
2021 89

José María Fácil Ledesma

Deep Learning for 3D
Visual Perception

Director/es
Civera Sancho, Javier
Montesano del Campo, Luis



© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606



José María Fácil Ledesma

DEEP LEARNING FOR 3D VISUAL PERCEPTION

Director/es

Civera Sancho, Javier
Montesano del Campo, Luis

Tesis Doctoral

Autor

2021

UNIVERSIDAD DE ZARAGOZA
Escuela de Doctorado

Programa de Doctorado en Ingeniería de Sistemas e Informática



Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es



Deep Learning for 3D Visual Perception

José M. Fácil Ledesma

Advisors: Javier Civera & Luis Montesano

Departmento de Informática e Ingeniería de Sistemas
Universidad de Zaragoza

This dissertation is submitted for the degree of
Doctor of Philosophy

October 2020





A mi hermana,
mis padres,
mis abuelas

y
Mª Luisa.





Acknowledgements

I started my thesis four years ago but I made the decisions that brought me here around a
decade ago. Naturally, during all these years there has been many people influencing my
life, supporting and helping me even if they or I did not notice. It is going to be impossible
to mention them all; they simply are too many. I thank you all in advance. There are some
major players I would like to mention, for whom I am deeply thankful and in debt.

First, I want to save a special mention to those people to who I owe such amazing
opportunities and for whom I have great respect. To my advisors Javier and Luis for
motivating and advising me through all these years. To Thomas Brox for letting me join his
lab for a few months. To Alejo for always teaching and helping me since my first days; even
if he did not have to. To Lina, for letting me be part of her team. To my high school teacher
Ramon for opening this door for me.

Thanks to the external reviewers Alberto and Manuel and to the PhD committee Ruben,
Jesus, Gabriel, Ana Cris and Taihú.

I would not like to forget all the PhD students and Professors at Unizar and specially
those that I have directly work with. I would like to specially mention all my co-authors
Alejo, Clara, Berta, Alejandro, Josechu, Jose Neira and my two super-advisors. There are
some that I would like to have included in the previous list – I still want to – and that I want
to thank for there discussions and opinions: Jose, Iñigo, Jesus, Seong and Carlos. My former
lab mates Jason, Edu and the two Carlos and also my three outstanding Bachellor and Master
students I have co-supervised: Dani, Mikel and Juan for who I hope the best in the next
professional steps.
The day which comes to mind, while writing these lines, as one of my best days of work
was with Jose, Clara and Alejandro. This was the best wine-ending conference deadline, for
CVPR 2019. Exhausting experience, that finished around 5AM, but one of the best moments
of team work I have ever experienced. If I have half as good teammates and friends as you in



vi

the future I will feel I have found the right place to be. For more Juepinchos with you guys.

Thanks to all my friends from Zaragoza. To all the Upside Downs with Lorenzo and Jose,
any after-work routine with you two is unmatched. Thanks to Toño, Rafa, Alex, Dani, Slavi
and Claudiu, you have definitely help to build the foundations of the professional I am today.
To Laura and Dante, best duo. Also to all my great flatmates Santi, Andrea, Alessandra &
Andrea, Patri, Diego and Irene.

I would be remiss to forget all my friends in Huesca. I am very happy to say I continue
having all my good friends from this small town and how proud I am of still being part of
your group: Acher, Lorenzo, Miguel, Lampi, Dani, Garasa, Nacho, Gavin, Olivan, Josan,
Elias, Cristian, Ruben and Olmo. Also thanks to the best cordada Carnicraba Arturo, Toño
and Edu for teaching me how to fight my fears. The experiences I have had with you these
last years on the walls are incredible and still hard to believe I accomplished them.

I had a very special time in Freiburg and I do not want to miss a big thanks to all my
friends there. Thanks Özgün, Tonmoy, Huizong and Benjaming. Thanks to my flatmates
Kristen and Sebas. Thanks to Abel and Paula for admitting me in that great small group, it
meant a lot.

Summer 2019 was a blast in Zurich. Thanks to all the great people that happened to be
there during that time. For all the culebreo to Alber, Ruben and Alejo, so fun. For all the
Toro bars to Mariano, Clara and whoever the company was that day. Thanks to all the people
that I worked with me and taught me, to all the Facebook Zurich team.

I must not forget my San Francisco buddy Rigley, you and Rich really have been the most
welcoming friends ever. Thanks to my homie Srinath, for your lessons and conversations
during improvised exotic dinners are unforgettable. To the Apple team I am so lucky to be
part of. I will see you all soon.



vii

I would not forgive myself if I don’t save a special mention to these very important
people. Thanks to to my best bro Jake, no day I am with you I don’t learn a new lesson; your
never-ending will to improve and change is inspirational. To Maggie, that has become my
best adventure companion, your unstoppable motivation and curiosity are exemplar. Your
ability to group and befriend are lovable, and you always bring the best with you. Thanks
for your patience, love and support, specially these last months. You always make the right
question to solve the puzzle.

To conclude I would like to thank my family, to all members of it but specially my parents
and my sister Irene for their love, lessons and support during all these years. Irene it is an
honor to have you as sister, not a single person does not have something good to say about
you and that is great to hear when you are in a mistrust moment. Mamá, las conversaciones
contigo siempre me han enseñado, a menudo pones mis pensamientos en su debido lugar,
guardo estos momentos como un tesoro. Papá, eres mi gran maestro, al que siempre admiraré
y del que siempre querré saber la opinión. Sentir tu apoyo y orgullo ha sido un combustible
inagotable. Estoy muy orgulloso y feliz de contar con todos vosotros. Gracias.

P.S. Pablo, thanks for all the book recommendations and video calls, you have done
COVID-19 lockdown much more entertaining, I think. I can’t wait to read a book produced
by you man.

“Every scholar knew that
one of the greatest dangers in research was the desire to find a specific answer.” – Sazed

— Brandon Sanderson, Mistborn: The Well of Ascension (2007)





Abstract

3D Visual Perception refers to the set of problems that involve gathering information trough
a visual sensor and estimating the three-dimensional position and structure of the objects
and formations surrounding the sensor. Functionalities like ego-motion estimation or map
building are essential to enable higher-level tasks such as autonomous driving or augmented
reality. In this thesis we have addressed several 3D perception challenges, all of them meant
to be useful from the perspective of Simultaneous Localization and Mapping (usually refereed
with its acronym SLAM), which is itself a 3D Perception problem.

Simultaneous Localization And Mapping –SLAM– aims to track the pose of a device (for
example a robot, a phone or augmented-reality glasses) with respect to a map that is si-
multaneously built while the sensorial platform is exploring the environment. SLAM is a
relevant technology in several applications, for instance, Virtual Reality (VR), Augmented
Reality (AR) or Autonomous Driving. Visual SLAM is the term used when only visual
sensors (cameras) are used. Many of the pieces in an ideal SLAM system are nowadays
well-known, mature and some are even present in applications. However, for other pieces
there are still significant research challenges. In particular, the ones that we address in this
thesis are: the estimation of the 3D structure around the camera from just one single image,
place recognition under drastic appearance changes or semantic reconstruction; all using
deep neural networks.

Monocular depth estimation is the task of perceiving the distance to the camera from every
pixel in an image, just from the information on that single image. This is a ill-posed problem,
therefore it is very difficult to infer the exact depth distance of points just from one single
image. It requires knowledge of what we see and the sensor we use to see. For example if we
know that a certain car model has certain height and we know the internal parameters of the
camera we used; we can estimate how far the car is if its height is 50 pixels in the image. For
this we present the first approach capable of estimating depth from one single view that is
able to have a reasonable performance with pictures taken by different cameras, such as your



x

phone’s but also your wearable camera.

We also present how to estimate, from one single image, the structure of indoor rooms or
room layout. For this second approach we leverage from spherical panoramic images in
equirectangular representation. Equirectangular image is an image format that displays all
directions in an spherical image. The equirectangular format is one single stitched image
of 360° horizontally and 180° vertically. From these images we aim to recover the room
layout, our goal being to learn the image cues that define the main structure of an indoor
room. We focus on recovering the simplest layout model, which are the lines that delimit the
floor, ceiling and walls.

Long-term localization and mapping require modeling appearance changes in the environ-
ment, as the way a particular place looks in winter or summer, for example, can change
greatly. We introduce a multi-view condition-invariant place recognition model that is robust
to this cases. Visual Place Recognition aims to identify a place that we have visited already
by associating the visual clues in image taken now and those taken before at different times.
It is preferred to be invariant to view-point, light changes, dynamic objects moving and
long-term appearance changes such as seasons, day and night or weather conditions.

Finally, and also related to long-term functionality, we also developed DynaSLAM, a SLAM
system able to distinguish between dynamic and static objects in a scene and that tracks the
position of the device with respect to the static parts only. It is very useful to not include the
dynamic objects in the map that simultaneously we are building so that if later we visit the
same scene and the dynamic objects have moved we can still function correctly in the long
term.



Resumen

La percepción visual 3D se refiere al conjunto de problemas que engloban la reunión de
información a través de un sensor visual y la estimación la posición tridimensional y es-
tructura de los objetos y formaciones al rededor del sensor. Algunas funcionalidades como
la estimación de la ego moción o construcción de mapas are esenciales para otras tareas
de más alto nivel como conducción autónoma o realidad aumentada. En esta tesis se han
atacado varios desafíos en la percepción 3D, todos ellos útiles desde la perspectiva de SLAM
(Localización y Mapeo Simultáneos) que en si es un problema de percepción 3D.

Localización y Mapeo Simultáneos –SLAM– busca realizar el seguimiento de la posición
de un dispositivo (por ejemplo de un robot, un teléfono o unas gafas de realidad virtual) con
respecto al mapa que está construyendo simultáneamente mientras la plataforma explora el
entorno. SLAM es una tecnología muy relevante en distintas aplicaciones como realidad vir-
tual, realidad aumentada o conducción autónoma. SLAM Visual es el termino utilizado para
referirse al problema de SLAM resuelto utilizando unicamente sensores visuales. Muchas
de las piezas del sistema ideal de SLAM son, hoy en día, bien conocidas, maduras y en
muchos casos presentes en aplicaciones. Sin embargo, hay otras piezas que todavía presentan
desafíos de investigación significantes. En particular, en los que hemos trabajado en esta tesis
son la estimación de la estructura 3D al rededor de una cámara a partir de una sola imagen,
reconocimiento de lugares ya visitados bajo cambios de apariencia drásticos, reconstrucción
de alto nivel o SLAM en entornos dinámicos; todos ellos utilizando redes neuronales profun-
das.

Estimación de profundidad monocular is la tarea de percibir la distancia a la cámara
de cada uno de los pixeles en la imagen, utilizando solo la información que obtenemos de
una única imagen. Este es un problema mal condicionado, y por lo tanto es muy difícil de
inferir la profundidad exacta de los puntos en una sola imagen. Requiere conocimiento de
lo que se ve y del sensor que utilizamos. Por ejemplo, si podemos saber que un modelo de
coche tiene cierta altura y también sabemos el tipo de cámara que hemos utilizado (distancia
focal, tamaño de pixel...); podemos decir que si ese coche tiene cierta altura en la imagen,



xii

por ejemplo 50 pixeles, esta a cierta distancia de la cámara. Para ello nosotros presentamos
el primer trabajo capaz de estimar profundidad a partir de una sola vista que es capaz de
obtener un funcionamiento razonable con múltiples tipos de cámara; como un teléfono o una
cámara de video.

También presentamos como estimar, utilizando una sola imagen, la estructura de una
habitación o el plan de la habitación. Para este segundo trabajo, aprovechamos imágenes
esféricas tomadas por una cámara panorámica utilizando una representación equirectangular.
Utilizando estas imágenes recuperamos el plan de la habitación, nuestro objetivo es recono-
cer las pistas en la imagen que definen la estructura de una habitación. Nos centramos en
recuperar la versión más simple, que son las lineas que separan suelo, paredes y techo.

Localización y mapeo a largo plazo requiere dar solución a los cambios de apariencia
en el entorno; el efecto que puede tener en una imagen tomarla en invierno o verano puede
ser muy grande. Introducimos un modelo multivista invariante a cambios de apariencia que
resuelve el problema de reconocimiento de lugares de forma robusta. El reconocimiento de
lugares visual trata de identificar un lugar que ya hemos visitado asociando pistas visuales
que se ven en las imágenes; la tomada en el pasado y la tomada en el presente. Lo preferible
es ser invariante a cambios en punto de vista, iluminación, objetos dinámicos y cambios de
apariencia a largo plazo como el día y la noche, las estaciones o el clima.

Para tener funcionalidad a largo plazo también presentamos DynaSLAM, un sistema de
SLAM que distingue las partes estáticas y dinámicas de la escena. Se asegura de estimar
su posición unicamente basándose en las partes estáticas y solo reconstruye el mapa de las
partes estáticas. De forma que si visitamos una escena de nuevo, nuestro mapa no se ve
afectado por la presencia de nuevos objetos dinámicos o la desaparición de los anteriores.

En resumen, en esta tesis contribuimos a diferentes problemas de percepción 3D; todos
ellos resuelven problemas del SLAM Visual.



Table of contents

1 Introduction 1
1.1 3D Visual Perception and Visual SLAM . . . . . . . . . . . . . . . . . . . 1
1.2 How Deep Learning is Improving Visual Perception . . . . . . . . . . . . . 3
1.3 Our contributions in 3D Visual Perception . . . . . . . . . . . . . . . . . . 5

1.3.1 Visual Mapping without Motion . . . . . . . . . . . . . . . . . . . 5
1.3.2 Visual Mapping with Little Motion . . . . . . . . . . . . . . . . . 6
1.3.3 Place Recognition under Appearance Changes . . . . . . . . . . . 9
1.3.4 Visual Reconstruction of High-Level Structures . . . . . . . . . . . 10
1.3.5 Visual SLAM on Dynamic Environments . . . . . . . . . . . . . . 11

1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Code Released . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Manuscript Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Camera-Aware Multi-Scale Convolutions for Single-View Depth 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Camera-Aware Multi-scale Convolutions . . . . . . . . . . . . . . . . . . . 20

2.3.1 Focal Length Normalization . . . . . . . . . . . . . . . . . . . . . 23
2.4 Model and Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.3 Training Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Multi-Camera Experiments and Results . . . . . . . . . . . . . . . . . . . 29
2.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.2 Influence of context . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.3 Overfitting of standard networks . . . . . . . . . . . . . . . . . . . 30
2.5.4 Robust Generalization with CAM-Convs . . . . . . . . . . . . . . 34
2.5.5 Experiments on Multiple Datasets . . . . . . . . . . . . . . . . . . 36



xiv Table of contents

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Combining Single-View Deep Learning Depth with Multi-View Depth 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Multi-View Depth . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Single-View Depth . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Single and Multi-View Depth Fusion . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Multi-view Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Single-view Depth . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 Depth Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.4 Multi-view Low-Error Point Selection . . . . . . . . . . . . . . . . 50

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Condition-Invariant Place Recognition 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 The Partitioned Nordland Dataset . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 Dataset Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.3 Place labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 Visual Place Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.3 Multi-View Place Recognition using Multi-View Descriptor . . . . 67

4.4 Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.1 Single-View ResNet-50 . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.2 Descriptor Grouping . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.3 Descriptor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.4 Recurrent Descriptors . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.1 Convention for Same Place . . . . . . . . . . . . . . . . . . . . . . 69
4.5.2 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6.1 Partitioned Nordland Dataset . . . . . . . . . . . . . . . . . . . . . 72
4.6.2 Alderley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6.3 Multi-View Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 76



Table of contents xv

4.6.4 Execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Corner Prediction for Layout Reconstruction 83
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Corners for Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.3 From Corner Maps to 3D Layout . . . . . . . . . . . . . . . . . . . 92

5.4 Equirectangular Convolutions . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.1 EquiConvs Details . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5.3 Network’s output evaluation . . . . . . . . . . . . . . . . . . . . . 99
5.5.4 Robustness analysis . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5.5 3D Layout comparison . . . . . . . . . . . . . . . . . . . . . . . . 103
5.5.6 Extra Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Monocular and RGB-D SLAM on Dynamic Environments 111
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3 DynaSLAM System Description . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.1 Segmentation of Potentially Dynamic Content using a CNN . . . . 116
6.3.2 Low-Cost Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.3 Segmentation of Dynamic Content using Mask R-CNN and Multi-

view Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.4 Tracking and Mapping . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.5 Background Inpainting . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.4.1 TUM Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.4.2 KITTI Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4.3 Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



xvi Table of contents

7 Conclusions 129
7.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 131

References 133

Appendix A Detailed Experiments for Camera-Aware Convolutions 149
A.1 Experiments on Stanford Dataset . . . . . . . . . . . . . . . . . . . . . . . 149

A.1.1 2D-3D Semantics Stanford Dataset . . . . . . . . . . . . . . . . . 149
A.1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.1.3 Influence of Context in Single View Depth . . . . . . . . . . . . . 151
A.1.4 Focal Length Overfitting . . . . . . . . . . . . . . . . . . . . . . . 153
A.1.5 Sensor Size Overfitting . . . . . . . . . . . . . . . . . . . . . . . . 153
A.1.6 Generalization with CAM-Convs . . . . . . . . . . . . . . . . . . 158

A.2 NYU Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.2.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.2.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



Chapter 1

Introduction

Computer vision has experienced a huge growth during the last decades. It can be broadly de-
fined as extracting information from images with similar goals to humans, making computers
see as we do. In order to meet this ambitious goal, computer vision addresses a vast number
of different perception problems like 3D reconstruction, object detection or object tracking.
And it does that by using many different models, strategies, algorithms and techniques, such
as epipolar geometry, probabilistic models or machine learning to name a few examples.
Computer vision is every time more present in our lives and we have grown to naturalize it,
benefiting from its advantages and getting used to its ubiquitous presence in many modern
technologies like face recognition in phones, lane detection in cars or camera tracking in
virtual and augmented reality (VR/AR) headsets.

1.1 3D Visual Perception and Visual SLAM

3D visual perception consists on recovering information of the 3D structure behind the images
taken by cameras. There is a wide range of research problems grouped under the general
term perception, that goes from recognizing the objects around the camera to estimating the
ego-motion of the camera itself. Sometimes we may dispose of multiple views of a scene
taken at the same time (e.g. stereo cameras) or taken sequentially at different times; and
sometimes we will perceive our environment from just one single image.

Many different applications may benefit from 3D perception. Some include, cars with
pedestrian detection as extra safety feature, medical image for precise surgery or people
tracking in video vigilance among many others. In the last years, many of these perception
solutions have been transferred to commercial products and they are every time more present.
However, there are still many points to improve both in resolution, like complete scene



2 Introduction

understanding, and precision, like object classification or dense depth estimation. Some of
these problems have not yet been addressed successfully or still have a poor performance.

There are two particular perception problems that humans resolve very well, which
are the estimation of our trajectory – tracking our motion – and the 3D perception of our
environment and elements around us – mapping the scene. In the robotics community
this problem is usually referred to as SLAM (which stands for Simultaneous Localization
And Mapping). Another acronym is used by the computer vision community for a similar
problem, SfM (which stands for Structure from Motion). The difference lies in that SLAM,
differently to SfM, assumes that the data will appear sequentially and aims to complete the
computation within the sampling time of the sensor(s) (real time). SLAM is a very relevant
problem that is essential for a wide range of applications such as virtual, augmented or mixed
reality (Newcombe et al., 2011, Klein and Murray, 2007), Micro Aerial Vehicles (MAVs)
navigation (Shen et al., 2011), autonomous driving (McManus et al., 2013) and assisted
surgery (Lamarca et al., 2020). Visual SLAM addresses the localization and mapping tasks
using only visual sensors, e.g., RGB cameras.

Visual SLAM is currently a mature problem, but still a relevant and challenging research
area (Cadena et al., 2016). Literature has proposed many different approaches to SLAM, the
two main families being the feature-based models – using salient points and matching them
across views – (Klein and Murray, 2007, Mur-Artal et al., 2015) and direct approaches – that
rely directly on the pixel colors – (Newcombe et al., 2011, Engel et al., 2014). Although
there are excellent approaches to the general SLAM problem from visual clues, the problem
is not fully solved yet. There are many open challenges that can actually appear very often:
surfaces with no texture and therefore difficult to match between different views (Concha and
Civera, 2015a), small camera motions that do not create enough parallax to triangulate points,
revisiting places after their appearances have changed (e.g. day and night) (Gomez-Ojeda
et al., 2015), dynamic elements of the scene (e.g., people walking on the street) that violate
the usual rigidity constraints of the algorithm (Alcantarilla et al., 2012) or adding semantic
information to certain parts of the scene (e.g. road lanes or room layout) (Fernandez-Labrador
et al., 2018b).

As the technology for SLAM has become more known and present in applications like
VR/AR, its challenges have become more evident. Despite tackling the general problem
with great performance, large errors due to cases like day/night or small motions limit the
potential of the technology in critical applications, for example autonomous driving. In order
to have a reliable perception system, these cases must be addressed as well. Concurrently
with the growth in use of SLAM systems, the technology for recording and storing data has



1.2 How Deep Learning is Improving Visual Perception 3

become better and more accessible. As result of this, more data with better ground truth is
available. This has allowed the community to create better benchmarks and evaluation tools.

The large amount of data available, in this as in many other problems, has made machine
learning algorithms gain relevance. A machine learning algorithm is an algorithm that
learns from data (Goodfellow et al., 2016). Specifically, it learns to improve its performance
(measured by a certain metric) on a task, based on experience. An example of a task can be
object classification where previous experience are images that have been labeled (or not)
and the measurement of performance might be the classification accuracy.

The machine learning technique that has benefited more from having a vast amount of
data, as well as more computational power, is deep learning. Deep learning is a family of
algorithms that forms part of the machine learning and artificial intelligence field. Deep
learning is based on artificial neural networks, being deep feed-forward networks or multi-
layer perceptron the quintessential model for deep learning (Goodfellow et al., 2016). Deep
neural networks (DNNs) are a set of interconnected processing units able to approximate
complex functions based on a performance measurement normally referred to as loss.

It is in this context of deep learning growing in popularity and being used to tackle
perception problems that this thesis takes place. In particular, we have contributed to several
challenges in different 3D perception problems: dense monocular depth estimation, place
recognition under drastic appearance changes, semantic reconstruction and ego-motion
estimation in dynamic environments. All of them are connected to visual SLAM to a greater
or lesser extent.

1.2 How Deep Learning is Improving Visual Perception

The increase of data and computational power has made DNNs very popular in many different
applications. Some of the most popular examples are found in the natural language processing
(NLP) domain where we can differentiate several tasks: speech recognition (Amodei et al.,
2016, Wang et al., 2019), sentiment analysis (Zhang et al., 2018) or hate speech detection
(Gomez et al., 2020) among many others.

Deep neural networks have also been widely used in computer vision for many different
tasks, using mainly the convolutional layers introduced in LeCun et al. (1989). Convolutional
neural networks (CNNs) are a specialized type of neural network for processing data that has
a fixed-size grid-like topology. They are only locally connected, sharing the weight on each
local connection that is normally referred as kernel and allow the same pattern to be learned
in any part of the grid. Other network architectures were later used with a CNN backbone, for
example Generative Adversarial Networks (GANs) introduced by Goodfellow et al. (2014).



4 Introduction

GANs are a proposal for training generative models that consist in two networks competing
in a game where the success of one implies the other one’s loss. These models have been
used in many applications with different purposes, such as training context encoders as
unsupervised pretraining for object classification and semantic segmentation (Pathak et al.,
2016). In parallel, Ronneberger et al. (2015) introduced the U-Net architecture, adding extra
connections at different levels between encoder and decoder, consequently better propagating
high-level high-resolution features. Another relevant architectural design are the Siamese
networks, used for tasks such as image retrieval (Gordo et al., 2016). A Siamese neural
network consists of two DNNs that share their weights during training, while being fed with
two different input images to compute comparable output vectors.

When working with data that has a temporal dimension, like language or video (Donahue
et al., 2014), recurrent neural networks (RNN) have demonstrated a good performance.
Differently from a normal DNN, a RNN defines a directed graph with temporal connections
along a sequence of inputs (Hochreiter and Schmidhuber, 1997). These connections allow
the network to capture temporal patterns from sequential data, and they have been used in
tasks like speech recognition, video captioning and handwriting recognition among others.

Visual perception has greatly benefited from the use of deep learning models. Some
popular problems that have made use of deep networks are object classification (Simonyan
and Zisserman, 2014, He et al., 2016), object detection (Liu et al., 2020), image and video
semantic segmentation (Garcia-Garcia et al., 2018), and face recognition (Parkhi et al., 2015).
More aligned with the purpose of this thesis, in 3D visual perception many tasks have also
been addressed using deep learning, starting from pure monocular depth estimation (Eigen
et al., 2014), camera pose estimation (Kendall et al., 2015), object pose tracking (Tompson
et al., 2014) and flow estimation (Dosovitskiy et al., 2015). Geometric models began to be
added to the network architectures and losses, for self-supervision (Godard et al., 2017) or to
be learned (Ummenhofer et al., 2017).

In this thesis we have identified several challenges that needed to be addressed inside
3D perception. We have proposed solutions and contributed to different areas, one of them
being monocular depth estimation. Along this manuscript we will present works that discuss
some of these architectural models mentioned before. For instance, RNN have been used for
generating distinctive descriptors for sequence of images to perform visual place recognition.
Siamese networks have been used to compare these descriptors for several images and also
to train single-view depth estimation with images of different sizes. In the next section we
briefly explain each one of these problems and our contributions.



1.2 How Deep Learning is Improving Visual Perception 5

1.3 Our contributions in 3D Visual Perception

“I suppose it is tempting,
if all you have is a hammer, everything looks like a nail”

— Abraham Maslow, The Psychology of Science (1966)

We have tackled the following significant challenges on 3D visual perception: dense
monocular depth estimation, place recognition under drastic appearance changes, semantic
reconstruction and ego-motion estimation in dynamic environments. We contribute in all of
these challenges using deep learning. We make use of convolutional networks to work with
images and address these challenges by extracting and processing visual clues present in
the input images. We have also contributed to make deep learning and specifically CNNs
more adaptable to different cameras or image representations by introducing CAM-Convs
and EquiConvs, two types of convolutions that will be further detailed in Chapters 2 and 5.
In the following sections we introduce the research problems, the related literature and our
contributions for all the different 3D visual perception challenges we have addressed.

1.3.1 Visual Mapping without Motion

Visual SLAM is mainly based on matching points across different views and jointly estimate
the relative movement of the camera and the triangulation of these points (Triggs et al., 1999).
However, that procedure’s accuracy depends on the parallax angle generated by the camera
motion. When the camera does not move, the trajectory does not need to be calculated but
the estimation of the 3D of the scene becomes challenging as it is an ill-posed problem. This
problem is referred to in the computer vision community as single-view depth estimation
or monocular depth estimation. Depth perception from one single image has usually been
addressed using machine learning algorithms (Saxena et al., 2009).

One of the most impactful advances in single-view depth estimation was the use of deep
learning by Eigen et al. (2014), that trained in a supervised manner a deep neural network
to predict depth from single RGB images. Their proposal is a convolutional neural network
(CNN) trained with RGB-D examples to predict a depth value for each RGB pixel.

Following works farther improved predictions by using deeper models and networks
pretrained in other tasks, mainly classification (Eigen and Fergus, 2015, Laina et al., 2016).
Different training procedures allowed to train with different datasets despite not being
supervised – meaning that they do not have depth values for all the pixels. Godard et al.
(2017) proposed a self-supervised scheme by forcing left-right stereo camera consistency



6 Introduction

during training, their original network architecture based on Mayer et al. (2016) DispNet.
Zhou et al. (2017) took the self-supervision a bit further by not using stereo but monocular
ego motion. In this case the ego motion is also predicted by the network, therefore requires
much less supervision for training. A combination of both ideas was also proposed to learn
depth and ego motion jointly (Zhan et al., 2018).

Despite all the advances in single-view depth estimation there is one attribute of traditional
geometry-based multi-view model that has been largely unaddressed: incorporating the
camera intrinsic parameters into the models. There has been two ways of dealing with the
camera geometry in deep-learning single-view depth. The first and most generalized way has
been to train on a single dataset where all the images were captured using the same camera;
the common practice being to ignore the camera geometry and simply assuming that all
the cameras have the same one (Eigen and Fergus, 2015, Laina et al., 2016). The second
approach has been to use one single dataset (e.g. MegaDepth) with images from different
types of cameras but still ignoring the camera geometry in the model (Li and Snavely, 2018).
Unfortunately, this forces the predicted depth to be up-to-scale and ignores the projection
model.

Chapter 2 in this thesis focuses on providing deep neural networks with awareness of
the camera geometry when estimating depth from single images. Inspired by Liu et al.
(2018) we propose CAM-Convs a type of convolution that adds pixel-wise information of
the camera intrinsic parameters and allows the network to train and infer depth for different
cameras. In this data-hungry era our proposal adds the possibility of training with multiple
cameras without sacrificing performance. Also, our depth estimation approach has proved
to generalize across different cameras never seen during training. Figure 1.1 shows an
example of depth predictions made by our deep neural network with and without using our
CAM-Convs. Previous approaches normally train and evaluate on the same type of data
both in domain, for example indoor images, and in camera, training and testing on the same
camera. We have proved that it is possible for a CNN to be aware of the camera and to
build a model capable of working with different types of cameras. Continuing our proposal,
López-Antequera et al. (2020) introduces a camera normalization that also allows CNN to
train with multiple cameras. Preliminary unpublished results of our work were presented to
the Robust Vision Challenge in 2018 in the International Conference in Computer Vision and
Pattern Recognition (CVPR) and achieved the third position in the ranking, see Figure 1.2.

1.3.2 Visual Mapping with Little Motion

While estimating depth from a single view (hence no motion) is the most challenging case,
visual SLAM still suffers when there is very little camera motion. As mentioned before, the



1.2 How Deep Learning is Improving Visual Perception 7

Input Ground-Truth w/ CAM-Convs w/o CAM-Convs

Fig. 1.1 Depth prediction from single image. 1st column shows the original RGB image
and input for the network. 2nd column shows the ground-truth depth. 3rd column shows the
prediction by a CNN using CAM-Convs. 4th column shows the prediction of the same CNN
but this time not using CAM-Convs.

Fig. 1.2 Image taken from http://www.robustvision.net/rvc2018.php. The
Robust Vision Challenge 2018 was a full day event held in conjunction with CVPR 2018
in Salt Lake City. The goal of this challenge is to foster the development of vision sys-
tems that are robust and consequently perform well on a variety of datasets with different
characteristics.

parallax angle is very small in this case and this makes the estimation inaccurate. One of
the hypotheses in this thesis is that multi-view algorithms can benefit from single-image
depth estimation. Mapping from multiple views can leverage from having a first guess from
a single view. Despite being a ill-posed problem, the literature has shown (Eigen et al., 2014,
Eigen and Fergus, 2015, Ummenhofer et al., 2017) that it is possible to learn visual clues

http://www.robustvision.net/rvc2018.php


8 Introduction

from which we can successfully predict a reasonably accurate 3D structure. Chronologically,
the first work of this thesis, presented in Chapter 3, successfully combines both mapping
techniques; single-view deep-learning-based depth estimation (Eigen and Fergus, 2015) and
multi-view direct-based dense depth estimation (Newcombe et al., 2011). Our proposal is
based on the fusion of both estimations, and our results show that neither mapping technique
gets affected by the other and both can be complementary and achieve better results when
they are combined. Figure 1.3 shows an example that summarizes the results of this work.

Input Ground-Truth SV-MV Fusion SV only

Fig. 1.3 Depth prediction combining single-view predicted with a CNN and geometry-based
multi-view depth. 1st column shows the original RGB image and input for the network. 2nd

column shows the ground-truth depth. 3rd column shows the single-view (SV) prediction by
a CNN and then fused with a semi-dense depth predicted by traditional multi-view (MV)
depth estimation. 4th column shows the single-view (SV-only) prediction of the same CNN
but this time not adding extra information.

Following works have shown similar conclusions, combining learning and geometry
based multi-view estimation. Tateno et al. (2017), similarly to us, directly combines the
raw results of deep neural network (Laina et al., 2016) and a semi-dense visual SLAM
system (Engel et al., 2014). Ummenhofer et al. (2017) developed a learning-based model
that leverages from stereo views. They propose a CNN that predicts the motion between
two views as well as the a dense depth estimation of one of them. Bloesch et al. (2018)
introduced a way to optimize learning-based single-view predictions by minimizing a photo
metric energy term that depends on a sequence of images. They train a Variational Auto-
Encoder (VAE) with single images and, in test time, optimize the latent space generated
by the VAE to produce the best depth representation that minimizes the photo-metric error.
Zhou et al. (2018) presented a totally learning based multi-view tracking and mapping, in
which they sequentially feed their model with images and the Convolutional Neural Network
interactively minimizes the error.

A similar line of work is depth in-painting or depth completion, where deep learning is
used to fill in a dense depth map starting from a sparse depth map and an image. It has been
used to complete depth images captured by a RGB-D sensor (Zhang and Funkhouser, 2018)



1.2 How Deep Learning is Improving Visual Perception 9

or Lidar (Qiu et al., 2019, Ma et al., 2019) but can potentially be used to fill semi-dense
(Engel et al., 2014) or sparse reconstructions (Mur-Artal et al., 2015) for visual SLAM.

1.3.3 Place Recognition under Appearance Changes

When we revisit a place that we have visited before, we can use such knowledge in a wide
array of tasks. For example, being able to be back on track after being lost or disoriented, a
familiar room or street can be of so much help. Another application of place recognition is
navigation and decision making. If we have map memorized we can decide the best way to
reach our goal in the fastest way, e.g. the kitchen when we are seeking food. In visual SLAM,
place recognition plays an important role and is essential to reuse and/or update previously
mapped places, also called loop closure in robotics, and to re-localize the camera when
the tracking has failed, re-localization (Gálvez-López and Tardos, 2012, Lee and Civera,
2019). Place recognition has other applications such as image retrieval (Noh et al., 2017),
autonomous driving (McManus et al., 2014) or augmented reality (AR) (Middelberg et al.,
2014).

One of the problems and main challenges in visual place recognition (Lowry et al., 2016)
is that the scenes rarely stay intact over time; meaning that they suffer changes and they
do not look exactly as they were before (Garg et al., 2019). Examples of changes can go
from dynamic objects like people, that appear or disappear and produce confusing visual
cues, to movable objects that have been moved like furniture or vehicles. Another example
include time, weather or seasons: light changes produce very different visual effects during
day and night, rainy days produce reflections and a winter day can lead to images that are
very different from the same scene during the summer. Examples of visual changes in the
appearance of a scene can be seen in the Figure 1.4.

In Chapter 4 we propose a deep learning model for place recognition under appearance
changes. We propose several networks that generate a descriptor for a given image or, for the
first time, a sequence of images that can easily be matched with another previously taken in
the same place by using a nearest neighbor algorithm. A descriptor is a vector of numbers,
each image generates its own and our goal is to ensure that images taken at the same place
generate similar vectors while the images that are taken at different places do not. We have
also proposed a partition of the Nordland dataset and made it free access. We proposed
this partition to make the most challenging bias-free data splits. Details of the dataset are
shown in Chapter 4. Recently Warburg et al. (2020) introduced a large dataset for long-term
localization and have evaluated our ideas of sequence descriptors, ultimately confirming our
findings.



10 Introduction

Fig. 1.4 Images from the Nordland Dataset. The four images were taken from the same
point but despite looking very different we are capable of telling that they are the same place.
From top-left in clockwise order the images were taken in winter, summer, fall and spring.

1.3.4 Visual Reconstruction of High-Level Structures

It is incredibly useful to recognize the patterns of the structure around us. Having certain
knowledge of the layout can help us navigate or reconstruct the environment better. A easily
seen example of this is driving; we, humans, leverage the structure of a scene to track our
position and simultaneously build a map of the surrounding environment. We correctly
assume that the lines marking lanes are parallel and that the road between these lanes is a
plane or quite planar.

Previous works have used scene priors in Visual SLAM as well. Concha et al. (2014)
proposes a piece-wise-planar regularization that leverages from recognizing planar parts of
the map that are very common on man-made scenes. Another common pattern in man-made
structures are straight lines, successfully used and combine with salient points by Gomez-
Ojeda et al. (2016). Fouhey et al. (2013) recovers 3D data-driven primitives that were later
used by Concha et al. (2015) to improve monocular mapping. Pérez-Yus et al. (2014) detects
a more specific and high-level structure: stairs; a work that was later extended in Perez-Yus
et al. (2017) by adding a visual odometry module and detecting the stairs also during traversal



1.2 How Deep Learning is Improving Visual Perception 11

motion. Salas et al. (2015) build a Visual SLAM system that is aware of the layout of a room,
tracking it through different views. Recovering the layout of an indoor room is the detection
of the lines that delimit the structure of it, i.e. the separation between walls, floor and ceiling.

360 Image

Fig. 1.5 Image taken from Fernandez-Labrador et al. (2018a). This layouts were recovered
from a single image taken from a 360 camera and it is represented as a equirectangular image.

In this thesis, specifically in Chapter 5, we have focused on the improvement of this
layout detection for indoor rooms. We have proposed the first corner prediction end-to-end
neural network for layout recovery from 360 panoramas. See Figure 1.5 for an illustrative
example. We have presented a model that directly recovers the corners of the room with no
pre- or post-processing, from there with very little computation we are capable of recovering
a very simple and schematic 3D model. Another contribution of this work is the development
of EquiConvs, a convolution type that deforms the shape of the kernel to match the distortion
created by the equirectangular representation of a panoramic image.

1.3.5 Visual SLAM on Dynamic Environments

The last of the topics addressed in this thesis is SLAM in dynamic environments (see Figure
1.6 for an illustration of the problem). Including dynamic objects in our reconstruction can be
significantly challenging since they move, their changing positions can confuse our tracking



12 Introduction

if we use them to estimate our pose. As humans, we experiment a similar effect when we sit
inside a train and through the window we see another train in the station. Sometimes one of
the two trains starts to move and we do not really understand which one of the two is moving.
Sometimes we wrongly perceive as if we were moving because we use a moving image to
locate ourselves. For visual tracking we locate the camera with respect to the parts of the
scene we are viewing, but if we are not careful of using only parts of the scene that are static
as an anchor to estimate the pose of the device, the recovered pose can be erroneous. Riazuelo
et al. (2017) proposed a RGB-D SLAM system with an embedded real-time human tacker
module. Li and Lee (2017) also proposed a similar RGB-D SLAM system, but differently to
previous approaches, they use depth edge points as an indicator of the probability that parts
of the image belong to a dynamic object.

We propose, in Chapter 6, a combination of traditional geometry and deep learning tech-
niques to detect and consider dynamic objects during tracking and mapping for monocular,
stereo and RGB-D SLAM. This system combines the use of a semantic segmentation CNN
with a classical feature-based SLAM system. More recent works have advanced more in the
topic of SLAM with dynamic objects. Yang and Scherer (2019) build an RGB-D SLAM
system where by retrieving 3D bounding boxes of objects they jointly optimize the poses of
the camera, objects and points among different views. Xu et al. (2019) are able to maintain a
map tracking all the instances of objects by building an object-level octree-based volumetric
representation, providing a robust RGB-D camera tracking as well.

1.4 List of Publications

The work developed during this PhD thesis has produced the following publications.

• Facil, J. M., Concha, A., Montesano, L., & Civera, J. (2017). Single-view and Multi-
view Depth fusion. IEEE Robotics and Automation Letters, 2(4), (pp. 1994-2001).
With Oral Presentation at International Conference on Intelligent Robots and Systems
(IROS) 2017.

• Facil, J. M., Ummenhofer, B., Zhou, H., Montesano, L., Brox, T., & Civera, J. (2019).
CAM-Convs: CAM-Convs: Camera-Aware Multi-scale Convolutions for Single-
View Depth. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
2019 (pp. 11826-11835).

• Olid, D., Fácil, J. M., & Civera, J. (2018). Single-view place recognition under sea-
sonal changes. Planning, Perception and Navigation for Intelligent Vehicles Workshop
at International Conference on Intelligent Robots and Systems (IROS) 2018.



1.4 List of Publications 13

Camera
Trajectory

Dynamic
Elements

Fig. 1.6 This image shows an example of how dynamic objects are detected over time and
taken into account when tracking the camera position. At the same time, the map could be
built, not considering the dynamic objects because they should not be part of it.

• Facil, J. M., Olid, D., Montesano, L., & Civera, J. (2019). Condition-Invariant Multi-
View Place Recognition. Technical Report 2019 – arXiv preprint arXiv:1902.09516.

• Fernandez-Labrador, C., Facil, J. M., Perez-Yus, A., Demonceaux, C., & Guerrero, J.
J. (2018). PanoRoom: From the Sphere to the 3D layout. 3D Meets Semantics at
European Conference in Computer Vision (ECCV) 2018.

