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Abstract: This paper presents a software-based modular and hierarchical building energy manage-
ment system (BEMS) to control the power consumption in sensor-equipped buildings. In addition,
the need of this type of solution is also highlighted by presenting the worldwide trends of thermal
energy end use in buildings and peak power problems. Buildings are critical component of smart
grid environments and bottom-up BEMS solutions are need of the hour to optimize the consumption
and to provide consumption side flexibility. This system is able to aggregate the controls of the
all-controllable resources in building to realize its flexible power capacity. This system provides a
solution for consumer to aggregate the controls of ‘behind-the-meter’ small loads in short response
and provide ‘deep’ demand-side flexibility. This system is capable of discovery, status check, control
and management of networked loads. The main novelty of this solution is that it can handle the
heterogeneity of the installed hardware system along with time bound changes in the load device
network and its scalability; resulting in low maintenance requirements after deployment. The control
execution latency (including data logging) of this BEMS system for an external control signal is less
than one second per connected load. In addition, the system is capable of overriding the external
control signal in order to maintain consumer coziness within the comfort temperature thresholds.
This system provides a way forward in future for the estimation of the energy stored in the buildings
in the form of heat/temperature and use buildings as temporary batteries when electricity supply is
constrained or abundant.

Keywords: smart building automation; energy optimization; energy flexibility; aggregator; net-
worked energy resources; building energy management system; IoT; cyber physical systems

1. Introduction

Electricity consumption patterns are on rise worldwide and the share of energy con-
sumption in residential buildings is following the same trend. In 2018, the household
buildings’ alone represented 26% of final energy consumption in European Union (EU)
wherein renewables accounting for only 20% of final energy consumption in household [1]
and overall buildings (including service sector) were responsible for 40% of energy con-
sumption in EU while contributing to 36% of CO2 emissions ([2], p. 6). Globally, buildings
were responsible for 28% of energy-related CO2 emissions (considering indirect emissions
from upstream power generation) reaching to all time high of 10 GtCO2 in 2019 [3]. Energy
use for thermal comfort (space cooling and space heating) has majority share in build-
ings’ energy use worldwide and it will be responsible for almost half of the new global
electricity demand growth in buildings’ energy use by 2050 with share of 37% and 12.4%
respectively [4]. To minimize of CO2 emissions from buildings, there is an urgent need to
promote the local generation and intelligent consumption of more and more renewable
energy sources in buildings along with promoting use of renewable load technologies
especially for space cooling and space heating.

Moreover, a clean, cheap and continuous electricity supply is also becoming a major
challenge for grid operators and other energy stakeholders due to growing energy demand
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in peak hours and congestion problems due to increasing integration of distributed gen-
erations in distribution networks [5]. Therefore, consumption management of thermal
comfort technologies at local level is need of hour to enable the controllable, optimized,
balanced and shared use of energy.

Over the years, there are several efforts made to make demand response in residential
buildings a viable solution [6]. A BEMS can help to achieve control over building’s loads to
optimize the consumption based on indoor environmental parameters [7]. Recently, the
demand of BEMS systems is increasing however the scope of BEMS implementation can
vary from case to case [8]. A BEMS system can have modularity [9], hierarchical design [10],
comfort prioritized building automation [11], smart grid integration possibilities [9], agent-
based control [12]. These cited work are good from their own application goal point of view
however in order to make high performance buildings the BEMS systems must be robust,
modular, and hierarchical along with features of automatic load aggregation, aggregator
control access to outside, automatic comfort control, resident’s data protection mechanisms,
routines for information exchange, smart bot/smart grid integration possibilities etc. We
present such a solution in this paper. The maintenance and operational expenses of BEMS
solutions can require several work hours for both hardware and related software work.
Our aim is to make a system with low maintenance and customizable features that can be
used to manage several building energy resources in flexible or optimal manner along with
prioritizing the resident needs.

Proper understanding of loads and their management is alone very important and
therefore, in this work, we will detail and demonstrate the control of different types of loads;
leaving the local production, local battery storage and electric vehicle out of scope of this
paper. Moreover, this BEMS solution can operate in both hot and cold climates therefore, we
justify the need of this solution in both type of climates in Sections 1.1 and 1.2. Continuing
further in this introduction section, we investigate the final use of electricity for thermal
comfort by presenting facts and future trends from different geographies and countries.
The major challenges are divided in separated sections for space heating (Section 1.1) and
space cooling (Section 1.2) to reduce complexities of information presented. However, if
reader is familiar with challenges posed by space heating and space cooling sector then
reader may jump to Section 1.3 that describes the details of this BEMS system along with
its technological design challenges and their solution.

