior cingulate cortex (ACC) has been implicated in a wide variety of 

behaviours. Yet, a comprehensive theory of the ACC function is lacking. A promising 

theory is that ACC uses information from past experience to create predictive mental 

models that guide future response selection – that is the ACC is a model-based controller. 

This thesis tests the key hypotheses supporting this theory in two separate tasks. The results 

of the first experiment show that ACC tracks a rat’s state with high spatiotemporal 

resolution during a binary-choice task. The results of the second task demonstrate that ACC 

neurons encode several abstract features of a task, including information about the block 

structure of the task. Together the results suggests that the schema in the ACC is to 

reconfigure in order to reflect abstract rules of the task, which is essential for optimizing 

future response selection. 
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1 General Introduction 

In the human brain, the anterior cingulate cortex (ACC) is the frontal part of the 

cingulate cortex (Brodmann areas 24, 32, and 33) neighboring the genu of the corpus 

callosum. In rodents, the ACC is located on the medial surface of the prefrontal cortex, 

caudal to the genu of the corpus callosum (Palkovits 1983). Although there is no exact 

equivalent of primate ACC in rodents, there are strong similarities between the anatomy of 

primate area 24, of which ACC is a part, and area 24 in rodent brain (Murray, Wise, and 

Graham 2017).  

The ACC has broad connections to other areas in the brain (Barbas and Pandya 

1989). These connections include prominent projections to and from the brain systems 

associated with emotions, decisions, and cognition, such as amygdala, hypothalamus, 

ventromedial prefrontal cortex (vmPFC), insula, ventral striatum, nucleus accumbens, 

hippocampus, prefrontal cortex, ventrolateral prefrontal cortex, frontal pole, and parietal 

cortex (Van Hoesen, Morecraft, and Vogt 1993; Haber et al. 2006). The ACC is also 

connected with areas involved in motor control including the motor cortex, premotor 

cortex, and the spinal cord (Picard and Strick 1996). 

Consistent with the diversity of connections, the ACC appears to be involved in a 

wide range of processes important for regulating responses in a situationally-appropriate 

manner, including assessing the salience of environmental features, signaling motivational 

information, assigning control to other areas in the brain, conflict detection, reward-based 

learning, and decision making (Heilbronner and Hayden 2016). A concise theory for the 

function of ACC that accounts for its role in these scenarios is presently missing. 
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An early theory proposed that ACC’s main function was error monitoring  (Clay B. 

Holroyd and Coles 2002). This idea was formed based on the prevalence of the error-

related-negativity signal in the ACC (Gehring et al. 1993; Gehring and Willoughby 2002). 

Error-related negativity (ERN) is one type of event-related-potential (electrical activity in 

the brain time-locked to an external event) that is observed after the commission of an error 

during a choice task (Gehring et al. 1990), even when the subject is not explicitly aware of 

the error (Nieuwenhuis et al. 2001). Correlates of the ERN signal have been found in the 

activity of primate ACC in both single-cell studies (Gemba, Sasaki, and Brooks 1986; S. 

Ito et al. 2003; Narayanan et al. 2013; Shen et al. 2015) and imaging studies (Ullsperger 

and Von Cramon 2001). In addition, extensive empirical research points to the ACC as the 

brain area that generates the ERN (S. Ito et al. 2003; C B Holroyd et al. 2004; Stemmer et 

al. 2004).  

Later studies reported observations that were inconsistent with the error monitoring 

theory. One example is that the ACC’s activity is influenced by situations where errors are 

likely, but do not actually happen (J. W. Brown and Braver 2005). Another example is the 

effect of the cues indicating the need to change the response strategy, irrespective of error 

commission (Céline Amiez, Joseph, and Procyk 2005). Other studies found the presence of 

strong control and comparison signals in ACC activity (Johnston et al. 2007; Shenhav, 

Botvinick, and Cohen 2013; Seo and Lee 2007). Consequently, the idea of error monitoring 

as the exclusive role of the ACC has been largely rejected (Wallis and Rich 2011). 

To address the shortcomings of the error-monitoring theory in explaining the data, 

researchers proposed the conflict monitoring theory of ACC function (M. M. Botvinick et 

al. 2001; Van Veen et al. 2001; Kerns et al. 2004). In this view, activity in the ACC encodes 

the level of conflict or competition between possible responses. The ACC then generates a 
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signal that triggers strategic adjustments in cognitive control and allocation of additional 

cognitive resources to prevent a conflict in subsequent trials. The conflict monitoring 

theory explains the ACC activity in three behavioural contexts: overriding the dominant 

response in a task (M. Botvinick et al. 1999; M. M. Botvinick et al. 2001), selecting a 

response among a set of equally permissible responses (Palmer et al. 2001; Thompson-

Schill et al. 1997), and mediating situations pertaining to error commission (Yeung, 

Botvinick, and Cohen 2004). Although numerous neuroimaging studies support the conflict 

monitoring theory, several studies at the single-unit level have failed to find evidence for it 

(C. Amiez, Joseph, and Procyk 2006; Cai and Padoa-Schioppa 2012; Hayden et al. 2011; 

Quilodran, Rothé, and Procyk 2008). One suggestion to resolve this issue is that conflict 

influences the ACC by increasing the number of active cells, not by increasing the firing 

rates of conflict-sensitive neurons (Nakamura, Roesch, and Olson 2005; Alexander and 

Brown 2011). In this view, the conflict signal is a by-product of the ACC processing, but 

not its main function.  

The ACC appears to be involved in the processing of positive and negative 

outcomes. Neurophysiological studies in humans have pointed to the ACC’s role in the 

processing of monetary gains and losses (Gehring and Willoughby 2002). Studies on 

monkeys have shown that single neurons in the ACC are sensitive to the values of the 

obtained rewards (C. Amiez, Joseph, and Procyk 2006). Furthermore, lesion or inactivation 

of the ACC impairs a monkey’s ability to select the appropriate response in a reward-based 

selection task (Keisetsu Shima and Tanji 1998; Hadland et al. 2003). Encoding of the value 

of the obtained reward by the ACC has also been reported in rodent studies (Hashemnia, 

Euston, and Gruber 2020; Mashhoori et al. 2018). Despite the ACC's apparent involvement 

in processing reward, the way that reward influences the activity of the neurons in the ACC 
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seems to be context-dependent. For instance, a larger reward can evoke either a reduction 

or an increase in the firing rate of individual ACC neurons (Hayden, Pearson, and Platt 

2011; Kennerley, Behrens, and Wallis 2011; Hayden, Pearson, and Platt 2009; Hillman and 

Bilkey 2010). The direction of tuning can change even within a session (Hayden et al. 2011; 

C. H. Luk and Wallis 2009; M. Matsumoto et al. 2007).  

Some researchers have interpreted the post-outcome activity of the ACC as a reward 

prediction error (RPE), representing the difference between an expected and an actual 

outcome (Kennerley, Behrens, and Wallis 2011; M. Matsumoto et al. 2007; Seo and Lee 

2007). Other researchers have found a representation of the unsigned RPE in the ACC 

(Bryden et al. 2011; Hayden et al. 2011), which can be considered a measure of surprise. 

To reconcile these inconsistencies, it is proposed that the ACC might carry a control signal, 

correlated with reward, and modulated by surprise, which triggers a change in strategy, and 

depending on the context, may reflect signed or unsigned RPE (Duncan 2001). 

In addition to the encoding of a received reward, the ACC also signals rewards 

available in alternate states of the task. These include the value of the unchosen options 

(Blanchard and Hayden 2014), the value of fictive rewards; i.e., rewards that could have 

been obtained but were not (Hayden, Pearson, and Platt 2009), and the average value of 

alternative options  (Kolling et al. 2012).  In one study, the values of possible choice options 

varied in three different dimensions: payoff, probability, and effort cost (effort). Neurons 

in the ACC represented the value of each option by a coding scheme that integrated the 

three value dimensions (Kennerley et al. 2009). Such integration of cost-benefit 

information is typically formulated in the concept of ‘utility’, which is the key quantity for 

nearly all theories of economic choice (Glimcher and Fehr 2013). The same study showed 
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that the utility representation in the ACC is stronger than other areas associated with value, 

such as OFC and dlPFC, suggesting that utility computation may be a key function of ACC. 

Some evidence has suggested that the ACC encodes the value of a non-default 

option, or the value in switching away from the standard action (Blanchard and Hayden 

2014; Boorman, Rushworth, and Behrens 2013; Kolling et al. 2012; Strait, Blanchard, and 

Hayden 2014). Supporting this idea, imaging studies show a decline in the activity of the 

ACC as the value of the difference between chosen and unchosen value increases (Boorman 

et al. 2009; FitzGerald, Seymour, and Dolan 2009; Lim, O’Doherty, and Rangel 2011). 

ACC activity seems to be greatest when the non-default option becomes a better choice, 

requiring an update of the choice strategy (Shenhav, Botvinick, and Cohen 2013).  

Contrary to these findings, Cai and Padoa-Schioppa (2012) did not find any 

representation of option value other than the subjective value of the chosen option in 

monkeys. Another study showed that the ACC encoding of value is context-dependent (C.-

H. Luk and Wallis 2013). One solution to reconcile these contradictory findings is that 

ACC represents a variable correlated with the value, not the value itself (Heilbronner and 

Hayden 2016). In sum, at least some ACC neurons appear to generate signals related to the 

utility of chosen or un-chosen options, but this computation is either highly dependent on 

abstract task features (e.g., context) or is mixed with populations of cells encoding other 

features such that random selection of ACC neurons (as with electrode recordings) does 

not always sufficiently sample the utility-encoding signals. For instance, it is possible (but 

speculative) that the type of encoding varies by cortical layer, and that different research 

groups do not sample equally across them. 

A large body of evidence implicates the ACC with control, defined as a 

psychological process involved in direct regulation of an action, a cognitive process, or 



6 
 

another control process. Both single-unit and neuroimaging studies show greater ACC 

activation when control is valuable or necessary (Johnston et al. 2007; Shenhav, Botvinick, 

and Cohen 2013). A recent theory of ACC function proposes that the ACC estimates the 

net value associated with allocating control to a given task, a quantity referred to as the 

expected value of control (EVC), by integrating information about the expected rewards 

and costs in a control-demanding task (Shenhav, Botvinick, and Cohen 2013). This signal 

is then used to select among competing tasks and allocate the appropriate amount of control. 

This view is closely related to the conflict monitoring theory of the ACC, as recruitment of 

control is necessary in a conflicting situation to resolve the conflict and improve future 

performance (M. M. Botvinick et al. 2001). 

The relation between the ACC and motor control is featured by connections 

between the ACC and brain areas involved in motor control such as the motor cortex and 

the spinal cord (Akkal et al. 2002; Morecraft and Van Hoesen 1998; K. Shima et al. 1991). 

Studies report the sensitivity of ACC neurons to saccade direction (Hayden and Platt 2010; 

Cai and Padoa-Schioppa 2012) and arm movement direction in monkeys (Kennerley et al. 

2009), movement and head direction in rodents (D. R. Euston and McNaughton 2006), and 

specific elements of compound actions (Hoshi, Sawamura, and Tanji 2005). However, not 

all results are consistent with these reports, as several studies found little ACC selectivity 

to spatially oriented features (Hoshi, Sawamura, and Tanji 2005; Kennerley and Wallis 

2009a; M. Matsumoto et al. 2007). To reconcile these different results, it is proposed that 

encoding of spatially oriented features appears in the ACC only when the information is 

relevant to decision-making.  

Several studies have implicated the ACC in triggering adjustments in action plans 

or strategies. In this view, ACC activity is linked to the receipt of information that leads to 
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changes in a subject’s internal model of a task (Hayden et al. 2011; Quilodran, Rothé, and 

Procyk 2008). For instance, monkeys performed a task with two possible actions, one of 

which was rewarded in each block. The neurons in the ACC responded most strongly when 

the reward associated with one action was reduced, and the optimal action changed 

(Keisetsu Shima and Tanji 1998). Supporting this view, lesions to the ACC have been 

shown to impair animals’ ability to switch their action in response to a reduction in reward 

(M. F.S. Rushworth et al. 2003; Keisetsu Shima and Tanji 1998; Williams et al. 2004) and 

to maintain a new strategy after a switch (Chudasama et al. 2013; Kennerley et al. 2006).  

There is a close relationship between outcomes and events that signal an adjustment 

in strategy. Therefore, it is difficult to distinguish the outcome and control-related activity 

in the ACC. One study showed that the activity in the ACC correlated with the outcome 

when the strategic adjustment was held constant, and it predicted the adjustment when the 

outcome was held constant. (Hayden et al. 2009). These results suggest that the ACC may 

serve as both a monitor for outcomes and controller of other cognitive processes. 

The ACC has been associated with persistence and self-control. This theory is 

supported by rodent studies using a delay task (Narayanan and Laubach 2006) and forced 

swim task (Warden et al. 2012). ACC-lesioned rats shift their behaviour away from 

investing physical effort to reach the high-cost, high-reward options (Walton et al. 2003; 

Schweimer, Saft, and Hauber 2005; Floresco and Ghods-Sharifi 2007), despite being able 

to discriminate reward size (Peter H. Rudebeck et al. 2006) and reward location (Kesner 

and Ragozzino 2003). It is also supported by human studies using an intertemporal choice 

task (Peters and Büchel 2010) and a response inhibition task (Floden and Stuss 2006). In 

humans, activation of the ACC produces a strong desire to persevere against challenges 

(Parvizi et al. 2013). Therefore, ACC activation might bias the choice toward the higher 
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cost option if the outcome is sufficiently greater (Johnston et al. 2007; P. H. Rudebeck et 

al. 2006). The ACC might promote self-control by carrying a value signal that allows 

decision-makers to overcome temptations (Blanchard, Strait, and Hayden 2015; Hillman 

and Bilkey 2010) or encoding the cost of failing to persist (Blanchard and Hayden 2014; 

Kurzban et al. 2013).  

The ACC and OFC are considered to play a role in stimulus-outcome and action-

outcome associations, respectively. This dissociation is backed by findings in humans 

(Camille, Tsuchida, and Fellows 2011), monkeys (Peter H. Rudebeck et al. 2008), and 

rodents  (Balleine and Dickinson 1998; Pickens et al. 2003; Ostlund and Balleine 2007) at 

the population level. The results, however, are inconsistent at the single-neuron level. 

Robust encoding of actions in the OFC has been reported in non-human primates 

(Tsujimoto, Genovesio, and Wise 2009) and rodents (Feierstein et al. 2006; Furuyashiki, 

Holland, and Gallagher 2008; Sul et al. 2010; Van Wingerden et al. 2010). Also, although 

numerous studies have emphasized the role of ACC in predicting the outcome associated 

with a given action (S. Ito et al. 2003; K. Matsumoto, Suzuki, and Tanaka 2003; Williams 

et al. 2004; C. H. Luk and Wallis 2009; Hayden and Platt 2010), there have been studies 

showing encoding of the rewards predicted by stimuli by ACC neurons (Hyojung Seo and 

Lee 2007; Kennerley et al. 2009; Cai and Padoa-Schioppa 2012). C.-H. Luk and Wallis 

(2013) investigated this issue in a task comprised of action-outcome and stimulus-outcome 

trials and found a small population of neurons encoded the specific action-outcome or 

stimulus-outcome associations. In contrast, they found robust encoding of the action 

expressing the choice. Furthermore, the encoding of this action was stronger in the OFC in 

the stimulus-outcome trials and stronger in the ACC in the action-outcome trials. They 

concluded that the main function of these two areas is not the encoding of specific action-
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outcome or stimulus-outcome associations, but rather using those associations to guide 

decision-making. 

To select the best course of action in an environment, a comparison between 

expected utilities of the available options is necessary. A primary component of the 

expected utility is the cost associated with each option. Previous studies have reported 

ACC’s sensitivity to both physical (Croxson et al. 2009; Klein-Flugge et al. 2016; Prevost 

et al. 2010; Hashemnia, Euston, and Gruber 2020; Porter, Hillman, and Bilkey 2019) and 

mental (Engström, Landtblom, and Karlsson 2013; Hosking, Cocker, and Winstanley 2014; 

Vassena et al. 2014) effort. Besides, several studies have reported direct encoding of the 

utility by the ACC neurons in rodents and primates (Kennerley and Walton 2011; Wallis 

and Kennerley 2011; Hashemnia 2019). For instance, in primates, ACC neurons are able 

to encode the overall value of options by taking into accounts factors such as reward 

probability, reward value, and costs, including delays and physical effort (Hosokawa et al. 

2013; Kennerley and Wallis 2009b; Kennerley et al. 2009). In rodents, ACC neurons show 

selectivity to the most valuable option based on the integration of effort costs and reward 

values (Cowen, Davis, and Nitz 2012; Hillman and Bilkey 2010). Taken together, these 

studies suggest that ACC neurons represent the net utilities of options by integrating the 

cost and reward associated with each one and bias choice toward the most valuable option. 

This view is supported by studies that report impairment of optimal decision-making in 

ACC-lesioned animals (Walton et al. 2003; Schweimer, Saft, and Hauber 2005; Floresco 

and Ghods-Sharifi 2007), especially in the situations involving balancing effort and reward.  

Conventionally, economic choice is considered to be comprised of evaluation and 

comparison stages. The evaluation stage is often linked to the orbital surface, and the 

comparison stage is suspected to be restricted to the ACC (Hare et al. 2011; Seo and Lee 
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2007; Wunderlich, Range, and O’Doherty 2009). This view is backed by studies that show 

ACC-lesioned animals switch away from the high-cost high-reward option (P. H. Rudebeck 

et al. 2006). Nevertheless, a large number of studies associate comparison with other 

regions of the brain such as OFC (Padoa-Schioppa and Assad 2006), vmPFC (Strait, 

Blanchard, and Hayden 2014), and ventral striatum (Strait et al. 2016). Strong evidence 

against this view comes from studies that show no significant impairment of the economic 

choice in ACC-lesioned animals (Chudasama et al. 2013; Matthew F.S. Rushworth et al. 

2011), suggesting that the ACC is a part of a distributed choice process rather than the main 

center for value comparison (Heilbronner and Hayden 2016). 

Overall, ACC neurons encode many task variables at both the population level and 

the single-unit level. These variables can be grouped into ones that define the task state, or 

the context, and ones that derive action. Here, action is a general term that could mean 

abstract actions, such as adopting a new strategy or enhancing cognitive control. 

Heilbronner and Hayden (2016) propose that the ACC encodes all and only the variables 

that are relevant to decision-making, and the strength and prevalence of the encoding of 

each variable reflect its importance. Therefore, depending on the task and factors relevant 

to decision making, the ACC tracks different variables, such as errors, conflicts, offers’ 

values, outcomes, spatial representation. This view can explain the inconsistent 

observations regarding the encoding of different variables such as conflict, space, and 

reward in the ACC. Similar ideas have been proposed by other researchers (Clay B. 

Holroyd and Yeung 2012; Clay B. Holroyd and McClure 2015). 

In this thesis, I propose that the ACC plays a role in model-based control. In this 

view, the ACC forms schematic knowledge of the task (e.g., rules, spatial layout, outcome 

values and probabilities) based on experience, and utilizes it to predict likely states and 
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outcomes as a function of context and response options. Such model-based predictions can 

be used to guide response selection and strategy shift when such adjustments are likely to 

yield better returns. This theory generates a number of key predictions:  

- Hypothesis 1. To form a predictive model of the task, the ACC must represent an 

abstract map of task states and track an animal’s state as it performs the task. This, in 

turn, raises the possibility of mental navigation of the task state space by the brain.  

- Hypothesis 2. The ACC needs to track task variables that define and represent context, 

stimulus, responses, and outcomes.  

- Hypothesis 3. In addition, the ACC needs to create abstract states that are inferred from 

the history of events and their relationship that are critical for future predictions.  

- Hypothesis 4. Finally, the ACC must detect deviations between the predictions and 

actual outcomes to promote model update when the previous model is not valid 

anymore.  

In the following chapters, I test the key hypotheses presented above using state-of-

the-art methods to decode information from ensembles of simultaneously recorded neurons 

from rat ACC. In chapter 2, I show that the ACC tracks the state of a rat as it performs a 

binary-choice task by demonstrating that the position of the rat can be decoded accurately 

from ACC activity on a figure-8 maze. I further provide evidence of counterfactual 

processing in rodent ACC, a process that is likely to play a role in shifting strategy in future 

choices. In chapter 3, I show that ACC encodes main task variables and represents abstract 

task states that are useful for creating a predictive model of the task. In chapter 4, I 

demonstrate a novel deep neural network that transforms data into a new space in which 

variations informative about one variable is removed, and the remaining variation is 

retained. This network can be used to eliminate the confounding effect of one variable on 
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decoding another variable, and is a key tool to dissociate encoding of abstract features (e.g. 

task rules) from confounding signals (e.g. reward). In the last chapter, I discuss how the 

results presented in this thesis support the role of the ACC in model-based control, and how 

it accounts for several previously proposed functions of this structure.  