• Fernandez-Labrador, C.*, Facil, J. M.*, Perez-Yus, A., Demonceaux, C., Civera, J.,
& Guerrero, J. J. (2020). ThreeSixty End-to-End Layout Recovery. Woman in
Computer Vision at IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) 2019. * - Equal Contribution

• Fernandez-Labrador, C.*, Facil, J. M.*, Perez-Yus, A., Demonceaux, C., Civera, J., &
Guerrero, J. J. (2020). Corners for layout: End-to-end layout recovery from 360
images. IEEE Robotics and Automation Letters, 5(2), (pp. 1255-1262). * - Equal
Contribution



14 Introduction

• Bescos, B., Facil J.M., Civera, J. & Neira, J., Detecting, Tracking and Eliminat-
ing Dynamic Objects in 3D Mapping using Deep Learning and Inpainting, Oral
and Poster Presentation within the Workshop at ICRA 2018: Representing a Com-
plex World: Perception, Inference, and Learning for Joint Semantic, Geometric, and
Physical Understanding

• Bescos, B., Facil J.M., Civera, J. & Neira, J., Robust and Accurate 3D Mapping
by combining Geometry and Machine Learning to deal with Dynamic Objects,
Poster Presentation within the Workshop at IROS 2017: Learning for Localization and
Mapping

• Bescos, B., Facil J.M., Civera, J. & Neira, J., DynaSLAM: Tracking, Mapping and
Inpainting in Dynamic Scenes, IEEE Robotics and Automation Letters 3 (4), (pp.
4076 - 4083). With Oral Spotlight and Poster at International Conference on Intelligent
Robots and Systems (IROS) 2018.

1.5 Code Released

During the realization of this thesis we have released the following code repositories.

• Source code for CAM-Convs: Camera-Aware Multi-Scale Convolutions for Single-
View Depth in TensorFlow 1.4 and 2.0. https://github.com/jmfacil/

camconvs

• Source code for Single-View Place Recognition in Caffe. https://github.com/
jmfacil/single-view-place-recognition

• Source code of Corners-for-Layout and EquiConvs (EquiRectangular Convolutions)
for TensorFlow 1.4. https://github.com/cfernandezlab/CFL

• Source code of DynaSLAM, build upon ORB-SLAM2, Tracking, Mapping and In-
painting in Dynamic Scenes for Monocular, Stereo and RGB-D Cameras. https:
//github.com/BertaBescos/DynaSLAM

1.6 Manuscript Organization

The structure of this Ph.D. thesis is as follows. In the Chapter 2 we present CAM-Convs for
monocular single-image depth estimation with different cameras. In Chapter 3 we propose a

https://github.com/jmfacil/camconvs
https://github.com/jmfacil/camconvs
https://github.com/jmfacil/single-view-place-recognition
https://github.com/jmfacil/single-view-place-recognition
https://github.com/cfernandezlab/CFL
https://github.com/BertaBescos/DynaSLAM
https://github.com/BertaBescos/DynaSLAM


1.6 Manuscript Organization 15

fusion between single and multi-view depth to improve mapping with very little motion and
texture for Visual SLAM. Chapter 4 presents several deep neural network architectures for
robust visual place recognition considering appearance changes. In Chapter 5 we introduce
Corners for Layout (CFL), an end-to-end network to extract corners of indoor rooms, and the
Equirectangular Convolutions (EquiConvs), a type of convolution that allows CNNs to adapt
to equirectangular distortions. Finally, Chapter 6 presents DynaSLAM, a monocular, stereo
and RGB-D SLAM system that is aware of dynamic objects on the scene and ignores them
when tracking the camera pose and mapping the scene.





Chapter 2

Camera-Aware Multi-Scale Convolutions
for Single-View Depth

As we have mentioned in the introduction chapter, structure without motion is an ill-posed
problem that is not solvable in general with traditional geometric techniques. For that
reason many learning approaches have been presented over the last years trying to tackle
this problem. Deep learning, as in many other problems, have proven to show the best
results. However, single-view depth estimation suffers from the problem that a network
trained on images from one camera does not generalize to images taken with a different
camera model. Thus, changing the camera model requires collecting an entirely new training
dataset. In this chapter, we propose a new type of convolution that can take the camera
parameters into account, thus allowing neural networks to learn calibration-aware patterns.
Our experiments confirm that this improves the generalization capabilities of depth prediction
networks considerably, and clearly outperforms the state of the art when the train and test
images are acquired with different cameras.

2.1 Introduction

Recovering 3D information from 2D images is one of the fundamental problems in computer
vision that, due to recent advances and applications, is receiving nowadays a renewed
attention. Among others, there has been recent relevant results on problems such as 6D
object pose detection (Kehl et al., 2017, Shrivastava et al., 2017, Sundermeyer et al., 2018),
3D model reconstruction Fan et al. (2017), Tatarchenko et al. (2017), depth estimation from
single (Laina et al., 2016, Fu et al., 2018, Li et al., 2018) and multiple views (Ummenhofer
et al., 2017, Huang et al., 2018), 6D camera pose recovery (Kendall et al., 2015, 2017) or
camera tracking and mapping (Zhou et al., 2018, Bloesch et al., 2018, Tang and Tan, 2018,



18 Camera-Aware Multi-Scale Convolutions for Single-View Depth

*
CAM-Conv

Encoder Decoder

Camera Model

Fig. 2.1 CAM-Convs allows efficient specialization of a camera-generic network for various
camera models by feeding camera-specific parameters into the network.

Tateno et al., 2017). While traditional multi-view methods (Schonberger and Frahm, 2016)
are mostly based on geometry and optimization and, thus, are largely independent of the
data, these recent deep learning approaches depend on training data that demonstrates the
mapping from images to depth.

The common strategy to collect such data is by using an RGBD sensor, like the Kinect
camera, which conveniently provides both the RGB image and what can be considered
ground truth depth. It is implicitly assumed that training on this type of data will generalize
to other RGB sensors that do not provide depth. However, the evaluation of recent learning-
based methods relies largely on public benchmarks where images have been recorded with
the same RGBD camera as the training data. Thus, evaluation on these benchmarks does not
reveal whether a depth estimation method generalizes to RGB images from another camera.

Overfitting to a benchmark is a common problem in computer vision research. Torralba
and Efros (2011) have shown that datasets may have strong biases that make researchers
over-confident regarding the performance of their method. In particular, train-test divisions
of the same kind of data are not enough to prove generalization. In this work we show that,
indeed, state-of-the-art single-view depth prediction networks do not generalize when the
camera parameters of the test images are different from the training ones.

Moreover, we show that for single-view depth prediction the problem of missing general-
ization to images from different cameras is even more severe: it cannot be solved by training
on images from a diverse set of cameras with different parameters. For present methods to
adapt to a different camera model, they require changes in the architecture.

We present a deep neural network for single-view depth prediction that, for the first time,
addresses the variability on the camera’s internal parameters. We show that this allows to



2.2 Related Work 19

use images from different cameras at train and test time without a performance degradation.
This is of particular interest, as it enables the exploitation of images from any camera for
training the data-hungry deep networks. Specifically, within our proposed network, our
main contribution is a novel type of convolution, that we name as CAM-Convs (Camera-
Aware Multi-scale Convolutions), that concatenates the camera internal parameters to the
feature maps, and hence allows the network to learn the dependence of the depth from these
parameters. Figure 2.1 shows an illustration of how CAM-Convs act in the typical encoder-
decoder depth estimation pipeline. The network can be trained with a mixture of images
from different cameras without overfitting to specific intrinsics. We show that the network
generalizes also to images from cameras it has not been trained on. A comparison with the
state of the art in single-image depth estimation demonstrates that the better generalization
properties do not reduce the accuracy of the depth estimates.

2.2 Related Work

Estimating 3D structure and 6 degrees-of-freedom motion using deep learning has been
addressed recently from several angles: Supervised (Laina et al., 2016) and unsupervised
(Zhou et al., 2017), from single (Eigen and Fergus, 2015) and multiple views (Tang and Tan,
2018), using end-to-end networks (Laina et al., 2016) or fusing with multi-view geometry
(Fácil et al., 2017), completing depth maps (Zhang et al., 2018, Weerasekera et al., 2018),
and estimating geolocation (Weyand et al., 2016, Kendall et al., 2015), relative motion
(Ummenhofer et al., 2017), visual odometry (Wang et al., 2017, 2018), and simultaneous
localization and mapping (SLAM) (Tateno et al., 2017, Bloesch et al., 2018, Zhou et al.,
2018).

In this work we deal with single-view supervised depth learning, so we will focus our
literature review in this case. Among the pioneering work we can reference Hoiem et al.
(2005), that similarly to pop-up illustrations, cut and fold a 2D image based on a segmentation
into geometric classes and some geometric assumptions. Saxena et al. (2009) is another
seminal work that, with minimal assumptions on the scene, learned a model based on a
MRF. Eigen et al. (2014) was the first paper that used deep learning for single-view depth
prediction, proposing a multi-scale depth network. Its results were improved later by Eigen
and Fergus (2015), Liu et al. (2015b), Laina et al. (2016), Chakrabarti et al. (2016) and He
et al. (2018).

Many methods focus on specific datasets which enable to train learning-based methods
for specific tasks. For instance, Eigen and Fergus (2015) extend the multi-scale architecture
in Eigen et al. (2014) to the prediction of surface normals and semantic labels on the NYU



20 Camera-Aware Multi-Scale Convolutions for Single-View Depth

dataset (Silberman et al., 2012). Similarly, Wang et al. (2015) train a network that jointly
predicts depth and segmentation on the same dataset. For depth, Laina et al. (2016), Liu
et al. (2015b) and Eigen and Fergus (2015) show that their methods can be adapted to other
datasets like Make3D (Saxena et al., 2009) or KITTI (Geiger et al., 2012). However, they treat
datasets like different tasks and require retraining for each dataset to achieve state-of-the-art
performance.

Chen et al. (2016), inspired by Zoran et al. (2015), introduce the Depth in the Wild
dataset and train a CNN using ordinal relations between point pairs. While the images
stem from internet photo collections taken with many different cameras, they do not make
use of the camera parameters during training. Li and Snavely (2018) use a structure from
motion pipeline to extract depth from internet photo collections and use this to train a CNN
predicting depth up to a scale factor. Again, information about camera parameters is not
exploited and generalization is solely driven by large diverse datasets. Extrinsic parameters
have been considered for other tasks such as stereo estimates (Ummenhofer et al., 2017) or
synthesis of view point changes (Zhou et al., 2016). Intrinsic parameters are usually left out
in deep learning pipelines, with the exception of He et al. (2018). They embed focal length
information in a fully-connected approach, making it impossible to train and test in different
image sizes, while our proposal is flexible and can deal with different image sizes. Posterior
to the publication of this work, López-Antequera et al. (2020) have proposed a canonical
camera model, they show that converting every image to this model it is a simpler method to
train than the one we propose, despite of having some drawbacks like forcing the images to
have same size and optical center can force to drop parts of them.

In the next section we describe how to explicitly implement the internal camera parameters
into the network and thereby improve generalization by CAM-Convs.

2.3 Camera-Aware Multi-scale Convolutions

CAM-Convs (standing for Camera-Aware Multi-scale Convolutions), is the variant of the
convolution operation that we present in this thesis. CAM-Convs include the camera intrinsics
in the convolutions, allowing the network to learn and predict depth patterns that depend on
the camera calibration. Specifically, we add CAM-Convs in the mapping from RGB features
to 3D information–e.g. depth, normals–, that is, between the encoder and the decoder. As
shown in Figure 2.2, we add them at every level, such that we include CAM-Convs on every
skip-connection too. Notice that all the CAM-Convs are added after the encoder, allowing
the use of pretrained models.



2.3 Camera-Aware Multi-scale Convolutions 21

*
*
*
*
*

* CAM-Conv

Fig. 2.2 Adding CAM-Convs to an Encoder-Decoder U-Net architecture.

The basics of CAM-Convs are as follows: We pre-compute pixel-wise coordinates and
field-of-view maps and feed them along with the input features to the convolution operation.
CAM-Convs use the idea behind Coord-Convs presented in Liu et al. (2018), on adding
normalized coordinates per pixel, but incorporating information on the camera calibration.
An illustrative scheme of how CAM-Convs extra channels work is shown in Figure 2.3. The
different maps included are computed using the camera intrinsic parameters (focal length f
and principal point coordinates (cx,cy)) and the sensor size (width w and height h):

Centered Coordinates (cc): To add the information of the principal point location to the
convolutions, we include ccx and ccy coordinate channels centered at the principal point–i.e.
the principal point has coordinates (0,0). Specifically, the channels are

ccx =


0− cx

1− cx
...

w− cx


w×1

·


1
1
...
1


⊺

h×1

=

−cx · · · w− cx
... . . . ...

−cx · · · w− cx

 (2.1)

ccy =


1
1
...
1


w×1

·


0− cy

1− cy
...

h− cy


⊺

h×1

=

 −cy · · · −cy
... . . . ...

h− cy · · · h− cy

 . (2.2)

We resize these maps to the input feature size using bilinear interpolation and concatenate
them as new input channels. These channels are sensitive to the sensor size and resolution
(pixel size) of the camera, as their values depend on it. We assume the sensor size is
measured in pixels. In Figure 2.3 we represent cc with a color gradient from red (for negative
coordinates) to blue (for positive coordinates), white for 0. Notice in the figure how cc values
change when camera sensor size, principal point or pixel size change.



22 Camera-Aware Multi-Scale Convolutions for Single-View Depth

focal length sensor size principal point pixel size

CAM-Conv Channels

centered coordinates (cc) field of view map (fov)w

h

Camera Model

reference

Camera Parameter Changes

Fig. 2.3 Overview of the additional channels of our CAM-Convs (Camera-Aware Multi-scale
Convolutions). We compute Centered Coordinates (cc from red to blue) and Field of View
( f ov from green to pink) maps. We concatenate these maps with the input features before
applying the convolution. Both cc and f ov depend on the camera model and are sensitive
to camera changes. The Bottom part shows how cc and f ov maps change with the camera
parameters (a red border means the map has changed from the original).

Field of View Maps ( f ov): The horizontal and vertical f ov maps are calculated from
the cc maps and also depend on the camera focal length f

f ovch[i, j] = arctan
(ccch[i, j]

f

)
, (2.3)

where ch can be x or y (see Eq. 2.1 and 2.2). They give information about the captured
context and the focal length. These maps are sensitive to sensor size and focal length. In
Figure 2.3 we represent f ov with a color gradient from green to pink; yellow represents an
angle of 0 in the field of view map. Notice in the bottom part of the figure how the f ov map
values change when changing camera focal length, sensor size or principal point. Changes
on the pixel size change the resolution of the map but the field of view and thus the available
context in the image stays the same.

Normalized Coordinates (nc): We also include a Coord-Conv channel of normalized
coordinates (Liu et al., 2018). The values of Normalized Coordinates vary linearly with
the image coordinates between [−1,1]. This channel does not depend on the camera sensor.



2.4 Model and Training 23

However, it is very useful to describe the spatial extent of the context (in feature space) that
is left in each direction (e.g., if the value on the x channel is close to −1, it means the feature
vector at this position is close to the left border and there is almost no context on the left
side).

Notice that nc is not shown in Figure 2.3 as it remains constant.

2.3.1 Focal Length Normalization

An instance of an object imaged by two cameras with different focal length appears with
different image sizes although the depth is the same. Focal length normalization is an
alternative to avoid such inconsistencies. To this end, we predict depth values normalized to
a default focal length fn. Given a metric depth map d we get the normalized depth values
as fn

f d with f as the actual focal length. Note that the normalized depth values depend on
the focal length. For the raw inverse depth predictions ξ̃ of our network we denormalize the
values as

ξ =
fn

f
ξ̃ (2.4)

where ξ = 1
d is the inverse depth map. Tateno et al. (2017) used a similar approach to correct

depth values at test time, in this chapter we propose for the first time to use it during training.
This normalization can be used together with our CAM-Convs. Although CAM-Convs

allows the network to learn this normalization on its own, we found in our experiments
that using this normalization accelerates the convergence. It should be remarked, though,
that focal length normalization assumes a constant pixel size over the whole image set,
and therefore can only be used in such cases. CAM-Convs are a more general model that
overcomes this limitation.

2.4 Model and Training

2.4.1 Network Architecture

The network we use in this work has an encoder-decoder architecture inspired by DispNet
in Mayer et al. (2016). Hence, we add skip-connections from the low-level feature maps of
the encoder to the feature maps of the same size in the decoder, and concatenate them (Ron-
neberger et al., 2015). Withal, we also estimate intermediate pyramid-resolution predictions,
which converge faster and ensure that the network’s internal features are more aimed for the
task. As it is common in the literature (Laina et al., 2016, Kuznietsov et al., 2017), our net-
work’s backbone is ResNet-50, pretrained on the ImageNet Classification Dataset (He et al.,



24 Camera-Aware Multi-Scale Convolutions for Single-View Depth

INPUT LAYER K S FUN CH OUTPUT

encoder
image conv+BN 7 2 ReLU 64 conv1
conv1 maxpool 3 2 - 64 pool

pool conv-block 3 1 ReLU 256 res2a
res2a id-block 3 - ReLU 256 res2b
res2b id-block 3 - ReLU 256 res2c

res2c conv-block 3 2 ReLU 512 res3a
res3a id-block 3 - ReLU 512 res3b
res3b id-block 3 - ReLU 512 res3c
res3c id-block 3 - ReLU 512 res3d

res3d conv-block 3 2 ReLU 1024 res4a
res4a id-block 3 - ReLU 1024 res4b
res4b id-block 3 - ReLU 1024 res4c
res4c id-block 3 - ReLU 1024 res4d
res4d id-block 3 - ReLU 1024 res4e
res4e id-block 3 - ReLU 1024 res4f

res4f conv-block 3 2 ReLU 2048 res5a
res4a id-block 3 - ReLU 2048 res5b
res4b id-block 3 - ReLU 2048 res5c

skip-connections
conv1 CAM-Convs 3 1 L-ReLU 64 conv1
res2c CAM-Convs 3 1 L-ReLU 256 res2c
res3d CAM-Convs 3 1 L-ReLU 512 res3d
res4f CAM-Convs 3 1 L-ReLU 1024 res4f
res5c CAM-Convs 3 1 L-ReLU 2048 res5c

decoder
res5c upconv 4 2 L-ReLU 1024 upconv4

upconv4 conv 3 1 L-ReLU 24 inconv4
inconv4 conv 3 1 - 5 LR-1

LR-1,upconv4 concat - - - - up-pre4

res4f,up-pre4 concat - - - - in3
in3 upconv 4 2 L-ReLU 512 upconv3

upconv3 conv 3 1 L-ReLU 24 inconv3
inconv3 conv 3 1 - 5 MR-1

MR-1,upconv3 concat - - - - up-pre3

res3d,up-pre3 concat - - - - in2
in2 upconv 4 2 L-ReLU 256 upconv2

upconv2 conv 3 1 L-ReLU 24 inconv2
inconv2 conv 3 1 - 5 MR-2

MR-2,upconv2 concat - - - - up-pre2

res2c,up-pre2 concat - - - - in1
in1 upconv 4 2 L-ReLU 64 upconv1

upconv1 conv 3 1 L-ReLU 24 inconv1
inconv1 conv 3 1 - 2 HR-1

HR-1,upconv2 concat - - - - up-pre1

conv1,up-pre1 concat - - - - in
in upconv 4 2 L-ReLU 32 upconv

upconv conv 3 1 L-ReLU 24 inconv
inconv conv 3 1 - 2 HR-2

Table 2.1 Network Architecture Details. We present three different blocks here. 1st: encoder
taken directly from ResNet-50, pretrained on the ImageNet Classification Dataset (He et al.,
2016), sub-blocks of the encoder are more detailed in Table 2.2. 2nd: skip-connections
include also a CAM-Convs block (Table 2.2). 3rd: decoder uses as inputs all the skip-
connections and produce 5 different pyramid-resolution predictions (bold in the OUTPUT
column).



2.4 Model and Training 25

INPUT LAYER K S BN FUN CH OUTPUT

conv-block
I conv-block k s - f N O
I conv 1 s ✓ f N/4 O2a

O2a conv k 1 ✓ f N/4 O2b
O2b conv 1 1 ✓ - N O2c

I conv 1 s ✓ - N O-1
O-1,O2c add 1 1 - f N O

id-block
I id-block k - - f N O
I conv 1 1 ✓ f N/4 O2a

O2a conv k 1 ✓ f N/4 O2b
O2b conv 1 1 ✓ - N O2c

I,O2c add 1 1 - f N O

CAM-Convs-block
I CAM-Convs k s - f N O

f ov,cc,nc resize - - - - - f ov,cc,nc

I, f ov,cc,nc concat - s - - - intern
intern conv k s - f N O

Table 2.2 Sub-Blocks for the Network. The first two are the standard conv and id block from
ResNet, commonly used in the literature. The CAM-Convs-block is the one we introduce.
It takes as input 3 different maps and feeds a convolution with them, together with the input
features.



26 Camera-Aware Multi-Scale Convolutions for Single-View Depth

RGB
Input ConvBlock

Identity-
Block

MaxPool 3x3

Conv 7x7
BN + ReLU

UpConv
Leaky-ReLU

D+C+N
Conv 3x3+ReLU
Conv 3x3

ResNet-50 LR-1 MR-1 HR-1 HR-2

64

256

512

1024

2048

64

256

512

MR-2

*
*

*

*

*

* CAM-Conv
D+C
Conv 3x3+ReLU
Conv 3x3

Fig. 2.4 Our network architecture, inspired by DispNet by Mayer et al. (2016), to which we
added CAM-Convs connecting the encoder and decoder. We predict depth, confidence and
normals (D+C+N) in the first three intermediate resolution levels (LR-1,MR-1 and MR-2)
and only depth and confidence (D+C) in the last two resolution levels (HR-1 and HR-2).

2016). As suggested in Godard et al. (2018) and our experiments, pretraining the encoder
on general image recognition tasks, as ImageNet, helps in both accuracy and convergence
time reduction. A schematic of our network architecture can be seen in Figure 2.4. A more
detailed view of the network implementation can be seen in Table 2.1 (some of the blocks
used in this table are further detailed in Table 2.2). Bold output columns represent different
pyramid-resolution predictions of the network.

The network predictions are composed by:
ξ : Inverse depth ξ = 1

d . We chose inverse depth for its linear relationship with pixel
variations.

c: Depth confidence. As Ummenhofer et al. (2017), we enforce the network to predict a
confidence map for every depth prediction.



2.4 Model and Training 27

n: Surface normals. The normals are predicted only for small resolutions (all except
the last two), as the ground-truth normals are too noisy at full resolution.

Predictions LR-1, MR-1, and MR-2 are composed of inverse depth, depth confidence and
surface normals (a total of 5 channels see Table 2.1). HR-1 and HR-2 are composed only of
inverse depth and depth confidence (a total of 2 channels see Table 2.1).

2.4.2 Losses

In this section we will present all the losses and their combination for the training.
Depth Loss: We minimize the L1 norm of the predicted inverse depth ξ minus the

ground truth inverse depth ξ̂ , that is

Ld = ∑
i, j

∣∣∣ξ (i, j)− ξ̂ (i, j)
∣∣∣. (2.5)

Note that for experiments with focal length normalization we scale depth values accord-
ingly (see section 2.3.1).

Scale-Invariant Gradient Loss: We use the scale-invariant gradient loss proposed in
Ummenhofer et al. (2017), in order to favor smooth and edge preserving depth estimations.
The loss based on the depths is

Lg = ∑
h={1,2,4,8,16}

∑
i, j

∣∣∣∣∣∣gh[ξ ](i, j)−gh[ξ̂ ](i, j)
∣∣∣∣∣∣

2
. (2.6)

For the gradients, we use the same discrete scale-invariant finite differences operator g as
defined in their work, which is

gh[d](i, j) =
(

d(i+h, j)−d(i, j)
|d(i+h, j)+d(i, j)|

,
d(i, j+h)−d(i, j)
|d(i, j+h)+d(i, j)|

)⊤
, (2.7)

and we apply the scale-invariant loss to cover gradients at 5 different spacings h.
Confidence Loss: The ground truth for the confidence map must be calculated online as

it depends on the prediction. The confidence ground truth is calculated as

ĉ(i, j) = e−|ξ (i, j)−ξ̂ (i, j)|, (2.8)

and its corresponding loss function is defined as

Lc = ∑
i, j

∣∣∣c(i, j)− ĉ(i, j)
∣∣∣. (2.9)



28 Camera-Aware Multi-Scale Convolutions for Single-View Depth

Normal Loss: For the normal loss, we use the L2 norm. The ground truth for the normals
(n̂) is derived from the ground truth depth image. The loss for the normals is as follows:

Ln = ∑
i, j

∣∣∣∣∣∣n(i, j)− n̂(i, j)|
∣∣∣∣∣∣

2
. (2.10)

Total Loss: The individual losses are weighted by factors obtained empirically, so the
total loss L is

L = λ1Ld +λ2Lg +λ3Lc +λ4Ln, (2.11)

where λ1, λ2, λ3 and λ4 are 150, 100, 50 and 25 respectively.

2.4.3 Training Schedule

We train all our networks using the TensorFlow framework (Abadi et al., 2016). We start
from ResNet-50 (pre-trained) and a randomly initialized decoder. For optimization we use
Adam Optimizer (Kingma and Ba, 2014) with a momentum of 0.9. The complete training of
the network is composed by three different stages, each adding more layers and predictions
to the decoder (SR,MR and HR respectively in Table 2.1).
1st stage. We train until the first two resolutions of the decoder (LR-1 in Table 2.1). This
stage is the shortest one, trained only for 10k iterations with batch size 16. We only train
the encoder layers and the decoder until the smallest prediction. We do not apply the
scale-invariant loss for this resolution.
2nd stage. We train until the next two predictions (LR-1, MR-1 and MR-2 in Table 2.1). As
in the previous stage we train only the layers that affect the outputs. This stage is trained for
50k iterations with batch size 16. We apply a scale-invariant loss to prediction MR-2 after
25k iterations.
3rd stage. We train the whole network, for 200k iterations with batch size 16. We apply a
scale-invariant loss to predictions MR-2, HR-1 and HR-2 after 25k iterations.
Learning rate.The learning rate policy for the three stages is shown in Figure 2.5. The base
learning rates for the three stages are 1e−3, 5e−4 and 1e−4. The learning rate drops along
the iterations, never being less than a minimum of 1e−6. As we train multiple models we
use a fixed automatic learning rate decay.
Weighting losses. For all stages we minimize the losses for several resolutions. We scale the
losses according to the resolution level. Specifically, we multiply the losses by a factor 1

k ,
where k denotes the resolution level. Starting with the finest resolution of the active stage. I.e
in the 1st stage LR-1 prediction loss would be multiplied by 1. While in the 3rd stage LR-1



2.5 Multi-Camera Experiments and Results 29

10000 60000 260000
It e ra t ion s

10 6

10 5

10 4

10 3

Le
ar

ni
ng

 R
at

e 1st   stage
2nd  stage
3rd  stage

Fig. 2.5 Learning rate policy for the three-stages training.

would be multiplied by 1
5 , MR-1 would be multiplied by 1

4 and so on until HR-2 that would
be multiplied by 1.

2.5 Multi-Camera Experiments and Results

Most of the single-view depth prediction networks have been trained and tested using the
same or very similar camera models. Generalizing to different camera models has several
implications that are not straightforward. For this reason, we first present a thorough
analysis on the generalization capabilities of current approaches. To this end we apply
naïve generalization techniques (focal normalization and image resizing) during training on
a network without our special convolutions (as Figure 2.4 but without CAM-Convs) and
examine the limitations. Finally, we train and evaluate our network with CAM-Convs (as
Figure 2.4) and show the improved generalization performance with respect to different
camera parameters.

2.5.1 Experimental Setup

The major part of our experiments are done on the 2D-3D Semantics Dataset (Armeni et al.,
2017), that contains RGB-D equi-rectangular images. This dataset allows us to generate
images with different camera intrinsics but the same content. We have observed that depth
estimation networks overfit to the camera parameters and the image content distribution
(the latter being different in indoors and outdoors datasets, for example). In this manner we
eliminate the content distribution factor and isolate the effect of the camera parameters.

All the experiments were done using the 3-fold cross-validation suggested by Armeni
et al. (2017). In this section we present median values for the most relevant experiments.
To see the complete results, more details on the dataset and image generation process and
additional experiments we refer the reader to the Appendix A.



30 Camera-Aware Multi-Scale Convolutions for Single-View Depth

Name s1 s2 s3
Sensor 256×192 192×256 224×224

Name s4 s5 sS sK

Sensor 128×96 320×320 256×192 384×128

Name f72 f128 f64 fn

Focal 72 128 64 100
Table 2.3 Notation for different sensor sizes and focal lengths.

The notation for sensor sizes and focal lengths used during the evaluation is in Table 2.3.
As an example, if a network has been trained with sensor sizes 192×256 and 224×224,
and focal length 72, we will denote this model as s2s3 f72. In some experiments we use a
random distribution for the focal length. As an example, if the synthesized focal lengths are
uniformly distributed between 72 and 128, the model will be denoted as U f72 f128.

We evaluate the performance on both depth and inverse depth. All the error metrics we
used in our experiments are standard from the literature. In addition we use relative metrics
and the scale-invariant metric presented by Eigen et al. (2014), which are widely used in
depth estimation.

2.5.2 Influence of context

Modifying the camera parameters affects the field of view, and hence the amount of context
the image is capturing. We evaluate the influence of the context in the depth prediction of a
standard U-Net encoder-decoder architecture (network in Figure 2.4 without CAM-Convs)
with two different experiments. First, we compare two networks trained with images with
sensor size s1 and two different focal lengths f128 and f64 (Table 2.4). Second, we compare
two networks with images with the same focal length but different sensor sizes: s1 and s4

(Table 2.5).
As expected, context helps. The performance is better for the smallest focal f64, which

results in a wider FOV and hence more context. Also the performance is better for the bigger
sensor size s1, which also provides more context. To remove the context dependency in
our analysis, for some of the experiments in next subsections we will generate images with
uniformly distributed focal lengths.

2.5.3 Overfitting of standard networks

In this experiment we evaluate the performance of a standard U-Net architecture for variations
of the camera parameters on the training and test sets. We will focus the study on two



2.5 Multi-Camera Experiments and Results 31

Test Train abs.rel rmse sc.inv sq.rel
: 1 m lg(m) : 1

s1 f64 s1 f64 0.17 0.378 0.0347 0.048
s1 f128 s1 f128 0.195 0.51 0.0387 0.0606

smaller is better
Table 2.4 Influence of context, different focal lengths.

Test Train abs.rel rmse sc.inv sq.rel
: 1 m lg(m) : 1

s1 f64 s1 f64 0.17 0.378 0.0347 0.048
s4 f64 s4 f64 0.204 0.54 0.0384 0.0637

smaller is better
Table 2.5 Influence of context, different sensor sizes.

parameters: (a) focal length and (b) sensor size. First we will fix the sensor size to s1 and
we will test on images with focal lengths f64, f72 and f128 (first three test sets in Table 2.6).
Second we will sample random focal lengths from a uniform distribution between f72 and
f128 and we will evaluate on images with sensor sizes s1 and s2 (last two test sets in Table
2.6). For every test set there are 4 to 5 different train sets (referred in the 2nd column of
the table). For every test set we will refer to the case where the cameras from the training
and test set are the same as the same-camera baseline. Training sets where we did not use
focal length normalization are denoted with a ’*’. Networks trained on train sets with two
sensor sizes have been trained either as Siamese networks with weight sharing or with image
resizing to size s1 (denoted with a ’†’).

It is important to remark that, for all the experiments, the test and training data was
generated from the exact same images and the networks have the same architecture and
were trained for the same number of iterations. Any performance variation, then, should be
attributed to the variations in the camera intrinsics and the naïve solutions we analyze. Notice
in Table 2.6 that, in general, the same-camera baseline outperforms the rest, demonstrating
the overfit to the camera parameters.

The conclusions of these experiments are as follows.
(a) Single-focal training overfits. The performance of a depth network degrades when
trained on images from a particular camera and tested on images from different cameras. See,
for example, the drop in performance between the 1st row (test: s1 f64, train: s1 f64

∗) and the
2nd (test: s1 f64, train: s1 f72) and 3rd (test: s1 f64, train: s1 f128) rows in all metrics.
Multi-focal training with normalization helps. The results improve when the training
set contains images with different focal lengths and is done with focal normalization. See,
for example, that the results on test set s1 f64 with training set s1 f72 f128 is close to the
same-camera baseline. Notice, however, that the multi-focal train set does not reach the



32 Camera-Aware Multi-Scale Convolutions for Single-View Depth

Test set Train set l1.inv rmse sc.inv
pixels pixels 1/m m lg(m)

s1 f64

s1 f64
* 0.184 0.378 0.0347

s1 f72 0.193 0.395 0.0354
s1 f128 0.318 0.572 0.0483

s1 f72 f128
* 0.659 0.864 0.0614

s1 f72 f128 0.189 0.387 0.0361

s1 f72

s1 f72
* 0.17 0.4 0.0354

s1 f128 0.272 0.564 0.0459
s1 f72 f128

* 0.552 0.888 0.0609
s1 f72 f128 0.175 0.404 0.0364

s1 f128

s1 f128
* 0.141 0.51 0.0387

s1 f72 0.133 0.524 0.0411
s1 f72 f128

* 0.208 0.813 0.063
s1 f72 f128 0.132 0.504 0.038

s1U f72 f128

s1U f72 f128 0.15 0.46 0.037
s2U f72 f128 0.175 0.51 0.0422

s1s2U f72 f128 0.153 0.484 0.0401
s1 s2 s3U f72 f128

† 0.179 0.742 0.064

s2U f72 f128

s1U f72 f128 0.151 0.44 0.038
s2U f72 f128 0.133 0.412 0.0323

s1s2U f72 f128 0.139 0.436 0.0352
s1 s2 s3U f72 f128

† 0.16 0.622 0.0514
smaller is better

* trained without focal length normalization.
† images resized to s1 during training.

Table 2.6 Overfit to camera parameters of standard encoder-decoder architectures. Networks
trained from images with variations in their intrinsics perform worse than the same-camera
baseline.

performance of the same-camera baseline. In section 2.5.4 we will show how CAM-Convs
are able to outperform the same-camera baseline even when the training data does not contain
the test focal length.

The performance degrades without focal normalization. Compare, for example, the error
metrics of the train sets s1 f72 f128

∗ and s1 f72 f128. Networks trained on f72 f128
∗, in fact, did

not converge easily.
Limitations of focal normalization. Two things should be noticed regarding focal normal-
ization: First, it does not model the changes on the sensor size and the resolution, and we
will see now how changes on them degrade the performance. And second, Equation 2.4 only
holds if the pixel size is the same for every camera in the training and test sets, which in
general is not the case.



2.5 Multi-Camera Experiments and Results 33

Test Train abs.rel rmse.inv sc.inv sq.rel
% 1/km lg(m)100 %

sK

sK 9.16 10.54 13.3 2.33
sSsK 24.58 36.82 26.51 9.28
sSsK

† 9.08 10.55 13.98 2.56

abs.rel l1.inv rmse.inv sq.rel
: 1 1/m 1/m : 1

sS

sS 0.12 0.09 0.12 0.03
sSsK 0.26 0.13 0.16 0.18
sSsK

† 0.12 0.09 0.12 0.03
smaller is better

† sensor size has been resized to the first one in the list.
Table 2.7 Naïve train and test on KITTI Uhrig et al. (2017) and ScanNet Dai et al. (2017a).
See that training FCN in multiple image sizes (sKsS) does not generalize. Resizing works,
but only in this particular case, because of the small overlap of visual features.

(b) Single-sensor size training overfits. Networks trained on a sensor size and tested on
other sensor sizes do not perform as well as the same-camera baseline. This can be seen in
Table 2.6 in the last two test sets s1U f72 f128 and s2U f72 f128. Single-view depth estimation
is a context-dependent task, and the network overfits to the amount of context in the training
sensor size.
Multi-sensor size training with weight sharing does not generalize. Training with multi-
ple sensor sizes works better than training with the wrong sensor size but cannot reach the
same performance as same-camera baselines. Further, training a stack of weight sharing
networks also does not scale to large numbers of different sensor sizes.
Resizing does not work. As a naïve approach, which scales to multiple sensor sizes, we
use resizing (denoted with ’†’ in Table 2.6), which converts all the images to size (s1) during
training. Notice that resizing changes the aspect ratio. It also implies the recalculation of
a new average focal length fr = f rx+ry

2 for normalization. The performance degradation
introduced by resizing is noticeable. Resizing creates inconsistent data in train and testing,
which leads to learning and convergence difficulties.
Resizing helps only in a particular case (non-overlapping distributions of visual features).
Table 2.7 shows an experiment, similar to the previous one, on two public datasets: KITTI
(Uhrig et al., 2017), with sensor size sK , and ScanNet (Dai et al., 2017a), with sensor size sS.
In this case, training with both sensor sizes (by weight sharing) decreased the performance.
However, resizing reduced the error to the level of the same-camera baselines. The reason
for this is the completely different distribution of the two datasets, with null intersection of



34 Camera-Aware Multi-Scale Convolutions for Single-View Depth

Test Train abs.rel l1.inv rmse sc.inv
: 1 1/m m lg(m)

s1U f72 f128
s1U f72 f128 0.189 0.15 0.46 0.037

CAM-C‡ 0.175 0.144 0.433 0.0312

s2U f72 f128
s2U f72 f128 0.166 0.133 0.412 0.0323

CAM-C‡ 0.158 0.131 0.39 0.0265

s3U f72 f128

s3U f72 f128 0.174 0.14 0.425 0.0336
s1U f72 f128 0.184 0.143 0.44 0.0357
s2U f72 f128 0.177 0.145 0.435 0.0356

s1s2U f72 f128 0.178 0.143 0.451 0.0365
CAM-C‡ 0.164 0.134 0.402 0.0283

s5 f64

s5 f64 0.163 0.227 0.309 0.0356
s1 f64 0.245 0.292 0.337 0.0598

s1s2U f72 f128 0.369 0.369 0.44 0.0427
CAM-C‡ 0.177 0.236 0.289 0.0362

smaller is better
‡ Trained with weight sharing in sensor sizes s1, s2 and

U f72 f128.
Table 2.8 Camera parameter generalization with EquiConvs. Results on training and testing
on different cameras. 1st column: camera parameters for test set. 2nd column: camera
parameters seen during training. This is a continuation of Table 2.6. Notice how the
network with EquiConvs is the only model that generalize getting better performance than
the same-camera baseline on most test sets.

visual features (e.g. there are no chairs on KITTI and no cars on ScanNet). This is, however,
a very particular case, resizing degrades significantly the accuracy in general.

2.5.4 Robust Generalization with CAM-Convs

In this experiment we show that CAM-Convs generalize to different camera models. In order
to evaluate the influence of CAM-Convs we trained our model with two different sensor sizes
(s1 and s2) and weight sharing. Focal length during training is sampled randomly from a
uniform distribution U f72 f128. We evaluated the trained model in four different test sets,
see Table 2.8. The first two include the camera model the network was trained with, the
third has a sensor size unseen during training, and the last (s5 f64) was generated from a
camera completely different from the training ones with bigger sensor size and smaller focal
length. This case augments considerably the context–e.g field of view–which proved to be
the hardest case in previous experiments (see network trained with s1 f128 in Table 2.6).
CAM-Convs generalize over camera intrinsics, outperforming the same-camera base-
line. Results on the test sets s1U f72 f128 and s2U f72 f128 in Table 2.8 show that the network



2.5 Multi-Camera Experiments and Results 35

CAM-CONVS NO CAM-CONVSGround-TruthInput

Fig. 2.6 Qualitative results for the test set s5 f64. 1st column: RGB input. 2nd column:
Ground truth depth. 3rd column: Prediction with our network using CAM-Convs trained on
s1s2U f72 f128. 4th column: Prediction of a network trained without CAM-Convs. Notice
that the test camera parameters are significantly different from the training set and images
have a much wider field of view. Despite the large difference in the camera parameters the
network with CAM-Convs produces sharp depth maps on which room corners are clearly
visible.

with CAM-Convs trained on images of two sizes clearly outperforms the baselines, which
was trained on the exact test size. The addition of CAM-Convs allowed the network to learn
the dependence of the image features from the calibration parameters.
CAM-Convs generalize to sensor sizes unseen during training. Remarkably, the network
with CAM-Convs also outperforms the same-camera baseline on the test set with sensor size
s3 (third test set in Table 2.8), which is not included in the training data. Further, it generalizes
better than a network trained on the exact same conditions but without CAM-Convs (see
s1s2U f72 f128 in the table).
CAM-Convs generalize to cameras unseen during training. With the last test set (s5 f64)
in Table 2.8 we evaluate our network on an extreme case of camera parameters with a very
wide field of view and very different sensor size from the training ones. Table 2.8 shows
that CAM-Convs improve considerably the generalization to new unseen cameras over the
naïve approaches. Figure 2.6 shows a qualitative comparison between our network with
CAM-Convs and the network without CAM-Convs (s1s2U f72 f128) in the test set s5 f64.