1.1. Space Heating Sector; Overview, Peak Power Challenges and Opportunities in Future

The space-heating sector is slowly transitioning from fossil to renewable energy use
and this transition is a must to order minimize CO2 emissions in the future. Space heating
accounts for a majority share (64%) of final energy use in households in the EU, with
renewable energy accounting for only 27% of EU households’ space heating consumption
in 2019 [1]. In buildings, heat pumps are a popular substitute of fossil fuel-based heating
systems. In fact, a report [13] concludes that in selected EU-21 countries the number of heat
pumps reached 11.8 million covering almost 10% of buildings. Furthermore, countries with
extreme cold climate conditions are adopting heat pumps at a much faster rate. Finland
is a good example of an emerging leader in the adoption of heat pump technology and
according to the Finnish Heat Pump Association (SULPU), 98,000 heat pumps were sold in
2019, representing a 30% increase in a year. The total number of heat pump installations
have surpassed 1 million in Finland [14]. Heat pumps are an important technology for
the transformation of space heating sector because first, heat pumps are energy efficient;
on average, space heating using heat pumps is 300% efficient, meaning that, 3 kW of
thermal energy is generated by heat pump for each kW for electricity consumed ([2],
p. 16, [9,10]). Second, heat pumps are sustainable; energy consumption from electricity mix
by replacing fossil fuel-based district heating can help to reduce CO2 emissions reduction
in different scenarios [2].

On the other hand, this increasing installation of heat pumps is responsible for increas-
ingly high peaks in power demand, especially in winter when temperatures are extremely
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low [15]. The reason for this peak demand is first, they use an electricity mix as energy
source and second, the efficiency and capacity of the heat pump decreases along with the
decrease in temperature ([2], p. 16). An example of very high peak power demand due
to household energy use in Finland, is 7 January 2016 [16] when consumption-weighted
outside temperature was −25 ◦C. According to an estimate [17], this increased household
demand was caused by the excessive heating needs along with decreased heat pump
efficiency at lower temperature and quantitatively speaking, an additional 100–200 MW
of electricity are required in Finland to counter the increased demand due to each 1 ◦C
of outdoor temperature drop. Fischer et al. [18] concludes that a 64% penetration of heat
pumps in building stock increases the annual electric demand of the individual household
by a factor of 2.8 and the average daily electric demand during the coldest weeks of the
year by more than a factor of four. In addition, heat pumps mainly cause the highest peaks
in the coldest weeks and at a household level, load peaks are increased up to seven times,
due to the use of electric back-up heaters during the coldest days of the year.

On the contrary, if implemented well then heat pump systems can be an opportunity
for imminent renewable energy transition along with managing peak power demands.
Nowadays, it is widely being recognized that heat pump driven space heating can be the
enabler of demand-response in buildings in smart grid friendly way [19,20]. It is also proven
that controllable heat pump pool can be a great enabler for intelligent consumption (“part-
time for part-space”) of electricity to thermal energy resulting in peak power reduction and
shifting in order to make grids truly smart. According to results (of simulated pool of heat
pumps) presented by Fischer et al. [21], the pool can provide high shift-able energy and
high load shifting efficiency. In case of air source heat pumps, short term flexibility (up to
couple of hours) can be realized by means of stored energy in thermal mass [22–24] of the
well-insulated building (energy released in a non-controllable way).

1.2. Space Cooling Sector; Overview, Peak Power Challenges and Opportunities in Future

Energy requirements for space cooling are also increasing at an alarming rate world-
wide. In absolute terms, space cooling was responsible for 8.5% of total global electricity
consumption and emissions of about 1 GtCO2 in 2019, almost tripling since 1990 [25]. It
is also the fastest growing end use of electricity in buildings [25] and the use of air condi-
tioners (ACs) and cooling fans accounts for 20% use of energy in buildings [4]. Emerging
market countries are now leading this space cooling technology use race.