 

 
 

 

 

  



13 
 

2 Rat Anterior Cingulate Cortex Recalls Features of Remote Reward 

Locations after Disfavoured Reinforcements 

 

 

Abstract  

The anterior cingulate cortex (ACC) encodes information supporting mnemonic 

and cognitive processes. We show here that a rat’s position can be decoded with high 

spatiotemporal resolution from ACC activity. ACC neurons encoded the current state of 

the animal and task, except for brief excursions that sometimes occurred at target feeders. 

During excursions, the decoded position became more similar to a remote target feeder than 

the rat’s physical position. Excursions recruited activation of neurons encoding choice and 

reward, and the likelihood of excursions at a feeder was inversely correlated with feeder 

preference. These data suggest that the excursion phenomenon was related to evaluating 

real or fictive choice outcomes, particularly after disfavoured reinforcements. We propose 

that the multiplexing of position with choice-related information forms a mental model 

isomorphic with the task space, which can be mentally navigated via excursions to recall 

multimodal information about the utility of remote locations.    
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2.1 Introduction  

The ACC and other nearby structures in the medial prefrontal cortex (mPFC) play 

an important role in the control of both memories and decisions (David R. Euston, Gruber, 

and McNaughton 2012). These structures influence memory retrieval via connectivity with 

the hippocampus (H. T. Ito et al. 2015; Rajasethupathy et al. 2015), and are thought to 

utilize hippocampal output to form semantic or schematic knowledge of the world from 

past experience (McClelland, McNaughton, and O’Reilly 1995). Activation of patterned 

neural activity in the mPFC may thus play an important role in utilizing experiential or 

schematic knowledge to plan or control behaviour (Tse et al. 2007; Wang, Tse, and Morris 

2012). Neurons in the ACC and nearby regions encode a variety of task features related to 

reinforcement and decisions (Kennerley et al. 2006; A. J. Gruber et al. 2010; Sul et al. 

2011), and many are also selectively active over large regions of the task space (Jung et al. 

1998; D. R. Euston and McNaughton 2006; Fujisawa et al. 2008; Jadhav et al. 2016). The 

function of this broad and distributed spatial mapping by individual ACC units has 

remained more contentious than the sparse encoding of location by neurons in the 

hippocampus (Burton et al. 2009; Hyman et al. 2012).  

The hippocampus contains ‘place cells’ that provide information about the position 

of an animal in an environment (O’Keefe and Dostrovsky 1971; M. A. Wilson and 

McNaughton 1993), which is utilized by the ACC (Burton et al. 2009). Although ACC 

neurons had generally been thought not to generate place fields (Poucet 1997), recent work 

has revealed neurons in mPFC with spatially specific firing that typically span over 50cm, 

and that are distributed over the task environment (Fujisawa et al. 2008). These are 

properties expected of a place code. Nonetheless, the broad spatial encoding in the mPFC 
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has often been interpreted as signaling contextual features, such as the environment 

(Hyman et al. 2012) and task (L. Ma et al. 2016). The ACC also appears to utilize 

reinforcement information from past actions to engage action strategies that improve cost-

benefit outcomes (M. M. Botvinick, Cohen, and Carter 2004; C. Amiez, Joseph, and Procyk 

2006; Kennerley et al. 2006; Matthew F.S. Rushworth et al. 2011; Heilbronner and Hayden 

2016), particularly when rapid shifts in strategy are needed to optimize reward acquisition 

(Posner et al. 2007; Passingham and Wise 2015). One of its specific functions is to encode 

unattained rewards (Hayden, Pearson, and Platt 2009), which may contribute to its role in 

signalling regret when outcomes do not meet expectations  (Coricelli et al. 2005). It is 

possible that the ACC uses a fine-grained spatial map as a mnemonic scheme to recall 

possible alternate outcomes at other locations for such processing, but we are unaware of 

any direct evidence with sufficient spatiotemporal resolution to accurately decode such 

shifts. 
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2.2 Results 

2.2.1 Precise spatio-temporal encoding of position by ACC  

Because populations of broadly tuned cells can encode quantities with more 

precision than the encoding of individual cells (Kim, Ganguli, and Frank 2012), we first 

sought to determine whether population activity in the ACC accurately encodes the position 

of an animal. We recorded ensembles of ACC neurons while rats performed a binary choice 

task on a figure-8 track (Figure 2.1.A). Two target feeders at the north corners of the track 

could be reached after turning right or left at the choice point, and a third feeder in the 

central segment was used to motivate rats to return to the starting position. Rats received 

reinforcement at the central feeder on every trial. The effort-reward utility of each choice 

was independently controlled by elevating the target feeders to one of three heights and by 

providing either a small or large reward volume. The utilities were held fixed for 16 

consecutive trials and the animals were forced to alternate between the right and left options 

on the first 10 trials before being allowed free selection of either option for the remaining 

6 trials of the block. The task was run in a 6-block sequence of 96 trials (Figure 2.1.B), and 

the same sequence would restart upon completion within each session. The reward 

contingencies were counterbalanced among right and left feeders between sessions. Rats 

completed 162-256 trials per session. Animals received the same small reward at the central 

feeder. We simultaneously recorded position and neural activity in the ACC (Figure 2.1.C-

D) and found that most cells activated over large areas of the track (Figure 2.2), consistent 

with previous reports.  
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Figure 2.1: Task and neural recording. 
(A) Schematic illustration of the figure-8 track, showing the locations of the feeders (cylindrical 
depressions), height-adjustable platforms (indicated by arrows), and movable gates (translucent 
rectangles). (B) Graphical representation of the choice reward-effort utilities (dot size) and choice 
option (color) structure of one task session. The effort-reward utility of each choice was constant 
during each block of 16 laps. (C) Illustration of estimated recording locations in the dorsal medial 
prefrontal cortex (inset), showing that most fell in the ACC. (D) Representative example of 
simultaneously recorded ACC ensemble activity during one lap of the task. The color indicates the 
position on the track as coded in panel A, and the grey shaded region is corresponds to the target 
feeder location.  
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Figure 2.2: Spatial attributes of ACC unit firing and decoding error.  
(A) Maps of the spatial attributes of neural firing for each of 42 simultaneously recorded neurons 
in the ACC. Red indicates highest likelihood of unit firing. (B) Prediction error versus the width of 
the smoothing kernel for all seven sessions analyzed. The dashed line indicates the width used for 
decoding analyses in Figure 2.3. (C) Histogram of the prediction errors in Cartesian coordinates for 
one representative session. (D) Prediction error (RMSE) as a function of the number of qualified 
units recorded for several sessions from each animal (symbols and colors). The prediction error 
increased with fewer units. To test if the poor decoding performance for some subjects was due to 
the low number of recorded units, we tested if downsampling the number units from another animal 
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with 40 units would result in similar poor performance. The prediction error increased super-
linearly as the downsampling was increased (grey ‘+’) and is in-line with the poor predictions from 
the two animals with few units. (E) The prediction error achieved by using the most informative 
units, as determined by a greedy selection process for the two animals with the most units. Colors 
correspond to those in panel D. 

 

The currently predominant neural decoding model for position is Bayesian 

reconstruction (E. N. Brown et al. 1998; Zhang et al. 1998; Carr, Jadhav, and Frank 2011). 

We found, however, that we could achieve significantly lower decoding error (36% 

reduction; t(6) = 9.0, p= 0.0001, power = 1) than the Bayesian method by using a deep 

artificial neural network (dANN) to decode location from patterns of neural activity in bins 

of 20-50ms (Figure 2.3.B; see METHODS). The dANN was memoryless in that it only 

used information from the present time bin for the predictions. It could exploit higher-order 

statistical relationships among inputs than could the Bayesian method, and could learn to 

ignore spurious information. Its superior performance therefore likely demonstrates that 

either these higher-order statistics carry a significant amount of information about spatial 

position, as previously predicted (Fujisawa et al. 2008), or that the representation of non-

spatial features hampers Bayesian reconstruction. Our analysis of multiple sessions from 

four animals revealed that approximately 30 randomly selected ACC units are required for 

good reconstruction accuracy, whereas near asymptotic accuracy can be achieved by using 

the 17 most informative cells (Figure 2.2). We therefore focused subsequent analysis on 

seven sessions from two animals with at least 40 simultaneously recorded cells so as to 

achieve decoding error close to the apparent asymptotic limit.  
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Figure 2.3: Decoding position from ensemble ACC activity.   
(A) The spatial selectivity of the top 9 most informative ACC cells for decoding position in one 
session chosen by the decoding network. Spike density on the track is coded by color, from blue to 
red. The units are rank ordered by importance from top left to bottom right. (B) The root mean 
squared error (RMSE) of the position decoded from the ACC activity as compared to the actual 
position of the rat for each session (line) and rat (shade), showing that the deep artificial neural 
network generates lower prediction error than does a Bayesian decoder for each of the seven 
sessions tested. These session-averaged errors are inflated by occasional large errors around the 
reward zones, as described below. Error bars show standard deviation of 20 randomly selected 
training and test sets for each session and method. (C) The distribution of changes in decoded 
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position by noise. (D) Error vectors for two representative laps of the task. The arrows indicate the 
magnitude and direction of the decoding error every 50 ms. (E) Cumulative probabilities of the 
prediction error magnitude for the seven sessions. The dotted lines indicate the median, and the 
arrows indicate the median error for the left (blue) and right (black) laps session shown in panel D 
(green curve). (F) Decoded position for test data from one session, color coded by the actual 
position (inset)  (G) The error computed every 50 ms in one representative session, represented as 
a box plot according to track position as shown in Figure 2.1. The box plot shows the median 
(horizontal lines in boxes), 95% confidence intervals (notches), 1st and 3rd quartiles (boxes ends), 
and outliers (dots). There are a disproportionate number of outliers in the bin corresponding to the 
target feeder locations, but the median prediction accuracy is as good at these feeders as anywhere 
else on the track. (H) The mean (top) and maximal (bottom) prediction error for discretized 
positions on the track, showing that the very large errors occurred exclusively at the location of the 
target feeders. These show mean of means computed from all sessions.  

 
We next sought to determine the robustness of the decoder by quantifying its 

performance in the presence of noise. We shifted each spike time by a randomly drawn 

value from a distribution that was proportional to the variance of the cell’s firing interval 

(25% of its STD). The dANN was trained on some trials of the uncorrupted data and tested 

on different trials with the noisy data (mean spike shift was 25 ms). This increased the error 

(RMSE) by 1.3% (0.14 cm), which was a small yet statistically significant difference (t(6) 

= 4.8; p = 0.003; power = 0.95).  This indicates that spike timing on the order of 25 ms 

contained useful information for the decoding with the present neuronal sample size. 

Furthermore, the noise did not cause any large deviations in decoding. Only 0.07% of 

samples deviated more than 25 cm from the original decoding, and none were more than 

50 cm (Figure 2.3.C). These data indicate that the decoder is robust against moderate levels 

of spike jitter. The median decoding accuracy of the rat’s position on the task was less than 

10 cm (Figure 2.3.D-E). This is much less than the length of the animal’s body, and much 

less than the spatial selectivity of individual cells (Fujisawa et al. 2008).  
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2.2.2 Invariance of spatial encoding during task sessions  

We analyzed the stability of the spatial information over the entire maze through 

time. For this, we separated all the trials that belonged to the trial configuration (reward, 

effort, direction) with the maximum number of trials in each session. Then, we performed 

two different tests. In one, we created the training set by selecting every other trial in the 

list and used the remaining trials as the test set. In the second test, we used the first half of 

the trials as the training set and used the second half of the trials as the test set. If the spatial 

encoding shifted as a result of the intervening configurations (block types), or drifted in 

time, then the decoding accuracy in these two cases should be different. We found that 

decoding errors were not significantly different in these two cases (0.6 cm change in error, 

t(6) = 1.28, p=0.24). This analysis provides some evidence that the position-related features 

of neural activity used by the decoding network are stable within the session, despite 

changes in effort and reward contingencies that occur during intervening blocks. 

 

2.2.3 Excursions of spatial encoding from the physical position to a feeder 

The mean spatial decoding error was low in all positions on the track (Figure 2.3.F-

H). The decoded position, however, sometimes deviated from the actual position by up to 

nearly 100 cm, and these large excursions occurred almost exclusively at the two choice-

option feeders (Figure 2.3.G-H). These excursions were not random in time or decoded 

position. Rather, the excursions consisted of several consecutive points encoding the 

alternate target feeder before returning to the present location of the rat (Figure 2.4.A-B; 

online video). The localization of these excursion endpoints was particularly striking 

because our decoder network output only an x and y coordinate, with no constraints that 
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the decoded position lie on the track. This pattern of endpoints is therefore exceedingly 

unlikely by chance (𝜒𝜒2 = 484, p=1 E-40, power = 1). These excursions did not originate or 

terminate at the center feeder, even though the animal received the same reward type at all 

feeders, and the volume at the center feeder was equivalent to the small volume at the 

choice feeders. These features strongly suggest that the excursion phenomenon is involved 

in computations related to evaluating the choice options, and not related to general qualities 

of the reward or to planning the immediately next action, which was always a return to the 

center feeder as enforced by gates on the track.  

The median duration of the excursion events was 400 ms (20 consecutive bins of 

20 ms; Figure 2.4.C) and occurred almost exclusively while the animal was stationary at 

the feeders. Although excursions occasionally occurred during the reinforcement, most 

occurred after the reinforcement and prior to locomotion away from the feeder (Figure 

2.4.D). The duration of the excursions was appreciably longer than the width of the 

smoothing kernel (120 ms), so the end-points of the excursions were not affected by the 

smoothing. The dynamics of the transition, however, occurred on a time scale less than the 

kernel width and was therefore strongly affected. The intermediate points of excursion 

between the feeder sites appear to be a blend of the encoding of the two feeder sites coming 

from the neural dynamics and/or the smoothing kernel in our analysis. We therefore suggest 

that the phenomenon is more accurately conceptualized as a shift rather than a replay of the 

true trajectory in the physical space.   
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Figure 2.4: Excursions of encoded position sometimes shift to the alternate choice feeder 
(A) Example of one excursion episode. The decoded position is indicated by circles plotted every 
20ms. The excursion sweeps from the actual position of the rat (star) to the right-side feeder, and 
then returns. The red ‘+’ indicates the maximal prediction error. (B) All excursions from the three 
feeders in the test set from one session in each rat. The red ‘+’ indicate the maximum error distance 
from the occupied feeder of at least 70cm. The excursions from the right/left target feeders generate 
a trajectory to the alternate target feeder location.  (C) Frequency distribution of excursion duration 
from all sessions. (D) Timing of excursion onset aligned to feeder activation or feeder zone exit, 
showing that excursions occur predominantly between these events. (E) Neural activity is distinct 
at the three feeder zones, as shown here by linear discriminant analysis of the smoothed neural data. 
Dots are the smoothed and binned neural patterns at feeders in the absence of excursions, and each 
color indicates data from one feeder (center feeder is yellow). (F) Confusion matrices for 
identifying the three feeders based on neural activity. Shifting each spike time by a random value 
(indicated as +noise) had little effect on the ability to correctly identify the feeders, whereas fully 
shuffling the inter spike intervals eliminated discriminability. (G) The prediction accuracy of 
classifying feeders for the best and worst sessions. Data in panels F and G include excursion events, 
which degrade performance. Asterisks indicate significantly different means with a p<0.001. (H) 
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PCA of activation in the middle layer of the spatial decoding network for non-excursion (dots) and 
excursion (+ and o) patterns at target feeders (blue, red) and center feeder (yellow). 

 

We next sought further independent evidence as to whether the excursion events 

were an artifact of misclassification rather than a neurophysiological phenomenon. One 

possibility is that both target feeders are encoded by similar ensemble activity because of 

shared reward encoding, or some other feature, so that the network might confuse left and 

right feeders such that the decoded position might appear to jump from one to the other. To 

address this concern, we first used linear discriminant analysis to test if the neural patterns 

at the feeders are distinct from one another. Linear discriminant analysis of the input 

activity patterns in the absence of excursion did form distinct clusters for each feeder, 

indicative of unique pattern features at each feeder (Figure 2.4.E). This method is 

independent of our decoder, and therefore provides graphical validation. In order to 

quantify the pattern separation, we trained a new network with 3 hidden layers to classify 

patterns of neural activity from each of the three feeders, and then tested the classification 

accuracy (via cross-validation) on either samples of the original data, original data 

corrupted by noise, or fully shuffled data (Figure 2.4.F-G). These tests include all trials, 

both with and without excursion events. If the excursion events were due to a classification 

error arising from similarity of neural patterns at the feeders, then adding noise should 

decrease accuracy. The noise did not significantly reduce feeder decoding accuracy (t(6) = 

1.02; p= 0.35, power = 0.87), but fully shuffling the spike time intervals did (t(6) = 32.6; 

p= 3e-8, power = 1). These data indicate that the activity patterns at the feeders are 

sufficiently distinct such that the introduction of noise does not cause misclassification, 

suggesting that the excursions are not a consequence of small random variation of the 

inputs.   
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The analyses above do not rule out the possibility that the excursions arise from 

brief shifts from the unique activity features at each feeder to an activity state common to 

both feeders. For instance, the reward encoding neurons could strongly activate to 

overshadow the position information in some instances, and this could produce a pattern 

that emerges at both feeders, but is distinct from the normal encoding at the feeders, and 

thereby confuses the decoder. This should be apparent in the variance of patterns at target 

feeders represented by the decoder network. PCA of activation in layer 3 of the position 

decoder shows distinct clusters for the non-excursion patterns at the target feeders (Fig 

3.H). Moreover, the excursion patterns do not overlap completely or form their own cluster, 

and instead tend to overlap with the unoccupied target feeder cluster. We next conducted 

an independent and quantitative test for a common state by computing the classification 

accuracy of untransformed ACC patterns (input to the network) among the four classes: 

feeder A during an excursion (A’); feeder B during an excursion (B’); feeder A not during 

excursion (A); and feeder B not during excursion (B). If the excursions are because of a 

transition to a common state from both feeders, then the excursion patterns should be highly 

discriminable from the non-excursion patterns at the same feeder (A’ from A, and B’ from 

B), but not discriminable from each other (A’ from B’). We found strong evidence for the 

former, but not the latter. We used the area under the curve (AUC) of the receiver operator 

characteristic (ROC) to quantify discriminability of samples from pairs of these conditions. 

An AUC value close to 0.5 indicates that the patterns from two classes are indiscriminable, 

whereas an AUC value close to 1 indicates that patterns are highly discriminable by the 

classifier. AUC values between these limits indicate that features of the patterns are 

sometimes similar and sometimes dissimilar in at least some dimensions. The 

discrimination of excursions from non-excursions at the same feeder (A’ from A, and B’ 
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from B) was very high (AUC = 0.94). On the other hand, the patterns during the excursions 

from the two feeders (A’ from B’) were discriminable at a moderate level (mean AUC = 

0.75). This latter analysis was limited in power because of the low number of excursions at 

the preferred feeder relative to the dimensionality of the patterns. Nonetheless, these data 

indicate that the untransformed input patterns during excursions can often be distinguished 

based on the position of the rat. The non-linear transform of the input by the middle layers 

of the decoding network apparently separates the excursions from one another, but not from 

the typical feeder patterns (Fig 3.H). In sum, the non-excursion patterns (A, B) are highly 

discriminable (e.g., Fig 3.E-G), as are the excursion patterns from the non-excursion 

patterns at the target feeder (A, A’, and B, B’). The excursion patterns sometimes overlap 

with each other (A’, B’), and with the pattern from the unselected feeder (A’, B and B’, A; 

Fig 3.B,H). It thus appears that some features of the encoding shift to be more similar to 

the unselected feeder during excursion events. Because reward and location were 

confounded in the experimental design, we cannot rule out the possibility that reward 

encoding contributes to the phenomena. The inability to fully discriminate the excursion 

patterns from one another could involve some feature of the reward, such as volume, which 

flips between the choice feeders during the session. We therefore next investigated if units 

encoding reward were activated during the excursions.  

 

2.2.4 Excursions were more likely to occur at less-preferred feeders, and encoded reward 

& choice information  

Rats developed a strong feeder preference during free-choice trials within each 

block because of the unequal effort-reward utilities. Within each block of 6 free-choice 
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trials, the preferred feeder was chosen an average of 5.3 ± 0.5 times. We used this choice 

bias as a measure of revealed preference among feeders and analyzed the 10 forced-choice 

trials that preceded it. The selective occurrence of the excursions at the right-side feeder 

site in these forced-choice trials was strongly anti-correlated with the revealed preference 

for this feeder on free-choice trials (Figure 2.5.A; r2 = 0.86; F(6) = 31.5; p=0.002; power = 

0.97). In other words, the excursion was much more likely to occur when the rat was forced 

to select the less-preferred feeder. The excursions also emerged more frequently in free-

choice trials when rats chose the less-preferred option. This dependence suggests that 

excursions are related to disfavored outcomes, consistent with proposals that primate ACC 

is involved in regret or signalling other outcomes that could have occurred (Coricelli et al. 