36 Camera-Aware Multi-Scale Convolutions for Single-View Depth

0.3

0.25

0.2

abs relative

0.2

0.15

0.1

l1_inverse

0.9

0.8

0.7

0.6

rmse

Laina
ours

0.4 0.3 1.3

Fig. 2.7 Error distribution on the test set of NYUv2 with 6 different camera parameters. In
orange, our network with CAM-Convs, trained on several datasets not including NYUv2. In
blue, Laina et al. (2016), trained on NYUv2.

2.5.5 Experiments on Multiple Datasets

In our last experiment we demonstrate how CAM-Convs can generalize across datasests by
training on four datasets with different cameras (KITTI (Uhrig et al., 2017), ScanNet(Dai
et al., 2017a), MegaDepth (Li and Snavely, 2018) and Sun3D(Xiao et al., 2013) and testing
on a different one (NYUv2 (Silberman et al., 2012)).

Training: We trained our network for three different sensor sizes (320×320, 256×256
and 224×224) using weight sharing. We augmented the training data by scaling the images
and shifting the principal point to increase the variation of the camera parameters and then
crop to image to one of the target sensor sizes. We did not use focal length normalization in
this experiment, as we cannot ensure constant pixel size across datasets. As MegaDepth has
only up-to-scale ground truth, we applied only scale-invariant losses and added the scale-
invariant cost function of Eigen et al. (2014). The same network without CAM-Convs, and
hence with no camera information, did not converge during training. The lack of calibration
information creates inconsistencies (e.g. same-size objects may have different depths due to
different focal lengths).

Testing: We evaluated our network on the official test set of NYUv2 and compared
against the state of the art (Laina et al., 2016) (similar network without CAM-Convs) .
Note that the network of Laina et al. (2016) was trained exclusively on NYUv2, while our
network was trained on a set of datasets excluding NYUv2 with different cameras and data
distributions (some of the datasets are outdoors, see Figure 2.9 and Figure 2.10). This is
important since our model cannot benefit from the dataset bias (Torralba and Efros, 2011).
We predicted depths for images from 6 different cameras: the original camera of the NYUv2
dataset and 5 simulated ones by cropping (to shift principal point and reduce sensor size) and
resizing (to change focal length).



2.5 Multi-Camera Experiments and Results 37

128x320640x480

128x320256x256

128x320320x224

640x480

Input GT Ours Laina

Fig. 2.8 Qualitative results, NYUv2 test set with intrinsics variations. 1st column: Input
RGB images. Each row shows the original one and scaled and cropped versions 2nd column:
Depth groundtruth. 3rd column: Prediction from our network with CAM-Convs, trained on
several datasets NOT including NYUv2. Our network produces consistent depth close to the
ground truth for all images. 4th column: Laina et al. (2016), trained exclusively on NYUv2.
Its errors are low on the training resolution but does not generalize to new intrinsics.

Figure 2.7 shows the distribution of the mean error of the usual metrics obtained for
the 6 different cameras. Since Laina et al. (2016) was trained on the NYUv2 dataset, it
works slightly better when it predicts the images from the camera it was trained on (the
point with the smallest error). However, performance degrades when the camera changes and
CAM-Convs have always smaller error and variance. Figure 2.8 illustrate how CAM-Convs
depth predictions are stable for different cameras, while predictions of Laina et al. (2016)
vary significantly. Recall that CAM-Convs were not trained on NYUv2, which indicates that
they are able to generalize over different camera models and outperform Laina et al. (2016)
although they trained on the same dataset.

Figures 2.8, 2.9 and 2.10 show depth predictions for images (and cropped/resized ver-
sions) from the NYUv2, KITTI and MegaDepth test sets. Again, note the excellent perfor-
mance across datasets with different data distributions and camera intrinsics. All predictions



38 Camera-Aware Multi-Scale Convolutions for Single-View Depth

Input Ours

480x160

224x224288x96

480x160

224x224288x96

Fig. 2.9 Qualitative results on the KITTI validation set. 1st column: Input RGB images.
Each row shows the original one and scaled and cropped versions. 2nd column: Prediction
from our network.

were done with the exact same network without further fine-tuning to a particular dataset or
camera parameters.

2.6 Conclusions

This chapter introduces CAM-Convs, a novel type of convolution that allows depth prediction
networks to be camera-independent. Experimental results show that current networks overfit
to the training camera model resulting on: 1) a lack of generalization to images from other
cameras and 2) degraded performance when trained with images from different cameras.
CAM-Convs learn how to use the camera intrinsics jointly with the image features to predict
depth; solving both limitations. They maintain prediction accuracy for new cameras and
better exploit training data from different cameras. The latter is an interesting direction to
scale up systems that depend on camera parameters.

After this work was published, López-Antequera et al. (2020) have published a dataset
with over 750 thousand images with scaled depth taken by heterogeneous cameras and
successfully tested CAM-Convs and alternatively proposed their own method. Despite being



2.6 Conclusions 39

Input GT

96x256288x160

96x256288x160

96x256288x160

Ours

Fig. 2.10 Qualitative results on MegaDepth test set. 1st column: Input RGB images. Each
row shows the original one and scaled and cropped versions. 2nd column: Depth groundtruth.
3rd column: Prediction from our network. The predictions are masked as the groundtruth to
facilitate visualization.

an stand-alone approach, it seems that their alternative method also benefits of the addition
of CAM-Convs. We believe that this dataset it is going to be a very relevant benchmark to
push forward progress in this research area.





Chapter 3

Combining Single-View Deep Learning
Depth with Multi-View Depth

As introduced in the first chapter of this thesis, traditional methods for Visual SLAM are
quite dependent on the motion of the camera, to accurately triangulate points in the scene
estimate the camera translation, and also on the texture on the points to successfully estimate
is 3D position in the space.

Dense and accurate 3D mapping from a monocular sequence is a key technology for
several applications and still an open research area. The work presented in this chapter
leverages the results on single-view CNN-based depth estimation by Eigen and Fergus (2015)
and fuses them with multi-view depth estimation by Concha and Civera (2015b). Both
approaches present complementary strengths. Multi-view depth is highly accurate but only in
high-texture areas and high-parallax cases. Single-view depth captures the local structure of
mid-level regions, including texture-less areas, but the estimated depth lacks global coherence.
The single and multi-view fusion we propose is challenging in several aspects. First, both
depths are related by a deformation that depends on the image content. Second, the selection
of multi-view points of high accuracy might be difficult for low-parallax configurations. We
present contributions for both problems. Our results in the public datasets of NYUv2 and
TUM shows that our algorithm outperforms the individual single and multi-view approaches.
A video showing the key aspects of mapping in our Single and Multi-view depth proposal is
available at https://youtu.be/ipc5HukTb4k.

https://youtu.be/ipc5HukTb4k


42 Combining Single-View Deep Learning Depth with Multi-View Depth

CNN

Depth Fusion

RGB sequence Single-view Prediction

Multi-view Estimation

Our Fusion

Fig. 3.1 Overview of our proposal. The input is a set of overlapping monocular views. The
learning-based single-view and geometry-based multi-view depth are fused, outperforming
both of them. All the depth images are color-normalized for better comparison. This figure
is best viewed in color.

3.1 Introduction

Estimating an online, accurate and dense 3D scene reconstruction from a general monocular
sequence is one of the fundamental research problems in computer vision. The problem has
nowadays a high relevance, as it is a key technology in several emerging application markets
(augmented and virtual reality, autonomous cars and robotics in general). The state of the art
are the so-called direct mapping methods (Newcombe et al., 2011), that estimate an image
depth by minimizing a regularized cost function based on the photometric error between
corresponding pixels in several views. The accuracy of the multi-view depth estimation
depends mainly on three factors: 1) The geometric configuration, with lower accuracies for
low-parallax configurations; 2) the quality of the correspondences among views, that can only
be reliably estimated for high-gradient pixels; and 3) the regularization function, typically
the Total Variation norm, that is inaccurate for large texture-less areas. Due to this poor
performance on large low-gradient areas, semi-dense maps are sometimes estimated only in
high-gradient image pixels for visual direct SLAM (Engel et al., 2014). Such semi-dense
maps are accurate in high-parallax configurations but not a complete model of the viewed
scene. Low-parallax configurations are mostly ignored in the visual SLAM literature.



3.2 Related Work 43

An alternative method is single-view depth estimation, which has recently experienced a
qualitative improvement in its accuracy thanks to the use of deep convolutional networks
(Eigen and Fergus, 2015). Their accuracy is still lower than that of multi-view methods for
high-texture and high-parallax points. But, as we will argue in this chaper, they improve the
accuracy of multi-view methods in low-texture areas due to the high-level feature extraction
done by the deep networks –opposed to the low-level high-gradient pixels used by the multi-
view methods. Interestingly, the errors in the estimated depth seem to be locally and not
globally correlated since they come from the deep learning features.

The main idea of this work is to exploit the information of single and multi-view depth
maps to obtain an improved depth even in low-parallax sequences and in low-gradient areas.
Our contribution is an algorithm that fuses these complementary depth estimations. There are
two main challenges in this task. First, the error distribution of the single-view estimation has
several local modes, as it depends on the image content and not on the geometric configuration.
Single and multi-view depth are hence related by a content-dependent deformation. Secondly,
modeling the multi-view accuracy is not trivial when addressing general cases, including
high and low-parallax configurations.

We propose a method based on a weighted interpolation of the single-view local structure
based on the quality and influence area of the multi-view semi-dense depth and evaluate
its performance in two public datasets –NYU and TUM. The results show that our fusion
algorithm improves over both individual single and multi-view approaches.

The rest of the chapter is organized as follows. Section 3.2 describes the most relevant
related work. Section 3.3 motivates and details the proposed algorithm for single and multi-
view fusion. Section 3.4 presents our experimental results and, finally, Section 3.5 contains
the conclusions of this work.

3.2 Related Work

We classify the related work for dense depth estimation into two categories: methods based
in multiple views of the scene and those which predict depth from one single image.

3.2.1 Multi-View Depth

In the multi-view depth estimation, Newcombe et al. (2011), Graber et al. (2011) and
Stühmer et al. (2010) are the first works that achieved dense and real-time reconstructions
from monocular sequences. Some of the most relevant aspects are the direct minimization of
the photo-metric error –instead of the traditional geometric error of sparse reconstructions–



44 Combining Single-View Deep Learning Depth with Multi-View Depth

and the regularization of the multi-view estimation by adding the total variation (TV) norm
to the cost function.

TV regularization has low accuracy for large textureless areas, as shown by Concha et al.
(2014), Pinies et al. (2015), Piniés et al. (2015) among others. In order to overcome this
Concha et al. (2014) propose a piecewise-planar regularization; the plane parameters coming
from multi-view superpixel triangulation (Concha and Civera, 2014) or layout estimation
(Hedau et al., 2009b). Pinies et al. (2015) propose higher-order regularization terms that
enforce piecewise affine constraints even in separated pixels. Piniés et al. (2015) selects
the best regularization function among a set using sparse laser data. Building upon Concha
et al. (2014), Concha et al. (2015) adds the sparse data-driven 3D primitives of Fouhey et al.
(2013) as a regularization prior. Compared to these works, our fusion is the first one where
the information added to the multi-view depth is fully dense, data-driven and single-view;
and hence it does not rely on additional sensors, parallax or Manhattan and piecewise-planar
assumptions. It only relies on the network capabilities for the current domain, assuming that
the test data follows the same distribution that the data used for training.

Due to the difficulty of estimating an accurate and fully dense map from monocular
views there are several approaches that estimate only the depth for the highest-gradient pixels
(Engel et al., 2014). While this approach produces maps of higher density than the more
traditional feature-based ones (Mur-Artal et al., 2015), they are still incomplete models of
the scene and hence their applicability might be more limited.

3.2.2 Single-View Depth

For a more detailed and updated revision of the state of the art on single-view depth estimation
we refer the reader to the Chapter 2 of this thesis that specifically addresses this problem. In
this Chapter we discuss the original literature consider for this research.

Depth can be estimated from a single view using different image cues, for example focus
(Ens and Lawrence, 1993) or perspective (Sturm and Maybank, 1999). Learning-based
approaches, as the one we use, basically discover RGB patterns that are relevant for accurate
depth regression.

The pioneering work of Saxena et al. (2009) trained a MRF to model depth from a set of
global and local image features. Before that, Saxena et al. (2007) presented an early approach
to depth prediction from monocular and stereo cues. Eigen et al. (2014) presented a two deep
convolutional neural network (CNN) stacked, one to predict global depth an the second one
that refines it locally. Build upon this method, Eigen and Fergus (2015) recently presented a
three scale convolutional network to estimate depth, surface normals and semantic labeling.



3.3 Single and Multi-View Depth Fusion 45

High-Gradient Low-Gradient
Multi-View 0.18 1.02
Single-View 0.36 0.42

Table 3.1 Median depth error [m] for single and multi-view depth estimation, and high and
low-gradient pixels. This evaluation has been done in the sequence living_room_0030a from
the NYUv2 dataset (one of the sequences with higher parallax). The normalized threshold
between high and low-gradient pixels is 0.35 (gray scale).

Liu et al. (2015b) use a unified continuous CRF-and-CNN framework to estimate depth. The
CNN is used to learn the unary and pairwise potentials that the CRF uses for depth prediction.

Based on Eigen and Fergus (2015), Li et al. (2016) incorporates mid-level features in
its prediction using skip-layers. It shows competitive results and a small batch-size training
strategy that makes their network faster to train. Chakrabarti et al. (2016) introduces a
different method to predict depth from single-view using deep neural networks, showing
that training the network with a much richer output improves the accuracy. Cao et al. (2016)
formulates the depth prediction as a classification problem and the net output is a pixel-
wise distribution over a discrete depth range. Finally, Godard et al. (2017) presents an
unsupervised network for depth prediction using stereo images.

3.3 Single and Multi-View Depth Fusion

State-of-the-art multi-view techniques have a strong dependency on high-parallax motion and
heterogeneous-texture scenes. Only a reduced set of salient pixels that hold both constraints
has a small error, and the error for the majority of the points is large and uncorrelated. In
contrast, single-view methods based on CNN networks achieve reasonable errors in all the
image but they are locally correlated. Our proposal exploits the best properties of these two
methods. Specifically, it uses a deep convolutional network (CNN) to produce rough depth
maps and fuses their structure with the results of a semi-dense multi-view depth method (Fig.
3.1).

Before delving into the technical aspects, we will motivate our proposal with some
illustrative results. Table 3.1 shows the median depth error of the high-gradient and low-
gradient pixels for a multi-view and single view reconstruction using a medium/high-parallax
sequence of the NYUv2 dataset. For the multi-view reconstruction, the error for the low-
gradient pixels increases by a factor of 2. Notice that the opposite happens for the single-view
reconstruction: the error of high-gradient pixels is the one increasing by a factor of 2. For



46 Combining Single-View Deep Learning Depth with Multi-View Depth

2000

1000

0
0 1 2 3 4

Error (m)
0 1 2 3 4 0 1 2 3 4

Fig. 3.2 Histogram of single-view depth error [m] for three sample sequences. Notice the
multiple modes, each one corresponding to a local image structure, this can be seen in the
error images in the top row of the figure.

this experiment, the threshold used to distinguish between high and low-gradient pixels is
0.35 in gray scale (where the maximum gradient would be 1).

Furthermore, the single-view depth error usually has a structure that indicates the presence
of local correlations. For instance, Fig. 3.2 shows the histogram of the single-view depth
estimation error for three different sequences (two of the NYUv2 dataset and one of the
TUM dataset). Notice that the error distribution is grouped in different modes, each one
corresponding to an image segment.

This effect is caused by the use of the high-level image features of the latest layers of
the CNN network, that extend over dozens of pixels in the original image and hence over
homogeneous texture areas. The different nature of the errors can be exploited to outperform
both individual estimations. This fusion, however, cannot be naïvely implemented with a
simple global model as it requires content-based deformations.

In the next subsections we detail the specific multi and single-view methods that we use
in this work and our fusion algorithm.

3.3.1 Multi-view Depth

For the estimation of the multi-view depth we adopt a direct approach (Engel et al., 2014),
that allows us to estimate a dense or semi-dense map in contrast to the more sparse maps of
the feature-based approaches. In order to estimate the depth of a keyframe Ik we first select
a set of n overlapping frames {I1, . . . ,Io, . . . ,In} from the monocular sequence. After that,
every pixel xk

l of the reference image Ik is first backprojected at an inverse depth ρ and



3.3 Single and Multi-View Depth Fusion 47

projected again in every overlapping image Io.

xo
l = Tko(xk

l ,ρl) = KR⊤
ko

 K−1xk
l

||K−1xk
l ||

ρl

− tko

 , (3.1)

where Tko,Rko and tko are respectively the relative transformation, rotation and translation be-
tween the keyframe Ik and every overlapping frame Io. K is the camera internal calibration
matrix.

We define the total photo-metric error C(ρ) as the summation of every photo-metric error
εl between every pixel (or every high-gradient pixel if we want a semi-dense map) xk

l in the
reference image Ik and its corresponding one xo

l in every other overlapping image Io at an
hypothesized inverse depth ρl ,

C(ρ) =
1
n

n

∑
o=1,o̸=k

t

∑
l=1

εl(Ik,Io,xk
l ,ρl). (3.2)

The error εl(Ik,Io,xk
l ,ρl) for each individual pixel xk

l is the difference between the
photometric values of the pixel and its corresponding one

εl(Ik,Io,xk
l ,ρl) = Ik(xk

l )−Io(xo
l ). (3.3)

The estimated depth for every pixel ρ̂ = (ρ̂1 . . . ρ̂l . . . ρ̂t )
⊤ is obtained by the minimiza-

tion of the total photometric error C(ρ):

ρ̂ = argmin
ρ

C(ρ) (3.4)

3.3.2 Single-view Depth

For single-view depth estimation we use the Deep Convolutional Neural Network presented
by Eigen and Fergus (2015). This network uses three stacked CNN to process the images
in three different scales. The input to the network is the RGB keyframe Ik. As we use the
network structure and parameters released by the authors without further training, our input
image size is 320×240. The output of the network is the predicted depth, that we will denote
as s. The size of the output is 147×109, that we upsample in our pipeline in order to fuse it
with the multi-view depth.

The first scale CNN extract high-level features tuned for depth estimation. This CNN
produces 64 feature maps of size 19×14 that are the input, along with the RGB image, of
the second scale CNN. This second stacked CNN refines the output of the first one with



48 Combining Single-View Deep Learning Depth with Multi-View Depth

mid-level features to produce a first coarse depth map of size 74×55. This depth map is
upsampled and feeds a third stacked CNN that does a local refinement of the depth. This
final step is necessary, as the convolution and pooling steps of the previous layers filter out
the high-frequency details.

The first scale was initialized with two different pre-trained networks: the AlexNet
(Krizhevsky et al., 2012) and the Oxford VGG (Simonyan and Zisserman, 2014). We use
the VGG version, the most accurate one as reported by the authors. This network has been
trained in indoor scenes with the NYUDepth v2 dataset (Nathan Silberman and Fergus, 2012).
As they used the official train/test splits of the dataset, so do we. We decided to use this
neural network because it was the best-performing dense single-view method at the moment
we started this work and still it is the one that keeps better trade off between quality and
efficiency. We refer the reader to the original work by Eigen and Fergus (2015) for more
details on this part of our pipeline.

3.3.3 Depth Fusion

As we mentioned before, the objective is to fuse the output of each previous method while
keeping the best properties of each of them: the single-view reliable local structure and the
accurate, but semi-dense multi-view depth estimation. Let denote s and m to the single-view
depth and the multi-view semi-dense depth estimation, respectively. s is predicted as detailed
in section 3.3.2 and m = 1

ρ
is the inverse of the inverse depth estimated in section 3.3.1.

The fused depth estimation fi j for each pixel (i, j) of a keyframe Ik is computed as a
weighted interpolation of depths over the set of pixels in the multi-view depth image

fi j = ∑
(u,v)∈Ω

W muv
si j

(muv +(si j − suv)), (3.5)

where Ω is the semi-dense set of pixels estimated by the multi-view algorithm (e.g. in a high-
parallax sequence, they usually correspond with the high-gradient pixels). The interpolation
weights W muv

si j model the likelihood for each pixel (u,v) ∈ Ω belonging to the same local
structure as pixel (i, j). The interpolation can be interpreted in two ways. First, the depth
gradient (si j − suv) is added to each multi-view depth muv, i.e. we create depth map for each
muv with the structure of s and then weigh them with pixel based weights. Second, for each
depth si j we modify it according to the weighted discrepancy between (muv − suv).

The key ingredient of this interpolation are the weights W muv
si j that model a deformation

based on the local image structures. Each weight is computed as the product of four different



3.3 Single and Multi-View Depth Fusion 49

factors. The first factor

W̃1
muv
si j

= e
−
√

(i−u)2+( j−v)2))
σ1 , (3.6)

simply measures proximity based on the distance of the pixels (i, j) and (u,v). The parameter
σ1 controls the radius of proximity for each point. The remainder three factors depend on the
structure of the single-view prediction s. The second factor

W̃2
muv
si j

=
1

|∇xsuv −∇xsi j|+σ2

· 1
|∇ysuv −∇ysi j|+σ2

(3.7)

measures the similarity of depth gradients and assigns larger weights to similar ones. ∇xsi j

and ∇ysi j represent the depth gradient in the x and y direction respectively at the pixel (i, j).
σ2 limits the influence of a point to avoid extremely high weights for very similar or identical
gradients. We set it to 0.1 in the experiments.

Finally, the factors W̃3
muv
si j

and W̃4
muv
si j

strengthen the influence between the points lying in
the same plane and are defined as

W̃3
muv
si j

= e−|(si j+∇xsi j·(u−i))))−suv|+σ3 (3.8)

and
W̃4

muv
si j

= e−|(si j+∇ysi j·(v− j))))−suv|+σ3, (3.9)

where σ3 sets a minimum weight to any point in Ω. This is required to avoid vanishing
weights when they are combined with W̃1

muv
si j

and W̃2
muv
si j

.
The product of this four factor makes a non-normalized weight for each pixel in Ω

W̃ si j
muv =

4

∏
n=1

W̃n
si j
muv

(3.10)

and represents its area of influence. The parameters σ1, σ2 and σ3 shape the area of
influence and have to be selected to balance proximity, gradient and planarity and to avoid
discontinuities in the result of the fusion. This was done empirically on a small set of three
images. The values of the parameters are 15, 0.1 and 1e−3, respectively, and we kept them
fixed for all our experiments.

Fig. 3.3 shows this area for a point on an image and how it is computed. Notice how
the influence expands around the point but is kept inside the same local structure (the table).
Once all the factors has been computed, since all the pixels (i, j) are influenced by all the



50 Combining Single-View Deep Learning Depth with Multi-View Depth

RGB image with the point Weigth factors of the point Non-normalized influence 

Fig. 3.3 Non-normalized influence of the highlighted red point in the image. First column:
RGB input image with a red point over the table, this point represent one pixel estimated by
the multi-view algorithm. Second column: each one of the weights calculated separately, the
third and fourth weights are shown as a product for a more intuitive view. Third column: Non-
normalized influence of the highlighted point in the RGB image. Notice how its influence is
cut on the edge of the table. Figure best viewed in electronic format.

pixels in Ω (see Eq. 3.5), we normalize the weights for each single-view pixel so all the
weights over a pixel (i, j) sum 1.

W muv
si j

=
W̃ muv

si j −min(g,h)∈ΩW̃
mgh
si j

∑(p,k)∈ΩW̃
mpk
si j −min(g,h)∈ΩW̃

mgh
si j

(3.11)

The normalized weights expand the local influence to the whole image (see Fig. 3.4 and
Fig. 3.5 for a more detailed view). Notice how the influence expands along planes even if
the points in Ω do not reach the end of the plane; and is sharply reduced when the local
structure changes. Once these influence weights have been calculated and normalized, the
fusion depth estimation, f , for each point (i, j) is a combination of all the selected points in
Ω, as presented in Eq. 3.5.

3.3.4 Multi-view Low-Error Point Selection

Up to now we have assumed that all the points in the multi-view semi-dense depth map
Ω have low error. This is easily achievable in high-parallax sequences by using robust
estimators –robust cost functions or RANSAC. However, it is problematic for the degenerate
or quasi-degenerate low-parallax geometries that we also target in this work. In this case,
multi-view depths may contain large errors that will propagate to the fused depth map and
it is necessary to filter them out. Unexpectedly, selecting high gradient pixels was not
robust enough to remove points with large depth errors and we have developed a two step



3.3 Single and Multi-View Depth Fusion 51

Fig. 3.4 Normalized influence area of the points. Notice how it expands around local
structure areas given a set of points in Ω. First column: RGB image with the points of Ω

labeled with different colors. Second column: influence areas computed by our method.
Notice how this influence expands in areas with the same local structure but can be misled
in areas where there is a lack of points or where the estimation from the neural net is not
accurate enough. Figure best viewed in color.

algorithm that takes into account photometric and geometric information in the first step and
the single-view depth map in the second one.

The first step selects a fixed percentage of the best correspondence candidates –the best
25% in our experiments– based on the product of a photometric and a geometric scores.
On one hand, the photometric criterion focuses on the quality of the correspondences using
image information. We apply a modified version of the second best ratio.We first extract
the two closest matches for a pixel (smallest photometric errors according to Eq. 3.3). We
then compute the score as a function of the ratio between the distance of the two descriptors
(a high ratio suggesting a good match) and the gradient of the distance function along the
epipolar line (i.e., the error function presenting a distinct V-shape around this match and



52 Combining Single-View Deep Learning Depth with Multi-View Depth

Fig. 3.5 Detail of the influence area. Notice how it expands mainly in the areas with same
local structure. Figure best viewed in color.

suggesting spatial accuracy). On the other hand, the geometric score simply backpropagates
the image correspondence error to the depth estimation, resulting in low scores for low-
parallax correspondences.

In a second stage we also use the structure of the single-view reconstruction and apply
RANSAC to estimate a spurious-free linear transformation between the multi and single-view
points using only the points pre-filtered in the first stage. We apply this linear model along
the entire image, consensus with outliers is found if small patches are used. This reduces
further the number of spurious depth values from the multi-view algorithm. The result is a
small set of low-error points that we use for the interpolation of the previous section. As
mentioned before, in our experiments this algorithm behaves better than a geometric-only
compatibility test, especially in the low-parallax sequences of the NYUv2 dataset.

3.4 Experimental Results

In this section we evaluate the algorithm and compare its performance against two state-of-
the-art methods: multi-view direct mapping using TV regularization (implemented following
Newcombe et al. (2011), Handa et al. (2011)) and the single-view depth estimation using the
network of Eigen and Fergus (2015). We have selected two datasets with different properties.
The first one is the NYUv2 Depth Dataset (Nathan Silberman and Fergus, 2012), a general
dataset aimed at image segmentation evaluation and hence likely to contain low-parallax
and low-texture sequences. We analyze results in six sequences from the test set (i.e. the
single-view net had not been trained on these sequences) selected just to include different



3.4 Experimental Results 53

RMSE SCALE INVARIANT MEAN ERROR (m) MEAN ERROR (m)
Sequence TV Eigen Ours(a) TV Eigen Ours(a) TV Eigen Ours(a) Ours(m)

N
Y

U
D

ep
th

v2

bath_0018 1.458 0.852 0.793 0.405 0.150 0.145 1.174 0.692 0.612 0.263
bed_0013 1.004 0.550 0.482 0.212 0.139 0.136 0.690 0.441 0.344 0.163

dr_0032 2.212 0.710 0.694 0.416 0.209 0.204 1.797 0.581 0.554 0.318
kit_0032 3.599 1.621 1.572 0.812 0.592 0.583 2.920 1.222 1.183 0.805
lr_0025 1.073 0.620 0.597 0.289 0.236 0.219 0.798 0.471 0.435 0.289

lr_0030a 1.031 0.818 0.792 0.411 0.228 0.219 0.849 0.532 0.440 0.329

T
U

M fr1_desk 1.581 0.433 0.410 0.255 0.121 0.103 1.211 0.317 0.294 0.154
fr1_room 1.467 0.323 0.301 0.167 0.092 0.081 1.163 0.231 0.207 0.102

Table 3.2 Left table: Error metrics for the NYUv2 and TUM datasets. For each sequence
and metric we compare the TV-regularized multi-view depth, the single-view depth Eigen
and Fergus (2015) and our fused depth. Ours(a) represent our proposal with the automaic
selection of points. Right table: Mean error for the fused depth with manual multi-view
point selection (Ours(m)); selected points under certain threshold. (The evaluation has been
performed in the first 100 frames of each sequence)

types of rooms. The second one is the TUM RGB-D SLAM Dataset (Sturm et al., 2012a), a
dataset oriented to visual SLAM and then likely to present a bias benefiting multi-view depth.
In this case, we evaluated two sequences selected randomly.

We run our algorithm in a 320×240 subsampled version of the images, as this is the size
of the single-view neural network given by the authors. We also run our multi-view depth
estimation at this image size, and upsample the fused depth to 640×480 in order to compare
it against the ground truth D channel from the kinect camera.

As our aim is to evaluate the accuracy of the depth estimation, we will assume that
camera poses are known for the multi-view estimation. In the TUM RGB-D SLAM Dataset
(Sturm et al., 2012a) we use the ground truth camera poses. In the NYUv2 Depth Dataset
sequences we estimate them using the RGB-D Dense Visual Odometry by Gutiérrez-Gómez
et al. (2015). These camera poses will remain fixed and used to create the multi-view depth
maps. As mentioned before, the parameters of the fusion algorithm were experimentally set
prior to the evaluation on a small separate set of images.

To evaluate the methods, we computed three different metrics, the RMSE, the Mean
Absolute Error in meters and the scale invariant error proposed in Eigen et al. (2014)
1
n ∑i d2

i − 1
n2 (∑i di)

2 where d is (log(y)− log(y∗)), y and y∗ are the ground truth depth and
the estimated depth respectively. The results are summarized in Table 3.2. Our method
outperforms the TV regularization in both datasets obtaining an average improvement over
50% with respect to the mean of the error in meters. As expected, the TV regularization
performs better in the TUM sequences and achieves lower errors, but in terms of improvement
there seems not to be big differences between both datasets. Our fusion of depths also
outperforms the single-view depth reconstruction, the improvement being 10% on average.



54 Combining Single-View Deep Learning Depth with Multi-View Depth

RGB input TV Eigen Ours(auto) Ours(man) Ground Truth

ba
th

ro
om

_1
8

be
ed

ro
om

_1
3

di
nn

in
g_

32
ki

tc
he

n_
32

liv
in

g_
25

liv
in

g_
30

a
fr

1_
de

sk
fr

1_
ro

om

Fig. 3.6 The first six rows are depth images for the NYUDepth v2 dataset Nathan Silberman
and Fergus (2012) and the last two rows are for the TUM Dataset Sturm et al. (2012a).
Color ranges are row-normalized to facilitate the comparison between different methods.
First column RGB keyframe, second column TV-regularized multi-view depth, third column
single-view depth, fourth column our depth fusion with automatic multi-view point selection,
fifth column our depth fusion with manual multi-view point selection, and sixth column
ground truth. Figure best viewed in electronic format.

Both methods perform similarly in both datasets, but except in one sequence, our method is
always better or as good as the deep single-view reconstruction. Notice that the improvement
does not come exclusively from scale correction; the scale invariant error shows that our
method improves the structure estimation in both the single and multi-view cases.



3.5 Conclusions 55

SCALE INVARIANT MEAN ERROR (m)
W1 W1 ·W2 ∏

4
i=1Wi W1 W1 ·W2 ∏

4
i=1Wi

NYUv2 0.224 0.216 0.208 0.390 0.376 0.353
TUM 0.098 0.088 0.064 0.145 0.142 0.128

Table 3.3 Mean of error metrics for the NYUv2 and TUM datasets. For each sequence and
metric we compare the fusion with the only use of the weight W1, the use of W1 ·W2. and all
the weights together.

The right-most colum of Table 3.2 shows the depth errors when the set of multi-view
points does not contain outliers. We selected them using the ground-truth data from the D
channel, and keeping only those points whose depth error was lower than 10cm. The results
are for all sequences better than any method attaining improvements around 70% and 38%
with respect to TV and Eigen and Fergus (2015), respectively. Although expected, this result
highlights the impact of multi-view outliers and the need for good point selection. It also
provides an upper bound and shows that there is still room for improvement in this latest part
of our algorithm. In Table 3.3 we show an experiment to better understand the contribution
of each weight of our algorithm. For this evaluation we have considered the spurious-free set
of multi-view points in order to avoid the influence of noise. It can be seen that using all the
weights has an average of 9.8% improvement in mean absolute error with respect to using
just W1 and a 6.5% of improvement with respect to using W1 and W2.

Finally, we present the results of some randomly picked images for each sequence of
each dataset. Figure 3.6 shows the obtained depth images for the NYUDepth v2 and the
TUM datasets. The improvement with respect to the regularized multi-view approach is clear
visually since the depth structure is much more consistent. Improvements with respect to
single-view images are more subtle and are best viewed by looking at the corresponding
depth error images of Figure 3.7. Usually, the improvement comes from a better relative
placement of some local structure. For instance, the walls are darker in the error images (see
the bathroom_18, bedroom_13 or fr1_desk in Figure 3.7). The effect is more evident when
the multi-view points were selected based on the ground truth. This better alignment of local
structures reduces the error, as can be seen in the per-sequence error boxplots of Figure 3.8.

3.5 Conclusions

In this chapter we have presented an algorithm for dense depth estimation by fusing 1) the
multi-view depth estimation from a direct mapping method, and 2) the single-view depth that



56 Combining Single-View Deep Learning Depth with Multi-View Depth

comes from a deep convolutional network trained on RGB-D images. Our approach selects a
set of the most accurate points from the multi-view reconstruction and fuses them with the
dense single-view estimation. It is worth remarking that the single-view depth errors do not
depend on the geometric configuration but on the image content and hence the transformation
is not geometrically rigid and varies locally. The estimation of this alignment is our main
contribution and the most challenging aspect of this research.

Our experiments show that our proposal improves over the state of the art (Eigen and
Fergus, 2015) for single-view depth and direct mapping plus TV regularization for multi-view
depth). Contrary to other approaches, the single-view depth we use is entirely data-driven and
hence does not rely on any scene assumption. As mentioned, we take the network of Eigen
and Fergus (2015) as our single-view baseline, because of its availability and its excellent
accuracy-cost ratio. However, our fusion algorithm is independent of the specific network
and could be used with any of the single-view approaches mentioned in Section 3.2.

Experiments carried out in this research were done in two datasets that were recorded
with the same Kinect camera model (Silberman et al., 2012, Sturm et al., 2012a). To extend
this work to be reliable with multiple cameras the single-view model would need to use
learn how to use the camera model into its advantage. We refer the reader to CAM-Convs
presented in Chapter 2 or López-Antequera et al. (2020), since this is actually a previous
work it did not count with them.



3.5 Conclusions 57

RGB input Eigen Ours(auto) Ours(man)

ba
th

ro
om

_1
8

be
ed

ro
om

_1
3

di
nn

in
g_

32
ki

tc
he

n_
32

liv
in

g_
25

liv
in

g_
30

a
fr

1_
de

sk
fr

1_
ro

om

Fig. 3.7 The first six rows are error images (predicted depth - ground truth) for the NYUDepth
v2 dataset (Nathan Silberman and Fergus, 2012) and the last two rows are for the TUM
Dataset (Sturm et al., 2012a). Color ranges are row-normalized to facilitate the comparison
between different methods. Darker blue is better. First column RGB keyframe, second
column single-view depth, third column our depth fusion with automatic multi-view point
selection, fourth column our depth fusion with manual multi-view point selection. In the
third column, in yellow, are highlighted the areas where the improvement of our method can
be easily appreciated with respect to single-view’s error. Figure best viewed in electronic
format.



58 Combining Single-View Deep Learning Depth with Multi-View Depth

0

0.5

1

1.5

2

2.5

3

3.5

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

1

2

3

4

5

6

0

median
mean
25%-75%
9%-91%
outliers

Ours(man) Ours(auto) Eigen TV Ours(man) Ours(auto) Eigen TV Ours(man) Ours(auto) Eigen TV Ours(man) Ours(auto) Eigen TV

bathroom_0018 bedroom_0013 living_room_0025 living_room_0030a

Fig. 3.8 Box-and-Whiskers plots of the pixel error distribution for four of our test scenes.
From left to right: Our method with manual point selection, our method with automatic point
selection, single-view depth from Eigen and Fergus (2015) and TV-regularized multi-view
depth.



Chapter 4

Condition-Invariant Place Recognition

Visual place recognition is particularly challenging when places suffer changes that mod-
ify drastically their appearance. Such changes are indeed common, e.g., due to weather,
night/day, seasonal features or dynamic content. In this chapter we leverage on place recog-
nition research using deep networks; and explore how it can be improved by exploiting the
information from multiple views. Specifically, we propose 3 different alternatives (Descriptor
Grouping, Fusion and Recurrent Descriptors) for deep networks to combine visual features of
several frames in a sequence; together we present also a single-view network. We show that
our approaches produce more compact and better-performing descriptors than state-of-the-art
single- and multi-view baselines in two public databases.

4.1 Introduction

Given a dataset of images taken at different places, visual place recognition (Lowry et al.,
2016, Arandjelović and Zisserman, 2014, Torii et al., 2013) aims to identify the place of
a new query image by associating it to one or several images of the dataset taken in the
same location. Recent advances in computer vision have improved the performance of
these algorithms, which are currently applied in several different applications such as image
retrieval (Noh et al., 2017), mapping and navigation in robotics (Pronobis et al., 2006, Gálvez-
López and Tardos, 2012, Lee and Civera, 2019), autonomous driving (McManus et al., 2014)
and augmented reality (AR) (Middelberg et al., 2014).

One of the main challenges of visual place recognition is dealing with changes in the
appearance of places (Garg et al., 2019). Indeed, place recognition is reasonably robust
under small changes in viewpoint and illumination, due to the invariance of local features
and rigidity checks (Gálvez-López and Tardos, 2012). But, in contrast, non-rigid scene
changes, wide baseline matching and extreme illumination variations are considerably more



60 Condition-Invariant Place Recognition

multi-view 
descriptort

t-(n-1)

t-n

1

descriptor
database

CNN

CNN

CNN Place Recognition
by descriptor matching

Input
Sequence

Query

Nearest Neighbor
Retrieved Place:

Visited Places

Fig. 4.1 Overview of our proposal. We extract descriptors (using deep networks) for small
sequences of n frames. We use such descriptors to find the closest match in a database of
already visited places.

challenging and result in lower performance. Using multiple frames in a sequence can
improve the robustness of place recognition against such changes. But the sequence models
proposed by the state of the art (Milford and Wyeth, 2012, Naseer et al., 2018) are handcrafted
for a certain set of assumptions (e.g. overlapping trajectories, similar velocity patterns), and
their performance suffers if these are not hold. Also, typically, they require a high number of
frames.

Descriptors directly extracted from CNNs have shown good generalization properties
(Gomez-Ojeda et al., 2015), but they usually do not exploit multi-view information. Im-
provements usually come at the cost of large descriptors, with dimensionality in the order
of thousands or hundreds of thousands. The complexity of all place recognition algorithms
depends on the size of the descriptor and the number of images in the database, the latest
being typically high. This limits the applicability of these techniques in robotics and AR/VR
scenarios, in which the computational budget is limited due to real-time constrained loops
and limited on-board computational power.

In this thesis we target place recognition in the presence of challenging changes in the
condition of an environment, that eventually happen in most of the scenes as time passes.



4.2 The Partitioned Nordland Dataset 61

For example day/night illumination, seasonal and weather changes, or objects that are moved
(cars, persons or furniture). We address this problem by generating a global descriptor of the
visual input, i.e., every input (one or several images) is encoded as a descriptor and matched
versus the rest of the descriptors retrieving the closest place.

Our contribution is the proposal and evaluation of three different deep network archi-
tectures that exploit multi-view and temporal information for place recognition: 1) naïve
descriptor grouping, 2) learning the fusion of single-view descriptors, and 3) recurrent net-
works using LSTM (Long Short Term Memory) layers Hochreiter and Schmidhuber (1997).
Fig. 4.1 shows an overview of our proposal. Up to our knowledge, ours are the first models
that use deep learning to combine multiple views to generate descriptors for place recognition.
Encoding temporal information allows us to model short-time relations between images (e.g.
short smartphone videos or live photos) without the need of keeping a global map or long
image sequences to achieve a high accuracy.

We compare our models to state-of-the-art single-view deep baselines and a non-deep
sequential one using two standard datasets: the Partitioned Nordland (Olid et al., 2018) and
Alderley (Milford and Wyeth, 2012). The experimental results show that the performance of
our three multi-view descriptors outperforms single-view ones. We also outperform SeqS-
LAM, a state-of-the-art baseline for place recognition from image sequences. Furthermore,
our learned descriptors are at least one order of magnitude smaller than those of the state
of the art showing that multi-view learning is able to extract relevant information for place
recognition.

The rest of the chapter is organized as follows. Section 4.2 presents a partition of the
Norland dataset that we have used in this chapter that was published in it is available in
our project website 1. Section 4.3 refers the related work. Section 4.4 details our network
architectures, and section 4.5 details how they are trained. Finally, section 4.6 presents the
experimental results and section 4.7 the conclusions and lines for future work. Our code and
a video showing our results can be found in our project website 2.