The unplanned installation and use of ACs has similar repercussions on power sys-
tems, as heat pumps. According to a worldwide estimation by the International Energy
Agency (IEA) the AC global stock in buildings will grow to 5.6 billion by 2050 covering
2/3 of world’s households, up from 1.6 billion in 2016 since most households in tropical
countries are yet to install their ACs [4]. For example, in 2018 household ownership of
ACs in the USA and Japan is above 90%, whereas in India, it is only 5% and growing
with 15% each year. It there are no improvements in the energy efficiency of ACs despite
the global efforts to promote efficient cooling [26] then the global space cooling energy
demand will grow due to the new AC installations in the future, more than tripling by
2050 [4]. Moreover, consumers also tend to buy cheaper, less efficient AC equipment due
to the higher up front cost as per reports on Indian [27] and Chinese [28] AC consumer
buyer behavior. This soaring worldwide demand for inefficient ACs will complicate the
decarbonization of grids. This issue of space cooling is more sensitive in fast growing
countries; in China space cooling accounted for 16% of the peak electricity load in 2017
and it can reach up to 50% of peak electricity demand on extremely hot summer days, as
observed in recent years [29]. Although the share of ACs in the peak power demand is
lower at 10% in India due to the low AC penetration, the biggest increase in power peaks
is also happening in Indian cities. In Delhi, space cooling consumes more than 50% of
the total annual electricity [29] and a temperature increase of 1 ◦C increases the demand
in Delhi by approximately 120 MW [30]. Without any actions, the share of ACs in peak
electricity demand could reach up to 45% in 2050 [31].
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On the contrary, if implemented well then air-conditioners (ACs) can be an opportunity
to maximize the consumption of locally generated renewable energy along with managing
power peaks and maximizing the comfort of residents in hot climates. The smart grid-
assisted control and management of large pools of ACs could help the future electricity
systems handle the peak power problems. A buildings with well-maintained ventilation
system (preferably with heat exchangers) and “part time” for “part space” space cooling
control mode is beneficial solution at so many levels through controllable use of energy. The
flexibility potential of AC systems in residential buildings is also significant in buildings [32]
yet in order to properly utilize it in profitable way certain aspects such as number of AC
units in pool, outdoor weather conditions, required comfort level, building size, building
structure and orientation with sunlight need to be considered.

1.3. Solution for Increasing Thermal Demand Peaks Due to Buildings

The peak demand can be very expensive to manage for energy suppliers, due to
imbalanced costs, if their day ahead predictions are not accurate. This issue can be managed
efficiently if there are control tools available to reduce/shift the peak demand. In order
to maintain the power system balance, the grid sourced energy consumption needs to
be changed at consumer sites in real time following the abrupt changes in the energy
production and residential buildings can help to do that up to some level. This digitization
of power systems’ is happening and it is enabling the energy consumers to participate in
local energy markets through active load regulation, use of behind-the-meter generations
and battery storage. Presently only 2% of global potential for demand-side flexibility is
being utilized [33]; presently it is limited to big flexibility sources but new automation
tools to aggregate the flexibility of several small scale loads can result in better control
and use of local energy resources while increasing the overall systems’ flexibility. In
addition, digitalization and smart demand-side management can reduce overall energy
use in buildings by as much as 10% [34].

Although an individual household is a small electricity consumer but in order to make
‘future-proof’ energy grids, some of these small electricity consumers will have to play a
critical role in future to make grids ‘truly smart’ by first, becoming prosumers by installing
local production for partial self-consumption. Second, sharing the energy and energy
flexibility locally with other consumers through fair market mechanisms. This shared use
of energy is possible by providing the necessary energy flexibility information to all energy
stakeholders (including other consumers), and acting in real time to reduce or increase
the energy use to help in balancing the grids. Current information and communication
technologies (ICT) hardware and flexibility market structures do not enable large-scale
utilization of small resources in smart households, and no applicable (generally accepted)
standards exist [35,36]. So far, buildings (both residential and service sector) are considered
a complicated component of smart-grid environment due to the following facts:

• Unavailability of control access to ‘behind-the-meter’ loads,
• Heterogeneity of energy consumption loads,
• Unforeseen behavior of inhabitants,
• Safety concerns of residents,
• Privacy concerns of residents and
• Unwillingness of residents to install BEMS solutions due to low return on investment.

All above factors are the reason that buildings are considered blind-spots of smart
grid environment and despite the existence of a large smart meter infrastructure in some
countries (for example Finland), real time demand response at scale is not a reality yet. In
addition, the impact of flexibility of a single device (heat pump or AC or other household
appliance) on the overall power systems’ flexibility is very small and therefore barely
utilized in practice. Moreover, minimum flexibility requirements for market participation,
flexibility variations throughout the year, reliability and complexity of flexibility solutions
are other known factors to impede the use of demand side flexibility. For these reasons,
aggregation of flexibility at the building level is necessary in order to make the small-scale



Sensors 2021, 21, 867 5 of 18

flexibility trading economical. Meaning that, there is a need scalable and flexible control
tools to control the electricity consumption loads in buildings in short response time and a
possibility to offer this flexibility to marketplace at very low cost.

The previously stated concerns about buildings are also the reason why a majority
of third party flexibility aggregators are not very keen on utilizing the flexibility available
from residential consumers; these consumers hold the key to large potential of residential
thermal flexibility but they lack the skills and tools to control, manage and trade the energy
flexibility as a commodity. Among all energy stakeholders, it is technology developer’s
and energy distributor’s major interest to enable the market participation of the small scale
electricity consumers by providing matured hardware technologies for aggregated control
of their loads and software tools to actuate the controls in short response time by enabling
the communication over internet.