2005; Hayden, Pearson, and Platt 2009). This supposition predicts that excursions should 

contain information related to the value of choice options. We thus next sought to determine 

if cells encoding choice or reward become activated during excursions. We first used 

logistic regression with norm-1 regularization to determine the degree to which cells 

encoded reward or choice information at the feeder locations in the absence of excursions 

(see METHODS). We found that 30% and 36% of cells were strongly predictive of reward 

and choice, respectively. We next independently determined which cells in the population 

significantly increased firing during excursions. This analysis revealed that some cells 

predictive or reward and/or choice activated during the excursions (Figure 2.5.B).  
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Figure 2.5: Excursions are more likely at non-preferred feeders, and encode choice-reward 
information 
(A) The relationship between excursions frequency and feeder preference. Each dot is the session-
averaged occurrence of excursion events at the right-hand (R) target feeder (as % of all events) 
during forced-selection trials, plotted against the revealed preference for that same feeder computed 
by the choice bias to the right-hand feeder in free selection trials (% of all choices). The negative 
correlation reveals that the excursion phenomenon is more likely to occur at disfavored feeders. (B) 
Encoding of information related to excursion, choice, and reward among neurons. The relative 
information of each neuron for discriminating excursions at the left target feeder (Θ(L)), excursions 
at the right target feeder (Θ(R)), the feeder choice, and the reward level. The level of information 
was determined by the frequency it was used by a Lasso classifier to discriminate this information, 
and is categorized as very informative (yellow), somewhat informative (green), or uninformative 
(blue). This analysis shows that some cells involved in excursions also encode information about 
choice and/or reward. 
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2.3 Discussion 

We have shown here that the head position of a rat on a track can be decoded from 

the activity of several dozen ACC neurons with an accuracy of about 10 cm. This is a much 

finer spatial scale than the very broad spatial sensitivity of individual neurons in the ACC 

and nearby mPFC (Fujisawa et al. 2008). This raises the possibility that ACC ensembles 

may represent environmental features on a fine spatial resolution. Moreover, we found that 

the encoded position normally tracked the current state of the rat, but sometimes dissociated 

from its physical position at the target feeders. These excursions did not occur at the central 

feeder, were more likely to occur at the disfavoured target feeder and involved the 

activation of neurons encoding reward and choice. We suggest that this is functional 

evidence for the evaluation of choice outcomes that is more likely to occur following 

disappointing reinforcements. Moreover, the preponderance of evidence suggests that the 

ACC encoding during most excursions became more similar to the unselected target feeder 

than the selected one. If so, the data provide evidence that the ACC evaluates unrealized 

choice outcomes at locations remote from the animal’s position.  

These data are consistent with many previous findings and proposals. First, indirect 

evidence has previously suggested that ACC and adjacent areas in mPFC encode the 

position of the animal and objects on a fine spatial scale. For instance, small deviations in 

running path has been shown to explain a significant amount of variance in rat ACC activity 

(D. R. Euston and McNaughton 2006; Cowen, Davis, and Nitz 2012), and mPFC lesions 

impair object-in-place memory but not object memory (Barker et al. 2007). Second, ACC 

encodes a variety of task-related information such as reward, choice, and effort, which is 

thought to support choices among options with differing costs and benefits (M. M. 
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Botvinick, Cohen, and Carter 2004; C. Amiez, Joseph, and Procyk 2006; D. R. Euston and 

McNaughton 2006; Cowen, Davis, and Nitz 2012; Heilbronner and Hayden 2016). A 

specific function of individual ACC units in monkeys is the signalling of fictive outcomes, 

which are potential reinforcements that did not occur (Hayden, Pearson, and Platt 2009). 

This could be analogous to the activation of reward-encoding units during excursions, 

although the difference in species, spatial component, and explicit cues for the unattained 

location/reward limit the comparison to general features. The task used here also involves 

choice conflict between reward and effort. The ACC appears to play a role in resolving 

such conflicts (Hillman and Bilkey 2010), and could account for the high frequency of 

excursions in the present data. If the excursions support the comparison of realized and 

fictive outcomes more generally, this suggests that the broad post-reward activation of 

neurons in the ACC and nearby structures observed in several species (C. Amiez, Joseph, 

and Procyk 2006; Kennerley et al. 2006; A. J. Gruber et al. 2010) may involve similar 

excursions and the recall of information in multiple modes.  

Our present data extend previous work demonstrating that the activity of mPFC 

is sufficient to decode spatial position on a track (Fujisawa et al. 2008). Whether the 

encoded information is a pure spatial signal or due to encoding of spatially-locked actions, 

stimuli, and/or events remains unclear.  The task is repetitive and rats’ movements tends to 

be stereotyped, so that specific actions (e.g., turns) and task events (e.g., approach to 

barrier) occur at the same location on every trial.  Whatever its nature, our analysis reveals 

that the ensemble activity is sufficient to predict where an animal is with an unprecedented 

level of spatial resolution.  It should be emphasized that this spatial information is 

multiplexed with many other task features encoded by this region, such as reward and 

effort, but can be extracted by an appropriately trained neural network decoder.  This work 
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extends on the work of others who have shown that the medial prefrontal region encodes a 

trajectory through task space (Lapish et al. 2008; Durstewitz et al. 2010) and shows that, at 

least under some circumstances, such a state-space trajectory is isomorphic with real world 

spatial coordinates. 

Why is spatial encoding prevalent in the ACC? We propose that the ACC may form 

a topographically-organized representational space, based on real space or action/events at 

particular locations on the maze, which can serve as a scaffold for the encoding of 

behaviourally-relevant events.  For example, if the rat is attacked by a neighbor near its 

nest, the ACC may encode the event and trigger avoidance on subsequent visits to that 

vicinity.  This is similar to a recent proposal that the orbitofrontal cortex uses a map of 

abstract task-states to facilitate reinforcement-based behavioural adaptation (R. C. Wilson 

et al. 2014), except that in our case, the representation has real-world spatial correlates.  Our 

proposal is also closely related to past proposals that the medial PFC likely forms and stores 

schema which map context and events onto appropriate actions (Jung et al. 1998; Miller 

and Cohen 2001; Alexander and Brown 2011), which serves to engage appropriate 

emotional or motoric responses to a given set of events in light of past experience (Bechara 

and Damasio 2005; David R. Euston, Gruber, and McNaughton 2012). Again, the 

differentiating feature of our proposal is a higher spatial resolution. The spatial 

representation in mPFC often smoothly varies as an animal navigates the task space, but it 

can also drastically shift its response profile over the same task space in some 

circumstances, such as a switch of task rules (Rich and Shapiro 2009; Durstewitz et al. 

2010; L. Ma et al. 2016). These investigators proposed that this provides a shift in context 

so as to facilitate learning or utilizing different sets of associations (e.g., action-outcome). 

It remains unclear whether these shifts are due to a global remapping of the entire ensemble 
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or only a subset of task-relevant cells. The decoding algorithms demonstrated here may be 

useful for determining if schemas (a.k.a. mental models or cognitive maps) retain 

associative information about space or other features across such shifts, or if ACC wipes 

the slate clean in some conditions.  

The proposal of a mnemonic schema organized around position does not preclude 

its role in flexibly encoding other information to support decisions. Rather, it is a 

framework for the integration of information over several time scales, from consolidated 

memories to short-term ‘working’ memory, which is well supported by a large body of 

evidence in rodents and primates (David R. Euston, Gruber, and McNaughton 2012). The 

ACC thus uses information gleaned over both recent and remote experiences to form a 

model of the world organized around the spatial feature of the environment that also 

includes features useful for decisions that impact affective state, such as finding food and 

avoiding pain.  

A novel aspect of the present data is the excursions from the present state at the 

choice feeders. This raises the possibility that the brain can mentally navigate the ACC map 

to recall information, or even generate hypothetical states consistent with the world model. 

Such prospection is consistent with the limited evidence available in other rodent PFC 

regions (Steiner and Redish 2014), and is consistent with evidence in primates, which we 

discuss later. In our study, these shifts may have been due to encoding of 1) the spatial 

location of the alternate feeder, 2) the expected reward at that location and/or 3) the sensory 

features (e.g. proximity to a ramp) of the alternate location. These factors were partially 

confounded in our study.  The mPFC is well known to encode reward amount (Pratt and 

Mizumori 2001; Kargo, Szatmary, and Nitz 2007; Horst and Laubach 2013; Insel and 

Barnes 2015) and may plausibly encode sensory features, but our evidence weighs in favor 
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of a spatial shift. First, the excursion patterns were distinct from the patterns normally 

observed at the feeder, but overlapped with the patterns at the remote feeder.  Second, 

excursions did not originate or terminate at the central feeder, even though the reward type 

and volume was comparable to that at the target feeders.  Ultimately, whether the shifts are 

based on space, reward, or sensory features, our data still suggest that excursions involved 

a shift away from the present target feeder to encode features of the unselected target feeder, 

thus processing information related to choices and outcomes. The partial discrimination 

among excursion patterns may result from confounds of reward and locations, the similarity 

of sensory features of the two target feeders or could reflect processing of latent information 

(e.g. affective state). We also note that spontaneous reactivation of ensemble neural activity 

during replay events often differs in the number or timing of spikes as compared to the 

patterns during behaviour (Foster and Wilson 2006; David R. Euston, Tatsuno, and 

McNaughton 2007). The excursions in our data were relatively brief as compared to the 

time of feeder occupancy, raising the possibility of temporal compression as observed 

during replay, and likely introducing additional confounds for the classification analysis. 

We made no attempt to optimize the pre-processing of the input signal, such as the 

smoothing kernel width or normalization/convolution, which likely would have partially 

accounted for these effects. 

We speculate that the brain dynamics involved in the excursions are not isolated to 

the ACC but are likely coordinated with that in other brain regions. The hippocampus 

sometimes also generates replay events after reward consumption (Foster and Wilson 2006; 

Carr, Jadhav, and Frank 2011). These occur during large amplitude fluctuations of the field 

potential called sharp wave ripples and occur in bouts lasting several hundred milliseconds. 

Task-related cells in the mPFC are modulated by these ripples following reward 
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consumption, suggesting that this is a period of communication between the hippocampus 

and mPFC (Jadhav et al. 2016). A similar post-reward replay in the sensory domain has 

been reported in the orbitofrontal cortex (Steiner and Redish 2014).  Coordination of such 

events in ACC, orbitofrontal cortex, and hippocampus during pauses of directed behaviour 

following reinforcement would account nicely for the activity pattern and timing of the so-

called default mode network (Buckner, Andrews-Hanna, and Schacter 2008). Activation of 

this network in humans occurs during pauses in directed action, typically after 

reinforcement, and is associated with ‘mind wandering’ often involving imagined shifts in 

time and place (Buckner and Carroll 2007). Analogous, and possibly homologous, default 

mode networks have been reported in non-human primates and rodents (Hayden, Smith, 

and Platt 2009; Mantini et al. 2011; Lu et al. 2012). The ACC, hippocampus, and other 

structures comprising the telencephalon emerged early in vertebrate evolution hundreds of 

millions of years ago, and likely supported a predatory foraging habit (Murray, Wise, and 

Graham 2017). The widespread conservation of the telencephalon among modern 

vertebrates suggests that it has functions useful in many situations and natural 

environments. It is therefore possible that a proposed human homologue (area 24) of rodent 

ACC (Uylings, Groenewegen, and Kolb 2003; Seamans, Lapish, and Durstewitz 2008) may 

also employ spatial associations to organize and navigate a schematic world model (Kaplan 

et al. 2017). It may, therefore, not be a coincidence that space-based imagery is one of the 

most prevalent top-down mnemonic strategies employed by humans, which has been used 

throughout recorded human history (O’Keefe and Nadel 1987). For instance, a person may 

imagine being in a particular restaurant in order to recall food options and quality, which 

is useful for making future dinner plans.  The large expansion of granular prefrontal cortex, 

much of which connects extensively with ACC, likely endows primates with a greater 
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ability to abstract problems (Seamans, Lapish, and Durstewitz 2008; Murray, Wise, and 

Graham 2017), and possibly a greater ability to exert top-down control over ACC 

dynamics. Therefore, if primate ACC has a schematic world model organized similarly to 

that shown here, the dynamics of excursions and any shifted perception associated with 

them are likely different than those in rodents. In other words, the neurophysiology that 

leads to excursions might be similar in rats and humans, but we make no claims that the 

prospective representation of information via excursions in rats is perceived or controlled 

similarly to prospection in humans. Along the same lines, the strong correlation of 

excursions with disfavour of a feeder is consistent with the activation of human ACC in 

regretful situations (Coricelli et al. 2005), but we have no independent means to assess if 

rats perceive regret in the present data.  

We propose that the excursion events represent navigation of a schematic world 

model organized around spatial position for some purpose related to task performance, such 

as comparing the utility of the obtained reward to an unattained one. The emergence of 

excursions exclusively at the target feeders, and not the center feeder, suggests a role in 

outcome comparison or future choice. Excursions did not terminate at the center feeder, 

suggesting they do not encode the subsequent action from the target feeder, which is always 

a return to the center feeder as enforced by gates on the track. It is possible that the 

excursions reflect an unexecuted plan to move from the occupied feeder to the other. If this 

were the case, however, we would expect to occasionally observe excursions when the rat 

is at the center feeder or other location on the track. A possible alternative is that the 

excursions reflect a mechanism for shifting strategies. The rodent ACC is involved in 

shifting responses (Joel, Weiner, and Feldon 1997; Birrell and Brown 2000), and appears 

to sustain information over time (Dalley, Cardinal, and Robbins 2004; Takehara-Nishiuchi 
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and McNaughton 2008). Although speculative, it is therefore possible that the excursions 

trigger a memory trace in ACC that promotes a response shift at the next visit to the choice 

point on the track. In other words, the ACC may have made a decision for the next choice 

while at the target feeder, which could preclude excursions at the center feeder or other 

intermediate point. The ACC is only one of several dissociated circuits that influence binary 

choice (Aaron J. Gruber and McDonald 2012), and is posited to bias competition among 

these other systems (Murray, Wise, and Graham 2017). Excursions may therefore have a 

probabilistic influence on future choice rather than fully determining it. The present data 

show only a correlation between revealed feeder preference and the likelihood of excursion. 

The design of the present task (e.g. forced alternation and relatively short blocks) prevents 

us from rigorously testing whether the excursion events influence future choice. We note 

that other evidence of spontaneous activation of task-related neural ensembles in the cortex 

and hippocampus has similarly shown correlation with general features of behaviour, such 

as learning, but most have not yet been shown to accurately predict future actions on a trial-

by-trial (M. A. Wilson and McNaughton 1994; David R. Euston, Tatsuno, and 

McNaughton 2007; Fujisawa et al. 2008; Dragoi and Tonegawa 2013; Steiner and Redish 

2014; but see Johnson and Redish 2007). We anticipate that advances in collecting and 

decoding ensemble neural activity will reveal such linkages between retrospective or 

prospective encoding and future behaviour.  
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2.4 Experimental Procedures 

2.4.1 Behavioural apparatus  

We constructed a running track 15 cm wide, with 36 cm high walls on both sides. 

It was configured into a ‘figure-8’ track measuring 102 cm long, 114 cm wide, and 60 cm 

height from the floor. Reward was delivered via three conical plastic feeders (24mm 

diameter). One was located on the central arm, and two others on 6 x 15 cm platforms at 

the north corners of the track. The reinforcement was a chocolate-flavored beverage 

(Ensure®, Abbott laboratories, Brockville, ON). The platforms were elevated 0-48 cm 

above the track. The ascent to the platform was by a vertical wire mesh (1.6 cm thick 

galvanized steel wire with a 1.25 cm square spacing). The descent was by a ramp made 

from the same material, but with a solid opaque plastic immediately under the mesh to 

provide support. The elevation of each platform was independently controlled by a stepper 

motor (Model 23Y9, Anaheim Automation, Anaheim, CA) driven by a stepper motor 

controller (Model G251X, Gecko drive, Tustin CA). A rack and pinion gear system was 

used to carry the platform up and down. A programmable digital input/output board 

(National Instruments PCIe-7841R, Toronto, ON) and custom software written in 

Microsoft Visual Basic and Labview (National Instruments, Toronto, ON) were used to 

automatically control and store the time of track events.  

2.4.2 Data collection 

We used Fisher-Brown Norway or Long-Evans rats born and raised on-site. Rats 

were habituated to handling for two weeks prior to the experiment. We surgically implanted 

a recording drive prior to any training. The drive and implantation were carried out as 
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described previously (D. R. Euston and McNaughton 2006). The position of the animal and 

neural signals were recorded simultaneously with a digital acquisition system (Cheetah SX, 

Neuralynx, Tucson, AZ). Neural signals were amplified with a unity gain headstage (HS-

54, Neuralynx, Tucson, AZ), amplified with a gain of 1000, and band pass filtered between 

600 and 6000Hz. Voltage waveforms exceeding a manually set threshold were recorded 

during behaviour, and then sorted into distinct clusters offline.  

Animals began training on the figure-8 track following a one-week recovery from 

surgery. Behaviour was shaped by allowing rats to navigate the track for 7-10 days with no 

variation of reward volume or barrier height. All subsequent sessions followed a fixed 

reward/effort schedule in which the task was organized into 6 blocks of 16 trials. Gates on 

the track forced the rat to alternate between the left and right loops on the first 10 trials of 

the block. The rat was free to choose either side for the remaining 6 trials of the block. The 

barrier height (0-46 cm) and/or the reward volume (30 or 120 µL of chocolate beverage) at 

one or both of the feeders changed across each block. The block order was: [RS,E0, RB,E0], 

[RS,E0, RB,E1], [RS,E0, RB,E2], [RS,E2, RB,E2], [RB,E0, RS,E0], [RB,E2, RS,E0], where Ri (i 

codes Small, or Big) is the reward, and Ei (i codes height level) is effort. The block sequence 

is repeated until the animal stops performing trials. The side with initially large reward is 

counterbalanced over consecutive sessions. Animals were reinforced at the central feeder 

on every lap with the same chocolate beverage and small reward volume as for the choice 

feeders.  

2.4.3 Decoding ensemble activity 

We first removed individual trials with durations longer than 1.5 times the median 

trial length in each session so as to reduce neural correlates of non-task behaviour (e.g. 
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grooming, rearing) in the data. We further eliminated neurons with an average firing rate 

below 0.5Hz because our initial tests indicated that these cells did not improve decoding 

accuracy. We then used a Gaussian kernel with a standard deviation of 150 ms to smooth 

the spike data, and then binned the resultant signal by 50 ms. The position of the animal 

assigned to each bin was the average of the coordinates of the video tracker system for the 

corresponding time window. We next applied the square root transformation to the binned 

firing rates to normalize the activity distribution (e.g. make them more Gaussian) among 

neurons. We then used the z-transform so that the activity of each neuron would have zero 

mean and unit variance. For decoding using the Bayesian method, we discretized space into 

regions of 4 cm by 3 cm. The dANN method operated at the pixel resolution of the video 

tracker (0.27 x 0.24 cm). To ensure that the difference in spatial resolution among decoding 

methods did not present confounds, we applied the dANN method to the data discretized 

in the same way as for the Bayesian method. This did not affect the prediction error, so we 

only show the results from the finer resolution in the figures.  

The position decoder was a multi-layer feedforward artificial neural network with 

three hidden layers. The number of units in the input layer equals the number of recorded 

neurons in each session. The number of units in the first, second, and third hidden layer is 

100, 50, and 25, respectively. The output layer consists of two units, which represent the 

coordinates of the position on the track.  The activation function of the first two hidden 

layers is rectified linear, and the activation function of the third layer is hyperbolic tangent. 

The number of units and the activation function for each layer were selected via cross 

validation. The quality of predictions was quantified with the mean squared error (MSE) 

between the actual position of the rat and the predicted location: 
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where 𝑥𝑥�𝑖𝑖 and 𝑦𝑦�𝑖𝑖 are the predicted coordinates for the 𝑖𝑖th test sample, and 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the 

target coordinates. ‖ ‖ represents 𝐿𝐿2-norm, and 𝑁𝑁 is the number of samples in the test set. 

For the Bayesian decoder, we computed the MSE between the center of the target region 

and the predicted region.  