4.2 The Partitioned Nordland Dataset

For this work, we have used the Nordland railroad videos. In 2012, the Norway broadcasting
company (NRK) made a documentary about the Nordland Railway, a railway line between
the cities of Trondheim and Bodø. They filmed the 729km journey with a camera in the front

1https://webdiis.unizar.es/ jmfacil/pr-nordland/
2http://webdiis.unizar.es/~jmfacil/cimvpr/

http://webdiis.unizar.es/~jmfacil/cimvpr/


62 Condition-Invariant Place Recognition

training set
test set
discarded data

Fig. 4.2 Proposed dataset partition for the Nordland dataset. Top: Geographical repre-
sentation of the training (red) and test (yellow) sets. Bottom: Index representation of the
distribution, w.r.t. frame index in the videos.

part of the train in winter, spring, fall and summer. The length of each video is about 10
hours and each frame is timestamped with the GPS coordinates.

This dataset has been used by other research groups in place recognition, for example
Gomez-Ojeda et al. (2015) and Lowry and Milford (2016). Each group uses different
partitions for training and test, making difficult to reproduce the results. In this work we



4.3 Related Work 63

propose a specific partition of the dataset and a baseline, to guarantee a fair comparison
between algorithms. We released this dataset partition with the publication of Olid et al.
(2018).

4.2.1 Data Pre-processing

The first step, creating the dataset, was to extract the maximum number of images from each
video. Moreover, GPS data corruption was fixed and we also eliminated tunnels and stations.
After these steps, grabbing one frame per second, we obtained 28,865 images per video. We
used speed information from the GPS data to filter stations and a darkness threshold to filter
tunnels.

4.2.2 Dataset Partitions

Fig. 4.2 illustrates the partition of the whole image set in the Nordland dataset. We decided
to create the test set with three different sequences of 1,150 images (a total of 3,450, yellow
in the figure). The rest of the images were used for training (24,569, red in the figure). By
using multiple sections, the variety of places and appearance changes contained in the test set
increases. We also left a separation of a few kilometers between each test and train section
by discarding some images in order to guarantee the difference between test and train data.

4.2.3 Place labels

Given the similarity between consecutive images, in this work we propose to consider that
two images are of the same place if temporally they are separated by 3 images or less. We
applied a sliding window of 5 images over the whole dataset in order to group images taken
from five consecutive seconds. This process can be seen in Fig. 4.3.

4.3 Related Work

There have been many works addressing visual place recognition and related problems. For
a general overview, we refer the reader to two surveys, Garcia-Fidalgo and Ortiz (2015) on
topological mapping and Lowry et al. (2016) exclusively for visual place recognition. In this
section we will focus on the works that are most relevant to our proposal. We will review
first the literature on place recognition descriptors, and later refer to full place recognition
pipelines. Notice that our contribution lies mainly on the former, that is, the proposal of
novel multi-view descriptors.



64 Condition-Invariant Place Recognition

place 1
place 2

place 3

Fig. 4.3 A sliding window of five images is considered in this work as the same place. Notice
the similarity of consecutive images. The figure is best viewed in electronic format.

Descriptor Grouping Descriptor Fusion Recurrent Descriptors

CNN

tt-(n-1)t-n

Input Sequence

CNN CNN

+

multi-view 
descriptor

(a)

tt-(n-1)t-n

Input Sequence

CNN CNN CNN

fc

+

multi-view 
descriptor

(b)

tt-(n-1)t-n

Input Sequence

CNN CNN CNN

LSTM LSTM LSTM

multi-view 
descriptor

(c)

Fig. 4.4 Multi-view descriptors proposed in this thesis. From left to right: (a) Descriptor
Grouping, where the descriptor of a sequence is the concatenation of all the single image
descriptors. (b) Descriptor Fusion, the output of the CNNs serves as input to a fully-
connected layer that combines the information into a single descriptor. (c) Recurrent
Descriptors, the output of the CNNs serves as input to an LSTM network that integrates
over time the single-image features to create a multi-image descriptor.

4.3.1 Descriptors

Local Descriptors

Techniques based on local descriptors address place recognition by detecting a set of salient
keypoints in an image and generating descriptors for each one of them. These descriptors
are used to find correspondences in other images, that would potentially allow us to perform
visual place recognition or even 6DoF camera pose recovery. Detection and description are
usually decoupled applying a method (Harris et al., 1988, Lowe, 2004, Mikolajczyk et al.,



4.3 Related Work 65

2005) that detects salient points and then generate every a descriptor for every point using
(Bay et al., 2006, Lowe, 2004, Rublee et al., 2011). Recently, some deep-learning approaches
have addressed descriptor generation (Luo et al., 2018, 2019), keypoint detection (Savinov
et al., 2017, Ono et al., 2018) or both in an end-to-end manner (Revaud et al., 2019, Dusmanu
et al., 2019).

Global Descriptors

Despite the advantages of local descriptors, global descriptors come handy when the tasks
requires larger context. One example of this is in the presence of large appearance changes
like weather or illumination conditions. On those occasions, when local patterns might
change substantially, a global view of the scene captured by high level features (e.g. the
skyline of the city) may be more helpful.

Traditional global codes include handcrafted holistic image descriptors, like low-resolution
thumbnails (Milford and Wyeth, 2012) or GIST (Murillo et al., 2013). None of these are
robust to appearance changes due to scene dynamics, seasonal and weather changes, or
extreme viewpoint or lighting variations. To address such cases, Lowry and Milford (2016)
used PCA to reduce the dimensionality of descriptors eliminating the dimensions that are
influenced by condition changes. Chen et al. (2018) incorporates attention in order to focus
on the most relevant image features for place recognition. Descriptors based on CNNs have
shown a high degree of robustness against appearance changes. Sünderhauf et al. (2015a) and
Sünderhauf et al. (2015b) showed that CNNs outperform other models, especially for drastic
appearance changes. They used AlexNet (Krizhevsky et al., 2012), pretrained on ImageNet
(Russakovsky et al., 2015). The features of AlexNet contain semantic information about the
whole scene, which improves the invariance to certain appearance changes. Thereafter, may
other works have studied CNNs as condition-invariant feature extractors (Gomez-Ojeda et al.,
2015, Arandjelovic et al., 2016, Arroyo et al., 2016, Chen et al., 2017, Lopez-Antequera
et al., 2017, Olid et al., 2018). Gomez-Ojeda et al. (2015) were the first that trained a network
as single-image feature extractor for visual place recognition under appearance changes. In
NetVLAD (Arandjelovic et al., 2016), they proposed a new type of layer inspired in VLAD,
an image representation commonly used in image retrieval. Chen et al. (2017) proposed
a network trained to classify the place the image was taken. Olid et al. (2018) proposed a
model based on pre-trained VGG-16 Simonyan and Zisserman (2014) and fine-tuned it for
the place recognition task in a Triplet-Siamese architecture.



66 Condition-Invariant Place Recognition

4.3.2 Visual Place Retrieval

This groups the approaches used to find retrieve the right place for every image. That comes
down to the matching algorithms uses to retrieve the right image from the database of visited
places.

Single-View Place Recognition

These are all those approaches which goal is to retrieve a single image from a single image;
ignoring the time or pose relation between different frames in the query or in the database.
The literature addresses the nearest neighbor problem in place recognition in many different
ways: brute force (Olid et al., 2018, Murillo et al., 2013), KD-tree (Murillo et al., 2013) and
bag of words (Gálvez-López and Tardos, 2012). Lowry and Andreasson (2018) presented
a model using SURF detector and HOG features and studies the use of Bag of Words and
Vectors of Locally Aggregated Descriptors (VLAD) for place matching.

Multi-View Place Recognition using Single-View Descriptors

For place recognition, it can be assumed that images in the database are independent and all
that can be done is 1-to-1 matching, or else that you know the links between the images (in
the query sequence and/or in the database) an use that as a prior knowledge. Although there
are only a few works that consider temporal and multi-view information for place recognition,
they all have shown that sequences provide useful information for place recognition. For
instance, DBoW (Gálvez-López and Tardos, 2012) and Bampis et al. (2016) incorporate
a temporal consistency constraint. SeqSLAM (Milford and Wyeth, 2012) and following
works (Pepperell et al., 2014) use sequence matching, similarly to Newman et al. (2006).
Differently to our approach, they assume linear temporal correlation for sequence matching.
Also, we use data-driven high-level features, while they use downsampled images.

More recently, some works have extended SeqSLAM in several aspects. On the one hand,
Chen et al. (2014) refines the temporal filtering. On the other hand, Naseer et al. (2018)
proposes a graph of single-view descriptors (based on HOG and AlexNet) to model and
match image sequences. Their approach is similar to SeqSLAM, with two main differences.
The most straightforward one is that they use different descriptors. The second one, more
subtle, is that their search of the best-matching sequence does not assume a constant speed
variation between the sequences. SeqSLAM looks for straight lines in the similarity matrix,
while Naseer et al. (2018) uses a more sophisticated model. In any case, none of them
model changes in the sequence direction. Also, they typically rely on long-term sequence
matching (i.e., query and database sequences having many consecutive matching frames),



4.4 Network Architectures 67

Method Descriptor Size Accuracy avg
%

ours (single-view) 128 80.19%
ours (single-view) 256 80.62%
ours (single-view) 512 80.65%
ours (single-view) 1024 81.46%

the bigger the better
Table 4.1 Evaluation of different descriptor sizes on the Partitioned Nordland Dataset
(Olid et al., 2018) introduced previously in this chapter. 1st column: Method. 2nd column:
Descriptor size in 32-bits floating point numbers. 3rd column: Average accuracy.

which limits their applicability to such case. Assuming that consecutive frames have similar
appearance, Neubert et al. (2015) combines CNN single-view descriptors with a directed
search. Continuing their previous work Vysotska and Stachniss (2016) and Vysotska and
Stachniss (2017) propose a combination of their lazy data association with a hash reduction
of single-view CNN features.

4.3.3 Multi-View Place Recognition using Multi-View Descriptor

All the multi-view models described so far are handcrafted. Up to our knowledge, ours are
the first ones that learn to combine multiple single-view features maps into a multi-view
descriptor. We compare three different approaches to generate a descriptor based on multiple
images, simple concatenation as baseline, learning to fuse descriptors and using a recurrent
neural network to accumulate the knowledge over time. The traditional approach to using
multiple views in place recognition is adding extra constraints when looking for the nearest
neighbor. In our case, we do not add any constraints but generate descriptors that already
include temporal and/or spatial information.

4.4 Network Architectures

In this section, we discuss four different models for place recognition: A single-view one,
based on ResNet-50, and the three multi-view ones proposed in this chapter.

4.4.1 Single-View ResNet-50

Our first network is based on the model presented in Olid et al. (2018). The main difference
is that we start from ResNet-50 (He et al., 2016) pretrained on ImageNet (Russakovsky et al.,
2015) as our backbone, instead of VGG-16 (Simonyan and Zisserman, 2014). Although it



68 Condition-Invariant Place Recognition

is common to directly use the descriptors of different layers (see Section 4.6.1 for results
on this), in our case we added and trained a fully connected layer after ResNet-50 to learn a
128-dimensional descriptor especially designated to the task of visual place recognition. We
chose a size of 128 experimentally (see Table 4.1) , as a reasonable compromise between
performance and compacity.

4.4.2 Descriptor Grouping

In order to include temporal information into the descriptors, our first approach is the naïve
concatenation of the descriptors of consecutive frames, see Fig. 4.4a. Thus, starting from
our previous single-view model, we first choose a temporal window of frames (n), we then
generate a 128-dimensional descriptor per frame, and we finally concatenate them. The
descriptor size is then 128× n. Notice that this model is trained only from single-view
samples. Hence, the relation between consecutive frames is not learned and this model only
provides a filtering effect.

4.4.3 Descriptor Fusion

Descriptor Grouping, as the simplest strategy to consider several frames, is limited in its
capability to weight differently certain features (i.e. features of some of the frames may be
more representative of the place than others). It is also limited to cases where the sequences
(map/query) are aligned – meaning that both sequences follow the same trajectory. For
that reason, we designed a model that learns how to fuse the information of our n-frames
window into a more discriminant –as well as smaller– 128-dimensional descriptor. With this
Descriptor Fusion strategy, we add an extra fully connected layer that learns how to combine
the outputs of n ResNet-50 into a single compact descriptor. See Fig. 4.4b for an illustration
of this approach. As this network is able to learn how to weight the features from different
frames, it can model more complex cases. For example, when sequences are recorded in
reverse order Descriptor Grouping is limited, while Descriptor Fusion has the capability of
learning a suitable fusion.

4.4.4 Recurrent Descriptors

Descriptor Fusion does not explicitly exploits the sequential nature of the data. With
Recurrent Descriptors, we update in an online manner the sequence coding as new frames
come, keeping the most relevant previous information. With that intention, we propose a
Recurrent Neural Network (see Recurrent Descriptors in Fig. 4.4c). In this model, every



4.5 Training 69

query-sequence 1

query-sequence 2

query-sequence M

place 1
place 2

place N

Fig. 4.5 Same place convention, illustrated with an example where the query-sequence has
a length of 3 frames. A place represents a set of frames that are considered to be on the
same place. Notice that a frame can be in more that one place. A query-sequence is an input
sequence for our model. We want to recover the corresponding place of a query-sequence.

frame is the input to a ResNet-50, and the top layers serve as the input of a LSTM network
(Hochreiter and Schmidhuber, 1997), that generates a 128-dimensional descriptor. LSTMs
keep an inner state, that is updated with each input frame, and the output depends on the
state and the input. Differently to previous models, keeping a recurrent inner state allows
this network to produce a descriptor from the first frame, and update it sequentially as more
frames arrive.

4.5 Training

4.5.1 Convention for Same Place

Since our descriptor is generated from a sequence of images (query-sequence) instead of a
single image, we must define when two query-sequence of n frames are considered to be at
the same place (the definition of a place being dataset-dependent). To illustrate this definition
we will make use of Fig. 4.5. The figure shows a sequence of frames and several examples
of query-sequence, and also shows the set of frames that we consider as the same place.
Therefore, during training, we consider two query-sequence to be on the same place if they



70 Condition-Invariant Place Recognition

1206 1207 1208

12061205 1207

1352 1353 1354

model

model

model

an
ch

or
po

si
tiv

e
ne

ga
tiv

e

Query-Sequence Examples Generated Descriptors

da

dp

dn

weight-sharing

weight-sharing

loss

Fig. 4.6 Triplet architecture. We used this scheme for training all our models.

contain two frames (one per query-sequence) that belong to the same place. For instance, in
Fig. 4.5, query-sequence 1 and query-sequence 2 belong to the same place, as the first frame
of query-sequence 1 belongs to place 1, the same as the first frame of query-sequence 2).

4.5.2 Model training

We start from ResNet-50 pre-trained on ImageNet in a standard classification task. We add
the extra layers, and train them on our place-recognition task in our datasets. We trained all
the models proposed in this work using a triplet architecture (see Fig. 4.6 for a scheme and
more details). In a few words, triplet architectures are given 3 training samples: An anchor, a
positive example and a negative one. During training, the objective is to reduce the distance
between the anchor and positive descriptors, and to increase the distance between the anchor
and the negative one. The loss we use to achieve that is the Wohlhart-Lepetit loss (Wohlhart
and Lepetit, 2015),

L = max
{

0,1− ||da −dn||
m+ ||da −dp||

}
, (4.1)

where m (margin) is a parameter that limits the difference between the distances, da is the
descriptor generated for the anchor image, dp is the descriptor for the positive sample and da

is the descriptor for the negative sample (see Fig. 4.6). The specific training details for each
model are as follows.



4.6 Experimental Results 71

Descriptor Grouping

This model is trained as a single-view place recognition model. Hence, the data triplets
consist of single images (an anchor image, a positive and a negative examples). During
training, every single image generates a 128-dimensional descriptor, which means a 128×n
elements descriptor during test.

Descriptor Fusion

Our second model learns a fusion of features for an image sequence (query-sequence). We
concatenate the output of the ResNet-50 for each image, and add a fully-connected extra
layer to generate a single descriptor of 128 elements. We train this model generating triples
samples of n-frames query-sequence.

Recurrent Descriptors

In our last model we make a sequential update of the image descriptors using Recurrent
Neural Networks, concretely an LSTM layer. In order to force the network to learn from
the three images instead of only the last one, we add some random sampling in one of the n
images of the query-sequence plus a Dropout on the LSTM layer.

4.6 Experimental Results

In this section we evaluate our three descriptors on two datasets: Partitioned Norland Olid
et al. (2018) and Alderley Milford and Wyeth (2012); comparing them against state-of-the-art
single-view and sequence-based methods. For every method, we retrieve the nearest neighbor
as the matched place for a query image or sequence. We consider it as a correct match if it
fits with the same-place convention for the dataset (i.e. each dataset has its own ground-truth
frame correspondence). In the experiments, we set the query-sequence length to 3 frames
for all our multi-view models. We observed in our experiments that, for more than 3 frames,
the performance did not improved significantly. It slightly improves for our Descriptor
Grouping, but degrades its performance when query and reference sequences do not have
many consecutive matching frames. To compare different models we report the accuracy, i.e.,
we retrieve a single place for every query (its nearest neighbor) and compute the fraction of
correct matches over the total number of queries.



72 Condition-Invariant Place Recognition

Method Number
of

frames

Descriptor
Size

Accuracy
W vs S

Accuracy
S vs W

# % %
VGG16(pool4) 1 100352 51% 21%
VGG16(pool5) 1 25088 13% 7%

VGG16(fc6) 1 4096 6% 3%
VGG16(fc7) 1 4096 4% 3%

ResNet-50(3a-2a) 1 100352 42% 32%
ResNet-50(3d-2b) 1 100352 73% 42%
ResNet-50(4a-2a) 1 50176 62% 41%
ResNet-50(4b-2a) 1 50176 62% 31%
ResNet-50(4c-2a) 1 50176 50% 40%
ResNet-50(4f-2b) 1 50176 12% 8%
ResNet-50(5a-2a) 1 100352 43% 24%

Hybridnet (Chen et al., 2017) 1 4096 77% 41%
Amosnet (Chen et al., 2017) 1 4096 69% 48%
Lowry and Milford (2016) 1 1860 67% 66%

Olid et al. (2018) 1 128 75% 79%
ours (single-view) 1 128 77% 75%
ours (grouping) 3 384 92% 92%

ours (fusion) 3 128 87% 86%
ours (recurrent) 3 128 85% 86%

the bigger the better
Table 4.2 Results on the Partitioned Nordland Dataset Olid et al. (2018). 1st column:
Method. 2nd column: Number of frames used for recognition (e.g., 1 stands for single-view).
3rd column: Descriptor size in 32-bits floating point numbers. 4th column: Winter vs
Summer, query taken from winter and matched to summer database. 5th column: Summer
vs Winter, query taken from summer and matched to winter database.

4.6.1 Partitioned Nordland Dataset

Our experiments use the train-test split proposed previously in this chapter. We trained
our model with 24.5K images and evaluated its performance in a 3.45K-images set. We
evaluated the performance of the descriptors of different layers of ResNet-50 and the best
performing features are those of the layer bn3d-branch2b (3d-2b in the table), so we use
these in our experiments. We train for 5 full epochs, where each epoch corresponds to 840K
triplet examples.
Quantitative Results: Results on Table 4.2 show the performance of different models for
visual place recognition on the Partitioned Nordland. In this table we report the hardest
recognition cases, which are representative for the rest, specifically using the seasons Winter



4.6 Experimental Results 73

Descriptor Grouping Descriptor Fusion Recurrent Descriptors

97.85 91.62 98.54 97.80 86.60 96.90 97.65 85.79 96.03

87.4185.9997.6596.4987.0697.9497.8891.6497.82

91.76 90.62 92.27

92.1297.8298.12 96.61 96.37 88.98 95.97 95.59 88.46

95.6584.1384.7788.2084.5485.96

85.0 87.5 90.0 92.5 95.0 97.5

S

F

W

Sp

S F W Sp S F W Sp S F W Sp

Fig. 4.7 Accuracy on Partitioned Nordland Dataset Olid et al. (2018). We evaluate the
fraction of correct matches between all the seasons. S stands for summer, F for Fall, W for
Winter and Sp for Spring. Our best performing model, Descriptor Grouping, never drops
under 90% of correct matches. Models in this figure are using 3-frames sequences

and Summer both as query and database respectively. The upper part of the table shows
single-view models and the lower part shows the multi-view models.

Our three proposals ours (grouping), ours (fusion) and ours (recurrent) outperform
very clearly our single-view approach ours (single-view). Notice that they also outperform
the state-of-the-art baselines. Among our multi-view proposals, ours (grouping) is the one
achieving the best performance (92% of accuracy using 3 frames). Notice that its descriptor
size, 384, is smaller than most of the single-view and mult-view baselines.

Increasing the number of frames in the Fusion approach increases the number of parame-
ters and slows down the efficiency and training significantly. On the other side the Recurrent
approach would allow to vary the number of frames without modifying the model, but it
requires a more complex and dedicated study that will be addressed as future work.

Fig. 4.7 shows the results of our descriptors for all query-reference combinations. As
mentioned, winter is always the hardest case. Notice, however, that none of our models drops
under 80% performance.
Qualitative Results: Fig. 4.8 shows some examples of matched places with the grouping
model and illustrates when multi-view methods achieve better performance. Notice that,
although our single-view method fails in these examples, some of the places are indeed very
similar and would be hard to match even by humans.



74 Condition-Invariant Place Recognition

Match
Multi-View

519

794

1110

2305

2347

Single-View

3831215

517

1203

758

2306

968

Query

384

519

794

1110

2308

2347

Multi-View
Single-View

Fig. 4.8 Example of Matched Places for Single and Multi-View grouping model in the
Partitioned Nordland Dataset (Olid et al., 2018). The retrieved image is framed on green if
it is a correct match or red if it is incorrect. Mismatched frames are very similar and could
even fool humans if they are not carefully inspected.



4.6 Experimental Results 75

Match
Multi-ViewSingle-View

Query
Multi-View Single-View

8

969

1043

1475

1625

4591

4439 199

2063 969

951 1045

2063 1471

1206 4008

4592 4592

Fig. 4.9 Examples of Matched Places for Single and the grouping Multi-View model in the
Alderley Dataset (Milford and Wyeth, 2012). The returned image is framed on green if it is a
correct match or on red if it is incorrect.

4.6.2 Alderley

We also evaluated our approach on the Alderley dataset (Milford and Wyeth, 2012), that
contains 15K images of a car trip in the day, and the same trip at night. It is a very challenging
dataset due to the extreme illumination changes. We used the last 4.6K images as test samples.

Table 4.3 shows that our multi-view approach is the best performing descriptor, outper-
forming the rest both in accuracy and descriptor compacity. We also compare the difference
when training on Partitioned Norland and Alderley (only shown for single-view approaches,
as results are similar for multi-view ones). Fine-tuning on Alderley clearly helps on the task,
as the condition variations (seasons vs day/night) impact differently in the visual appearance.



76 Condition-Invariant Place Recognition

Method Trained
on

Number
of

frames

Descriptor
Size

D vs N

# %
Olid et al. (2018) Norland 1 128 0.15%
Olid et al. (2018) Alderley 1 128 6.84%

ours (single-view) Norland 1 128 1.65%
ours (single-view) Alderley 1 128 6.8%
ours (grouping) Alderley 3 384 9.05%
ours (grouping) Alderley 6 768 11.48%

ours (fusion) Alderley 3 128 10.18%
ours (recurrent) Alderley 3 128 5.73%

biggest the best
Table 4.3 Results on the Alderley Dataset Milford and Wyeth (2012), 1st column: Method.
2nd column: Dataset in which the model it has been trained with. 3rd column: Number of
frames used for recognition (e.g. 1 would imply to be single-view). 4th column: Descriptor
size in 32b floating point numbers.5th column: Day vs Night (D vs N), query with daylight
image while reference database composed by nighttime images.

Qualitative results. Fig. 4.9 shows several test samples. Notice the increased challenge
with respect to the Nordland dataset, with the presence of severe illumination changes plus
inclusion of artificial illumination and dynamic objects.

4.6.3 Multi-View Evaluation

Sequence Speed Changes: Inspecting the previous results (Table 4.2), Descriptor Grouping
(ours (grouping)) trained only on single-view and then applied on multi-view by concate-
nation is the best performing. This is surprising at first sight, as the other two models were
trained on multi-view data. We designed two extra experiments (Reverse Gear and Random
Speed) to illustrate why this is happening. Both experiments are performed during test time,
which means none of the networks has been retrained.

The Reverse Gear experiment consist on changing the direction of the train motion on
one of the sequences at test time (e.g. when testing Winter vs Fall, the sequence of Fall is
played in reverse order, see Fig 4.10a). This experiment will help to discern how much the
model exploits the multi-view information rather than just the sequence consistency. Table
4.4 shows that, as we expected, models trained with multi-view examples (ours (fusion) and
ours (recurrent)) have learned to exploit multiple views: Its performance only degrades by
6% and 4% respectively. On the other side, ours (grouping) drops severely its performance,
by 18%.



4.6 Experimental Results 77

Reverse Gear

3385 3390 3395 3400 3405 3410 3415

3415 3410 3405 3400 3395 3390 3385

Su
m

m
er

Fa
ll

(a)

Random Speed

130 131 133 136 140 145 151

130 135 140 144 148 151 153

W
int

er
Sp

rin
g

(b)

Fig. 4.10 Experiment setup details. (a) Reverse Gear, in which the sequence is played in
reverse order for one of the seasons (Fall in the figure). (b) Random Speed, in which the
vehicle speed is modified for both seasons, reference (Winter) and query (Spring). In both
cases, we mark with a dashed green box the same-place three-frames sequences.

In the Random Speed experiment we synthetically modified the speed of the train motion
on one of the sequences at test time. Specifically, we modified the frame rate along the
sequence simulating changes on the train velocity, see Fig. 4.10b (in our experiments the
velocity was randomly multiplied by ×1, ×2 or ×3 at every moment of the sequence). The
“speed” is modified for the whole sequence, implying that the one-to-one correspondence in
plain Nordland does not hold. Table 4.4 proves that Random Speed is the most challenging
setup for the ours (grouping) approach, dropping its accuracy to 36%. ours (fusion) and



78 Condition-Invariant Place Recognition

Method Number
of

frames
Normal

Test
Reverse

Gear
Random

Speed
Mean±

Std
# % % % %

SeqSLAM 3 33% 0.08% 9% 14.0±13.9
ours (grouping) 3 92% 74% 36% 67.3±23.3

ours (fusion) 3 86% 80% 78% 81.33±3.4
ours (recurrent) 3 86% 82% 84% 84.0±1.6

biggest the best
Table 4.4 Experimental results for Speed Changes in the Partitioned Norland Dataset
Olid et al. (2018). Comparison of all our multi-view methods and SeqSLAM presented by
Milford and Wyeth (2012). 1st column: Method. 2nd column: Number of frames used for
recognition. 3rd-5th column: Summer vs Winter experiments: 3rd column: Normal Test
corresponds to the one showed on Table 4.2. 4th column: Reverse Gear experiment where
the query frames are all in reversed order, i.e. simulating the train has used a reverse gear.
5th column: Random Speed experiment where the speed of the train is simulated to be
random, which means some of the frames are lost). The speed variations are independent
for the query and the reference databases, and this implies no more 1 to 1 correspondence.
These speed changes are perform only on the test sequences, this implies that for a network,
e.g. ours (grouping), results on the experiments are achieved using the same set parameters
than in Table 4.2 with no retraining.

ours (recurrent) keep its performance at a very similar level than the standard Nordland
setup (78% and 84% respectively). Notice that the goal of this experiment is not creating a
very realistic setup, but misaligning the query sequence and the database ones. The aim is to
evaluate the generalization over a plain frame-to-frame filtering effect.

We run the state-of-the-art multi-view baseline SeqSLAM (Milford and Wyeth, 2012)
in both experiments, Reverse Gear and Random Speed, observing that its performance
drops in both. This should be expected, as SeqSLAM assumes a linear relation between the
velocities of the query and the reference sequences (sequence consistency).

The last column of Table 4.4 (Mean/Std) summarizes the conclusions of both exper-
iments, reporting the mean (biggest the best) and standard deviation (smallest the best)
for all experiments (Normal Test, Reverse Gear and Random Speed). Observe that ours
(recurrent) is the best performing, presenting both the highest average accuracy and smallest
variations. This confirms our hypothesis: The sequence descriptors that use learning (ours
(fusion) and (ours (recurrent)) are more resilient than those based on plain concatenation
(ours (grouping)) or handcrafted relations (SeqSLAM).



4.6 Experimental Results 79

Method Num
of

frames

Descriptor
Size

Accuracy
W vs S

Norland

Accuracy
S vs W

Norland

Accuracy
D vs N

Alderley
# % %

SeqSLAM 3 6144 31% 33% 3.91%
SeqSLAM 10 20480 71% 70% 9.90%
SeqSLAM 100 204800 95% 94% -

ours (grouping) 3 384 92% 92% 9.05%
ours (grouping) 6 768 97% 97% 11.48%

ours (fusion) 3 128 87% 86% 10.18%
ours (recurrent) 3 128 85% 86% 5.73%
ours (recurrent) 6 128 87% 88% -

the bigger the better
Table 4.5 Results on the Partitioned Nordland Dataset (Olid et al., 2018) and Alderley
adding more frames in the for the search. Comparison of all our multi-view methods and
SeqSLAM presented by Milford and Wyeth (2012). 1st column: Method. 2nd column:
Number of frames used for recognition (e.g., 1 stands for single-view). 3rd column: De-
scriptor size in 32-bits floating point numbers. 4th column: Winter vs Summer, query taken
from winter and matched to summer database. 5th column: Summer vs Winter, query taken
from summer and matched to winter database. 6th column: Day vs Night, query taken from
night and matched to day database.

Last, in Table 4.5 we show a comparison between our methods and SeqSLAM (Milford
and Wyeth, 2012) on both Norland and Alderley. We also evaluate the effect of considering
more frames in the different methods.

Our methods outperform SeqSLAM (Milford and Wyeth, 2012), a state-of-the-art baseline
able to model information from several frames, when both use the same number of frames
(specifically, 3). As all multi-view approaches improve their performance when increasing
the number of frames, we increased the number of frames used by SeqSLAM. Notice that, in
order to outperform our approach in Norland, the number of frames has to be increased up
to 100 and 10 in Alderley. Similarly occurs when increasing the number of frames used by
ours.

4.6.4 Execution time

We compared the execution time of our models in the upper part of Table 4.6. The fourth
column (Descriptor Extraction) shows the time needed to extract the descriptor of a query
3-frames sequence on a NVIDIA TITAN Xp. In this part of our pipeline Descriptor Grouping
is the fastest method, as is uses the simplest network.



80 Condition-Invariant Place Recognition

Method Descriptor
Size

Descriptor
Extraction

Search
1 vs 10K

ms ms
ours (fusion) 128 17 3.86

ours (recurrent) 128 22 3.86
ours (grouping) 384 15 10.70

- 1860 - 49.21
- 4096 - 111.44
- 6144 - 166.13
- 20480 - 688.24
- 204800 - 9279.62

smallest the best
Table 4.6 Execution Time of all our models. 1st column: Method. 2nd column: Descriptor
size. 3rd column: Time in milliseconds needed to extract 1 descriptor. 4th column: Given a
descriptor and a reference data base of 10K descriptors, time in milliseconds needed to find
the best match.

Last column (Search) shows the time needed to find the best match (Nearest Neighbor
(NN)) given a query and a database of 10K descriptors. Notice that our methods Descriptor
Fusion and Recurrent Descriptors are faster. This was expected, as their descriptor sizes
are n (query-sequence size) times smaller (3 times in our experiments). Our NN algorithm
consists on an exhaustive search through the database. We iterate over all the visited places,
compute the distance between their descriptors and the query and keep the minimum-distance
one. For the distance function we use the Squared Euclidean Distance (d2(dq,di)). The
computational complexity of this search is O(N) where N is the number of elements in the
database and for the distance function O(k) where k is the descriptor size.

Additionally, we computed the search time corresponding to the sizes of some of the
other descriptors used in Tables 4.2 and 4.3 (bottom part of the table). As expected, the
time increases with the descriptor size. Notice that high dimensional descriptors rule out the
use of more efficient data structures, such as KD-trees, to speed up the search techniques,
since it is not possible to reject candidates by using the difference of a single coordinate
(Marimont and Shapiro, 1979). A directed search using the sequentiality of data (Neubert
et al., 2015, Vysotska and Stachniss, 2016) would reduce the number of comparisons.
Hashing (Vysotska and Stachniss, 2017) can also reduce the computational cost. In any
case, reducing the dimensionality of the descriptor has a direct influence in the cost of all the
approaches mentioned.



4.7 Conclusions 81

4.7 Conclusions

In this chapter we have introduced three deep learning-based multi-view global descriptor
models, that outperform existing baselines both in accuracy and compactness. We analyzed
different approaches to combine the information of the features from multiple views (Group-
ing, Fusion and Recurrent), and we evaluated them on different experimental setups in two
public datasets: Partitioned Norland and Alderley. Each model we propose has its own
strengths and weaknesses. On the one side, Descriptor Grouping ensures the sequential
consistency of the frame in a sequence, achieving the best performance in the standard
Nordland/Alderley benchmarks, where the inter-frame motion is similar in different runs. On
the other side, Descriptor Fusion and Recurrent Descriptors are able to learn more complex
relations between frames and hence proved to be better in cases where the velocities differ
or the frames ordering is different. We also show the low computational cost of all the
approaches, demonstrating its potential for robotic applications.

We believe that recurrent models, in spite of challenges associated to training and
generalizing to different vehicle dynamics, are promising. They are robust to speed changes
and adapt to different sequence lengths without increasing the descriptor and network sizes.
We have observed such challenges in preliminary results, along with a slight performance
improvement with an increase of the sequence length (up to 6 frames). Encouraged by this,
our future work will study carefully the use of recurrent models with large image sequences.
However that presents the challenge of the beginning and the end of the sequence being two
place too far apart.





Chapter 5

Corner Prediction for Layout
Reconstruction

Another relevant cue for visual 3D reconstruction is the extraction of high-level semantic
information corresponding to the structure of the scene. For example, detecting and estimating
depth and orientation of planar structures (Concha and Civera, 2015a). In this chapter, we
focus on detecting the main structure for indoor scenes. Also refereed as layout recovery,
that is detecting the walls, ceiling and floor. We have not applied our advances directly to
visual localization or mapping for sequences but we refer the reader to Salas et al. (2015) as
an example of how this advances could be use for Visual SLAM.

The problem of 3D layout recovery in indoor scenes has been a core research topic for
over a decade. However, there are still several major challenges that remain unsolved. Among
the most relevant ones, a major part of the state-of-the-art methods make implicit or explicit
assumptions on the scenes –e.g. box-shaped or Manhattan layouts. Also, current methods are
computationally expensive and not suitable for real-time applications like robot navigation
and AR/VR. In this work we present CFL (Corners for Layout), the first end-to-end model
that predicts layout corners for 3D layout recovery on 360◦ images. Our experimental results
show that we outperform the state of the art, making less assumptions on the scene than
other works, and with lower cost. We also show that our model generalizes better to camera
position variations than conventional approaches by using EquiConvs, a convolution applied
directly on the spherical projection and hence invariant to the equirectangular distortions.



84 Corner Prediction for Layout Reconstruction

CFL: End-to-End
Layout Recovery

Fig. 5.1 Corners for Layout: The model end-to-end predicts the layout corners from the
spherical image. Connecting the corners and assuming ceiling-floor parallelism, we can
directly obtain the 3D layout in a very short time.

5.1 Introduction

Recovering the 3D layout of an indoor scene from a single view has attracted the attention of
computer vision and graphics researchers in the last decade. The idea is going beyond pure
geometrical reconstructions and provide higher-level contextual information about the scene,
even in the presence of clutter. Layout estimation is a key technology in several emerging
application markets, such as augmented and virtual reality and robot navigation (Salas et al.,
2015). But also for more traditional ones, like real estate (Liu et al., 2015a).

Layout estimation, however, is not a trivial task and there are several major problems that
still remain unsolved. For example, most existing methods are based on strong assumptions
on the geometry (e.g. Manhattan scenes) or the over-simplification of the room types (e.g.
box-shaped layouts), often underfitting the richness of real indoor spaces. The limited field
of view of conventional cameras leads to ambiguities, which could be solved by considering
a wider context. For this reason it is advantageous to use wide fields of view, like 360◦

panoramas. In these cases, however, the methods for conventional cameras are not suitable
due to the image distortions and new ones have to be developed (Pais et al., 2019).

In the last years, the main improvements in layout recovery from panoramas have come
from the application of deep learning. The high-level features learned by deep networks have
proven to be as useful for this problem as for many others. Nevertheless, these techniques
entail other problems such as the lack of data or overfitting. State-of-the-art methods require
additional pre- and/or post-processing. As a consequence they are very slow, and this is a
major drawback considering the aforementioned applications for real-time layout recovery.

In this work, we present Corners for Layout (CFL), the first end-to-end neural network
that predicts a map of the corners of the room to directly obtain the 3D layout from a single
360◦ image (Figure 5.1). This makes CFL more than 100 times faster than the state of
the art, while still outperforming the accuracy of current approaches. Furthermore, our



5.2 Related Work 85

proposal is not limited by typical scene assumptions, meaning that it can predict complex
geometries, such as rooms with more than four walls or non strict Manhattan structures.
Additionally, we propose a novel implementation of the convolution for 360◦ images (Tateno
et al., 2018, Cohen et al., 2018) in the equirectangular projection. We deform the kernel,using
the advances presented by Dai et al. (2017b), to compensate the distortion and make CFL
more robust to camera rotation and pose variations, generalizing to unseen configura-
tions. Hence, it is equivalent to applying directly a convolution operation to the spherical
image, which is geometrically more coherent than applying a standard convolution on the
equirectangular panorama. We have extensively evaluated our network in two public datasets
with several training configurations, including data augmentation techniques to address
occlusions by enforcing the network to learn from the context. We also propose a robustness
analysis to see the effect of extrinsic variations in panoramas and dataset bias. Our code and
labeled dataset can be found here: CFL webpage.

5.2 Related Work

The layout of a room provides a strong prior for other visual tasks like single-view (Eigen
and Fergus, 2015) and multi-view depth recovery (Concha et al., 2014), realistic insertions of
virtual objects into indoor images (Karsch et al., 2011), indoor object recognition (Bao et al.,
2011, Song and Xiao, 2016), indoor place recognition (Hussain et al., 2016) or human pose
estimation (Fouhey et al., 2014). A large variety of methods have been developed for this
purpose using multiple input images (Tsai et al., 2011, Flint et al., 2011) or depth sensors
(Zhang et al., 2013), which deliver high-quality reconstruction results. For the common case
when a single RGB image is available, the problem becomes considerably more challenging
and researchers need very often to rely on strong assumptions.

The seminal approaches to layout prediction from a single view were (Delage et al., 2006,
Lee et al., 2009), followed by (Hedau et al., 2009a, Schwing et al., 2013). They basically
model the layout of the room with a vanishing-point-aligned 3D box, being hence constrained
to this particular room geometry and unable to generalize to others appearing frequently in
real applications. Most recent approaches exploit CNNs and their excellent performance in a
wide range of applications such as image classification, segmentation and detection. (Mallya
and Lazebnik, 2015, Ren et al., 2016, Zhang et al., 2017, Zhao et al., 2017), for example,
focus on predicting the informative edges separating the geometric classes (walls, floor and
ceiling). Alternatively, Dasgupta et al. (2016) proposed a FCN to predict labels for each of
the surfaces of the room. All these methods require extra computation added to the forward
propagation of the network to retrieve the actual layout. In Lee et al. (2017), for example, an

https://cfernandezlab.github.io/CFL/


86 Corner Prediction for Layout Reconstruction

end-to-end network predicts the layout corners in a perspective image, but after that it has to
infer the room type within a limited set of manually chosen configurations.

While layout recovery from conventional images has progressed rapidly with both ge-
ometry and deep learning, the works that address these challenges using omnidirectional
images are still very few. Panoramic cameras have the potential to improve the performance
of the task: their 360◦ field of view captures the entire viewing sphere surrounding its optical
center, allowing to acquire the whole room at once and hence predicting layouts with more
visual information. PanoContext (Zhang et al., 2014) was the first work that extended the
frameworks designed for perspective images to panoramas. It recovers both the layout, which
is also assumed as a simple 3D box, and bounding boxes for the most salient objects inside
the room. Pano2CAD (Xu et al., 2017) extends the method to non-cuboid rooms, but it
is limited by its dependence on the output of object detectors. Motivated by the need of
addressing complex room geometries, Fernandez-Labrador et al. (2018b) generates layout
hypotheses by geometric reasoning from a small set of structural corners obtained from
the combination of geometry and deep learning. The most recent works along this line
are LayoutNet (Zou et al., 2018), that trains a FCN from panoramas and vanishing lines,
generating the layout models from edge and corner maps, and DuLa-Net (Yang et al., 2018),
that predicts Manhattan-world layouts leveraging a perspective ceiling-view of the room.
All of these approaches require pre- or post-processing steps like line and vanishing point
extraction or room model fitting, that increase their cost.