Looking at the big picture, there is no technological lack of either the suitable hardware
to make wireless controls of consumer loads or the software to manage them. In addition,
market of flexibility is growing, the impact of the flexibility of aggregated load resources on
power system is already proven [18,21] and new mechanisms to trade the flexibility locally
are being developed for example FLEXIMAR marketplace [37]. Therefore, the question
arises; what is stopping us to develop tools to utilize the residential flexibility at large
scale? Nothing in general, but such automated and scalable tools need great curation to put
different software and hardware components together and built over them. In addition, the
interest of energy stakeholders and consumers, to promote such technologies, is varying
case by case. Besides, it is apparent that there are existing tools and technologies that can
be combined with new methodologies to solve the flexibility related challenges associated
with buildings as explained below one by one:

• Several loads can be controlled and measured wirelessly though controllable wall plugs [38]
(z-wave based hardware in our case, a widely accepted home automation technology),

• Software based tags can be used to describe the type and nature of loads (i.e., descrip-
tion of heterogeneity),

• Energy consumption behavior of inhabitants can be understood with time,
• Software based safety measures can be taken to avoid control of devices beyond user

comfort temperature limits,
• Data can be collected, processed, analyzed (later can be destroyed) on premise gateway

without sharing the much details with outside world,
• Selling the energy flexibility can result in some extra money for sellers, which is paid

by buyer stakeholders in exchange of flexibility.

Finally, in forthcoming sections of this paper, we will discuss methodology in Section 2.
Further, hardware and software description are detailed in Sections 3 and 4, respectively.
In the end, we will conclude the work by presenting the results, demo outputs and future
work possibilities.

2. Methodology

From a technology point of view, the flexibility from residential consumers is a viable
option only if the consumption control tools and services are cost effective as well as
outstandingly automated for all willing participants. In addition, the demand of the energy
flexibility will be more if it is available in sizable chunks in order to be easily tradable. The
flexibility offerings of complete household building at once is a better option instead of
individual device’s flexibility. Our solution can make a household seen as single aggregated
load with queriable up-down flexible power limits. It is implemented by creating local
controls of all actuator devices and then making a medium for two-way M2M control
communication with external world as depicted in Figure 1.
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Figure 1. A concept block diagram for aggregation of all actuator hardware controls on premise-based
internet enabled gateway computer.

It can operate heating/cooling systems based on calculation (of comfort and prof-
itability) to provide flexibility within safety limits instead of force control. As per our
setup, every actuator should have one paired sensor in same room to monitor the impact
of actuator’s energy use (a temperature sensor for heating or cooling devices, a humid-
ity sensor for humidifiers, a motion sensor for lights and two sensors i.e., CO2 and air
pressure difference for ventilation equipment monitoring). This system can maintain the
temperature, humidity, CO2 and air-pressure difference levels in human comfort zone by
turning suitable devices on and off. Nevertheless, we only use heating and cooling devices
for thermal flexibility since power flexibility from humidifiers, lights and ventilation are
not significant in the first place and second, these devices are very critical in their use
applications. Therefore, we stick to use of only thermal flexibility in households and we
consider other devices as critical, leisure use but our system can operate them in optimal or
scheduled manner instead of flexible.

In order to have any type of automation of distributed hardware elements at scale, a
networked hardware environment is a preliminary requirement to assign unique identities
to the elements in that network. We use a z-way RaZberry shield [39] on the top of Rpi
gateway. This z-wave transreceiver module along with z-wave software stack maintains
the network topology for the added elements in the hardware network. The block diagram
of overall system is demonstrated in Figure 2. The ‘aggregation and control software stack’
uses z-wave stack to discover installed actuators and sensors, generate control instances
with API control routines enabled; more details are listed in Software Description section.
It use MQTT client to receive external control command. The control signal over MQTT
is sent either using smart bot or manually using a control user interface. Depending on
the use case, we can choose to host the control and monitoring user interface server either
on gateway itself or on a different machine. There is also an on-board process manger to
monitor, start, stop and diagnose the essential processes remotely.