We used mini-batch gradient descent with weight decay and momentum to train the 

network. The batch size was 100 and the learning was stopped after 100 epochs. For each 

session, we created 10 sets of trials, each consisting of an equal number of left and right 

choice trials. We used 75% of the trials in each set to train the network and the remaining 

25% to evaluate the model. The reported prediction error for each session was the average 

of the errors computed for each of the 10 test sets. 

2.4.4 Downsampling and greedy selection 

To compute the reconstruction error versus the number of cells in the data, we 

created different datasets, each containing a subset of cells. The number of cells in these 

sets ranged from 4 to 40 by increments of 4. For each set size, we created 5 different datasets 

by sampling cells randomly. These steps resulted in 50 datasets, consisting of 10 different 

set sizes and 5 different cell sets for each size. The process for evaluating each set is the 

same as that described above. In order to determine the best set of cells for the decoding, 

we used the forward feature selection algorithm to choose the best set of 20 cells for 

decoding position. In this approach, the best set of cells is initially empty. We iterated over 

all the cells to find the cell that will result in the lowest error if is added to the current best 

set of cells. This cell is then added to the current best set. These steps are repeated until the 
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best set reaches the desired cardinality. In order to determine the error for each candidate 

set, we used the same procedure described in the previous section (average of 10 sets of 

randomly selected trials).  

2.4.5 Error map construction 

For each session, we created 10 different datasets, consisting of an equal number of 

right and left choice trials. We used 75% of the trials in each dataset as the training set and 

the remaining 25% as the test set. After training the network on each training set, we 

decoded the location of the rat for the corresponding test set. In the next step, we discretized 

the space into tiles of 4 by 3 cm, and for each test trial computed the maximum 

reconstruction error when the rat was in a particular tile. The error map for each session 

was constructed by taking the average of the maximum reconstruction error values over 

trials. The final map is constructed by averaging error maps of all sessions.  

2.4.6 Determining the reward and choice encoding cells 

To determine which cells encoded information about reward or choice, we 

computed the average firing rate of all cells per trial in a 1.5s window beginning 

immediately after reward delivery at the north feeders, so as to create an 𝑁𝑁 by 𝑇𝑇 matrix, 

where 𝑁𝑁 is the number of cells and 𝑇𝑇 is the number of trials. The target associated with 

each column of this matrix was a binary value that represented different conditions of the 

parameter of interest (right/left for choice, high/low for reward).  For each parameter of 

interest, we created 50 random sets of trials, each one containing an equal number of trials 

with different conditions. We used 75% of the trials in each set as the training data and the 

remaining 25% as the test data. We fit a logistic regression model with norm-1 
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regularization (Lasso) and a maximum degree of freedom of 20 to each training set. Models 

with different degrees of freedom were trained using 5-fold cross-validation. For each set, 

we picked the model that resulted in the best prediction accuracy of the target based on the 

neural vectors, and then logged the cells that were assigned non-zero weights (e.g. they 

provide useful information for discrimination). To ensure that the selected cells were 

meaningful, we evaluated the accuracy of the model on the test data. In our experiments, 

the accuracy of the final model was always above 90%. Finally, we computed the 

percentage of times (out of the 50 sets) each cell was assigned a non-zero weight. For a 

value less than or equal to 30%, the cell was classified as not informative. For values greater 

than 30% and less than 70%, the cell was classified as relatively informative. For values 

greater than 70%, the cell was classified as very informative.  

2.4.7 Excursion detection 

We increased the temporal resolution by reducing the smoothing kernel width to 

120 ms and binning the resultant signal by 20 ms. All other features of the decoding 

network were as described above. For each session, we created 10 sets of trials by selecting 

all the trials performed on the less preferred side of the maze and randomly selecting an 

equal number of trials from the opposite side of the maze. The number of selected free 

choice trials for both sides were equal. We divided the data in each set into two groups. 

First, we randomly selected half of the trials from the set. The first group contained data 

points that fell into a time window of 1.5s after reward delivery in the selected trials. All 

the other samples from the original set were assigned to the second group. We used the 

samples in the second group to train the decoder network, and then used the network to 

predict the location of the rat from the samples in the first group. We marked each test trial 
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as an excursion trial if the maximum error between the decoded position and the actual 

location of the rat was greater than 70 cm during that trial. The statistics we report in this 

paper were computed by taking the average of the results we obtained on each set of test 

trials. 

2.4.8 Identifying excursion-related cells 

We divided the samples in each test set created for excursion detection into two 

categories. The first category contained all excursion samples that fell into a window of 80 

ms, centered at time at which the distance between the actual location of the rat and the 

predicted location was at its peak. The second category contained all the other samples. We 

computed the average firing rate of the cells per category and applied a square root 

transformation to convert the activity distribution into a normal distribution. We then used 

a t-test with a significance level of 0.01 to detect the cells that had significantly different 

firing rates under the two conditions. We computed the percentage of time each cell was 

selected among cells with significantly different firing rate and used the same procedure 

described above to classify cells into three levels of importance. 

2.4.9 Adding noise, shuffling data, and constructing confusion matrices 

Confusion matrices show the probabilities of assigning patterns to correct and 

incorrect categories. We preprocessed neural data as for the detection of excursions. The 

spike data was smoothed for each session using a Gaussian kernel of width 120 ms, and 

then binned by 20 ms. We selected two sets of data from each trial of the task: the set 

containing all the samples that fell into a window of 750 ms after the off-set of the center 

feeder; and the set of all data points that fell into a window of 1500 ms after the off-set of 
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the selected side feeder. Each sample was labeled based on the feeder associated with it 

(right/left/center).  

To create a noisy dataset, we concatenated the sets associated with each feeder and 

computed the standard deviation of the inter-spike intervals of each neuron for each feeder. 

Then, we shifted spike times in each feeder set by values that were randomly drawn from 

Gaussian distribution with zero mean and a variance equal to 25% of the cell’s firing 

interval variance in that set.  

To create the shuffled dataset, we concatenated all the selected time windows for 

all the feeders and computed the inter-spike intervals for each neuron. Then we created a 

new spike time-series by randomly permuting the inter-spike intervals. The label of each 

time-point in the shuffled dataset was the same as the label of that time point in the original 

dataset.  

To obtain a confusion matrix for each dataset, we performed the following 

procedure: we randomly selected an equal number of left and right trials and used the 

samples from the selected trials in the original data set to train a neural network classifier. 

The architecture of the classifier was identical to the network that was used for decoding 

position, except for the output layer, which had 3 units (to represent the three feeders) and 

a softmax activation function. For each dataset (original/ noisy/ shuffled) we used the 

samples from the remaining trials as the test set and computed the normalized confusion 

matrix. We repeated this process 10 times for each session and computed the average 

classification accuracy of these repetitions. The reported results represent the average over 

all sessions.  
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2.4.10 Discrimination analysis of excursion patterns 

From each dataset created for excursion detection, we created a new dataset by 

performing the following steps. For the trials without excursion, we computed the mean 

firing rate of each neuron during a window of 0-1.5 s after the feeder was closed. For the 

trials with excursion, we computed the average firing rate of the neurons in a window of 

100 ms, centered at the time at which the excursion was at maximum departure from the 

actual location of the rat. Then, we assigned a label to each one of these vectors: normal 

pattern at feeder A (A), excursion pattern at feeder A (A’), normal pattern at feeder B (B), 

excursion pattern at feeder B (B’). To differentiate between normal and excursion patterns 

at each feeder (A vs A’ and B vs B’), we used a decision tree with a maximum number of 

splits of 10. To separate the excursion patterns at different feeders, we used an SVM 

classifier with a linear kernel. Because the number of samples was unequal among the 

classes, we used the area under the curve (AUC) of the receiver operator characteristic 

(ROC) as a measure of pattern separability. 
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3 Rat Anterior Cingulate Cortex Represents Perceptible and Abstract 

Task Variables Essential for Creating a Predictive Model 

Abstract 

The anterior cingulate cortex (ACC) has been proposed to use information from 

past experience to create schemas or mental models that can be used to estimate the cost 

and benefit of possible responses in a task. This information is useful for guiding choices 

in order to collect necessary resources according to need, risk, effort, and other factors. To 

date, little direct evidence of the encoding or use of schemas by neural ensembles has been 

reported. Here, I present novel evidence that ACC neurons encode several abstract task 

features of the task state, some of which are determined by un-cued changes in reward 

probability. Rats performed a binary choice task with probabilistic rewards. The reward 

probability was higher at one feeder for a block of trials, after which the other feeder 

became the high-probability feeder for the subsequent block. The ACC distinguished 

blocks when the animal was stationary at the beginning of each trial. It also recalled past 

reward. Once the animal began the trial, information about block and reward diminished, 

and information about the future choice emerged. I show that encoding of block is 

independent of previous reward and choice. Interestingly, block encoding was not different 

on trials when animals chose the lower probability option. Together, these data indicate 

that ACC encodes abstract features of the task pertinent to decisions, but that other brain 

regions appear to select actions on most trials. This is consistent with proposals that the 

ACC plays a supervisory role useful for rapidly shifting strategies when task contingencies 

change. 
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3.1 Introduction 

The Anterior Cingulate Cortex (ACC) is thought to use information from past 

experience to create predictive models that map context and events onto appropriate 

responses, thereby improving the cost-benefit of outcomes (M. M. Botvinick, Cohen, and 

Carter 2004; C. Amiez, Joseph, and Procyk 2006; Kennerley et al. 2006; Matthew F.S. 

Rushworth et al. 2011; Heilbronner and Hayden 2016; David R. Euston, Gruber, and 

McNaughton 2012; Shenhav, Cohen, and Botvinick 2016).  To accomplish this, the ACC 

tracks many task variables relevant to decision making. These variables include positive 

and negative outcomes (Gehring and Willoughby 2002; Hayden and Platt 2010; C. Amiez, 

Joseph, and Procyk 2006; Kennerley and Wallis 2009a; Mashhoori et al. 2018; Hashemnia, 

Euston, and Gruber 2020), the value of unchosen options (Blanchard and Hayden 2014), 

fictive reward (Hayden, Pearson, and Platt 2009), and the average value of options available 

in the environment (Kolling et al. 2012). The ACC is also shown to be sensitive to the cost 

of options, including physical effort (Croxson et al. 2009; Klein-Flugge et al. 2016; Prevost 

et al. 2010) and mental effort (Engström, Landtblom, and Karlsson 2013; Hosking, Cocker, 

and Winstanley 2014). The ACC integrates cost and benefit information to estimate option 

utility, and biases decisions toward the optimal choice (Hillman and Bilkey 2010; Shenhav, 

Botvinick, and Cohen 2013). Some studies have reported direct encoding of the utility by 

the ACC neurons in rodents and primates (Kennerley and Walton 2011; Wallis and 

Kennerley 2011; Hashemnia 2019). 

In addition to ACC’s role in estimating option value and creating associations 

between actions and outcomes (S. Ito et al. 2003; K. Matsumoto, Suzuki, and Tanaka 2003; 

Williams et al. 2004; C. H. Luk and Wallis 2009; Hayden and Platt 2010), several studies 
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have implicated the ACC in triggering adjustments in action plans or strategies when they 

are no longer beneficial. In this view, ACC activity is linked to the receipt of information 

that leads to changes in a subject’s internal model of a task (Hayden et al. 2011; Quilodran, 

Rothé, and Procyk 2008). This claim is further supported by ACC’s signaling of reward 

prediction errors (Kennerley, Behrens, and Wallis 2011; M. Matsumoto et al. 2007; Seo 

and Lee 2007) and surprise (Cavanagh et al. 2012; Wessel et al. 2012; Nee, Kastner, and 

Brown 2011). A related apparent role of the ACC is to supress a default response when 

shift in strategy is likely to yield better returns (Paus et al. 1993; Shenhav, Botvinick, and 

Cohen 2013). 

In addition to neural recordings, the role of the ACC in guiding decisions is also 

informed by lesion studies. ACC lesions or inactivation impair animals’ ability to select the 

appropriate response in a reward-based selection task (Keisetsu Shima and Tanji 1998; 

Hadland et al. 2003), evaluate the costs and benefits of actions (Amemori and Graybiel 

2012; Friedman et al. 2015), change strategy as the value of options change (Kennerley et 

al. 2006; Kawai et al. 2015), or explore alternative choices (Tervo et al. 2014).   

Although evidence supporting the ACC’s involvement in cognitive and executive 

control is plentiful, the specific purpose it subserves and a mechanistic explanation of its 

function are still under debate. I advocate here that the ACC creates and maintains models 

related to multiple strategies that the brain can use to solve problems. These strategies 

compete with each other and compete with other brain circuits utilizing distinct strategies 

to influence choice.   
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3.2 Results 

3.2.1 Free and forced-choice trials are distinguishable in the middle arm of the maze  

The ACC is proposed to help optimize choice by shifting responses more quickly 

than is possible by reinforcement-driven systems when environmental contexts change. If 

so, it stands to reason that the ACC will play a larger role in guiding behaviour when the 

animal is free to choose among several options, as compared to conditions in which only 

one course of action is possible. We evaluated this by testing whether ACC activity was 

different in free-choice trials, in which the rats were able to choose either of two target 

feeders, and forced-choice trials, in which animals could only access one feeder. We did 

this by computing the accuracy by which we could determine the trial type based on ACC 

activity. Specifically, we computed classification accuracy of free/forced trials in different 

regions (spatial bins) of the maze. The highest accuracies were obtained in the bins in the 

middle arm of the maze (Figure 3.1), which are the regions before and approaching the 

point at which the animal must turn. The highest obtained accuracy was 75% (std = 5.75; 

t4 = 9.69; p < 0.001 vs null hypothesis of no encoding; power0.01 = 1.00) in the second bin 

of the middle arm.  

Because free and forced trials were presented randomly, the high accuracy of trial 

type detection prior to the turn point is likely due to unplanned auditory and visual 

information. Forced-choice trials were implemented by the closing of a motorized gate so 

as to block access to one of the gates. This typically occurred while rats were exiting the 

central feeder, and the motor actuation was clearly audible. Moreover, gates in the closed 

state were visible as rats approached the ‘T’ junction. Therefore, visual observation of a 

gate was indicative of a forced-choice trial.  
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Furthermore, the average classification accuracies in other regions of the maze are 

close to chance. The cues indicative of trial type were less pronounced in these other 

regions. Therefore, it is unclear whether the prominence of free/forced encoding in ACC is 

higher on approach to the turn point because it is useful for guiding behaviour, or because 

this is the region in which the relevant sensory input is greatest.  

 

3.2.2 Block type influences animals’ choices   

The reward probabilities among the target feeders were always unequal, but 

remained constant within blocks of 40 or 50 consecutive trials, before reversing. The high 

utility feeder delivered reward on 80% of trials, whereas the other feeder paid out on 20% 

of trials. The high utility feeder alternated several times between the right and the left 

0.45
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Figure 3.1. Accuracy of decoding trial type (free vs forced-choice). ‘*’ 
represents p < 0.01. The accuracies are highest in the middle arm of the maze, 
which correspond to the time/position at which the animal has auditory and visual 
information about the barrier state. 
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feeders during each session. Knowledge about this block structure is useful for maximizing 

reward because animals can exploit the temporal correlations to facilitate choice shifts 

shortly after block switches and prevent shifts at inappropriate times.  

The choices of the animals indicated that they typically detected block changes after 

the first 10 trials in a block and changed their choices accordingly (Figure 3.2). The ratio 

of optimal to sub-optimal choices are near or below chance level during the first 10 trials 

but increase sharply afterward. We therefore considered the first 10 trials in each block as 

adaptation trials.  

 

 

We note that both animals had a bias toward the right-side feeder. The bias was 

stronger in rat #2, which tended to go to the right-side feeder even when the optimal choice 

was the feeder on the left. This bias explains why the ratios of optimal choices in the second 

trial group in sessions 4 and 5 (rat #2 sessions) were lower than the other three sessions (rat 

#1 sessions). 
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Figure 3.2. Choice adaptation within blocks. Ratios of optimal choices to all 
choices made in consecutive groups of 10 trials, averaged over blocks in each 
session. The performance during the first 10 trials were close or below the chance 
level. After 10 trials, however, the rats detected the change in high utility feeder 
location and changed their choice preference accordingly.  
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We next sought to identify the decision-making strategy used by each subject to 

generate the pattern of choices we observed in free trials. We considered three strategies: 

choosing the high-utility feeder in each block (strategy name: block); choosing a preferred 

side independent of reward or block (strategy name: preference), and choosing the same 

side as the previous trial if the animal was rewarded, and switching to the other side if no 

reward was delivered (strategy name: win stay, lose shift). We excluded the first 10 trials 

(adaptation trials) in each block for this analysis.   

The block strategy was the best predictor of choice in 4 of the 5 sessions (Figure 

3.3). In session 5, due to the animal’s strong bias for one feeder, the preference strategy 

was the best predictor of choice. 
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Figure 3.3. Predictability of choice by three different strategies. 1) choosing 
the optimal feeder in each block (block strategy), 2) choosing the preferred feeder 
each time (preference strategy), and 3) win stay, lose shift strategy. In 4 out of 5 
sessions, the block strategy is the best predictor of the behaviour. 
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3.2.3 Block type is decodable at the center feeder  

The analysis of behaviour indicated that the predominant choice strategy was to 

select the high-utility feeder in each block. This suggests that rats do utilize information 

about blocks. We thus next sought to determine if ACC neurons encoded information about 

block. Because block identity is strongly correlated with reward probabilities and choice 

(consequently location) in well-performing rats, we restricted the analysis to the middle 

arm of the maze, which is prior to the decision execution and reward.  

For this analysis, we excluded the forced trials and the first 10 trials in each block 

(i.e., the adaptation trials). The highest mean accuracy was 64.2% (std = 5.76; t4 = 5.51; p 

= 0.002 vs chance; power0.01 = 0.886), achieved in the bin associated with the center feeder. 

The accuracy was not significantly higher than chance in other spatial bins in the middle 

arm (Figure 3.4).  

 

 

Figure 3.4. Accuracy of decoding block type in spatially-binned regions of the 
middle arm. ‘*’ indicates p < 0.01. The highest accuracy was achieved in the bin 
associated with the center feeder (64.2%, p = 0.002) 
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The results suggest that neurons in the ACC were most sensitive to block type at 

the start of each trial when the rats were stationary at the center feeder. However, ACC 

activity did not represent the block type once the animal moved away from the center 

feeder.   

Next, we computed the block decoding accuracy at the center feeder for the 

adaptation trials (10 first trials of each block). The average accuracy was 47.59 and not 

significantly different from chance (std = 7.04; t4 = 0.766; p = 0.48). The result confirms 

that during adaptation trials, a clear block signal was not present. 

 
3.2.4 The choice signal is weak in the middle arm but strong in the side arms 

Next, we investigated if ACC encoded the animal’s choice in specific regions of the 

maze. We computed the accuracy of choice decoding in two stages. The first stage, which 

we refer to as the prospective stage, covered the period from the beginning of a trial until 

arrival at the one of the side feeders. The second stage, referred to as the retrospective stage, 

covered the period from departure at the selected target feeder until arrival to the ‘T’ 

junction of the maze in the next trial. For this analysis, we excluded the first 10 trials in 

each block. 

In the prospective stage, the accuracies in the bins located in the middle arm of the 

maze were low (Figure 3.5.A). The lowest accuracy was 54.8% (std = 9.41; t4 = 1.13; p = 

0.16; power0.01 = 0.06), obtained in the center feeder bin. The accuracy increased as the 

animal moved toward the ‘T’ junction, and it approached 100% as they transitioned into 

the side portion of the maze.  

This increase in the accuracy of choice decoding as the animals move to the sides 

of the maze is predicted by previous studies showing that ACC activity is highly sensitive 
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to the chosen path (Cowen, Davis, and Nitz 2012; D. R. Euston and McNaughton 2006) 

and the position of the animal in similar tasks (Mashhoori et al. 2018). In the present task, 

the running path of the rat diverges as it approaches the T junction for trials to the right as 

compared to left; therefore, the accuracy for choice classification improves. This suggests 

that in the middle arm of the maze, the ACC is encoding position rather than choice.  

A)            Prospective Stage 

 

B)          Retrospective Stage 

 

Figure 3.5. Accuracy of decoding choice. (A) Accuracy of decoding choice in the prospective 
stage. ‘*’ represents p < 0.01. The accuracies are low in the middle arm of the maze. The lowest 
accuracy is at the center feeder bin (54.8%, p = 0.16). The accuracy increases as the animals 
move toward on side of the maze, and it approaches 100% as they enter one of the side arms. (B) 
Accuracy of decoding choice in the retrospective stage. The accuracy is high in all regions of the 
side and bottom parts of the maze, and it stays high when the rat is at the center feeder, in the 
beginning of the next trial.  

The low accuracy for choice detection at the center feeder contrasts with the 

relatively high accuracy for block type detection at the same location. This observation 

indicates that the block signal is not merely a correlate of the choice signal in the ACC. 