In addition to all the challenges mentioned above, we also notice that there is an incron-
gruence between panoramic images and conventional CNNs. The space-varying distortions
caused by the equirectangular representation makes the translational weight sharing ineffec-
tive. Very recently, Cohen et al. (2018) did a relevant theoretical contribution by studying
convolutions on the sphere using spectral analysis. However, it is not clearly demonstrated
whether Spherical CNNs can reach the same accuracy and efficiency on equirectangular
images. EquiConvs are inspired by the work of Tateno et al. (2018). They propose distortion-
aware convolutional filters to solve the problem of dense prediction by leveraging commonly
used datasets with annotations for perspective images during training. In this work, instead,
we exploit this idea to tackle the problem of layout recovery from panoramas and intensively
study their robustness to camera pose variation. In practice, we propose a novel parameteri-
zation and implementation of the deformable convolutions (Dai et al., 2017b) by following
the idea of adapting the receptive field of the convolutional kernels by deforming their shape
according to the distortion of the equirectangular projection.



5.3 Corners for Layout 87

3

Skip-connections

Preliminary
predictions

ResNet-50

4
6

3

256x128
Input Panorama

Convolution Upconvolution Pooling 

128x64
Output Corner/Edge Maps

CFL Model

Fig. 5.2 CFL architecture. Our network is built upon ResNet-50, adding a single decoder
that jointly predicts edge and corner maps. There are two network variations: one applies
Standard Convolutions and Upconvolutions on the equirectangular panorama, whereas
the other one applies Equirectangular Convolutions and Equirectangular Convolutions +
unpooling directly on the sphere.

5.3 Corners for Layout

Here we describe our end-to-end approach for recovering the room corners that allow us
to estimate the layout, i.e. the main structure of the room, from a single 360◦ image. First,
we describe the proposed network architecture and training and finally we describe how we
directly transform the output into the 3D layout. The network architecture is adapted for
Standard Convolutions and for our proposed Equirectangular Convolutions implementation,
the latest being explained in Section 5.4.

5.3.1 Network architecture

The proposed FCN follows the encoder-decoder structure and builds upon ResNet-50 (He
et al., 2016). We replace the final fully-connected layer with a decoder that jointly predicts
layout edges and corners locations already refined. We illustrate the proposed architecture in
Figure 5.2.



88 Corner Prediction for Layout Reconstruction

Encoder. Most of deep-learning approaches facing layout recovery problem have made
use of the VGG16 (Simonyan and Zisserman, 2014) as encoder (Mallya and Lazebnik, 2015,
Dasgupta et al., 2016, Lee et al., 2017). Instead, Zhao et al. (2017) builds their model over
ResNet-101 (He et al., 2016) outperforming the state of the art. Here, we use ResNet-50 (He
et al., 2016), pre-trained on the ImageNet dataset (Russakovsky et al., 2015), which leads to
a faster convergence due to the general low-level features learned from ImageNet. Residual
networks allow us to increase the depth without increasing the number of parameters with
respect to their plain counterparts. This leads, in ResNet-50, to capture a receptive field of
483×483 pixels, enough for our input resolution of 256×128 pixels.

Decoder. Most of the recent work (Mallya and Lazebnik, 2015, Zou et al., 2018, Ren et al.,
2016) builds two output branches for multi-task learning, which increases the computation
time and the network parameters. We instead propose a unique branch with two output
channels, corners and edge maps, which helps to reinforce the quality of both map types. In
the decoder, we combine two different ideas. First, skip-connections (Ronneberger et al.,
2015) from the encoder to the decoder. Specifically, we concatenate “up-convolved” features
with their corresponding features from the contracting part. Second, we do preliminary
predictions at lower resolutions which are also concatenated and fed back to the network
following the spirit of (Dosovitskiy et al., 2015), ensuring early stages of internal features
aim for the task. We use ReLU as non-linear function except for the prediction layers, where
we use Sigmoid.

We propose two variations of the network architecture for two different convolution
operations (Figure 5.2). The first one, CFL StdConvs, convolves the feature maps with
Standard Convolutions and use up-convolutions to decode the output. The second one,
CFL EquiConvs, uses Equirectangular Convolutions both in the encoder and the decoder,
using unpooling to upsample the output. Equirectangular Convolutions are deformable
convolutions that adapt their size and shape depending on the position in the equirectangular
image, for which we propose a new implementation explained in Section 5.4 to make our
results reproducible.

Implementation

Tables 5.1 and 5.2 show more details about the network architecture and the differences
between the two variants, the first one with standard convolutions, StdConvs, and the second
one with Equirectangular Convolutions, EquiConvs. Notice that the decoder uses ReLU as
standard activation function except for the prediction layers that use Sigmoid to obtain the
edge and corner maps. Prediction layers include those that generate intermediate predictions,
IP- in Tables 5.1 and 5.2, and the final output layer.



5.3 Corners for Layout 89

1

1'

2 3

2' 3'

4

4' 4

4'
1

1'

2

2'

2

2'

3

3'

Fig. 5.3 Layout from corner predictions. From the corner probability map, the coordinates
with maximum values are directly selected to generate the layout.

The blocks for the two models we present are:
CFL StdConvs: Uses the encoder and decoder convs. In this case encoder uses the std-
conv-block and std-id-block, see Tables 5.1 and 5.2.
CFL EquiConvs: Uses the encoder and decoder EquiConvs. In this case encoder uses the
equi-conv-block and equi-id-block, see Tables 5.1 and 5.2.

5.3.2 Training

Objective output

The ground truth (GT) for every panorama consists of a set of corner coordinates. With
this coordinates we generate two maps, m, one represents the room edges (m = e), i.e.
intersections between walls, ceiling and floor, and the other encodes the corner locations
(m = c). Both maps are defined as Y m = {ym

1 , . . . ,y
m
i , . . .}, with pixel values ym

i ∈ {0,1}. ym
i

has a value of 1 if it belongs to an edge or a corner, and 0 otherwise. Dealing with the image
at pixel level is very noise-sensitive so we do line thickening and Gaussian blur for easier
convergence during training since it makes the loss progression continuous instead of binary.
The loss is gradually reduced as the prediction approaches the target.

Notice here that our target is considerably simpler than others that usually divide the
ground truth into different classes. This contributes to the small computational footprint of
our proposal. For example, (Mallya and Lazebnik, 2015, Zhao et al., 2017) use independent
feature maps for background, wall-floor, wall-wall and wall-ceiling edges. A full image
segmentation into left, front and right wall, ceiling and floor categories is performed in
Dasgupta et al. (2016). In Lee et al. (2017), they represent a total of 48 different corner types
by a 2D Gaussian heatmap centered at the true keypoint location. Here, instead, we only



90 Corner Prediction for Layout Reconstruction

INPUT LAYER K S FUN CH OUTPUT

encoder
image conv+BN 7 2 ReLU 64 conv1
conv1 maxpool 3 2 - 64 pool

pool conv-block 3 1 ReLU 256 res2a
res2a id-block 3 - ReLU 256 res2b
res2b id-block 3 - ReLU 256 res2c

res2c conv-block 3 2 ReLU 512 res3a
res3a id-block 3 - ReLU 512 res3b
res3b id-block 3 - ReLU 512 res3c
res3c id-block 3 - ReLU 512 res3d

res3d conv-block 3 2 ReLU 1024 res4a
res4a id-block 3 - ReLU 1024 res4b
res4b id-block 3 - ReLU 1024 res4c
res4c id-block 3 - ReLU 1024 res4d
res4d id-block 3 - ReLU 1024 res4e
res4e id-block 3 - ReLU 1024 res4f

res4f conv-block 3 2 ReLU 2048 res5a
res4a id-block 3 - ReLU 2048 res5b
res4b id-block 3 - ReLU 2048 res5c

decoder convs
res5c upconv 5 2 ReLU 512 upconv4

res4f,upconv4 concat - - - - in3
in3 upconv 5 2 ReLU 256 upconv3

upconv3 upconv 3 1 Sigmoid 2 IP-1
res3d,upconv3,IP-1 concat - - - - in2

in2 upconv 5 2 ReLU 128 upconv2
upconv2 upconv 3 1 Sigmoid 2 IP-2

res2c,upconv2,IP-2 concat - - - - in1
in1 upconv 5 2 ReLU 64 upconv1

upconv1 upconv 3 1 Sigmoid 2 IP-3
conv1,upconv1,IP-3 concat - - - - in

in upconv 3 1 ReLU 64 upconv
upconv upconv 3 1 Sigmoid 2 output

decoder Equiconvs
res5c EquiConv 3 1 ReLU 512 equiconv4

equiconv4 unpool 2 2 - - unpool4

res4f,unpool4 concat - - - - in3
in3 EquiConv 3 1 ReLU 256 equiconv3

equiconv3 unpool 2 2 - - unpool3
unpool3 EquiConv 3 1 Sigmoid 2 IP-1

res3d,unpool3,IP-1 concat - - - - in2
in2 EquiConv 3 1 ReLU 128 equiconv2

equiconv2 unpool 2 2 - - unpool2
unpool2 EquiConv 3 1 Sigmoid 2 IP-2

res2c,unpool2,IP-2 concat - - - - in1
in1 EquiConv 5 1 ReLU 64 equiconv1

equiconv1 unpool 2 2 - - unpool1
unpool1 EquiConv 3 1 Sigmoid 2 IP-3

conv1,unpool1,IP-3 concat - - - - in
in EquiConv 5 1 ReLU 64 equiconv

equiconv EquiConv 3 2 Sigmoid 2 output

Table 5.1 Network Architecture Details. Note that id-block and conv-block can be either equi-
or std- depending on the version of the network (see Table 5.2).



5.3 Corners for Layout 91

INPUT LAYER K S BN FUN CH OUTPUT

std-conv-block
I std-conv-block k s - f N O
I StdConv 1 s ✓ f N/4 O2a

O2a StdConv k 1 ✓ f N/4 O2b
O2b StdConv 1 1 ✓ - N O2c

I conv 1 s ✓ - N O-1
O-1,O2c add 1 1 - f N O

std-id-block
I std-id-block k - - f N O
I StdConv 1 1 ✓ f N/4 O2a

O2a StdConv k 1 ✓ f N/4 O2b
O2b StdConv 1 1 ✓ - N O2c

I,O2c add 1 1 - f N O

equi-conv-block
I equi-conv-block k s - f N O
I EquiConvs 1 s ✓ f N/4 O2a

O2a EquiConvs k 1 ✓ f N/4 O2b
O2b EquiConvs 1 1 ✓ - N O2c

I EquiConvs 1 s ✓ - N O-1
O-1,O2c add 1 1 - f N O

equi–id-block
I equi-id-block k - - f N O
I EquiConvs 1 1 ✓ f N/4 O2a

O2a EquiConvs k 1 ✓ f N/4 O2b
O2b EquiConvs 1 1 ✓ - N O2c

I,O2c add 1 1 - f N O

Table 5.2 Blocks of the Network

use two probability maps, one for edges and another one for corners – see outputs in the
Figure 5.2.

Loss function

Edge and corner maps are learned through a pixel-wise sigmoid cross-entropy loss function.
Since we know a priori that the natural distribution of pixels in these maps is extremely
unbalanced (∼ 95% have a value of 0), we introduce weighting factors to make the training
stable. Defining as 1 and 0 the positive and negative labels, the weighting factors are defined
as wt =

N
Nt

, being N the total number of pixels and Nt the amount of pixels of class t per
sample. The per-pixel per-map loss L m

i is as follows:

L m
i = w1(ym

i (− log(ŷm
i )))+

+ w0((1− ym
i )(− log(1− ŷm

i ))), (5.1)

where ym
i is the objective value for pixel i in the map m and ŷm

i is the network output for pixel
i and map m. We minimize this loss at 4 different resolutions k = {1, . . . ,4}, specifically in



92 Corner Prediction for Layout Reconstruction

the network output (k = 4) and 3 intermediate layers (k = {1, . . . ,3}). The total loss is then
the sum over all pixels, the 4 resolutions and both the edge and corner maps

L = ∑
k={1,...,4}

∑
m={e,c}

∑
i

L m
i [k] . (5.2)

5.3.3 From Corner Maps to 3D Layout

Current methods (Zou et al., 2018, Fernandez-Labrador et al., 2018b, Zhang et al., 2014) use
pre-computed vanishing points and posterior optimizations, being constrained to produce
strict Manhattan 3D layouts. Aiming to a fast end-to-end simple model, CFL avoids extra
computation and adopt a representation usually referred as Soft/Weak Manhattan (Furlan
et al, 2013) or Atlanta World (Joo et al, 2018). Following this, horizontal directions are not
necessarily orthogonal to each other, thus relaxing the model assumptions. To this end, we
simply follow a natural transformation from corners coordinates to 2D and 3D layout. The
2D corners coordinates are the maximum activations in the probability map. Assuming that
the corner set is consistent, they are directly joined, from left to right, in the unit sphere
space and re-projected to the equirectangular image plane. The 3D layout is inferred by only
assuming ceiling-floor parallelism, leaving the wall structure unconstrained –i.e., we assume
that the floor corners are on the same plane and the top corners are directly above the floor
ones, but we do not force the usual Manhattan perpendicularity between walls. Corners are
projected to floor and ceiling planes given a unitary camera height (trivial as results are up to
scale). See Figure 5.3.

Here we provide a further explanation of how the process to go from 2D to 3D works.
From the predicted 2D corner positions, we can directly recover the 3D layout by doing the
following assumptions:

1. Soft Manhattan or Atlanta world. This is a relaxation of the Manhattan World
assumption whereby horizontal directions are not necessarily orthogonal to each other.
That is, walls can intersect with each other in any direction.

2. Ceiling-floor parallelism. Corners can be classified depending on their position along
the vertical direction (above or below the horizon line, which in central panoramas is
at the middle row) between ceiling and floor corners respectively. Floor corners are on
the same floor plane and ceiling corners are directly above the floor ones. The vertical
direction is the normal direction of both floor and ceiling planes.

3. Unitary camera height. This is trivial as results are up to scale but needed to predict
the total height of the room.



5.3 Corners for Layout 93

Taking all of this into account, we can define a plane as the set of all points P = (x,y,z)
such that P ·N+d = 0, where the normal N = (nx,ny,nz) is a normalized vector perpendicular
to its surface and d is the distance that separates it from the origin of coordinates in the
direction of the normal. Due to assumptions b) and c), N of both the floor and ceiling planes
is equal and corresponds to the vertical direction, and the distance d from the floor to the
camera is known. The distance to the ceiling is yet unknown.

Additionally, thanks to the nature of spherical images, we can easily obtain the 3D ray
R(t)=O+V⃗ ·t (parametric representation) going from the center of the sphere O=(ox,oy,oz)

through the corner position, with normalized direction vector V⃗ = (vx,vy,vz). To obtain the
normalized direction vector V⃗ , we need the corner position in the sphere, thus we transform
the image coordinates of the corners (u,v) into spherical coordinates and then to the Euclidean
3D space. Equations for this can be found in Section 4.1. of this chapter. In the first place,
Eq (5.3) give us the angles that define the point (u,v) in the sphere.

φ = (u− W
2
)
2π

W
; θ =−(v− H

2
)

π

H
(5.3)

Where W and H are the width and height of the equirectangular image. Second, once these
rotations are known we can compute the direction of the ray. Therefore, using Eq (5.4) we
can calculate V⃗ .

V⃗ =

−cos(θ)sin(φ)
sin(θ)

cos(θ)cos(φ)

 (5.4)

The intersection between the corner ray and the corresponding floor or ceiling plane will
give us the actual 3D corner point P = (x,y,z) (up to scale), ie. the intersection represents
that point P on the surface of the plane that verifies the ray equation: (ox + vx · t)nx +(oy +

vy · t)ny +(oz + vz · t)nz +d = 0. The point P of intersection would simply be the result of
evaluating the calculated t, Eq (5.5), in the ray equation R(t).

t =−
oxnx +oyny +oznz +d

vxnx + vyny + vznz
(5.5)

Let’s consider we have performed the operations to compute one corner point on the floor
plane, PF = (xF ,yF ,zF). The corresponding point on the ceiling plane (PC) will be on top of
it (ie. xF = xC and yF = yC). Therefore, we can use this to compute tC, Eq (5.6), and thus the
ceiling point:

tC =
(xF −ox)

vC
x

(5.6)



94 Corner Prediction for Layout Reconstruction

Fig. 5.4 Spherical parametrization of EquiConvs. The spherical kernel, defined by its
angular size (αw ×αh) and resolution (rw × rh), is convolved around the sphere with angles
φ and θ .

where V⃗C = (vC
x ,v

C
y ,v

C
z ) is computed as in (5.4) with the corresponding ceiling point in the

image. Notice that with PC we have the information we were missing to recover the ceiling
plane.
Limitations of CFL: We directly join corners from left to right, meaning that our model
would not work if any wall is occluded because of the convexity of the scene. In those
particular cases, the joining process should follow a different order. Fernandez-Labrador
et al. (2018b) proposes a geometry-based post-processing that could alleviate this problem,
but its cost is high and it needs the Manhattan World assumption. The addition of this
post-processing into our work, in any case, could be done similarly to Fernandez-Labrador
et al. (2018a).

5.4 Equirectangular Convolutions

Spherical images are receiving an increasing attention due to the growing number of omnidi-
rectional sensors in drones, robots and autonomous cars. A naïve application of convolutional
networks to a equirectangular projection, is not, in principle, a good choice due to the space-
varying distortions introduced by such projection.



5.4 Equirectangular Convolutions 95

In this section we present a convolution that we name EquiConv, which is defined in the
spherical domain instead of the image domain and it is implicitly invariant to equirectangular
representation distortions. The kernel in EquiConvs is defined as a spherical surface patch
–see Figure 5.4. We parametrize its receptive field by the angles αw and αh. Thus, we directly
define a convolution over the field of view. The kernel is rotated and applied along the sphere
and its position is defined by the spherical coordinates (φ and θ in the figure) of its center.
Unlike standard kernels, that are parameterized by their size kw × kh, with EquiConvs we
define the angular size (αw ×αh) and resolution (rw × rh). In practice, we keep the aspect
ratio, αw

rw
= αh

rh
, and we use square kernels, so we will refer the field of view as α (αw = αh)

and the resolution as r (rw = rh) respectively from now on. In this work, we choose values of
resolution and field of view to be the same as the image.

5.4.1 EquiConvs Details

In Dai et al. (2017b), they introduce deformable convolutions by learning additional offsets
from the preceding feature maps. Offsets are added to the regular kernel locations in the
Standard Convolution enabling free form deformation of the kernel.

Inspired by this work, we deform the shape of the kernels according to the geometrical
priors of the equirectangular image projection. To do that, we generate offsets that are not
learned but fixed given the spherical distortion model and constant over the same horizontal
locations. Here, we describe how to obtain the distorted pixel locations from the original
ones.

Let us define (u0,0,v0,0) as the pixel location on the equirectangular image where we
apply the convolution operation (i.e. the image coordinate where the center of the kernel is
located). First, we define the coordinates for every element in the kernel and afterwards we
rotate them to the point of the sphere where the kernel is being applied. We define each point
of the kernel as

p̂i j =

x̂i j

ŷi j

ẑi j

=

 i
j
d

 , (5.7)

where i and j are integers in the range [− r−1
2 , r−1

2 ] and d is the distance from the center of
the sphere to the kernel grid. In order to cover the field of view α ,

d =
r

2tan(α

2 )
. (5.8)



96 Corner Prediction for Layout Reconstruction

Standard Deformable Equirectangular
Fig. 5.5 Effect of offsets on a 3×3 kernel. Left: Regular kernel in Standard Convolution.
Center: Deformable kernel in Dai et al. (2017b). Right: Spherical surface patch in EquiConvs.

We project each point into the sphere surface by normalizing the vectors, and rotate them
to align the kernel center to the point where the kernel is applied.

pi j =

xi j

yi j

zi j

= Ry(φ0,0)Rx(θ0,0)
p̂i j

|p̂i j|
, (5.9)

where Ra(β ) stands for a rotation matrix of an angle β around the a axis. φ0,0 and θ0,0 are
the spherical angles of the center of the kernel –see Figure 5.4, and are defined as

φ0,0 = (u0,0 −
W
2
)
2π

W
; θ0,0 =−(v0,0 −

H
2
)

π

H
, (5.10)

where W and H are, respectively, the width and height of the equirectangular image in pixels.
Finally, the rest of elements are back-projected to the equirectangular image domain. First,
we convert the unit sphere coordinates to latitude and longitude angles:

φi j = arctan(
xi j

zi j
) ; θi j = arcsin(yi j). (5.11)

And then, to the original 2D equirectangular image domain:

ui j = (
φi j

2π
+

1
2
)W ; vi j = (−

θi j

π
+

1
2
)H. (5.12)

In Figure 5.5 we show how these offsets are applied to a regular kernel; and in Figure 5.6
three kernel samples on the spherical and on the equirectangular images.



5.4 Equirectangular Convolutions 97

Fig. 5.6 EquiConvs on spherical images. We show three kernel positions to highlight
the differences between the offsets. As we approach to the poles (larger θ angles) the
deformation of the kernel on the equirectangular image is bigger, in order to reproduce a
regular kernel on the sphere surface. Additionally, with EquiConvs, we do not use padding
when the kernel is on the border of the image since offsets take the points to their correct
position on the other side of the 360◦ image.



98 Corner Prediction for Layout Reconstruction

5.5 Experiments

We present a set of experiments to evaluate CFL using both Standard Convolutions (StdConvs)
and the proposed Equirectangular Convolutions (EquiConvs). We do not only analyze the
corner maps predicted by our model, but also the impact of each algorithmic component
through ablation studies. We report the performance of our proposal in two different datasets,
and show qualitative 2D and 3D models of different indoor scenes.

5.5.1 Datasets

We use two public datasets that comprise several indoor scenes, SUN360 (Xiao et al.,
2012) and Stanford (2D-3D-S) Armeni et al. (2017) in equirectangular projection (360◦).
The former is used for ablation studies, and both are used for comparison against several
state-of-the-art baselines.
SUN360 (Xiao et al., 2012): We use ∼500 bedroom and livingroom panoramas from this
dataset labeled by Zhang et al. (2014). We use these labels but, since all panoramas were
labeled as box-type rooms, we hand-label and substitute 35 panoramas representing more
faithfully the actual shapes of the rooms. We split the raw dataset in 85% training scenes and
15% test scenes randomly by making sure that there were rooms of more than 4 walls in both
partitions.
Stanford 2D-3D-S (Armeni et al., 2017): This dataset contains more challenging scenarios
like cluttered laboratories or corridors. In Zou et al. (2018), they use areas 1, 2, 4, 6 for
training, and area 5 for testing. For our experiments we use same partitions and the ground
truth provided by them.

5.5.2 Implementation details

The input to the network is a single panoramic RGB image of resolution 256× 128. The
outputs are, on the one hand, the room layout edge map and on the other hand, the corner
map, both of them at resolution 128×64. A widely used strategy to improve generalization
of neural networks is data augmentation. We apply random erasing, horizontal mirroring as
well as horizontal rotation from 0◦ to 360◦ of input images during training. The weights are
all initialized using ResNet-50 (He et al., 2016) trained on ImageNet (Russakovsky et al.,
2015). For CFL EquiConvs we use the same kernel resolutions and field of views as in
ResNet-50. This means that for a standard 3×3 kernel applied to a W×H feature map, r= 3
and α=r f ov

W , where f ov = 360◦ for panoramas. We minimize the cross-entropy loss using
Adam (Kingma and Ba, 2014), regularized by penalizing the loss with the sum of the L2



5.5 Experiments 99

Corners
Conv. IP EM IoU Acc P R F1

: 1 : 1 : 1 : 1 : 1
StdConvs - - 0.519 0.978 0.611 0.763 0.675
StdConvs - ✓ 0.531 0.979 0.639 0.749 0.685
StdConvs ✓ ✓ 0.569 0.982 0.684 0.761 0.718

EquiConvs - - 0.485 0.972 0.551 0.786 0.642
EquiConvs - ✓ 0.536 0.980 0.649 0.744 0.690
EquiConvs ✓ ✓ 0.580 0.983 0.697 0.762 0.726

bigger is better
Table 5.3 Ablation study on SUN360 dataset. We show results for both Standard Con-
volutions (StdConvs) and our proposed Equirectangular Convolutions (EquiConvs) with
some modifications: Using or not intermediate predictions (IP) in the decoder and edge map
predictions (EM).

of all weights. The initial learning rate is 2.5e−4 and is exponentially decayed by a rate of
0.995 every epoch. We apply a dropout rate of 0.3.

The network is implemented using TensorFlow (Abadi et al., 2016) and trained and tested
in a NVIDIA Titan X. The training time for StdConvs is around 1 hour and the test time is
0.31 seconds per image. For EquiConvs, training takes 3 hours and test around 3.32 seconds
per image.

5.5.3 Network’s output evaluation

We measure the quality of our predicted probability corner maps using five standard metrics:
intersection over union IoU, precision P, recall R, F1 Score F1 and accuracy Acc. Table 5.3
summarizes our results and allows us to answer the following questions:
What are the effects of different convolutions? As one would expect, EquiConvs, aware
of the distortion model, learn in a non-distorted generic feature space achieving accurate
predictions, like StdConvs on conventional images (Lee et al., 2017). Distortion under-
standing, additionally, gives the network other advantages. While StdConvs learn strong
bias correlation between features and distortion patterns (e.g. ceiling line on the top of the
image or clutter in the mid-bottom), EquiConvs are invariant to that. For this reason, the
performance of EquiConvs does not degrade when varying the camera DOF pose – see
Section 5.5.4. Additionally, EquiConvs allow to directly leverage networks pre-trained on
conventional images. Specifically, this translates into a faster convergence, which is desirable
as, to date, 360◦ datasets contain far less images than datasets with conventional images. In



100 Corner Prediction for Layout Reconstruction

Fig. 5.7 EquiConvs show more consistent qualitative results whereas StdConvs simply
do not understand that the image wraps around the sphere, losing the continuous context that
these images provide.

omnidirectional images, the right and the left edge are the same spot in reality so, another
strength of EquiConvs lie in the fact that we can avoid padding when the kernel reaches the
border of the image since offsets take the points to their correct position on the other side of
the 360◦ image. This allows the model to understand the continuity of the scene. StdConvs,
instead, simply do not understand that the image wraps around the sphere. As a consequence,
in most cases when corners approach the borders, StdConvs predict these corners twice, i.e.
at both ends, or the edges at one side would not coincide with the edges at the other side.
This effect is highlighted in Figure 5.7 and further demonstrated in the supplementary video.
How can we refine predictions? There are some techniques that we can use in order to
obtain more accurate and refined predictions. Here, we make pyramid preliminary predictions
in the decoder and iteratively refine them, by feeding them back to the network, until the
final prediction. Also, although we only use the corner map to recover the layout of the room,
we train the network to additionally predict edge maps as an auxiliary task. This is another
representation of the same task that ensures that the network learns to exploit the relationship
between both outputs, i.e., the network learns how edges intersect between them generating
the corners. The improvement is shown in the Table 5.3.
How can we deal with occlusions? We do Random Erasing Data Augmentation. This
operation randomly selects rectangles in the training images and removes its content, gener-
ating various levels of virtual occlusion. In this manner we simulate real situations where
objects in the scene occlude the corners of the room layout, and force the network to learn
context-aware features to overcome this challenging situation. Figure 5.8 illustrates this
strategy with an example.
Is it possible to relax the scene assumptions while keeping a good performance? By
avoiding constrained Manhattan 3D layout predictions we not only achieve better results



5.5 Experiments 101

Input Panorama Without 
random erasing

With
random erasingErasing example

Fig. 5.8 Augmenting the data with virtual occlusions. Left: Image with erased pixels.
Right: Input panorama and predictions without and with pixel erasing. Notice the improve-
ment by random erasing.

compared with current arts, but also we save in computation. Additionally, our model
overcomes the classic box-room simplification (four-walls room setups), even if we still have
a largely unbalanced dataset after labeling some panoramas more accurately to their actual
shape. We address this problem by choosing a batch size of 16 and forcing it to always
include one non-box sample. This favors the learning of more complex rooms despite having
few examples.

F1 Acc IoU

Trans
StdConvs 55.32±8.23 95.46±1.3 39.135±7.82

EquiConvs 59.55±8.95 96.21±1.14 43.47±8.83

Rot x
StdConvs 45.89±14.72 93.44±3.18 31.26±12.83

EquiConvs 46.2±15.1 94.43±2.18 31.625±13.41

Rot y
StdConvs 72.28±2.7 98.21±0.21 57.54±3.25

EquiConvs 72.96±2.02 98.29±0.14 58.44±2.44
Table 5.4 Robustness analysis. Values represent the mean value (bigger is better) ± standard
deviation (smaller is better) in %. We apply three types of transformations to the panoramas:
translations in y dependant on the room height from −0.3h to 0.3h, rotations in x from
−30◦ to +30◦ and rotations in y from 0◦ to 360◦. We do not use these images for training
but just for testing in order to show the generalization capabilities of both models.

5.5.4 Robustness analysis

We test our model with previously unseen images where the camera viewpoint is different
from that in the training set. The distortion in equirectangular projection is location dependent,



102 Corner Prediction for Layout Reconstruction

Fig. 5.9 Synthetic images for robustness analysis. Here we show two examples of panora-
mas generated with upward translation in y and rotation in x respectively.

specifically, it depends on the polar angle θ . Since EquiConvs are invariant to this distortion,
it is interesting to see how modifications in the camera extrinsic parameters (translation
and rotation) affect the model performance using EquiConvs against StdConvs. When we
generate translations (over vertical axis y) and rotations (over horizontal axis x), the shape of
the layout is modified by the distortion, losing its characteristic pattern (which StdConvs use
in its favor).

Since standard datasets have a strong bias when referring to camera pose and rotation,
we synthetically render these transformations along our test set. The rotation is trivial as
we work on the spherical domain. As the complete 3D dense model of the rooms is not
available, the translation simulation is performed by using the existing information, ignoring
occlusions produced by viewpoint changes. Nevertheless, as we do not work with wide
translations the effect is minimal and images are realistic enough to prove the point we
want to highlight (see Figure 5.9). Refer to supplementary material for more details. For
both experiments, we uniformly sample from a minimum to a maximum transformation and
calculate the mean and standard deviation for all the metrics. What we see in Table 5.4 is that
we obtain higher mean values by using EquiConvs. This means that this EquiConvs make
the model more robust and generalizable to real life situations, not covered in the datasets,
e.g. panoramas taken by hand, drones or small robots.

We also quantitatively analyzed the robustness of the model to rotation over the vertical
axis y. Even though this rotation do not distort the shape of the layout like the previous
extrinsic parameters, the incapability of StdConvs to wrap around the sphere and understand
the continuity of the scene was a frequent source of failure as we showed in Figure 5.7 and
the supplementary video. Table 5.4 compare both convolutions, where the numbers represent
the mean of the results obtained from each panorama after doing all possible rotations (from
0◦ to 360◦ horizontally) and computing mean and standard deviation per panorama. Results
show that EquiConvs not only have better overall performance, but the standard deviation is



5.5 Experiments 103

much smaller since there are no special cases that cause failure due to lack of continuity in
the borders.

5.5.5 3D Layout comparison

We evaluate our layout predictions using three standard metrics, 3D intersection over union
3DIoU , corner error CE and pixel error PE, and compare ourselves against four approaches
from the state of the art Zhang et al. (2014), Zou et al. (2018), Fernandez-Labrador et al.
(2018b), Yang et al. (2018). Pano2CAD Xu et al. (2017) has no source code available nor
evaluation of layouts, making direct comparison difficult. The pixel error metric given by
Zou et al. (2018) only distinguishes between ceiling, floor and walls, PESS. Instead our
proposed segmented mask distinguish between ceiling, floor and each wall separately, PECS,
which is more informative since it also has into account errors in wall-wall boundaries. For
all experiments, only SUN360 dataset is used for training. Table 5.5 shows the performance
of our proposal testing on both datasets, SUN360 and Stanford 2D-3D. Results are averaged
across all images. It can be seen that our approach outperforms the state of the art clearly, in
all the metrics.

It is worth mentioning that our approach, not only obtains better accuracy but also
it recovers shapes more faithful to the real ones, since it can handle non box-type room
designs with few training examples. In Table 5.6 we show that, apart from achieving better
localization of layout corners, our model is much faster. Our full method with EquiConvs
takes 3.47 seconds (0.3 fps) to process one room and with StdConvs just 0.46 seconds (2.2
fps), which is a major advantage considering the aforementioned applications of layout
recovery need to be real-time (robot navigation, AR/VR).

5.5.6 Extra Qualitative Results

Here we show additional qualitative results of our recovered layouts in SUN360 and Stanford
2D-3D datasets.

Figures 5.11 and 5.12 collect examples in SUN360 dataset and show indoor scenes with
different geometries, not only cuboid shapes. Figure 5.13 shows examples in Stanford 2D-3D
dataset. Panoramas in this dataset do not cover full view vertically and the indoor scenes
represent more challenging scenarios like cluttered laboratories or corridors.



104 Corner Prediction for Layout Reconstruction

Test Method 3DIoU CE PESS PECS

SUN360

PanoContext (Zhang et al., 2014) 67.22 1.60 4.55 10.34
Fernandez-Labrador et al. (2018b) - - - 7.26

LayoutNet (Zou et al., 2018) 74.48 1.06 3.34 -
DuLa-Net (Yang et al., 2018) 77.42 - - -

CFL StdConvs 78.79 0.79 2.49 3.33
CFL EquiConvs 78.87 0.75 2.6 3.03

Std.2D3D
Fernandez-Labrador et al. (2018b) - - - 12.1

LayoutNet (Zou et al., 2018) 64.56 1.44 5.16 -
CFL StdConvs 65.13 1.44 4.75 6.05

CFL EquiConvs 65.23 1.64 5.52 7.11
smaller is better

Table 5.5 Layout results on both datasets (in %), training on SUN360 data. SS: Simple
Segmentation (3 categories): ceiling, floor and walls (Zou et al., 2018). CS: Complete
Segmentation: ceiling, floor, wall1,..., walln (Fernandez-Labrador et al., 2018b). Observe
how our method outperforms all the baselines in all the metrics.

Method Computation Time (s)

PanoContext (Zhang et al., 2014) > 300
LayoutNet (Zou et al., 2018) 44.73
DuLa-Net (Yang et al., 2018) 13.43

CFL EquiConvs 3.47
CFL StdConvs 0.46

Table 5.6 Average computing time per image. Every approach is evaluated using NVIDIA
Titan X and Intel Xeon 3.5 GHz (6 cores) except DuLa-Net, evaluated using NVIDIA 1080Ti
GPU. Our end-to-end method is more than 100 times faster than other methods.



5.5 Experiments 105

Fig. 5.10 Layout predictions (light magenta) and ground truth (dark magenta) for complex
room geometries.



106 Corner Prediction for Layout Reconstruction

5.6 Conclusions

In this chapter we present CFL, the first end-to-end algorithm for layout recovery in 360◦

images. Our experimental results demonstrate that our predicted layouts are clearly more
accurate than the state of the art. Additionally, the removal of extra pre- and post-processing
stages makes our method much faster than other works. Finally, being entirely data-driven
relaxes the geometric assumptions that are commonly used in the state of the art and limits
their usability in complex geometries. We present two different variants of CFL. The first one,
implemented using Standard Convolutions, reduces the computation in 100 times and it is
very suitable for images taken with a tripod (recommended if the time is a critical issue). The
second one uses our proposed implementation of Equirectangular Convolutions that adapt
their shape to the equirectangular projection of the spherical image (recommended if looking
for robustness and better generalization). This proves to be more robust to translations and
rotations of the camera making it ideal for panoramas taken by a hand-held camera.



5.6 Conclusions 107

Fig. 5.11 Layout predictions (light magenta) and ground truth (dark magenta) on the SUN360
annotation dataset (Xiao et al., 2012). Best viewed in color.



108 Corner Prediction for Layout Reconstruction

Fig. 5.12 Layout predictions (light magenta) and ground truth (dark magenta) for complex
room geometries on the SUN360 annotation dataset (Xiao et al., 2012). Best viewed in
color.



5.6 Conclusions 109

Fig. 5.13 Layout predictions (light magenta) and ground truth (dark magenta) on the Stanford
2D-3D annotation dataset (Armeni et al., 2017). Best viewed in color.





Chapter 6

Monocular and RGB-D SLAM on
Dynamic Environments

The assumption of scene rigidity is typical in SLAM algorithms. Such a strong assumption
limits the use of most visual SLAM systems in populated real-world environments, which
are the target of several relevant applications like service robotics or autonomous vehicles.

In this chapter we present DynaSLAM, a visual SLAM system that, building on ORB-
SLAM2 (Mur-Artal and Tardós, 2017), adds the capabilities of dynamic object detection and
background inpainting. DynaSLAM is robust in dynamic scenarios for monocular, stereo and
RGB-D configurations. We are capable of detecting the moving objects either by multi-view
geometry, deep learning or both. Having a static map of the scene allows inpainting the frame
background that has been occluded by such dynamic objects.

We evaluate our system in public monocular, stereo and RGB-D datasets. We study the
impact of several accuracy/speed trade-offs to assess the limits of the proposed methodology.
DynaSLAM outperforms the accuracy of standard visual SLAM baselines in highly dynamic
scenarios. And it also estimates a map of the static parts of the scene, which is a must for
long-term applications in real-world environments.

6.1 Introduction

SLAM is a prerequisite for many robotic applications, for example collision-less navigation.
SLAM techniques estimate jointly a map of an unknown environment and the robot pose
within such map, only from the data streams of its on-board sensors. The map allows the
robot to continually localize within the same environment without accumulating drift. This



112 Monocular and RGB-D SLAM on Dynamic Environments

is in contrast to odometry approaches that integrate the incremental motion estimated within
a local window and are unable to correct the drift when revisiting places.

Visual SLAM, where the main sensor is a camera, has received a high degree of attention
and research efforts over the last years. The minimalistic solution of a monocular camera
has practical advantages with respect to size, power and cost, but also several challenges
such as the unobservability of the scale or state initialization. By using more complex setups,
like stereo or RGB-D cameras, these issues are solved and the robustness of visual SLAM
systems can be greatly improved.

The research community has addressed SLAM from many different angles. However, the
vast majority of the approaches and datasets assume a static environment. As a consequence,
they can only manage small fractions of dynamic content by classifying them as outliers to
such static model. Although the static assumption holds for some robotic applications, it
limits the applicability of visual SLAM in many relevant cases, such as intelligent autonomous
systems operating in populated real-world environments over long periods of time.

Visual SLAM can be classified into feature-based methods (Klein and Murray, 2007,
Mur-Artal et al., 2015), that rely on salient points matching and can only estimate a sparse
reconstruction; and direct methods (Stühmer et al., 2010, Newcombe et al., 2011, Graber
et al., 2011), which are able to estimate in principle a completely dense reconstruction by the
direct minimization of the photometric error and TV regularization. Some direct methods
focus on the high-gradient areas estimating semi-dense maps (Engel et al., 2014, 2017).

None of the above methods, considered the state of the art, address the very common
problem of dynamic objects in the scene, e.g., people walking, bicycles or cars. Detecting and
dealing with dynamic objects in visual SLAM reveals several challenges for both mapping
and tracking, including:

1. How to detect such dynamic objects in the images to:

(a) Prevent the tracking algorithm from using matches that belong to dynamic objects.

(b) Prevent the mapping algorithm from including moving objects as part of the 3D
map.

2. How to complete the part of the 3D map that is temporally occluded by a moving
object.

Many applications would greatly benefit from progress along these lines. Among others,
augmented reality, autonomous vehicles, and medical imaging. All of them could for
instance safely reuse maps from previous runs. Detecting and dealing with dynamic objects
is a requisite to estimate stable maps, useful for long-term applications. If the dynamic



6.1 Introduction 113

(a) Input RGB-D frames with dynamic content.

(b) Output RGB-D frames. Dynamic content has been removed. Occluded background has been reconstructed
with information from previous views.

(c) Map of the static part of the scene, after removal of the dynamic objects.

Fig. 6.1 Overview of DynaSLAM results for the RGB-D case.

content is not detected, it becomes part of the 3D map, complicating its usability for tracking
or relocation purposes.

In this work we propose an on-line algorithm to deal with dynamic objects in RGB-D,
stereo and monocular SLAM. This is done by adding a front-end stage to the state-of-the-art
ORB-SLAM2 system (Mur-Artal and Tardós, 2017), with the purpose of having a more
accurate tracking and a reusable map of the scene. In the monocular and stereo cases our
proposal is to use a CNN to pixel-wise segment the a priori dynamic objects in the frames
(e.g., people and cars), so that the SLAM algorithm does not extract features on them. In the



114 Monocular and RGB-D SLAM on Dynamic Environments

RGB-D case we propose to combine multi-view geometry models and deep-learning-based
algorithms for detecting dynamic objects and, after having removed them from the images,
inpaint the occluded background with the correct information of the scene (Fig. 6.1).