Overall, the novelty of this solution is that it is a bottom to top solution with evolu-
tionary nature allowing run time changes in hardware and software system components
and requires minimum level of human intervention to further adept the changes in overall
setup. This solution alters the electricity consumption to maintain the thermal comfort in
residential buildings and it can work in both cold and hot climate conditions controlling
numerous type of household devices with the help of suitable hardware add-ons. It also
allows us to remote monitoring and control along with aggregation or segregation of
controls based on the device type and location within the households.
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3. Experimental Setup

For flexible control, we are using z-wave mesh network controller and z-way actuator
devices, which are good enough for smart control of devices in short range communication
within our smaller 50 m2 household apartment area as mapped in Figure 4. Z-wave
controllers and devices can wirelessly communicate with each other over distances up to
50–100 ft and with a maximum four hops their extended range is approximately 300 ft. On
the downside, z-wave devices can be battery intensive in comparison to other wireless
technologies but except for thermostats we are not using any battery operated z-wave
sensors; we are using in-house developed VTT’s sensor nodes ([40], p. 245). However,
these constraints on z-wave network does not make z-wave ideal to be used in very big
buildings and other wireless networked technologies may be a better choice for long-
range communication.
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The hardware of the test apartment building has been built incrementally in different
phases over several years and this residential site is part of smart grid laboratory in
Oulu [41]. The apartment load in the smart grid laboratory with every installed hardware
is visualized in Figure 3 and the floor map of the site as presented in Figure 4. In the
following description section first, we will describe the details of all the hardware devices
installed in the apartment and then, we will highlight the hardware that are important for
flexible energy use. Currently, the apartment has four gateway (GW); each has its own
functionality:

(1) GW1: Read status of indoor condition through wireless sensors and ventilation control,
(2) GW2: Lighting Control, includes a Controller Area Network (CAN) bus interface,
(3) GW3: Flexible heating and cooling control, includes z-wave interface and,
(4) GW4: Heat pump control, includes Modbus interface.

It is important to note that the location of heating equipment, as in Figure 4, should be
near to the room windows and the sensor should be far away from windows since in cold
countries the area near window is more prone to the effects of outside cold weather. In
addition, same logic can used for cooling device installation in hot countries. All collected
sensor data from wireless sensors in apartment is written to on premise database. Saved
data can be utilized for various visualizations, predictions and for device control in real
time. The details of sensing, metering and control hardware are following:

3.1. Wireless Sensor Network

The apartment has 13 indoor sensors. Each room has a basic sensor that measures
temperature, humidity and air pressure (THP). In addition, the living room has a CO2
sensor, a differential pressure sensor and a motion sensor. The basic THP sensor is also
installed in the ventilation tubes. All these sensors work wirelessly and use Bluetooth low
energy (BLE) communication to GW1.

3.2. Energy Metering (Wired and Wireless)

The power consumption of almost every piece of electrical equipment is measured
both separately at an individual level and conjointly at the whole apartment level. The
largest loads are measured with meters installed in the electric centre, which are read
by a programmable logic controller (PLC) device. The metering measurements of every
three-phase and single-phase energy meter are logged to a database through a wired local
network. Three phase meters measure main supply, oven and sauna. One phase meters
measure heat pump, floor heater, washing machine and some fixed sockets. Smaller loads
connected to sockets are also exclusively measured wirelessly with a wall plug meters
(Fibaro z-wave, [38]). Therefore, it is possible to determine of energy consumption of
different categories and combination of devices easily by having individual and conjoint
energy measurements through energy meters at different levels in apartment.

3.3. Controllable Devices and Connected Loads

The devices from Figure 3 can be divided into two major categories.

3.3.1. Critical Load Devices

In our setup, lighting and ventilation are considered as critical loads meaning that
lighting and ventilation loads are not used to offer any power flexibility; we describe these
loads only in brief here. The lighting in the apartment is implemented in 24 V DC. For
lighting in the apartment, a CANbus controller is a controllable device and lighting is a
load here. In addition, lighting can be a non-critical load in service sector buildings where
during times of low occupancy it can be used as a flexible load. The ventilation machinery’s
maximum capacity is 75 L/s. This is enough for a maximum of nine persons and normally
5–6 persons on average in the house.
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3.3.2. Non-Critical Load Devices

In our setup, non-critical devices can provide flexibility. The apartment has a central
water-heating radiator and an electric heater in each room. In addition, the living room
has a heat pump (for both heating and cooling purposes) and the bathroom is equipped
with floor heating. All central heating radiators include a (z-wave) thermostat and the set
point can be changed wirelessly by control software. All electric heaters are connected
via wall plugs through a wireless (z-wave) socket that can be controlled (on/off) and it
also measures power consumption of connected load. All functions of the air source heat
pump can be controlled by software (on/off, heating, cooling, set point etc.). There is a
separate gateway (GW4) for heat pump interface since z-wave shield occupies essential
GPIOs of Rpi gateway (GW3). Another reason is that there should be a gateway near to the
heat pump to avoid the long Modbus cable. Besides, if we use ESP controller edge with a
Modbus interface (for ex. ESP32, [42]) then there is no need of an extra gateway GW4 and
the heat pump control also becomes wireless.