The relationship between the choice and block type signals at the center feeder will be 

investigated in more detail in the next section.  
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In the retrospective stage, the accuracy remained high in all spatial bins in the side 

and bottom parts of the maze. The accuracy for decoding previous choice was 77.4% (std 

= 13.09; t4 = 4.69; p = 0.004; power0.01 = 0.768) at the beginning of the next trial, when the 

rat was at the center feeder (Figure 3.5.B). This high accuracy can be attributed to the 

difference in the animal’s body orientation based on its returning path. The retrospective 

choice decoding accuracy dropped to chance as the rat moved away from the center feeder.  

 

3.2.5 Encoding of block and choice are temporally locked to the departure of the start 

feeder  

We next sought to determine if the signaling of block and choice were temporally 

locked to particular phases of the task. We therefore used a sliding window method, time-

locked to arrival at and departure from the center feeder, to partition data into bins of time. 

We computed the accuracy of decoding the two variables in each time bin. The width of 

the window and the step size were set to 250 ms and 50 ms, respectively. We first analyzed 

encoding with respect to arrival at the center feeder. The average velocity profile indicates 

that they have largely ceased running upon arrival to the center feeder (Figure 3.6.A). Time 

t = 0 represents the reach time to the center feeder. As shown, before reaching the center 

feeder, the velocity was high as the rats were moving towards the feeder. After the reach 

time, the velocity approached zero, and the animals were stationary for a period of time. 

Note that the animals’ heads typically move during reward consumption, leading to 

velocity greater than zero even though they are not moving along the main axis of the track. 

Figure 3.6.B and 3.6.C show the accuracy of the block and choice detection in each 

temporal bin, respectively. For block type detection, there is a cluster of high accuracy 
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points with an average accuracy of 61.1% (std = 3.58; t4= 6.90; p = 0.001; power0.01= 0.98) 

after the reach time to the center feeder, when the animals were stationary. During the same 

period, the average accuracy for choice detection is 54.4% (std = 3.88; t4 = 2.50; p = 0.033; 

power0.01 = 0.27), which is close to the chance level. After 0.5 s, the accuracy for block 

detection decreases. 

Figure 3.6.D illustrates the average accuracies for block type superimposed with 

choice decoding, in order to facilitate comparison among them. The accuracy for block 

detection was higher than the choice detection for almost all temporal bins. After arrival at 

the center feeder, there are two point clusters where the differences are statically significant 

(p < 0.05). This suggests that as the animals reached the center feeder and became 

stationary, the strength of the block type signal in the ACC increased and became stronger 

than the choice signal. 
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A                             Velocity B                          Block Type 

C                               Choice  D                   Accuracy Difference 

 

 

  

 
Figure 3.6. Dynamic changes in encoding of block and choice as the rat arrives at the 
center feeder. (A) Mean and standard deviation of head velocity as the rat reaches the center 
feeder (t=0). (B) Decoding of block type in temporal bins centered on arrival to the center 
feeder. Asterisks ‘*’ indicate significant difference from chance levels at p=0.01. (C) Decoding 
of choice. Same format as in B. (D) Superposition of mean decoding accuracy of choice and 
block. Asterisks ‘*’ indicates statistically significant (p < 0.05) difference of decoding of these 
variables. There are two point clusters during which the accuracy for block type detection is 
significantly higher than the choice detection. 
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We next repeated these analyses with respect to the departure from the center 

feeder. Time t = 0 represents the movement initiation time of departure from the center 

feeder (Figure 3.7.A). Figure 3.7.B and 3.7.C show the accuracy of block and choice 

detection in each temporal bin, respectively. For block type detection, there is a cluster of 

high accuracy points with an average accuracy of 59.5% (std = 2.42; t4 = 8.75; p < 0.001; 

power0.01= 0.99) shortly before the animal starts running. During this period, the animal 

was stationary. During the same period, the average accuracy for choice detection is 52.6%, 

which is not significantly above the chance level (std = 6.44; t4 = 0.91; p = 0.207; power0.01 

= 0.05). After the initiation of movement, the accuracy for block detection decreases while 

the accuracy for choice detection increases.  

Figure 3.7.D illustrates the average accuracies for block type and choice detection 

superimposed with one another. The accuracy for block detection is significantly higher 

than the choice detection before movement initiation (p < 0.05). The increase in the strength 

of the block type signal right before the animals started running, and the weakness of the 

choice signal in the same period, raises the possibility that the ACC contains a signal that 

guides decision-making, but the ACC is not responsible for the choice itself. The increase 

in the accuracy of choice detection after the initiation of movement suggests that the 

representation of choice in the ACC follows action, and ACC activity is not predictive of 

choice. 
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A                             Velocity B                               Block 

C                                Choice  D                            Difference  
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Figure 3.7. Dynamic changes in encoding of block and choice as the rat departs from the 
center feeder. (A) Mean and standard deviation of head velocity as the rat departs from the 
center feeder (t=0). (B) Decoding of block type in temporal bins centered on departure from to 
the center feeder. Asterisks ‘*’ indicate significant difference from chance levels at p=0.01. (C) 
Decoding of choice. Same format as in B. (D) Superposition of mean decoding accuracy of 
choice and block. Asterisks ‘*’ indicates statistically significant (p < 0.05) difference of 
decoding of these variables. The accuracy for block detections peaks before movement 
initiation, while the accuracy of choice detection increases after the animal starts moving.  
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3.2.6 No reward expectation signal in the middle arm of the maze  

Next, we investigated if ACC neurons encoded a reward expectation signal in the 

middle arm of the maze. Because reward delivery by the high-utility and low-utility feeders 

in each block were probabilistic, even with perfect knowledge of the block type, it would 

not be possible for the rats to predict the outcome with 100% accuracy. To partially control 

for this unpredictability, we only used the data from trials in which the animals chose the 

optimal feeder and received the reward or chose the non-optimal feeder and received no 

reward. This should provide the largest contrast in reward prediction. We also excluded the 

first 10 trials in each block. Figure 3.8 illustrates the accuracies for predicting reward in the 

spatial bins before the animals reached the side feeders. The accuracies in all bins are 

around the chance level, which indicates that there was no reward expectation signal in the 

ACC when the rats were in the middle arm of the maze.  

 

 

  

Figure 3.8. Accuracy of prospective reward prediction in the middle arm of 
the maze. No accuracy is significantly higher than the chance level. 
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A 

 
 
B 

 
 
C 

 
 
 
  

Figure 3.9. Position of the rat in one session for progressive time bins before and after 
arrival at side feeders. (A) The period before the reach time to the side feeders. (B) Position 
in ‘no reward’ trials. (C) Position in ‘rewarded’ trials. The animal left the feeder zone much 
earlier in ‘no reward’ trials compared with ‘rewarded’ trials. 
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Note that reward prediction is possible if information about choice and block type 

are both available. That is, the choice signal predicts the side feeder that the rat will choose 

in the current trial, and the block type signal specifies the expected outcome at that feeder. 

Thus, the low accuracy of the reward prediction in the center arm was expected because 

choice and block type were not simultaneously signaled in the middle arm. 

 
 
3.2.7 ACC neurons encode the outcome at the side feeders 

Next, we investigated the response of ACC neurons to reward outcomes (i.e., 

delivery or omission) at the side feeders. For this analysis, we used a sliding window 

method time-locked to the arrival at the side feeders and computed the accuracy of outcome 

decoding for each temporal bin.  

Figure 3.10 illustrates the accuracy of the outcome detection for each temporal bin. 

Note that since the zero on the time axis represents the reach time to the side feeders, 

negative points in Figure 3.10 represent reward expectation, and positive points represent 

the outcome encoding. The positions of the animals in the no-reward and rewarded trials 

during different time windows relative to the reach time to the side feeders are shown in 

Figure 3.9.  

The results showed no clear reward expectation signal as the animals approached 

the side feeders, evident by the low accuracy before reaching the feeders. However, the 

accuracy increased sharply and reached 85% after the animals arrived at the side feeders, 

indicating a clear encoding of the outcome after the outcome was revealed to the animals. 

Note that although the animals left the side feeders much earlier in the ‘no reward’ trials 

compared to ‘rewarded’ trials, during the period shown in Figure 3.10, the positions of the 
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animals in the ‘rewarded’ and ‘no reward’ trials were the same. Therefore, outcome 

decoding is not an artifact of the difference between the positions of the animals in the two 

groups.   

 

 
 
 

3.2.8 Information about the previous reward at target feeders is recalled at the starting 

feeder 

To identify if/when the ACC recalled information about the outcome in a trial, we 

computed the accuracy of the reward decoding in the spatial bins after the side feeder zone, 

as the animals moved away from the side feeders and approached the starting feeder.  In 

each session, we restricted our analysis to the trials in which the rat chose its favorite feeder 

to eliminate the confounding effect of choice. Figure 3.11 displays the accuracies for 

different spatial bins on the maze. The average accuracy in the vicinity of the side feeder is 

60.1% (std = 5.78; t4 = 3.91; p = 0.009; power0.01 = 0.61; power0.05 = 0.94). The accuracy 
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Figure 3.10. Accuracy of reward outcome detection in time bins locked to the 
arrival at the side feeders. The results show no clear reward expectation signal 
as the animals approached the feeders. However, there is clear encoding of 
outcome after they arrive at the feeder. 
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decreases as the animals move away from the feeder and reaches 53% (std = 4.94; t4 = 1.43; 

p = 0.113; power0.01 = 0.09) by the end of the trial. Despite the decreasing trend in the 

accuracy of reward decoding in a given trial, there is a spike in the accuracy when the 

animals arrive at the center feeder, at the beginning of the next trial (accuracy 58%; std = 

4.20, t4 = 4.02; p = 0.008; power0.01 = 0.63; power0.05 = 0.95). From there, the accuracy 

decreases again.  

 

 

 

Analysis of the dynamic changes in the accuracy of outcome decoding revealed two 

peaks: one occurred after arrival at the center feeder (Figure 3.12.A), and the other, before 

departure from the feeder (Figure 3.12.B). This pattern is similar to what we observed in 

block detection accuracy at the center feeder.  

 

Figure 3.11. Accuracy of decoding retrospective outcome in different spatial 
bins after the animals move away from the side feeder area. The accuracy has 
a decreasing trend during the same trial. However, there is a peak in accuracy when 
the animals arrive at the center feeder at the beginning of the next trial. ‘*’ indicates 
significant difference from chance at p = 0.01. 
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A                                           Arrival to the center feeder 

 

 

B                                  Departure from the center feeder 
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Figure 3.12. Accuracy of decoding the previous outcome in different temporal 
bins relative to the arrival/departure time at the center feeder.  
(A) Decoding of the outcome in temporal bins centered on arrival at the center 
feeder. Asterisks ‘*’ indicate significant difference from chance levels at p=0.01. 
(B) Decoding of the outcome in temporal bins centered on departure from the 
center feeder. There are two peaks in the accuracy after arrival at and (a weaker 
one) before departure from the feeder. 
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3.2.9 Reward history is distinguishable 

The optimal choice in the task depended on the block type. Because the reward 

delivery was probabilistic, inferring the block type based on several past rewards was a 

better strategy than inference solely based on the immediately prior outcome. We examined 

the response of the ACC to identical outcomes with different histories to determine whether 

reward history affected the neural activity.  

We divided the trials in each session into four groups based on the current and 

previous outcomes: A) both the current and previous trials were rewarded, B) the current 

trial was rewarded, but not the previous trial, C) neither the current trial nor the previous 

one was rewarded, D) the current trial was not rewarded, but the previous trial was. 

Accordingly, the trials in groups A (reward → reward sequence) and B (no reward → 

reward sequence) had the same outcome for the current trial (reward) but different outcome 

histories. The same applied to the trials in groups C (reward → reward sequence) and D 

(reward → no reward sequence).  

To determine whether ACC response to identical outcomes differed based on the 

reward history, we assessed the discriminability of the trials in groups A versus B 

(‘rewarded’ condition) and C versus D (‘no reward’ condition) in different temporal bins 

between reaching the side feeder and moving away from it. We used a sliding window 

method, with a width of 250 ms and steps of 50 ms, time-locked to the reach time to the 

feeder to compute the classification accuracy for each temporal bin. For this analysis, we 

only used the trials in which the rats went to their preferred side feeder (both free and 

forced-choice trials) because the number of available trials for that feeder was higher, and 

limiting data to one feeder would eliminate to confounding effect of location and choice. 
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Figures 3.13.A and 3.13.B illustrate the results for the ‘no reward’ and ‘rewarded’ 

conditions, respectively. The duration of the time shown for the ‘no reward’ condition 

(Figure 3.13.A) is shorter than the ‘rewarded’ condition (Figure 3.13.B) because the 

animals moved away from the feeder earlier in the ‘no reward’ condition compared with to 

‘rewarded’ condition. 

The results show that, for each condition, there are two clusters of points during 

which the reward history is distinguishable from ACC activity with statistical significance 

(‘*’ in the figures represent p < 0.01). The peak of the first cluster in each condition occurs 

during the first 0.5 s of reaching the feeder, when the outcome for a trial is revealed. The 

second peak occurs after 1 s in the ‘no reward’ condition and 2 s in the ‘rewarded’ 

condition. In both conditions, the second peak is around the time that the animals moved 

away from the feeder (Figure 3.9).  

Note that what is referred to as encoding of the reward history here is equivalent to 

a reward prediction error (RPE) signal discussed in many other papers. In this 

interpretation, the animal is presumed to expect the same outcome over subsequent choices 

to the same feeder. Therefore, an RPE signal appears in the ACC when the outcomes were 

incongruent. A comparison between the results for the two conditions shows that the peaks 

in the ‘no reward’ condition are higher than the peaks in the ‘rewarded’ condition, 

suggesting that the response to the unexpected negative outcome might be stronger than 

the unexpected positive outcome. This ‘negative surprise’ has been described in the ACC 

of primates (Alexander and Brown 2011; Egner 2011). 

Regardless of whether the separation of groups in each condition results from the 

direct encoding of reward history or an RPE signal, the results show that ACC response to 

identical outcomes differed based on the recent outcome history.  
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A                    ‘no reward → no reward’ versus ‘reward → no reward’  

 

 

B                        ‘no reward → reward’ versus ‘reward → reward’ 
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Figure 3.13. Accuracy of decoding outcome history for identical outcomes at 
a side feeder. (A) The accuracy of distinguishing between the ‘no reward → no 
reward’ versus ‘reward → no reward’ sequences (‘no reward’ condition). (B) The 
accuracy of distinguishing between the ‘no reward → reward’ versus ‘reward → 
reward’ sequences (‘rewarded’ condition). The highlighted areas show the 
standard deviation. ‘*’ represents p < 0.01. For each condition, two peaks in the 
accuracy can be observed. The first peaks occur during the first 0.5 s of reaching 
the feeder, when the outcome for a trial is revealed. The second peaks occurs as 
the animals moved away from the feeder.  
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3.2.10 Block type signal is independent of the prospective choice signal  

Within each session, block type was correlated with choice and previous reward. 

This correlation was caused by the tendency of rats to choose the high-probability reward 

option for each block. To determine if the block type signal is independent of these other 

two variables, we developed a novel machine learning method to remove choice 

information from the neural activity and examined its effect on block decoding. A high 

degree of dependency between these two signals would entail a lower accuracy for block 

type detection after removal of choice information. 

Because block decoding had the highest accuracy at the center feeder, the analysis 

was performed on the data from that region. Forced trials and the first 10 trials in each 

block were excluded. For every session, the average firing rates of neurons when the 

animals were at the spatial bin associated with the center feeder were used as the input 

samples. First, a filtering network was used to transform the samples into a new space 

where the information about the next choice (prospective choice) was removed. Then, 10 

different classifiers were used to assess accuracies for the prospective choice and block 

type detection from the transformed data. The maximum accuracy for each variable was 

recorded as an estimation of the maximum achievable accuracy for that variable from the 

transformed data. The same classifiers were used to assess the maximum achievable 

accuracy for the prospective choice and block type from the original data. In the next 

experiment the same process was repeated for removal of variation informative about the 

retrospective choice (choice in the previous trial). 

Figure 3.14 illustrates the results that were obtained by averaging the accuracies 

over all sessions. The bars labeled “Original” show the maximum accuracies for decoding 
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choice and block type from the original data. The bars labeled “Transformed” show the 

maximum accuracies for decoding the next choice and block type from the transformed, 

with information about choice removed.  

In the first experiment, after transformation, the maximum accuracy obtained by 

the classifiers for decoding the next choice is not above the chance level (accuracy 49.40%; 

std = 0.4, t4 = -3.2071; p = 0.984; power = 0.00), indicating that the network was able to 

eliminate the variation related to the prospective choice in the data. In contrast, the accuracy 

for decoding block type from the transformed data (68%) is not significantly different from 

the accuracy obtained on the original data (std = 2.70; t4 = 0.54; p = 0.62; power0.01 = 0.02), 

indicating that information about block type was retained after transformation (Figure 

3.14.A).  

In the second experiment, the maximum accuracy obtained by the classifiers for 

decoding the previous choice from the transformed data is not above the chance level 

(accuracy 50.76%; std = 2.68, t4 = 0.634; p = 0.280; power = 0.031), indicating that the 

network was able to eliminate the variation informative about the retrospective choice. In 

contrast, the accuracy for decoding block type from the transformed data is 66.6% which 

is not significantly different from the accuracy obtained on the original data (std = 4.32; t4 

= 1.43; p = 0.226; power0.01 = 0.0519), indicating that information about block type was 

retained after transformation (Figure 3.14.B).  

Being able to decode the block type from the transformed data, after removal of 

prospective and retrospective choice information, with the same accuracy as the original 

data suggests that the block type signal in the ACC is independent of the choice signal. 
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A)                                                   Prospective Choice  

 

B)                                                  Retrospective Choice  

 

Figure 3.14. Comparison between accuracies for choice and block type detection before and 
after removal of choice information. (A) Removal of prospective choice information. After 
transformation, the accuracy for choice detection is not significantly higher than chance level (p 
= 0.984), while the accuracy for block type detection is not significantly different from the one 
achieved on the original data (p = 0.62). (B) Removal of retrospective choice information. After 
transformation, the accuracy for choice detection is not significantly higher than chance level (p 
= 0.280), while the accuracy for block type detection is not significantly different from the one 
achieved on the original data (p = 0.23). 
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3.2.11 Block type signal is independent of the previous reward signal  

Next, we used the same procedure explained in the previous section to investigate 

the dependency between the block type and previous outcome signals in the ACC at the 

center feeder. We eliminated the information about the previous outcome from the ACC 

activity at the center feeder and examined its effect on the accuracy of decoding the block 

type. A high degree of dependency between these two signals would result in a lower 

accuracy for block type detection from the transformed data.  

For this analysis, forced trials and the first 10 trials in each block were excluded. 

For every session, the average firing rates of neurons when the animals were at the spatial 

bin associated with the center feeder were used as the input samples. The proposed network 

was then used to transform the samples into a new space where the information about the 

previous outcome was removed. Then, 10 different classifiers were used to assess the 

accuracies for the previous outcome and block type detection from the transformed data. 

The maximum accuracy for each variable was recorded as an estimation of the maximum 

achievable accuracy for that variable from the transformed data. The same 10 classifiers 

were used to assess the maximum achievable accuracy for the task variables from the 

original data.  

Figure 3.15 illustrates the average accuracies obtained in each condition. The bars 

labeled “Original” show the maximum accuracies for decoding the two variables from the 

original data. The bars labeled “Transformed” show the maximum decoding accuracies 

from the transformed data, with information about the outcome removed. The results show 

that after transformation, the maximum accuracy obtained by the classifiers for decoding 

the outcome is not above the chance level (accuracy 50.7%; std = 2.25; t4 = 0.65; p = 0.28;  
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power = 0.03), indicating that the variation related to the outcome was successfully 

eliminated from the data by the network. On the other hand, the accuracy for decoding 

block type from the transformed data (67%) is not significantly different from the accuracy 

obtained on the original data (std = 4.02; t4 = 1.08; p = 0.34; power = 0.03), indicating that 

block type information was retained in the transformed data. Achieving the same decoding 

accuracy for block type from the transformed data, after removing the variation informative 

about the outcome, as the accuracy on the original data suggests that, at the center feeder, 

the block type signal in the ACC is independent of the outcome signal. 

 

 

3.2.12 The block type signal is stable even when the choice is not optimal 

As shown before, the animals were usually able to notice the shift in the block type 

after about 10 trials (adaptation trials), and they changed their choices accordingly. 