The rest of the chapter is structured as follows: section 6.2 discusses related work, section
6.3 gives the details of our proposal, section 6.4 details the experimental results, and section
6.5 presents the conclusions and lines for future work.

6.2 Related Work

Dynamic objects are, in most SLAM systems, classified as spurious data and therefore
neither included in the map nor used for camera tracking. The most typical outlier rejection
algorithms are RANSAC (e.g., in ORB-SLAM (Mur-Artal et al., 2015, Mur-Artal and Tardós,
2017)) and robust cost functions (e.g., in PTAM by Klein and Murray (2007)).

There are several SLAM systems that address more specifically the dynamic scene
content. Within feature-based SLAM methods, some of the most relevant on dealing with
dynamic scenes are the following. Tan et al. (2013) that detect changes that take place in
the scene by projecting the map features into the current frame for appearance and structure
validation. Wangsiripitak and Murray (2009) track known 3D dynamic objects in the scene.
Similarly, Riazuelo et al. (2017) deal with human activity by detecting and tracking people.
More recently, the work of Li and Lee (2017) uses depth edges points, which have an
associated weight indicating its probability of belonging to a dynamic object.

Direct methods are, in general, more sensitive to dynamic objects in the scene. The most
relevant works specifically designed for dynamic scenes are mentioned bellow. Alcantarilla
et al. (2012) detect moving objects by means of a scene flow representation with stereo cam-
eras. Wang and Huang (2014) segment the dynamic objects in the scene using RGB optical
flow. Kim and Kim (2016) propose to obtain the static parts of the scene by computing the
difference between consecutive depth images projected over the same plane. Sun et al. (2017)
calculate the difference in intensity between consecutive RGB images. Pixel classification is
done with the segmentation of the quantized depth image.

All the methods –both feature-based and direct ones– that map the static scene parts only
from the information contained in the sequence (Mur-Artal and Tardós, 2017, Mur-Artal
et al., 2015, Tan et al., 2013, Li and Lee, 2017, Alcantarilla et al., 2012, Wang and Huang,
2014, Kim and Kim, 2016, Sun et al., 2017, Concha and Civera, 2015a), fail to estimate
lifelong models when an a priori dynamic object remains static, e.g., parked cars or people
sitting. On the other hand, Wangsiripitak and Murray (2009), and Riazuelo et al. (2017)
would detect those a priori dynamic objects, but would fail to detect changes produced by



6.3 DynaSLAM System Description 115

Fig. 6.2 Block diagram of our proposal. In the stereo and monocular pipeline (black con-
tinuous line) the images pass through a Convolutional Neural Network (Mask R-CNN) for
computing the pixel-wise semantic segmentation of the a priori dynamic objects before being
used for the mapping and tracking. In the RGB-D case (black dashed line) a second approach
based on multi-view geometry is added for a more accurate motion segmentation, for which
we need a low-cost tracking algorithm. Once the position of the camera is known (Tracking
and Mapping output), we can inpaint the background occluded by dynamic objects. The red
dotted line represents the data flow of the stored sparse map.

static objects, e.g., a chair a person is pushing, or a ball that someone has thrown. That is,
the former approach succeeds in detecting moving objects, and the second one in detecting
several movable objects. Our proposal, DynaSLAM, combines multi-view geometry and
deep learning in order to address both situations. Similarly, Ambrus et al. (2016) segment
dynamic objects by combining a dynamic classifier and multi-view geometry.

6.3 DynaSLAM System Description

Fig. 6.2 shows an overview of our system. First of all, the RGB channels pass through a
CNN that segments out pixel-wise all the a priori dynamic content, e.g., people or vehicles.

In the RGB-D case, we use multi-view geometry to improve the dynamic content seg-
mentation in two ways. First, we refine the segmentation of the dynamic objects previously
obtained by the CNN. Second, we label as dynamic new object instances that are static most
of the time (i.e., detect moving objects that were not set to movable in the CNN stage).

For that purpose, it is necessary to know the camera pose, for which a low-cost tracking
module has been implemented to localize the camera within the already created scene map.
These segmented frames are the ones which are used to obtain the camera trajectory and
the map of the scene. Notice that if the moving objects in the scene are not within the
CNN classes, the multi-view geometry stage would still detect the dynamic content, but the
accuracy might decrease.

Once this full dynamic object detection and localization of the camera have been done,
we aim to reconstruct the occluded background of the current frame with static information



116 Monocular and RGB-D SLAM on Dynamic Environments

from previous views. These synthetic frames are relevant for applications like augmented
and virtual reality, and place recognition in lifelong mapping.

In the monocular and stereo cases, the images are segmented by the CNN so that keypoints
belonging to the a priori dynamic objects are neither tracked nor mapped.

All the different stages are described in depth in the next subsections (6.3.1 to 6.3.5).

6.3.1 Segmentation of Potentially Dynamic Content using a CNN

For detecting dynamic objects we propose to use a CNN that obtains a pixel-wise semantic
segmentation of the images. In our experiments we use Mask R-CNN (He et al., 2017),
which is the state of the art for object instance segmentation. Mask R-CNN can obtain both
pixel-wise semantic segmentation and the instance labels. For this work we use the pixel-wise
semantic segmentation information, but the instance labels could be useful in future work
for the tracking of the different moving objects. We use the TensorFlow implementation by
Matterport1.

The input of Mask R-CNN is the RGB original image. The idea is to segment those
classes that are potentially dynamic or movable (person, bicycle, car, motorcycle, airplane,
bus, train, truck, boat, bird, cat, dog, horse, sheep, cow, elephant, bear, zebra and giraffe).
We consider that, for most environments, the dynamic objects likely to appear are included
within this list. If other classes were needed, the network, trained on MS COCO (Lin et al.,
2014), could be fine-tuned with new training data.

The output of the network, assuming that the input is an RGB image of size m×n×3, is
a matrix of size m×n× l, where l is the number of objects in the image. For each output
channel i ∈ l a binary mask is obtained. By combining all the channels into one, we can
obtain the segmentation of all dynamic objects appearing in one image of the scene.

6.3.2 Low-Cost Tracking

After the potentially dynamic content has been segmented, the pose of the camera is tracked
using the static part of the image. Because the segment contours usually become high-
gradient areas, salient point features tend to appear. We do not consider the features in such
contour areas.

The tracking implemented at this stage of the algorithm is a simpler and therefore
computationally lighter version of the one in ORB-SLAM2 (Mur-Artal and Tardós, 2017). It
projects the map features in the image frame, searches for the correspondences in the static
areas of the image, and minimizes the reprojection error to optimize the camera pose.

1https://github.com/matterport/Mask_RCNN

https://github.com/matterport/Mask_RCNN


6.3 DynaSLAM System Description 117

(a) Keypoint x′ belongs to a static object (z′ =
zpro j).

(b) Keypoint x′ belongs to a dynamic object
(z′ ≪ zpro j).

Fig. 6.3 Keypoint x from the Key Frame (KF) is projected into the Current Frame (CF) using
its depth and camera pose, resulting in point x′ with depth z′. The projected depth zpro j is
then computed. A pixel is labeled as dynamic if the difference ∆z = zpro j − z′ is greater than
a threshold τz.

6.3.3 Segmentation of Dynamic Content using Mask R-CNN and Multi-
view Geometry

By using Mask R-CNN, most of the dynamic objects can be segmented and not used for
tracking and mapping. However, there are objects that cannot be detected by this approach
because they are not a priori dynamic, but movable. Examples of the latest are a book carried
by someone, a chair that someone is moving, or even furniture changes in long-term mapping.
The approach utilized for dealing with these cases is detailed in this section.

For each input frame, we select the previous keyframes that have the highest overlaps.
This is done by taking into account both the distance and the rotation between the new
frame and each of the keyframes, similarly to Tan et al. (2013). The number of overlapping
keyframes has been set to 5 in our experiments, as a compromise between computational
cost and accuracy in the detection of dynamic objects.

We then compute the projection of each keypoint x from the previous keyframes into the
current frame, obtaining the keypoints x′, as well as their projected depth zpro j, computed
from the camera motion. Notice that the keypoints x come from the features extractor
algorithm used in ORB-SLAM2. For each keypoint, whose corresponding 3D point is X , we



118 Monocular and RGB-D SLAM on Dynamic Environments

(a) Using Multi-view Geometry. (b) Using Deep Learning. (c) Using Geometry and Deep
Learning.

Fig. 6.4 Detection and segmentation of dynamic objects using multi-view geometry (left),
deep learning (middle), and a combination of both geometric and learning methods (right).
Notice that Fig. 6.4a cannot detect the person behind the desk, Fig. 6.4b cannot segment the
book carried by the person, and the combination of the two (Fig. 6.4c) is the best performing.

calculate the angle between the back-projections of x and x′, i.e., their parallax angle α . If
this angle is greater than 30◦, the point might be occluded, and will be ignored from then on.
We observed that, in the TUM dataset, for parallax angles greater than 30◦ static objects were
considered as dynamic due to their viewpoint difference. We obtain the depth of the remaining
keypoints in the current frame z′ (directly from the depth measurement), taking into account
the reprojection error, and we compare them with zpro j. If the difference ∆z = zpro j − z′ is
over a threshold τz, keypoint x′ is considered to belong to a dynamic object. This idea is
shown in Fig. 6.3. To set the threshold τz, we manually tagged the dynamic objects of 30
images within the TUM dataset, and evaluated both the precision and recall of our method
for different thresholds τz. By maximizing the expression 0.7×Precision+0.3×Recall, we
concluded that τz = 0.4m is a reasonable choice.

Some of the keypoints labeled as dynamic lay on the borders of moving objects, and
might cause problems. To avoid this, we use the information given by the depth images. If a
keypoint is set as dynamic, but a patch around itself in the depth map has high variance, we
change the label to static.

So far, we know which keypoints belong to dynamic objects, and which ones do not.
To classify all the pixels belonging to dynamic objects, we grow the region in the depth
image around the dynamic pixels (Gerlach et al., 2014). An example of a RGB frame and its
corresponding dynamic mask can be seen in Fig. 6.4a.

The results of the CNN (Fig. 6.4b) can be combined with those of this geometric method
for full dynamic object detection (Fig. 6.4c). We can find strengths and limitations in
both methods, hence the motivation for their combined use. For geometric approaches, the
main problem is that initialization is not trivial because of its multi-view nature. Learning



6.3 DynaSLAM System Description 119

methods and their impressive performance using a single view, do not have such initialization
problems. Their main limitation though is that objects that are supposed to be static can
be moved, and the method is not able to identify them. This last case can be solved using
multi-view consistency tests.

These two ways of facing the moving objects detection problem are illustrated in Fig.
6.4. In Fig. 6.4a we see that the person in the back, which is potentially a dynamic object, is
not detected. There are two reasons for this. First, the difficulties that RGB-D cameras face
when measuring the depth of distant objects. And second, the fact that reliable features lie on
defined, and therefore nearby, parts of the image. Albeit, this person is detected by the deep
learning method (Fig. 6.4b). Apart from this, on one hand we see in the Fig. 6.4a that not
only is detected the person in the front of the image, but also the book he is holding and the
chair he is sitting on. On the other hand, in the Fig. 6.4b the two people are the only objects
detected as dynamic, and also their segmentation is less accurate. If only the deep learning
method is used, a floating book would be left in the images and would incorrectly become
part of the 3D map.

Because of the advantages and disadvantages of both methods, we consider that they are
complementary and therefore their combined use is an effective way of achieving accurate
tracking and mapping. In order to achieve this goal, if an object has been detected with both
approaches, the segmentation mask should be that of the geometrical method. If an object
has only been detected by the learning based method, the segmentation mask should contain
this information too. The final segmented image of the example in the previous paragraph
can be seen in the Fig. 6.4c. The segmented dynamic parts are removed from the current
frame and from the map.

6.3.4 Tracking and Mapping

The input to this stage of the system contains the RGB and depth images, as well as their
segmentation mask. We extract ORB features in the image segments classified as static. As
the segment contours are high-gradient areas, the keypoints falling in this intersection have
to be removed.

6.3.5 Background Inpainting

For every removed dynamic object, we aim at inpainting the occluded background with
static information from previous views, so that we can synthesize a realistic image without
moving content. We believe that such synthetic frames, containing the static structure of



120 Monocular and RGB-D SLAM on Dynamic Environments

(a) RGB original images. (b) Depth original image.

(c) Inpainted RGB images. (d) Inpainted depth im-
age.

Fig. 6.5 Qualitative results of our approach. In Fig. 6.5a we show three RGB input frames,
and in Fig. 6.5c we show the output of our system, in which all dynamic objects have been
detected and the background has been reconstructed. Figs. 6.5b and 6.5d show respectively
the depth input and output, which has also been processed. Figure best viewed in electronic
format.

the environment, are useful for applications such as virtual and augmented reality, and for
relocation and camera tracking after the map is created.

Since we know the position of the previous and current frames, we project into the
dynamic segments of the current frame the RGB and depth channels from a set of all the
previous keyframes (the last 20 in our experiments). Some gaps have no correspondences
and are left blank: some areas cannot be inpainted because their correspondent part of the
scene has not appeared so far in the keyframes, or, if it has appeared, it has no valid depth
information. These gaps cannot be reconstructed with geometrical methods and would need
a more elaborate inpainting technique. Fig. 6.5 shows the resulting synthetic images for three
input frames from different sequences of the TUM benchmark. Notice how the dynamic
content has been successfully segmented and removed. Also, most of the segmented parts
have been properly inpainted with information from the static background.

Another application of these synthesized frames would be the following: if the frames
dynamic areas are inpainted with the static content, the system can work as a SLAM system
under the staticity assumption using the inpainted images.



6.4 Experimental Results 121

6.4 Experimental Results

We have evaluated our system in the public datasets TUM RGB-D and KITTI and compared
to other state-of-the-art SLAM systems in dynamic environments, using when possible results
published in the original papers. Furthermore we have compared our system against the
original ORB-SLAM2 to quantify the improvement of our approach in dynamic scenes. In
this case, the results for some sequences were not published and we have ourselves completed
their evaluation. Mur-Artal and Tardós (2017) propose to run each sequence five times and
show median results, to account for the non-deterministic nature of the system. We have
run each sequence ten times, as dynamic objects are prone to increase this non-deterministic
effect.

6.4.1 TUM Dataset

The TUM RGB-D dataset (Sturm et al., 2012b) is composed of 39 sequences recorded with
a Microsoft Kinect sensor in different indoor scenes at full frame rate (30Hz). Both the
RGB and the depth images are available, together with the ground-truth trajectory, the latest
recorded by a high-accuracy motion-capture system. In the sequences named sitting (s) there
are two people sitting in front of a desk while speaking and gesticulating, i.e., there is a
low degree of motion. In the sequences named walking (w), two people walk both in the
background and the foreground and sit down in front of the desk. This dataset is highly
dynamic and therefore challenging for standard SLAM systems. For both types of sequences
sitting (s) and walking (w) there are four types of camera motions: (1) halfsphere (half): the
camera moves following the trajectory of a 1-meter diameter half sphere, (2) xyz: the camera
moves along the x-y-z axes, (3) rpy: the camera rotates over roll, pitch and yaw axes, and (4)
static: the camera is kept static manually.

We use the absolute trajectory RMSE as the error metric for our experiments, as proposed
by Sturm et al. (2012b).

The results of different variations of our system for six sequences within this dataset
are shown in Table 6.1. Firstly, DynaSLAM (N) is the system in which only Mask R-CNN
segments out the a priori dynamic objects. Secondly, in DynaSLAM (G) the dynamic objects
have been only detected with the multi-view geometry method based on depth changes.
Thirdly, DynaSLAM (N+G) stands for the system in which the dynamic objects have been
detected combining both the geometrical and deep learning approaches. Finally, we have
considered interesting to analyze the system shown in Fig. 6.6. In this case (N+G+BI), the
background inpainting stage (BI) is done before the tracking and mapping. The motivation
for this experiment is that, if the dynamic areas are inpainted with the static content, the



122 Monocular and RGB-D SLAM on Dynamic Environments

Sequence DynaSLAM (N) DynaSLAM (G) DynaSLAM
(N+G)

DynaSLAM
(N+G+BI)

w_hal f sphere 0.025 0.035 0.025 0.029
w_xyz 0.015 0.312 0.015 0.015
w_rpy 0.040 0.251 0.035 0.136
w_static 0.009 0.009 0.006 0.007

s_hal f sphere 0.017 0.018 0.017 0.025
s_xyz 0.014 0.009 0.015 0.013

Table 6.1 Absolute trajectory RMSE [m] for several variants of DynaSLAM (RGB-D).

system can work as a SLAM system under the staticity assumption using the inpainted
images. In this proposal, the ORB features extractor algorithm works both in the real and
reconstructed areas of the frames, finding matches with the keypoints of the previously
processed keyframes.

According to Table 6.1, the system (N+G) that uses learning and geometry is the most
accurate one in most sequences. The improvement over (N) comes from the segmentation of
movable objects and refinement of the dynamic segments. The system (G) has higher error
because it needs motion and its segmentation is only accurate after a small delay, during
which the dynamic content introduces some error in the estimation.

Adding the background inpainting stage (BI) before the localization of the camera (Fig.
6.6) usually leads to less accuracy in the tracking. The reason is that the background
reconstruction is strongly correlated with the camera poses. Hence, for sequences with purely
rotational motion (rpy, halfsphere), the estimated camera poses have a greater error and lead
to a non-accurate background reconstruction. The background inpainting stage (BI) should
be done therefore once the tracking stage is finished (Fig. 6.2). The main accomplishment
of the background reconstruction is seen in the synthesis of the static images (Fig. 6.5) for
applications such as virtual reality or cinematography. The DynaSLAM results shown from
now on are from the best variant, that is, (N+G).

Fig. 6.6 Block diagram of RGB-D DynaSLAM (N+G+BI).



6.4 Experimental Results 123

Sequence ORB-SLAM2
(RGB-D)

DynaSLAM (N+G) (RGB-D)

median median min max

w_hal f sphere 0.351 0.025 0.024 0.031
w_xyz 0.459 0.015 0.014 0.016
w_rpy 0.662 0.035 0.032 0.038
w_static 0.090 0.006 0.006 0.008

s_hal f sphere 0.020 0.017 0.016 0.020
s_xyz 0.009 0.015 0.013 0.015

Table 6.2 Comparison of the RMSE of ATE [m] of DynaSLAM against ORB-SLAM2
(Mur-Artal and Tardós, 2017) for RGB-D cameras. To account for the non-deterministic
nature of the system, we show the median, minimum and maximum error of ten runs.

Table 6.2 shows our results on the same sequences, compared against RGB-D ORB-
SLAM2. Our method outperforms ORB-SLAM2 in highly dynamic scenarios (walking),
reaching an error similar to that of the original RGB-D ORB-SLAM2 system in static
scenarios. In the case of low-dynamic scenes (sitting) the tracking results are slightly worse
because the tracked keypoints find themselves further than those belonging to dynamic
objects. Albeit, DynaSLAM’s map does not contain the dynamic objects that appear along
the sequence. Fig. 6.7 shows an example of the estimated trajectories of DynaSLAM and
ORB-SLAM2, compared to the ground-truth.

Table 6.3 shows a comparison between our system and several state-of-the-art RGB-D
SLAM systems designed for dynamic environments. In account for the effectiveness of our
and the state-of-the-art approaches for motion detection (independently of the utilized SLAM
system), we also show the respective improvement values against the original SLAM system

−1.5 −1 −0.5 0

−3

−2.5

x[m]

y[
m
]

ORB-SLAM2
DynaSLAM
Ground-truth

Fig. 6.7 Ground truth and trajectories estimated by DynaSLAM and ORB-SLAM2 in the
TUM sequence f 23/walking_xyz.



124 Monocular and RGB-D SLAM on Dynamic Environments

Sequence Depth Edge Motion Segmentation DSLAM Motion Removal DVO-SLAM DynaSLAM (N+G) (RGB-D)
SLAM

w/o Motion
Detection

w/ Motion
Detection

Improv.
w/ MD

w/o Motion
Detection

w/ Motion
Detection

Improv.
w/ MD

w/o Motion
Detection

w/ Motion
Detection

Improv.
w/ MD

[m] [m] [m] [%] [m] [m] [%] [m] [m] [%]

w_hal f 0.049 0.116 0.055 52.59% 0.529 0.125 76.32% 0.351 0.025 92.88%
w_xyz 0.060 0.202 0.040 80.20% 0.597 0.093 84.38% 0.459 0.015 96.73%
w_rpy 0.179 0.515 0.076 85.24% 0.730 0.133 81.75% 0.662 0.035 94.71%
w_stat 0.026 0.470 0.024 94.89% 0.212 0.066 69.06% 0.090 0.006 93.33%

s_hal f 0.043 - - - 0.062 0.047 23.70% 0.020 0.017 15.00%
s_xyz 0.040 - - - 0.051 0.048 4.55% 0.009 0.015 X

Depth Edge SLAM by Li and Lee (2017).
Motion Segmentation DSLAM by Wang and Huang (2014)
Motion Removal DVO-SLAM by Sun et al. (2017)
DynaSLAM w/o Motion Detection is ORB-SLAM2 by Mur-Artal and Tardós (2017)

Table 6.3 Absolute trajectory RMSE [m] of DynaSLAM against state-of-the-art RGB-D
SLAM systems in dynamic scenes. To evaluate the effectiveness of the specific module
addressing dynamic content, we report the improvement with respect to the original SLAM
systems (w/o Motion Detection). Our results are estimated using Mask R-CNN and multi-
view geometry.

used in every case. DynaSLAM significantly outperforms all of them in all sequences (both
high and low dynamic ones). The error is, in general, around 1-2 cm, similar to that of the
state of the art in static scenes. Our motion detection approach also outperforms the other
methods.

ORB-SLAM, the monocular version of ORB-SLAM2, is generally more accurate than
the RGB-D one in dynamic scenes, due to their different initialization algorithms. RGB-D
ORB-SLAM2 is initialized and starts the tracking from the very first frame, and hence
dynamic objects can introduce errors. ORB-SLAM delays the initialization until there is
parallax and consensus using the staticity assumption. Hence, it does not track the camera
for the full sequence, sometimes missing a substantial part of it, or even not initializing.

Table 6.4 shows the tracking results and percentage of the tracked trajectory for ORB-
SLAM and DynaSLAM (monocular) in the TUM dataset. The initialization in DynaSLAM is
always quicker than that of ORB-SLAM. In fact, in highly dynamic sequences, ORB-SLAM
initialization only occurs when the moving objects disappear from the scene. In conclusion,
although the accuracy of DynaSLAM is slightly lower, it succeeds in bootstrapping the
system with dynamic content and producing a map without such content (see Fig. 6.1), to be
re-used for long-term applications. The reason why DynaSLAM is slightly less accurate is
that the estimated trajectory is longer, and there is therefore room for accumulating errors.



6.4 Experimental Results 125

Sequence ORB-SLAM DynaSLAM
Mur-Artal and Tardós (2017) (Monocular)

ATE [m] % Traj ATE [m] % Traj

f r3/walking_hal f sphere 0.017 87.16 0.021 97.84
f r3/walking_xyz 0.012 57.63 0.014 87.37

f r2/desk_with_person 0.006 95.30 0.008 97.07
f r3/sitting_xyz 0.007 91.44 0.013 100.00
Table 6.4 Absolute trajectory RMSE [m] and percentage of successfully tracked trajectory
for both ORB-SLAM and DynaSLAM (monocular).

Sequence ORB-SLAM2 (Stereo) DynaSLAM (Stereo)
Mur-Artal and Tardós (2017)

RPE RRE ATE RPE RRE ATE
[%] [◦/100m] [m] [%] [◦/100m] [m]

KITTI 00 0.70 0.25 1.3 0.74 0.26 1.4
KITTI 01 1.39 0.21 10.4 1.57 0.22 9.4
KITTI 02 0.76 0.23 5.7 0.80 0.24 6.7
KITTI 03 0.71 0.18 0.6 0.69 0.18 0.6
KITTI 04 0.48 0.13 0.2 0.45 0.09 0.2
KITTI 05 0.40 0.16 0.8 0.40 0.16 0.8
KITTI 06 0.51 0.15 0.8 0.50 0.17 0.8
KITTI 07 0.50 0.28 0.5 0.52 0.29 0.5
KITTI 08 1.05 0.32 3.6 1.05 0.32 3.5
KITTI 09 0.87 0.27 3.2 0.93 0.29 1.6
KITTI 10 0.60 0.27 1.0 0.67 0.32 1.2

Table 6.5 Comparison of the RMSE of the ATE [m], the average of the RPE [%] and the
RRE [◦/100m] of DynaSLAM against ORB-SLAM2 system for stereo cameras.

6.4.2 KITTI Dataset

The KITTI Dataset (Geiger et al., 2013) contains stereo sequences recorded from a car in
urban and highway environments. Table 6.5 shows our results in the eleven training sequences,
compared against stereo ORB-SLAM2. We use two different metrics, the absolute trajectory
RMSE proposed in Sturm et al. (2012b), and the average relative translation and rotation
errors, proposed in Geiger et al. (2013). Table 6.6 shows the results in the same sequences
for the monocular variants of ORB-SLAM and DynaSLAM.



126 Monocular and RGB-D SLAM on Dynamic Environments

Sequence ORB-SLAM DynaSLAM (Monocular)
Mur-Artal and Tardós (2017)

KITTI 00 5.33 7.55
KITTI 02 21.28 26.29
KITTI 03 1.51 1.81
KITTI 04 1.62 0.97
KITTI 05 4.85 4.60
KITTI 06 12.34 14.74
KITTI 07 2.26 2.36
KITTI 08 46.68 40.28
KITTI 09 6.62 3.32
KITTI 10 8.80 6.78
Table 6.6 Absolute trajectory RMSE [m] for ORB-SLAM and DynaSLAM (monocular).

Note that the results are similar in both the monocular and stereo cases, but the former
is more sensitive to dynamic objects and therefore to the additions in DynaSLAM. In some
sequences the accuracy of the tracking is improved when not using features belonging to a
priori dynamic objects, i.e., cars, bicycles, etc. An example of this would be the sequences
KITTI 01 and KITTI 04, in which all vehicles that appear are moving. In the sequences in
which most of the recorded cars and vehicles are parked (hence static), the absolute trajectory
RMSE is usually bigger since the keypoints used for tracking are more distant and usually
belong to low-texture areas (KITTI 00, KITTI 02, KITTI 06). However, the loop closure and
relocalization algorithms work more robustly since the resulting map only contains structural
objects, i.e., the map can be re-used and work in long-term applications.

As future work, it is interesting to make a distinction between those movable and moving
objects, by using only RGB information. If a car is detected by the CNN (movable) but is
not currently moving, its corresponding keypoints should be used for the local tracking, but
should not be in the map.

6.4.3 Timing Analysis

To complete the evaluation of our proposal, Table 6.7 shows the average computational
time for its different stages. Note that DynaSLAM is not optimized for real-time operation.
However, its capability for creating life-long maps of the static scene content are also relevant
for running on offline mode.



6.5 Conclusions 127

Sequence Low-Cost Tracking [ms] Multi-view Geometry [ms] Background Inpainting [ms]

w_hal f sphere 1.69 333.68 208.09
w_rpy 1.59 235.98 183.56

Table 6.7 DynaSLAM average computational time [ms].

Mur et al. show real-time results for and ORB-SLAM2 (Mur-Artal and Tardós, 2017).
He et al. (2017) report that Mask R-CNN runs at 195 ms per image on a Nvidia Tesla M40
GPU.

The addition of the multi-view geometry stage is an additional slowdown, due mainly to
the region growth algorithm. The background inpainting also introduces a delay, which is
another reason why it should be done after the tracking and mapping stage, as it has been
shown in Fig. 6.2.

6.5 Conclusions

We have presented a visual SLAM system that, building on ORB-SLAM, adds a motion
segmentation approach that makes it robust in dynamic environments for monocular, stereo
and RGB-D cameras, offering a solution to a very well known Visual SLAM problem. Our
system accurately tracks the camera and creates a static and therefore reusable map of the
scene. In the RGB-D case, DynaSLAM is capable of obtaining the synthetic RGB frames
with no dynamic content and with the occluded background inpainted, as well as their
corresponding synthesized depth frames, which might be together very useful for virtual
reality applications. We include a video showing the potential of DynaSLAM 2.

The comparison against the state of the art shows that DynaSLAM achieves in most cases
the highest accuracy.

In the videos of the TUM dataset that include Dynamic Objects dataset, at the moment
of publishing this work DynaSLAM was the best RGB-D SLAM solution. Currently it is
still the most accurate, although works like the one presented in Dai et al. (2020) offer a
model that does not require GPU sacrificing on performance, the authors also claim that
their proposal could be combined to some of the ideas presented in this chapter. Similar
conclusions are found in Vincent et al. (2020). Being the computation time one of the biggest
drawback of DynaSLAM according to these recent publication we think is interesting to share
the work by Alonso et al. (2020) introducing MiniNet, a real-time semantic segmentation
CNN; our proposal in this chapter is not dependent on the CNN we are currently using but
it can use a different less time-consuming network as MiniNet. In the monocular case, our

2https://youtu.be/EabI_goFmQs

https://youtu.be/EabI_goFmQs


128 Monocular and RGB-D SLAM on Dynamic Environments

accuracy is similar to that of ORB-SLAM, obtaining however a static map of the scene with
an earlier initialization.

In the KITTI dataset DynaSLAM is slightly less accurate than monocular and stereo
ORB-SLAM, except for those cases in which dynamic objects represent an important part of
the scene. However, our estimated map only contains structural objects and can therefore be
re-used in long-term applications.

Future works in this line of research have looked, real-time performance Dai et al. (2020),
Vincent et al. (2020), Alonso et al. (2020), an RGB-based motion detector, or a more realistic
appearance of the synthesized RGB frames by using a more elaborate inpainting technique,
e.g., the one used by Pathak et al. (2016) by the use of Generative Adversarial Networks
(GANs). This last idea was carried out, posterior to this work, by Bescos et al. (2019) where
they use GANs to inpaint already detected dynamic objects. At the moment it has only been
tested in simulation with ground-truth segmentation.



Chapter 7

Conclusions

In general, 3D visual perception is far from being fully solved. There are significant research
challenges ahead, in particular related to scene understanding. In this thesis we have advanced
the state of the art in several areas of this exciting and relevant topic.

The first contribution described in this thesis is on single-view depth estimation. In CAM-
Convs (Facil et al., 2019) we have proposed a new type of convolution and demonstrated the
advantages of accounting for the camera intrinsic parameters in depth estimation tasks. We
have shown that our CAM-Convs allow us to train and test with different cameras; something
that has been explored further in López-Antequera et al. (2020). Future work along this
line should explore models that leverage the camera intrinsics and, unlike CAM-Convs, do
not require to learn how to use them. A major drawback of CAM-Convs is that, as any
learning procedure, they are strongly data-dependent. Therefore, a sufficiently well sampled
dataset of images taken by different cameras is needed for a reasonable performance, and 1
or 2 cameras might not be enough. On this line, López-Antequera et al. (2020) has started
making progress on their proposal of a canonical camera model, similar to the focal length
normalization we use in our work.

We have demonstrated in Chapter 3 that traditional multi-view geometry and deep learning
can benefit from each other, achieving toghether an accuracy that outperforms both of them
separately. It is worth remarking that our work was one of the first addressing this idea. After
us, many novel approaches have been proposed. In particular, I would highlight two of them
that couple deep learning and multi-view geometry quite tightly, instead of them being two
different procedures subsequently merged. On the one side, CodeSLAM (Bloesch et al., 2018)
and its following work DeepFactors (Czarnowski et al., 2020) successfully propose a deep
neural network that defines a manifold for each depth map, in which traditional multi-view
geometry optimization finds the best depth maps according to geometric and photo-metric
errors. On the other hand, Zhou et al. (2018) presented DeepTAM, continuing their work



130 Conclusions

DeMoN in Ummenhofer et al. (2017), proposing an deep neural network that iteratively
refines its predictions using multi-view geometry, achieving an impressive accuracy.

On visual place recognition, we have presented three novel approaches for multi-view
global descriptors that are robust to changes in the appearance created by different conditions.
We have tested it for multiple seasons and for different light conditions. It is also worth
remarking that our work is the first one proposing multi-view descriptors based on deep
learning, and that our descriptors were further explored in the dataset compiled in Warburg
et al. (2020) with similar conclusions as in our work. For future research, it would be
interesting to explore condition-invariant local descriptors that would allow to recover a
metric pose and not only a topological one (Revaud et al., 2019).

In Chapter 5 we presented CFL and EquiConvs. CFL is a network that achieves state-of-
the-art results in indoor layout recovery, and EquiConvs are a special type of convolutions
that adapt is shape to the equirectangular distortion. Both contributions can have several
applications in Visual SLAM (Salas et al., 2015). EquiConvs is also a general model, from
which any deep network using panoramic images can benefit from.

Regarding SLAM in dynamic environments, we have proposed a pipeline to avoid
dynamic or movable objects to perturb mapping and tracking algorithms assuming a rigid
world. Our main contribution is the design of the DynaSLAM pipeline and the inclusion of a
segmentation CNN embedded in a visual SLAM system. We demonstrate that our results
are very competitive, and that our proposal outperforms state-of-the-art SLAM systems.
A reasonable line for future work would be to focus on tracking the dynamic objects and
possibly use it also into its advantage. Preliminary results on this direction can already be
seen in Ballester et al. (2020). A potential advantage could be, for example: if an object is
being tracked and at some point the camera is occluded by it, the object motion estimation
would allow a reasonable estimation of the camera motion for some time.

We can draw a general conclusion for this thesis by writing that, on the one hand, we
have proposed several novel methods to use deep networks for 3D perception challenges.
And, on the other hand, we have also made contributions within deep learning for this
particular domain. On the first set of proposals, we have developed novel methods to fuse
multi-view and single-view depths and to detect and remove dynamic objects in visual
SLAM. On the second set of proposals, we have developed novel multi-view embeddings for
place recognition and two novel convolution types, CAM-Convs and Equiconvs, explicitly
including the camera intrinsics and demonstrating better performances for single-view depth
learning with multiple cameras and layout estimation from equirectangular images.



7.1 Limitations and Future Work 131

7.1 Limitations and Future Work

Deep learning has supposed a great advance in 3D visual perception and it is making its
way into visual SLAM. The biggest limitation we found while working on this thesis is the
dependency on data, and more specifically on good-quality and diverse, sufficiently well
sampled data. To exemplify this, look at the dense depth estimation problem. The progress
achieved by using deep learning has no precedents. However, it is very easy to fall into
small segments of the problem by evaluating the models in a subset of the real cases, e.g. a
relatively small dataset on a very specific and biased domain. A common case is the training
on different domains separately or, as we pointed in Chapter 2, commonly used datasets
only provide images taken by one type of camera. This is different to traditional 3D vision
algorithms that explicitly consider the camera model and do not make any assumption (or
the smallest possible number of them) in the type of data or domain a priory. In this thesis
we always kept this in mind. CAM-Convs introduce the camera model into convolutions for
the first time. We also made use of unbiased depth estimation from a traditional geometry-
based triangulation to complement the learned depth prediction. We have adapted standard
convolutions to equirectangular distortion in EquiConvs, again taking into account the camera
model. Lastly, we have combined deep learning and traditional methods for dynamic object
detection in DynaSLAM. We agree with the general thought that deep learning has a great
potential for 3D perception. However, future research needs to address the data dependency,
creating more complete and general benchmarks (as López-Antequera et al. (2020)) and also
models that account for the 3D-to-2D projection and the data noise. We can cite (Czarnowski
et al., 2020, Zhou et al., 2020) as examples of the former, and Bayesian deep learning (for
example, Gustafsson et al. (2020)) as a promising line of work for the latter. Learning
from data might be the key for a complete scene understanding, but, in our believe, only
those proposals that complement machine learning with uncertainty, geometric and physical
models will achieve the best performance.





References

Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. (2016), “Tensor-
flow: a system for large-scale machine learning.” In OSDI, volume 16, 265–283.

Alcantarilla, Pablo F, José J Yebes, Javier Almazán, and Luis M Bergasa (2012), “On
combining visual SLAM and dense scene flow to increase the robustness of localization
and mapping in dynamic environments.” In ICRA.

Alonso, Inigo, Luis Riazuelo, and Ana C Murillo (2020), “Mininet: An efficient semantic
segmentation convnet for real-time robotic applications.” IEEE Transactions on Robotics.

Ambrus, Rares, John Folkesson, and Patric Jensfelt (2016), “Unsupervised object segmenta-
tion through change detection in a long term autonomy scenario.” In Humanoid Robots
(Humanoids), IEEE.

Amodei, Dario, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Bat-
tenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al.
(2016), “Deep speech 2: End-to-end speech recognition in english and mandarin.” In
International conference on machine learning, 173–182.

Arandjelovic, Relja, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic (2016),
“NetVLAD: CNN architecture for weakly supervised place recognition.” In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 5297–5307.

Arandjelović, Relja and Andrew Zisserman (2014), “Dislocation: Scalable descriptor dis-
tinctiveness for location recognition.” In Asian Conference on Computer Vision, 188–204,
Springer.

Armeni, I., A. Sax, A. R. Zamir, and S. Savarese (2017), “Joint 2D-3D-Semantic Data for
Indoor Scene Understanding.” ArXiv.

Armeni, Iro, Sasha Sax, Amir R Zamir, and Silvio Savarese (2017), “Joint 2D-3D-semantic
data for indoor scene understanding.” arXiv preprint arXiv:1702.01105.

Arroyo, Roberto, Pablo F Alcantarilla, Luis M Bergasa, and Eduardo Romera (2016), “Fusion
and binarization of CNN features for robust topological localization across seasons.” In
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on,
4656–4663, IEEE.

Ballester, Irene, Alejandro Fontan, Javier Civera, Klaus H Strobl, and Rudolph Triebel
(2020), “Dot: Dynamic object tracking for visual slam.” arXiv preprint arXiv:2010.00052.



134 References

Bampis, Loukas, Angelos Amanatiadis, and Antonios Gasteratos (2016), “Encoding the
description of image sequences: A two-layered pipeline for loop closure detection.” In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 4530–4536,
IEEE.

Bao, Sid Yingze, Min Sun, and Silvio Savarese (2011), “Toward coherent object detection
and scene layout understanding.” Image and Vision Computing, 29, 569–579.

Bay, Herbert, Tinne Tuytelaars, and Luc Van Gool (2006), “Surf: Speeded up robust features.”
In European conference on computer vision, 404–417, Springer.

Bescos, Berta, José Neira, Roland Siegwart, and Cesar Cadena (2019), “Empty cities: Image
inpainting for a dynamic-object-invariant space.” In 2019 International Conference on
Robotics and Automation (ICRA), 5460–5466, IEEE.

Bloesch, Michael, Jan Czarnowski, Ronald Clark, Stefan Leutenegger, and Andrew J Davi-
son (2018), “CodeSLAM-Learning a Compact, Optimisable Representation for Dense
Visual SLAM.” In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition.

Cadena, Cesar, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José Neira, Ian
Reid, and John J Leonard (2016), “Past, present, and future of simultaneous localization
and mapping: Toward the robust-perception age.” IEEE Transactions on robotics, 32,
1309–1332.

Cao, Yuanzhouhan, Zifeng Wu, and Chunhua Shen (2016), “Estimating depth from monoc-
ular images as classification using deep fully convolutional residual networks.” arXiv
preprint arXiv:1605.02305.

Chakrabarti, Ayan, Jingyu Shao, and Gregory Shakhnarovich (2016), “Depth from a Single
Image by Harmonizing Overcomplete Local Network Predictions.” In Proceedings of
the 30th International Conference on Neural Information Processing Systems, NIPS’16,
2666–2674, Curran Associates Inc., USA, URL http://dl.acm.org/citation.cfm?id=3157382.
3157396.

Chen, Weifeng, Zhao Fu, Dawei Yang, and Jia Deng (2016), “Single-Image Depth Perception
in the Wild.” In Advances in Neural Information Processing Systems 29 (D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, eds.), 730–738, Curran Associates,
Inc., URL http://papers.nips.cc/paper/6489-single-image-depth-perception-in-the-wild.
pdf.

Chen, Zetao, Adam Jacobson, Niko Sunderhauf, Ben Upcroft, Lingqiao Liu, Chunhua Shen,
Ian Reid, and Michael Milford (2017), “Deep Learning Features at Scale for Visual Place
Recognition.” arXiv preprint arXiv:1701.05105.

Chen, Zetao, Obadiah Lam, Adam Jacobson, and Michael Milford (2014), “Convolutional
neural network-based place recognition.” arXiv preprint arXiv:1411.1509.

Chen, Zetao, Lingqiao Liu, Inkyu Sa, Zongyuan Ge, and Margarita Chli (2018), “Learning
context flexible attention model for long-term visual place recognition.” IEEE Robotics
and Automation Letters, 3, 4015–4022.

http://dl.acm.org/citation.cfm?id=3157382.3157396
http://dl.acm.org/citation.cfm?id=3157382.3157396
http://papers.nips.cc/paper/6489-single-image-depth-perception-in-the-wild.pdf
http://papers.nips.cc/paper/6489-single-image-depth-perception-in-the-wild.pdf


References 135

Cohen, Taco S, Mario Geiger, Jonas Köhler, and Max Welling (2018), “Spherical cnns.”
arXiv:1801.10130.