The details of the RaZberry z-way controller and its usages are detailed in its user
manual [43]. The description of z-way software stack and its communication with z-way
user interface is described in its API documentation [44]. The JavaScript automation engine
of z-way controller automatically implement a broad variety of applications using the
underlying z-wave devices. As described in Figure 3, in our setup majority of the flexible
loads, except heat pump, are controlled by using z-wave devices (i.e., z-wave sockets
and thermostats). In practice, apart from managing the z-wave device network topology,
the automation engine of z-way controller can also create virtual modules to receive and
send data from/to internet-based services or to use other third party technology based
on HTTP. As described in Section 2, it is very important for the experimental setup to
provide automatic access to all flexible actuators and their feedback sensors though the
z-wave software stack. The heat pump and all wireless sensor network devices are based
on non-z-wave technology hardware but we have created their proxy virtual ‘functional’
z-way-like devices, in the z-way stack, with unique identities as described in z-way manual
([43], pp. 69–70); making it possible to access all relevant actuators and their feedback
sensors by searching through the z-way stack.

4. Software Description

The critical loads should be operated in a way that maximizes residents’ living safety
and coziness in households whereas non-critical loads can be operated in two ways: first, in
an optimal manner to minimize the electricity use (optimal control) and second, in a flexible
manner to provide flexibility services according to the flexible capacity (intelligent flexible
control). Our focus in this section is to demonstrate the scalable software architecture of
‘aggregation and control software stack’ for non-critical loads from Figure 3 and emphasize
its modular and hierarchical nature.

4.1. Control Software for Critical Loads

As the name implies these devices are important for residents’ health and wellbe-
ing; therefore the controls of critical loads need to be standalone and to be curated with
specification of the control device and indoor environment conditions.

The ventilation unit is controlled in a continuously adjustable way (15–100%) based
on CO2 sensor data. Ventilation keeps the CO2 value within the recommended limits.
Ventilation also performs an automatic boost if moisture is detected in the bathroom.
Ventilation is kept to a minimum level when there is no one in the apartment (away-
mode). Based on the motion sensor, the normal mode (home-mode) is set. Both fans of the
ventilation machine can be controlled separately. It means that control can compensate
for example vacuum caused by cooker hood. Further details of ventilation control can be
found in earlier publication ([40], p. 247) related to indoor comfort control of the same
apartment building.



Sensors 2021, 21, 867 11 of 18

The lighting in the apartment is implemented in 24 V DC. All luminaires can be
controlled in a continuously adjustable way from the control program. The lighting can
also be controlled from standard switches.

4.2. Control Software for Non-Critical Loads

As explained in the experimental setup section, it is possible to add all relevant sensors
and non-critical loads in z-way software stack in spite of their non z-wave hardware and
communication interface. We took advantage of the z-wave network architecture and its
software stack to build the control aggregation software. All devices can be assembled
under the z-wave stack; devices with a z-wave interface are connected directly via the
wireless (z-wave) interface and z-wave non-compatible devices can be connected to the
system via the http-rest interface. The z-wave API [45] makes it easy for our aggregation
software stack to orchestrate and discover through all networked devices.

The class diagram of aggregation software (‘aggregation and control software stack’
as in Figure 2) is presented in Figure 5. Here, the question is that why do we need this type
of software in the first place? The main motivation for this is to achieve maximum degree
of automation in BEMS installation, upgradation or hardware changes. The following
goals, achieved by this aggregation software, can further underscore the inspiration behind
its development:

• Automatic device discovery (of all sensors, actuator and meters) with help z-way API,
• Automatic instantiation of control process instances for newly added device pairs,
• Every actuator control process is assigned its user defined higher and lower safety

threshold limits of indoor conditions,
• Built-in routines to check the trustworthiness (up to some level) of the feedback sensor

data (indoor conditions) before acting on external control instruction,
• User defined tag-based prioritization of non-critical loads is also possible and these

priority devices are not to be used to serve flexibility,
• Automatic calculation of higher and lower power limits of each actuator and the

record of their current power consumption levels,
• Automatic update of aggregated flexible power capacity (both up and down) from all

the installed actuators in the apartment building,
• Calculation of total flexible power capacity (both up and down) based on end use

(cooling and heating),
• No need of any software configuration in the developed system when a device is

added or removed from the z-way network stack,
• Every controller (i.e., control process) is associated with its location in the apartment

and the association can be changed if devices are being moved to another location,
• Automatic disabling (later deletion) of control instances if a device is removed.

The essential component of our approach is to integrate context to each element to
have their properties, behaviors and location-awareness associated with each device. This
can be done by following rules in designing the aggregation software stack:

• Every room with installed heating/cooling equipment, in itself is a closed loop temper-
ature control process with air-temperature set point within the residents’ comfort limits.

• Every actuator should have an associated feedback sensor to monitor the impact of its
operation over the time.