However, they occasionally chose the non-optimal option even after the adaptation trials. 
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Figure 3.15. Comparison between accuracies for outcome and block type 
detection before and after removal of retrospective outcome information. 
After transformation, the accuracy for outcome detection is not significantly higher 
than the chance level (p = 0.28), while the accuracy for block type detection is not 
significantly different from the one achieved on the original data (p = 0.34). 
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Because the block type signal had the highest strength at the center feeder, it was possible 

that making the non-optimal choice was the result of a defective block signal at that 

location.   

To test this hypothesis, first, we eliminated the variation related to choice from ACC 

activity at the center feeder. Then, we divided the trials in each session into two groups, 

depending on whether the choice in a trial was optimal or not (defined by block type). We 

excluded the forced and the first 10 trials in each block. A support vector machine classifier 

with a polynomial kernel of degree 1 then was trained on the transformed data of the trials 

in the optimal group to decode the block type. The classifier was used to detect the block 

type for the trials in the non-optimal group. If making a non-optimal choice was due to a 

defective block type signal at the center feeder, the accuracy obtained by training on the 

optimal group and testing on the non-optimal group would be lower compared with the one 

obtained by training and testing the classifier on a mixed set of optimal and non-optimal 

trials. However, the results, illustrated in Figure 3.16, showed no significant difference 

between the accuracies in the two conditions (std = 7.98; t4 = 0.58; p = 0.59; power0.01 = 

0.02). 

The results suggest that representation of block type in the ACC was stable even 

when the animals did not make the optimal choice.  



78 
 

 

  

Mixed-Mixed Optimal-Not Optimal 

Train-Test Sets

0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y
Figure 3.16. Comparison between accuracy of block detection when a classifier is 
trained and tested on a mixed dataset of optimal and non-optimal trials, versus 
when the classifier was trained on the optimal trials and testes on non-optimal 
trials. The result show no significant difference (p = 0.59). 
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3.3 Discussion 

We recorded neural activity in the ACC of freely moving rats performing a two-

choice task on a figure 8-maze. The task was organized into blocks of 40-50 consecutive 

trials in which one feeder had a higher probability of reward (pro=0.8) than the other. The 

reward probabilities reversed among feeders between subsequent blocks. Therefore, the 

optimal choice for each trial depended on the block type. Free and forced trials were 

interspersed randomly throughout each session. 

We found that ACC activity was most discriminative of free versus forced trials in 

the middle arm of the maze, shortly after departing the starting feeder. This is well before 

the ‘T’ intersection that forced a turn to reach one of the feeders. These were also the 

regions where the animal was exposed to the unplanned auditory (motor noise) and visual 

(presence of gate) cues indicative of trial type. We found no evidence of ACC selectivity 

for the trial type in other regions of the maze where the cues indicative of trial type were 

less pronounced.  

Based on these results alone, it is unclear whether the prominence of free/forced 

trial type encoding in the ACC while the rat approached the turning point is due to its use 

in guiding behaviour, or simply a consequence that the sensory cues are most perceptible 

in this region. In the context of other studies, however, it appears that this encoding is part 

of a cognitive process. Specifically, prior papers from our group and an unrelated laboratory 

(Cowen, Davis, and Nitz 2012; Hashemnia 2019) reported weak or no encoding of trial 

type (free vs forced) by the ACC in tasks with slightly different designs that the one used 

here. Specifically, in the aforementioned studies, rewards were deterministic. Rewards 

were given on every trial regardless of choice, and reward magnitude delivered by each 
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feeder was fixed during trial blocks. Consequently, the rat could repeat its choice once the 

optimal option was found without re-evaluating the options. In contrast, in the current task, 

reward delivery and trial type were probabilistic. Therefore, optimal behaviour required 

constant evaluation of options based on the outcome history. The uncertainty of the 

outcomes and   frequent evaluations of the options in the current task may have caused a 

higher cognitive load, resulting in distinct patterns of activity in free versus forced trials. 

The behavioural analysis showed that choices in each session were influenced by 

shifts in the block type. Rats usually detected changes in the reward delivery probabilities 

during the first 10 trials of each block and shifted its choice bias in the subsequent trials 

accordingly. Also, the variability in the animals’ choices in most sessions could be better 

explained by a strategy based on choosing the high utility feeder in each block, as compared 

with a win-stay-lose-shift strategy or selecting a preferred feeder in every free trial. These 

observations indicate that the animals were able to track the shifts in the block type and 

utilized this information to optimize their choices. 

We found the highest discriminability of the block type in the ACC when rats were 

at the center feeder. Examination of the dynamic changes in the accuracy of block decoding 

revealed two peaks: after arrival to the center feeder, and just prior to departing from it to 

start the next trial. This result indicates that ACC activity signals the optimal choice at the 

beginning of each trial when the animal is still stationary. The strength of the block signal 

before movement initiation and its decline afterwards suggests that the block signal plays 

a role in decision-making. This finding is consistent with the role of ACC in evaluating the 

value of options with probabilistic outcomes (Kennerley et al. 2006) and biasing choices 

towards the higher utility option (Hillman and Bilkey 2010). Interestingly, during both 

peaks in block-type encoding, the accuracy of decoding the animal’s future choice was 
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significantly lower than at other times. This raises the possibility that the block type 

information is recalled before and during the initial phases of choice generation.  

The block type signal disappears as the animal starts running away from the start 

feeder. A potential factor contributing to the weakness of the block signal after movement 

onset is that ACC activity becomes dominated by encoding of other task variables, such as 

position, motor responses, and environmental features. This is primarily supported by the 

observation that both peaks in the block type detection accuracy occur when the animal is 

stationary. The encoding of position, in particular, may be analogous to the activity of place 

cells in the hippocampus, which predominate encoding during movement, but is weak when 

the animal is stationary (O’Keefe and Dostrovsky 1971; M. A. Wilson and McNaughton 

1993). Therefore, as the animal starts moving, the activity of place encoding cells in the 

ACC might obscure the block. 

Our results revealed a low accuracy for detecting choice in the middle arm of the 

maze. In contrast to what we observed for block type, the choice decoding accuracy was 

the lowest at the center feeder, and it increased only after the rat departed from the center 

feeder. This observation indicates that choice signal in the ACC follows action and is not 

predictive of it. This claim is consistent with findings in previous studies (Cowen, Davis, 

and Nitz 2012). We note that ACC firing rate biases were reported to be predictive of choice 

behaviour when at least one option involved competitive effort, for example climbing a 

barrier (Hillman and Bilkey 2012). However, competitive effort was not a factor in the 

present task, and so likely accounts for the differences in findings. 

The accuracy of choice detection increased as the animal approached the T-junction 

and reached to approximately 100% upon the entrance to one side of the maze. The 

accuracy remained high for the remainder of the trial. The increase in the accuracy of choice 
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detection can be explained by the divergence of the running trajectory in trials to the left 

compared with the right side of the maze. Previous studies show that ACC activity is highly 

sensitive to the route taken (Cowen, Davis, and Nitz 2012) and the rat’s position on a maze 

(Mashhoori et al. 2018; D. R. Euston and McNaughton 2006). Therefore, the apparent 

choice encoding is likely to be a correlate of the animal’s position. On the other hand, 

numerous studies have reported encoding of action by the ACC and have pointed to its role 

in creating associations between actions and outcomes (Hayden and Platt 2010; C. Amiez, 

Joseph, and Procyk 2006; C. H. Luk and Wallis 2009; Quilodran, Rothé, and Procyk 2008). 

Therefore, it is possible that, at least in some phases of the task (e.g., when the animal is at 

a side feeder), ACC activity represents choice. Due to the perfect dependency between 

choice and position, it is impossible to disentangle the choice and position signals in the 

current dataset.   

Our results showed no evidence for the presence of a reward expectation signal 

when the animal was in the in the middle arm of the maze, or as it approached the side 

feeders. The absence of the reward expectation signal in the middle arm of the maze is in 

line with the results of previous studies (Cowen, Davis, and Nitz 2012). Although we did 

not find a strong reward expectation signal before arrival at the side feeders, we did find a 

strong encoding of reward outcomes (reward delivery or omission) by the ACC at the side 

feeders after the outcome was revealed, which is consistent with previous reports (Hayden 

and Platt 2010; C. Amiez, Joseph, and Procyk 2006; Kennerley and Wallis 2009a; 

Mashhoori et al. 2018; Hashemnia, Euston, and Gruber 2020).  

Furthermore, we found that the ACC’s response to identical outcomes differed 

depending on recent outcome history. Attention to reward history was particularly 

important in the current task because reward delivery during each block was probabilistic. 
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Therefore, inferring the block type based on the outcome history rather than a single 

outcome was the optimal strategy. This is in line with studies in both human and non-human 

primates demonstrating the critical role of the ACC in reinforcement-guided behaviour 

based on the history of actions and outcomes, as opposed to detecting or correcting errors 

based on a single outcome (Kennerley et al. 2006; Clay B. Holroyd and Coles 2008). 

We note that encoding of outcome history, as defined here, is equivalent to a reward 

prediction error (RPE) signal, representing the difference between the expected and 

obtained reward. The probability of two consecutive trials having the same outcome was 

0.68, which is much higher than the probability of encountering incongruent outcomes 

(0.32). An RPE signal appears in the ACC when the outcome is incongruent from 

expectation. Evidence of the RPE in the post-outcome activity of the ACC has been found 

in both electrophysiological recordings of single units (Kennerley, Behrens, and Wallis 

2011; M. Matsumoto et al. 2007; Seo and Lee 2007; Quilodran, Rothé, and Procyk 2008) 

and imaging studies (Céline Amiez et al. 2012; Kahnt et al. 2011). More generally, studies 

have shown elevated ACC activity in response to surprising outcomes (Cavanagh et al. 

2012; Wessel et al. 2012; Nee, Kastner, and Brown 2011) and unanticipated shifts in task 

contingencies (Alexander and Brown 2011; Behrens et al. 2007). This response can trigger 

a model update and shift choice bias in subsequent trials. This view is supported by 

previous studies linking ACC activity to the receipt of information that leads to changes in 

a subject’s internal model of a task (Hayden et al. 2011; Quilodran, Rothé, and Procyk 

2008) or choice strategy (Shenhav, Botvinick, and Cohen 2013). In the present study, the 

ACC’s response to omission following delivery on consecutive trials was stronger than the 

response to delivery following omission. This observation suggests that ACC’s response to 

an unexpected negative outcome is stronger than an unexpected positive outcome.  
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The signal representing reinforcement outcome weakened as the animal moved 

away from the side feeders. However, there was an increase in the signal when the rat 

reached the center feeder, suggesting a recall of the outcome at that point. The dynamic 

pattern of the accuracy was similar to the block type signal, with peaks upon arrival at and 

before departure from the feeder.  

The presence of both the block type and previous outcome signals at the center 

feeder, along with the similarity between their temporal changes, raises two possibilities. 

First, the representation of the block type may be highly dependent on the representation 

of the immediately previous outcome. In this view, the representation of the block type 

signal is mostly a correlate of recalling the previous outcome rather than a weighted average 

over many past outcomes. Based on the reward delivery probabilities in the task, the 

accuracy for inferring the block type from a single outcome is 80%. Additionally, most 

forms of applied reinforcement learning (i.e. those including a temporal discounting factor) 

give the most weight to recent reinforcements. Thus, the outcome value estimation is 

expected to depend strongly on recent outcomes. The block type only differs in outcome 

value expectation, so what we label as block type information may actually be a form of 

tracking expected outcome value. 

Alternatively, despite the dependency between block type and recent reinforcement, 

their representation in the ACC may be independent, such that each signal is used for a 

different purpose. Both the block type and previous reward outcome are critical information 

for two different decision-making strategies. The previous outcome is the main factor in a 

win-stay-lose-switch strategy, which is a short horizon policy based on the last outcome. 

Although win-stay-lose-switch is not optimum in the current task, it still provides a 

reasonable strategy. This strategy is a good predictor of choice in some sessions, suggesting 
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that rats may utilize it in some instances of the task. On the other hand, block type is the 

main factor for decision making based on the outcome history over several trials, which is 

the optimal strategy for this task. It is possible that these strategies, along with other 

alternatives, compete to influence choice. Our findings support this interpretation, as 

discussed below.  

Within each session, block type was correlated with choice and previous reward – 

that is, rats tended to choose the high-probability reward option for each block, and 

therefore gain reward more often than chance. Also, the representations of these task 

variables in the ACC might be dependent on one another due to inherent features of the 

cognitive processes involved. To determine if the block type signal is independent of these 

other two variables, we developed and used a novel method to removed information about 

choice or previous outcome from the neural activity prior to decoding block type. We found 

that removal of this information did not affect the accuracy of block decoding. This 

indicates that the representation of the block type in the ACC is independent from choice 

(both prospective and retrospective) and previous reward, and its decoding is not an artifact 

of its correlations with other variables.   

It has been shown that successful behaviour depends on the representation of 

coherent and distinct patterns in the ACC, and that a breakdown of these patterns leads to 

errors (Lapish et al. 2008). In the current task, the block type signal was most pronounced 

at the center feeder. Therefore, it is conceivable that non-optimal choices were due to 

defective block representation at that location. However, we found that block type 

representation in the ACC was not impaired on trials in which rats chose the low-

probability feeder. This finding is consistent with previous observations of a bias in ACC 

activity towards high-utility choices, even when the information is not immediately 



86 
 

reflected in behaviour (Hillman and Bilkey 2010). In other words, the animal can choose 

the sub-optimal option even when ACC encodes the optimal one. Our finding is also in line 

with reports of frequent updates of the task sets by the ACC, despite available options not 

being used instantly (Hyafil, Summerfield, and Koechlin 2009).  

In summary, we found that: 1) ACC activity distinguished between free and forced 

trials. 2) ACC neurons encoded the outcome at the target feeders. 3) ACC responses to 

identical outcomes differed based on the outcome history. 4) The block type and previous 

outcome signals were stronger at the center feeder compared with other regions of the maze. 

However, this strength coincided with the weakness of the choice signal at that location. 5) 

The block type and previous reward are both main factors in two decision-making strategies 

that the rats employ in a session. 6) The representation of the block type is independent of 

both choice and the previous reward. 7) The block type signal is stable even when the 

information is not reflected in the behaviour in a trial.  

Our findings support the hypothesis that the brain relies on multiple strategies to 

solve problems, and these likely depend on dissociated brain circuits. The ACC uses 

information about previous choices and their outcomes to create predictive models relevant 

to these strategies. The models include information about the predicted cost and value 

associated with each strategy. The ACC is also responsible for updating these internal 

models upon the receipt of new data. These strategies compete to influence choice. 

However, the ACC itself is not responsible for choosing between these strategies. Indeed, 

the information relevant to some alternative strategies might be represented by other brain 

areas. An example is the representation of default option value, which is considered the 

value of the default strategy in our view, by the vmPFC (Strait, Blanchard, and Hayden 

2014; Blanchard and Hayden 2014; Boorman, Rushworth, and Behrens 2013). This 
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information is utilized by another brain region that chooses the winning strategy, and 

consequently, the action. This is related to, but different from, the view that the ACC 

represents the cost and value of single actions and their outcomes. 
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3.4 Experimental Procedures 

3.4.1 Subjects 

In this study, two male Fisher-Brown Norway rats, aged 9 months old, were used. 

The rats were born on-site and housed individually in a 12h-12h reverse light cycle. One 

rat performed the task over three sessions and the other rat for two sessions. Animals were 

food restricted for the duration of the behavioural testing, and their weight was monitored 

to not drop below 85% of their baseline weight.   

 

3.4.2 Ensemble recording 

Established techniques for surgery and hyper-drive implantation were used to 

record ensemble activity with high-density electrophysiology (D. R. Euston and 

McNaughton 2006). Rats were habituated to handling for two weeks prior to the 

experiment. We used aseptic surgical techniques to implant onto each rat’s head a hyper-

drive device with 16 tetrodes that were independently lowered into the ACC. The tetrodes 

were electroplated with gold to an impedance of 200-400 kΩ. Neural signals and the 

positions of subjects were recorded with a digital acquisition system (Cheetah SX & Cube 

2, Neuralynx). Neural signals were amplified with a gain of 1000, digitized at 30 kHz, and 

recorded to a hard drive. The waveforms of action potentials were detected offline using 

semi-automated techniques and the clusters were checked manually using MClust. All 

procedures were performed in accordance with the Canadian Council of Animal Care and 

the Animal Welfare Committee at the University of Lethbridge 
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3.4.3 Behavioural apparatus 

 The task was implemented with a figure-8 track. There were three feeders on the 

maze that delivered chocolate beverage as the reward: the center feeder (located at the 

bottom of the center arm of the track), and two side feeders (one on each side of the maze). 

Figure 3.17.A illustrates the trajectory of a rat in one session and the positions of the feeders 

on the maze. Each trial began with the animal’s arrival at the center feeder. After receiving 

food at the center feeder, rats ran up the middle arm of the track and then made a right or 

left turn to reach one of the two target feeders.  

A 

 

B 

 

 

In 70% of trials of each session, the animal was free to go to either side of the maze 

(free-choice trials). In the rest of the trials, computer-controlled gates forced the animal to 

Figure 3.17. Schematic illustration of the maze and the rat’s trajectory.  
(A) The trajectory of the rat on the maze in one session. The circles show the 
locations of the feeders. The circles labeled A and B represent the side feeders. 
The one labeled C represents the center feeder. The grids depict how the maze was 
divided into a number of spatial bins. (B) The spatial bins on the maze. The bins 
having the same color on both side of the maze were considered identical in our 
analysis. 
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go to one side, with equal probability for the left and the right side (forced-choice trials). 

Free and forced-choice trials were distributed randomly in each session.  

In each trial, when the animal was at one of the side feeders, it either received a 

specific amount of food as reward or no reward at all. The amounts of reward for both side 

feeders were fixed and equal. Rats then ran along the lateral arms of the track to return to 

the start feeder. The center feeder delivered food in every trial to motivate rats to return to 

the start position.  

Each session consisted of 250 to 280 trials, divided into blocks of size 40 or 50. 

There were two block types, B1 and B2. The rewarding schedule was fixed during each 

block. For B1, the probability of delivering food by feeder A and B was 0.8 and 0.2, 

respectively. For the other block type, the probabilities changed to 0.2 for feeder A, and 0.8 

for feeder B. Therefore, during each block, one of the side feeders was the optimal choice. 

Block type alternated in each session. Forced-choice trials ensured that the animal sampled 

both options to detect the shift in block type.  

 

3.4.4 Data preprocessing 

A Gaussian kernel with a standard deviation of 50 ms was used to smooth the spike 

data. The resulting signal was binned by 50 ms. A square root transformation was then 

applied to the binned firing rates to normalize the activity distribution (e.g., make them 

more Gaussian) among neurons. Finally, a z-transform was applied to the activity of each 

neuron to make it have zero mean and unit variance. 
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3.4.5 The procedure for computing the accuracy of decoding a task variable 

Given a data set of input samples and their target values (i.e., labels), two samples 

were selected from each class randomly as the test set (4 samples in total). The remaining 

samples were used as the training set. The training set was balanced by up-sampling the 

instanced in the minority class. A classifier was trained on the training set and evaluated 

on the test set. This process was repeated 100 times. The average accuracy of the classifier 

over these 100 randomly constructed training and test sets was recorded.  

 

3.4.6 Computing the classification accuracy of a task variable in different spatial bins 

To compute the classification accuracy of a given task variable (e.g., choice) in a 

spatial bin on the maze, a dataset of samples was made by computing the average firing 

rate of neurons when the animal’s position was within that spatial bin in each trial. This 

process resulted in a dataset of 𝑁𝑁 samples, each having 𝐷𝐷 features, where N is the number 

of trials, and 𝐷𝐷 is the number of neurons. The value of the variable of interest associated 

with each trial was assigned to that sample as the target value. A support vector machine 

classifier with a polynomial kernel of degree 1 or 3 was used to compute the accuracy of 

decoding the variable of choice in each spatial bin. The procedure for evaluating the 

accuracy was explained in section 4.5. 

 

3.4.7 Computing the classification accuracy of a task variable, time-locked to an event  

To compute the classification accuracy of a given task variable time-locked to an 

event (e.g., reach time to a feeder), a sliding window method with a width of 250 ms and 

steps of 50 ms was used. The window was placed at the beginning of the time range. For 
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that temporal bin, a dataset of samples was constructed by computing the average firing 

rates of the neurons during that time window (250 ms) in each trial. The value of the 

variable of interest associated with each trial was assigned to that sample as the target value. 

The procedure described in section 4.5 was used to assess the classification accuracy. A 

support vector machine with a polynomial kernel of order 1 or 3 was used as the classifier. 

The window was moved forward by the step size (50 ms). The same process was repeated 

for every temporal bin. 