Concha, Alejo and Javier Civera (2014), “Using superpixels in monocular SLAM.” In
Robotics and Automation (ICRA), 2014 IEEE International Conference on, 365–372,
IEEE.

Concha, Alejo and Javier Civera (2015a), “DPPTAM: Dense piecewise planar tracking and
mapping from a monocular sequence.” In IEEE/RSJ international conference on intelligent
robots and systems.

Concha, Alejo and Javier Civera (2015b), “An evaluation of robust cost functions for rgb
direct mapping.” In ECMR, IEEE.

Concha, Alejo, Muhammad Wajahat Hussain, Luis Montano, and Javier Civera (2014),
“Manhattan and Piecewise-Planar Constraints for Dense Monocular Mapping.” In Robotics:
Science and systems.

Concha, Alejo, Wajahat Hussain, Luis Montano, and Javier Civera (2015), “Incorporating
scene priors to dense monocular mapping.” Autonomous Robots, 39, 279–292.

Czarnowski, J, T Laidlow, R Clark, and AJ Davison (2020), “Deepfactors: Real-time
probabilistic dense monocular slam.” IEEE Robotics and Automation Letters, 5, 721–728,
URL http://dx.doi.org/10.1109/lra.2020.2965415.

Dai, Angela, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and
Matthias Nießner (2017a), “ScanNet: Richly-annotated 3D Reconstructions of Indoor
Scenes.” In Proc. Computer Vision and Pattern Recognition (CVPR), IEEE.

Dai, Jifeng, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei
(2017b), “Deformable convolutional networks.” CoRR, abs/1703.06211, 1, 3.

Dai, Weichen, Yu Zhang, Ping Li, Zheng Fang, and Sebastian Scherer (2020), “Rgb-d slam
in dynamic environments using point correlations.” IEEE Transactions on Pattern Analysis
and Machine Intelligence.

Dasgupta, Saumitro, Kuan Fang, Kevin Chen, and Silvio Savarese (2016), “Delay: Robust
spatial layout estimation for cluttered indoor scenes.” In Conference on Computer Vision
and Pattern Recognition, 616–624.

Delage, Erick, Honglak Lee, and Andrew Y Ng (2006), “A dynamic bayesian network model
for autonomous 3D reconstruction from a single indoor image.” In Computer Society
Conference on Computer Vision and Pattern Recognition, volume 2, 2418–2428.

Donahue, Jeff, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell (2014), “Long-term recurrent convolutional
networks for visual recognition and description.” arXiv preprint arXiv:1411.4389.

Dosovitskiy, Alexey, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir
Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas Brox (2015), “Flownet:
Learning optical flow with convolutional networks.” In Proceedings of the International
Conference on Computer Vision, 2758–2766.

http://dx.doi.org/10.1109/lra.2020.2965415


136 References

Dusmanu, Mihai, Ignacio Rocco, Tomas Pajdla, Marc Pollefeys, Josef Sivic, Akihiko Torii,
and Torsten Sattler (2019), “D2-net: A trainable cnn for joint detection and description of
local features.” arXiv preprint arXiv:1905.03561.

Eigen, David and Rob Fergus (2015), “Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture.” In Proceedings of the IEEE
International Conference on Computer Vision, 2650–2658.

Eigen, David, Christian Puhrsch, and Rob Fergus (2014), “Depth map prediction from
a single image using a multi-scale deep network.” In Advances in neural information
processing systems, 2366–2374.

Engel, Jakob, Vladlen Koltun, and Daniel Cremers (2017), “Direct sparse odometry.” IEEE
Transactions on Pattern Analysis and Machine Intelligence.

Engel, Jakob, Thomas Schöps, and Daniel Cremers (2014), “LSD-SLAM: Large-scale direct
monocular SLAM.” In European Conference on Computer Vision, 834–849, Springer.

Ens, John and Peter Lawrence (1993), “An investigation of methods for determining depth
from focus.” IEEE Transactions on pattern analysis and machine intelligence, 15, 97–108.

Fácil, José M, Alejo Concha, Luis Montesano, and Javier Civera (2017), “Single-View and
Multi-View Depth Fusion.” IEEE Robotics and Automation Letters, 2, 1994–2001.

Facil, Jose M, Benjamin Ummenhofer, Huizhong Zhou, Luis Montesano, Thomas Brox,
and Javier Civera (2019), “CAM-Convs: Camera-Aware Multi-Scale Convolutions for
Single-View Depth.” In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 11826–11835.

Fan, Haoqiang, Hao Su, and Leonidas J Guibas (2017), “A point set generation network for
3d object reconstruction from a single image.” In CVPR, 2463–2471.

Fernandez-Labrador, Clara, Jose M Facil, Alejandro Perez-Yus, Cedric Demonceaux, and
Jose J Guerrero (2018a), “Panoroom: From the sphere to the 3d layout.” arXiv:1808.09879.

Fernandez-Labrador, Clara, Alejandro Perez-Yus, Gonzalo Lopez-Nicolas, and Jose J Guer-
rero (2018b), “Layouts from panoramic images with geometry and deep learning.” Robotics
and Automation Letters, 3, 3153–3160.

Flint, Alex, David Murray, and Ian Reid (2011), “Manhattan scene understanding using
monocular, stereo, and 3d features.” In Computer Vision (ICCV), 2011 International
Conference on, 2228–2235, IEEE.

Fouhey, David F, Vincent Delaitre, Abhinav Gupta, Alexei A Efros, Ivan Laptev, and Josef
Sivic (2014), “People watching: Human actions as a cue for single view geometry.”
International journal of computer vision, 110, 259–274.

Fouhey, David F, Abhinav Gupta, and Martial Hebert (2013), “Data-driven 3d primitives
for single image understanding.” In Proceedings of the IEEE International Conference on
Computer Vision, 3392–3399.



References 137

Fu, Huan, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and Dacheng Tao
(2018), “Deep ordinal regression network for monocular depth estimation.” In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2002–2011.

Furlan et al (2013), “Free your camera: 3d indoor scene understanding from arbitrary camera
motion.” BMVC.

Gálvez-López, Dorian and Juan D Tardos (2012), “Bags of binary words for fast place
recognition in image sequences.” IEEE Transactions on Robotics, 28, 1188–1197.

Garcia-Fidalgo, Emilio and Alberto Ortiz (2015), “Vision-based topological mapping and
localization methods: A survey.” Robotics and Autonomous Systems, 64, 1–20.

Garcia-Garcia, Alberto, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez, Pablo
Martinez-Gonzalez, and Jose Garcia-Rodriguez (2018), “A survey on deep learning tech-
niques for image and video semantic segmentation.” Applied Soft Computing, 70, 41–65.

Garg, Sourav, Niko Sünderhauf, and Michael Milford (2019), “Semantic-Geometric Visual
Place Recognition: A New Perspective for Reconciling Opposing Views.” International
Journal of Robotics Research.

Geiger, Andreas, Philip Lenz, Christoph Stiller, and Raquel Urtasun (2013), “Vision meets
robotics: The KITTI dataset.” IJRR, 32, 1231–1237.

Geiger, Andreas, Philip Lenz, and Raquel Urtasun (2012), “Are we ready for autonomous
driving? the kitti vision benchmark suite.” In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, 3354–3361, IEEE.

Gerlach, Nicolaas Lucius, Gerrit Jacobus Meijer, Dirk-Jan Kroon, Ewald Maria Bronkhorst,
Stefaan Jozef Bergé, and Thomas Jan Jaap Maal (2014), “Evaluation of the potential of
automatic segmentation of the mandibular canal.” BJOMS.

Godard, Clément, Oisin Mac Aodha, and Gabriel Brostow (2018), “Digging into self-
supervised monocular depth estimation.” arXiv preprint arXiv:1806.01260.

Godard, Clément, Oisin Mac Aodha, and Gabriel J Brostow (2017), “Unsupervised monocu-
lar depth estimation with left-right consistency.” In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 270–279.

Gomez, Raul, Jaume Gibert, Lluis Gomez, and Dimosthenis Karatzas (2020), “Exploring
hate speech detection in multimodal publications.” In The IEEE Winter Conference on
Applications of Computer Vision, 1470–1478.

Gomez-Ojeda, Ruben, Jesus Briales, and Javier Gonzalez-Jimenez (2016), “Pl-svo: Semi-
direct monocular visual odometry by combining points and line segments.” In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 4211–4216,
IEEE.

Gomez-Ojeda, Ruben, Manuel Lopez-Antequera, Nicolai Petkov, and Javier Gonzalez-
Jimenez (2015), “Training a convolutional neural network for appearance-invariant place
recognition.” arXiv preprint arXiv:1505.07428.



138 References

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016), Deep learning. MIT press.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio (2014), “Generative adversarial nets.” In
Advances in neural information processing systems, 2672–2680.

Gordo, Albert, Jon Almazán, Jerome Revaud, and Diane Larlus (2016), “Deep image retrieval:
Learning global representations for image search.” In European conference on computer
vision, 241–257, Springer.

Graber, Gottfried, Thomas Pock, and Horst Bischof (2011), “Online 3D reconstruction
using convex optimization.” In 2011 IEEE International Conference on Computer Vision
Workshops, 708–711, IEEE.

Gustafsson, Fredrik K, Martin Danelljan, and Thomas B Schon (2020), “Evaluating scal-
able bayesian deep learning methods for robust computer vision.” In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 318–319.

Gutiérrez-Gómez, Daniel, Walterio Mayol-Cuevas, and JJ Guerrero (2015), “Inverse Depth
for Accurate Photometric and Geometric Error Minimisation in RGB-D Dense Visual
Odometry.” In Robotics and Automation (ICRA), 2015 IEEE International Conference on,
83–89, IEEE.

Handa, Ankur, Richard A Newcombe, Adrien Angeli, and Andrew J Davison (2011), “Appli-
cations of legendre-fenchel transformation to computer vision problems.” Department of
Computing at Imperial College London. DTR11-7, 45.

Harris, Christopher G, Mike Stephens, et al. (1988), “A combined corner and edge detector.”
In Alvey vision conference, volume 15, 10–5244, Citeseer.

He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick (2017), “Mask R-CNN.”
arXiv preprint arXiv:1703.06870.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016), “Deep residual learning
for image recognition.” In Proceedings of the IEEE conference on computer vision and
pattern recognition, 770–778.

He, Lei, Guanghui Wang, and Zhanyi Hu (2018), “Learning depth from single images with
deep neural network embedding focal length.” IEEE Transactions on Image Processing,
27, 4676–4689.

Hedau, V., D. Hoiem, and D. Forsyth (2009a), “Recovering the spatial layout of cluttered
rooms.” In International Conference on Computer Vision, 1849–1856.

Hedau, Varsha, Derek Hoiem, and David Forsyth (2009b), “Recovering the spatial layout
of cluttered rooms.” In 2009 IEEE 12th international conference on computer vision,
1849–1856, IEEE.

Hochreiter, Sepp and Jürgen Schmidhuber (1997), “Long short-term memory.” Neural
computation, 9, 1735–1780.



References 139

Hoiem, Derek, Alexei A Efros, and Martial Hebert (2005), “Automatic photo pop-up.” ACM
transactions on graphics (TOG), 24, 577–584.

Huang, Po-Han, Kevin Matzen, Johannes Kopf, Narendra Ahuja, and Jia-Bin Huang (2018),
“Deepmvs: Learning multi-view stereopsis.” In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2821–2830.

Hussain, Wajahat, Javier Civera, Luis Montano, and Martial Hebert (2016), “Dealing with
small data and training blind spots in the Manhattan world.” In Winter Conference on
Applications of Computer Vision (WACV), 1–9, IEEE.

Joo et al (2018), “Globally optimal inlier set maximization for atlanta frame estimation.”
CVPR.

Karsch, Kevin, Varsha Hedau, David Forsyth, and Derek Hoiem (2011), “Rendering synthetic
objects into legacy photographs.” ACM Transactions on Graphics (TOG), 30, 157.

Kehl, Wadim, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and Nassir Navab (2017),
“SSD-6D: Making RGB-based 3D detection and 6D pose estimation great again.” In
Proceedings of the International Conference on Computer Vision (ICCV 2017), Venice,
Italy, 22–29.

Kendall, Alex, Roberto Cipolla, et al. (2017), “Geometric loss functions for camera pose
regression with deep learning.” In Proc. CVPR, volume 3, 8.

Kendall, Alex, Matthew Grimes, and Roberto Cipolla (2015), “PoseNet: A convolutional net-
work for real-time 6-DOF camera relocalization.” In Proceedings of the IEEE international
conference on computer vision, 2938–2946.

Kim, Deok-Hwa and Jong-Hwan Kim (2016), “Effective Background Model-Based RGB-D
Dense Visual Odometry in a Dynamic Environment.” IEEE T-RO.

Kingma, Diederik P and Jimmy Ba (2014), “Adam: A method for stochastic optimization.”
arXiv preprint arXiv:1412.6980.

Klein, Georg and David Murray (2007), “Parallel tracking and mapping for small AR
workspaces.” In ISMAR, 225–234.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012), “Imagenet classification
with deep convolutional neural networks.” In Advances in neural information processing
systems, 1097–1105.

Kuznietsov, Yevhen, Jörg Stückler, and Bastian Leibe (2017), “Semi-supervised deep learning
for monocular depth map prediction.” In Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition, 6647–6655.

Laina, Iro, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir Navab
(2016), “Deeper depth prediction with fully convolutional residual networks.” In 3D Vision
(3DV), 2016 Fourth International Conference on, 239–248, IEEE.

Lamarca, Jose, Shaifali Parashar, Adrien Bartoli, and JMM Montiel (2020), “Defslam: Track-
ing and mapping of deforming scenes from monocular sequences.” IEEE Transactions on
robotics, ?, ?–?



140 References

LeCun, Yann, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel (1989), “Backpropagation applied to handwritten
zip code recognition.” Neural computation, 1, 541–551.

Lee, C., V. Badrinarayanan, T. Malisiewicz, and A. Rabinovich (2017), “RoomNet: End-to-
end room layout estimation.” In International Conference on Computer Vision.

Lee, David C, Martial Hebert, and Takeo Kanade (2009), “Geometric reasoning for single
image structure recovery.” In Conference on Computer Vision and Pattern Recognition
(CVPR), 2136–2143.

Lee, Seong Hun and Javier Civera (2019), “Loosely-Coupled Semi-Direct Monocular SLAM.”
IEEE Robotics and Automation Letters, 4, 399–406.

Li, Jun, Reinhard Klein, and Angela Yao (2016), “Learning fine-scaled depth maps from
single rgb images.” arXiv preprint arXiv:1607.00730.

Li, Ruibo, Ke Xian, Chunhua Shen, Zhiguo Cao, Hao Lu, and Lingxiao Hang (2018),
“Deep attention-based classification network for robust depth prediction.” arXiv preprint
arXiv:1807.03959.

Li, Shile and Dongheui Lee (2017), “RGB-D SLAM in Dynamic Environments Using Static
Point Weighting.” IEEE RA-L, 2, 2263–2270.

Li, Zhengqi and Noah Snavely (2018), “Megadepth: Learning single-view depth prediction
from internet photos.” In Computer Vision and Pattern Recognition (CVPR).

Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick (2014), “Microsoft coco: Common objects in
context.” In ECCV.

Liu, Chenxi, Alexander G. Schwing, Kaustav Kundu, Raquel Urtasun, and Sanja Fidler
(2015a), “Rent3d: Floor-plan priors for monocular layout estimation.” In The Conference
on Computer Vision and Pattern Recognition (CVPR).

Liu, Fayao, Chunhua Shen, and Guosheng Lin (2015b), “Deep convolutional neural fields
for depth estimation from a single image.” In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 5162–5170.

Liu, Li, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and Matti
Pietikäinen (2020), “Deep learning for generic object detection: A survey.” International
journal of computer vision, 128, 261–318.

Liu, Rosanne, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex Sergeev,
and Jason Yosinski (2018), “An intriguing failing of convolutional neural networks and the
coordconv solution.” arXiv preprint arXiv:1807.03247.

López-Antequera, Manuel, Pau Gargallo, Markus Hofinger, and Samuel Rota (2020), “Mapil-
lary planet-scale depth dataset.” In Proceedings of the European Conference on Computer
Vision (ECCV).



References 141

Lopez-Antequera, Manuel, Ruben Gomez-Ojeda, Nicolai Petkov, and Javier Gonzalez-
Jimenez (2017), “Appearance-invariant place recognition by discriminatively training a
convolutional neural network.” Pattern Recognition Letters, 92, 89–95.

Lowe, David G (2004), “Distinctive image features from scale-invariant keypoints.” Interna-
tional journal of computer vision, 60, 91–110.

Lowry, Stephanie and Henrik Andreasson (2018), “Lightweight, viewpoint-invariant visual
place recognition in changing environments.” IEEE Robotics and Automation Letters, 3,
957–964.

Lowry, Stephanie and Michael J Milford (2016), “Supervised and unsupervised linear learn-
ing techniques for visual place recognition in changing environments.” IEEE Transactions
on Robotics, 32, 600–613.

Lowry, Stephanie, Niko Sünderhauf, Paul Newman, John J Leonard, David Cox, Peter Corke,
and Michael J Milford (2016), “Visual place recognition: A survey.” IEEE Transactions
on Robotics, 32, 1–19.

Luo, Zixin, Tianwei Shen, Lei Zhou, Jiahui Zhang, Yao Yao, Shiwei Li, Tian Fang, and Long
Quan (2019), “Contextdesc: Local descriptor augmentation with cross-modality context.”
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2527–2536.

Luo, Zixin, Tianwei Shen, Lei Zhou, Siyu Zhu, Runze Zhang, Yao Yao, Tian Fang, and Long
Quan (2018), “Geodesc: Learning local descriptors by integrating geometry constraints.”
In Proceedings of the European Conference on Computer Vision (ECCV), 168–183.

Ma, Fangchang, Guilherme Venturelli Cavalheiro, and Sertac Karaman (2019), “Self-
supervised sparse-to-dense: Self-supervised depth completion from lidar and monoc-
ular camera.” In 2019 International Conference on Robotics and Automation (ICRA),
3288–3295, IEEE.

Mallya, A. and S. Lazebnik (2015), “Learning informative edge maps for indoor scene layout
prediction.” In International Conference on Computer Vision, 936–944.

Marimont, RB and MB Shapiro (1979), “Nearest neighbour searches and the curse of
dimensionality.” IMA Journal of Applied Mathematics, 24, 59–70.

Mayer, Nikolaus, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Doso-
vitskiy, and Thomas Brox (2016), “A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation.” In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 4040–4048.

McManus, Colin, Winston Churchill, Will Maddern, Alexander D Stewart, and Paul New-
man (2014), “Shady dealings: Robust, long-term visual localisation using illumination
invariance.” In 2014 IEEE international conference on robotics and automation (ICRA),
901–906, IEEE.

McManus, Colin, Winston Churchill, Ashley Napier, Ben Davis, and Paul Newman (2013),
“Distraction suppression for vision-based pose estimation at city scales.” In 2013 IEEE
International Conference on Robotics and Automation, 3762–3769, IEEE.



142 References

Middelberg, Sven, Torsten Sattler, Ole Untzelmann, and Leif Kobbelt (2014), “Scalable 6-dof
localization on mobile devices.” In European conference on computer vision, 268–283,
Springer.

Mikolajczyk, Krystian, Tinne Tuytelaars, Cordelia Schmid, Andrew Zisserman, Jiri Matas,
Frederik Schaffalitzky, Timor Kadir, and Luc Van Gool (2005), “A comparison of affine
region detectors.” International journal of computer vision, 65, 43–72.

Milford, Michael J and Gordon F Wyeth (2012), “SeqSLAM: Visual route-based navigation
for sunny summer days and stormy winter nights.” In International Conference on Robotics
and Automation, 1643–1649.

Mur-Artal, Raul, JMM Montiel, and Juan D Tardos (2015), “ORB-SLAM: a versatile and
accurate monocular SLAM system.” Robotics, IEEE Transactions on, 31, 1147–1163.

Mur-Artal, Raul and Juan D Tardós (2017), “ORB-SLAM2: An open-source slam system for
monocular, stereo, and RGB-D cameras.” IEEE T-RO.

Murillo, Ana C, Gautam Singh, Jana Kosecká, and José Jesús Guerrero (2013), “Localization
in urban environments using a panoramic gist descriptor.” IEEE Transactions on Robotics,
29, 146–160.

Naseer, Tayyab, Wolfram Burgard, and Cyrill Stachniss (2018), “Robust visual localization
across seasons.” IEEE Transactions on Robotics, 34, 289–302.

Nathan Silberman, Pushmeet Kohli, Derek Hoiem and Rob Fergus (2012), “Indoor segmen-
tation and support inference from RGBD Images.” In ECCV.

Neubert, Peer, Stefan Schubert, and Peter Protzel (2015), “Exploiting intra database simi-
larities for selection of place recognition candidates in changing environments.” In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Workshop on Visual Place Recognition in Changing Environments.

Newcombe, Richard A, Steven J Lovegrove, and Andrew J Davison (2011), “DTAM: Dense
tracking and mapping in real-time.” In Computer Vision (ICCV), 2011 IEEE International
Conference on, 2320–2327, IEEE.

Newman, Paul, David Cole, and Kin Ho (2006), “Outdoor slam using visual appearance
and laser ranging.” In Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006, 1180–1187, IEEE.

Noh, Hyeonwoo, Andre Araujo, Jack Sim, Tobias Weyand, and Bohyung Han (2017),
“Large-scale image retrieval with attentive deep local features.” In Proceedings of the IEEE
International Conference on Computer Vision, 3456–3465.

Olid, Daniel, José M Fácil, and Javier Civera (2018), “Single-View Place Recognition under
Seasonal Changes.” arXiv preprint arXiv:1808.06516.

Ono, Yuki, Eduard Trulls, Pascal Fua, and Kwang Moo Yi (2018), “Lf-net: learning local
features from images.” In Advances in neural information processing systems, 6234–6244.



References 143

Pais, G Dias, Tiago J Dias, Jacinto C Nascimento, and Pedro Miraldo (2019), “Omnidrl:
Robust pedestrian detection using deep reinforcement learning on omnidirectional cameras.”
arXiv preprint arXiv:1903.00676.

Parkhi, Omkar M, Andrea Vedaldi, and Andrew Zisserman (2015), “Deep face recognition.”

Pathak, Deepak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros
(2016), “Context encoders: Feature learning by inpainting.” In CVPR.

Pepperell, Edward, Peter I Corke, and Michael J Milford (2014), “All-environment visual
place recognition with smart.” In 2014 IEEE international conference on robotics and
automation (ICRA), 1612–1618, IEEE.

Perez-Yus, Alejandro, Daniel Gutiérrez-Gómez, Gonzalo Lopez-Nicolas, and JJ Guerrero
(2017), “Stairs detection with odometry-aided traversal from a wearable rgb-d camera.”
Computer Vision and Image Understanding, 154, 192–205.

Pérez-Yus, Alejandro, Gonzalo López-Nicolás, and Jose J Guerrero (2014), “Detection
and modelling of staircases using a wearable depth sensor.” In European Conference on
Computer Vision, 449–463, Springer.

Pinies, Pedro, Lina Maria Paz, and Paul Newman (2015), “Dense mono reconstruction:
Living with the pain of the plain plane.” In 2015 IEEE International Conference on
Robotics and Automation, 5226–5231.

Piniés, Pedro, Lina María Paz, and Paul Newman (2015), “Too much TV is bad: Dense recon-
struction from sparse laser with non-convex regularisation.” In 2015 IEEE International
Conference on Robotics and Automation (ICRA), 135–142, IEEE.

Pronobis, Andrzej, Barbara Caputo, Patric Jensfelt, and Henrik I Christensen (2006), “A dis-
criminative approach to robust visual place recognition.” In 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 3829–3836.

Qiu, Jiaxiong, Zhaopeng Cui, Yinda Zhang, Xingdi Zhang, Shuaicheng Liu, Bing Zeng,
and Marc Pollefeys (2019), “Deeplidar: Deep surface normal guided depth prediction for
outdoor scene from sparse lidar data and single color image.” In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 3313–3322.

Ren, Yuzhuo, Shangwen Li, Chen Chen, and C-C Jay Kuo (2016), “A coarse-to-fine indoor
layout estimation (cfile) method.” In ACCV, 36–51.

Revaud, Jerome, Cesar De Souza, Martin Humenberger, and Philippe Weinzaepfel (2019),
“R2d2: Reliable and repeatable detector and descriptor.” In Advances in Neural Information
Processing Systems, 12405–12415.

Riazuelo, Luis, Luis Montano, and JMM Montiel (2017), “Semantic visual slam in populated
environments.” In 2017 European conference on mobile robots (ECMR), 1–7, IEEE.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015), “U-net: Convolutional net-
works for biomedical image segmentation.” In International Conference on Medical image
computing and computer-assisted intervention, 234–241, Springer.



144 References

Rublee, Ethan, Vincent Rabaud, Kurt Konolige, and Gary Bradski (2011), “Orb: An efficient
alternative to sift or surf.” In Computer Vision (ICCV), 2011 IEEE international conference
on, 2564–2571, IEEE.

Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. (2015), “Imagenet
large scale visual recognition challenge.” International Journal of Computer Vision, 115,
211–252.

Salas, Marta, Wajahat Hussain, Alejo Concha, Luis Montano, Javier Civera, and JMM Mon-
tiel (2015), “Layout aware visual tracking and mapping.” In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 149–156, IEEE.

Savinov, Nikolay, Akihito Seki, Lubor Ladicky, Torsten Sattler, and Marc Pollefeys (2017),
“Quad-networks: unsupervised learning to rank for interest point detection.” In Proceedings
of the IEEE conference on computer vision and pattern recognition, 1822–1830.

Saxena, Ashutosh, Jamie Schulte, and Andrew Y Ng (2007), “Depth estimation using
monocular and stereo cues.” In IJCAI, volume 7.

Saxena, Ashutosh, Min Sun, and Andrew Y Ng (2009), “Make3D: Learning 3D scene
structure from a single still image.” IEEE transactions on pattern analysis and machine
intelligence, 31, 824–840.

Schonberger, Johannes L and Jan-Michael Frahm (2016), “Structure-from-motion revisited.”
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
4104–4113.

Schwing, Alexander G, Sanja Fidler, Marc Pollefeys, and Raquel Urtasun (2013), “Box
in the box: Joint 3D layout and object reasoning from single images.” In International
Conference on Computer Vision, 353–360.

Shen, Shaojie, Nathan Michael, and Vijay Kumar (2011), “Autonomous multi-floor in-
door navigation with a computationally constrained mav.” In 2011 IEEE International
Conference on Robotics and Automation, 20–25, IEEE.

Shrivastava, Ashish, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and Russell
Webb (2017), “Learning from Simulated and Unsupervised Images through Adversarial
Training.” In CVPR, 2242–2251.

Silberman, Nathan, Derek Hoiem, Pushmeet Kohli, and Rob Fergus (2012), “Indoor segmen-
tation and support inference from rgbd images.” In European Conference on Computer
Vision, 746–760, Springer.

Simonyan, Karen and Andrew Zisserman (2014), “Very deep convolutional networks for
large-scale image recognition.” arXiv preprint arXiv:1409.1556.

Song, Shuran and Jianxiong Xiao (2016), “Deep sliding shapes for amodal 3d object detection
in rgb-d images.” In Proceedings of the Conference on Computer Vision and Pattern
Recognition, 808–816.



References 145

Stühmer, Jan, Stefan Gumhold, and Daniel Cremers (2010), “Real-time dense geometry from
a handheld camera.” In Joint Pattern Recognition Symposium, 11–20, Springer.

Sturm, J., N. Engelhard, F. Endres, W. Burgard, and D. Cremers (2012a), “A benchmark
for the evaluation of RGB-D SLAM systems.” In International Conference on Intelligent
Robot Systems (IROS).

Sturm, Jürgen, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers
(2012b), “A benchmark for the evaluation of RGB-D SLAM systems.” In IROS.

Sturm, Peter and Steve Maybank (1999), “A method for interactive 3d reconstruction of piece-
wise planar objects from single images.” In The 10th British machine vision conference
(BMVC’99), 265–274.

Sun, Yuxiang, Ming Liu, and Max Q-H Meng (2017), “Improving RGB-D SLAM in dynamic
environments: A motion removal approach.” RAS.

Sünderhauf, Niko, Sareh Shirazi, Feras Dayoub, Ben Upcroft, and Michael Milford (2015a),
“On the performance of convnet features for place recognition.” In Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on, 4297–4304, IEEE.

Sünderhauf, Niko, Sareh Shirazi, Adam Jacobson, Feras Dayoub, Edward Pepperell, Ben
Upcroft, and Michael Milford (2015b), “Place recognition with convnet landmarks:
Viewpoint-robust, condition-robust, training-free.” Proceedings of Robotics: Science
and Systems XII.

Sundermeyer, Martin, Zoltan-Csaba Marton, Maximilian Durner, Manuel Brucker, and
Rudolph Triebel (2018), “Implicit 3D Orientation Learning for 6D Object Detection from
RGB Images.” In Proceedings of the European Conference on Computer Vision (ECCV),
699–715.

Tan, Wei, Haomin Liu, Zilong Dong, Guofeng Zhang, and Hujun Bao (2013), “Robust
monocular SLAM in dynamic environments.” In ISMAR, 209–218.

Tang, Chengzhou and Ping Tan (2018), “Ba-net: Dense bundle adjustment network.” arXiv
preprint arXiv:1806.04807.

Tatarchenko, Maxim, Alexey Dosovitskiy, and Thomas Brox (2017), “Octree generating
networks: Efficient convolutional architectures for high-resolution 3d outputs.” In Proc. of
the IEEE International Conf. on Computer Vision (ICCV), volume 2, 8.

Tateno, Keisuke, Nassir Navab, and Federico Tombari (2018), “Distortion-aware convolu-
tional filters for dense prediction in panoramic images.” In Proceedings of the European
Conference on Computer Vision (ECCV), 707–722.

Tateno, Keisuke, Federico Tombari, Iro Laina, and Nassir Navab (2017), “CNN-SLAM:
Real-time dense monocular SLAM with learned depth prediction.” In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 2.

Tompson, Jonathan, Murphy Stein, Yann Lecun, and Ken Perlin (2014), “Real-time continu-
ous pose recovery of human hands using convolutional networks.” ACM Transactions on
Graphics (ToG), 33, 1–10.



146 References

Torii, Akihiko, Josef Sivic, Tomas Pajdla, and Masatoshi Okutomi (2013), “Visual place
recognition with repetitive structures.” In Proceedings of the IEEE conference on computer
vision and pattern recognition, 883–890.

Torralba, Antonio and Alexei A Efros (2011), “Unbiased look at dataset bias.” In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, 1521–1528, IEEE.

Triggs, Bill, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon (1999),
“Bundle adjustment—a modern synthesis.” In International workshop on vision algorithms,
298–372, Springer.

Tsai, Grace, Changhai Xu, Jingen Liu, and Benjamin Kuipers (2011), “Real-time indoor
scene understanding using bayesian filtering with motion cues.” In Computer Vision
(ICCV), 2011 International Conference on, 121–128, IEEE.

Uhrig, Jonas, Nick Schneider, Lukas Schneider, Uwe Franke, Thomas Brox, and Andreas
Geiger (2017), “Sparsity Invariant CNNs.” In International Conference on 3D Vision
(3DV).

Ummenhofer, Benjamin, Huizhong Zhou, Jonas Uhrig, Nikolaus Mayer, Eddy Ilg, Alexey
Dosovitskiy, and Thomas Brox (2017), “DeMoN: Depth and Motion Network for learning
monocular stereo.” In IEEE Conference on computer vision and pattern recognition
(CVPR), volume 5, 6.

Vincent, Jonathan, Mathieu Labbé, Jean-Samuel Lauzon, François Grondin, Pier-Marc
Comtois-Rivet, and François Michaud (2020), “Dynamic object tracking and masking for
visual slam.” arXiv preprint arXiv:2008.00072.

Vysotska, Olga and Cyrill Stachniss (2016), “Lazy data association for image sequences
matching under substantial appearance changes.” IEEE Robotics and Automation Letters,
1, 213–220.

Vysotska, Olga and Cyrill Stachniss (2017), “Relocalization under substantial appearance
changes using hashing.” In Proceedings of the IROS Workshop on Planning, Perception
and Navigation for Intelligent Vehicles, volume 24.

Wang, Peng, Xiaohui Shen, Zhe Lin, Scott Cohen, Brian Price, and Alan L Yuille (2015),
“Towards unified depth and semantic prediction from a single image.” In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2800–2809.

Wang, Sen, Ronald Clark, Hongkai Wen, and Niki Trigoni (2017), “DeepVO: Towards end-
to-end visual odometry with deep recurrent convolutional neural networks.” In Robotics
and Automation (ICRA), 2017 IEEE International Conference on, 2043–2050, IEEE.

Wang, Sen, Ronald Clark, Hongkai Wen, and Niki Trigoni (2018), “End-to-end, sequence-to-
sequence probabilistic visual odometry through deep neural networks.” The International
Journal of Robotics Research, 37, 513–542.

Wang, Yiming, Tongfei Chen, Hainan Xu, Shuoyang Ding, Hang Lv, Yiwen Shao, Nanyun
Peng, Lei Xie, Shinji Watanabe, and Sanjeev Khudanpur (2019), “Espresso: A fast end-to-
end neural speech recognition toolkit.” In 2019 IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU), 136–143, IEEE.



References 147

Wang, Youbing and Shoudong Huang (2014), “Motion segmentation based robust RGB-D
SLAM.” In WCICA, 3122–3127, IEEE.

Wangsiripitak, Somkiat and David W Murray (2009), “Avoiding moving outliers in visual
SLAM by tracking moving objects.” In ICRA, 375–380, IEEE.

Warburg, Frederik, Soren Hauberg, Manuel Lopez-Antequera, Pau Gargallo, Yubin Kuang,
and Javier Civera (2020), “Mapillary street-level sequences: A dataset for lifelong place
recognition.” In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Weerasekera, Chamara Saroj, Thanuja Dharmasiri, Ravi Garg, Tom Drummond, and Ian
Reid (2018), “Just-in-time reconstruction: Inpainting sparse maps using single view depth
predictors as priors.” arXiv preprint arXiv:1805.04239.

Weyand, Tobias, Ilya Kostrikov, and James Philbin (2016), “Planet-photo geolocation with
convolutional neural networks.” In European Conference on Computer Vision, 37–55,
Springer.

Wohlhart, Paul and Vincent Lepetit (2015), “Learning descriptors for object recognition and
3d pose estimation.” In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 3109–3118.

Xiao, J., K.A. Ehinger, A. Oliva, and A. Torralba (2012), “Recognizing scene viewpoint
using panoramic place representation.” In Conference on Computer Vision and Pattern
Recognition, 2695–2702.

Xiao, Jianxiong, Andrew Owens, and Antonio Torralba (2013), “SUN3D: A database of big
spaces reconstructed using SfM and object labels.” In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 1625–1632.

Xu, Binbin, Wenbin Li, Dimos Tzoumanikas, Michael Bloesch, Andrew Davison, and Stefan
Leutenegger (2019), “Mid-fusion: Octree-based object-level multi-instance dynamic slam.”
In 2019 International Conference on Robotics and Automation (ICRA), 5231–5237, IEEE.

Xu, J., B. Stenger, T. Kerola, and T. Tung (2017), “Pano2CAD: Room layout from a single
panorama image.” In Winter Conference on Applications of Computer Vision, 354–362.

Yang, Shang-Ta, Fu-En Wang, Chi-Han Peng, Peter Wonka, Min Sun, and Hung-Kuo Chu
(2018), “Dula-net: A dual-projection network for estimating room layouts from a single
rgb panorama.” arXiv:1811.11977.

Yang, Shichao and Sebastian Scherer (2019), “Cubeslam: Monocular 3-d object slam.” IEEE
Transactions on Robotics, 35, 925–938.

Zhan, Huangying, Ravi Garg, Chamara Saroj Weerasekera, Kejie Li, Harsh Agarwal, and Ian
Reid (2018), “Unsupervised learning of monocular depth estimation and visual odometry
with deep feature reconstruction.” In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 340–349.



148 References

Zhang, Jian, Chen Kan, Alexander G Schwing, and Raquel Urtasun (2013), “Estimating
the 3d layout of indoor scenes and its clutter from depth sensors.” In 2013 International
Conference on Computer Vision, 1273–1280, IEEE.

Zhang, Lei, Shuai Wang, and Bing Liu (2018), “Deep learning for sentiment analysis: A
survey.” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8,
e1253.

Zhang, W., W. Zhang, K. Liu, and J. Gu (2017), “Learning to predict high-quality edge maps
for room layout estimation.” Transactions on Multimedia, 19, 935–943.

Zhang, Yinda and Thomas Funkhouser (2018), “Deep Depth Completion of a Single RGB-
D Image.” In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 175–185.

Zhang, Yinda, Shuran Song, Ping Tan, and Jianxiong Xiao (2014), “PanoContext: A whole-
room 3D context model for panoramic scene understanding.” In European Conference on
Computer Vision, 668–686, Springer.

Zhao, Hao, Ming Lu, Anbang Yao, Yiwen Guo, Yurong Chen, and Li Zhang (2017), “Physics
inspired optimization on semantic transfer features: An alternative method for room layout
estimation.” arXiv:1707.00383.

Zhou, Huizhong, Benjamin Ummenhofer, and Thomas Brox (2018), “DeepTAM: Deep
tracking and mapping.” In European Conference on Computer Vision (ECCV).

Zhou, Huizhong, Benjamin Ummenhofer, and Thomas Brox (2020), “Deeptam: Deep
tracking and mapping with convolutional neural networks.” International Journal of
Computer Vision, 128, 756–769.

Zhou, Tinghui, Matthew Brown, Noah Snavely, and David G Lowe (2017), “Unsupervised
learning of depth and ego-motion from video.” In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 1851–1858.

Zhou, Tinghui, Shubham Tulsiani, Weilun Sun, Jitendra Malik, and Alexei A Efros (2016),
“View synthesis by appearance flow.” In European conference on computer vision, 286–301,
Springer.

Zoran, D., P. Isola, D. Krishnan, and W. T. Freeman (2015), “Learning Ordinal Relationships
for Mid-Level Vision.” In 2015 IEEE International Conference on Computer Vision
(ICCV), 388–396.

Zou, Chuhang, Alex Colburn, Qi Shan, and Derek Hoiem (2018), “Layoutnet: Reconstructing
the 3d room layout from a single rgb image.” In Proceedings Conference on Computer
Vision and Pattern Recognition, 2051–2059.



Appendix A

Detailed Experiments for Camera-Aware
Convolutions

A.1 Experiments on Stanford Dataset

A.1.1 2D-3D Semantics Stanford Dataset

In our experiments we used the 2D-3D Semantics Dataset (Armeni et al., 2017), that contains
RGB-D equirectangular images. With these images we are able to generate synthetic images
with different camera intrinsics. This is essential to evaluate the influence of such intrinsic
camera parameters minimizing the effect of the dataset bias.

The dataset is divided into 6 different areas, see Table A.1. The areas in the dataset
represent parts of buildings with similarities in their appearance. We used the official train
and test splits as suggested by Armeni et al. (2017). The suggested 3-fold cross-validation
scheme is shown in Table A.2. All the experiments in this appendix, unless explicitly stated,
are performed on the 2D-3D Semantics Dataset.

When training on this dataset, we generate images by randomizing camera parameters.
Some parameters remain fixed depending on the experiment (e.g. sensor size is fixed during
training). Different values of these parameters can be found in Table A.3. Figure A.1 shows
several examples of images generated with different camera intrinsics.

A.1.2 Notation

The notation for sensor sizes and focal lengths used during the evaluation is in Table 2.3.
As an example, if a network has been trained with sensor sizes 192×256 and 224×224,
and focal length 72, we will denote this model as s2s3 f72. In some experiments we use a



150 Detailed Experiments for Camera-Aware Convolutions

Area # Eq. Images
(# images)

1 190
2 299
3 85
4 258
5 373
6 208

Total 1413
Table A.1 Statistics of images in the 2D-3D Semantics Dataset (Armeni et al., 2017). Number
of images per area.

Fold # Training Testing
(Area #) (Area #)

1 1,2,3,4,6 6
2 1,3,5,6 2,4
3 2,4,5 1,3,6

Table A.2 Area assignation for the 3-fold cross validation scheme presented by Armeni et al.
(2017) for the 2D-3D Semantics Dataset.

Camera Params Range
(uniform random sample)

yaw (−180°,180°)
pitch (−6°,6°)
roll (−6°,6°)
x,y,z fixed*

f (focal length) depending experiment
w×h depending experiment

* the position of the camera provided for the
equirectangular images remains unchanged,
we do not use this parameter to generate
more images.