• For non z-wave devices, the hardware categories should be specified by using software
tags though z-way user interface whereas the z-wave devices already have this feature
inbuilt make them identifiable.

• Every actuator and sensor association must have a defined room location.
• The system should shield the user information (i.e., occupant numbers, occupant

activity, occupant location, device types, details of power consumption behaviours
etc.) from outside world and only share the available aggregated power flexibility
if queried.
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In order the understand the functionality of the aggregation software in Figure 5, we
have to see from practical point of view that there is an apartment building with: (1) many
rooms and (2) several pair of actuators and sensors installed within each of those room
locations. The ‘Apartment’ class have methods to search through the z-way API and to
instantiate all ‘Room’ instances and to find all resources (sensors and actuators) present
in every room. This information of resources in the room is kept in form of dictionaries
in run time environment and also saved locally in temporary database onboard. After
that, the ‘Apartment’ class also instantiates the ‘Controller’ instances by using the resource
information from room dictionaries. The information of controller process is kept in run
time and also saved locally in temporary database onboard. The list of all controller
instances can be segregated by means of priority or flexible defined by user. The external
control instruction received by MQTT client is passed to (only after calculation of comfort
situation) aggregated flexible control instances. This software is ‘future proof’ to changes
made user by in hardware and in device use preferences.
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In addition, it allows to receive a M2M control command based on end use of energy
(heating and cooling), switch to extreme power levels (minimum or maximum possible
power consumption levels), comfort, device category specific control (heater, heat pump,
floor heater, thermostat etc.) and room location specific control. In absence of external
control signal, the system is fully capable of operating by trying to minimizing the use
of electricity and keeping the adequate levels of comfort. It is done by turning on and
off loads whenever needed. The system can provide its flexible capacity information to
external sources and then, if needed, the flexible control command can be sent by external
controlling entity to alter the aggregated loads. The allowed control modes in apartment
building are minimum power, maximum power, cooling and heating as detailed in Table 1.
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Table 1. Flexible device status after applying different control actions.

Control Type Heat Pump Heater Floor Heater

Min. Power off off off
Max. Power on, set point: previous, mode: previous on on

Cooling on, set point: 17 ◦C, mode: cooling off off
Heating on, set point: 23 ◦C, mode: heating on on

5. Results and Conclusions

The paper first shows the overview of increasing thermal demand worldwide and then
presents a BEMS solution to tackle challenges of future smart grids with the help of smart
buildings. The analysis in Sections 1.1 and 1.2 clearly indicates that the high performance
buildings (in terms of energy consumption and energy flexibility) are a necessity to achieve
sustainability goals in built environment. A simple control user interface, of BEMS solution,
based on MQTT control API of aggregating software has been shown in Figure 6 and a
monitoring user interface, to see the effect of applied control, is displayed in Figure 7.
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The primary result of this BEMS solution is that this concept of modular aggregated
control is also scalable; it can understand the different modes and operating power levels
of each actuator device and can also alter the mode of operation if appropriate control
command is given. Individual control safety loops for each control process are checking
comfort level at an interval of 10 min and they will override the external control execution
in case the user comfort seems to be compromised. This tool allows the aggregating control
along as well as the customized control of actuators based on selected room locations.
Moreover, along with on-demand control it can operate in optimized mode to minimize
energy consumption or maximize user comfort. The data logging formats for different
loads is kept similar irrespective of the type of load or type of energy hardware network.
The system can respond to the smart bots querying for up/down power flexibility levels in
apartment and comfort status in different room locations and can also give transformer
level location information for local energy/energy flexibility trading possibilities.
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In addition, the quality of flexible energy service depends on the delivery of constant
power level change for promised time duration and it is very important to be to be initiated
at promised time instant. The timing of control execution is a variable in our case (therefore
important to know) since our setup controls several small loads and when control command
is received, they are actuated one by one. The overall actuation time depends on the number
of devices in the network and approximately, it is one second for each device. This actuation
time (control latency) is time taken in control process status check, control execution, control
process status check again and data logging. This control latency is measured on gateway
in real time and sent back with control response message as shown in Figure 6. Moreover,
for message identification purpose, timestamp based identity is attached to every control
or query message sent (a control message identity is necessary for each message and it will
be sent back with response). Overall, our system enables top-down authority in control
and management of energy resources which is possible by:

(1) scalable and replicable device hardware network,
(2) ‘bottom-top’ hierarchical information network (apartment→ room→ devices) and

methods to support aggregation and/or segregation of information based on different
criteria’s (as described in software description),

(3) modular controls and user interfaces built upon the modular information layer.