 

3.4.8 Estimating the maximum achievable accuracy for decoding a parameter 

From the dataset, two samples were selected from each class randomly as the test 

set (4 samples in total). The remaining samples were used as the training set. The training 

set was balanced by up-sampling the instanced in the minority class. 10 different classifiers 

were used to estimate the maximum achievable accuracy for decoding the variable of 

interest. The 10 classifiers used were: logistic regression, k-nearest neighbors (k: 1, 3), 

support vector machines (kernel: linear and cubic), Gaussian process (kernel: RBF), 

decision tree (max depth: 5), random forest (max_depth:5, number of estimators: 10, 

maximum number of features: 10), neural network with one hidden layer (number of units: 

16), AdaBoost, Gaussian Naïve Bayes, quadratic discriminant analysis. Each classifier was 

trained on the training set and evaluated on the test set. This process was repeated 100 

times. The average accuracy for each classifier over these 100 runs was recorded. After the 

average accuracies for the 10 classifiers were obtained, the maximum accuracy was used 

in the figures.   
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3.4.9 Removing variation related to one task variable from the data 

The goal was to transform the data into a new space in which the variation related 

to variable V is removed and test the accuracy that was achievable for decoding variable 

W from the transformed data.  The network proposed in chapter 3 was used to transform 

the data. The dataset for the task was divided into a training set and a test set. The test set 

comprised of 4 samples from each class of variable V. The training set was made balanced 

by up-sampling the instances in the minority class of variable V. The labels of variable V 

were used as the target for both classifiers in the two branches of the network. The input 

samples were used as the target for the decoder part of the network. The network was 

trained for 300 epochs on mini-batches of size 20. The performance of the network was 

monitored based on the results on the test set.  After training was completed, the original 

training data, before the up-sampling step, was transformed using the encoder in the filter 

branch of the network. The maximum achievable accuracies for variable 𝑉𝑉 and 𝑊𝑊 in the 

new space were assessed using the procedure explained in the previous section.  
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4 A Deep Neural Network for Generating a Representation Invariant 

to a Task Variable  

 

 

Abstract 

When analyzing neural data, we often aim to determine if neural activity is sensitive to a 

particular variable. One way to tackle this problem is to compute the decoding accuracy of 

the variable of interest from the neural activity. However, this decoding may be confounded 

with the effect of correlations between different task variables. We propose a deep neural 

network, based on the recent advances in adversarial training of artificial neural networks, 

to transform a dataset into a new space in which the variation informative about a given 

variable is eliminated while the remaining variation is retained. The network can be used 

to compute the decoding accuracy of one variable without the confounding effect of another 

variable. 
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4.1 Introduction 

When analyzing neural recordings, the aim is often to measure the degree of 

sensitivity of the activity in a brain region to a particular task variable. A solution is to 

compute the decoding accuracy of that variable from the neural activity of the cells in that 

region. However, a brain region can simultaneously encode several task variables. 

Consequently, the decoding of one variable can become confounded with the effect of its 

correlations with the other task variables. These dependencies might emerge in the data due 

to task design, subject behaviour, or brain internal mechanisms for encoding task variables. 

Therefore, it is desirable to measure the accuracy of decoding a task variable without the 

confounding effect of another one.  

A strategy to resolve this issue is to create a balanced dataset with respect to both 

variables. For instance, in the case of two binary variables A and B, one can create a dataset 

in which 𝑃𝑃(𝐵𝐵 = 1|𝐴𝐴 = 1) = 𝑃𝑃(𝐵𝐵 = 1|𝐴𝐴 = 0) = 0.5 to eliminate the confounding effect 

variable 𝐵𝐵  on decoding variable 𝐴𝐴 . However, while this approach removes the 

dependencies that arise due to the correlation between class labels in a given dataset, it fails 

to address the issue of dependencies resulting from the shared features that are informative 

about different classes. 

A potential solution to the problem of shared informative features is to simply detect 

and remove the cells that are selective for a given variable and compute the decoding 

accuracy of the variable of interest from the activity of the remaining cells. However, not 

only neurons in a region might multiplex information about several task variables, the 

encoding for any given variable might happen at the ensemble level, through possibly 

nonlinear interactions. For instance, numerous studies have shown that ACC neurons 
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multiplex information about reward, choice, and effort (Hayden and Platt 2010; Mashhoori 

et al. 2018; Hashemnia, Euston, and Gruber 2020). Also, in a previous study, we found that 

the accuracy of detecting a rat’s position on a maze from ACC activity using a deep neural 

network was significantly higher than the accuracy achieved by a Bayesian decoder, 

supporting the role of nonlinear interactions between the activity of neurons in the encoding 

of position (Mashhoori et al. 2018). This distributed representation and the many-to-many 

relationship between neurons and task variables render the mere removal of selective cells 

an ineffective solution.  

Finally, conventional unsupervised dimensionality reduction, feature extraction, 

and decomposition methods such as principal component analysis (Jolliffe 1986), 

independent component analysis (Comon 1994), or typical autoencoders (Makhzani and 

Frey 2014; Vincent et al. 2010) are not proper tools for this purpose because they either 

have a different objective (e.g. retaining most variation in the data in a lower dimension) 

or  cannot directly exploit the labels associated with the samples.  

Here, we propose an autoencoder (I. Goodfellow, Bengio, and Courville 2016) with 

a novel architecture that employs the idea of adversarial training of artificial neural 

networks (I. J. Goodfellow et al. 2014) to transform a dataset into a new space in which the 

variation informative about a given task variable is eliminated while the remaining 

variation is retained.  

The following sections are organized as follows. Section 4.2 presents the 

mathematical formulation of the method and the architecture of the proposed network. 

Section 4.3 demonstrates test cases for evaluating the effectiveness of the method in 

eliminating variation related to a task variable while retaining the remaining variation in 

the data on both synthetic and real neural recording datasets. 



98 
 

4.2 Method 

4.2.1 Mathematical formulation 

Let 𝐷𝐷 be a data set of samples and 𝑉𝑉 a task variable that induces variation in the 

data. Each sample in the dataset belongs to a category of 𝑉𝑉. The objective is to decompose 

the variation in 𝐷𝐷 into three components: variation informative about the task variable V, 

variation non-informative about 𝑉𝑉 , and noise. This is equivalent to decomposing each 

sample 𝑥𝑥 into three terms: 

 𝑥𝑥 = 𝑥𝑥𝑣𝑣 + 𝑥𝑥−𝑣𝑣 + 𝜀𝜀 (1) 

where 𝑥𝑥𝑣𝑣 is the component related to variable 𝑉𝑉, 𝑥𝑥−𝑣𝑣 is the component unrelated to 𝑉𝑉, and 

𝜀𝜀 is a random error term.  

Note that Formula 1 assumes that an additive decomposition is feasible in the 

original input space. However, in general this might not be the case. To address this issue, 

it is possible to use a function 𝜓𝜓 to transform the data and perform the decomposition in a 

new space where the components can be simply added together. Specifically:  

 𝜓𝜓(𝑥𝑥) = 𝜓𝜓(𝑥𝑥)𝑣𝑣 + 𝜓𝜓(𝑥𝑥)−𝑣𝑣 + 𝜀𝜀 (2) 

By replacing 𝜓𝜓(𝑥𝑥)𝑣𝑣 and 𝜓𝜓(𝑥𝑥)−𝑣𝑣 with 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥), respectively, we get: 

 𝜓𝜓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥) + 𝜀𝜀 (3) 

In Formula 3, 𝑓𝑓(𝑥𝑥) is a function that maps 𝑥𝑥 to the component informative about variable 

𝑉𝑉 in the transformed space. Likewise, 𝑔𝑔(𝑥𝑥) is a function that maps 𝑥𝑥 to the component 

uninformative about variable 𝑉𝑉 in the transformed space.  

 To reconstruct 𝑥𝑥 from its component in the transformed space, we have: 
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 𝑥𝑥 = 𝜓𝜓−1(𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥)) + 𝜀𝜀 (4) 

Now, the objective becomes finding the three functions 𝑓𝑓, 𝑔𝑔, and 𝜓𝜓−1. The functions 𝑓𝑓 and 

𝑔𝑔 are learned separately but their outputs need to have identical dimensionalities. Also, 

because the final code in the transformed space is the sum of the outputs of these two 

functions, restricting the output elements to a predefined range can increase learning 

efficiency. We choose to restrict the range of each element in 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) to [-1, 1]. One 

way to accomplish this is by subtracting the mean of 𝑓𝑓 over the dataset (denoted by 𝑓𝑓)̅ from 

𝑓𝑓(𝑥𝑥) and then dividing each element of result by the maximum absolute value of the 

corresponding element over the whole dataset: 

 𝑤𝑤𝑓𝑓 = max
x

(��𝑓𝑓(𝑥𝑥) −  𝑓𝑓�̅�)  (5) 

 𝑓𝑓′(𝑥𝑥) =  �𝑓𝑓(𝑥𝑥) −  𝑓𝑓�̅ ⊘ 𝑤𝑤𝑓𝑓 (6) 

 𝑓𝑓′(𝑥𝑥) =  𝑓𝑓(𝑥𝑥) ⊘𝑤𝑤𝑓𝑓 − 𝑓𝑓̅ ⊘ 𝑤𝑤𝑓𝑓 (7) 

 𝑓𝑓′(𝑥𝑥) =  𝑓𝑓(𝑥𝑥) ⊘𝑤𝑤𝑓𝑓 − 𝑏𝑏𝑓𝑓 (8) 

Where ⊘  represents element-wise division. The same process is repeated for 𝑔𝑔(𝑥𝑥) , 

resulting in:  

 𝑔𝑔′(𝑥𝑥) =  𝑔𝑔(𝑥𝑥) ⊘𝑤𝑤𝑔𝑔 − 𝑏𝑏𝑔𝑔 (9) 

By rearranging the terms in (8) and (9) and using the resulting formulas in (4), we get: 

 𝑥𝑥 = 𝜓𝜓−1(𝑓𝑓′(𝑥𝑥) ⊗𝑤𝑤𝑓𝑓 + 𝑏𝑏𝑓𝑓 + 𝑔𝑔′(𝑥𝑥) ⊗𝑤𝑤𝑔𝑔 + 𝑏𝑏𝑔𝑔) + 𝜀𝜀 (10) 

 𝑥𝑥 = 𝜓𝜓−1{𝑤𝑤𝑓𝑓 ⊗ (𝑓𝑓′(𝑥𝑥) + 𝑔𝑔′(𝑥𝑥) ⊗𝑤𝑤𝑔𝑔 ⊘𝑤𝑤𝑓𝑓 + (𝑏𝑏𝑓𝑓 + 𝑏𝑏𝑔𝑔) ⊘𝑤𝑤𝑓𝑓)} + 𝜀𝜀 (11) 
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Where ⊗ represents the element-wise multiplication. By incorporating 𝑤𝑤𝑓𝑓 to the reverse 

transformation, replacing 𝑤𝑤𝑔𝑔 ⊘𝑤𝑤𝑓𝑓 by 𝑤𝑤, and replacing (𝑏𝑏𝑓𝑓 + 𝑏𝑏𝑔𝑔) ⊘𝑤𝑤𝑓𝑓) by 𝑏𝑏, we get: 

 𝑥𝑥 = 𝜓𝜓−1(𝑓𝑓′(𝑥𝑥) + 𝑔𝑔′(𝑥𝑥) ⊗𝑤𝑤 + 𝑏𝑏) + 𝜀𝜀 (12) 

The final objective is to find the encoding function 𝑓𝑓′(𝑥𝑥) that transforms each input 

sample to the corresponding component in the transformed space that depends on the task 

variable 𝑉𝑉 , the encoding function 𝑔𝑔′(𝑥𝑥)  that transforms each input sample to the 

corresponding component in the transformed space that does not depend on the variable 𝑉𝑉, 

the element-wise mixing weight 𝑤𝑤, the bias vector 𝑏𝑏, and finally the decoding function 𝜓𝜓−1 

that reconstruct 𝑥𝑥 from final code. 

 

4.2.2 Network architecture  

The proposed network is essentially an autoencoder consisting of two encoding 

branches, an aggregator that combines the codes produced by these two branches to form 

the final code, and a decoder that reconstruct the original input from the final code. The 

first encoding branch extracts features that are informative about a particular task variable 

(denoted by 𝑉𝑉). This is accomplished by transforming the data into a new space where 

variations in the samples are maximally informative about variable 𝑉𝑉. We refer to this 

branch as the discriminator branch. The second branch transforms the data into a new space 

in such a way that all information about variable 𝑉𝑉  is removed while the remaining 

variation in the original data is retained. We refer to the second branch as the filter branch. 

The encoder in each branch is attached to a classifier. Each classifier assigns the input 

samples into different categories of variable 𝑉𝑉 based on the codes produced by the encoder 

attached to it. Ideally, we want to observe a high accuracy for the classifier in the 
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discriminator branch and an accuracy not significantly higher than chance for the classifier 

in the filter branch. The first outcome shows that the transformed data in the discriminator 

branch is maximally informative about variable 𝑉𝑉 . The second outcome indicates that 

variations informative about variable 𝑉𝑉 have been removed from the transformed data in 

the filter branch.  

The final code in the network is computed by a weighted sum of the codes produced 

by each branch (see Formula 10). The decoder uses this code to reconstruct the original 

input. The network is trained to minimize the reconstruction error. Because the 

discriminator branch is heavily regularized to only keep variations informative about 

variable 𝑉𝑉, minimizing the reconstruction error is equivalent to maximizing the retained 

variation in the filter branch (excluding variations informative about variable 𝑉𝑉). 

 

 
Figure 4.1. The high level architecture of the network 
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The main components of the network and its architecture are illustrated in Figure 

4.1. Each component of the network is described below: 

Noise Layer: selects a subset of cells according to a binomial distribution with parameter 

𝜌𝜌  and adds zero-mean Gaussian noise with standard deviation 𝜎𝜎 to the activity of those 

cells. In our experiments, adding large variance noise (𝜎𝜎 = 0.5) to a few cells (𝜌𝜌 = 0.05) 

or adding low variance noise (𝜎𝜎 = 0.05) to a higher ratio of cells (𝜌𝜌 = 0.5) produced the 

best results. The two encoders get the noisy samples as the input. To keep the notation 

uncluttered, the noisy version of 𝑥𝑥 is referred to 𝑥𝑥 itself in the rest of the document. 

Encoder 1: transforms the input into a space in which variations are maximally informative 

for classification of variable 𝑉𝑉. Because we want only the variation informative about 

variable 𝑉𝑉  to pass through this encoder, the parameters and the kernel weights of this 

component are regularized heavily. This ensures that the filter branch is a less costly way 

for the variations not informative about variable 𝑉𝑉 to pass through. The output of encoder 

1 is denoted as 𝑒𝑒𝑒𝑒𝑒𝑒1(𝑥𝑥). Learning the parameters of this encoder is equivalent to learning 

the function 𝑓𝑓′(𝑥𝑥) in Formula 12. The activation of the last layer of the encoder is a tanh 

function to restrict its output to [-1, 1].  

Encoder 2: transforms the data into a space in which all information about variable 𝑉𝑉 is 

removed while the rest of the structured variation in the data is retained. The architecture 

of the encoder 2 can be different from the architecture of encoder 1. However, the output 

layers of both encoders must have the same size and activation function. The output of 

encoder 2 is denoted as 𝑒𝑒𝑒𝑒𝑒𝑒2(𝑥𝑥). Learning the parameters of this encoder is equivalent to 

learning the function 𝑔𝑔′(𝑥𝑥) in Formula 12. Similar to the other encoder, the activation of 

the last layer of the encoder is a tanh function to restrict its output to [-1, 1]. 
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Classifier 1: is attached to the encoder 1 and receives the output of that component as its 

input directly. Classifier 1 tries to detect the corresponding value of variable 𝑉𝑉 for each 

input sample 𝑥𝑥 from the encoded vector 𝑒𝑒𝑒𝑒𝑒𝑒1(𝑥𝑥). Backpropagation of the error signal from 

classifier 1 to encoder 1 improves the encoder’s ability to extract features that are more 

discriminative between different classes of variable 𝑉𝑉. The output of classifier 1 is denoted 

as 𝑐𝑐𝑐𝑐1(𝑥𝑥). 

Classifier 2: is attached to encoder 2 via a gradient reversal layer and receives the output 

of that component as its input after the input passes through the gradient reversal layer. 

Classifier 2 tries to detect the value of variable 𝑉𝑉 for each input sample 𝑥𝑥 from the encoded 

vector 𝑒𝑒𝑒𝑒𝑒𝑒2(𝑥𝑥). The output of the classifier 2 is denoted as 𝑐𝑐𝑐𝑐2(𝑥𝑥). 

Gradient Reversal Layer: In the forward pass, the gradient reversal layer (Ganin and 

Lempitsky 2015) acts as the identity function. In the backward pass (backpropagation), it 

reverses the sign of the gradient it receives from the next layer and propagates the result to 

the previous layer. During training, the parameters of classifier 2 get updated by the normal 

gradient signal computed based on the cross entropy loss between predicted values and the 

true labels of the samples. These updates result in a decrease in the classification loss value 

and an increase in the accuracy of the classifier. However, the sign of the gradient changes 

when the gradient is back-propagated to encoder 2. When the parameters of encoder 2 get 

updated using this new gradient, the value of the loss function increases. As the result, after 

each update, classifier 2 improves in classifying samples based on the output of the encoder 

2, however, encoder 2 gets better at removing information about variable 𝑉𝑉. Ideally, after 

the training is complete, there is no information about variable 𝑉𝑉 in the output of encoder 

2 and the accuracy of the classifier 2 is closed to chance. 
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Aggregator receives the outputs of the two encoders and computes a weighted sum of the 

codes according to:  

 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒1(𝑥𝑥) + 𝑤𝑤. 𝑒𝑒𝑒𝑒𝑒𝑒2(𝑥𝑥) + 𝑏𝑏 (13) 

Where both 𝑤𝑤 and 𝑏𝑏 are parameter vectors with the same size as the outputs of the two 

encoders. The output of the aggregator can be considered the final representation of the 

data in the transformed space. In this space, the signal can be decomposed into two parts: 

the part produced by encoder1 in the discriminating branch that explains the variation 

associated with variable 𝑉𝑉, and the second part, produced by the encoder in the filter branch 

that contains the remaining variation in the data. Learning the parameters of the aggregator 

is equivalent to learning the parameters 𝑤𝑤 and 𝑏𝑏 in Formula 12. 

Note that there is no explicit constraint on the output of the two encoders to be in 

the same space. The architectures of the two networks can be different. The only constraints 

are that the output layers have the same number of units and identical activation functions. 

However, because the final code in the network is the weighted sum of the codes produced 

by the two encoders, the sum provides useful information for the decoder to reconstruct the 

original signal. 

Decoder: is attached to the aggregator and reconstructs the original input 𝑥𝑥  from the 

encoded vector 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥). The output of the decoder network is denoted as 𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥). Learning 

the parameters of the decoder is equivalent of learning the function 𝜓𝜓−1 in Formula 12. 

The reconstructed vector 𝑥𝑥� is obtained according to: 

 𝑥𝑥� = 𝑑𝑑𝑑𝑑𝑑𝑑(𝑒𝑒𝑒𝑒𝑒𝑒1(𝑥𝑥) + 𝑤𝑤⊗ 𝑒𝑒𝑒𝑒𝑒𝑒2(𝑥𝑥) + 𝑏𝑏) (14) 
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Where ⊗ represents the element-wise multiplication. Note that in this formula 𝑥𝑥 is actually 

the noisy version of the original input. This formula is equivalent to Formula 12 presented 

earlier. 

The full objective function of the network is: 

 𝐿𝐿 = 𝑀𝑀𝑀𝑀𝑀𝑀�𝑋𝑋,𝑋𝑋�� + 𝐵𝐵𝐵𝐵𝐵𝐵 �𝑌𝑌, 𝑐𝑐𝑐𝑐1�𝑒𝑒𝑒𝑒𝑒𝑒1(𝑋𝑋)��+ 𝐵𝐵𝐵𝐵𝐵𝐵 �𝑌𝑌, 𝑐𝑐𝑐𝑐2�𝑒𝑒𝑒𝑒𝑒𝑒2(𝑋𝑋)�� + 𝑅𝑅𝑅𝑅𝑅𝑅 (15) 

Where 𝑀𝑀𝑀𝑀𝑀𝑀 is the mean square error, 𝐵𝐵𝐵𝐵𝐵𝐵 is the binary cross-entropy, and 𝑅𝑅𝑅𝑅𝑅𝑅 is the term 

that results from the combination of all the regularization in the network. The network is 

trained end to end using an Adam optimizer. 

 

 

 
Figure 4.11. Detailed network architecture 



106 
 

The activation function of the last layers of both encoders is the tanh function. The 

activation function of the last layer of both classifiers is the sigmoid function. The activation 

function for all the other layers is Exponential Linear Unit (ELU), defined as: 

 𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) = � 𝑥𝑥, 𝑥𝑥 ≥ 0
𝛼𝛼(𝑒𝑒𝑥𝑥 − 1), 𝑥𝑥 < 0 (16) 

With 𝛼𝛼 = 1. Using ELU instead of RELU produced superior results, perhaps because ELU 

can produce negative results and its derivative changes gradually from 1 to 0 as the input 

moves from positive values to negative values.  