Table A.3 Statistics of images in the 2D-3D Semantics Dataset (Armeni et al., 2017). Number
of images per area.∗ The position of the camera provided for the equi-rectangular images
remains unchanged, we do not use this parameter to generate more images.

random distribution for the focal length. As an example, if the synthesized focal lengths are
uniformly distributed between 72 and 128, the model will be denoted as U f72 f128.



A.1 Experiments on Stanford Dataset 151

256x192 128x192

128 72 64 128 72 64
Focal Length

Sensor Size
Fig. A.1 Examples of 3 different scenes (in rows) for which we generated several images
with different intrinsic parameters.

A.1.3 Influence of Context in Single View Depth

In this section we present the complete results for the experiment analyzing the influence of
context. Single-view depth prediction is a task heavily related to context, and that benefits



152 Detailed Experiments for Camera-Aware Convolutions

Focal Length Fold # abs.rel l1.inv rmse sc.inv sq.rel < 1.251 < 1.252 < 1.253

pixels : 1 1/m m log(m) : 1 % % %
1 0.17 0.188 0.385 0.0286 0.0428 70.1 96.1 99.3

f64 2 0.198 0.218 0.432 0.05 0.0691 65.1 90.7 98.3
3 0.155 0.151 0.326 0.0305 0.0451 78.9 97.1 99.6
1 0.168 0.169 0.411 0.0292 0.0427 70.8 96.2 99.3

f72 2 0.206 0.203 0.474 0.052 0.074 62.8 90.4 97.9
3 0.147 0.143 0.31 0.0302 0.0403 80.3 97.2 99.6
1 0.197 0.146 0.547 0.0342 0.0553 61.0 93.6 99.0

f128 2 0.23 0.156 0.586 0.0525 0.0837 56.1 88.2 97.7
3 0.166 0.117 0.409 0.0329 0.0483 74.5 96.4 99.5

f64 µ 0.17 0.184 0.378 0.0347 0.048 72.1 95.5 99.2
f72 µ 0.17 0.17 0.4 0.0354 0.0483 71.9 95.3 99.2
f128 µ 0.195 0.141 0.51 0.0387 0.0606 64.4 93.3 99.0

smaller is better bigger is better

Table A.4 Experiment comparing performance on single view depth prediction by changing
focal lengths. We evaluate three different focal lengths ( f64, f72 and f128) fixing the sensor
size to s1. The upper part of the table shows the results for each fold. The bottom part
shows the median µ of the three folds. As expected having more context improves the depth
prediction. In this experiment, focal length f64 has the best performance.

Sensor Size Fold # abs.rel l1.inv rmse sc.inv sq.rel < 1.251 < 1.252 < 1.253

pixels : 1 1/m m log(m) : 1 % % %
1 0.17 0.188 0.385 0.0286 0.0428 70.1 96.1 99.3

s1 2 0.198 0.218 0.432 0.05 0.0691 65.1 90.7 98.3
3 0.155 0.151 0.326 0.0305 0.0451 78.9 97.1 99.6
1 0.208 0.155 0.598 0.0348 0.0607 55.1 92.4 98.9

s4 2 0.24 0.162 0.606 0.051 0.0901 54.2 87.4 97.8
3 0.171 0.121 0.425 0.0319 0.0492 73.0 96.5 99.5

s1 µ 0.17 0.184 0.378 0.0347 0.048 72.1 95.5 99.2
s4 µ 0.204 0.146 0.54 0.0384 0.0637 61.3 93.0 99.0

smaller is better bigger is better

Table A.5 Experiment comparing performance on single view depth prediction by changing
sensor sizes. We evaluate two different sensor sizes (s4 ands1) fixing the focal length to f64.
The upper part of the table shows the results for each fold. The bottom part shows the median
µ of the three folds. As expected having more context improves the depth prediction. In this
experiment, sensor size s1 has the best performance.

significantly from having more image content.

Context by reducing focal length: Table A.4 shows a detailed version of the context
influence experiment. In this experiment we train our network without CAM-Convs with
images of different focal lengths ( f64, f72 and f128) and a fixed sensor size s1. We report the
results for three folds separately, and the median error.

Context by augmenting sensor size: Table A.5 shows a detailed version of the experi-
ment of different versions of the network without CAM-Convs trained on different sensor
sizes (s1, s4) with a fixed focal length f64. The results are shown for the three folds separately



A.1 Experiments on Stanford Dataset 153

and the median error.

As expected, in both experiments, the results are better for those images with a wider
field of view, as the camera captures a larger part of the scene. In the case of fixed sensor
size, this corresponds to the camera with the smallest focal length; in the case of fixed focal
length, it is the camera with the biggest sensor size. As a curiosity, we found that the L1

norm on inverse depth (l1.inv in the table) obtains a better score with smaller context in both
experiments. We attribute this to the smaller weight that this metric gives to large errors,
suggesting that context does not improve the errors uniformly but reduces by a bigger amount
large prediction errors.

A.1.4 Focal Length Overfitting

In this section we show the complete results for the focal length overfitting experiments.
Table A.6 shows the results by fold and Table A.7 shows the median for all the images on
every fold. Unless it is specified otherwise, all the networks have been trained with focal
length normalization. We distinguish between three test sets, each one of them generated
with one focal length: f64, f72 and f128. We train networks on each one of these focal lengths
and also train on multiple focal lengths with ( f72 f128 and U f72 f128) and without focal length
normalization ( f72 f128

∗).
Notice how networks that have been trained and tested with the same focal length obtain

the best results. Also observe how networks that have been trained only in one focal length,
generalize poorly when they are tested on different focal length. We also evaluated training
on multiple focal lengths without focal length normalization ( f72 f128

∗ in the table). This
does not only perform worse than other approaches, but its convergence was difficult. This is
expected, as not normalizing leads to inconsistent target depths.

We found that networks trained on smaller focal lengths tend, in general, to generalize
better to bigger focals than the opposite case. See for example the test set f128.

A.1.5 Sensor Size Overfitting

In this section we show the complete results for the two sensor size overfitting experiments.
We compare the network version without CAM-Convs trained and tested on different sensor
sizes.

Sensor size overfitting: Our first experiment, see Table A.8, shows a by-fold cross-comparison
of training a testing in three different sensor sizes, s1, s2 and s3. Results show that training



154 Detailed Experiments for Camera-Aware Convolutions

Test f Train f Fold # abs.rel l1.inv rmse sc.inv sq.rel < 1.251 < 1.252 < 1.253

pixels pixels : 1 1/m m log(m) : 1 % % %

f64

f64

1 0.173 0.187 0.391 0.0286 0.0431 69.5 96.0 99.3
2 0.2 0.212 0.423 0.0492 0.0708 65.2 91.1 98.3
3 0.154 0.16 0.359 0.0347 0.0422 78.1 96.7 99.4

f72

1 0.185 0.203 0.424 0.0293 0.0481 64.5 95.2 99.2
2 0.205 0.223 0.457 0.0519 0.0706 63.2 90.3 98.0
3 0.145 0.158 0.305 0.0301 0.0376 80.9 97.3 99.5

f128

1 0.288 0.377 0.647 0.0424 0.101 25.7 75.5 94.6
2 0.246 0.314 0.604 0.0662 0.0885 46.8 81.9 95.2
3 0.206 0.259 0.45 0.0415 0.0604 56.3 91.0 98.3

f72 f128
*

1 0.427 0.685 0.835 0.0405 0.196 02.2 23.6 73.7
2 0.359 0.526 0.765 0.0635 0.149 11.8 54.6 86.6
3 0.428 0.726 1.0 0.0798 0.227 06.8 30.6 67.1

f72 f128

1 0.183 0.199 0.414 0.0311 0.048 66.0 95.0 99.2
2 0.205 0.217 0.433 0.0514 0.074 64.3 90.6 98.1
3 0.148 0.154 0.313 0.0307 0.0403 80.0 97.2 99.5

U f72 f128

1 0.186 0.204 0.429 0.0314 0.0493 64.0 94.5 99.1
2 0.213 0.224 0.457 0.055 0.08 62.2 89.6 97.7
3 0.155 0.159 0.318 0.0321 0.0442 78.3 96.9 99.5

f72

f72

1 0.18 0.178 0.43 0.0306 0.0468 67.3 95.5 99.2
2 0.208 0.203 0.474 0.0524 0.0747 62.5 89.8 97.8
3 0.148 0.146 0.315 0.0302 0.0393 80.3 97.2 99.5

f128

1 0.272 0.32 0.643 0.0407 0.0925 30.8 79.6 95.8
2 0.238 0.271 0.608 0.0624 0.0854 50.7 84.0 95.9
3 0.193 0.22 0.441 0.0392 0.055 60.6 93.1 98.7

f72 f128
*

1 0.408 0.582 0.862 0.0407 0.181 03.4 30.2 79.1
2 0.345 0.45 0.798 0.0632 0.141 15.5 60.3 88.4
3 0.406 0.6 1.02 0.0801 0.208 09.4 36.8 73.0

f72, f128

1 0.18 0.181 0.432 0.0312 0.0468 66.9 95.2 99.2
2 0.21 0.198 0.458 0.0525 0.0766 63.6 90.0 97.9
3 0.153 0.148 0.328 0.0311 0.0428 78.7 97.0 99.6

U f72 f128

1 0.183 0.184 0.445 0.0312 0.0483 65.6 94.8 99.1
2 0.219 0.205 0.475 0.0545 0.0809 61.7 89.2 97.7
3 0.161 0.149 0.332 0.0322 0.0464 77.4 96.6 99.5

f128

f72

1 0.179 0.124 0.497 0.0353 0.0504 69.3 95.6 99.3
2 0.259 0.15 0.623 0.0553 0.105 51.3 84.7 97.4
3 0.206 0.129 0.472 0.0359 0.0734 66.6 94.2 99.4

f128

1 0.211 0.158 0.605 0.0352 0.0608 53.9 92.1 98.7
2 0.232 0.159 0.593 0.053 0.0846 55.6 88.1 97.7
3 0.172 0.127 0.424 0.0346 0.0485 72.0 96.1 99.4

f72 f128
*

1 0.261 0.202 0.755 0.046 0.0906 37.8 81.5 97.1
2 0.287 0.208 0.754 0.0658 0.116 39.3 78.0 94.7
3 0.275 0.215 0.974 0.0806 0.134 40.9 76.7 93.4

f72 f128

1 0.183 0.134 0.513 0.0329 0.0493 66.3 95.0 99.3
2 0.23 0.142 0.576 0.0501 0.0872 57.5 88.6 98.1
3 0.178 0.12 0.437 0.0329 0.0552 73.1 96.1 99.5

U f72 f128

1 0.184 0.131 0.509 0.0334 0.0497 65.7 95.2 99.3
2 0.245 0.147 0.596 0.0521 0.0958 54.5 87.1 97.8
3 0.189 0.123 0.449 0.0332 0.0633 70.5 95.6 99.5

smaller is better bigger is better
* the network has been trained without focal length normalization, it is included in this table as a baseline.

Table A.6 Experiments on multiple focal lengths, we evaluate on f64, f72 and f128. This table
shows the results for each fold on each one of the test sets.



A.1 Experiments on Stanford Dataset 155

Test f Train f Fold # abs.rel l1.inv rmse sc.inv sq.rel < 1.251 < 1.252 < 1.253

pixels pixels : 1 1/m m log(m) : 1 % % %

f64

f64
* µ 0.17 0.184 0.378 0.0347 0.048 72.1 95.5 99.2

f64 µ 0.172 0.184 0.392 0.0364 0.0488 71.6 95.2 99.2
f72 µ 0.174 0.193 0.395 0.0354 0.0486 70.4 95.0 99.1
f128 µ 0.247 0.318 0.572 0.0483 0.0826 42.9 83.6 96.4

f72 f128
* µ 0.41 0.659 0.864 0.0614 0.193 6.3 34.4 74.7

f72 f128 µ 0.176 0.189 0.387 0.0361 0.0503 70.5 94.9 99.1
U f72 f128 µ 0.182 0.194 0.398 0.0374 0.0533 68.8 94.4 99.1

f72

f72
* µ 0.17 0.17 0.4 0.0354 0.0483 71.9 95.3 99.2

f72 µ 0.175 0.174 0.407 0.0364 0.0503 70.6 94.9 99.1
f128 µ 0.235 0.272 0.564 0.0459 0.076 46.7 86.5 97.1

f72, f128
* µ 0.391 0.552 0.888 0.0609 0.179 8.6 41.2 79.5

f72, f128 µ 0.178 0.175 0.404 0.0364 0.052 70.3 94.8 99.2
U f72 f128 µ 0.184 0.179 0.414 0.0378 0.0553 68.9 94.4 99.1

f128

f128
* µ 0.195 0.141 0.51 0.0387 0.0606 64.4 93.3 99.0

f72 µ 0.213 0.133 0.524 0.0411 0.0744 63.4 92.5 99.0
f128 µ 0.202 0.149 0.532 0.0396 0.0625 61.4 92.7 98.9

f72, f128
* µ 0.273 0.208 0.813 0.063 0.11 39.6 78.6 95.1

f72, f128 µ 0.194 0.132 0.504 0.038 0.0616 66.2 93.9 99.2
U f72 f128 µ 0.202 0.134 0.512 0.0385 0.0663 64.1 93.5 99.1

smaller is better bigger is better
* the network has been trained without focal length normalization, it is included in this table as a baseline.

Table A.7 Experiments on multiple focal lengths, we evaluate on f64, f72 and f128. This table
shows the median µ results for each fold on each one of the test sets.

Test Train Fold # abs.rel l1.inv rmse sc.inv sq.rel < 1.251 < 1.252 < 1.253

: 1 1/m m log(m) : 1 % % %

s1

s1

1 0.181 0.151 0.475 0.0319 0.0481 66.8 95.2 99.3
2 0.229 0.169 0.526 0.0533 0.085 59.3 88.5 98.0
3 0.171 0.132 0.391 0.0317 0.0528 75.0 96.5 99.5

s2

1 0.21 0.18 0.537 0.0351 0.0595 53.3 92.4 98.8
2 0.24 0.189 0.581 0.0565 0.0873 54.5 86.9 97.2
3 0.182 0.159 0.422 0.0393 0.0505 66.6 95.2 99.3

s3

1 0.199 0.168 0.519 0.0328 0.0555 59.0 93.9 99.0
2 0.228 0.172 0.535 0.0523 0.0831 59.5 88.3 97.8
3 0.164 0.135 0.38 0.0333 0.0452 75.5 96.8 99.5

s2

s1

1 0.163 0.129 0.432 0.0339 0.0426 72.6 96.2 99.5
2 0.243 0.185 0.506 0.0546 0.0945 56.4 89.6 98.0
3 0.196 0.146 0.393 0.0312 0.0652 70.6 95.5 99.5

s2

1 0.152 0.121 0.409 0.0263 0.037 77.4 97.2 99.5
2 0.207 0.162 0.493 0.0462 0.0748 64.8 91.7 98.5
3 0.152 0.123 0.347 0.0293 0.0415 79.6 97.3 99.7

s3

1 0.157 0.126 0.428 0.0294 0.0398 73.9 96.6 99.5
2 0.22 0.17 0.485 0.0478 0.0811 62.8 91.3 98.5
3 0.158 0.123 0.353 0.028 0.0457 78.7 96.9 99.7

s3

s1

1 0.16 0.129 0.428 0.0312 0.0413 72.9 96.2 99.4
2 0.231 0.171 0.51 0.0513 0.0868 60.1 89.9 98.2
3 0.179 0.135 0.387 0.0302 0.0566 73.6 96.2 99.6

s2

1 0.172 0.144 0.438 0.0284 0.0429 70.4 96.1 99.3
2 0.209 0.164 0.511 0.0483 0.0761 63.2 90.4 98.3
3 0.16 0.131 0.367 0.0335 0.0433 76.9 96.9 99.5

s3

1 0.169 0.141 0.442 0.0293 0.0429 70.8 95.9 99.3
2 0.212 0.16 0.491 0.047 0.0764 63.5 90.8 98.4
3 0.154 0.123 0.355 0.0287 0.0431 79.1 97.2 99.6

smaller is better bigger is better

Table A.8 Experiments on multiple sensor sizes, we evaluate on s1,s2 and s3. We show the
versions of the networks in which we use one single sensor size for training. Notice the lack
of generalization of the network despite being a FCN. This table shows the results for each
fold on each one of the test sets.



156 Detailed Experiments for Camera-Aware Convolutions

Test Train Fold # abs.rel l1.inv rmse sc.inv sq.rel < 1.251 < 1.252 < 1.253

: 1 1/m m log(m) : 1 % % %

s1

s1 s2

1 0.182 0.151 0.514 0.0365 0.0528 67.4 94.2 98.9
2 0.229 0.18 0.585 0.056 0.0862 57.6 87.7 97.4
3 0.171 0.133 0.394 0.0332 0.0526 75.1 96.4 99.5

s1 s2
†

1 0.172 0.139 0.456 0.033 0.0462 70.7 95.7 99.4
2 0.237 0.179 0.574 0.0575 0.0921 56.9 86.8 97.4
3 0.172 0.135 0.396 0.033 0.0514 74.2 96.4 99.5

s1 s2 s3

1 0.178 0.151 0.487 0.0401 0.0514 69.1 94.4 98.8
2 0.224 0.179 0.531 0.0547 0.0818 59.6 88.2 97.7
3 0.165 0.14 0.388 0.0355 0.0464 75.1 96.2 99.4

s1 s2
†s3

†
1 0.191 0.159 0.536 0.0352 0.0531 62.9 93.7 98.9
2 0.236 0.19 0.613 0.059 0.0912 54.7 86.1 97.1
3 0.296 0.187 3.08 0.1 1.57 54.6 85.8 95.4

s3 s1
†s2

†
1 0.203 0.172 0.573 0.0407 0.0589 59.3 92.2 98.4
2 0.252 0.214 0.671 0.0638 0.0963 49.1 83.3 95.7
3 0.172 0.138 0.393 0.0349 0.0511 73.9 96.1 99.5

s2

s1 s2

1 0.159 0.127 0.455 0.0321 0.0416 74.4 96.2 99.3
2 0.209 0.17 0.521 0.051 0.0746 62.3 91.0 98.0
3 0.161 0.125 0.362 0.0282 0.0476 78.2 97.0 99.7

s1 s2
†

1 0.147 0.116 0.393 0.0279 0.037 78.5 97.4 99.6
2 0.21 0.165 0.494 0.0476 0.0762 63.1 91.6 98.4
3 0.163 0.125 0.357 0.0264 0.0457 77.9 97.3 99.7

s1 s2 s3

1 0.156 0.128 0.443 0.0345 0.0418 74.9 96.1 99.2
2 0.21 0.175 0.489 0.0507 0.0757 62.6 90.8 98.1
3 0.15 0.126 0.345 0.0312 0.0411 79.6 96.9 99.6

s1 s2
†s3

†
1 0.159 0.13 0.457 0.0303 0.0403 73.6 96.1 99.4
2 0.203 0.171 0.51 0.0485 0.0708 63.1 91.2 98.2
3 0.267 0.174 1.71 0.0796 0.483 58.4 88.1 96.6

s3 s1
†s2

†
1 0.154 0.124 0.466 0.0327 0.0401 75.8 96.2 99.3
2 0.213 0.179 0.552 0.0549 0.0759 60.5 89.9 97.6
3 0.168 0.127 0.365 0.0255 0.0504 76.9 97.0 99.7

s3

s1 s2

1 0.165 0.134 0.463 0.0328 0.0436 72.5 95.7 99.2
2 0.213 0.171 0.543 0.0509 0.0768 61.1 90.2 98.0
3 0.166 0.128 0.372 0.0302 0.049 76.7 96.9 99.6

s1 s2
†

1 0.149 0.117 0.4 0.0283 0.0374 77.5 97.2 99.6
2 0.219 0.167 0.525 0.0512 0.0816 61.8 90.4 98.2
3 0.171 0.129 0.377 0.0285 0.0506 75.4 96.9 99.6

s1 s2 s3

1 0.161 0.136 0.445 0.0359 0.0436 74.1 95.6 99.1
2 0.209 0.17 0.506 0.0503 0.0748 62.8 90.6 98.1
3 0.155 0.127 0.363 0.0324 0.0424 78.4 96.7 99.5

s1 s2
†s3

†
1 0.162 0.136 0.462 0.0311 0.042 72.4 95.7 99.3
2 0.214 0.173 0.549 0.0514 0.0756 60.7 90.3 98.0
3 0.286 0.178 2.39 0.087 0.912 56.3 86.7 96.2

s3 s1
†s2

†
1 0.167 0.135 0.494 0.035 0.0446 71.4 95.2 99.0
2 0.224 0.187 0.602 0.0588 0.0845 58.0 88.1 97.1
3 0.171 0.13 0.375 0.0295 0.0531 75.0 96.7 99.7

smaller is better bigger is better
† the image size has been resized to the first one in the list.

Table A.9 Experiments on multiple sensor sizes, we evaluate on s1,s2 and s3. We show the
versions of the networks in which we use multiple sensor sizes for training. Notice the lack
of generalization despite being using FCN. This table shows the results for each fold on each
one of the test sets.



A.1 Experiments on Stanford Dataset 157

Test Train abs.rel l1.inv rmse sc.inv sq.rel < 1.251 < 1.252 < 1.253

: 1 1/m m log(m) : 1 % % %

s1

s1 0.189 0.15 0.46 0.037 0.0585 67.6 94.3 99.2
s2 0.206 0.175 0.51 0.0422 0.0621 58.5 92.2 98.7
s3 0.193 0.158 0.476 0.0378 0.058 65.4 93.8 99.0

s1 s2 0.191 0.153 0.484 0.0401 0.0606 67.1 93.6 98.9
s1 s2

† 0.188 0.149 0.468 0.0391 0.059 68.0 94.2 99.1
s1 s2 s3 0.184 0.154 0.464 0.0424 0.0571 68.5 93.8 98.9
s1 s2

†s3
†h 0.239 0.179 0.742 0.064 0.111 56.9 88.3 97.2

s3 s1
†s2

† 0.206 0.174 0.53 0.044 0.0654 60.9 91.6 98.4

s2

s1 0.197 0.151 0.44 0.038 0.0637 66.7 94.5 99.3
s2 0.166 0.133 0.412 0.0323 0.0468 74.7 96.1 99.4
s3 0.174 0.138 0.42 0.0334 0.0514 72.5 95.7 99.4

s1 s2 0.173 0.139 0.436 0.0352 0.052 72.5 95.3 99.3
s1 s2

† 0.169 0.134 0.408 0.0318 0.0484 73.9 96.2 99.5
s1 s2 s3 0.168 0.14 0.422 0.0376 0.0498 73.4 95.3 99.2
s1 s2

†s3
† 0.209 0.16 0.622 0.0514 0.083 63.7 91.7 98.1

s3 s1
†s2

† 0.174 0.141 0.443 0.0355 0.0521 71.7 95.1 99.2

s3

s1 0.184 0.143 0.44 0.0357 0.0574 69.7 94.9 99.3
s2 0.177 0.145 0.435 0.0356 0.05 70.6 95.2 99.2
s3 0.174 0.14 0.425 0.0336 0.0504 71.9 95.4 99.3

s1 s2 0.178 0.143 0.451 0.0365 0.0537 70.8 94.9 99.2
s1 s2

† 0.175 0.136 0.427 0.0342 0.0516 72.3 95.6 99.4
s1 s2 s3 0.171 0.143 0.432 0.0383 0.0504 72.5 95.0 99.1
s1 s2

†s3
† 0.219 0.164 0.662 0.0552 0.0949 62.1 90.8 97.9

s3 s1
†s2

† 0.183 0.149 0.473 0.039 0.0577 68.6 94.1 99.0
smaller is better bigger is better

† the image size has been resized to the first one in the list.

Table A.10 Experiments on multiple sensor sizes, we evaluate on s1,s2 and s3. Notice the
lack of generalization despite being using FCN. This table shows median results for all the
folds on each one of the test sets. This table shows that weight sharing during training is the
policy that scale the best to more sensor sizes. All the train and test sets focal lengths have
been randomly sample between f72 and f128.



158 Detailed Experiments for Camera-Aware Convolutions

and testing on the same sensor size always performs better. This suggest overfitting to
the sensor size, and shows that the oftenly claimed invariance to the image size of fully
convolutional networks (FCN) does not hold for single-view depth prediction.

In our second experiment we allow training on multiple image sizes. In order to do that,
we propose two different approaches.

Training on different image sizes (1): Our fist approach is naïve image resizing. This
means we train the network on a single image input size and resize those images that have a
different size to make them fit. This, surprisingly, proved to work with a small number of
different sensor sizes (see training rows s1s2

† of Table A.9). However it performs poorly
when we augment the number of sensor sizes at training time, see training rows s1s2s3

† and
s3s1s2

†. This make sense, as resizing deforms the images a well as their intrinsic parameters.
With only two image sizes (s1s2

†) resizing does not create inconsistencies, and the network
it is able to learn from it. But, when adding more image sizes, and vertical and horizonal
resizing are needed, the problem becomes more complex and may create inconsistencies in
the data. Therefore it is an approach that does not scale.

Training on different image sizes (2): Our second approach uses a Siamese Architec-
ture with weight sharing during training. This model seems more coherent, as it keeps the
original images (no resizing). However, standard FCN networks were not able to learn from
several sensor sizes, and their performance was exactly the same as if training in the test
sensor size. E.g., see rows s1s2 and s1s2s3 in Table A.9. In this case adding more sensor
sizes during training s1s2s3 improves. This suggest that adding more could help. However,
stacking infinite neural networks (weight sharing) during training is also not scalable.

We show a summary of all the results, related to sensor size overfitting, in Table A.10.
Notice how training and testing on the same sensor size outperforms training and testing on
the different sensor sizes. It also performs better in most cases compared with training with
multiple sensor sizes, even if the test sensor size is included.

A.1.6 Generalization with CAM-Convs

In this section we show the complete evaluation of CAM-Convs in the 2D-3D Semantics
Dataset from Stanford (Armeni et al., 2017).



A.1 Experiments on Stanford Dataset 159

Test Train Fold # abs.rel l1.inv rmse sc.inv sq.rel < 1.251 < 1.252 < 1.253

: 1 1/m m log(m) : 1 % % %

s1

s1

1 0.181 0.151 0.475 0.0319 0.0481 66.8 95.2 99.3
2 0.229 0.169 0.526 0.0533 0.085 59.3 88.5 98.0
3 0.171 0.132 0.391 0.0317 0.0528 75.0 96.5 99.5

CAM-C s1 s2

1 0.173 0.147 0.459 0.0266 0.0433 69.5 96.2 99.4
2 0.205 0.165 0.503 0.0458 0.0693 62.6 91.3 98.6
3 0.154 0.12 0.356 0.0261 0.0429 80.0 97.6 99.7

s2

s2

1 0.152 0.121 0.409 0.0263 0.037 77.4 97.2 99.5
2 0.207 0.162 0.493 0.0462 0.0748 64.8 91.7 98.5
3 0.152 0.123 0.347 0.0293 0.0415 79.6 97.3 99.7

CAM-C s1 s2

1 0.159 0.132 0.425 0.0226 0.037 74.8 97.4 99.6
2 0.185 0.158 0.448 0.0408 0.0589 67.1 93.3 98.9
3 0.139 0.109 0.321 0.022 0.0357 84.2 98.2 99.7

s3

s3

1 0.169 0.141 0.442 0.0293 0.0429 70.8 95.9 99.3
2 0.212 0.16 0.491 0.047 0.0764 63.5 90.8 98.4
3 0.154 0.123 0.355 0.0287 0.0431 79.1 97.2 99.6

CAM-C s1 s2

1 0.163 0.136 0.419 0.0233 0.0378 73.3 97.0 99.5
2 0.193 0.161 0.467 0.0414 0.0629 66.4 92.7 98.8
3 0.145 0.112 0.338 0.0234 0.0386 82.2 98.0 99.7

s1
s1 µ 0.189 0.15 0.46 0.037 0.0585 67.6 94.3 99.2

CAM-C µ 0.175 0.144 0.433 0.0312 0.0498 71.0 95.7 99.4

s2
s2 µ 0.166 0.133 0.412 0.0323 0.0468 74.7 96.1 99.4

CAM-C µ 0.158 0.131 0.39 0.0265 0.0417 76.5 97.0 99.5

s3
s3 µ 0.174 0.14 0.425 0.0336 0.0504 71.9 95.4 99.3

CAM-C µ 0.164 0.134 0.402 0.0283 0.0441 74.6 96.6 99.5
smaller is better bigger is better

† the image size has been resized to the first one in the list.

Table A.11 .Experiments on multiple sensor sizes, we evaluate on s1,s2 and s3. Notice the
excelent generalization by including EquiConvs, compare with Table A.10. The upper rows
show by-fold results, and the bottom ones show median results for all the folds on each one
of the test sets. EquiConvs outperforms even the same-camera baseline, and even when the
test sensor size s3 is not among the training ones. All the train and test sets focal lengths
have been randomly sample between f72 and f128



160 Detailed Experiments for Camera-Aware Convolutions

Train Fold # abs.rel l1.inv rmse sc.inv sq.rel < 1.251 < 1.252 < 1.253

: 1 1/m m log(m) : 1 % % %

s5 f64

1 0.155 0.224 0.341 0.0303 0.0383 74.1 95.9 99.2
2 0.203 0.274 0.335 0.0514 0.0742 68.0 91.5 98.3
3 0.144 0.197 0.242 0.0305 0.0394 81.1 97.0 99.6

s1 f64

1 0.205 0.246 0.316 0.0549 0.0691 63.7 93.2 99.1
2 0.299 0.353 0.373 0.0756 0.149 48.4 82.1 95.7
3 0.249 0.294 0.323 0.0524 0.103 57.0 90.3 98.6

s1s2U f72 f128
†

1 0.301 0.293 0.4 0.0348 0.127 43.3 91.6 99.1
2 0.389 0.415 0.467 0.0651 0.217 30.8 75.7 94.6
3 0.421 0.413 0.46 0.0343 0.231 23.2 77.2 97.3

s1s2U f72 f128

1 0.171 0.227 0.358 0.0481 0.0528 71.3 94.4 98.8
2 0.239 0.325 0.418 0.0735 0.0971 57.2 86.7 96.4
3 0.187 0.241 0.267 0.0379 0.0625 72.8 94.9 99.3

s1s2s3U f72 f128

1 0.172 0.237 0.34 0.0525 0.0526 71.0 94.1 98.7
2 0.245 0.346 0.379 0.076 0.0998 55.4 86.1 96.2
3 0.165 0.236 0.264 0.0418 0.0509 75.3 94.9 99.2

CAM-C s1s2U f72 f128

1 0.142 0.2 0.279 0.0307 0.035 77.4 96.8 99.6
2 0.228 0.298 0.322 0.0549 0.0863 60.5 90.9 98.2
3 0.175 0.217 0.269 0.0271 0.0544 76.3 96.7 99.7

s5 f64 µ 0.163 0.227 0.309 0.0356 0.0462 75.1 95.3 99.3
s1 f64 µ 0.245 0.292 0.337 0.0598 0.101 56.6 89.2 98.2

s1s2U f72 f128
† µ 0.369 0.369 0.44 0.0427 0.188 32.0 81.9 97.6

s1s2U f72 f128 µ 0.196 0.262 0.343 0.0511 0.0688 67.4 92.6 98.6
s1s2s3U f72 f128 µ 0.191 0.269 0.328 0.055 0.0647 67.7 92.5 98.5
CAM-CU f72 f128 µ 0.177 0.236 0.289 0.0362 0.0541 71.9 95.4 99.4

smaller is better bigger is better
† the image size has been resized to the first one in the list.
* the network has been trained without focal length normalization.

Table A.12 In order to test the generalization capabilities of the networks we have tested our
best performing networks on a different camera model. Upper part shows by-fold results,
bottom part shows median results for all the folds on each one of the test sets. CAM-Convs
proved to achieve close to the same-camera baseline performance while none of the other
models show good performance. The test has been done with s5 images taken with f64.



A.2 NYU Experiment 161

PP Shift Crop Resize Model abs.rel l1.inv rmse sc.inv sq.rel < 1.251 < 1.252 < 1.253

(w,h) W ×H W ×H : 1 1/m m log(m) : 1 % % %

- - - Laina et al. (2016) 0.43 0.323 1.34 0.0518 0.202 5.4 24.8 64.8
ours 0.228 0.114 0.732 0.0496 0.076 52.0 87.9 98.2

- - 256×192 Laina et al. (2016) 0.298 0.107 0.784 0.041 0.157 53.0 89.1 97.1
ours 0.234 0.101 0.681 0.0441 0.0852 56.3 90.5 99.4

- 640×448 320×224 Laina et al. (2016) 0.175 0.0743 0.533 0.0392 0.0626 76.4 94.6 98.9
ours 0.211 0.0911 0.657 0.0425 0.0687 62.3 92.3 99.5

- 380×380 256×256 Laina et al. (2016) 0.245 0.125 0.826 0.0328 0.0766 36.7 89.9 98.7
ours 0.196 0.0854 0.658 0.0334 0.058 62.8 93.0 99.6

(40,−50) 352×352 256×256 Laina et al. (2016) 0.279 0.156 0.902 0.0317 0.0919 23.9 82.9 98.1
ours 0.194 0.0864 0.64 0.0303 0.0552 63.3 93.7 99.7

(−20,15) 186×465 128×320 Laina et al. (2016) 0.285 0.158 0.948 0.0281 0.0957 22.7 79.4 98.3
ours 0.197 0.0883 0.668 0.0245 0.0556 62.0 94.8 99.9

Table A.13 Experiments on NYUv2 Silberman et al. (2012). We compare our model on
six different cameras (see Figure A.3 for details on how to generate images from different
cameras) against Laina Laina et al. (2016). Notice how the errors of our network are almost
constant despite changing the camera parameters. The performance of Laina et al. (2016)
degrades as the test camera parameters move away from the training camera parameters.
The first test (first two rows) was done with the original image size of the dataset, which is
640×480.

Improving same-camera baseline: In Table A.11 we compare our model with CAM-
Convs trained on two different sensor sizes s1 and s2 and tested in those two plus an different
sensor size s3. In all cases focal length has been randomly sampled between f72 and f128.
This experiment shows that our model with CAM-Convs is the best one on the three test
sets, proving that CAM-Convs generalize to multiple sensor sizes. Compare with results in
Table A.10.

Generalizing to a different camera: We sought for a more extreme case of generaliza-
tion. We tested our trained networks on a complete different camera with sensor size s5 and
focal f64, numbers can be seen in Table A.12. In this experiments we show that our model
with CAM-Convs is the only one capable of performing at a similar level to the same-camera
baseline.

Qualitative results comparing network trained on same data with and without CAM-Convs
can be seen in Figure A.2.

A.2 NYU Experiment

In our last experiment we demonstrate how CAM-Convs can generalize across datasests by
training on four datasets with different cameras (KITTI (Uhrig et al., 2017), ScanNet(Dai
et al., 2017a), MegaDepth Li and Snavely (2018) and Sun3D(Xiao et al., 2013) and testing
on a different one (NYUv2 (Silberman et al., 2012)).



162 Detailed Experiments for Camera-Aware Convolutions

CAM-CONVS NO CAM-CONVSGround-TruthInput

Fig. A.2 Qualitative results on 2D-3D Semantincs Stanford Dataset (Armeni et al., 2017).
Sensor size 320×256 and focal length f64. Networks have been trained on 256×192 and
192×256 with focal lengths between f72 and f128.

A.2.1 Training

We trained our network for three different sensor sizes (320×320, 256×256 and 224×224)
using weight sharing. We did not apply focal length normalization. We augmented the
training data by synthetically generating new camera parameters (see Figure A.3) for the
given training images:



A.2 NYU Experiment 163

Principal point shifting

Focal length data aumentation

Fig. A.3 Overview of the steps for camera data augmentation.

Principal point shifting: In order to move the principal point in the image, we use cropping.
We randomly shift the principal point in the original images with a maximum of 50 pixels on
each direction.
Random focal length: Every branch of the network has a fixed sensor size. In order to
randomize the focal length we apply a random-size crop (in the center of the image) and
resize it to the sensor size of the branch. The crop aspect ratio will be the same as the branch
sensor size. Focal length is recalculated afterwards.

A.2.2 Testing

We test 6 different cameras on the NYUv2 dataset, presented by Silberman et al. (2012). To
create these cameras we apply the same augmentation pipeline as shown in Figure A.3. For
each of the 6 cameras we apply the corresponding augmentation parameters to the whole
test set. Table A.13 shows numbers for each camera. We compare our results with Laina
et al. (2016), which is a state-of-the-art method on this dataset. Our network has not been
fine-tuned for any of the 6 cameras. Results show that our method adapts better to different
cameras, while for Laina et al. (2016) the performance drops significantly when the camera
changes (the 3rd camera in the table corresponds to the intrinsics of the training data used in
Laina et al. (2016)).




	1705_Fácil Ledesma, José María.pdf
	Table of contents
	1 Introduction
	1.1 3D Visual Perception and Visual SLAM
	1.2 How Deep Learning is Improving Visual Perception
	1.3 Our contributions in 3D Visual Perception
	1.3.1 Visual Mapping without Motion
	1.3.2 Visual Mapping with Little Motion
	1.3.3 Place Recognition under Appearance Changes
	1.3.4 Visual Reconstruction of High-Level Structures
	1.3.5 Visual SLAM on Dynamic Environments

	1.4 List of Publications
	1.5 Code Released
	1.6 Manuscript Organization

	2 Camera-Aware Multi-Scale Convolutions for Single-View Depth
	2.1 Introduction
	2.2 Related Work
	2.3 Camera-Aware Multi-scale Convolutions
	2.3.1 Focal Length Normalization

	2.4 Model and Training
	2.4.1 Network Architecture
	2.4.2 Losses
	2.4.3 Training Schedule

	2.5 Multi-Camera Experiments and Results
	2.5.1 Experimental Setup
	2.5.2 Influence of context
	2.5.3 Overfitting of standard networks
	2.5.4 Robust Generalization with CAM-Convs
	2.5.5 Experiments on Multiple Datasets

	2.6 Conclusions

	3 Combining Single-View Deep Learning Depth with Multi-View Depth
	3.1 Introduction
	3.2 Related Work
	3.2.1 Multi-View Depth
	3.2.2 Single-View Depth

	3.3 Single and Multi-View Depth Fusion
	3.3.1 Multi-view Depth
	3.3.2 Single-view Depth
	3.3.3 Depth Fusion
	3.3.4 Multi-view Low-Error Point Selection

	3.4 Experimental Results
	3.5 Conclusions

	4 Condition-Invariant Place Recognition
	4.1 Introduction
	4.2 The Partitioned Nordland Dataset
	4.2.1 Data Pre-processing
	4.2.2 Dataset Partitions
	4.2.3 Place labels

	4.3 Related Work
	4.3.1 Descriptors
	4.3.2 Visual Place Retrieval
	4.3.3 Multi-View Place Recognition using Multi-View Descriptor

	4.4 Network Architectures
	4.4.1 Single-View ResNet-50
	4.4.2 Descriptor Grouping
	4.4.3 Descriptor Fusion
	4.4.4 Recurrent Descriptors

	4.5 Training
	4.5.1 Convention for Same Place
	4.5.2 Model training

	4.6 Experimental Results
	4.6.1 Partitioned Nordland Dataset
	4.6.2 Alderley
	4.6.3 Multi-View Evaluation
	4.6.4 Execution time

	4.7 Conclusions

	5 Corner Prediction for Layout Reconstruction
	5.1 Introduction
	5.2 Related Work
	5.3 Corners for Layout
	5.3.1 Network architecture
	5.3.2 Training
	5.3.3 From Corner Maps to 3D Layout

	5.4 Equirectangular Convolutions
	5.4.1 EquiConvs Details

	5.5 Experiments
	5.5.1 Datasets
	5.5.2 Implementation details
	5.5.3 Network's output evaluation
	5.5.4 Robustness analysis
	5.5.5 3D Layout comparison
	5.5.6 Extra Qualitative Results

	5.6 Conclusions

	6 Monocular and RGB-D SLAM on Dynamic Environments
	6.1 Introduction
	6.2 Related Work
	6.3 DynaSLAM System Description
	6.3.1 Segmentation of Potentially Dynamic Content using a CNN
	6.3.2 Low-Cost Tracking
	6.3.3 Segmentation of Dynamic Content using Mask R-CNN and Multi-view Geometry
	6.3.4 Tracking and Mapping
	6.3.5 Background Inpainting

	6.4 Experimental Results
	6.4.1 TUM Dataset
	6.4.2 KITTI Dataset
	6.4.3 Timing Analysis

	6.5 Conclusions

	7 Conclusions
	7.1 Limitations and Future Work

	References
	Appendix A Detailed Experiments for Camera-Aware Convolutions
	A.1 Experiments on Stanford Dataset
	A.1.1 2D-3D Semantics Stanford Dataset
	A.1.2 Notation
	A.1.3 Influence of Context in Single View Depth
	A.1.4 Focal Length Overfitting
	A.1.5 Sensor Size Overfitting
	A.1.6 Generalization with CAM-Convs

	A.2 NYU Experiment
	A.2.1 Training
	A.2.2 Testing