The developed monitoring interface have historical data visualization with live up-
dates. It enables us to see both big and small details, i.e., energy and power levels at
apartment levels and their distribution among individual device levels. Feedback sensor
status and up/down flexibility power levels of each device are also displayed. Furthermore,
having used the maintainable networked z-wave ICT system enabled the modularity in
information, control and visualization layers of the system therefore as a result any changes
at device network level are propagating through the systems’ software stack automati-
cally and adopted changes can be seen in monitoring user interface as well. Meaning
that, new added or removed devices from physical network are automatically updated in
visualization and once deployed no changes in software are needed.

Conclusively, since the control execution time with data logging takes few seconds
therefore in real world applications this BEMS system is suitable where data are updated
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on at least a minute basis. Moreover, the system’s auto-reconfiguration (re-orchestration
of whole device network and update of all control process) time is 30 min therefore if any
device is disconnected from network then its control process will be automatically disables
after the next auto-reconfiguration and it will be removed from the group of the aggregated
flexible loads. In addition, users can define priority software tags to exclude any device (of
importance) from the group of the aggregated flexible loads.

6. Discussion and Future Work

Real time measurement and control of power peaks is a necessity for future electric-
ity grids. The fast energy information exchange and control services can help to serve
more consumers with existing grid resources by shifting and reducing the power peaks.
Secondary ‘behind-the-meter’ wireless energy measurement meters (such as wall socket
meter) can minimize the electricity measurement period that can enable the participation
of small loads in very short response flexibility marketplaces.

Here at VTT, we have developed the some pieces of this puzzle i.e.,:

(1) one-tier marketplace for energy flexibility trading, and
(2) automatic aggregator of power flexibility for small loads (as presented in this paper).

At present, it is possible to turn up and turn down the power consumption in buildings
with low control latency using an external control signal. Nevertheless, in future work,
estimation of the time duration up to which hold of these changed power levels provides
the estimated energy flexibility at that moment. Estimating the heat stored in buildings
can inform us about the time deration it can sustain the comfort levels with altered power
levels. In different approaches, we can use outdoor temperature trends, indoor condition
and occupants’ situation to forecast the energy flexibility better in order to develop this
concept further.

However, the current system has some limitations. First, the non-z wave devices
(i.e., HTTP) can only be added manually and it is one-time manual task and second the
system operation is limited to provide power flexibility. However, in future work there
is a plan to develop machine-learning tools to estimate energy flexibility available at any
moment in real time. Therefore, the developed BEMS tool opens a future path for energy
flexibility estimation in buildings and way to offer it directly on 1-tier double auction,
energy flexibility marketplace at zero trading cost by using software based trading bots
and subsequently bypassing the need of flexibility aggregators or sub-aggregators.

Moreover, electric vehicles, photovoltaics and battery storage will have their own
positive impact on reducing the carbon content of power systems by increasing the con-
sumption of electricity with high renewable share but there will be need to utilize these
local resources very smartly. This presented BEMS work is to better understand the build-
ing’s thermal loads and their smart load management is first step towards it. After this
success in flexible thermal load management; in future electric vehicles, photovoltaics
and battery storage are also to be added in this BEMS software system and then based on
electricity price information, local production, thermal flexibility and battery capacity we
can make smarter decision to maximize the local consumption of local energy production.
For example, morning peak load can be managed by battery storage, evening peak can be
reduced by heat pump flexibility, and electric vehicle and battery storage can be charged
during access PV production or in mid night during power duck duration. In future,
there will be use of this BEMS system to test different control scenarios and also to model
building loads in to understand the best options for thermal energy flexibility trading using
software bots.
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The following abbreviations are used in this manuscript:
4G Fourth generation broadband cellular network technology
AC Air conditioner
ACs Air conditioners
API Application program interface
BEMS Building energy management system
BB Beagle board
BLE Bluetooth low energy
CAN Controller area network
CO2 Carbon dioxide
DC Direct current
ESP Espressif systems
EU European Union
FDP3 FDP3-Modbus
FLEXIMAR FLEXIMAR—Novel marketplace for energy flexibility
GPIO General purpose input output
GtCO2 Gigatonnes of carbon dioxide
GW Gateway
HTTP Hypertext transfer protocol
IEA International energy agency
ICT Information and communication technologies
IoT Internet of things
LAN Local area network
M2M Machine-to-machine communication
MQTT Message queuing telemetry transport
Pdiff Air pressure difference
PIR Passive infrared sensor
PLC Programmable logic controller
PV Photovoltaics
Rpi Raspberry pi
SULPU Suomen lämpöpumppuyhdistys (Finnish Heat Pump Association)
TCP/IP Transmission control protocol/Internet protocol
THP Temperature humidity pressure
VTT Teknologian tutkimuskeskus VTT Oy (VTT Technical Research Centre of Finland Ltd.)
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