After the training is complete the combination of encoder and the classifier attached 

to it in the discriminator branch can be used as a standalone classifier for variable 𝑉𝑉. This 

feature allows us to train the network in a semi-supervised manner, by assigning weights 

to samples in different terms in the objective function. In this case, the weight of all samples 

in the reconstruction part would be 1, however, for the unlabeled samples, the weights in 

the classification term would be 0. 
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4.3 Results 

4.3.1 Test on synthetic data  

We created two synthetic datasets to evaluate the effectiveness of the proposed 

method. Each dataset comprised of 5000 samples, 3 features, and 2 labels associated with 

each sample, representing the categories in variables 𝐴𝐴 and 𝐵𝐵. The first two features were 

randomly selected from a uniform distribution in the range of [-1, 1]. The third feature was 

randomly selected from a normal distribution with mean zero and unit variance.  

In the first dataset, both labels of each sample were assigned based on the value of 

the first feature. The ranges of values for labeling were selected in such a way that 

classifying the instances based on feature 1 would result in an accuracy of 90% for variable 

𝐴𝐴 and an accuracy of 75% for variable 𝐵𝐵. We refer to this dataset as the “shared feature” 

case (Figure 4.3.A).   

In the second dataset, variable 𝐴𝐴 labels were assigned based on the value of the first 

feature. But, variable 𝐵𝐵 labels were assigned based on the second feature. Again, the ranges 

of values for labeling were selected in such a way that classifying the instances based on 

feature 1 would result in an accuracy of 90% for variable 𝐴𝐴, and classification based on 

feature 2 would result in an accuracy of 75% for variable 𝐵𝐵. We refer to this dataset as the 

“independent feature” case (Figure 4.3.B).    

 We used the network to eliminate variation informative about variable 𝐵𝐵  and 

computed the classification accuracy of variable 𝐴𝐴 on both datasets from the filter branch 

of the netowrk. The architecture of the network for this task was identical to the network 

shown in Figure 4.2 except for the number of units in the last layer of each decoder which 

was set to 2. The network for 100 epochs on mini-batches of size 50. A 10-fold cross 
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validation was used to assess the average accuracies. For assessing classification accuracy 

on the filter branch, we used a logistic regression classifier. 

A) Shared Feature Case 

  

B) Independent Feature Case 

  

Figure 4.3. Illustration of the relationship between the first two features and class labels in 
each dataset. 

 
 
In each case, the accuracy for decoding variable 𝐵𝐵 from the discriminator branch of 

the network was not significantly lower than the accuracy achieved on the original data (    

p = 0.405; t(9) = 0.2475), indicating that information about variable 𝐵𝐵 was retained in the 

code produced by this branch of the network. In contrast, for each condition, the decoding 

accuracy of variable 𝐵𝐵 from the filter branch of the network was not significantly above 
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chance (p = 0.9845; t(9) = 2.5539), suggesting that variation informative about variable 𝐵𝐵 

was successfully removed from the data in the filter branch (Figure 4.4).  

In the shared feature case, the average accuracy of decoding variable 𝐴𝐴 from the 

filter branch was 54.3% (std = 2.97) which is significantly lower than the accuracy achieved 

on the original data (p = 0; t(9) = -37.925) (Figure 4.4.A). This behaviour was expected 

because in this case the same feature was informative about both variables 𝐴𝐴  and 𝐵𝐵 . 

Therefore, removing variation informative about variable 𝐵𝐵 would inevitably result in a 

significant reduction in accuracy of decoding variable 𝐴𝐴.  

In contrast, in the independent feature case, the average accuracy of decoding 

variable 𝐴𝐴  from the filter branch was 88.3% (std = 1.34) which is very close to the 

maximum achievable accuracy (90%) on the original data (Figure 4.4.B). This results 

shows while the network removed the information about variable 𝐵𝐵 in the filter branch, it 

was able to retain variation informative about variable 𝐴𝐴. This behaviour was expected 

because in this case the features informative about the two variables were separate. 
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A) Shared Feature Case 

 

B) Independent Feature Case 

 
Figure 4.4. Accuracy of decoding the variables A and B from the original versus the 
transformed data. The bars labeled Original show the accuracies obtained on the original data. 
The bars labeled Disc Br and Filter Br show the accuracies obtained on the transformed data in 
the discriminator branch and the filter branch of the network, respectively. 
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4.3.2 Test on real neural data  

We used the neural data recorded for the experiment in Chapter 3 to test the 

effectiveness of the method. We used the network to eliminate the variation informative 

about choice when the animals were in the bins associated with the side feeders and tested 

if it was possible to decode reward outcome from the transformed activity.  

The average firing rates of the cells when the animals were at the side feeder were 

fed to the network as input. The choice label associated with each trial was provided as the 

target value in both branches of the network. The network was trained for 300 epochs on 

mini-batches of size 20. We expected the encoder in the discriminator branch to extract 

features informative about choice and the encoder in the filter branch to transform the data 

in such a way that choice information was eliminated while all the remaining variations, 

including the reward outcome information, were retained.  

After training was complete, we computed the decoding accuracy of choice from 

the codes produced in both branches of the network and the decoding accuracy of reward 

outcome from the code in the second branch. We estimated the maximum achievable 

accuracy in each case using the same procedure explained in section 3.4.8.  

We found that the accuracy for decoding choice from the discriminator branch of 

the network was not significantly lower than the accuracy achieved on the original data (p 

= 0.283; t(4) = 0.629), indicating that choice information was retained in the code produced 

by this branch of the network (Figure 4.5). In contrast, the decoding accuracy of choice 

from the filter branch of the network was not significantly above chance (p = 0.895; t(4) = 

-1.499), suggesting that choice information was removed from the data in that branch, and 

the transformation had made the data invariant to choice. Finally, the decoding accuracy of 
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reward outcome from the filter branch of the network was not significantly lower than the 

accuracy achieved on the original data (p = 0.988; t(4) = -3.526), showing that the outcome 

information was retained in the data after transformation. Overall, these results indicate that 

the network was able to eliminate variation related to choice while retaining outcome 

information in the data.  

 

 

Figure 4.6 illustrates examples of the codes that were produced by the two branches 

of the network. The dimensionality of the code was reduced to two using PCA for better 

visualization. Samples with different colors have different choice labels. As shown, 

samples from the two classes are completely separated in the code produced in the 

discriminator branch. In contrast, the samples are mixed and indistinguishable in codes 

produced in the filter branch.     
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Figure 4.5. Accuracy of decoding choice and reward outcome from original 
data versus transformed data. The bars labeled Original show the accuracies 
obtained on the original data. The bars labeled Disc Br and Filter Br show the 
accuracies obtained on the transformed data in the discriminator branch and the 
filter branch of the network, respectively.  
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Figure 4.6. Examples of the codes produced in the two branches of the 
network. Top row: the code in the discriminator branch. Samples having different 
choice labels are completely separable. Bottom row: The code in the filter branch. 
Samples having different choice labels are not distinguishable. 
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5 General Discussion 

In this thesis, I analyzed electrophysiological recording from rat ACC in two 

separate binary-choice tasks to test multiple hypotheses supporting the role of the ACC in 

model-based control. Specifically, I tested: 1) whether the ACC represents a map of the 

task space, which in turn raises the possibility of mental navigation of the map, 2) whether 

the ACC encodes variables that define actions, outcomes, and task states, 3) the ACC’s 

ability to represent abstract task states that are critical for future predictions, and finally, 4) 

the presence of signals that indicate a deviation between the predictions and actual outcome 

that may promote model update. 

 

5.1 The ACC represents the task space in a spatial framework 

A model-based approach for tackling a task requires knowledge about task states and 

their relationships. In addition, an agent needs to locate itself within this abstract state space 

as it performs the task. In an experiment in which task states correlate with spatial 

coordinates, this may translate into a representation of the current position of the animal. 

Our results showed that the position of a rat on a track could be decoded accurately from 

the population activity of ACC neurons. This finding accords with other reports of spatial 

encoding in the mPFC (Fujisawa et al. 2008; Lindsay et al. 2018; Zielinski, Shin, and 

Jadhav 2019; D. R. Euston and McNaughton 2006; Cowen, Davis, and Nitz 2012). 

However, by using a deep neural network as the decoder and analyzing population activity 

instead of single-cell analysis, we were able to obtain significantly more accurate results. 
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Spatial encoding in the ACC is facilitated through the connections to the 

hippocampus and retrosplenial cortex (Burton et al. 2009; Zielinski, Shin, and Jadhav 

2019). However, our results along with others show that the representation of spatial 

information in the ACC differs from that of the hippocampus. In the dorsal hippocampus, 

representation of space is largely encoded by the activity of so-called ‘place cells’, with 

each cell generating action potentials only in a small region of the environment (O’Keefe 

and Dostrovsky 1971; M. A. Wilson and McNaughton 1993). In contrast, individual 

neurons in the ACC have much broader spatial sensitivity (Fujisawa et al. 2008). For 

example, we found cells that were active when an animal was on one side arm of the maze 

and cells that were active over multiple disconnected regions of the maze. Despite the low 

spatial selectivity of individual ACC neurons, we found that the position of an animal can 

be decoded accurately from population activity. This highly distributed representation in 

the ACC has been reported by a recent study that investigated the encoding of limb 

movements, poses, and spatial locations of rats (Lindsay et al. 2018). 

Representation of position in the ACC is most likely an abstraction (or a correlate) 

of the task space rather than an absolute specification of the position in Euclidean 

coordinates. This claim is supported by our observation that the accuracy of position 

decoding was significantly lower in the trials in which rats became distracted and 

disengaged from the task for a brief period. This view is also consistent with other reports 

of generalized representation of space in the rodent ACC while performing a task (Kaefer 

et al. 2020) and during awake memory reactivation (Yu et al. 2018). Kaefer et al. (2020) 

found a generalized representation of space in the ACC, where instead of coding for 

specific locations, neurons encode the relative position between the start and the goal. It is, 

therefore, plausible that one use of forming a state-space map in a high-resolution spatial 
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framework is to track progress towards a goal state, thereby keeping the animal motivated 

and preventing disengaging from the task.  

A model of the task organized around space might facilitate the formation of 

knowledge structures or schemas. Once such knowledge structures are formed, new 

information that fits prior knowledge can be encoded and consolidated more efficiently 

than when information is novel (Van Kesteren et al. 2012; Gilboa and Marlatte 2017). For 

example, rats were found to more rapidly encode and consolidate new information when 

that information fit within a spatial schema (Tse et al. 2007; Hasan et al. 2019).  

Overall, being able to decode the position of the animal as it performs the task 

indicates that the ACC creates a map of the task space and tracks the current state of the 

animal as it performs the task. This idea is consistent with previous studies that show that 

the medial prefrontal region encodes a trajectory through the task space (Lapish et al. 2008; 

Durstewitz et al. 2010) and demonstrates that, in some situations, such a state-space 

trajectory is strongly correlated with the real spatial coordinates. The representation of all 

states in a two-step task in mice ACC has been reported a recent study (Akam et al. 2020). 

This is similar to the proposal that the orbitofrontal cortex encapsulates the available 

information by creating abstract task-states to facilitate reinforcement learning in other 

brain regions. This process is particularly important when task states include unobservable 

information (R. C. Wilson et al. 2014). 

 

5.2 The ACC mentally navigates the map of the task   

Having a model of the task state-space opens up the possibility that the brain 

mentally navigates the ACC map to recall information or even simulate states sequences 
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consistent with a world model. We found that while the decoded position normally tracked 

the current state of the rat, it sometimes dissociated from its physical position when the rat 

was at one of the target feeders. These excursions represented the state associated with the 

other target feeder and were more likely at the disfavored target feeder. This pattern of 

activity suggests a role for the ACC in the evaluation of outcomes following disappointing 

reinforcements and can reflect a mechanism for shifting strategies. Supporting this view, a 

recent study found reactivation of neural patterns associated with the sequences of positions 

distant from the actual position in rat mPFC during awake immobility in a rule-switching 

task (Kaefer et al. 2020). The occurrence rate of mPFC replay at the goal predicted how 

fast the animal switched to the new rule. Although, a single replay event was not 

immediately followed by improved performance on the next trial. 

The excursions reported in this research could represent a more general form of the 

counterfactual outcome processing in primates. ACC neurons in monkeys have been shown 

to signal fictive outcomes, which are potential rewards that were not achieved  (Hayden, 

Pearson, and Platt 2009), and the value of counter factual choice, which is the best value 

among available or unavailable alternatives (Fouragnan et al. 2019). The excursions could 

support the comparison of realized and fictive outcomes in a multimodal way where instead 

of signaling only the counter factual value, the ACC represents and recalls the counter 

factual states that includes value and other features (choice, cost, etc.).  

 

5.3 The ACC tracks task variables relevant to creation of a predictive model 

In order to create a predictive model for a task, the ACC needs to track task variables 

that define and represent context, stimulus, responses, and outcomes. Our results 
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demonstrated that the ACC cells distinguished between reward outcomes in both low 

versus high reward (in Chapter 2) and omission versus delivery categories (Chapter 3). 

ACC neurons discriminated between free and forced trials when sensory cues about trial 

type were present. Moreover, although ACC activity was not predictive of choice during 

immobility at the beginning of trials, it showed a clear representation of choice after 

animals departed from the start feeder. These results are consistent with previous reports 

of ACC’s encoding of task variables such as outcome (Hayden and Platt 2010; C. Amiez, 

Joseph, and Procyk 2006; Kennerley and Wallis 2009a; Hashemnia, Euston, and Gruber 

2020), effort level (Cowen, Davis, and Nitz 2012; Hashemnia, Euston, and Gruber 2020; 

Croxson et al. 2009; Klein-Flugge et al. 2016; Prevost et al. 2010; Porter, Hillman, and 

Bilkey 2019), and actions (Hayden and Platt 2010; C. Amiez, Joseph, and Procyk 2006; C. 

H. Luk and Wallis 2009; Quilodran, Rothé, and Procyk 2008). Overall, a large body of 

evidence indicate that the ACC encodes the value of relevant task variables directly 

perceivable in a task.  

The ACC encodes task variables in a dynamic and context-dependent manner. For 

instance, ACC‘s representation of identical actions have been shown to differ depending 

on the context (Hyman et al. 2012) and order of that action in a sequence within the same 

context (L. Ma et al. 2016). Also, ACC’s response to the receipt of a reward might vary 

depending on the value of the alternatives (Hillman and Bilkey 2010). Furthermore, 

whether ACC shows sensitivity to a particular variable at all or not is context-dependent 

and is contingent on the relevance of that variable to the current task (Heilbronner and 

Hayden 2016). Therefore, ACC’s response to stimulus, outcomes, action, and other task 

variables is an abstract context-dependent representation linked to higher level cognitive 
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processes rather than a representation of the sensory inputs and motoric responses 

associates with those task variables. 

 

5.4 The ACC infers abstract task states relevant to creation of a predictive model 

In the real world, a single event rarely provides a clear picture of what is happening 

in the environment. Instead, it is a combination of the relationship between the events, their 

context-dependent implications, and their significance in light of past experience that is 

critical for successful behaviour. To create a predictive model, the ACC needs to create 

abstract states that are inferred from the history of events and their relationship. Our result 

showed that in a binary-choice task with probabilistic reward delivery, rats were able to 

track the high-utility option by integrating the outcomes over multiple trials. The signal 

representing the high utility feeder (block type signal) was most pronounced in the ACC 

during immobility at the start feeder and weakened as the animals started running. The 

coincidence of block type signal’s strength with the weakness of choice signal suggests that 

the block type signal is used in the process of decision making. The presence of signals 

representing abstract states in a task has been reported by other studies. The ACC has been 

shown to represent the value of the counter factual choice (Fouragnan et al. 2019), the order 

of an action in a sequence (L. Ma et al. 2016), progress towards a goal (Liya Ma et al. 2014; 

Shidara and Richmond 2002), utility of options (Kennerley and Wallis 2009b; Hashemnia 

2019), and task rules (Kaefer et al. 2020). 
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5.5 ACC represent surprise signals that could trigger model update   

 As the contingencies in an environment change, the predictive model formed by the 

ACC may not remain valid. Thus, the model needs to be updated. The necessity of such 

adjustments can be detected when actual outcomes deviate from predictions of the model. 

Such events lead to prediction errors and surprises. Our results showed evidence of the 

presence of such surprise signals in the ACC. Specifically, we found that ACC’s response 

to identical outcomes differed depending on the previous outcome. In the task, the 

probability of congruent outcomes in consecutive trials was much higher than incongruent 

outcomes, therefore the latter was surprising. Also, such events increased the probability 

that the high utility option had changed, promoting a shift in an animal’s choice bias. This 

finding accords with other reports of the prominence of reward prediction error (RPE) and 

surprise signals (unsigned RPE) in the ACC in studies on both humans (O’Reilly et al. 

2013; Vassena, Deraeve, and Alexander 2020; Cavanagh et al. 2012; Wessel et al. 2012) 

and non-human primates (Hayden et al. 2011; Kennerley, Behrens, and Wallis 2011; M. 

Matsumoto et al. 2007; Seo and Lee 2007). These signals are proposed to trigger model 

update and shifts in strategies (Hayden et al. 2011; Quilodran, Rothé, and Procyk 2008). 

  

5.6 ACC as a model-based controller 

 Taken together, our results support the role of the ACC in model-based control. In 

this view, the ACC creates a model of the task based on experience and uses the model to 

predict the future states and outcomes given the context and response options. These 

predictions will be used to guide decision making. This view is similar to the previous 

proposals that assign a role to the mPFC in creating models which map context and events 
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onto appropriate emotional or motoric responses (Miller and Cohen 2001; Alexander and 

Brown 2011; David R. Euston, Gruber, and McNaughton 2012). This model provides a 

different, but compatible, perspective on the ACC function compared with other theories 

that assign the ACC a main role in conflict monitoring (M. M. Botvinick, Cohen, and Carter 

2004), representing the volatility of environment (Behrens et al. 2007), coding for choice 

difficulty (Shenhav et al. 2014), and effort allocation (Verguts, Vassena, and Silvetti 2015).  

The role of the ACC in model-based control is supported in a very recent study that 

showed that, in a sequential decision task, mouse ACC predicts the state that actions will 

lead to, rather than estimating whether the actions are rewarding or not, and monitors for 

deviations between these predictions and actual outcomes (Akam et al. 2020). Also, using 

optogenetic inhibition of the ACC, they showed that the ACC is necessary for updating 

model-based strategies. 

The view of the ACC as a model-based controller is closely related to the model-

based reinforcement learning in the field of machine learning (Sutton and Barto 1998). The 

predicted response outcome theory (Alexander and Brown 2011) proposes ACC to be a 

model-based leaner with an actor-critic architecture. In this proposal, the critic component 

predicts the likelihood of future actions and outcomes in a context regardless of their 

affective valence based on stimulus input from the environment. When these predictions 

deviate from actual outcomes a prediction error is produced, resulting in the update of the 

model for future reference. The actor is responsible for response selection. This model has 

been used to simulate a wide variety of empirical findings, including the effects of conflict, 

errors, and reward prediction errors (Alexander and Brown 2014; Jahn et al. 2014). A 

variant of the same model has been proposed to explain effortful control (Vassena, Deraeve, 

and Alexander 2017). 
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Although, some proposals assign ACC a role in actions selection (K. Matsumoto, 

Suzuki, and Tanaka 2003; M. F.S. Rushworth et al. 2004), our results did not show ACC 

activity to be predictive of choice. One potential explanation is that different regions of the 

ACC are responsible for prediction and action selection. Supporting this view, a human 

fMRI study linked evaluative and predictive functions to anterior rostral cingulate zone and 

response selection to more causal and rostral regions of the ACC (Nee, Kastner, and Brown 

2011). The alternative explanation is that the ACC is a part of a distributed choice process 

rather than a main center for response selection, and its involvement in action selection is 

task dependent (Heilbronner and Hayden 2016b). 

 Although most research focuses on the role of the ACC in a single task, the view of 

the ACC as a model-based controller opens up the possibility that this region plays a role 

in learning long-horizon behaviours by simulating scenarios in a high-level abstract state-

space using the world model formed based on previous direct or indirect experiences (e.g., 

observation). Such learning models have been proposed in the machine learning field and 

shown to be very promising in planning long-term action plans (Hafner et al. 2019). This 

proposal is consistent with the role of the ACC in maintaining long-term goals (Clay B. 

Holroyd and Yeung 2012), but further research is needed to elucidate ACC’s role in long-

term planning.  
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